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Preface
Machine learning and predictive analytics are becoming one of the key strategies for 
unlocking growth in a challenging contemporary marketplace .It is one of the fastest 
growing trends in modern computing and everyone wants to get into the field of 
machine learning. In order to obtain sufficient recognition in this field, one must be 
able to understand and design a machine learning system that serves the needs of a 
project. The idea is to prepare a Learning Path that will help you to tackle the real-
world complexities of modern machine learning with innovative and cutting-edge 
techniques. Also, it will give you a solid foundation in the machine learning design 
process, and enable you to build customized machine learning models to solve 
unique problems

What this learning path covers
Module 1, Python Machine Learning, discusses the essential machine algorithms for 
classification and provides practical examples using scikit-learn. It teaches you to 
prepare variables of different types and also speaks about polynomial regression 
and tree-based approaches. This module focuses on open source Python library that 
allows us to utilize multiple cores of modern GPUs.

Module 2, Designing Machine Learning Systems with Python, acquaints you with large 
library of packages for machine learning tasks. It introduces broad topics such 
as big data, data properties, data sources, and data processing .You will further 
explore models that form the foundation of many advanced nonlinear techniques. 
This module will help you in understanding model selection and parameter tuning 
techniques that could help in various case studies.
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Module 3, Advanced Machine Learning with Python, helps you to build your skill 
with deep architectures by using stacked denoising autoencoders. This module is a 
blend of semi-supervised learning techniques, RBM and DBN algorithms .Further 
this focuses on tools and techniques which will help in making consistent working 
process.

What you need for this learning path
Module 1, Python Machine Learning will require an installation of Python 3.4.3 or 
newer on Mac OS X, Linux or Microsoft Windows. Use of Python essential libraries 
like SciPy, NumPy, scikit-Learn, matplotlib, and pandas. is essential. 

Before you start, Please refer:

•	 The direct link to the Iris dataset would be: https://raw.
githubusercontent.com/rasbt/python-machine-learning-book/
master/code/datasets/iris/iris.data

•	 We've added some additional notes to the code notebooks mentioning the 
offline datasets in case there are server errors. https://www.dropbox.com/
sh/tq2qdh0oqfgsktq/AADIt7esnbiWLOQODn5q_7Dta?dl=0

•	 Module 2, Designing Machine Learning Systems with Python, will need an 
inclination to learn machine learning and the Python V3 software, which you 
can download from https://www.python.org/downloads/.

•	 Module 3, Advanced Machine Learning with Python, leverages openly 
available data and code, including open source Python libraries and 
frameworks.

Who this learning path is for
This title is for Data scientist and researchers who are already into the field of  
Data Science and want to see Machine learning in action and explore its real-world 
application. Prior knowledge of Python programming and mathematics is must with 
basic knowledge of machine learning concepts.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this course—what you liked or disliked. Reader feedback is important for us as it 
helps us develop titles that you will really get the most out of.

https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/iris/iris.data
https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/iris/iris.data
https://raw.githubusercontent.com/rasbt/python-machine-learning-book/master/code/datasets/iris/iris.data
https://www.dropbox.com/sh/tq2qdh0oqfgsktq/AADIt7esnbiWLOQODn5q_7Dta?dl=0
https://www.dropbox.com/sh/tq2qdh0oqfgsktq/AADIt7esnbiWLOQODn5q_7Dta?dl=0
https://www.python.org/downloads/
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To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at 
http://www.packtpub.com. If you purchased this course elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the course in the Search box.
5.	 Select the course for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this course from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
course's webpage at the Packt Publishing website. This page can be accessed by 
entering the course's name in the Search box. Please note that you need to be logged 
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
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The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Deeper-Insights-into-Machine-Learning. 

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our courses—maybe a mistake in the text 
or the code—we would be grateful if you could report this to us. By doing so, you 
can save other readers from frustration and help us improve subsequent versions 
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata 
Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our 
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Python-Deeper-Insights-into-Machine-Learning
https://github.com/PacktPublishing/Python-Deeper-Insights-into-Machine-Learning
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


[ i ]

Course Module 1: Python Machine Learning

Chapter 1: Giving Computers the Ability to Learn from Data	 3
Building intelligent machines to transform data into knowledge	 4
The three different types of machine learning	 4
An introduction to the basic terminology and notations	 10
A roadmap for building machine learning systems	 12
Using Python for machine learning	 15
Summary	 17

Chapter 2: Training Machine Learning Algorithms  
for Classification	 19

Artificial neurons – a brief glimpse into the early history of  
machine learning	 20
Implementing a perceptron learning algorithm in Python	 26
Adaptive linear neurons and the convergence of learning	 35
Summary	 49

Chapter 3: A Tour of Machine Learning Classifiers  
Using Scikit-learn	 51

Choosing a classification algorithm	 51
First steps with scikit-learn	 52
Modeling class probabilities via logistic regression	 58
Maximum margin classification with support vector machines	 71
Solving nonlinear problems using a kernel SVM	 77
Decision tree learning	 82



Table of Contents

[ ii ]

K-nearest neighbors – a lazy learning algorithm	 94
Summary	 98

Chapter 4: Building Good Training Sets – Data Preprocessing	 101
Dealing with missing data	 101
Handling categorical data	 106
Partitioning a dataset in training and test sets	 110
Bringing features onto the same scale	 112
Selecting meaningful features	 114
Assessing feature importance with random forests	 126
Summary	 128

Chapter 5: Compressing Data via Dimensionality Reduction	 129
Unsupervised dimensionality reduction via principal  
component analysis	 130
Supervised data compression via linear discriminant analysis	 140
Using kernel principal component analysis for nonlinear mappings	 150
Summary	 169

Chapter 6: Learning Best Practices for Model Evaluation  
and Hyperparameter Tuning	 171

Streamlining workflows with pipelines	 171
Using k-fold cross-validation to assess model performance	 175
Debugging algorithms with learning and validation curves	 181
Fine-tuning machine learning models via grid search	 187
Looking at different performance evaluation metrics	 191
Summary	 200

Chapter 7: Combining Different Models for Ensemble Learning	 201
Learning with ensembles	 201
Implementing a simple majority vote classifier	 205
Evaluating and tuning the ensemble classifier	 215
Bagging – building an ensemble of classifiers from  
bootstrap samples	 221
Leveraging weak learners via adaptive boosting	 226
Summary	 234

Chapter 8: Applying Machine Learning to Sentiment Analysis	 235
Obtaining the IMDb movie review dataset	 235
Introducing the bag-of-words model	 238
Training a logistic regression model for document classification	 246
Working with bigger data – online algorithms and out-of-core learning	 248
Summary	 252



Table of Contents

[ iii ]

Chapter 9: Embedding a Machine Learning Model into a  
Web Application	 253

Serializing fitted scikit-learn estimators	 254
Setting up a SQLite database for data storage	 257
Developing a web application with Flask	 259
Turning the movie classifier into a web application	 266
Deploying the web application to a public server	 274
Summary	 278

Chapter 10: Predicting Continuous Target Variables with  
Regression Analysis 	 279

Introducing a simple linear regression model	 280
Exploring the Housing Dataset	 281
Implementing an ordinary least squares linear regression model	 287
Fitting a robust regression model using RANSAC	 293
Evaluating the performance of linear regression models	 296
Using regularized methods for regression	 299
Turning a linear regression model into a curve – polynomial  
regression	 300
Summary	 311

Chapter 11: Working with Unlabeled Data – Clustering Analysis	 313
Grouping objects by similarity using k-means	 314
Organizing clusters as a hierarchical tree	 328
Locating regions of high density via DBSCAN	 336
Summary	 342

Chapter 12: Training Artificial Neural Networks for  
Image Recognition	 343

Modeling complex functions with artificial neural networks	 344
Classifying handwritten digits	 352
Training an artificial neural network	 367
Developing your intuition for backpropagation	 374
Debugging neural networks with gradient checking	 375
Convergence in neural networks	 381
Other neural network architectures	 383
A few last words about neural network implementation	 386
Summary	 387



Table of Contents

[ iv ]

Chapter 13: Parallelizing Neural Network Training with Theano	 389
Building, compiling, and running expressions with Theano	 390
Choosing activation functions for feedforward neural networks	 403
Training neural networks efficiently using Keras	 410
Summary	 416

Course Module 2: Designing Machine Learning  
Systems with Python

Chapter 1: Thinking in Machine Learning	 421
The human interface	 422
Design principles	 425
Summary	 453

Chapter 2: Tools and Techniques	 455
Python for machine learning	 456
IPython console	 456
Installing the SciPy stack	 457
NumPY	 458
Matplotlib	 464
Pandas	 468
SciPy	 471
Scikit-learn	 474
Summary	 481

Chapter 3: Turning Data into Information	 483
What is data?	 484
Big data	 484
Signals	 500
Cleaning data	 502
Visualizing data	 504
Summary	 507

Chapter 4: Models – Learning from Information	 509
Logical models	 509
Tree models	 517
Rule models	 521
Summary	 528



Table of Contents

[ v ]

Chapter 5: Linear Models	 529
Introducing least squares	 530
Logistic regression	 538
Multiclass classification	 544
Regularization	 545
Summary	 548

Chapter 6: Neural Networks	 549
Getting started with neural networks	 549
Logistic units	 551
Cost function	 556
Implementing a neural network	 559
Gradient checking	 565
Other neural net architectures	 566
Summary	 567

Chapter 7: Features – How Algorithms See the World	 569
Feature types	 570
Operations and statistics	 571
Structured features	 574
Transforming features	 574
Principle component analysis	 583
Summary	 585

Chapter 8: Learning with Ensembles	 587
Ensemble types	 587
Bagging	 588
Boosting	 594
Ensemble strategies	 601
Summary	 604

Chapter 9: Design Strategies and Case Studies	 605
Evaluating model performance	 605
Model selection	 610
Learning curves	 613
Real-world case studies	 615
Machine learning at a glance	 626
Summary	 627



Table of Contents

[ vi ]

Course Module 3: Advanced Machine  
Learning with Python

Chapter 1: Unsupervised Machine Learning	 631
Principal component analysis	 632
Introducing k-means clustering	 637
Self-organizing maps	 648
Further reading	 654
Summary	 655

Chapter 2: Deep Belief Networks	 657
Neural networks – a primer	 658
Restricted Boltzmann Machine	 663
Deep belief networks	 679
Further reading	 685
Summary	 686

Chapter 3: Stacked Denoising Autoencoders	 687
Autoencoders	 687
Stacked Denoising Autoencoders	 696
Further reading	 705
Summary	 705

Chapter 4: Convolutional Neural Networks	 707
Introducing the CNN	 707
Further Reading	 729
Summary	 730

Chapter 5: Semi-Supervised Learning	 731
Introduction	 731
Understanding semi-supervised learning	 732
Semi-supervised algorithms in action	 733
Further reading	 756
Summary	 757

Chapter 6: Text Feature Engineering	 759
Introduction	 759
Text feature engineering	 760
Further reading	 783
Summary	 784

Chapter 7: Feature Engineering Part II	 785
Introduction	 785
Creating a feature set	 786



Table of Contents

[ vii ]

Feature engineering in practice	 805
Further reading	 829
Summary	 830

Chapter 8: Ensemble Methods	 831
Introducing ensembles	 832
Using models in dynamic applications	 851
Further reading	 863
Summary	 864

Chapter 9: Additional Python Machine Learning Tools	 865
Alternative development tools	 866
Further reading	 875
Summary	 875

Chapter 10: Chapter Code Requirements	 879
Biblography	 881





Module 1

Python Machine Learning

Leverage benefits of machine learning techniques using Python





[ 3 ]

Giving Computers the Ability 
to Learn from Data

In my opinion, machine learning, the application and science of algorithms that makes 
sense of data, is the most exciting field of all the computer sciences! We are living in 
an age where data comes in abundance; using the self-learning algorithms from the 
field of machine learning, we can turn this data into knowledge. Thanks to the many 
powerful open source libraries that have been developed in recent years, there has 
probably never been a better time to break into the machine learning field and learn 
how to utilize powerful algorithms to spot patterns in data and make predictions 
about future events.

In this chapter, we will learn about the main concepts and different types of machine 
learning. Together with a basic introduction to the relevant terminology, we will lay 
the groundwork for successfully using machine learning techniques for practical 
problem solving.

In this chapter, we will cover the following topics:

•	 The general concepts of machine learning
•	 The three types of learning and basic terminology
•	 The building blocks for successfully designing machine learning systems
•	 Installing and setting up Python for data analysis and machine learning
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Building intelligent machines to 
transform data into knowledge
In this age of modern technology, there is one resource that we have in abundance: a 
large amount of structured and unstructured data. In the second half of the twentieth 
century, machine learning evolved as a subfield of artificial intelligence that involved 
the development of self-learning algorithms to gain knowledge from that data in 
order to make predictions. Instead of requiring humans to manually derive rules 
and build models from analyzing large amounts of data, machine learning offers a 
more efficient alternative for capturing the knowledge in data to gradually improve 
the performance of predictive models, and make data-driven decisions. Not only is 
machine learning becoming increasingly important in computer science research but 
it also plays an ever greater role in our everyday life. Thanks to machine learning, 
we enjoy robust e-mail spam filters, convenient text and voice recognition software, 
reliable Web search engines, challenging chess players, and, hopefully soon, safe and 
efficient self-driving cars.

The three different types of  
machine learning
In this section, we will take a look at the three types of machine learning: supervised 
learning, unsupervised learning, and reinforcement learning. We will learn about the 
fundamental differences between the three different learning types and, using 
conceptual examples, we will develop an intuition for the practical problem  
domains where these can be applied:
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Making predictions about the future with 
supervised learning
The main goal in supervised learning is to learn a model from labeled training data 
that allows us to make predictions about unseen or future data. Here, the term 
supervised refers to a set of samples where the desired output signals (labels) are 
already known.

Considering the example of e-mail spam filtering, we can train a model using a 
supervised machine learning algorithm on a corpus of labeled e-mail, e-mail that are 
correctly marked as spam or not-spam, to predict whether a new e-mail belongs to 
either of the two categories. A supervised learning task with discrete class labels, such 
as in the previous e-mail spam-filtering example, is also called a classification task. 
Another subcategory of supervised learning is regression, where the outcome signal is 
a continuous value:

Classification for predicting class labels
Classification is a subcategory of supervised learning where the goal is to  
predict the categorical class labels of new instances based on past observations.  
Those class labels are discrete, unordered values that can be understood as the  
group memberships of the instances. The previously mentioned example of  
e-mail-spam detection represents a typical example of a binary classification  
task, where the machine learning algorithm learns a set of rules in order to 
distinguish between two possible classes: spam and non-spam e-mail.
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However, the set of class labels does not have to be of a binary nature. The predictive 
model learned by a supervised learning algorithm can assign any class label that was 
presented in the training dataset to a new, unlabeled instance. A typical example of 
a multi-class classification task is handwritten character recognition. Here, we could 
collect a training dataset that consists of multiple handwritten examples of each letter 
in the alphabet. Now, if a user provides a new handwritten character via an input 
device, our predictive model will be able to predict the correct letter in the alphabet 
with certain accuracy. However, our machine learning system would be unable to 
correctly recognize any of the digits zero to nine, for example, if they were not part  
of our training dataset.

The following figure illustrates the concept of a binary classification task given 30 
training samples: 15 training samples are labeled as negative class (circles) and 15 
training samples are labeled as positive class (plus signs). In this scenario, our dataset 
is two-dimensional, which means that each sample has two values associated with  
it: 1x  and 2x . Now, we can use a supervised machine learning algorithm to learn a 
rule—the decision boundary represented as a black dashed line—that can separate 
those two classes and classify new data into each of those two categories given its 1x   
and 2x  values:

Regression for predicting continuous outcomes
We learned in the previous section that the task of classification is to assign 
categorical, unordered labels to instances. A second type of supervised learning is 
the prediction of continuous outcomes, which is also called regression analysis. In 
regression analysis, we are given a number of predictor (explanatory) variables and a 
continuous response variable (outcome), and we try to find a relationship between 
those variables that allows us to predict an outcome.
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For example, let's assume that we are interested in predicting the Math SAT  
scores of our students. If there is a relationship between the time spent studying  
for the test and the final scores, we could use it as training data to learn a model  
that uses the study time to predict the test scores of future students who are  
planning to take this test.

The term regression was devised by Francis Galton in his article 
Regression Towards Mediocrity in Hereditary Stature in 1886. Galton 
described the biological phenomenon that the variance of height 
in a population does not increase over time. He observed that 
the height of parents is not passed on to their children but the 
children's height is regressing towards the population mean.

The following figure illustrates the concept of linear regression. Given a predictor 
variable x and a response variable y, we fit a straight line to this data that minimizes 
the distance—most commonly the average squared distance—between the sample 
points and the fitted line. We can now use the intercept and slope learned from this 
data to predict the outcome variable of new data:
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Solving interactive problems with 
reinforcement learning
Another type of machine learning is reinforcement learning. In reinforcement 
learning, the goal is to develop a system (agent) that improves its performance 
based on interactions with the environment. Since the information about the current 
state of the environment typically also includes a so-called reward signal, we can 
think of reinforcement learning as a field related to supervised learning. However, in 
reinforcement learning this feedback is not the correct ground truth label or value, 
but a measure of how well the action was measured by a reward function. Through 
the interaction with the environment, an agent can then use reinforcement learning 
to learn a series of actions that maximizes this reward via an exploratory  
trial-and-error approach or deliberative planning.

A popular example of reinforcement learning is a chess engine. Here, the agent decides 
upon a series of moves depending on the state of the board (the environment), and the 
reward can be defined as win or lose at the end of the game:

Discovering hidden structures with 
unsupervised learning
In supervised learning, we know the right answer beforehand when we train 
our model, and in reinforcement learning, we define a measure of reward for 
particular actions by the agent. In unsupervised learning, however, we are dealing 
with unlabeled data or data of unknown structure. Using unsupervised learning 
techniques, we are able to explore the structure of our data to extract meaningful 
information without the guidance of a known outcome variable or reward function.
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Finding subgroups with clustering
Clustering is an exploratory data analysis technique that allows us to organize a 
pile of information into meaningful subgroups (clusters) without having any prior 
knowledge of their group memberships. Each cluster that may arise during the 
analysis defines a group of objects that share a certain degree of similarity but are 
more dissimilar to objects in other clusters, which is why clustering is also sometimes 
called "unsupervised classification." Clustering is a great technique for structuring 
information and deriving meaningful relationships among data, For example, it 
allows marketers to discover customer groups based on their interests in order to 
develop distinct marketing programs.

The figure below illustrates how clustering can be applied to organizing unlabeled 
data into three distinct groups based on the similarity of their features 1x  and 2x :

Dimensionality reduction for data compression
Another subfield of unsupervised learning is dimensionality reduction. Often we are 
working with data of high dimensionality—each observation comes with a high 
number of measurements—that can present a challenge for limited storage space 
and the computational performance of machine learning algorithms. Unsupervised 
dimensionality reduction is a commonly used approach in feature preprocessing 
to remove noise from data, which can also degrade the predictive performance of 
certain algorithms, and compress the data onto a smaller dimensional subspace 
while retaining most of the relevant information.
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Sometimes, dimensionality reduction can also be useful for visualizing data—for 
example, a high-dimensional feature set can be projected onto one-, two-, or  
three-dimensional feature spaces in order to visualize it via 3D- or 2D-scatterplots 
or histograms. The figure below shows an example where non-linear dimensionality 
reduction was applied to compress a 3D Swiss Roll onto a  
new 2D feature subspace:

An introduction to the basic terminology 
and notations
Now that we have discussed the three broad categories of machine  
learning—supervised, unsupervised, and reinforcement learning—let us have  
a look at the basic terminology that we will be using in the next chapters. The 
following table depicts an excerpt of the Iris dataset, which is a classic example in 
the field of machine learning. The Iris dataset contains the measurements of 150 iris 
flowers from three different species: Setosa, Versicolor, and Virginica. Please check if 
this is replaced. Here, each flower sample represents one row in our data set, and the 
flower measurements in centimeters are stored as columns, which we also call the 
features of the dataset:
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To keep the notation and implementation simple yet efficient, we will make use of 
some of the basics of linear algebra. In the following chapters, we will use a matrix 
and vector notation to refer to our data. We will follow the common convention to 
represent each sample as separate row in a feature matrix X , where each feature is 
stored as a separate column.

The Iris dataset, consisting of 150 samples and 4 features, can then be written as a 
150 4×  matrix ×∈ 150 4�X :
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For the rest of this book, we will use the superscript (i) to refer to the ith 
training sample, and the subscript j to refer to the jth dimension of the 
training dataset.

We use lower-case, bold-face letters to refer to vectors ( )1×∈Rnx  and  
upper-case, bold-face letters to refer to matrices, respectively ( )×∈�n mX .  
To refer to single elements in a vector or matrix, we write the letters in 
italics ( ( )nx  or ( )

( )n
mx , respectively).

For example, 150
1x  refers to the first dimension of flower sample 150, the 

sepal length. Thus, each row in this feature matrix represents one flower 
instance and can be written as four-dimensional row vector ( )i ×∈ 1 4�x , 

( ) ( ) ( ) ( ) ( )
1 2 3 4

i i i i ix x x x =  x .

Each feature dimension is a 150-dimensional column vector 50
j

×∈ 1 1�x ,  
for example:

( )

( )

( )

1

2

150

 

 

j

j
j

j

x

x

x

 
 
 

=  
 
 
 

�
x

.

Similarly, we store the target variables (here: class labels) as a 

150-dimensional column vector 

( )

( )

{ }( )
1

150

   Setosa,  Versicolor,  Virginica

 

y
y

y

 
 

= … ∈ 
 
 

y .

A roadmap for building machine learning 
systems
In the previous sections, we discussed the basic concepts of machine learning and the 
three different types of learning. In this section, we will discuss other important parts 
of a machine learning system accompanying the learning algorithm. The diagram 
below shows a typical workflow diagram for using machine learning in predictive 
modeling, which we will discuss in the following subsections:



Chapter 1

[ 13 ]

Preprocessing – getting data into shape
Raw data rarely comes in the form and shape that is necessary for the optimal 
performance of a learning algorithm. Thus, the preprocessing of the data is one of the 
most crucial steps in any machine learning application. If we take the Iris flower 
dataset from the previous section as an example, we could think of the raw data 
as a series of flower images from which we want to extract meaningful features. 
Useful features could be the color, the hue, the intensity of the flowers, the height, 
and the flower lengths and widths. Many machine learning algorithms also require 
that the selected features are on the same scale for optimal performance, which is 
often achieved by transforming the features in the range [0, 1] or a standard normal 
distribution with zero mean and unit variance, as we will see in the later chapters.

Some of the selected features may be highly correlated and therefore redundant 
to a certain degree. In those cases, dimensionality reduction techniques are useful 
for compressing the features onto a lower dimensional subspace. Reducing the 
dimensionality of our feature space has the advantage that less storage space is 
required, and the learning algorithm can run much faster.
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To determine whether our machine learning algorithm not only performs well on the 
training set but also generalizes well to new data, we also want to randomly divide 
the dataset into a separate training and test set. We use the training set to train and 
optimize our machine learning model, while we keep the test set until the very end 
to evaluate the final model.

Training and selecting a predictive model
As we will see in later chapters, many different machine learning algorithms have 
been developed to solve different problem tasks. An important point that can be 
summarized from David Wolpert's famous No Free Lunch Theorems is that we can't 
get learning "for free" (The Lack of A Priori Distinctions Between Learning Algorithms, 
D.H. Wolpert 1996; No Free Lunch Theorems for Optimization, D.H. Wolpert and W.G. 
Macready, 1997). Intuitively, we can relate this concept to the popular saying, "I 
suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it  
were a nail" (Abraham Maslow, 1966). For example, each classification algorithm  
has its inherent biases, and no single classification model enjoys superiority if we 
don't make any assumptions about the task. In practice, it is therefore essential to 
compare at least a handful of different algorithms in order to train and select the  
best performing model. But before we can compare different models, we first  
have to decide upon a metric to measure performance. One commonly used  
metric is classification accuracy, which is defined as the proportion of correctly 
classified instances.

One legitimate question to ask is: how do we know which model performs well on the  
final test dataset and real-world data if we don't use this test set for the model selection 
but keep it for the final model evaluation? In order to address the issue embedded in 
this question, different cross-validation techniques can be used where the training 
dataset is further divided into training and validation subsets in order to estimate the 
generalization performance of the model. Finally, we also cannot expect that the default 
parameters of the different learning algorithms provided by software libraries are 
optimal for our specific problem task. Therefore, we will make frequent use of 
hyperparameter optimization techniques that help us to fine-tune the performance of 
our model in later chapters. Intuitively, we can think of those hyperparameters as 
parameters that are not learned from the data but represent the knobs of a model  
that we can turn to improve its performance, which will become much clearer in  
later chapters when we see actual examples.
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Evaluating models and predicting unseen 
data instances
After we have selected a model that has been fitted on the training dataset, we can 
use the test dataset to estimate how well it performs on this unseen data to estimate 
the generalization error. If we are satisfied with its performance, we can now use 
this model to predict new, future data. It is important to note that the parameters for 
the previously mentioned procedures—such as feature scaling and dimensionality 
reduction—are solely obtained from the training dataset, and the same parameters are 
later re-applied to transform the test dataset, as well as any new data samples—the 
performance measured on the test data may be overoptimistic otherwise.

Using Python for machine learning
Python is one of the most popular programming languages for data science  
and therefore enjoys a large number of useful add-on libraries developed by  
its great community.

Although the performance of interpreted languages, such as Python, for 
computation-intensive tasks is inferior to lower-level programming languages, 
extension libraries such as NumPy and SciPy have been developed that build upon 
lower layer Fortran and C implementations for fast and vectorized operations on 
multidimensional arrays.

For machine learning programming tasks, we will mostly refer to the scikit-learn 
library, which is one of the most popular and accessible open source machine 
learning libraries as of today.

Installing Python packages
Python is available for all three major operating systems—Microsoft Windows, 
Mac OS X, and Linux—and the installer, as well as the documentation, can be 
downloaded from the official Python website: https://www.python.org.

This book is written for Python version >= 3.4.3, and it is recommended  
you use the most recent version of Python 3 that is currently available,  
although most of the code examples may also be compatible with Python >= 2.7.10. 
If you decide to use Python 2.7 to execute the code examples, please make sure 
that you know about the major differences between the two Python versions. A 
good summary about the differences between Python 3.4 and 2.7 can be found at 
https://wiki.python.org/moin/Python2orPython3.

https://www.python.org
https://wiki.python.org/moin/Python2orPython3
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The additional packages that we will be using throughout this book can be  
installed via the pip installer program, which has been part of the Python  
standard library since Python 3.3. More information about pip can be found  
at https://docs.python.org/3/installing/index.html.

After we have successfully installed Python, we can execute pip from the command 
line terminal to install additional Python packages:

pip install SomePackage

Already installed packages can be updated via the --upgrade flag:

pip install SomePackage --upgrade

A highly recommended alternative Python distribution for scientific computing 
is Anaconda by Continuum Analytics. Anaconda is a free—including commercial 
use—enterprise-ready Python distribution that bundles all the essential Python 
packages for data science, math, and engineering in one user-friendly  
cross-platform distribution. The Anaconda installer can be downloaded at  
http://continuum.io/downloads#py34, and an Anaconda quick start-guide is 
available at https://store.continuum.io/static/img/Anaconda-Quickstart.
pdf.

After successfully installing Anaconda, we can install new Python packages using 
the following command:

conda install SomePackage

Existing packages can be updated using the following command:

conda update SomePackage

Throughout this book, we will mainly use NumPy's multi-dimensional arrays to store 
and manipulate data. Occasionally, we will make use of pandas, which is a library 
built on top of NumPy that provides additional higher level data manipulation 
tools that make working with tabular data even more convenient. To augment our 
learning experience and visualize quantitative data, which is often extremely useful 
to intuitively make sense of it, we will use the very customizable matplotlib library.

https://docs.python.org/3/installing/index.html
http://continuum.io/downloads#py34
https://store.continuum.io/static/img/Anaconda-Quickstart.pdf
https://store.continuum.io/static/img/Anaconda-Quickstart.pdf
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The version numbers of the major Python packages that were used for writing this 
book are listed below. Please make sure that the version numbers of your installed 
packages are equal to, or greater than, those version numbers to ensure the code 
examples run correctly:

•	 NumPy 1.9.1
•	 SciPy 0.14.0
•	 scikit-learn 0.15.2
•	 matplotlib 1.4.0
•	 pandas 0.15.2

Summary
In this chapter, we explored machine learning on a very high level and familiarized 
ourselves with the big picture and major concepts that we are going to explore in the 
next chapters in more detail.

We learned that supervised learning is composed of two important subfields: 
classification and regression. While classification models allow us to categorize 
objects into known classes, we can use regression analysis to predict the continuous 
outcomes of target variables. Unsupervised learning not only offers useful 
techniques for discovering structures in unlabeled data, but it can also be  
useful for data compression in feature preprocessing steps.

We briefly went over the typical roadmap for applying machine learning to  
problem tasks, which we will use as a foundation for deeper discussions and 
hands-on examples in the following chapters. Eventually, we set up our Python 
environment and installed and updated the required packages to get ready to see 
machine-learning in action.
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In the following chapter, we will implement one of the earliest machine learning 
algorithms for classification that will prepare us for Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn, where we cover more advanced machine 
learning algorithms using the scikit-learn open source machine learning library. Since 
machine learning algorithms learn from data, it is critical that we feed them useful 
information, and in Chapter 4, Building Good Training Sets—Data Preprocessing we will 
take a look at important data preprocessing techniques. In Chapter 5, Compressing Data 
via Dimensionality Reduction, we will learn about dimensionality reduction techniques 
that can help us to compress our dataset onto a lower-dimensional feature subspace, 
which can be beneficial for computational efficiency. An important aspect of building 
machine learning models is to evaluate their performance and to estimate how well 
they can make predictions on new, unseen data. In Chapter 6, Learning Best Practices for 
Model Evaluation and Hyperparameter Tuning we will learn all about the best practices 
for model tuning and evaluation. In certain scenarios, we still may not be satisfied with 
the performance of our predictive model although we may have spent hours or days 
extensively tuning and testing. In Chapter 7, Combining Different Models for Ensemble 
Learning we will learn how to combine different machine learning models to build 
even more powerful predictive systems.

After we covered all of the important concepts of a typical machine learning pipeline, 
we will implement a model for predicting emotions in text in Chapter 8, Applying 
Machine Learning to Sentiment Analysis, and in Chapter 9, Embedding a Machine Learning 
Model into a Web Application, we will embed it into a Web application to share it with 
the world. In Chapter 10, Predicting Continuous Target Variables with Regression Analysis 
we will then use machine learning algorithms for regression analysis that allow us 
to predict continuous output variables, and in Chapter 11, Working with Unlabelled 
Data – Clustering Analysis we will apply clustering algorithms that will allow us to 
find hidden structures in data. The last two chapters in this book will cover artificial 
neural networks that will allow us to tackle complex problems, such as image and 
speech recognition, which is currently one of the hottest topics in machine-learning 
research.
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Training Machine Learning 
Algorithms for Classification

In this chapter, we will make use of one of the first algorithmically described 
machine learning algorithms for classification, the perceptron and adaptive linear 
neurons. We will start by implementing a perceptron step by step in Python and 
training it to classify different flower species in the Iris dataset. This will help us to 
understand the concept of machine learning algorithms for classification and how 
they can be efficiently implemented in Python. Discussing the basics of optimization 
using adaptive linear neurons will then lay the groundwork for using more powerful 
classifiers via the scikit-learn machine-learning library in Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn.

The topics that we will cover in this chapter are as follows:

•	 Building an intuition for machine learning algorithms
•	 Using pandas, NumPy, and matplotlib to read in, process, and visualize data
•	 Implementing linear classification algorithms in Python
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Artificial neurons – a brief glimpse into 
the early history of machine learning
Before we discuss the perceptron and related algorithms in more detail, let us take 
a brief tour through the early beginnings of machine learning. Trying to understand 
how the biological brain works to design artificial intelligence, Warren McCullock 
and Walter Pitts published the first concept of a simplified brain cell, the so-called 
McCullock-Pitts (MCP) neuron, in 1943 (W. S. McCulloch and W. Pitts. A Logical 
Calculus of the Ideas Immanent in Nervous Activity. The bulletin of mathematical 
biophysics, 5(4):115–133, 1943). Neurons are interconnected nerve cells in the brain 
that are involved in the processing and transmitting of chemical and electrical 
signals, which is illustrated in the following figure:

McCullock and Pitts described such a nerve cell as a simple logic gate with binary 
outputs; multiple signals arrive at the dendrites, are then integrated into the cell 
body, and, if the accumulated signal exceeds a certain threshold, an output signal  
is generated that will be passed on by the axon.
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Only a few years later, Frank Rosenblatt published the first concept of the perceptron 
learning rule based on the MCP neuron model (F. Rosenblatt, The Perceptron, a 
Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory, 1957). With 
his perceptron rule, Rosenblatt proposed an algorithm that would automatically 
learn the optimal weight coefficients that are then multiplied with the input features 
in order to make the decision of whether a neuron fires or not. In the context of 
supervised learning and classification, such an algorithm could then be used to 
predict if a sample belonged to one class or the other.

More formally, we can pose this problem as a binary classification task where we 
refer to our two classes as 1 (positive class) and -1 (negative class) for simplicity. We 
can then define an activation function ( )zφ  that takes a linear combination of certain 
input values x  and a corresponding weight vector w , where z  is the so-called net 
input ( 1 1 m mz w x w x= + +… ):

1 1

,

m m

w x

w x

   
   
   
      

� �w = x =

Now, if the activation of a particular sample ( )ix , that is, the output of ( )zφ , is 
greater than a defined threshold θ , we predict class 1 and class -1, otherwise. In the 
perceptron algorithm, the activation function ( )φ ⋅  is a simple unit step function, which 
is sometimes also called the Heaviside step function:

( )
1
1
if z

z
otherwise

θ
φ

≥
= −
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For simplicity, we can bring the threshold θ  to the left side of the equation and 
define a weight-zero as 0w θ= −  and 0 1x = , so that we write z  in a more compact 

form 0 0 1 1
T

m mz w x w x w x= + + + =… w x  and ( )
1 0
1
if z

z
otherwise

φ
≥

= − .

In the following sections, we will often make use of basic notations from 
linear algebra. For example, we will abbreviate the sum of the products 
of the values in x  and w  using a vector dot product, whereas superscript 
T stands for transpose, which is an operation that transforms a column 
vector into a row vector and vice versa:

0 0 1 1 0

m T
m m j jj

z w x w x w x
=

= + + + = =∑� x w w x

For example: [ ]
 4 

1 2 3     5  1 4 2 5  3 6 32
 6 

 
 × = × + × + × = 
  

.

Furthermore, the transpose operation can also be applied to a matrix to 
reflect it over its diagonal, for example:

1 2
1 3 5

3 4  
2 4 6

5 6

T
 

   =       
In this book, we will only use the very basic concepts from linear algebra. 
However, if you need a quick refresher, please take a look at Zico Kolter's 
excellent Linear Algebra Review and Reference, which is freely available 
at http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_
notes.pdf.

The following figure illustrates how the net input Tz = w x  is squashed into a binary 
output (-1 or 1) by the activation function of the perceptron (left subfigure) and how it 
can be used to discriminate between two linearly separable classes (right subfigure):

http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf
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The whole idea behind the MCP neuron and Rosenblatt's thresholded perceptron 
model is to use a reductionist approach to mimic how a single neuron in the brain 
works: it either fires or it doesn't. Thus, Rosenblatt's initial perceptron rule is fairly 
simple and can be summarized by the following steps:

1.	 Initialize the weights to 0 or small random numbers.

2.	 For each training sample ( )ix  perform the following steps:

1.	 Compute the output value ŷ .
2.	 Update the weights.

Here, the output value is the class label predicted by the unit step function that we 
defined earlier, and the simultaneous update of each weight jw  in the weight vector 
w  can be more formally written as:

:j j jw w w= + ∆

The value of jw∆ , which is used to update the weight jw , is calculated by the 
perceptron learning rule:

( ) ( )( ) ( )ˆi i i
j jw y y xη∆ = −
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Where η  is the learning rate (a constant between 0.0 and 1.0), ( )iy  is the true class 
label of the i th training sample, and ( )ˆ iy  is the predicted class label. It is important to 
note that all weights in the weight vector are being updated simultaneously, which 
means that we don't recompute the ( )ˆ iy  before all of the weights jw∆  were updated. 
Concretely, for a 2D dataset, we would write the update as follows:

( ) ( )( )0
i iw y outputη∆ = −

( ) ( )( ) ( )

1 1

ii iw y output xη∆ = −

( ) ( )( ) ( )

2 2

ii iw y output xη∆ = −

Before we implement the perceptron rule in Python, let us make a simple thought 
experiment to illustrate how beautifully simple this learning rule really is. In the  
two scenarios where the perceptron predicts the class label correctly, the weights 
remain unchanged:

( ) ( )
1 1 0

i

j jw xη∆ = − − − =

( ) ( )
1 1 0

i

j jw xη∆ = − =

However, in the case of a wrong prediction, the weights are being pushed towards 
the direction of the positive or negative target class, respectively:

( ) ( ) ( ) ( )
1 1 2

i i

j j jw x xη η∆ = − − =

( ) ( ) ( ) ( )
1 1 2

i i

j j jw x xη η∆ = − − = −

To get a better intuition for the multiplicative factor 
( )i

jx , let us go through another 
simple example, where:

( ) ( )
ˆ1, 1, 1

i i

jy y η= + = − =
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Let's assume that 
( )

0.5
i

jx = , and we misclassify this sample as -1. In this case, we 

would increase the corresponding weight by 1 so that the activation 
( ) ( )i i

j jx w×  will be 
more positive the next time we encounter this sample and thus will be more likely to 
be above the threshold of the unit step function to classify the sample as +1:

( ) ( ) ( )1 1 0.5 2 0.5 1
i

jw∆ = − − = =

The weight update is proportional to the value of 
( )i

jx . For example, if we have 

another sample 
( )

2
i

jx =  that is incorrectly classified as -1, we'd push the decision 
boundary by an even larger extent to classify this sample correctly the next time:

( ) ( )1 1 2 2 2 4jw∆ = − − = =

It is important to note that the convergence of the perceptron is only guaranteed if 
the two classes are linearly separable and the learning rate is sufficiently small. If the 
two classes can't be separated by a linear decision boundary, we can set a maximum 
number of passes over the training dataset (epochs) and/or a threshold for the 
number of tolerated misclassifications—the perceptron would never stop updating 
the weights otherwise:

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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Now, before we jump into the implementation in the next section, let us summarize 
what we just learned in a simple figure that illustrates the general concept of  
the perceptron:

The preceding figure illustrates how the perceptron receives the inputs of a sample
x  and combines them with the weights w  to compute the net input. The net input 
is then passed on to the activation function (here: the unit step function), which 
generates a binary output -1 or +1—the predicted class label of the sample. During 
the learning phase, this output is used to calculate the error of the prediction and 
update the weights.

Implementing a perceptron learning 
algorithm in Python
In the previous section, we learned how Rosenblatt's perceptron rule works; let us 
now go ahead and implement it in Python and apply it to the Iris dataset that we 
introduced in Chapter 1, Giving Computers the Ability to Learn from Data. We will take 
an objected-oriented approach to define the perceptron interface as a Python Class, 
which allows us to initialize new perceptron objects that can learn from data via a 
fit method, and make predictions via a separate predict method. As a convention, 
we add an underscore to attributes that are not being created upon the initialization 
of the object but by calling the object's other methods—for example, self.w_.
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If you are not yet familiar with Python's scientific libraries or need a 
refresher, please see the following resources:
NumPy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
Pandas: http://pandas.pydata.org/pandas-docs/stable/
tutorials.html

Matplotlib: http://matplotlib.org/users/beginner.html
Also, to better follow the code examples, I recommend you download 
the IPython notebooks from the Packt website. For a general 
introduction to IPython notebooks, please visit https://ipython.
org/ipython-doc/3/notebook/index.html.

import numpy as np    
class Perceptron(object):
    """Perceptron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples 
            is the number of samples and

http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://matplotlib.org/ussers/beginner.html
https://ipython.org/ipython-doc/3/notebook/index.html
https://ipython.org/ipython-doc/3/notebook/index.html
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            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.errors_ = []

        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X, y):
                update = self.eta * (target - self.predict(xi))
                self.w_[1:] += update * xi
                self.w_[0] += update
                errors += int(update != 0.0)
            self.errors_.append(errors)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)

Using this perceptron implementation, we can now initialize new Perceptron 
objects with a given learning rate eta and n_iter, which is the number of epochs 
(passes over the training set). Via the fit method we initialize the weights in 
self.w_ to a zero-vector 1m+�  where m  stands for the number of dimensions 
(features) in the dataset where we add 1 for the zero-weight (that is, the threshold).

NumPy indexing for one-dimensional arrays works similarly to Python 
lists using the square-bracket ([]) notation. For two-dimensional arrays, 
the first indexer refers to the row number, and the second indexer to the 
column number. For example, we would use X[2, 3] to select the third 
row and fourth column of a 2D array X.
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After the weights have been initialized, the fit method loops over all individual 
samples in the training set and updates the weights according to the perceptron 
learning rule that we discussed in the previous section. The class labels are predicted 
by the predict method, which is also called in the fit method to predict the class 
label for the weight update, but predict can also be used to predict the class labels 
of new data after we have fitted our model. Furthermore, we also collect the number 
of misclassifications during each epoch in the list self.errors_ so that we can 
later analyze how well our perceptron performed during the training. The np.dot 
function that is used in the net_input method simply calculates the vector dot 
product Tw x .

Instead of using NumPy to calculate the vector dot product  
between two arrays a and b via a.dot(b) or np.dot(a, b),  
we could also perform the calculation in pure Python via  
sum([i*j for i,j in zip(a, b)]. However, the advantage of 
using NumPy over classic Python for-loop structures is that its arithmetic 
operations are vectorized. Vectorization means that an elemental 
arithmetic operation is automatically applied to all elements in an array. 
By formulating our arithmetic operations as a sequence of instructions 
on an array rather than performing a set of operations for each element 
one at a time, we can make better use of our modern CPU architectures 
with Single Instruction, Multiple Data (SIMD) support. Furthermore, 
NumPy uses highly optimized linear algebra libraries, such as Basic 
Linear Algebra Subprograms (BLAS) and Linear Algebra Package 
(LAPACK) that have been written in C or Fortran. Lastly, NumPy also 
allows us to write our code in a more compact and intuitive way using 
the basics of linear algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris 
dataset
To test our perceptron implementation, we will load the two flower classes Setosa 
and Versicolor from the Iris dataset. Although, the perceptron rule is not restricted to 
two dimensions, we will only consider the two features sepal length and petal length 
for visualization purposes. Also, we only chose the two flower classes Setosa and 
Versicolor for practical reasons. However, the perceptron algorithm can be extended 
to multi-class classification—for example, through the One-vs.-All technique.
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One-vs.-All (OvA), or sometimes also called One-vs.-Rest (OvR), is 
a technique used to extend a binary classifier to multi-class problems. 
Using OvA, we can train one classifier per class, where the particular 
class is treated as the positive class and the samples from all other 
classes are considered as the negative class. If we were to classify a new 
data sample, we would use our n  classifiers, where n  is the number 
of class labels, and assign the class label with the highest confidence to 
the particular sample. In the case of the perceptron, we would use OvA 
to choose the class label that is associated with the largest absolute net 
input value.

First, we will use the pandas library to load the Iris dataset directly from the UCI 
Machine Learning Repository into a DataFrame object and print the last five lines via 
the tail method to check that the data was loaded correctly:

>>> import pandas as pd

>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/'

...   'machine-learning-databases/iris/iris.data', header=None)

>>> df.tail()

Next, we extract the first 100 class labels that correspond to the 50 Iris-Setosa and 50 
Iris-Versicolor flowers, respectively, and convert the class labels into the two integer 
class labels 1 (Versicolor) and -1 (Setosa) that we assign to a vector y where the values 
method of a pandas DataFrame yields the corresponding NumPy representation. 
Similarly, we extract the first feature column (sepal length) and the third feature 
column (petal length) of those 100 training samples and assign them to a feature 
matrix X, which we can visualize via a two-dimensional scatter plot:

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> y = df.iloc[0:100, 4].values
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>>> y = np.where(y == 'Iris-setosa', -1, 1)

>>> X = df.iloc[0:100, [0, 2]].values

>>> plt.scatter(X[:50, 0], X[:50, 1],

...             color='red', marker='o', label='setosa')

>>> plt.scatter(X[50:100, 0], X[50:100, 1],

...             color='blue', marker='x', label='versicolor')

>>> plt.xlabel('sepal length')

>>> plt.ylabel('petal length')

>>> plt.legend(loc='upper left')

>>> plt.show()

After executing the preceding code example we should now see the  
following scatterplot:

Now it's time to train our perceptron algorithm on the Iris data subset that we just 
extracted. Also, we will plot the misclassification error for each epoch to check 
if the algorithm converged and found a decision boundary that separates the two Iris 
flower classes:

>>> ppn = Perceptron(eta=0.1, n_iter=10)

>>> ppn.fit(X, y)

>>> plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, 
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...         marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Number of misclassifications')

>>> plt.show()

After executing the preceding code, we should see the plot of the misclassification 
errors versus the number of epochs, as shown next:

As we can see in the preceding plot, our perceptron already converged after the  
sixth epoch and should now be able to classify the training samples perfectly. Let  
us implement a small convenience function to visualize the decision boundaries  
for 2D datasets:

from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):

    # setup marker generator and color map

    markers = ('s', 'x', 'o', '^', 'v')

    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
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    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface

    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1

    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),

                         np.arange(x2_min, x2_max, resolution))

    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

    Z = Z.reshape(xx1.shape)

    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)

    plt.xlim(xx1.min(), xx1.max())

    plt.ylim(xx2.min(), xx2.max())

    # plot class samples

    for idx, cl in enumerate(np.unique(y)):

        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],

                    alpha=0.8, c=cmap(idx),

                    marker=markers[idx], label=cl)

First, we define a number of colors and markers and create a color map from 
the list of colors via ListedColormap. Then, we determine the minimum and 
maximum values for the two features and use those feature vectors to create a pair 
of grid arrays xx1 and xx2 via the NumPy meshgrid function. Since we trained 
our perceptron classifier on two feature dimensions, we need to flatten the grid 
arrays and create a matrix that has the same number of columns as the Iris training 
subset so that we can use the predict method to predict the class labels Z of the 
corresponding grid points. After reshaping the predicted class labels Z into a grid 
with the same dimensions as xx1 and xx2, we can now draw a contour plot via 
matplotlib's contourf function that maps the different decision regions to different 
colors for each predicted class in the grid array:

>>> plot_decision_regions(X, y, classifier=ppn)

>>> plt.xlabel('sepal length [cm]')

>>> plt.ylabel('petal length [cm]')

>>> plt.legend(loc='upper left')

>>> plt.show()
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After executing the preceding code example, we should now see a plot of the 
decision regions, as shown in the following figure:

As we can see in the preceding plot, the perceptron learned a decision boundary that 
was able to classify all flower samples in the Iris training subset perfectly.

Although the perceptron classified the two Iris flower classes 
perfectly, convergence is one of the biggest problems of the 
perceptron. Frank Rosenblatt proved mathematically that the 
perceptron learning rule converges if the two classes can be 
separated by a linear hyperplane. However, if classes cannot 
be separated perfectly by such a linear decision boundary, the 
weights will never stop updating unless we set a maximum 
number of epochs.
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Adaptive linear neurons and the 
convergence of learning
In this section, we will take a look at another type of single-layer neural network: 
ADAptive LInear NEuron (Adaline). Adaline was published, only a few years 
after Frank Rosenblatt's perceptron algorithm, by Bernard Widrow and his doctoral 
student Tedd Hoff, and can be considered as an improvement on the latter  
(B. Widrow et al. Adaptive "Adaline" neuron using chemical "memistors". Number 
Technical Report 1553-2. Stanford Electron. Labs. Stanford, CA, October 1960). The 
Adaline algorithm is particularly interesting because it illustrates the key concept 
of defining and minimizing cost functions, which will lay the groundwork for 
understanding more advanced machine learning algorithms for classification, such 
as logistic regression and support vector machines, as well as regression models that 
we will discuss in future chapters.

The key difference between the Adaline rule (also known as the Widrow-Hoff rule) 
and Rosenblatt's perceptron is that the weights are updated based on a linear 
activation function rather than a unit step function like in the perceptron. In Adaline, 
this linear activation function ( )zφ  is simply the identity function of the net input so 

that ( )T Tφ =w x w x .

While the linear activation function is used for learning the weights, a quantizer, 
which is similar to the unit step function that we have seen before, can then be used 
to predict the class labels, as illustrated in the following figure:
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If we compare the preceding figure to the illustration of the perceptron algorithm 
that we saw earlier, the difference is that we know to use the continuous valued 
output from the linear activation function to compute the model error and update 
the weights, rather than the binary class labels.

Minimizing cost functions with gradient 
descent
One of the key ingredients of supervised machine learning algorithms is to define 
an objective function that is to be optimized during the learning process. This 
objective function is often a cost function that we want to minimize. In the case 
of Adaline, we can define the cost function J  to learn the weights as the Sum of 
Squared Errors (SSE) between the calculated outcomes and the true class labels 

( ) ( ) ( )( )( )21
2

i i
i

J y zφ= −∑w .

The term 1
2  is just added for our convenience; it will make it easier to derive the 

gradient, as we will see in the following paragraphs. The main advantage of this 
continuous linear activation function is—in contrast to the unit step function—that 
the cost function becomes differentiable. Another nice property of this cost function 
is that it is convex; thus, we can use a simple, yet powerful, optimization algorithm 
called gradient descent to find the weights that minimize our cost function to classify 
the samples in the Iris dataset.

As illustrated in the following figure, we can describe the principle behind gradient 
descent as climbing down a hill until a local or global cost minimum is reached. In each 
iteration, we take a step away from the gradient where the step size is determined by 
the value of the learning rate as well as the slope of the gradient:
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Using gradient descent, we can now update the weights by taking a step away from 
the gradient ( )J∇ w  of our cost function ( )J w :

:= + ∆w w w

Here, the weight change ∆w  is defined as the negative gradient multiplied by the 
learning rate η :

( )Jη∆ = − ∇w w

To compute the gradient of the cost function, we need to compute the partial 

derivative of the cost function with respect to each weight jw , 
( ) ( )( )( ) ( )i i i

j
ij

J y z x
w

φ∂
= − −

∂ ∑ , 
so that we can write the update of weight jw  as ( ) ( )( )( ) ( )i i i

j j
ij

Jw y z x
w

η η φ∂
∆ = − = −

∂ ∑ .

Since we update all weights simultaneously, our Adaline learning rule becomes 
:= + ∆w w w .
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For those who are familiar with calculus, the partial derivative of the SSE 
cost function with respect to the jth weight in can be obtained as follows:

( ) ( )( )( )21   
2

i i

ij j

J y z
w w

φ∂ ∂
= −

∂ ∂ ∑

( ) ( )( )( )21   
2

i i

ij

y z
w

φ∂
= −

∂ ∑

( ) ( )( )( ) ( ) ( )( )( )1   2  
2

i i i i

i j

y z y z
w

φ φ∂
= − −

∂∑

( ) ( )( )( ) ( ) ( ) ( )( ) i i i i i
j j

i ij

y z y w x
w

φ  ∂
= − − ∂  
∑ ∑

( ) ( )( )( ) ( )( )i i i
j

i

y z xφ= − −∑

( ) ( )( )( ) ( )i i i
j

i

y z xφ= − −∑

Although the Adaline learning rule looks identical to the perceptron rule, the ( )( )izφ  

with ( )iz = ( )iTw x  is a real number and not an integer class label. Furthermore, 
the weight update is calculated based on all samples in the training set (instead of 
updating the weights incrementally after each sample), which is why this approach 
is also referred to as "batch" gradient descent.

Implementing an Adaptive Linear Neuron in 
Python
Since the perceptron rule and Adaline are very similar, we will take the perceptron 
implementation that we defined earlier and change the fit method so that the 
weights are updated by minimizing the cost function via gradient descent:

class AdalineGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
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    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.
    
    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=50):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, 
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
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            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

Instead of updating the weights after evaluating each individual training  
sample, as in the perceptron, we calculate the gradient based on the whole  
training dataset via self.eta * errors.sum() for the zero-weight and via  
self.eta * X.T.dot(errors) for the weights 1 to m  where X.T.dot(errors)  
is a matrix-vector multiplication between our feature matrix and the error vector. 
Similar to the previous perceptron implementation, we collect the cost values in  
a list self.cost_ to check if the algorithm converged after training.

Performing a matrix-vector multiplication is similar to calculating a 
vector dot product where each row in the matrix is treated as a single 
row vector. This vectorized approach represents a more compact 
notation and results in a more efficient computation using NumPy. 
For example:

7
1 2 3 1 7  2 8  3 9 50

8  
4 5 6 4 7  5 8  6 9 122

9

 
× + × + ×      × = =       × + × + ×        .



Chapter 2

[ 41 ]

In practice, it often requires some experimentation to find a good learning rate η  for 
optimal convergence. So, let's choose two different learning rates 0.1η =  and 0.0001η =  
to start with and plot the cost functions versus the number of epochs to see how well 
the Adaline implementation learns from the training data.

The learning rate η , as well as the number of epochs n_iter, are 
the so-called hyperparameters of the perceptron and Adaline learning 
algorithms. In Chapter 4, Building Good Training Sets—Data Preprocessing,  
we will take a look at different techniques to automatically find the 
values of different hyperparameters that yield optimal performance of 
the classification model.

Let us now plot the cost against the number of epochs for the two different  
learning rates:

>>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

>>> ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)

>>> ax[0].plot(range(1, len(ada1.cost_) + 1),

...            np.log10(ada1.cost_), marker='o')

>>> ax[0].set_xlabel('Epochs')

>>> ax[0].set_ylabel('log(Sum-squared-error)')

>>> ax[0].set_title('Adaline - Learning rate 0.01')

>>> ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)

>>> ax[1].plot(range(1, len(ada2.cost_) + 1),

...            ada2.cost_, marker='o')

>>> ax[1].set_xlabel('Epochs')

>>> ax[1].set_ylabel('Sum-squared-error')

>>> ax[1].set_title('Adaline - Learning rate 0.0001')

>>> plt.show()
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As we can see in the resulting cost function plots next, we encountered two different 
types of problems. The left chart shows what could happen if we choose a learning 
rate that is too large—instead of minimizing the cost function, the error becomes 
larger in every epoch because we overshoot the global minimum:

 

Although we can see that the cost decreases when we look at the right plot, the 
chosen learning rate 0.0001η =  is so small that the algorithm would require a very 
large number of epochs to converge. The following figure illustrates how we 
change the value of a particular weight parameter to minimize the cost function J  
(left subfigure). The subfigure on the right illustrates what happens if we choose a 
learning rate that is too large, we overshoot the global minimum:
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Many machine learning algorithms that we will encounter throughout this book 
require some sort of feature scaling for optimal performance, which we will discuss 
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. 
Gradient descent is one of the many algorithms that benefit from feature scaling. 
Here, we will use a feature scaling method called standardization, which gives our 
data the property of a standard normal distribution. The mean of each feature 
is centered at value 0 and the feature column has a standard deviation of 1. For 
example, to standardize the j th feature, we simply need to subtract the sample 
mean jµ  from every training sample and divide it by its standard deviation jσ :

j j
j

j

µ
σ
−

′ =
x

x

Here jx  is a vector consisting of the j th feature values of all training samples n .

Standardization can easily be achieved using the NumPy methods mean and std:

>>> X_std = np.copy(X)

>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

After standardization, we will train the Adaline again and see that it now converges 
using a learning rate 0.01η = :

>>> ada = AdalineGD(n_iter=15, eta=0.01)

>>> ada.fit(X_std, y)

>>> plot_decision_regions(X_std, y, classifier=ada)

>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel('sepal length [standardized]')

>>> plt.ylabel('petal length [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.show()

>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Sum-squared-error')

>>> plt.show()
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After executing the preceding code, we should see a figure of the decision regions as 
well as a plot of the declining cost, as shown in the following figure:

As we can see in the preceding plots, the Adaline now converges after training on 
the standardized features using a learning rate 0.01η = . However, note that the SSE 
remains non-zero even though all samples were classified correctly.

Large scale machine learning and stochastic 
gradient descent
In the previous section, we learned how to minimize a cost function by taking a step 
into the opposite direction of a gradient that is calculated from the whole training 
set; this is why this approach is sometimes also referred to as batch gradient descent. 
Now imagine we have a very large dataset with millions of data points, which is not 
uncommon in many machine learning applications. Running batch gradient descent 
can be computationally quite costly in such scenarios since we need to reevaluate the 
whole training dataset each time we take one step towards the global minimum.

A popular alternative to the batch gradient descent algorithm is stochastic gradient 
descent, sometimes also called iterative or on-line gradient descent. Instead of updating 
the weights based on the sum of the accumulated errors over all samples ( )ix :

( ) ( )( )( ) ( ) ,i i i
i
y zη φ∆ = −∑w x

We update the weights incrementally for each training sample:

( ) ( )( )( ) ( )i i iy zη φ− x
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Although stochastic gradient descent can be considered as an approximation of 
gradient descent, it typically reaches convergence much faster because of the more 
frequent weight updates. Since each gradient is calculated based on a single training 
example, the error surface is noisier than in gradient descent, which can also have 
the advantage that stochastic gradient descent can escape shallow local minima more 
readily. To obtain accurate results via stochastic gradient descent, it is important to 
present it with data in a random order, which is why we want to shuffle the training 
set for every epoch to prevent cycles.

In stochastic gradient descent implementations, the fixed learning rate η  
is often replaced by an adaptive learning rate that decreases over time, 

for example, [ ]
1

2  
c

number of iterations c+  where 1c  and 2c  are constants. 
Note that stochastic gradient descent does not reach the global minimum 
but an area very close to it. By using an adaptive learning rate, we can 
achieve further annealing to a better global minimum

Another advantage of stochastic gradient descent is that we can use it for online 
learning. In online learning, our model is trained on-the-fly as new training data 
arrives. This is especially useful if we are accumulating large amounts of data—for 
example, customer data in typical web applications. Using online learning, the 
system can immediately adapt to changes and the training data can be discarded 
after updating the model if storage space in an issue.

A compromise between batch gradient descent and stochastic gradient 
descent is the so-called mini-batch learning. Mini-batch learning can be 
understood as applying batch gradient descent to smaller subsets of 
the training data—for example, 50 samples at a time. The advantage 
over batch gradient descent is that convergence is reached faster 
via mini-batches because of the more frequent weight updates. 
Furthermore, mini-batch learning allows us to replace the for-loop 
over the training samples in Stochastic Gradient Descent (SGD) by 
vectorized operations, which can further improve the computational 
efficiency of our learning algorithm.
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Since we already implemented the Adaline learning rule using gradient descent,  
we only need to make a few adjustments to modify the learning algorithm to update 
the weights via stochastic gradient descent. Inside the fit method, we will now 
update the weights after each training sample. Furthermore, we will implement 
an additional partial_fit method, which does not reinitialize the weights, for 
on-line learning. In order to check if our algorithm converged after training, we 
will calculate the cost as the average cost of the training samples in each epoch. 
Furthermore, we will add an option to shuffle the training data before each epoch 
to avoid cycles when we are optimizing the cost function; via the random_state 
parameter, we allow the specification of a random seed for consistency:

from numpy.random import seed

class AdalineSGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.
    shuffle : bool (default: True)
        Shuffles training data every epoch 
        if True to prevent cycles.
    random_state : int (default: None)
        Set random state for shuffling 
        and initializing the weights.
        
    """
    def __init__(self, eta=0.01, n_iter=10, 
               shuffle=True, random_state=None):
        self.eta = eta
        self.n_iter = n_iter
        self.w_initialized = False
        self.shuffle = shuffle
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        if random_state:
            seed(random_state)
        
    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples 
            is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

         """
        self._initialize_weights(X.shape[1])
        self.cost_ = []
        for i in range(self.n_iter):
            if self.shuffle:
                X, y = self._shuffle(X, y)
            cost = []
            for xi, target in zip(X, y):
                cost.append(self._update_weights(xi, target))
            avg_cost = sum(cost)/len(y)
            self.cost_.append(avg_cost)
        return self

    def partial_fit(self, X, y):
        """Fit training data without reinitializing the weights"""
        if not self.w_initialized:
            self._initialize_weights(X.shape[1])
        if y.ravel().shape[0] > 1:
            for xi, target in zip(X, y):
                self._update_weights(xi, target)
        else:
            self._update_weights(X, y)
        return self

    def _shuffle(self, X, y):
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        """Shuffle training data"""
        r = np.random.permutation(len(y))
        return X[r], y[r]
    
    def _initialize_weights(self, m):
        """Initialize weights to zeros"""
        self.w_ = np.zeros(1 + m)
        self.w_initialized = True
        
    def _update_weights(self, xi, target):
        """Apply Adaline learning rule to update the weights"""
        output = self.net_input(xi)
        error = (target - output)
        self.w_[1:] += self.eta * xi.dot(error)
        self.w_[0] += self.eta * error
        cost = 0.5 * error**2
        return cost
    
    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

The _shuffle method that we are now using in the AdalineSGD classifier works 
as follows: via the permutation function in numpy.random, we generate a random 
sequence of unique numbers in the range 0 to 100. Those numbers can then be used 
as indices to shuffle our feature matrix and class label vector.

We can then use the fit method to train the AdalineSGD classifier and use our  
plot_decision_regions to plot our training results:

>>> ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
>>> ada.fit(X_std, y)
>>> plot_decision_regions(X_std, y, classifier=ada)
>>> plt.title('Adaline - Stochastic Gradient Descent')
>>> plt.xlabel('sepal length [standardized]')
>>> plt.ylabel('petal length [standardized]')
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>>> plt.legend(loc='upper left')
>>> plt.show()
>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Average Cost')
>>> plt.show()

The two plots that we obtain from executing the preceding code example are shown 
in the following figure:

As we can see, the average cost goes down pretty quickly, and the final decision 
boundary after 15 epochs looks similar to the batch gradient descent with Adaline. 
If we want to update our model—for example, in an on-line learning scenario with 
streaming data—we could simply call the partial_fit method on individual 
samples—for instance, ada.partial_fit(X_std[0, :], y[0]).

Summary
In this chapter, we gained a good understanding of the basic concepts of linear 
classifiers for supervised learning. After we implemented a perceptron, we saw how 
we can train adaptive linear neurons efficiently via a vectorized implementation 
of gradient descent and on-line learning via stochastic gradient descent. Now that 
we have seen how to implement simple classifiers in Python, we are ready to move 
on to the next chapter where we will use the Python scikit-learn machine learning 
library to get access to more advanced and powerful off-the-shelf machine learning 
classifiers that are commonly used in academia as well as in industry.
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A Tour of Machine Learning 
Classifiers Using Scikit-learn

In this chapter, we will take a tour through a selection of popular and powerful 
machine learning algorithms that are commonly used in academia as well as in the 
industry. While learning about the differences between several supervised learning 
algorithms for classification, we will also develop an intuitive appreciation of their 
individual strengths and weaknesses. Also, we will take our first steps with the 
scikit-learn library, which offers a user-friendly interface for using those algorithms 
efficiently and productively.

The topics that we will learn about throughout this chapter are as follows:

•	 Introduction to the concepts of popular classification algorithms
•	 Using the scikit-learn machine learning library
•	 Questions to ask when selecting a machine learning algorithm

Choosing a classification algorithm
Choosing an appropriate classification algorithm for a particular problem task 
requires practice: each algorithm has its own quirks and is based on certain 
assumptions. To restate the "No Free Lunch" theorem: no single classifier works best 
across all possible scenarios. In practice, it is always recommended that you compare 
the performance of at least a handful of different learning algorithms to select the 
best model for the particular problem; these may differ in the number of features 
or samples, the amount of noise in a dataset, and whether the classes are linearly 
separable or not.
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Eventually, the performance of a classifier, computational power as well as 
predictive power, depends heavily on the underlying data that are available for 
learning. The five main steps that are involved in training a machine learning 
algorithm can be summarized as follows:

1.	 Selection of features.
2.	 Choosing a performance metric.
3.	 Choosing a classifier and optimization algorithm.
4.	 Evaluating the performance of the model.
5.	 Tuning the algorithm.

Since the approach of this book is to build machine learning knowledge step by step, 
we will mainly focus on the principal concepts of the different algorithms in this 
chapter and revisit topics such as feature selection and preprocessing, performance 
metrics, and hyperparameter tuning for more detailed discussions later in this book.

First steps with scikit-learn
In Chapter 2, Training Machine Learning Algorithms for Classification, you learned about 
two related learning algorithms for classification: the perceptron rule and Adaline, 
which we implemented in Python by ourselves. Now we will take a look at the 
scikit-learn API, which combines a user-friendly interface with a highly optimized 
implementation of several classification algorithms. However, the scikit-learn library 
offers not only a large variety of learning algorithms, but also many convenient 
functions to preprocess data and to fine-tune and evaluate our models. We will 
discuss this in more detail together with the underlying concepts in Chapter 4, 
Building Good Training Sets – Data Preprocessing, and Chapter 5, Compressing  
Data via Dimensionality Reduction.

Training a perceptron via scikit-learn
To get started with the scikit-learn library, we will train a perceptron model  
similar to the one that we implemented in Chapter 2, Training Machine Learning 
Algorithms for Classification. For simplicity, we will use the already familiar Iris 
dataset throughout the following sections. Conveniently, the Iris dataset is already 
available via scikit-learn, since it is a simple yet popular dataset that is frequently 
used for testing and experimenting with algorithms. Also, we will only use two 
features from the Iris flower dataset for visualization purposes. 
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We will assign the petal length and petal width of the 150 flower samples to the feature 
matrix X and the corresponding class labels of the flower species to the vector y:

>>> from sklearn import datasets
>>> import numpy as np
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [2, 3]]
>>> y = iris.target

If we executed np.unique(y) to return the different class labels stored in iris.
target, we would see that the Iris flower class names, Iris-Setosa, Iris-Versicolor,  
and Iris-Virginica, are already stored as integers (0, 1, 2), which is recommended  
for the optimal performance of many machine learning libraries.

To evaluate how well a trained model performs on unseen data, we will further split 
the dataset into separate training and test datasets. Later in Chapter 5, Compressing 
Data via Dimensionality Reduction, we will discuss the best practices around model 
evaluation in more detail:

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
...           X, y, test_size=0.3, random_state=0)

Using the train_test_split function from scikit-learn's cross_validation 
module, we randomly split the X and y arrays into 30 percent test data (45 samples) 
and 70 percent training data (105 samples).

Many machine learning and optimization algorithms also require feature scaling  
for optimal performance, as we remember from the gradient descent example 
in Chapter 2, Training Machine Learning Algorithms for Classification. Here, we will 
standardize the features using the StandardScaler class from scikit-learn's 
preprocessing module:

>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> sc.fit(X_train)
>>> X_train_std = sc.transform(X_train)
>>> X_test_std = sc.transform(X_test)
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Using the preceding code, we loaded the StandardScaler class from the 
preprocessing module and initialized a new StandardScaler object that we assigned 
to the variable sc. Using the fit method, StandardScaler estimated the parameters 
µ  (sample mean) and σ  (standard deviation) for each feature dimension from the 
training data. By calling the transform method, we then standardized the training 
data using those estimated parameters µ  and σ . Note that we used the same 
scaling parameters to standardize the test set so that both the values in the training 
and test dataset are comparable to each other.

Having standardized the training data, we can now train a perceptron model. Most 
algorithms in scikit-learn already support multiclass classification by default via the 
One-vs.-Rest (OvR) method, which allows us to feed the three flower classes to the 
perceptron all at once. The code is as follows:

>>> from sklearn.linear_model import Perceptron
>>> ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
>>> ppn.fit(X_train_std, y_train)

The scikit-learn interface reminds us of our perceptron implementation in Chapter 2, 
Training Machine Learning Algorithms for Classification: after loading the Perceptron 
class from the linear_model module, we initialized a new Perceptron object and 
trained the model via the fit method. Here, the model parameter eta0 is equivalent 
to the learning rate eta that we used in our own perceptron implementation, and the 
parameter n_iter defines the number of epochs (passes over the training set). As 
we remember from Chapter 2, Training Machine Learning Algorithms for Classification, 
finding an appropriate learning rate requires some experimentation. If the learning 
rate is too large, the algorithm will overshoot the global cost minimum. If the 
learning rate is too small, the algorithm requires more epochs until convergence, 
which can make the learning slow—especially for large datasets. Also, we used the 
random_state parameter for reproducibility of the initial shuffling of the training 
dataset after each epoch.

Having trained a model in scikit-learn, we can make predictions via the predict 
method, just like in our own perceptron implementation in Chapter 2, Training 
Machine Learning Algorithms for Classification. The code is as follows:

>>> y_pred = ppn.predict(X_test_std)
>>> print('Misclassified samples: %d' % (y_test != y_pred).sum())
Misclassified samples: 4
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On executing the preceding code, we see that the perceptron misclassifies 4 out of the 
45 flower samples. Thus, the misclassification error on the test dataset is 0.089 or 8.9 
percent ( )4 / 45 0.089≈ .

Instead of the misclassification error, many machine learning 
practitioners report the classification accuracy of a model, which is 
simply calculated as follows:
1 - misclassification error = 0.911 or 91.1 percent.

Scikit-learn also implements a large variety of different performance metrics that are 
available via the metrics module. For example, we can calculate the classification 
accuracy of the perceptron on the test set as follows:

>>> from sklearn.metrics import accuracy_score
>>> print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
0.91

Here, y_test are the true class labels and y_pred are the class labels that we 
predicted previously.

Note that we evaluate the performance of our models based 
on the test set in this chapter. In Chapter 5, Compressing Data via 
Dimensionality Reduction, you will learn about useful techniques, 
including graphical analysis such as learning curves, to detect 
and prevent overfitting. Overfitting means that the model 
captures the patterns in the training data well, but fails to 
generalize well to unseen data.

Finally, we can use our plot_decision_regions function from Chapter 2, Training 
Machine Learning Algorithms for Classification, to plot the decision regions of our 
newly trained perceptron model and visualize how well it separates the different 
flower samples. However, let's add a small modification to highlight the samples 
from the test dataset via small circles:

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt

def plot_decision_regions(X, y, classifier, 
                    test_idx=None, resolution=0.02):

    # setup marker generator and color map
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    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                         np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot all samples
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=cmap(idx),
                    marker=markers[idx], label=cl)
        
    # highlight test samples
    if test_idx:
        X_test, y_test = X[test_idx, :], y[test_idx]   
        plt.scatter(X_test[:, 0], X_test[:, 1], c='', 
                alpha=1.0, linewidths=1, marker='o', 
                s=55, label='test set')

With the slight modification that we made to the plot_decision_regions function 
(highlighted in the preceding code), we can now specify the indices of the samples 
that we want to mark on the resulting plots. The code is as follows:

>>> X_combined_std = np.vstack((X_train_std, X_test_std))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X=X_combined_std, 
...                       y=y_combined, 
...                       classifier=ppn,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]') 
>>> plt.ylabel('petal width [standardized]') 
>>> plt.legend(loc='upper left')
>>> plt.show()
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As we can see in the resulting plot, the three flower classes cannot be perfectly 
separated by a linear decision boundaries:

We remember from our discussion in Chapter 2, Training Machine Learning Algorithms 
for Classification, that the perceptron algorithm never converges on datasets that 
aren't perfectly linearly separable, which is why the use of the perceptron algorithm 
is typically not recommended in practice. In the following sections, we will look at 
more powerful linear classifiers that converge to a cost minimum even if the classes 
are not perfectly linearly separable.

The Perceptron as well as other scikit-learn functions and 
classes have additional parameters that we omit for clarity. 
You can read more about those parameters using the help 
function in Python (for example, help(Perceptron)) or by 
going through the excellent scikit-learn online documentation 
at http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/
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Modeling class probabilities via logistic 
regression
Although the perceptron rule offers a nice and easygoing introduction to machine 
learning algorithms for classification, its biggest disadvantage is that it never 
converges if the classes are not perfectly linearly separable. The classification task 
in the previous section would be an example of such a scenario. Intuitively, we can 
think of the reason as the weights are continuously being updated since there is 
always at least one misclassified sample present in each epoch. Of course, you can 
change the learning rate and increase the number of epochs, but be warned that the 
perceptron will never converge on this dataset. To make better use of our time, we 
will now take a look at another simple yet more powerful algorithm for linear and 
binary classification problems: logistic regression. Note that, in spite of its name, 
logistic regression is a model for classification, not regression.

Logistic regression intuition and conditional 
probabilities
Logistic regression is a classification model that is very easy to implement but 
performs very well on linearly separable classes. It is one of the most widely used 
algorithms for classification in industry. Similar to the perceptron and Adaline, the 
logistic regression model in this chapter is also a linear model for binary classification 
that can be extended to multiclass classification via the OvR technique.

To explain the idea behind logistic regression as a probabilistic model, let's first 
introduce the odds ratio, which is the odds in favor of a particular event. The odds 

ratio can be written as ( )1
p
p− , where p  stands for the probability of the positive 

event. The term positive event does not necessarily mean good, but refers to the event 
that we want to predict, for example, the probability that a patient has a certain 
disease; we can think of the positive event as class label 1y = . We can then further 
define the logit function, which is simply the logarithm of the odds ratio (log-odds):

( ) ( )1
plogit p log
p

=
−
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The logit function takes input values in the range 0 to 1 and transforms them to 
values over the entire real number range, which we can use to express a linear 
relationship between feature values and the log-odds:

( )( )
0

1|
m

T
m m i i

i
logit p y w x w x w x w x

=

= = + + + = =∑0 0 1 1 �x w x

Here, ( )1|p y = x  is the conditional probability that a particular sample belongs to 
class 1 given its features x.

Now what we are actually interested in is predicting the probability that a certain 
sample belongs to a particular class, which is the inverse form of the logit function. It 
is also called the logistic function, sometimes simply abbreviated as sigmoid function 
due to its characteristic S-shape.

( ) 1
1 zz
e

φ −=
+

Here, z is the net input, that is, the linear combination of weights and sample features 
and can be calculated as 0

Tz w w x w x= = + + +1 1 � m mw x .

Now let's simply plot the sigmoid function for some values in the range -7 to 7 to see 
what it looks like:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z):
...     return 1.0 / (1.0 + np.exp(-z))
>>> z = np.arange(-7, 7, 0.1)
>>> phi_z = sigmoid(z)
>>> plt.plot(z, phi_z)
>>> plt.axvline(0.0, color='k')
>>> plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')
>>> plt.axhline(y=0.5, ls='dotted', color='k')
>>> plt.yticks([0.0, 0.5, 1.0])
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z')
>>> plt.ylabel('$\phi (z)$')
>>> plt.show() 
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As a result of executing the previous code example, we should now see the S-shaped 
(sigmoidal) curve:

We can see that ( )zφ  approaches 1 if z goes towards infinity ( z→∞ ), since 
ze−  

becomes very small for large values of z. Similarly, ( )zφ  goes towards 0 for z→−∞  
as the result of an increasingly large denominator. Thus, we conclude that this 
sigmoid function takes real number values as input and transforms them to values in 
the range [0, 1] with an intercept at ( ) 0.5zφ = .

To build some intuition for the logistic regression model, we can relate it to our 
previous Adaline implementation in Chapter 2, Training Machine Learning Algorithms 
for Classification. In Adaline, we used the identity function ( )z zφ =  as the activation 
function. In logistic regression, this activation function simply becomes the sigmoid 
function that we defined earlier, which is illustrated in the following figure:
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The output of the sigmoid function is then interpreted as the probability of particular 
sample belonging to class 1 ( ) ( )1| ;z P yφ = = x w , given its features x parameterized by 
the weights w. For example, if we compute ( ) 0.8zφ =  for a particular flower sample, 
it means that the chance that this sample is an Iris-Versicolor flower is 80 percent. 
Similarly, the probability that this flower is an Iris-Setosa flower can be calculated as
( ) ( )0 | ; 1 1| ; 0.2P y P y= = − = =x w x w  or 20 percent. The predicted probability can then 

simply be converted into a binary outcome via a quantizer (unit step function):

( )1 0.5
ˆ

0
if z

y
otherwise
φ ≥= 



If we look at the preceding sigmoid plot, this is equivalent to the following:

1 0.0
ˆ

0
if z

y
otherwise

≥
= 


In fact, there are many applications where we are not only interested in the predicted 
class labels, but where estimating the class-membership probability is particularly 
useful. Logistic regression is used in weather forecasting, for example, to not 
only predict if it will rain on a particular day but also to report the chance of rain. 
Similarly, logistic regression can be used to predict the chance that a patient has a 
particular disease given certain symptoms, which is why logistic regression enjoys 
wide popularity in the field of medicine.

Learning the weights of the logistic cost 
function
You learned how we could use the logistic regression model to predict probabilities 
and class labels. Now let's briefly talk about the parameters of the model, for 
example, weights w. In the previous chapter, we defined the sum-squared-error  
cost function:

( ) ( )( ) ( )( )21
2

i i

i
J z yφ= −∑w
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We minimized this in order to learn the weights w for our Adaline classification 
model. To explain how we can derive the cost function for logistic regression, 
let's first define the likelihood L that we want to maximize when we build a 
logistic regression model, assuming that the individual samples in our dataset are 
independent of one another. The formula is as follows:

( ) ( ) ( ) ( )( ) ( )( )( )
( )

( )( )( )
( )1

1 1

| ; | ; 1
i in n y y

i i i i

i i
L P P y x z zφ φ

−

= =

= = = −∏ ∏w y x w w

In practice, it is easier to maximize the (natural) log of this equation, which is called 
the log-likelihood function:

( ) ( ) ( ) ( )( )( ) ( )( ) ( )( )( )
1

log log 1 log 1
n

i i i i

i
l L y z y zφ φ

=

 = = + − −  ∑w w

Firstly, applying the log function reduces the potential for numerical underflow, 
which can occur if the likelihoods are very small. Secondly, we can convert the 
product of factors into a summation of factors, which makes it easier to obtain  
the derivative of this function via the addition trick, as you may remember  
from calculus.

Now we could use an optimization algorithm such as gradient ascent to maximize 
this log-likelihood function. Alternatively, let's rewrite the log-likelihood as a cost 
function J  that can be minimized using gradient descent as in Chapter 2, Training 
Machine Learning Algorithms for Classification:

( ) ( ) ( )( )( ) ( )( ) ( )( )( )
1

log 1 log 1
n

i i i i

i
J y z y zφ φ

=

 = − − − −  ∑w

To get a better grasp on this cost function, let's take a look at the cost that we 
calculate for one single-sample instance:

( )( ) ( )( ) ( ) ( )( )log 1 log 1J z , y; y z y zφ φ φ= − − − −w



Chapter 3

[ 63 ]

Looking at the preceding equation, we can see that the first term becomes zero if 
0y = , and the second term becomes zero if 1y = , respectively:

( )( )
( )( )

( )( )
log 1

, ;
log 1 0

z if y
J z y

z if y

φ
φ

φ

− == 
− − =

w

The following plot illustrates the cost for the classification of a single-sample instance 
for different values of ( )zφ :

We can see that the cost approaches 0 (plain blue line) if we correctly predict that 
a sample belongs to class 1. Similarly, we can see on the y axis that the cost also 
approaches 0 if we correctly predict 0y =  (dashed line). However, if the prediction 
is wrong, the cost goes towards infinity. The moral is that we penalize wrong 
predictions with an increasingly larger cost.
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Training a logistic regression model with 
scikit-learn
If we were to implement logistic regression ourselves, we could simply substitute 
the cost function J  in our Adaline implementation from Chapter 2, Training Machine 
Learning Algorithms for Classification, by the new cost function:

( ) ( ) ( )( )( ) ( )( ) ( )( )( )log 1 log 1i i i i

i
J y z y zφ φ= − + − −∑w

This would compute the cost of classifying all training samples per epoch and we 
would end up with a working logistic regression model. However, since scikit-learn 
implements a highly optimized version of logistic regression that also supports 
multiclass settings off-the-shelf, we will skip the implementation and use the 
sklearn.linear_model.LogisticRegression class as well as the familiar fit 
method to train the model on the standardized flower training dataset:

>>> from sklearn.linear_model import LogisticRegression
>>> lr = LogisticRegression(C=1000.0, random_state=0)
>>> lr.fit(X_train_std, y_train)
   >>> plot_decision_regions(X_combined_std, 
...                       y_combined, classifier=lr,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

After fitting the model on the training data, we plotted the decision regions, training 
samples and test samples, as shown here:
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Looking at the preceding code that we used to train the LogisticRegression 
model, you might now be wondering, "What is this mysterious parameter C?"  
We will get to this in a second, but let's briefly go over the concept of overfitting  
and regularization in the next subsection first.

Furthermore, we can predict the class-membership probability of the samples via  
the predict_proba method. For example, we can predict the probabilities of the  
first Iris-Setosa sample:

>>> lr.predict_proba(X_test_std[0,:])

This returns the following array:

array([[  0.000,   0.063,   0.937]])
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The preceding array tells us that the model predicts a chance of 93.7 percent that the 
sample belongs to the Iris-Virginica class, and a 6.3 percent chance that the sample is 
a Iris-Versicolor flower.

We can show that the weight update in logistic regression via gradient descent is 
indeed equal to the equation that we used in Adaline in Chapter 2, Training Machine 
Learning Algorithms for Classification. Let's start by calculating the partial derivative of 
the log-likelihood function with respect to the jth weight:

( ) ( ) ( ) ( ) ( )1 11
1j j

l y y z
w z z w

φ
φ φ

 ∂ ∂
= − −  ∂ − ∂ 

w

Before we continue, let's calculate the partial derivative of the sigmoid function first:

( )
( )

( ) ( )( )

2
1 1 1 11

1 1 11

1

z
z z zz

z e
z z e e ee

z z

φ

φ φ

−
− − −−

∂ ∂  = = = − ∂ ∂ + + + +

= −

Now we can resubstitute ( )z
z
φ∂

∂
 = ( ) ( )( )1z zφ φ−  in our first equation to obtain  

the following:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )
( )( )

1 11
1

1 11 1
1

1 1

j

j

j

j

y y z
z z w

y y z z z
z z w

y z y z x

y z x

φ
φ φ

φ φ
φ φ

φ φ

φ

  ∂
− −  − ∂ 

  ∂
= − − −  − ∂ 

= − − −

= −
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Remember that the goal is to find the weights that maximize the log-likelihood so 
that we would perform the update for each weight as follows:

( ) ( )( )( ) ( )

1
:

n
i i i

j j j
i

w w y z xη φ
=

= + −∑

Since we update all weights simultaneously, we can write the general update rule  
as follows:

:= + ∆w w w

We define ∆w  as follows:

( )lη∆ ∇w = w

Since maximizing the log-likelihood is equal to minimizing the cost function J  that 
we defined earlier, we can write the gradient descent update rule as follows:

( ) ( )( )( ) ( )

1

n
i i i

j j
ij

Jw y z x
w

η η φ
=

∂
∆ = − = −

∂ ∑

( ): , Jη= + ∆ ∆ = − ∇w w w w w

This is equal to the gradient descent rule in Adaline in Chapter 2, Training Machine 
Learning Algorithms for Classification.

Tackling overfitting via regularization
Overfitting is a common problem in machine learning, where a model performs well 
on training data but does not generalize well to unseen data (test data). If a model 
suffers from overfitting, we also say that the model has a high variance, which can 
be caused by having too many parameters that lead to a model that is too complex 
given the underlying data. Similarly, our model can also suffer from underfitting 
(high bias), which means that our model is not complex enough to capture the 
pattern in the training data well and therefore also suffers from low performance  
on unseen data. 
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Although we have only encountered linear models for classification so far, the 
problem of overfitting and underfitting can be best illustrated by using a more 
complex, nonlinear decision boundary as shown in the following figure:

Variance measures the consistency (or variability) of the model 
prediction for a particular sample instance if we would retrain 
the model multiple times, for example, on different subsets of 
the training dataset. We can say that the model is sensitive to the 
randomness in the training data. In contrast, bias measures how far 
off the predictions are from the correct values in general if we rebuild 
the model multiple times on different training datasets; bias is the 
measure of the systematic error that is not due to randomness.

One way of finding a good bias-variance tradeoff is to tune the complexity of 
the model via regularization. Regularization is a very useful method to handle 
collinearity (high correlation among features), filter out noise from data, and 
eventually prevent overfitting. The concept behind regularization is to introduce 
additional information (bias) to penalize extreme parameter weights. The most 
common form of regularization is the so-called L2 regularization (sometimes also 
called L2 shrinkage or weight decay), which can be written as follows:

2 2

12 2

m

j
j
wλ λ

=

= ∑w
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Here, λ  is the so-called regularization parameter.

Regularization is another reason why feature scaling such as 
standardization is important. For regularization to work properly, 
we need to ensure that all our features are on comparable scales.

In order to apply regularization, we just need to add the regularization term to the 
cost function that we defined for logistic regression to shrink the weights:

( ) ( ) ( )( )( ) ( )( ) ( )( )( ) 2

1
log 1 log 1

2

n
i i i i

i
J y z y z wλφ φ

=

 = − − − − +  ∑w

Via the regularization parameter λ , we can then control how well we fit the training 
data while keeping the weights small. By increasing the value of λ , we increase the 
regularization strength.

The parameter C that is implemented for the LogisticRegression class in  
scikit-learn comes from a convention in support vector machines, which will be  
the topic of the next section. C is directly related to the regularization parameter λ , 
which is its inverse:

1C
λ

=

So we can rewrite the regularized cost function of logistic regression as follows:

( ) ( ) ( )( )( ) ( )( )( ) ( )( )( ) 2

1

1log 1 log 1
2

n
i i i i

i
J C y z y zφ φ

=

 = − − − − +  
∑w w
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Consequently, decreasing the value of the inverse regularization parameter C means 
that we are increasing the regularization strength, which we can visualize by plotting 
the L2 regularization path for the two weight coefficients:

>>> weights, params = [], []
>>> for c in np.arange(-5, 5):
...     lr = LogisticRegression(C=10**c, random_state=0)
...     lr.fit(X_train_std, y_train)
...     weights.append(lr.coef_[1])
...     params.append(10**c)
>>> weights = np.array(weights)
>>> plt.plot(params, weights[:, 0], 
...          label='petal length')
>>> plt.plot(params, weights[:, 1], linestyle='--', 
...          label='petal width')
>>> plt.ylabel('weight coefficient')
>>> plt.xlabel('C')
>>> plt.legend(loc='upper left')
>>> plt.xscale('log')
>>> plt.show()

By executing the preceding code, we fitted ten logistic regression models with 
different values for the inverse-regularization parameter C. For the purposes of 
illustration, we only collected the weight coefficients of the class 2 vs. all classifier. 
Remember that we are using the OvR technique for multiclass classification.

As we can see in the resulting plot, the weight coefficients shrink if we decrease the 
parameter C, that is, if we increase the regularization strength:
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Since an in-depth coverage of the individual classification algorithms 
exceeds the scope of this book, I warmly recommend Dr. Scott 
Menard's Logistic Regression: From Introductory to Advanced Concepts 
and Applications, Sage Publications, to readers who want to learn more 
about logistic regression.

Maximum margin classification with 
support vector machines
Another powerful and widely used learning algorithm is the support vector 
machine (SVM), which can be considered as an extension of the perceptron. Using 
the perceptron algorithm, we minimized misclassification errors. However, in SVMs, 
our optimization objective is to maximize the margin. The margin is defined as the 
distance between the separating hyperplane (decision boundary) and the training 
samples that are closest to this hyperplane, which are the so-called support vectors. 
This is illustrated in the following figure:
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Maximum margin intuition
The rationale behind having decision boundaries with large margins is that they tend 
to have a lower generalization error whereas models with small margins are more 
prone to overfitting. To get an intuition for the margin maximization, let's take a 
closer look at those positive and negative hyperplanes that are parallel to the decision 
boundary, which can be expressed as follows:

( )0 1 1Tw + =posw x

( )0 1 2Tw + = −negw x

If we subtract those two linear equations (1) and (2) from each other, we get:

( ) 2T⇒ − =pos negw x x

We can normalize this by the length of the vector w, which is defined as follows:

2
1

m
jj
w

=
= ∑w

So we arrive at the following equation:

( ) 2−
=

T
pos negw x x
w w

The left side of the preceding equation can then be interpreted as the distance 
between the positive and negative hyperplane, which is the so-called margin that we 
want to maximize.
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Now the objective function of the SVM becomes the maximization of this margin  

by maximizing 
2
w  under the constraint that the samples are classified correctly,  

which can be written as follows:

( ) ( )
0 1 1i iTw if y+ ≥ =w x

( ) ( )
0 1 1i iTw if y+ < − = −w x

These two equations basically say that all negative samples should fall on one side 
of the negative hyperplane, whereas all the positive samples should fall behind the 
positive hyperplane. This can also be written more compactly as follows:

( ) ( )( )0 1i iT
iy w + ≥ ∀w x

In practice, though, it is easier to minimize the reciprocal term 
21

2
w , which can be 

solved by quadratic programming. However, a detailed discussion about quadratic 
programming is beyond the scope of this book, but if you are interested, you can 
learn more about Support Vector Machines (SVM) in Vladimir Vapnik's The Nature 
of Statistical Learning Theory, Springer Science & Business Media, or Chris J.C. Burges' 
excellent explanation in A Tutorial on Support Vector Machines for Pattern Recognition 
(Data mining and knowledge discovery, 2(2):121–167, 1998).

Dealing with the nonlinearly separable case 
using slack variables
Although we don't want to dive much deeper into the more involved  
mathematical concepts behind the margin classification, let's briefly mention the 
slack variable ξ . It was introduced by Vladimir Vapnik in 1995 and led to the  
so-called soft-margin classification. The motivation for introducing the slack variable 
ξ  was that the linear constraints need to be relaxed for nonlinearly separable data to 
allow convergence of the optimization in the presence of misclassifications under the 
appropriate cost penalization. 
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The positive-values slack variable is simply added to the linear constraints:

( ) ( ) ( )1 1i i iT if yξ≥ − =w x

( ) ( ) ( )1 1i i iT if yξ≤ − + = −w x

So the new objective to be minimized (subject to the preceding constraints) becomes:

( )21
2

i

i
C ξ +  
 
∑w

Using the variable C, we can then control the penalty for misclassification. Large 
values of C correspond to large error penalties whereas we are less strict about 
misclassification errors if we choose smaller values for C. We can then we use the 
parameter C to control the width of the margin and therefore tune the bias-variance 
trade-off as illustrated in the following figure:

This concept is related to regularization, which we discussed previously in the 
context of regularized regression where increasing the value of C increases the bias 
and lowers the variance of the model.
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Now that we learned the basic concepts behind the linear SVM, let's train a SVM 
model to classify the different flowers in our Iris dataset:

>>> from sklearn.svm import SVC
   >>> svm = SVC(kernel='linear', C=1.0, random_state=0)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std, 
...                       y_combined, classifier=svm,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

The decision regions of the SVM visualized after executing the preceding code 
example are shown in the following plot:
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Logistic regression versus SVM
In practical classification tasks, linear logistic regression and 
linear SVMs often yield very similar results. Logistic regression 
tries to maximize the conditional likelihoods of the training 
data, which makes it more prone to outliers than SVMs. The 
SVMs mostly care about the points that are closest to the 
decision boundary (support vectors). On the other hand, logistic 
regression has the advantage that it is a simpler model that can 
be implemented more easily. Furthermore, logistic regression 
models can be easily updated, which is attractive when working 
with streaming data.

Alternative implementations in scikit-learn
The Perceptron and LogisticRegression classes that we used in the previous 
sections via scikit-learn make use of the LIBLINEAR library, which is a highly 
optimized C/C++ library developed at the National Taiwan University (http://
www.csie.ntu.edu.tw/~cjlin/liblinear/). Similarly, the SVC class that we 
used to train an SVM makes use of LIBSVM, which is an equivalent C/C++ library 
specialized for SVMs (http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

The advantage of using LIBLINEAR and LIBSVM over native Python 
implementations is that they allow an extremely quick training of large amounts 
of linear classifiers. However, sometimes our datasets are too large to fit into 
computer memory. Thus, scikit-learn also offers alternative implementations via 
the SGDClassifier class, which also supports online learning via the partial_fit 
method. The concept behind the SGDClassifier class is similar to the stochastic 
gradient algorithm that we implemented in Chapter 2, Training Machine Learning 
Algorithms for Classification, for Adaline. We could initialize the stochastic gradient 
descent version of the perceptron, logistic regression, and support vector machine 
with default parameters as follows:

>>> from sklearn.linear_model import SGDClassifier
>>> ppn = SGDClassifier(loss='perceptron')
>>> lr = SGDClassifier(loss='log')
>>> svm = SGDClassifier(loss='hinge')

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Solving nonlinear problems using a 
kernel SVM
Another reason why SVMs enjoy high popularity among machine learning 
practitioners is that they can be easily kernelized to solve nonlinear classification 
problems. Before we discuss the main concept behind kernel SVM, let's first define and 
create a sample dataset to see how such a nonlinear classification problem may look.

Using the following code, we will create a simple dataset that has the form of  
an XOR gate using the logical_xor function from NumPy, where 100 samples  
will be assigned the class label 1 and 100 samples will be assigned the class  
label -1, respectively:

>>> np.random.seed(0)
>>> X_xor = np.random.randn(200, 2)
>>> y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0)
>>> y_xor = np.where(y_xor, 1, -1)

>>> plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1],
...             c='b', marker='x', label='1')
>>> plt.scatter(X_xor[y_xor==-1, 0], X_xor[y_xor==-1, 1],
...             c='r', marker='s', label='-1')
>>> plt.ylim(-3.0)
>>> plt.legend()
>>> plt.show()

After executing the code, we will have an XOR dataset with random noise,  
as shown in the following figure:
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Obviously, we would not be able to separate samples from the positive and negative 
class very well using a linear hyperplane as the decision boundary via the linear 
logistic regression or linear SVM model that we discussed in earlier sections.

The basic idea behind kernel methods to deal with such linearly inseparable data 
is to create nonlinear combinations of the original features to project them onto a 
higher dimensional space via a mapping function ( )φ ⋅  where it becomes linearly 
separable. As shown in the next figure, we can transform a two-dimensional dataset 
onto a new three-dimensional feature space where the classes become separable via 
the following projection:

( ) ( ) ( )2 2
1 2 1 2 3 1 2 1 2, , , , ,x x z z z x x x xφ = = +

This allows us to separate the two classes shown in the plot via a linear hyperplane 
that becomes a nonlinear decision boundary if we project it back onto the original 
feature space:
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Using the kernel trick to find separating 
hyperplanes in higher dimensional space
To solve a nonlinear problem using an SVM, we transform the training data onto 
a higher dimensional feature space via a mapping function ( )φ ⋅  and train a linear 
SVM model to classify the data in this new feature space. Then we can use the same 
mapping function ( )φ ⋅  to transform new, unseen data to classify it using the linear 
SVM model.

However, one problem with this mapping approach is that the construction of 
the new features is computationally very expensive, especially if we are dealing 
with high-dimensional data. This is where the so-called kernel trick comes into 
play. Although we didn't go into much detail about how to solve the quadratic 
programming task to train an SVM, in practice all we need is to replace the dot 
product ( ) ( )i T jx x  by ( )( ) ( )( )Ti jφ φx x . In order to save the expensive step of calculating 
this dot product between two points explicitly, we define a so-called kernel function: 

( ) ( )( ),i jk x x  = ( )( ) ( )( )Ti jφ φx x .

One of the most widely used kernels is the Radial Basis Function kernel  
(RBF kernel) or Gaussian kernel:

( ) ( )( )
( ) ( ) 2

2, exp
2

i j
i j

-
k

σ

 
 = −  
 

x x
x x

This is often simplified to:

( ) ( )( ) ( ) ( )( )2
, expi j i jk -γ= −x x x x

Here, 2

1
2

γ
σ

=  is a free parameter that is to be optimized.

Roughly speaking, the term kernel can be interpreted as a similarity function between 
a pair of samples. The minus sign inverts the distance measure into a similarity score 
and, due to the exponential term, the resulting similarity score will fall into a range 
between 1 (for exactly similar samples) and 0 (for very dissimilar samples).
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Now that we defined the big picture behind the kernel trick, let's see if we can train 
a kernel SVM that is able to draw a nonlinear decision boundary that separates the 
XOR data well. Here, we simply use the SVC class from scikit-learn that we imported 
earlier and replace the parameter kernel='linear' with kernel='rbf':

>>> svm = SVC(kernel='rbf', random_state=0, gamma=0.10, C=10.0)
>>> svm.fit(X_xor, y_xor)
>>> plot_decision_regions(X_xor, y_xor, classifier=svm)
>>> plt.legend(loc='upper left')
>>> plt.show()

As we can see in the resulting plot, the kernel SVM separates the XOR data  
relatively well:

The γ  parameter, which we set to gamma=0.1, can be understood as a cut-off 
parameter for the Gaussian sphere. If we increase the value for γ , we increase the 
influence or reach of the training samples, which leads to a softer decision boundary. 
To get a better intuition for γ , let's apply RBF kernel SVM to our Iris flower dataset:

>>> svm = SVC(kernel='rbf', random_state=0, gamma=0.2, C=1.0)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std, 
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...                       y_combined, classifier=svm,

...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

Since we chose a relatively small value for γ , the resulting decision boundary of the 
RBF kernel SVM model will be relatively soft, as shown in the following figure:

Now let's increase the value of γ  and observe the effect on the decision boundary:

>>> svm = SVC(kernel='rbf', random_state=0, gamma=100.0, C=1.0)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std,
...                       y_combined, classifier=svm,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()
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In the resulting plot, we can now see that the decision boundary around the classes 0 
and 1 is much tighter using a relatively large value of γ :

Although the model fits the training dataset very well, such a classifier will 
likely have a high generalization error on unseen data, which illustrates that the 
optimization of γ  also plays an important role in controlling overfitting.

Decision tree learning
Decision tree classifiers are attractive models if we care about interpretability.  
Like the name decision tree suggests, we can think of this model as breaking down 
our data by making decisions based on asking a series of questions. 
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Let's consider the following example where we use a decision tree to decide upon an 
activity on a particular day:

Yes No

Stay in

Sunny Rainy
Over-
cast

Go to beach Go running

Yes No

Stay in Go to movies

Work to do?

Outlook?

Friends busy?

Based on the features in our training set, the decision tree model learns a series of 
questions to infer the class labels of the samples. Although the preceding figure 
illustrated the concept of a decision tree based on categorical variables, the same 
concept applies if our features are real numbers like in the Iris dataset. For example, 
we could simply define a cut-off value along the sepal width feature axis and ask a 
binary question "sepal width 2.8≥  cm?"

Using the decision algorithm, we start at the tree root and split the data on the 
feature that results in the largest information gain (IG), which will be explained in 
more detail in the following section. In an iterative process, we can then repeat this 
splitting procedure at each child node until the leaves are pure. This means that the 
samples at each node all belong to the same class. In practice, this can result in a very 
deep tree with many nodes, which can easily lead to overfitting. Thus, we typically 
want to prune the tree by setting a limit for the maximal depth of the tree.
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Maximizing information gain – getting the 
most bang for the buck
In order to split the nodes at the most informative features, we need to define an 
objective function that we want to optimize via the tree learning algorithm. Here,  
our objective function is to maximize the information gain at each split, which we 
define as follows:

( ) ( ) ( )
1

,
m

j
p p j

j p

N
IG D f I D I D

N=

= −∑

Here, f is the feature to perform the split, pD  and jD  are the dataset of the parent 
and jth child node, I is our impurity measure, pN  is the total number of samples at 
the parent node, and jN  is the number of samples in the jth child node. As we can 
see, the information gain is simply the difference between the impurity of the parent 
node and the sum of the child node impurities—the lower the impurity of the child 
nodes, the larger the information gain. However, for simplicity and to reduce the 
combinatorial search space, most libraries (including scikit-learn) implement binary 
decision trees. This means that each parent node is split into two child nodes, leftD  
and rightD :

( ) ( ) ( ) ( ), left right
p p left right

p p

N N
IG D f I D I D I D

N N
= − −

Now, the three impurity measures or splitting criteria that are commonly used in 
binary decision trees are Gini impurity ( GI ), entropy ( HI ), and the classification 
error ( EI ). Let's start with the definition of entropy for all non-empty classes 
( )| 0p i t ≠ :

( ) ( ) ( )2
1

| log |
c

H
i

I t p i t p i t
=

= −∑
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Here, ( )|p i t  is the proportion of the samples that belongs to class i for a particular 
node t. The entropy is therefore 0 if all samples at a node belong to the same class, 
and the entropy is maximal if we have a uniform class distribution. For example, in 
a binary class setting, the entropy is 0 if ( )1| 1p i t= =  or ( )0 | 0p i t= = . If the classes are 
distributed uniformly with ( )1| 0.5p i t= =  and ( )0 | 0.5p i t= = , the entropy is 1. Therefore, 
we can say that the entropy criterion attempts to maximize the mutual information 
in the tree.

Intuitively, the Gini impurity can be understood as a criterion to minimize the 
probability of misclassification:

( ) ( ) ( )( ) ( )2

1 1
| 1 | 1 |

c c

G
i i

I t p i t p i t p i t
= =

= − = −∑ ∑

Similar to entropy, the Gini impurity is maximal if the classes are perfectly mixed,  
for example, in a binary class setting ( 2c = ):

2

1
1 0.5 0.5

c

i=
− =∑

However, in practice both the Gini impurity and entropy typically yield very similar 
results and it is often not worth spending much time on evaluating trees using 
different impurity criteria rather than experimenting with different pruning cut-offs.

Another impurity measure is the classification error:

( ){ }1 max |EI p i t= −
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This is a useful criterion for pruning but not recommended for growing a decision 
tree, since it is less sensitive to changes in the class probabilities of the nodes. We 
can illustrate this by looking at the two possible splitting scenarios shown in the 
following figure:

A B
(40, 40) (40, 40)

(30, 10) (10, 30) (20, 40) (20, 0)

We start with a dataset pD  at the parent node pD  that consists of 40 samples from 
class 1 and 40 samples from class 2 that we split into two datasets leftD  and rightD ,  
respectively. The information gain using the classification error as a splitting 
criterion would be the same ( 0.25EIG = ) in both scenario A and B:

( ) 1 0.5 0.5E pI D = − =

( ) 3: 1 0.25
4E leftA I D = − =

( ) 3: 1 0.25
4E rightA I D = − =

4 4: 0.5 0.25 0.25 0.25
8 8EA IG = − − =

( ) 4 1: 1
6 3E leftB I D = − =

( ): 1 1 0E rightB I D = − =

6 1: 0.5 0 0.25
8 3EB IG = − × − =
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However, the Gini impurity would favor the split in scenario ( )0.16GB IG =  over 
scenario ( )0.125GA IG = , which is indeed more pure:

( ) ( )2 21 0.5 0.5 0.5G pI D = − + =

( )
2 23 1 3: 1 0.375

4 4 8G leftA I D
    = − + = =         

( )
2 21 3 3: 1 0.375

4 4 8G rightA I D
    = − + = =         

4 4: 0.5 0.375 0.375 0.125
8 8GA IG = − − =

( )
2 22 4 4: 1 0.4

6 6 9G leftB I D
    = − + = =         

( ) ( )2 2: 1 1 0 0G rightB I D = − + =

6: 0.5 0.4 0 0.16
8GB IG = − − =

Similarly, the entropy criterion would favor scenario ( )0.31HB IG =  over  
scenario ( )0.19HA IG = :

( ) ( ) ( )( )2 20.5 log 0.5 0.5 log 0.5 1H pI D = − + =

( ) 2 2
3 3 1 1: log log 0.81
4 4 4 4H leftA I D     = − + =        
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( ) 2 2
1 1 3 3: log log 0.81
4 4 4 4H rightA I D     = − + =        

4 4: 1 0.81 0.81 0.19
8 8HA IG = − − =

( ) 2 2
2 2 4 4: log log 0.92
6 6 6 6H leftB I D     = − + =        

( ): 0H rightB I D =

6: 1 0.92 0 0.31
8HB IG = − − =

For a more visual comparison of the three different impurity criteria that we 
discussed previously, let's plot the impurity indices for the probability range [0, 1] 
for class 1. Note that we will also add in a scaled version of the entropy (entropy/2) to 
observe that the Gini impurity is an intermediate measure between entropy and the 
classification error. The code is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def gini(p):
...     return (p)*(1 - (p)) + (1 - p)*(1 - (1-p))
>>> def entropy(p):
...     return - p*np.log2(p) - (1 - p)*np.log2((1 - p))
>>> def error(p):
...     return 1 - np.max([p, 1 - p])
>>> x = np.arange(0.0, 1.0, 0.01)
>>> ent = [entropy(p) if p != 0 else None for p in x]
>>> sc_ent = [e*0.5 if e else None for e in ent]
>>> err = [error(i) for i in x]
>>> fig = plt.figure()
>>> ax = plt.subplot(111)
>>> for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err], 
...                   ['Entropy', 'Entropy (scaled)', 
...                   'Gini Impurity', 



Chapter 3

[ 89 ]

...                   'Misclassification Error'],

...                   ['-', '-', '--', '-.'],

...                   ['black', 'lightgray',

...                      'red', 'green', 'cyan']):

...     line = ax.plot(x, i, label=lab, 

...                    linestyle=ls, lw=2, color=c)
>>> ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
...           ncol=3, fancybox=True, shadow=False)
>>> ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
>>> ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
>>> plt.ylim([0, 1.1])
>>> plt.xlabel('p(i=1)')
>>> plt.ylabel('Impurity Index')
>>> plt.show()

The plot produced by the preceding code example is as follows:
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Building a decision tree
Decision trees can build complex decision boundaries by dividing the feature 
space into rectangles. However, we have to be careful since the deeper the decision 
tree, the more complex the decision boundary becomes, which can easily result in 
overfitting. Using scikit-learn, we will now train a decision tree with a maximum 
depth of 3 using entropy as a criterion for impurity. Although feature scaling may be 
desired for visualization purposes, note that feature scaling is not a requirement for 
decision tree algorithms. The code is as follows:

>>> from sklearn.tree import DecisionTreeClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy', 
...                               max_depth=3, random_state=0)
>>> tree.fit(X_train, y_train)
>>> X_combined = np.vstack((X_train, X_test))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X_combined, y_combined, 
...                    classifier=tree, test_idx=range(105,150))
>>>plt.xlabel('petal length [cm]')
>>>plt.ylabel('petal width [cm]') 
>>> plt.legend(loc='upper left')
>>> plt.show()

After executing the preceding code example, we get the typical axis-parallel decision 
boundaries of the decision tree:
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A nice feature in scikit-learn is that it allows us to export the decision tree as a 
.dot file after training, which we can visualize using the GraphViz program. This 
program is freely available at http://www.graphviz.org and supported by Linux, 
Windows, and Mac OS X.

First, we create the .dot file via scikit-learn using the export_graphviz function 
from the tree submodule, as follows:

>>> from sklearn.tree import export_graphviz
>>> export_graphviz(tree, 
...                 out_file='tree.dot',
...                 feature_names=['petal length', 'petal width'])

After we have installed GraphViz on our computer, we can convert the tree.dot file 
into a PNG file by executing the following command from the command line in the 
location where we saved the tree.dot file:

> dot -Tpng tree.dot -o tree.png

Looking at the decision tree figure that we created via GraphViz, we can now nicely 
trace back the splits that the decision tree determined from our training dataset.  
We started with 105 samples at the root and split it into two child nodes with 34  
and 71 samples each using the petal width cut-off ≤ 0.75 cm. After the first split, 
we can see that the left child node is already pure and only contains samples from 
the Iris-Setosa class (entropy = 0). The further splits on the right are then used to 
separate the samples from the Iris-Versicolor and Iris-Virginica classes.

http://www.graphviz.org
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Combining weak to strong learners via 
random forests
Random forests have gained huge popularity in applications of machine learning 
during the last decade due to their good classification performance, scalability, and 
ease of use. Intuitively, a random forest can be considered as an ensemble of decision 
trees. The idea behind ensemble learning is to combine weak learners to build a 
more robust model, a strong learner, that has a better generalization error and is less 
susceptible to overfitting. The random forest algorithm can be summarized in four 
simple steps:

1.	 Draw a random bootstrap sample of size n (randomly choose n samples from 
the training set with replacement).

2.	 Grow a decision tree from the bootstrap sample. At each node:
1.	 Randomly select d features without replacement.
2.	 Split the node using the feature that provides the best split  

according to the objective function, for instance, by maximizing  
the information gain.

3.	 Repeat the steps 1 to 2 k times.
4.	 Aggregate the prediction by each tree to assign the class label by majority 

vote. Majority voting will be discussed in more detail in Chapter 7, Combining 
Different Models for Ensemble Learning.

There is a slight modification in step 2 when we are training the individual decision 
trees: instead of evaluating all features to determine the best split at each node, we 
only consider a random subset of those.

Although random forests don't offer the same level of interpretability as decision 
trees, a big advantage of random forests is that we don't have to worry so much 
about choosing good hyperparameter values. We typically don't need to prune the 
random forest since the ensemble model is quite robust to noise from the individual 
decision trees. The only parameter that we really need to care about in practice is the 
number of trees k (step 3) that we choose for the random forest. Typically, the larger 
the number of trees, the better the performance of the random forest classifier at the 
expense of an increased computational cost.
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Although it is less common in practice, other hyperparameters of the random  
forest classifier that can be optimized—using techniques we will discuss in  
Chapter 5, Compressing Data via Dimensionality Reduction—are the size n  
of the bootstrap sample (step 1) and the number of features d that is randomly  
chosen for each split (step 2.1), respectively. Via the sample size n of the bootstrap 
sample, we control the bias-variance tradeoff of the random forest. By choosing 
a larger value for n, we decrease the randomness and thus the forest is more 
likely to overfit. On the other hand, we can reduce the degree of overfitting by 
choosing smaller values for n at the expense of the model performance. In most 
implementations, including the RandomForestClassifier implementation in  
scikit-learn, the sample size of the bootstrap sample is chosen to be equal to the 
number of samples in the original training set, which usually provides a good  
bias-variance tradeoff. For the number of features d at each split, we want to choose 
a value that is smaller than the total number of features in the training set. A 
reasonable default that is used in scikit-learn and other implementations is d m= , 
where m is the number of features in the training set.

Conveniently, we don't have to construct the random forest classifier from individual 
decision trees by ourselves; there is already an implementation in scikit-learn that  
we can use:

>>> from sklearn.ensemble import RandomForestClassifier
>>> forest = RandomForestClassifier(criterion='entropy',
...                                 n_estimators=10, 
...                                 random_state=1,
...                                 n_jobs=2)
>>> forest.fit(X_train, y_train)
>>> plot_decision_regions(X_combined, y_combined, 
...                classifier=forest, test_idx=range(105,150))
>>> plt.xlabel('petal length')
>>> plt.ylabel('petal width')
>>> plt.legend(loc='upper left')
>>> plt.show()
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After executing the preceding code, we should see the decision regions formed by 
the ensemble of trees in the random forest, as shown in the following figure:

Using the preceding code, we trained a random forest from 10 decision trees via the 
n_estimators parameter and used the entropy criterion as an impurity measure to 
split the nodes. Although we are growing a very small random forest from a very 
small training dataset, we used the n_jobs parameter for demonstration purposes, 
which allows us to parallelize the model training using multiple cores of our 
computer (here, two).

K-nearest neighbors – a lazy learning 
algorithm
The last supervised learning algorithm that we want to discuss in this chapter is the 
k-nearest neighbor classifier (KNN), which is particularly interesting because it is 
fundamentally different from the learning algorithms that we have discussed so far.

KNN is a typical example of a lazy learner. It is called lazy not because of its 
apparent simplicity, but because it doesn't learn a discriminative function from  
the training data but memorizes the training dataset instead.
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Parametric versus nonparametric models
Machine learning algorithms can be grouped into parametric and 
nonparametric models. Using parametric models, we estimate 
parameters from the training dataset to learn a function that can 
classify new data points without requiring the original training dataset 
anymore. Typical examples of parametric models are the perceptron, 
logistic regression, and the linear SVM. In contrast, nonparametric 
models can't be characterized by a fixed set of parameters, and the 
number of parameters grows with the training data. Two examples of 
nonparametric models that we have seen so far are the decision tree 
classifier/random forest and the kernel SVM.
KNN belongs to a subcategory of nonparametric models that is 
described as instance-based learning. Models based on instance-based 
learning are characterized by memorizing the training dataset, and lazy 
learning is a special case of instance-based learning that is associated 
with no (zero) cost during the learning process.

The KNN algorithm itself is fairly straightforward and can be summarized by the 
following steps:

1.	 Choose the number of k and a distance metric.
2.	 Find the k nearest neighbors of the sample that we want to classify.
3.	 Assign the class label by majority vote.

The following figure illustrates how a new data point (?) is assigned the triangle class 
label based on majority voting among its five nearest neighbors.
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Based on the chosen distance metric, the KNN algorithm finds the k samples in the 
training dataset that are closest (most similar) to the point that we want to classify. 
The class label of the new data point is then determined by a majority vote among  
its k nearest neighbors.

The main advantage of such a memory-based approach is that the classifier 
immediately adapts as we collect new training data. However, the downside is that 
the computational complexity for classifying new samples grows linearly with the 
number of samples in the training dataset in the worst-case scenario—unless the 
dataset has very few dimensions (features) and the algorithm has been implemented 
using efficient data structures such as KD-trees. (J. H. Friedman, J. L. Bentley, and R. 
A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM 
Transactions on Mathematical Software (TOMS), 3(3):209–226, 1977.) Furthermore, 
we can't discard training samples since no training step is involved. Thus, storage 
space can become a challenge if we are working with large datasets.

By executing the following code, we will now implement a KNN model in  
scikit-learn using an Euclidean distance metric:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=5, p=2,
...                            metric='minkowski')
>>> knn.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std, y_combined, 
...                       classifier=knn, test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.show()

By specifying five neighbors in the KNN model for this dataset, we obtain a 
relatively smooth decision boundary, as shown in the following figure:
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In the case of a tie, the scikit-learn implementation of the KNN 
algorithm will prefer the neighbors with a closer distance to the 
sample. If the neighbors have a similar distance, the algorithm will 
choose the class label that comes first in the training dataset.

The right choice of k is crucial to find a good balance between over- and underfitting. 
We also have to make sure that we choose a distance metric that is appropriate for 
the features in the dataset. Often, a simple Euclidean distance measure is used for 
real-valued samples, for example, the flowers in our Iris dataset, which have features 
measured in centimeters. However, if we are using a Euclidean distance measure, it 
is also important to standardize the data so that each feature contributes equally to 
the distance. The 'minkowski' distance that we used in the previous code is just a 
generalization of the Euclidean and Manhattan distance that can be written as follows:

( ) ( )( ) ( ) ( ),
pi j i jp

k k
k

d x x= −∑x x
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It becomes the Euclidean distance if we set the parameter p=2 or the Manhattan 
distance at p=1, respectively. Many other distance metrics are available in scikit-learn 
and can be provided to the metric parameter. They are listed at http://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.
html.

The curse of dimensionality
It is important to mention that KNN is very susceptible to 
overfitting due to the curse of dimensionality. The curse of 
dimensionality describes the phenomenon where the feature  
space becomes increasingly sparse for an increasing number  
of dimensions of a fixed-size training dataset. Intuitively, we  
can think of even the closest neighbors being too far away in a  
high-dimensional space to give a good estimate.
We have discussed the concept of regularization in the section 
about logistic regression as one way to avoid overfitting. However, 
in models where regularization is not applicable such as decision 
trees and KNN, we can use feature selection and dimensionality 
reduction techniques to help us avoid the curse of dimensionality. 
This will be discussed in more detail in the next chapter.

Summary
In this chapter, you learned about many different machine algorithms that are 
used to tackle linear and nonlinear problems. We have seen that decision trees are 
particularly attractive if we care about interpretability. Logistic regression is not only 
a useful model for online learning via stochastic gradient descent, but also allows us 
to predict the probability of a particular event. Although support vector machines 
are powerful linear models that can be extended to nonlinear problems via the 
kernel trick, they have many parameters that have to be tuned in order to make good 
predictions. In contrast, ensemble methods such as random forests don't require 
much parameter tuning and don't overfit so easily as decision trees, which makes 
it an attractive model for many practical problem domains. The K-nearest neighbor 
classifier offers an alternative approach to classification via lazy learning that allows 
us to make predictions without any model training but with a more computationally 
expensive prediction step.

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
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However, even more important than the choice of an appropriate learning algorithm 
is the available data in our training dataset. No algorithm will be able to make good 
predictions without informative and discriminatory features.

In the next chapter, we will discuss important topics regarding the preprocessing 
of data, feature selection, and dimensionality reduction, which we will need to 
build powerful machine learning models. Later in Chapter 6, Learning Best Practices 
for Model Evaluation and Hyperparameter Tuning, we will see how we can evaluate 
and compare the performance of our models and learn useful tricks to fine-tune the 
different algorithms.
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Building Good Training  
Sets – Data Preprocessing

The quality of the data and the amount of useful information that it contains are key 
factors that determine how well a machine learning algorithm can learn. Therefore, 
it is absolutely critical that we make sure to examine and preprocess a dataset before 
we feed it to a learning algorithm. In this chapter, we will discuss the essential data 
preprocessing techniques that will help us to build good machine learning models.

The topics that we will cover in this chapter are as follows:

•	 Removing and imputing missing values from the dataset
•	 Getting categorical data into shape for machine learning algorithms
•	 Selecting relevant features for the model construction

Dealing with missing data
It is not uncommon in real-world applications that our samples are missing one 
or more values for various reasons. There could have been an error in the data 
collection process, certain measurements are not applicable, particular fields could 
have been simply left blank in a survey, for example. We typically see missing  
values as the blank spaces in our data table or as placeholder strings such as NaN  
(Not A Number).
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Unfortunately, most computational tools are unable to handle such missing values 
or would produce unpredictable results if we simply ignored them. Therefore, it 
is crucial that we take care of those missing values before we proceed with further 
analyses. But before we discuss several techniques for dealing with missing values, 
let's create a simple example data frame from a CSV (comma-separated values) file 
to get a better grasp of the problem:

>>> import pandas as pd
>>> from io import StringIO
>>> csv_data = '''A,B,C,D
... 1.0,2.0,3.0,4.0
... 5.0,6.0,,8.0
... 10.0,11.0,12.0,'''
>>> # If you are using Python 2.7, you need
>>> # to convert the string to unicode:
>>> # csv_data = unicode(csv_data)
>>> df = pd.read_csv(StringIO(csv_data))
>>> df
   A   B   C   D
0  1   2   3   4
1  5   6 NaN   8
2  10  11  12 NaN

Using the preceding code, we read CSV-formatted data into a pandas DataFrame 
via the read_csv function and noticed that the two missing cells were replaced by 
NaN. The StringIO function in the preceding code example was simply used for the 
purposes of illustration. It allows us to read the string assigned to csv_data into a 
pandas DataFrame as if it was a regular CSV file on our hard drive.

For a larger DataFrame, it can be tedious to look for missing values manually; in this 
case, we can use the isnull method to return a DataFrame with Boolean values that 
indicate whether a cell contains a numeric value (False) or if data is missing (True). 
Using the sum method, we can then return the number of missing values per column 
as follows:

>>> df.isnull().sum()
A    0
B    0
C    1
D    1
dtype: int64
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This way, we can count the number of missing values per column; in the  
following subsections, we will take a look at different strategies for how to  
deal with this missing data.

Although scikit-learn was developed for working with NumPy 
arrays, it can sometimes be more convenient to preprocess data 
using pandas' DataFrame. We can always access the underlying 
NumPy array of the DataFrame via the values attribute before 
we feed it into a scikit-learn estimator:

>>> df.values

array([[  1.,   2.,   3.,   4.],

       [  5.,   6.,  nan,   8.],

       [ 10.,  11.,  12.,  nan]])

Eliminating samples or features with missing 
values
One of the easiest ways to deal with missing data is to simply remove the 
corresponding features (columns) or samples (rows) from the dataset entirely;  
rows with missing values can be easily dropped via the dropna method:

>>> df.dropna()
   A  B  C  D
0  1  2  3  4

Similarly, we can drop columns that have at least one NaN in any row by setting the 
axis argument to 1:

>>> df.dropna(axis=1)
   A   B
0  1   2
1  5   6
2  10  11

The dropna method supports several additional parameters that can come in handy:

# only drop rows where all columns are NaN
>>> df.dropna(how='all')  

# drop rows that have not at least 4 non-NaN values
>>> df.dropna(thresh=4)  

# only drop rows where NaN appear in specific columns (here: 'C')
>>> df.dropna(subset=['C'])
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Although the removal of missing data seems to be a convenient approach, it also 
comes with certain disadvantages; for example, we may end up removing too 
many samples, which will make a reliable analysis impossible. Or, if we remove too 
many feature columns, we will run the risk of losing valuable information that our 
classifier needs to discriminate between classes. In the next section, we will thus  
look at one of the most commonly used alternatives for dealing with missing  
values: interpolation techniques.

Imputing missing values
Often, the removal of samples or dropping of entire feature columns is simply not 
feasible, because we might lose too much valuable data. In this case, we can use 
different interpolation techniques to estimate the missing values from the other 
training samples in our dataset. One of the most common interpolation techniques is 
mean imputation, where we simply replace the missing value by the mean value of 
the entire feature column. A convenient way to achieve this is by using the Imputer 
class from scikit-learn, as shown in the following code:

>>> from sklearn.preprocessing import Imputer
>>> imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imr = imr.fit(df)
>>> imputed_data = imr.transform(df.values)
>>> imputed_data
array([[  1.,   2.,   3.,   4.], 
       [  5.,   6.,  7.5,   8.], 
       [ 10.,  11.,  12.,   6.]])

Here, we replaced each NaN value by the corresponding mean, which is separately 
calculated for each feature column. If we changed the setting axis=0 to axis=1, we'd 
calculate the row means. Other options for the strategy parameter are median or 
most_frequent, where the latter replaces the missing values by the most frequent 
values. This is useful for imputing categorical feature values.

Understanding the scikit-learn estimator API
In the previous section, we used the Imputer class from scikit-learn to impute 
missing values in our dataset. The Imputer class belongs to the so-called transformer 
classes in scikit-learn that are used for data transformation. The two essential 
methods of those estimators are fit and transform. The fit method is used to 
learn the parameters from the training data, and the transform method uses those 
parameters to transform the data. Any data array that is to be transformed needs to 
have the same number of features as the data array that was used to fit the model. 
The following figure illustrates how a transformer fitted on the training data is used 
to transform a training dataset as well as a new test dataset:
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The classifiers that we used in Chapter 3, A Tour of Machine Learning Classifiers Using 
Scikit-Learn, belong to the so-called estimators in scikit-learn with an API that is 
conceptually very similar to the transformer class. Estimators have a predict 
method but can also have a transform method, as we will see later. As you may 
recall, we also used the fit method to learn the parameters of a model when we 
trained those estimators for classification. However, in supervised learning tasks, we 
additionally provide the class labels for fitting the model, which can then be used to 
make predictions about new data samples via the predict method, as illustrated in 
the following figure:
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Handling categorical data
So far, we have only been working with numerical values. However, it is not 
uncommon that real-world datasets contain one or more categorical feature columns. 
When we are talking about categorical data, we have to further distinguish between 
nominal and ordinal features. Ordinal features can be understood as categorical 
values that can be sorted or ordered. For example, T-shirt size would be an ordinal 
feature, because we can define an order XL > L > M. In contrast, nominal features 
don't imply any order and, to continue with the previous example, we could think of 
T-shirt color as a nominal feature since it typically doesn't make sense to say that, for 
example, red is larger than blue.

Before we explore different techniques to handle such categorical data, let's create a 
new data frame to illustrate the problem:

>>> import pandas as pd
>>> df = pd.DataFrame([
...            ['green', 'M', 10.1, 'class1'], 
...            ['red', 'L', 13.5, 'class2'], 
...            ['blue', 'XL', 15.3, 'class1']])
>>> df.columns = ['color', 'size', 'price', 'classlabel']
>>> df
   color size  price classlabel
0  green    M   10.1     class1
1    red    L   13.5     class2
2   blue   XL   15.3     class1

As we can see in the preceding output, the newly created DataFrame contains a 
nominal feature (color), an ordinal feature (size), and a numerical feature (price) 
column. The class labels (assuming that we created a dataset for a supervised 
learning task) are stored in the last column. The learning algorithms for classification 
that we discuss in this book do not use ordinal information in class labels.

Mapping ordinal features
To make sure that the learning algorithm interprets the ordinal features correctly, we 
need to convert the categorical string values into integers. Unfortunately, there is no 
convenient function that can automatically derive the correct order of the labels of 
our size feature. Thus, we have to define the mapping manually. In the following 
simple example, let's assume that we know the difference between features, for 
example, 1 2XL L M= + = + .

>>> size_mapping = {
...                 'XL': 3,
...                 'L': 2,
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...                 'M': 1}
>>> df['size'] = df['size'].map(size_mapping)
>>> df
   color  size  price classlabel
0  green     1   10.1     class1
1    red     2   13.5     class2
2   blue     3   15.3     class1

If we want to transform the integer values back to the original string  
representation at a later stage, we can simply define a reverse-mapping  
dictionary inv_size_mapping = {v: k for k, v in size_mapping.items()} 
that can then be used via the pandas' map method on the transformed feature column 
similar to the size_mapping dictionary that we used previously.

Encoding class labels
Many machine learning libraries require that class labels are encoded as integer 
values. Although most estimators for classification in scikit-learn convert class 
labels to integers internally, it is considered good practice to provide class labels as 
integer arrays to avoid technical glitches. To encode the class labels, we can use an 
approach similar to the mapping of ordinal features discussed previously. We need 
to remember that class labels are not ordinal, and it doesn't matter which integer 
number we assign to a particular string-label. Thus, we can simply enumerate the 
class labels starting at 0:

>>> import numpy as np
>>> class_mapping = {label:idx for idx,label in
...                  enumerate(np.unique(df['classlabel']))}
>>> class_mapping
{'class1': 0, 'class2': 1}

Next we can use the mapping dictionary to transform the class labels into integers:

>>> df['classlabel'] = df['classlabel'].map(class_mapping)
>>> df
   color  size  price  classlabel
0  green     1   10.1           0
1    red     2   13.5           1
2   blue     3   15.3           0
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We can reverse the key-value pairs in the mapping dictionary as follows to map the 
converted class labels back to the original string representation:

>>> inv_class_mapping = {v: k for k, v in class_mapping.items()}
>>> df['classlabel'] = df['classlabel'].map(inv_class_mapping)
>>> df
   color  size  price classlabel
0  green     1   10.1     class1
1    red     2   13.5     class2
2   blue     3   15.3     class1

Alternatively, there is a convenient LabelEncoder class directly implemented in 
scikit-learn to achieve the same:

>>> from sklearn.preprocessing import LabelEncoder
>>> class_le = LabelEncoder()
>>> y = class_le.fit_transform(df['classlabel'].values)
>>> y
array([0, 1, 0])

Note that the fit_transform method is just a shortcut for calling fit and 
transform separately, and we can use the inverse_transform method to  
transform the integer class labels back into their original string representation:

>>> class_le.inverse_transform(y)
array(['class1', 'class2', 'class1'], dtype=object)

Performing one-hot encoding on nominal 
features
In the previous section, we used a simple dictionary-mapping approach to convert 
the ordinal size feature into integers. Since scikit-learn's estimators treat class labels 
without any order, we used the convenient LabelEncoder class to encode the string 
labels into integers. It may appear that we could use a similar approach to transform 
the nominal color column of our dataset, as follows:

>>> X = df[['color', 'size', 'price']].values
>>> color_le = LabelEncoder()
>>> X[:, 0] = color_le.fit_transform(X[:, 0])
>>> X
array([[1, 1, 10.1],
       [2, 2, 13.5],
       [0, 3, 15.3]], dtype=object)
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After executing the preceding code, the first column of the NumPy array X now 
holds the new color values, which are encoded as follows:

•	 blue à 0
•	 green à 1
•	 red à 2

If we stop at this point and feed the array to our classifier, we will make one of the 
most common mistakes in dealing with categorical data. Can you spot the problem? 
Although the color values don't come in any particular order, a learning algorithm 
will now assume that green is larger than blue, and red is larger than green. Although 
this assumption is incorrect, the algorithm could still produce useful results. 
However, those results would not be optimal.

A common workaround for this problem is to use a technique called one-hot 
encoding. The idea behind this approach is to create a new dummy feature for each 
unique value in the nominal feature column. Here, we would convert the color 
feature into three new features: blue, green, and red. Binary values can then be 
used to indicate the particular color of a sample; for example, a blue sample can be 
encoded as blue=1, green=0, red=0. To perform this transformation, we can use the 
OneHotEncoder that is implemented in the scikit-learn.preprocessing module:

>>> from sklearn.preprocessing import OneHotEncoder
>>> ohe = OneHotEncoder(categorical_features=[0])
>>> ohe.fit_transform(X).toarray()
array([[  0. ,   1. ,   0. ,   1. ,  10.1],
       [  0. ,   0. ,   1. ,   2. ,  13.5],
       [  1. ,   0. ,   0. ,   3. ,  15.3]])

When we initialized the OneHotEncoder, we defined the column position of the 
variable that we want to transform via the categorical_features parameter (note 
that color is the first column in the feature matrix X). By default, the OneHotEncoder 
returns a sparse matrix when we use the transform method, and we converted the 
sparse matrix representation into a regular (dense) NumPy array for the purposes of 
visualization via the toarray method. Sparse matrices are simply a more efficient 
way of storing large datasets, and one that is supported by many scikit-learn 
functions, which is especially useful if it contains a lot of zeros. To omit the toarray 
step, we could initialize the encoder as OneHotEncoder(…,sparse=False) to return 
a regular NumPy array.
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An even more convenient way to create those dummy features via one-hot encoding 
is to use the get_dummies method implemented in pandas. Applied on a DataFrame, 
the get_dummies method will only convert string columns and leave all other 
columns unchanged:

>>> pd.get_dummies(df[['price', 'color', 'size']])
   price  size  color_blue  color_green  color_red
0   10.1     1           0            1          0
1   13.5     2           0            0          1
2   15.3     3           1            0          0

Partitioning a dataset in training and test 
sets
We briefly introduced the concept of partitioning a dataset into separate datasets for 
training and testing in Chapter 1, Giving Computers the Ability to Learn from Data, and 
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Remember that the 
test set can be understood as the ultimate test of our model before we let it loose on 
the real world. In this section, we will prepare a new dataset, the Wine dataset. After 
we have preprocessed the dataset, we will explore different techniques for feature 
selection to reduce the dimensionality of a dataset.

The Wine dataset is another open-source dataset that is available from the UCI 
machine learning repository (https://archive.ics.uci.edu/ml/datasets/Wine); 
it consists of 178 wine samples with 13 features describing their different chemical 
properties.

Using the pandas library, we will directly read in the open source Wine dataset from 
the UCI machine learning repository:

>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)
>>> df_wine.columns = ['Class label', 'Alcohol', 
...                    'Malic acid', 'Ash', 
...                    'Alcalinity of ash', 'Magnesium', 
...                    'Total phenols', 'Flavanoids',
...                    'Nonflavanoid phenols', 
...                    'Proanthocyanins', 
...                    'Color intensity', 'Hue', 
...                    'OD280/OD315 of diluted wines', 
...                    'Proline']
>>>  print('Class labels', np.unique(df_wine['Class label']))
Class labels [1 2 3]
>>> df_wine.head()

https://archive.ics.uci.edu/ml/datasets/Wine
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The 13 different features in the Wine dataset, describing the chemical properties of 
the 178 wine samples, are listed in the following table:

The samples belong to one of three different classes, 1, 2, and 3, which refer to the 
three different types of grapes that have been grown in different regions in Italy.

A convenient way to randomly partition this dataset into a separate test and  
training dataset is to use the train_test_split function from scikit-learn's  
cross_validation submodule:

>>> from sklearn.cross_validation import train_test_split
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
...        train_test_split(X, y, test_size=0.3, random_state=0)

First, we assigned the NumPy array representation of feature columns 1-13 to the 
variable X, and we assigned the class labels from the first column to the variable 
y. Then, we used the train_test_split function to randomly split X and y into 
separate training and test datasets. By setting test_size=0.3 we assigned 30 
percent of the wine samples to X_test and y_test, and the remaining 70 percent  
of the samples were assigned to X_train and y_train, respectively.

If we are dividing a dataset into training and test datasets, we have to 
keep in mind that we are withholding valuable information that the 
learning algorithm could benefit from. Thus, we don't want to allocate 
too much information to the test set. However, the smaller the test set, 
the more inaccurate the estimation of the generalization error. Dividing 
a dataset into training and test sets is all about balancing this trade-off. 
In practice, the most commonly used splits are 60:40, 70:30, or 80:20, 
depending on the size of the initial dataset. However, for large datasets, 
90:10 or 99:1 splits into training and test subsets are also common and 
appropriate. Instead of discarding the allocated test data after model 
training and evaluation, it is a good idea to retrain a classifier on the 
entire dataset for optimal performance.
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Bringing features onto the same scale
Feature scaling is a crucial step in our preprocessing pipeline that can easily be 
forgotten. Decision trees and random forests are one of the very few machine 
learning algorithms where we don't need to worry about feature scaling. However, 
the majority of machine learning and optimization algorithms behave much  
better if features are on the same scale, as we saw in Chapter 2, Training Machine 
Learning Algorithms for Classification, when we implemented the gradient descent 
optimization algorithm.

The importance of feature scaling can be illustrated by a simple example. Let's 
assume that we have two features where one feature is measured on a scale from 
1 to 10 and the second feature is measured on a scale from 1 to 100,000. When we 
think of the squared error function in Adaline in Chapter 2, Training Machine Learning 
Algorithms for Classification, it is intuitive to say that the algorithm will mostly be busy 
optimizing the weights according to the larger errors in the second feature. Another 
example is the k-nearest neighbors (KNN) algorithm with a Euclidean distance 
measure; the computed distances between samples will be dominated by the second 
feature axis.

Now, there are two common approaches to bringing different features onto the same 
scale: normalization and standardization. Those terms are often used quite loosely 
in different fields, and the meaning has to be derived from the context. Most often, 
normalization refers to the rescaling of the features to a range of [0, 1], which is a 
special case of min-max scaling. To normalize our data, we can simply apply the 
min-max scaling to each feature column, where the new value ( )i

normx  of a sample ( )ix  
can be calculated as follows:

( )
( )
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max min

i
i
norm

x xx
x x

−
=

−

Here, ( )ix  is a particular sample, minx  is the smallest value in a feature column,  
and maxx  the largest value, respectively.

The min-max scaling procedure is implemented in scikit-learn and can be used  
as follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler()
>>> X_train_norm = mms.fit_transform(X_train)
>>> X_test_norm = mms.transform(X_test)
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Although normalization via min-max scaling is a commonly used technique that 
is useful when we need values in a bounded interval, standardization can be more 
practical for many machine learning algorithms. The reason is that many linear 
models, such as the logistic regression and SVM that we remember from Chapter 3, 
A Tour of Machine Learning Classifiers Using Scikit-learn, initialize the weights to 0 or 
small random values close to 0. Using standardization, we center the feature columns 
at mean 0 with standard deviation 1 so that the feature columns take the form of 
a normal distribution, which makes it easier to learn the weights. Furthermore, 
standardization maintains useful information about outliers and makes the 
algorithm less sensitive to them in contrast to min-max scaling, which scales  
the data to a limited range of values.

The procedure of standardization can be expressed by the following equation:

( )
( )i

i x
std

x

xx µ
σ
−

=

Here, xµ  is the sample mean of a particular feature column and xσ  the corresponding 
standard deviation, respectively.

The following table illustrates the difference between the two commonly used 
feature scaling techniques, standardization and normalization on a simple sample 
dataset consisting of numbers 0 to 5:

input standardized normalized
0.0 -1.336306 0.0
1.0 -0.801784 0.2
2.0 -0.267261 0.4
3.0 0.267261 0.6
4.0 0.801784 0.8
5.0 1.336306 1.0

Similar to MinMaxScaler, scikit-learn also implements a class for standardization:

>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler()
>>> X_train_std = stdsc.fit_transform(X_train)
>>> X_test_std = stdsc.transform(X_test)
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Again, it is also important to highlight that we fit the StandardScaler only once  
on the training data and use those parameters to transform the test set or any new 
data point.

Selecting meaningful features
If we notice that a model performs much better on a training dataset than on the test 
dataset, this observation is a strong indicator for overfitting. Overfitting means that 
model fits the parameters too closely to the particular observations in the training 
dataset but does not generalize well to real data—we say that the model has a high 
variance. A reason for overfitting is that our model is too complex for the given 
training data and common solutions to reduce the generalization error are listed  
as follows:

•	 Collect more training data
•	 Introduce a penalty for complexity via regularization
•	 Choose a simpler model with fewer parameters
•	 Reduce the dimensionality of the data

Collecting more training data is often not applicable. In the next chapter, we will 
learn about a useful technique to check whether more training data is helpful at all. 
In the following sections and subsections, we will look at common ways to reduce 
overfitting by regularization and dimensionality reduction via feature selection.

Sparse solutions with L1 regularization
We recall from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn,  
that L2 regularization is one approach to reduce the complexity of a model by 
penalizing large individual weights, where we defined the L2 norm of our weight 
vector w as follows:

2 2
2
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j
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=

=∑w

Another approach to reduce the model complexity is the related L1 regularization:
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Here, we simply replaced the square of the weights by the sum of the absolute 
values of the weights. In contrast to L2 regularization, L1 regularization yields sparse 
feature vectors; most feature weights will be zero. Sparsity can be useful in practice 
if we have a high-dimensional dataset with many features that are irrelevant, 
especially cases where we have more irrelevant dimensions than samples. In this 
sense, L1 regularization can be understood as a technique for feature selection.

To better understand how L1 regularization encourages sparsity, let's take a step 
back and take a look at a geometrical interpretation of regularization. Let's plot the 
contours of a convex cost function for two weight coefficients 1w  and 2w . Here, we 
will consider the sum of the squared errors (SSE) cost function that we used for 
Adaline in Chapter 2, Training Machine Learning Algorithms for Classification, since 
it is symmetrical and easier to draw than the cost function of logistic regression; 
however, the same concepts apply to the latter. Remember that our goal is to find the 
combination of weight coefficients that minimize the cost function for the training 
data, as shown in the following figure (the point in the middle of the ellipses):

Now, we can think of regularization as adding a penalty term to the cost function to 
encourage smaller weights; or, in other words, we penalize large weights.
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Thus, by increasing the regularization strength via the regularization  
parameter λ , we shrink the weights towards zero and decrease the dependence  
of our model on the training data. Let's illustrate this concept in the following  
figure for the L2 penalty term.

The quadratic L2 regularization term is represented by the shaded ball. Here, our 
weight coefficients cannot exceed our regularization budget—the combination of the 
weight coefficients cannot fall outside the shaded area. On the other hand, we still 
want to minimize the cost function. Under the penalty constraint, our best effort is 
to choose the point where the L2 ball intersects with the contours of the unpenalized 
cost function. The larger the value of the regularization parameter λ  gets, the faster 
the penalized cost function grows, which leads to a narrower L2 ball. For example, 
if we increase the regularization parameter towards infinity, the weight coefficients 
will become effectively zero, denoted by the center of the L2 ball. To summarize the 
main message of the example: our goal is to minimize the sum of the unpenalized 
cost function plus the penalty term, which can be understood as adding bias and 
preferring a simpler model to reduce the variance in the absence of sufficient  
training data to fit the model.
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Now let's discuss L1 regularization and sparsity. The main concept behind L1 
regularization is similar to what we have discussed here. However, since the L1 
penalty is the sum of the absolute weight coefficients (remember that the L2 term  
is quadratic), we can represent it as a diamond shape budget, as shown in the 
following figure:

In the preceding figure, we can see that the contour of the cost function touches the 
L1 diamond at 1 0w = . Since the contours of an L1 regularized system are sharp, it is 
more likely that the optimum—that is, the intersection between the ellipses of the 
cost function and the boundary of the L1 diamond—is located on the axes, which 
encourages sparsity. The mathematical details of why L1 regularization can lead to 
sparse solutions are beyond the scope of this book. If you are interested, an excellent 
section on L2 versus L1 regularization can be found in section 3.4 of The Elements of 
Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer.

For regularized models in scikit-learn that support L1 regularization, we can simply 
set the penalty parameter to 'l1' to yield the sparse solution:

>>> from sklearn.linear_model import LogisticRegression
>>> LogisticRegression(penalty='l1')
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Applied to the standardized Wine data, the L1 regularized logistic regression would 
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1', C=0.1)
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 0.981481481481

Both training and test accuracies (both 98 percent) do not indicate any overfitting  
of our model. When we access the intercept terms via the lr.intercept_ attribute, 
we can see that the array returns three values:

>>> lr.intercept_
array([-0.38379237, -0.1580855 , -0.70047966])

Since we the fit the LogisticRegression object on a multiclass dataset, it uses the 
One-vs-Rest (OvR) approach by default where the first intercept belongs to the 
model that fits class 1 versus class 2 and 3; the second value is the intercept of the 
model that fits class 2 versus class 1 and 3; and the third value is the intercept of the 
model that fits class 3 versus class 1 and 2, respectively:

>>> lr.coef_
array([[ 0.280, 0.000, 0.000, -0.0282, 0.000,
         0.000, 0.710, 0.000, 0.000, 0.000,
         0.000, 0.000, 1.236],
       [-0.644, -0.0688 , -0.0572, 0.000, 0.000,
         0.000, 0.000, 0.000, 0.000, -0.927,
         0.060, 0.000, -0.371],
       [ 0.000, 0.061, 0.000, 0.000, 0.000,
         0.000, -0.637, 0.000, 0.000, 0.499,
        -0.358, -0.570, 0.000
       ]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of 
weight coefficients, one weight vector for each class. Each row consists of 13 weights 
where each weight is multiplied by the respective feature in the 13-dimensional 
Wine dataset to calculate the net input:

1 1 0

m T
m m j jj

z w x w x x w
=
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We notice that the weight vectors are sparse, which means that they only have a few 
non-zero entries. As a result of the L1 regularization, which serves as a method for 
feature selection, we just trained a model that is robust to the potentially irrelevant 
features in this dataset.

Lastly, let's plot the regularization path, which is the weight coefficients of the 
different features for different regularization strengths:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = plt.subplot(111)   
>>> colors = ['blue', 'green', 'red', 'cyan', 
...          'magenta', 'yellow', 'black', 
...          'pink', 'lightgreen', 'lightblue', 
...          'gray', 'indigo', 'orange']
>>> weights, params = [], []
>>> for c in np.arange(-4, 6):
...     lr = LogisticRegression(penalty='l1', 
...                             C=10**c, 
...                             random_state=0)
...     lr.fit(X_train_std, y_train)
...     weights.append(lr.coef_[1])
...     params.append(10**c)
>>> weights = np.array(weights)
>>> for column, color in zip(range(weights.shape[1]), colors):
...     plt.plot(params, weights[:, column],
...              label=df_wine.columns[column+1],
...              color=color)
>>> plt.axhline(0, color='black', linestyle='--', linewidth=3)
>>> plt.xlim([10**(-5), 10**5])
>>> plt.ylabel('weight coefficient')
>>> plt.xlabel('C')
>>> plt.xscale('log')
>>> plt.legend(loc='upper left')
>>> ax.legend(loc='upper center', 
...           bbox_to_anchor=(1.38, 1.03),
...           ncol=1, fancybox=True)
>>> plt.show()
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The resulting plot provides us with further insights about the behavior of L1 
regularization. As we can see, all features weights will be zero if we penalize the 
model with a strong regularization parameter ( 0.1C < ); C  is the inverse of the 
regularization parameter λ .

Sequential feature selection algorithms
An alternative way to reduce the complexity of the model and avoid overfitting 
is dimensionality reduction via feature selection, which is especially useful for 
unregularized models. There are two main categories of dimensionality reduction 
techniques: feature selection and feature extraction. Using feature selection, we 
select a subset of the original features. In feature extraction, we derive information 
from the feature set to construct a new feature subspace. In this section, we will  
take a look at a classic family of feature selection algorithms. In the next chapter, 
Chapter 5, Compressing Data via Dimensionality Reduction, we will learn about  
different feature extraction techniques to compress a dataset onto a lower 
dimensional feature subspace.

Sequential feature selection algorithms are a family of greedy search algorithms that 
are used to reduce an initial d-dimensional feature space to a k-dimensional feature 
subspace where k < d. The motivation behind feature selection algorithms is to 
automatically select a subset of features that are most relevant to the problem to 
improve computational efficiency or reduce the generalization error of the model by 
removing irrelevant features or noise, which can be useful for algorithms that don't 
support regularization. A classic sequential feature selection algorithm is Sequential 
Backward Selection (SBS), which aims to reduce the dimensionality of the initial 
feature subspace with a minimum decay in performance of the classifier to improve 
upon computational efficiency. In certain cases, SBS can even improve the predictive 
power of the model if a model suffers from overfitting.
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Greedy algorithms make locally optimal choices at each stage of 
a combinatorial search problem and generally yield a suboptimal 
solution to the problem in contrast to exhaustive search algorithms, 
which evaluate all possible combinations and are guaranteed to find 
the optimal solution. However, in practice, an exhaustive search is 
often computationally not feasible, whereas greedy algorithms allow 
for a less complex, computationally more efficient solution.

The idea behind the SBS algorithm is quite simple: SBS sequentially removes features 
from the full feature subset until the new feature subspace contains the desired 
number of features. In order to determine which feature is to be removed at each 
stage, we need to define criterion function J  that we want to minimize. The criterion 
calculated by the criterion function can simply be the difference in performance of 
the classifier after and before the removal of a particular feature. Then the feature 
to be removed at each stage can simply be defined as the feature that maximizes 
this criterion; or, in more intuitive terms, at each stage we eliminate the feature that 
causes the least performance loss after removal. Based on the preceding definition of 
SBS, we can outline the algorithm in 4 simple steps:

1.	 Initialize the algorithm with k d= , where d is the dimensionality of the full 
feature space dX .

2.	 Determine the feature x−  that maximizes the criterion ( )arg max kJ− = −x X x  
where k∈x X .

3.	 Remove the feature x−  from the feature set: ; : 1k -1 k k k−− = −:X = X x .
4.	 Terminate if k equals the number of desired features, if not, go to step 2.

You can find a detailed evaluation of several sequential 
feature algorithms in Comparative Study of Techniques for Large 
Scale Feature Selection, F. Ferri, P. Pudil, M. Hatef, and J. Kittler. 
Comparative study of techniques for large-scale feature selection. 
Pattern Recognition in Practice IV, pages 403–413, 1994.

Unfortunately, the SBS algorithm is not implemented in scikit-learn, yet. But since it 
is so simple, let's go ahead and implement it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score



Building Good Training Sets – Data Preprocessing

[ 122 ]

class SBS():
    def __init__(self, estimator, k_features, 
        scoring=accuracy_score,
        test_size=0.25, random_state=1):
        self.scoring = scoring
        self.estimator = clone(estimator)
        self.k_features = k_features
        self.test_size = test_size
        self.random_state = random_state

    def fit(self, X, y):
        X_train, X_test, y_train, y_test = \
                train_test_split(X, y, test_size=self.test_size, 
                                 random_state=self.random_state)

        dim = X_train.shape[1]
        self.indices_ = tuple(range(dim))
        self.subsets_ = [self.indices_]
        score = self._calc_score(X_train, y_train, 
                                 X_test, y_test, self.indices_)
        self.scores_ = [score]

        while dim > self.k_features:
            scores = []
            subsets = []

            for p in combinations(self.indices_, r=dim-1):
                score = self._calc_score(X_train, y_train, 
                                         X_test, y_test, p)
                scores.append(score)
                subsets.append(p)

            best = np.argmax(scores)
            self.indices_ = subsets[best]
            self.subsets_.append(self.indices_)
            dim -= 1

            self.scores_.append(scores[best])
        self.k_score_ = self.scores_[-1]

        return self

    def transform(self, X):
        return X[:, self.indices_]
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    def _calc_score(self, X_train, y_train, 
                          X_test, y_test, indices):
        self.estimator.fit(X_train[:, indices], y_train)
        y_pred = self.estimator.predict(X_test[:, indices])
        score = self.scoring(y_test, y_pred)
        return score

In the preceding implementation, we defined the k_features parameter to  
specify the desired number of features we want to return. By default, we use the 
accuracy_score from scikit-learn to evaluate the performance of a model and 
estimator for classification on the feature subsets. Inside the while loop of the fit 
method, the feature subsets created by the itertools.combination function are 
evaluated and reduced until the feature subset has the desired dimensionality. 
In each iteration, the accuracy score of the best subset is collected in a list self.
scores_ based on the internally created test dataset X_test. We will use those 
scores later to evaluate the results. The column indices of the final feature subset are 
assigned to self.indices_, which we can use via the transform method to return 
a new data array with the selected feature columns. Note that, instead of calculating 
the criterion explicitly inside the fit method, we simply removed the feature that is 
not contained in the best performing feature subset.

Now, let's see our SBS implementation in action using the KNN classifier  
from scikit-learn:

>>> from sklearn.neighbors import KNeighborsClassifier
>>> import matplotlib.pyplot as plt
>>> knn = KNeighborsClassifier(n_neighbors=2)
>>> sbs = SBS(knn, k_features=1)
>>> sbs.fit(X_train_std, y_train)

Although our SBS implementation already splits the dataset into a test and  
training dataset inside the fit function, we still fed the training dataset X_train  
to the algorithm. The SBS fit method will then create new training-subsets for 
testing (validation) and training, which is why this test set is also called validation 
dataset. This approach is necessary to prevent our original test set becoming part of the 
training data.

Remember that our SBS algorithm collects the scores of the best feature subset at 
each stage, so let's move on to the more exciting part of our implementation and plot 
the classification accuracy of the KNN classifier that was calculated on the validation 
dataset. The code is as follows:

>>> k_feat = [len(k) for k in sbs.subsets_]
>>> plt.plot(k_feat, sbs.scores_, marker='o')
>>> plt.ylim([0.7, 1.1])
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>>> plt.ylabel('Accuracy')
>>> plt.xlabel('Number of features')
>>> plt.grid()
>>> plt.show()

As we can see in the following plot, the accuracy of the KNN classifier improved on 
the validation dataset as we reduced the number of features, which is likely due to a 
decrease of the curse of dimensionality that we discussed in the context of the KNN 
algorithm in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Also, 
we can see in the following plot that the classifier achieved 100 percent accuracy for 
k={5, 6, 7, 8, 9, 10}:

To satisfy our own curiosity, let's see what those five features are that yielded such a 
good performance on the validation dataset:

>>> k5 = list(sbs.subsets_[8])
>>> print(df_wine.columns[1:][k5])
Index(['Alcohol', 'Malic acid', 'Alcalinity of ash', 'Hue', 
'Proline'], dtype='object')

Using the preceding code, we obtained the column indices of the 5-feature subset 
from the 9th position in the sbs.subsets_ attribute and returned the corresponding 
feature names from the column-index of the pandas Wine DataFrame.
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Next let's evaluate the performance of the KNN classifier on the original test set:

>>> knn.fit(X_train_std, y_train)
>>> print('Training accuracy:', knn.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', knn.score(X_test_std, y_test))
Test accuracy: 0.944444444444

In the preceding code, we used the complete feature set and obtained ~98.4 percent 
accuracy on the training dataset. However, the accuracy on the test dataset was 
slightly lower (~94.4 percent), which is an indicator of a slight degree of overfitting. 
Now let's use the selected 5-feature subset and see how well KNN performs:

>>> knn.fit(X_train_std[:, k5], y_train)
>>> print('Training accuracy:', 
...        knn.score(X_train_std[:, k5], y_train))
Training accuracy: 0.959677419355
>>> print('Test accuracy:',
...        knn.score(X_test_std[:, k5], y_test))
Test accuracy: 0.962962962963

Using fewer than half of the original features in the Wine dataset, the prediction 
accuracy on the test set improved by almost 2 percent. Also, we reduced overfitting, 
which we can tell from the small gap between test (~96.3 percent) and training  
(~96.0 percent) accuracy.

Feature selection algorithms in scikit-learn
There are many more feature selection algorithms available via scikit-
learn. Those include recursive backward elimination based on feature 
weights, tree-based methods to select features by importance, and 
univariate statistical tests. A comprehensive discussion of the different 
feature selection methods is beyond the scope of this book, but a good 
summary with illustrative examples can be found at http://scikit-
learn.org/stable/modules/feature_selection.html.

http://scikit-learn.org/stable/modules/feature_selection.html
http://scikit-learn.org/stable/modules/feature_selection.html
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Assessing feature importance with 
random forests
In the previous sections, you learned how to use L1 regularization to zero out 
irrelevant features via logistic regression and use the SBS algorithm for feature 
selection. Another useful approach to select relevant features from a dataset is to  
use a random forest, an ensemble technique that we introduced in Chapter 3,  
A Tour of Machine Learning Classifiers Using Scikit-learn. Using a random forest, we  
can measure feature importance as the averaged impurity decrease computed from 
all decision trees in the forest without making any assumptions whether our data is  
linearly separable or not. Conveniently, the random forest implementation in scikit-
learn already collects feature importances for us so that we can access them via 
the feature_importances_ attribute after fitting a RandomForestClassifier. By 
executing the following code, we will now train a forest of 10,000 trees on the Wine 
dataset and rank the 13 features by their respective importance measures. Remember 
(from our discussion in Chapter 3, A Tour of Machine Learning Classifiers Using  
Scikit-learn) that we don't need to use standardized or normalized tree-based  
models. The code is as follows:

>>> from sklearn.ensemble import RandomForestClassifier
>>> feat_labels = df_wine.columns[1:]
>>> forest = RandomForestClassifier(n_estimators=10000,
...                                random_state=0,
...                                n_jobs=-1)
>>> forest.fit(X_train, y_train)
>>> importances = forest.feature_importances_
>>> indices = np.argsort(importances)[::-1]
>>> for f in range(X_train.shape[1]):
...     print("%2d) %-*s %f" % (f + 1, 30, 
...                             feat_labels[indices[f]], 
...                             importances[indices[f]]))
1) Color intensity                0.182483
2) Proline                        0.158610
3) Flavanoids                     0.150948
4) OD280/OD315 of diluted wines   0.131987
5) Alcohol                        0.106589
6) Hue                            0.078243
7) Total phenols                  0.060718
8) Alcalinity of ash              0.032033
9) Malic acid                     0.025400
10) Proanthocyanins               0.022351
11) Magnesium                     0.022078
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12) Nonflavanoid phenols           0.014645
13) Ash                            0.013916
>>> plt.title('Feature Importances')
>>> plt.bar(range(X_train.shape[1]), 
...         importances[indices],
...         color='lightblue', 
...         align='center')
>>> plt.xticks(range(X_train.shape[1]), 
...            feat_labels[indices], rotation=90)
>>> plt.xlim([-1, X_train.shape[1]])
>>> plt.tight_layout()
>>> plt.show()

After executing the preceding code, we created a plot that ranks the different features 
in the Wine dataset by their relative importance; note that the feature importances 
are normalized so that they sum up to 1.0.
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We can conclude that the color intensity of wine is the most discriminative feature 
in the dataset based on the average impurity decrease in the 10,000 decision trees. 
Interestingly, the three top-ranked features in the preceding plot are also among the 
top five features in the selection by the SBS algorithm that we implemented in the 
previous section. However, as far as interpretability is concerned, the random forest 
technique comes with an important gotcha that is worth mentioning. For instance, if 
two or more features are highly correlated, one feature may be ranked very highly 
while the information of the other feature(s) may not be fully captured. On the other 
hand, we don't need to be concerned about this problem if we are merely interested 
in the predictive performance of a model rather than the interpretation of feature 
importances. To conclude this section about feature importances and random forests, 
it is worth mentioning that scikit-learn also implements a transform method that 
selects features based on a user-specified threshold after model fitting, which is 
useful if we want to use the RandomForestClassifier as a feature selector and 
intermediate step in a scikit-learn pipeline, which allows us to connect different 
preprocessing steps with an estimator, as we will see in Chapter 6, Learning Best 
Practices for Model Evaluation and Hyperparameter Tuning. For example, we could set 
the threshold to 0.15 to reduce the dataset to the 3 most important features, Color 
intensity, Proline, and Flavonoids using the following code:

>>> X_selected = forest.transform(X_train, threshold=0.15)
>>> X_selected.shape
(124, 3)

Summary
We started this chapter by looking at useful techniques to make sure that we handle 
missing data correctly. Before we feed data to a machine learning algorithm, we also 
have to make sure that we encode categorical variables correctly, and we have seen 
how we can map ordinal and nominal features values to integer representations.

Moreover, we briefly discussed L1 regularization, which can help us to avoid 
overfitting by reducing the complexity of a model. As an alternative approach for 
removing irrelevant features, we used a sequential feature selection algorithm to 
select meaningful features from a dataset.

In the next chapter, you will learn about yet another useful approach to 
dimensionality reduction: feature extraction. It allows us to compress features  
onto a lower dimensional subspace rather than removing features entirely as in 
feature selection.
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Compressing Data via 
Dimensionality Reduction

In Chapter 4, Building Good Training Sets – Data Preprocessing, you learned about the 
different approaches for reducing the dimensionality of a dataset using different 
feature selection techniques. An alternative approach to feature selection for 
dimensionality reduction is feature extraction. In this chapter, you will learn about three 
fundamental techniques that will help us to summarize the information content of a 
dataset by transforming it onto a new feature subspace of lower dimensionality than 
the original one. Data compression is an important topic in machine learning, and it 
helps us to store and analyze the increasing amounts of data that are produced  
and collected in the modern age of technology. In this chapter, we will cover the 
following topics:

•	 Principal component analysis (PCA) for unsupervised data compression
•	 Linear Discriminant Analysis (LDA) as a supervised dimensionality 

reduction technique for maximizing class separability
•	 Nonlinear dimensionality reduction via kernel principal  

component analysis
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Unsupervised dimensionality reduction 
via principal component analysis
Similar to feature selection, we can use feature extraction to reduce the number of 
features in a dataset. However, while we maintained the original features when we 
used feature selection algorithms, such as sequential backward selection, we use feature 
extraction to transform or project the data onto a new feature space. In the context  
of dimensionality reduction, feature extraction can be understood as an approach  
to data compression with the goal of maintaining most of the relevant information. 
Feature extraction is typically used to improve computational efficiency but can 
also help to reduce the curse of dimensionality—especially if we are working with 
nonregularized models.

Principal component analysis (PCA) is an unsupervised linear transformation 
technique that is widely used across different fields, most prominently for 
dimensionality reduction. Other popular applications of PCA include exploratory 
data analyses and de-noising of signals in stock market trading, and the analysis of 
genome data and gene expression levels in the field of bioinformatics. PCA helps us 
to identify patterns in data based on the correlation between features. In a nutshell, 
PCA aims to find the directions of maximum variance in high-dimensional data and 
projects it onto a new subspace with equal or fewer dimensions that the original one. 
The orthogonal axes (principal components) of the new subspace can be interpreted 
as the directions of maximum variance given the constraint that the new feature axes 
are orthogonal to each other as illustrated in the following figure. Here, 1x  and 2x  are 
the original feature axes, and PC1 and PC2 are the principal components:
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If we use PCA for dimensionality reduction, we construct a d k× -dimensional 
transformation matrix W  that allows us to map a sample vector x  onto a new  
k -dimensional feature subspace that has fewer dimensions than the original  
d -dimensional feature space:

[ ]1 2, , , , dx x x= … ∈Rdx x  

,  ×↓ ∈Rd kxW W

[ ]1 2, , , , kz z z= … ∈z z Rk  

As a result of transforming the original d -dimensional data onto this new  
k -dimensional subspace (typically k d<< ), the first principal component will have 
the largest possible variance, and all consequent principal components will have the 
largest possible variance given that they are uncorrelated (orthogonal) to the other 
principal components. Note that the PCA directions are highly sensitive to data 
scaling, and we need to standardize the features prior to PCA if the features were 
measured on different scales and we want to assign equal importance to all features.

Before looking at the PCA algorithm for dimensionality reduction in more detail, 
let's summarize the approach in a few simple steps:

1.	 Standardize the d -dimensional dataset.
2.	 Construct the covariance matrix.
3.	 Decompose the covariance matrix into its eigenvectors and eigenvalues.
4.	 Select k  eigenvectors that correspond to the k  largest eigenvalues,  

where k  is the dimensionality of the new feature subspace ( k d≤ ).
5.	 Construct a projection matrix W  from the "top" k  eigenvectors.
6.	 Transform the d -dimensional input dataset X  using the projection  

matrix W  to obtain the new k -dimensional feature subspace.

Total and explained variance
In this subsection, we will tackle the first four steps of a principal component 
analysis: standardizing the data, constructing the covariance matrix, obtaining the 
eigenvalues and eigenvectors of the covariance matrix, and sorting the eigenvalues 
by decreasing order to rank the eigenvectors.
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First, we will start by loading the Wine dataset that we have been working with  
in Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

Next, we will process the Wine data into separate training and test sets—using 70 
percent and 30 percent of the data, respectively—and standardize it to unit variance.

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
...              train_test_split(X, y,
...              test_size=0.3, random_state=0)
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.transform(X_test)

After completing the mandatory preprocessing steps by executing the preceding 
code, let's advance to the second step: constructing the covariance matrix. The 
symmetric d d× -dimensional covariance matrix, where d  is the number of 
dimensions in the dataset, stores the pairwise covariances between the different 
features. For example, the covariance between two features jx  and xk  on the 
population level can be calculated via the following equation:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i

x x
n

σ µ µ
=

= − −∑

Here, jµ  and kµ  are the sample means of feature  and k , respectively. Note that 
the sample means are zero if we standardize the dataset. A positive covariance 
between two features indicates that the features increase or decrease together, 
whereas a negative covariance indicates that the features vary in opposite directions. 
For example, a covariance matrix of three features can then be written as (note that ∑  
stands for the Greek letter sigma, which is not to be confused with the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

  
σ σ σ
σ σ σ
σ σ σ

 
 =  
  

∑

The eigenvectors of the covariance matrix represent the principal components  
(the directions of maximum variance), whereas the corresponding eigenvalues 
will define their magnitude. In the case of the Wine dataset, we would obtain 13 
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.
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Now, let's obtain the eigenpairs of the covariance matrix. As we surely remember 
from our introductory linear algebra or calculus classes, an eigen vector v  satisfies  
the following condition:

λΣ =v v

Here, λ  is a scalar: the eigenvalue. Since the manual computation of eigenvectors 
and eigenvalues is a somewhat tedious and elaborate task, we will use the  
linalg.eig function from NumPy to obtain the eigenpairs of the Wine  
covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues 
[ 4.8923083   2.46635032  1.42809973  1.01233462  0.84906459  
0.60181514
0.52251546  0.08414846  0.33051429  0.29595018  0.16831254  0.21432212
0.2399553 ]

Using the numpy.cov function, we computed the covariance matrix of the 
standardized training dataset. Using the linalg.eig function, we performed the 
eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues 
and the corresponding eigenvectors stored as columns in a 13 13× -dimensional  
matrix (eigen_vecs).

Although the numpy.linalg.eig function was designed to 
decompose nonsymmetric square matrices, you may find that it 
returns complex eigenvalues in certain cases.
A related function, numpy.linalg.eigh, has been implemented to 
decompose Hermetian matrices, which is a numerically more stable 
approach to work with symmetric matrices such as the covariance 
matrix; numpy.linalg.eigh always returns real eigenvalues.

Since we want to reduce the dimensionality of our dataset by compressing it onto 
a new feature subspace, we only select the subset of the eigenvectors (principal 
components) that contains most of the information (variance). Since the eigenvalues 
define the magnitude of the eigenvectors, we have to sort the eigenvalues by 
decreasing magnitude; we are interested in the top k  eigenvectors based on the 
values of their corresponding eigenvalues. But before we collect those k  most 
informative eigenvectors, let's plot the variance explained ratios of the eigenvalues.
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The variance explained ratio of an eigenvalue jλ  is simply the fraction of an 
eigenvalue jλ  and the total sum of the eigenvalues:

1

j
d

jj

λ

λ
=∑

Using the NumPy cumsum function, we can then calculate the cumulative sum of 
explained variances, which we will plot via matplotlib's step function:

>>> tot = sum(eigen_vals)
>>> var_exp = [(i / tot) for i in
...            sorted(eigen_vals, reverse=True)]
>>> cum_var_exp = np.cumsum(var_exp)

>>> import matplotlib.pyplot as plt
>>> plt.bar(range(1,14), var_exp, alpha=0.5, align='center',
...         label='individual explained variance')
>>> plt.step(range(1,14), cum_var_exp, where='mid',
...         label='cumulative explained variance')
>>> plt.ylabel('Explained variance ratio')
>>> plt.xlabel('Principal components')
>>> plt.legend(loc='best')
>>> plt.show()

The resulting plot indicates that the first principal component alone accounts for 
40 percent of the variance. Also, we can see that the first two principal components 
combined explain almost 60 percent of the variance in the data:
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Although the explained variance plot reminds us of the feature importance that we 
computed in Chapter 4, Building Good Training Sets – Data Preprocessing, via random 
forests, we shall remind ourselves that PCA is an unsupervised method, which 
means that information about the class labels is ignored. Whereas a random forest 
uses the class membership information to compute the node impurities, variance 
measures the spread of values along a feature axis.

Feature transformation
After we have successfully decomposed the covariance matrix into eigenpairs,  
let's now proceed with the last three steps to transform the Wine dataset onto  
the new principal component axes. In this section, we will sort the eigenpairs  
by descending order of the eigenvalues, construct a projection matrix from the 
selected eigenvectors, and use the projection matrix to transform the data onto  
the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> eigen_pairs =[(np.abs(eigen_vals[i]),eigen_vecs[:,i])
...              for i inrange(len(eigen_vals))]
>>> eigen_pairs.sort(reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest values to 
capture about 60 percent of the variance in this dataset. Note that we only chose two 
eigenvectors for the purpose of illustration, since we are going to plot the data via 
a two-dimensional scatter plot later in this subsection. In practice, the number of 
principal components has to be determined from a trade-off between computational 
efficiency and the performance of the classifier:

>>> w= np.hstack((eigen_pairs[0][1][:, np.newaxis],
...               eigen_pairs[1][1][:, np.newaxis]))
>>> print('Matrix W:\n',w)
Matrix W:
[[ 0.14669811  0.50417079]
[-0.24224554  0.24216889]
[-0.02993442  0.28698484]
[-0.25519002 -0.06468718]
[ 0.12079772  0.22995385]
[ 0.38934455  0.09363991]
[ 0.42326486  0.01088622]
[-0.30634956  0.01870216]
[ 0.30572219  0.03040352]
[-0.09869191  0.54527081]
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[ 0.30032535 -0.27924322]
[ 0.36821154 -0.174365  ]
[ 0.29259713  0.36315461]]

By executing the preceding code, we have created a 13 2× -dimensional projection 
matrix W  from the top two eigenvectors. Using the projection matrix, we can now 
transform a sample x  (represented as 1 13× -dimensional row vector) onto the PCA 
subspace obtaining ′x , a now two-dimensional sample vector consisting of two  
new features:

′x = xW

>>> X_train_std[0].dot(w)
array([ 2.59891628,  0.00484089])

Similarly, we can transform the entire 124 13× -dimensional training dataset onto the 
two principal components by calculating the matrix dot product:

′X = XW

>>> X_train_pca = X_train_std.dot(w)

Lastly, let's visualize the transformed Wine training set, now stored as an  
124 2× -dimensional matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
...     plt.scatter(X_train_pca[y_train==l, 0], 
...                 X_train_pca[y_train==l, 1], 
...                 c=c, label=l, marker=m) 
>>> plt.xlabel('PC 1')
>>> plt.ylabel('PC 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

As we can see in the resulting plot (shown in the next figure), the data is more 
spread along the x-axis—the first principal component—than the second principal 
component (y-axis), which is consistent with the explained variance ratio plot that 
we created in the previous subsection. However, we can intuitively see that a linear 
classifier will likely be able to separate the classes well:
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Although we encoded the class labels information for the purpose of illustration in 
the preceding scatter plot, we have to keep in mind that PCA is an unsupervised 
technique that doesn't use class label information.

Principal component analysis in scikit-learn
Although the verbose approach in the previous subsection helped us to follow the 
inner workings of PCA, we will now discuss how to use the PCA class implemented 
in scikit-learn. PCA is another one of scikit-learn's transformer classes, where we first 
fit the model using the training data before we transform both the training data and 
the test data using the same model parameters. Now, let's use the PCA from scikit-
learn on the Wine training dataset, classify the transformed samples via logistic 
regression, and visualize the decision regions via the plot_decision_region 
function that we defined in Chapter 2, Training Machine Learning Algorithms  
for Classification:

from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):

    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
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    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                         np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot class samples
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=cmap(idx),
                    marker=markers[idx], label=cl)

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.decomposition import PCA
>>> pca = PCA(n_components=2)
>>> lr = LogisticRegression()
>>> X_train_pca = pca.fit_transform(X_train_std)
>>> X_test_pca = pca.transform(X_test_std)
>>> lr.fit(X_train_pca, y_train)
>>> plot_decision_regions(X_train_pca, y_train, classifier=lr)
>>> plt.xlabel('PC1')
>>> plt.ylabel('PC2')
>>> plt.legend(loc='lower left')
>>> plt.show()

By executing the preceding code, we should now see the decision regions for the 
training model reduced to the two principal component axes.
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If we compare the PCA projection via scikit-learn with our own PCA 
implementation, we notice that the plot above is a mirror image of the previous 
PCA via our step-by-step approach. Note that this is not due to an error in any of 
those two implementations, but the reason for this difference is that, depending on 
the eigensolver, eigenvectors can have either negative or positive signs. Not that it 
matters, but we could simply revert the mirror image by multiplying the data with 
-1 if we wanted to; note that eigenvectors are typically scaled to unit length 1. For 
the sake of completeness, let's plot the decision regions of the logistic regression on 
the transformed test dataset to see if it can separate the classes well:

>>> plot_decision_regions(X_test_pca, y_test, classifier=lr)
>>> plt.xlabel('PC1')
>>> plt.ylabel('PC2')
>>> plt.legend(loc='lower left')
>>> plt.show()

After we plot the decision regions for the test set by executing the preceding code, 
we can see that logistic regression performs quite well on this small two-dimensional 
feature subspace and only misclassifies one sample in the test dataset.

If we are interested in the explained variance ratios of the different principal 
components, we can simply initialize the PCA class with the n_components parameter 
set to None, so all principal components are kept and the explained variance ratio can 
then be accessed via the explained_variance_ratio_ attribute:

>>> pca = PCA(n_components=None)
>>> X_train_pca = pca.fit_transform(X_train_std)
>>> pca.explained_variance_ratio_
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array([ 0.37329648,  0.18818926,  0.10896791,  0.07724389,  
0.06478595,
0.04592014,  0.03986936,  0.02521914,  0.02258181,  0.01830924,
0.01635336,  0.01284271,  0.00642076])

Note that we set n_components=None when we initialized the PCA class so that 
it would return all principal components in sorted order instead of performing a 
dimensionality reduction.

Supervised data compression via linear 
discriminant analysis
Linear Discriminant Analysis (LDA) can be used as a technique for feature 
extraction to increase the computational efficiency and reduce the degree of  
over-fitting due to the curse of dimensionality in nonregularized models.

The general concept behind LDA is very similar to PCA, whereas PCA attempts to 
find the orthogonal component axes of maximum variance in a dataset; the goal in 
LDA is to find the feature subspace that optimizes class separability. Both LDA and 
PCA are linear transformation techniques that can be used to reduce the number of 
dimensions in a dataset; the former is an unsupervised algorithm, whereas the latter is 
supervised. Thus, we might intuitively think that LDA is a superior feature extraction 
technique for classification tasks compared to PCA. However, A.M. Martinez reported 
that preprocessing via PCA tends to result in better classification results in an image 
recognition task in certain cases, for instance, if each class consists of only a small 
number of samples (A. M. Martinez and A. C. Kak. PCA Versus LDA. Pattern  
Analysis and Machine Intelligence, IEEE Transactions on, 23(2):228–233, 2001).

Although LDA is sometimes also called Fisher's LDA, Ronald A. 
Fisher initially formulated Fisher's Linear Discriminant for two-class 
classification problems in 1936 (R. A. Fisher. The Use of Multiple 
Measurements in Taxonomic Problems. Annals of Eugenics, 7(2):179–188, 
1936). Fisher's Linear Discriminant was later generalized for  
multi-class problems by C. Radhakrishna Rao under the assumption  
of equal class covariances and normally distributed classes in 
1948, which we now call LDA (C. R. Rao. The Utilization of Multiple 
Measurements in Problems of Biological Classification. Journal of the Royal 
Statistical Society. Series B (Methodological), 10(2):159–203, 1948).
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The following figure summarizes the concept of LDA for a two-class problem. 
Samples from class 1 are shown as crosses and samples from class 2 are shown  
as circles, respectively:

A linear discriminant, as shown on the x-axis (LD 1), would separate the two 
normally distributed classes well. Although the exemplary linear discriminant 
shown on the y-axis (LD 2) captures a lot of the variance in the dataset, it  
would fail as a good linear discriminant since it does not capture any of the  
class-discriminatory information.

One assumption in LDA is that the data is normally distributed. Also, we assume 
that the classes have identical covariance matrices and that the features are 
statistically independent of each other. However, even if one or more of those 
assumptions are slightly violated, LDA for dimensionality reduction can still work 
reasonably well (R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. 2nd. 
Edition. New York, 2001).

Before we take a look into the inner workings of LDA in the following subsections, 
let's summarize the key steps of the LDA approach:

1.	 Standardize the d -dimensional dataset ( d  is the number of features).
2.	 For each class, compute the d -dimensional mean vector.
3.	 Construct the between-class scatter matrix BS  and the within-class scatter 

matrix wS .
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4.	 Compute the eigenvectors and corresponding eigenvalues of the  
matrix 1

w B
−S S .

5.	 Choose the k  eigenvectors that correspond to the k  largest eigenvalues to 
construct a d k× -dimensional transformation matrix W ; the eigenvectors are 
the columns of this matrix.

6.	 Project the samples onto the new feature subspace using the transformation 
matrix W .

The assumptions that we make when we are using LDA are that the 
features are normally distributed and independent of each other. 
Also, the LDA algorithm assumes that the covariance matrices for the 
individual classes are identical. However, even if we violate those 
assumptions to a certain extent, LDA may still work reasonably well in 
dimensionality reduction and classification tasks (R. O. Duda, P. E. Hart, 
and D. G. Stork. Pattern Classification. 2nd. Edition. New York, 2001).

Computing the scatter matrices
Since we have already standardized the features of the Wine dataset in the PCA 
section at the beginning of this chapter, we can skip the first step and proceed with 
the calculation of the mean vectors, which we will use to construct the within-class 
scatter matrix and between-class scatter matrix, respectively. Each mean vector im  
stores the mean feature value mµ  with respect to the samples of class i :

1

i

c

i m
Din ∈

= ∑
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>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):
...     mean_vecs.append(np.mean(
...                X_train_std[y_train==label], axis=0))
...     print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [ 0.9259 -0.3091  0.2592 -0.7989  0.3039  0.9608  1.0515 -0.6306  
0.5354
  0.2209  0.4855  0.798   1.2017]

MV 2: [-0.8727 -0.3854 -0.4437  0.2481 -0.2409 -0.1059  0.0187 -0.0164  
0.1095
 -0.8796  0.4392  0.2776 -0.7016]

MV 3: [ 0.1637  0.8929  0.3249  0.5658 -0.01   -0.9499 -1.228   0.7436 
-0.7652
  0.979  -1.1698 -1.3007 -0.3912]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS  of each 
individual class i :

( )( )
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1,4), mean_vecs):
...     class_scatter = np.zeros((d, d)) 
...     for row in X_train[y_train == label]:
...         row, mv = row.reshape(d, 1), mv.reshape(d, 1) 
...         class_scatter += (row-mv).dot((row-mv).T)
...     S_W += class_scatter                             
>>> print('Within-class scatter matrix: %sx%s'
...        % (S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13
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The assumption that we are making when we are computing the scatter matrices  
is that the class labels in the training set are uniformly distributed. However, if  
we print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s' 
...       % np.bincount(y_train)[1:])
Class label distribution: [40 49 35]

Thus, we want to scale the individual scatter matrices iS  before we sum them up 
as scatter matrix wS . When we divide the scatter matrices by the number of class 
samples iN , we can see that computing the scatter matrix is in fact the same as 
computing the covariance matrix i∑ . The covariance matrix is a normalized  
version of the scatter matrix:

( )( )1 1

i

c
T

i W i i
Di iN N ∈

∑ = = − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
...     class_scatter = np.cov(X_train_std[y_train==label].T)
...     S_W += class_scatter
>>> print('Scaled within-class scatter matrix: %sx%s' 
...       % (S_W.shape[0], S_W.shape[1]))
Scaled within-class scatter matrix: 13x13

After we have computed the scaled within-class scatter matrix (or covariance 
matrix), we can move on to the next step and compute the between-class scatter 
matrix BS :

( )( )
1

T
i i i

i

N
=

= − −∑
c

BS m m m m

Here, m  is the overall mean that is computed, including samples from all classes.

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> d = 13 # number of features
>>> S_B = np.zeros((d, d))
>>> for i,mean_vec in enumerate(mean_vecs):
...     n = X_train[y_train==i+1, :].shape[0]
...     mean_vec = mean_vec.reshape(d, 1)
...     mean_overall = mean_overall.reshape(d, 1) 
    S_B += n * (mean_vec - mean_overall).dot(
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...                (mean_vec - mean_overall).T)
print('Between-class scatter matrix: %sx%s' 
...    % (S_B.shape[0], S_B.shape[1]))
Between-class scatter matrix: 13x13

Selecting linear discriminants for the new 
feature subspace
The remaining steps of the LDA are similar to the steps of the PCA. However, 
instead of performing the eigendecomposition on the covariance matrix, we solve  
the generalized eigenvalue problem of the matrix 1

w B
−S S :

>>>eigen_vals, eigen_vecs =\
...np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in  
descending order:

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) 
...              for i in range(len(eigen_vals))]
>>> eigen_pairs = sorted(eigen_pairs, 
...               key=lambda k: k[0], reverse=True)
>>> print('Eigenvalues in decreasing order:\n')
>>> for eigen_val in eigen_pairs:
...     print(eigen_val[0])

Eigenvalues in decreasing order:

452.721581245
156.43636122
8.11327596465e-14
2.78687384543e-14
2.78687384543e-14
2.27622032758e-14
2.27622032758e-14
1.97162599817e-14
1.32484714652e-14
1.32484714652e-14
1.03791501611e-14
5.94140664834e-15

2.12636975748e-16
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In LDA, the number of linear discriminants is at most 1c −  where c  is the number  
of class labels, since the in-between class scatter matrix BS  is the sum of c  matrices  
with rank 1 or less. We can indeed see that we only have two nonzero eigenvalues 
(the eigenvalues 3-13 are not exactly zero, but this is due to the floating point 
arithmetic in NumPy). Note that in the rare case of perfect collinearity (all aligned 
sample points fall on a straight line), the covariance matrix would have rank one, 
which would result in only one eigenvector with a nonzero eigenvalue.

To measure how much of the class-discriminatory information is captured by the 
linear discriminants (eigenvectors), let's plot the linear discriminants by decreasing 
eigenvalues similar to the explained variance plot that we created in the PCA section. 
For simplicity, we will call the content of the class-discriminatory information 
discriminability.

>>> tot = sum(eigen_vals.real)
>>> discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)]
>>> cum_discr = np.cumsum(discr)
>>> plt.bar(range(1, 14), discr, alpha=0.5, align='center',
...         label='individual "discriminability"')
>>> plt.step(range(1, 14), cum_discr, where='mid',
...          label='cumulative "discriminability"')
>>> plt.ylabel('"discriminability" ratio')
>>> plt.xlabel('Linear Discriminants')
>>> plt.ylim([-0.1, 1.1])
>>> plt.legend(loc='best')
>>> plt.show()

As we can see in the resulting figure, the first two linear discriminants capture  
about 100 percent of the useful information in the Wine training dataset:
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Let's now stack the two most discriminative eigenvector columns to create the 
transformation matrix W :

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
...                eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
[[ 0.0662 -0.3797]
[-0.0386 -0.2206]
[ 0.0217 -0.3816]
[-0.184 0.3018]
[ 0.0034 0.0141]
[-0.2326 0.0234]
[ 0.7747 0.1869]
[ 0.0811 0.0696]
[-0.0875 0.1796]
[-0.185 -0.284 ]
[ 0.066 0.2349]
[ 0.3805 0.073 ]
[ 0.3285 -0.5971]]

Projecting samples onto the new feature 
space
Using the transformation matrix W  that we created in the previous subsection,  
we can now transform the training data set by multiplying the matrices:

′ =X XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
...     plt.scatter(X_train_lda[y_train==l, 0]*(-1) 
...                 X_train_lda[y_train==l, 1]*(-1) 
...                 c=c, label=l, marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower right')
>>> plt.show()
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As we can see in the resulting plot, the three wine classes are now linearly separable 
in the new feature subspace:

LDA via scikit-learn
The step-by-step implementation was a good exercise for understanding the inner 
workings of LDA and understanding the differences between LDA and PCA.  
Now, let's take a look at the LDA class implemented in scikit-learn:

>>> from sklearn.lda import LDA
>>> lda = LDA(n_components=2)
>>> X_train_lda = lda.fit_transform(X_train_std, y_train)

Next, let's see how the logistic regression classifier handles the lower-dimensional 
training dataset after the LDA transformation:

>>> lr = LogisticRegression()
>>> lr = lr.fit(X_train_lda, y_train)
>>> plot_decision_regions(X_train_lda, y_train, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()
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Looking at the resulting plot, we see that the logistic regression model misclassifies 
one of the samples from class 2:

By lowering the regularization strength, we could probably shift the decision 
boundaries so that the logistic regression models classify all samples in the training 
dataset correctly. However, let's take a look at the results on the test set:

>>> X_test_lda = lda.transform(X_test_std)
>>> plot_decision_regions(X_test_lda, y_test, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

As we can see in the resulting plot, the logistic regression classifier is able to get a 
perfect accuracy score for classifying the samples in the test dataset by only using a 
two-dimensional feature subspace instead of the original 13 Wine features:



Compressing Data via Dimensionality Reduction

[ 150 ]

Using kernel principal component 
analysis for nonlinear mappings
Many machine learning algorithms make assumptions about the linear separability 
of the input data. You learned that the perceptron even requires perfectly linearly 
separable training data to converge. Other algorithms that we have covered so far 
assume that the lack of perfect linear separability is due to noise: Adaline, logistic 
regression, and the (standard) support vector machine (SVM) to just name a few. 
However, if we are dealing with nonlinear problems, which we may encounter 
rather frequently in real-world applications, linear transformation techniques for 
dimensionality reduction, such as PCA and LDA, may not be the best choice. In this 
section, we will take a look at a kernelized version of PCA, or kernel PCA, which 
relates to the concepts of kernel SVM that we remember from Chapter 3, A Tour of 
Machine Learning Classifiers Using Scikit-learn. Using kernel PCA, we will learn how to 
transform data that is not linearly separable onto a new, lower-dimensional subspace 
that is suitable for linear classifiers.

Kernel functions and the kernel trick
As we remember from our discussion about kernel SVMs in Chapter 3, A Tour of 
Machine Learning Classifiers Using Scikit-learn, we can tackle nonlinear problems  
by projecting them onto a new feature space of higher dimensionality where the 
classes become linearly separable. To transform the samples  d∈Rx  onto this higher  
k -dimensional subspace, we defined a nonlinear mapping function φ :

( ): d k k dφ → >>� �
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We can think of φ  as a function that creates nonlinear combinations of the original 
features to map the original d -dimensional dataset onto a larger, k -dimensional 
feature space. For example, if we had feature vector  d∈Rx ( x  is a column vector 
consisting of d  features) with two dimensions ( )2d = , a potential mapping onto  
a 3D space could be as follows:

[ ]1 2 ,  Tx x=x

φ↓

2 2
1 1 2 2 , 2 , 

T
x x x x =  z

In other words, via kernel PCA we perform a nonlinear mapping that  
transforms the data onto a higher-dimensional space and use standard PCA in this 
higher-dimensional space to project the data back onto a lower-dimensional space 
where the samples can be separated by a linear classifier (under the condition that the 
samples can be separated by density in the input space). However, one downside of 
this approach is that it is computationally very expensive, and this is where we use  
the kernel trick. Using the kernel trick, we can compute the similarity between two 
high-dimension feature vectors in the original feature space.

Before we proceed with more details about using the kernel trick to tackle this 
computationally expensive problem, let's look back at the standard PCA approach 
that we implemented at the beginning of this chapter. We computed the covariance 
between two features k  and j  as follows:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i

x x
n

σ µ µ
=

= − −∑

Since the standardizing of features centers them at mean zero, for instance, 0jµ =  
and 0kµ = , we can simplify this equation as follows:

( ) ( )

1

1 n
i i

jk j k
i

x x
n

σ
=

= ∑
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Note that the preceding equation refers to the covariance between two features;  
now, let's write the general equation to calculate the covariance matrix ∑ :

( ) ( )

1

1  
n

T

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (B. Scholkopf, A. Smola, and  
K.-R. Muller. Kernel Principal Component Analysis. pages 583–588, 1997) so that we 
can replace the dot products between samples in the original feature space by the 
nonlinear feature combinations via φ :

( )( ) ( )

1
( )1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix, 
we have to solve the following equation:

λΣ =v v

( )( ) ( )( )
1

1  
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

( )( ) ( )( ) ( ) ( )( )
1 1

1 1 i i
n nT i i

i i

v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

Here, λ  and v  are the eigenvalues and eigenvectors of the covariance matrix , and 
a  can be obtained by extracting the eigenvectors of the kernel (similarity) matrix K  
as we will see in the following paragraphs.

The derivation of the kernel matrix is as follows:

First, let's write the covariance matrix as in matrix notation, where ( )Xφ  is an  
n k× -dimensional matrix:

( )( ) ( )( ) ( ) ( )
1

1 1  
n T T

in n
φ φ φ φ

=

= =∑ ∑ i ix x X X
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Now, we can write the eigenvector equation as follows:

( ) ( )( ) ( )
1

1 n
T

i

v a
n

φ λφ
=

= =∑ i ix X a

Since λΣ =v v , we get:

( ) ( ) ( ) ( )1 T T T

n
φ φ φ λφ=X X X a X a

Multiplying it by ( )φ X  on both sides yields the following result:

( ) ( ) ( ) ( ) ( ) ( )1 T T T

n
φ φ φ φ λφ φ=X X X X a X X a

( ) ( )1 T

n
φ φ λ⇒ =X X a a

1
n

λ⇒ =Ka a

Here, K  is the similarity (kernel) matrix:

( ) ( )Tφ φ=K X X

As we recall from the SVM section in Chapter 3, A Tour of Machine Learning Classifiers 
Using Scikit-learn, we use the kernel trick to avoid calculating the pairwise dot 
products of the samples x  under φ  explicitly by using a kernel function K  so that 
we don't need to calculate the eigenvectors explicitly:

( ) ( )( ) ( )( ) ( )( ),  
Ti j i jk φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected 
onto the respective components rather than constructing a transformation matrix as 
in the standard PCA approach. Basically, the kernel function (or simply kernel) can 
be understood as a function that calculates a dot product between two vectors—a 
measure of similarity.



Compressing Data via Dimensionality Reduction

[ 154 ]

The most commonly used kernels are as follows:

•	 The polynomial kernel:

( ) ( )( ) ( ) ( )( ),  
pi j i T jk θ= +x x x x

Here, θ  is the threshold and p  is the power that has to be specified  
by the user.

•	 The hyperbolic tangent (sigmoid) kernel:

( ) ( )( ) ( ) ( )( ), tanh  i j i T jk η θ= +x x x x

•	 The Radial Basis Function (RBF) or Gaussian kernel that we will use in the 
following examples in the next subsection:

( ) ( )( )
( ) ( ) 2

2, exp
2

i j
i jk

σ

 − = −  
 

x x
x x

It is also written as follows:

( ) ( )( ) ( ) ( )( )2
, expi j i jk γ= − −x x x x

To summarize what we have discussed so far, we can define the following three 
steps to implement an RBF kernel PCA:

1.	 We compute the kernel (similarity) matrix k , where we need to calculate  
the following:

( ) ( )( ) ( ) ( )( )2
, expi j i jk γ= − −x x x x
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We do this for each pair of samples:

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 1 2 1

2 1 2 2 2

1 2

, , , 

, , , 

, , , n

n

n

n n n

κ κ κ

κ κ

κ κ κ

 
 
 
 =
 
 
 
 

�

�

� � � �

�

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric 
kernel matrix of the pair-wise similarities would be 100 100×  dimensional.

2.	 We center the kernel matrix k  using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n  is an n n× - dimensional matrix (the same dimensions as the kernel 
matrix) where all values are equal to 1

n
.

3.	 We collect the top k  eigenvectors of the centered kernel matrix based on 
their corresponding eigenvalues, which are ranked by decreasing magnitude. 
In contrast to standard PCA, the eigenvectors are not the principal 
component axes but the samples projected onto those axes.

At this point, you may be wondering why we need to center the kernel matrix in the 
second step. We previously assumed that we are working with standardized data, 
where all features have mean zero when we formulated the covariance matrix and 
replaced the dot products by the nonlinear feature combinations via φ .Thus, the 
centering of the kernel matrix in the second step becomes necessary, since we do 
not compute the new feature space explicitly and we cannot guarantee that the new 
feature space is also centered at zero.

In the next section, we will put those three steps into action by implementing a 
kernel PCA in Python.
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Implementing a kernel principal component 
analysis in Python
In the previous subsection, we discussed the core concepts behind kernel PCA.  
Now, we are going to implement an RBF kernel PCA in Python following the three 
steps that summarized the kernel PCA approach. Using the SciPy and NumPy helper 
functions, we will see that implementing a kernel PCA is actually really simple:

from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import numpy as np

def rbf_kernel_pca(X, gamma, n_components):
    """
    RBF kernel PCA implementation.

    Parameters
    ------------
    X: {NumPy ndarray}, shape = [n_samples, n_features]

    gamma: float
      Tuning parameter of the RBF kernel

    n_components: int
      Number of principal components to return

    Returns
    ------------
     X_pc: {NumPy ndarray}, shape = [n_samples, k_features]
       Projected dataset   

    """
    # Calculate pairwise squared Euclidean distances
    # in the MxN dimensional dataset.
    sq_dists = pdist(X, 'sqeuclidean')

    # Convert pairwise distances into a square matrix.
    mat_sq_dists = squareform(sq_dists)

    # Compute the symmetric kernel matrix.
    K = exp(-gamma * mat_sq_dists)
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    # Center the kernel matrix.
    N = K.shape[0]
    one_n = np.ones((N,N)) / N
    K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)

    # Obtaining eigenpairs from the centered kernel matrix
    # numpy.eigh returns them in sorted order
    eigvals, eigvecs = eigh(K)

    # Collect the top k eigenvectors (projected samples)
    X_pc = np.column_stack((eigvecs[:, -i] 
                            for i in range(1, n_components + 1)))

    return X_pc

One downside of using an RBF kernel PCA for dimensionality reduction is that 
we have to specify the parameter γ  a priori. Finding an appropriate value for γ  
requires experimentation and is best done using algorithms for parameter tuning, for 
example, grid search, which we will discuss in more detail in Chapter 6, Learning Best 
Practices for Model Evaluation and Hyperparameter Tuning.

Example 1 – separating half-moon shapes
Now, let's apply our rbf_kernel_pca on some nonlinear example datasets.  
We will start by creating a two-dimensional dataset of 100 sample points 
representing two half-moon shapes:

>>> from sklearn.datasets import make_moons
>>> X, y = make_moons(n_samples=100, random_state=123)
>>> plt.scatter(X[y==0, 0], X[y==0, 1], 
...             color='red', marker='^', alpha=0.5)
>>> plt.scatter(X[y==1, 0], X[y==1, 1],
...             color='blue', marker='o', alpha=0.5)
>>> plt.show()
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For the purposes of illustration, the half-moon of triangular symbols shall represent 
one class and the half-moon depicted by the circular symbols represent the samples 
from another class:

Clearly, these two half-moon shapes are not linearly separable and our goal is to 
unfold the half-moons via kernel PCA so that the dataset can serve as a suitable input 
for a linear classifier. But first, let's see what the dataset looks like if we project it onto 
the principal components via standard PCA:

>>> from sklearn.decomposition import PCA
>>> scikit_pca = PCA(n_components=2)
>>> X_spca = scikit_pca.fit_transform(X)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1],
...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_spca[y==0, 0], np.zeros((50,1))+0.02, 
...               color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_spca[y==1, 0], np.zeros((50,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
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>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> plt.show()

Clearly, we can see in the resulting figure that a linear classifier would be unable to 
perform well on the dataset transformed via standard PCA:

Note that when we plotted the first principal component only (right subplot),  
we shifted the triangular samples slightly upwards and the circular samples  
slightly downwards to better visualize the class overlap.

Please remember that PCA is an unsupervised method and does not 
use class label information in order to maximize the variance in contrast 
to LDA. Here, the triangular and circular symbols were just added for 
visualization purposes to indicate the degree of separation.

Now, let's try out our kernel PCA function rbf_kernel_pca, which we implemented 
in the previous subsection:

>>> from matplotlib.ticker import FormatStrFormatter
>>> X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1],

http://sebastianraschka.com/Articles/2014_python_lda.html
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...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02, 
...               color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
>>> ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
>>> plt.show()

We can now see that the two classes (circles and triangles) are linearly well separated 
so that it becomes a suitable training dataset for linear classifiers:

Unfortunately, there is no universal value for the tuning parameter γ  that works 
well for different datasets. To find a γ  value that is appropriate for a given problem 
requires experimentation. In Chapter 6, Learning Best Practices for Model Evaluation and 
Hyperparameter Tuning, we will discuss techniques that can help us to automate the 
task of optimizing such tuning parameters. Here, I will use values for γ  that I found 
produce good results.
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Example 2 – separating concentric circles
In the previous subsection, we showed you how to separate half-moon shapes via  
kernel PCA. Since we put so much effort into understanding the concepts of kernel 
PCA, let's take a look at another interesting example of a nonlinear problem: 
concentric circles.

The code is as follows:

>>> from sklearn.datasets import make_circles
>>> X, y = make_circles(n_samples=1000, 
...            random_state=123, noise=0.1, factor=0.2)
>>> plt.scatter(X[y==0, 0], X[y==0, 1],
...            color='red', marker='^', alpha=0.5)
>>> plt.scatter(X[y==1, 0], X[y==1, 1],
...            color='blue', marker='o', alpha=0.5)
>>> plt.show()

Again, we assume a two-class problem where the triangle shapes represent one class 
and the circle shapes represent another class, respectively:
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Let's start with the standard PCA approach to compare it with the results of the RBF 
kernel PCA:

>>> scikit_pca = PCA(n_components=2)
>>> X_spca = scikit_pca.fit_transform(X)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1],
...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_spca[y==0, 0], np.zeros((500,1))+0.02, 
...              color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_spca[y==1, 0], np.zeros((500,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> plt.show()

Again, we can see that standard PCA is not able to produce results suitable for 
training a linear classifier:
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Given an appropriate value for γ , let's see if we are luckier using the RBF kernel 
PCA implementation:

>>> X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
>>> ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], 
...               color='red', marker='^', alpha=0.5)
>>> ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1],
...               color='blue', marker='o', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==0, 0], np.zeros((500,1))+0.02, 
...               color='red', marker='^', alpha=0.5)
>>> ax[1].scatter(X_kpca[y==1, 0], np.zeros((500,1))-0.02,
...               color='blue', marker='o', alpha=0.5)
>>> ax[0].set_xlabel('PC1')
>>> ax[0].set_ylabel('PC2')
>>> ax[1].set_ylim([-1, 1])
>>> ax[1].set_yticks([])
>>> ax[1].set_xlabel('PC1')
>>> plt.show()

Again, the RBF kernel PCA projected the data onto a new subspace where the two 
classes become linearly separable:
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Projecting new data points
In the two previous example applications of kernel PCA, the half-moon shapes 
and the concentric circles, we projected a single dataset onto a new feature. In 
real applications, however, we may have more than one dataset that we want to 
transform, for example, training and test data, and typically also new samples we  
will collect after the model building and evaluation. In this section, you will learn 
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter, 
we project data by calculating the dot product between a transformation matrix and 
the input samples; the columns of the projection matrix are the top k  eigenvectors  
( v ) that we obtained from the covariance matrix. Now, the question is how can we 
transfer this concept to kernel PCA? If we think back to the idea behind kernel PCA, 
we remember that we obtained an eigenvector ( a ) of the centered kernel matrix 
(not the covariance matrix), which means that those are the samples that are already 
projected onto the principal component axis v . Thus, if we want to project a new 
sample ′x  onto this principal component axis, we'd need to compute the following:

( )Tφ x' v

Fortunately, we can use the kernel trick so that we don't have to calculate the 
projection ( )Tφ x' v  explicitly. However, it is worth noting that kernel PCA, in contrast 
to standard PCA, is a memory-based method, which means that we have to reuse 
the original training set each time to project new samples. We have to calculate the 
pairwise RBF kernel (similarity) between each i th sample in the training dataset and 
the new sample ′x :

( ) ( ) ( ) ( )( )T Ti i

i
aφ φ φ∑x' v = x' x

( ) ( )( )Ti i

i
a k∑= x', x

Here, eigenvectors a  and eigenvalues λ  of the Kernel matrix K  satisfy the 
following condition in the equation:

λ=Ka a
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After calculating the similarity between the new samples and the samples in the 
training set, we have to normalize the eigenvector a  by its eigenvalue. Thus, let's 
modify the rbf_kernel_pca function that we implemented earlier so that it also 
returns the eigenvalues of the kernel matrix:

from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
import numpy as np

def rbf_kernel_pca(X, gamma, n_components):
    """
    RBF kernel PCA implementation.

    Parameters
    ------------
    X: {NumPy ndarray}, shape = [n_samples, n_features]

    gamma: float
      Tuning parameter of the RBF kernel

    n_components: int
      Number of principal components to return

    Returns
    ------------
     X_pc: {NumPy ndarray}, shape = [n_samples, k_features]
       Projected dataset   

     lambdas: list
       Eigenvalues

    """
    # Calculate pairwise squared Euclidean distances
    # in the MxN dimensional dataset.
    sq_dists = pdist(X, 'sqeuclidean')

    # Convert pairwise distances into a square matrix.
    mat_sq_dists = squareform(sq_dists)

    # Compute the symmetric kernel matrix.
    K = exp(-gamma * mat_sq_dists)
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    # Center the kernel matrix.
    N = K.shape[0]
    one_n = np.ones((N,N)) / N
    K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)

    # Obtaining eigenpairs from the centered kernel matrix
    # numpy.eigh returns them in sorted order
    eigvals, eigvecs = eigh(K)

    # Collect the top k eigenvectors (projected samples)
    alphas = np.column_stack((eigvecs[:,-i] 
                    for i in range(1,n_components+1)))

    # Collect the corresponding eigenvalues
    lambdas = [eigvals[-i] for i in range(1,n_components+1)]

    return alphas, lambdas

Now, let's create a new half-moon dataset and project it onto a one-dimensional 
subspace using the updated RBF kernel PCA implementation:

>>> X, y = make_moons(n_samples=100, random_state=123)
>>> alphas, lambdas =rbf_kernel_pca(X, gamma=15, n_components=1)

To make sure that we implement the code for projecting new samples, let's assume 
that the 26th point from the half-moon dataset is a new data point ′x , and our task is 
to project it onto this new subspace:

>>> x_new = X[25]
>>> x_new
array([ 1.8713187 ,  0.00928245])
>>> x_proj = alphas[25] # original projection
>>> x_proj
array([ 0.07877284])
>>> def project_x(x_new, X, gamma, alphas, lambdas):
...     pair_dist = np.array([np.sum(
...                  (x_new-row)**2) for row in X])
...     k = np.exp(-gamma * pair_dist)
... return k.dot(alphas / lambdas)
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By executing the following code, we are able to reproduce the original projection. 
Using the project_x function, we will be able to project any new data samples as 
well. The code is as follows:

>>> x_reproj = project_x(x_new, X, 
...       gamma=15, alphas=alphas, lambdas=lambdas)
>>> x_reproj
array([ 0.07877284])

Lastly, let's visualize the projection on the first principal component:

>>> plt.scatter(alphas[y==0, 0], np.zeros((50)), 
...             color='red', marker='^',alpha=0.5)
>>> plt.scatter(alphas[y==1, 0], np.zeros((50)), 
...             color='blue', marker='o', alpha=0.5)
>>> plt.scatter(x_proj, 0, color='black', 
...             label='original projection of point X[25]',
...             marker='^', s=100)
>>> plt.scatter(x_reproj, 0, color='green', 
...             label='remapped point X[25]',
...             marker='x', s=500)
>>> plt.legend(scatterpoints=1)
>>> plt.show()

As we can see in the following scatterplot, we mapped the sample ′x  onto the first 
principal component correctly:
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Kernel principal component analysis in  
scikit-learn
For our convenience, scikit-learn implements a kernel PCA class in the  
sklearn.decomposition submodule. The usage is similar to the standard  
PCA class, and we can specify the kernel via the kernel parameter:

>>> from sklearn.decomposition import KernelPCA
>>> X, y = make_moons(n_samples=100, random_state=123)
>>> scikit_kpca = KernelPCA(n_components=2, 
...               kernel='rbf', gamma=15)
>>> X_skernpca = scikit_kpca.fit_transform(X)

To see if we get results that are consistent with our own kernel PCA  
implementation, let's plot the transformed half-moon shape data onto the  
first two principal components:

>>> plt.scatter(X_skernpca[y==0, 0], X_skernpca[y==0, 1], 
...             color='red', marker='^', alpha=0.5)
>>> plt.scatter(X_skernpca[y==1, 0], X_skernpca[y==1, 1], 
...             color='blue', marker='o', alpha=0.5)
>>> plt.xlabel('PC1')
>>> plt.ylabel('PC2')
>>> plt.show()

As we can see, the results of the scikit-learn KernelPCA are consistent with our  
own implementation:
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Scikit-learn also implements advanced techniques for 
nonlinear dimensionality reduction that are beyond the scope 
of this book. You can find a nice overview of the current 
implementations in scikit-learn complemented with illustrative 
examples at http://scikit-learn.org/stable/
modules/manifold.html.

Summary
In this chapter, you learned about three different, fundamental dimensionality 
reduction techniques for feature extraction: standard PCA, LDA, and kernel PCA. 
Using PCA, we projected data onto a lower-dimensional subspace to maximize 
the variance along the orthogonal feature axes while ignoring the class labels. 
LDA, in contrast to PCA, is a technique for supervised dimensionality reduction, 
which means that it considers class information in the training dataset to attempt to 
maximize the class-separability in a linear feature space. Lastly, you learned about a 
kernelized version of PCA, which allows you to map nonlinear datasets onto a  
lower-dimensional feature space where the classes become linearly separable.

Equipped with these essential preprocessing techniques, you are now well prepared 
to learn about the best practices for efficiently incorporating different preprocessing 
techniques and evaluating the performance of different models in the next chapter.

http://scikit-learn.org/stable/modules/manifold.html
http://scikit-learn.org/stable/modules/manifold.html
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Learning Best Practices 
for Model Evaluation and 

Hyperparameter Tuning
In the previous chapters, you learned about the essential machine learning 
algorithms for classification and how to get our data into shape before we feed it into 
those algorithms. Now, it's time to learn about the best practices of building good 
machine learning models by fine-tuning the algorithms and evaluating the model's 
performance! In this chapter, we will learn how to:

•	 Obtain unbiased estimates of a model's performance
•	 Diagnose the common problems of machine learning algorithms
•	 Fine-tune machine learning models
•	 Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines
When we applied different preprocessing techniques in the previous chapters, such 
as standardization for feature scaling in Chapter 4, Building Good Training Sets – Data 
Preprocessing, or principal component analysis for data compression in Chapter 5, 
Compressing Data via Dimensionality Reduction, you learned that we have to reuse the 
parameters that were obtained during the fitting of the training data to scale and 
compress any new data, for example, the samples in the separate test dataset.  
In this section, you will learn about an extremely handy tool, the Pipeline  
class in scikit-learn. It allows us to fit a model including an arbitrary number  
of transformation steps and apply it to make predictions about new data.
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Loading the Breast Cancer Wisconsin dataset
In this chapter, we will be working with the Breast Cancer Wisconsin dataset, which 
contains 569 samples of malignant and benign tumor cells. The first two columns 
in the dataset store the unique ID numbers of the samples and the corresponding 
diagnosis (M=malignant, B=benign), respectively. The columns 3-32 contain 30 
real-value features that have been computed from digitized images of the cell 
nuclei, which can be used to build a model to predict whether a tumor is benign 
or malignant. The Breast Cancer Wisconsin dataset has been deposited on the UCI 
machine learning repository and more detailed information about this dataset can be 
found at https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsi
n+(Diagnostic).

In this section we will read in the dataset, and split it into training and test datasets 
in three simple steps:

1.	 We will start by reading in the dataset directly from the UCI website  
using pandas:
>>> import pandas as pd
>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin/wdbc.data', 
header=None)

2.	 Next, we assign the 30 features to a NumPy array X. Using LabelEncoder, 
we transform the class labels from their original string representation  
(M and B) into integers:
>>> from sklearn.preprocessing import LabelEncoder
>>> X = df.loc[:, 2:].values
>>> y = df.loc[:, 1].values
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)

After encoding the class labels (diagnosis) in an array y, the malignant 
tumors are now represented as class 1, and the benign tumors are 
represented as class 0, respectively, which we can illustrate by calling  
the transform method of LabelEncoder on two dummy class labels:

>>> le.transform(['M', 'B'])
array([1, 0])

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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3.	 Before we construct our first model pipeline in the following subsection, let's 
divide the dataset into a separate training dataset (80 percent of the data) and 
a separate test dataset (20 percent of the data):

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = \
...      train_test_split(X, y, test_size=0.20, random_state=1)

Combining transformers and estimators in a 
pipeline
In the previous chapter, you learned that many learning algorithms require input 
features on the same scale for optimal performance. Thus, we need to standardize 
the columns in the Breast Cancer Wisconsin dataset before we can feed them to a 
linear classifier, such as logistic regression. Furthermore, let's assume that we want 
to compress our data from the initial 30 dimensions onto a lower two-dimensional 
subspace via principal component analysis (PCA), a feature extraction technique 
for dimensionality reduction that we introduced in Chapter 5, Compressing Data via 
Dimensionality Reduction. Instead of going through the fitting and transformation 
steps for the training and test dataset separately, we can chain the StandardScaler, 
PCA, and LogisticRegression objects in a pipeline:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.decomposition import PCA
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.pipeline import Pipeline
>>> pipe_lr = Pipeline([('scl', StandardScaler()),
...            ('pca', PCA(n_components=2)),
...            ('clf', LogisticRegression(random_state=1))])
>>> pipe_lr.fit(X_train, y_train)
>>> print('Test Accuracy: %.3f' % pipe_lr.score(X_test, y_test))
Test Accuracy: 0.947

The Pipeline object takes a list of tuples as input, where the first value in each tuple 
is an arbitrary identifier string that we can use to access the individual elements in 
the pipeline, as we will see later in this chapter, and the second element in every 
tuple is a scikit-learn transformer or estimator.
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The intermediate steps in a pipeline constitute scikit-learn transformers, and the 
last step is an estimator. In the preceding code example, we built a pipeline that 
consisted of two intermediate steps, a StandardScaler and a PCA transformer, and a 
logistic regression classifier as a final estimator. When we executed the fit method 
on the pipeline pipe_lr, the StandardScaler performed fit and transform on the 
training data, and the transformed training data was then passed onto the next object 
in the pipeline, the PCA. Similar to the previous step, PCA also executed fit and 
transform on the scaled input data and passed it to the final element of the pipeline, 
the estimator. We should note that there is no limit to the number of intermediate  
steps in this pipeline. The concept of how pipelines work is summarized in the 
following figure:
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Using k-fold cross-validation to assess 
model performance
One of the key steps in building a machine learning model is to estimate its 
performance on data that the model hasn't seen before. Let's assume that we fit our 
model on a training dataset and use the same data to estimate how well it performs 
in practice. We remember from the Tackling overfitting via regularization section in 
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that a model can 
either suffer from underfitting (high bias) if the model is too simple, or it can overfit 
the training data (high variance) if the model is too complex for the underlying 
training data. To find an acceptable bias-variance trade-off, we need to evaluate 
our model carefully. In this section, you will learn about the useful cross-validation 
techniques holdout cross-validation and k-fold cross-validation, which can help us 
to obtain reliable estimates of the model's generalization error, that is, how well the 
model performs on unseen data. 

The holdout method
A classic and popular approach for estimating the generalization performance of 
machine learning models is holdout cross-validation. Using the holdout method, 
we split our initial dataset into a separate training and test dataset—the former is 
used for model training, and the latter is used to estimate its performance. However, 
in typical machine learning applications, we are also interested in tuning and 
comparing different parameter settings to further improve the performance for 
making predictions on unseen data. This process is called model selection, where 
the term model selection refers to a given classification problem for which we want 
to select the optimal values of tuning parameters (also called hyperparameters). 
However, if we reuse the same test dataset over and over again during model 
selection, it will become part of our training data and thus the model will be more 
likely to overfit. Despite this issue, many people still use the test set for model 
selection, which is not a good machine learning practice.
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A better way of using the holdout method for model selection is to separate the data 
into three parts: a training set, a validation set, and a test set. The training set is used 
to fit the different models, and the performance on the validation set is then used 
for the model selection. The advantage of having a test set that the model hasn't 
seen before during the training and model selection steps is that we can obtain a 
less biased estimate of its ability to generalize to new data. The following figure 
illustrates the concept of holdout cross-validation where we use a validation set 
to repeatedly evaluate the performance of the model after training using different 
parameter values. Once we are satisfied with the tuning of parameter values, we 
estimate the models' generalization error on the test dataset:

A disadvantage of the holdout method is that the performance estimate is  
sensitive to how we partition the training set into the training and validation  
subsets; the estimate will vary for different samples of the data. In the next 
subsection, we will take a look at a more robust technique for performance 
estimation, k-fold cross-validation, where we repeat the holdout method k  
times on k subsets of the training data.
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K-fold cross-validation
In k-fold cross-validation, we randomly split the training dataset into k folds without 
replacement, where 1k −  folds are used for the model training and one fold is used 
for testing. This procedure is repeated k times so that we obtain k models and 
performance estimates.

In case you are not familiar with the terms sampling with and without 
replacement, let's walk through a simple thought experiment. Let's 
assume we are playing a lottery game where we randomly draw numbers 
from an urn. We start with an urn that holds five unique numbers 0, 1, 2, 
3, and 4, and we draw exactly one number each turn. In the first round, 
the chance of drawing a particular number from the urn would be 1/5. 
Now, in sampling without replacement, we do not put the number back 
into the urn after each turn. Consequently, the probability of drawing a 
particular number from the set of remaining numbers in the next round 
depends on the previous round. For example, if we have a remaining set 
of numbers 0, 1, 2, and 4, the chance of drawing number 0 would become 
1/4 in the next turn.
However, in random sampling with replacement, we always return 
the drawn number to the urn so that the probabilities of drawing a 
particular number at each turn does not change; we can draw the same 
number more than once. In other words, in sampling with replacement, 
the samples (numbers) are independent and have a covariance zero. For 
example, the results from five rounds of drawing random numbers could 
look like this:

•	 Random sampling without replacement: 2, 1, 3, 4, 0
•	 Random sampling with replacement: 1, 3, 3, 4, 1

We then calculate the average performance of the models based on the different, 
independent folds to obtain a performance estimate that is less sensitive to the 
subpartitioning of the training data compared to the holdout method. Typically, 
we use k-fold cross-validation for model tuning, that is, finding the optimal 
hyperparameter values that yield a satisfying generalization performance. Once we 
have found satisfactory hyperparameter values, we can retrain the model on the 
complete training set and obtain a final performance estimate using the independent 
test set.
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Since k-fold cross-validation is a resampling technique without replacement, the 
advantage of this approach is that each sample point will be part of a training 
and test dataset exactly once, which yields a lower-variance estimate of the model 
performance than the holdout method. The following figure summarizes the concept 
behind k-fold cross-validation with 10k = . The training data set is divided into 10 
folds, and during the 10 iterations, 9 folds are used for training, and 1 fold will be 
used as the test set for the model evaluation. Also, the estimated performances iE  
(for example, classification accuracy or error) for each fold are then used to calculate 
the estimated average performance E  of the model:

The standard value for k in k-fold cross-validation is 10, which is typically a 
reasonable choice for most applications. However, if we are working with relatively 
small training sets, it can be useful to increase the number of folds. If we increase 
the value of k, more training data will be used in each iteration, which results in 
a lower bias towards estimating the generalization performance by averaging 
the individual model estimates. However, large values of k will also increase the 
runtime of the cross-validation algorithm and yield estimates with higher variance 
since the training folds will be more similar to each other. On the other hand, if we 
are working with large datasets, we can choose a smaller value for k, for example, 

5k = , and still obtain an accurate estimate of the average performance of the model 
while reducing the computational cost of refitting and evaluating the model on the 
different folds.
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A special case of k-fold cross validation is the leave-one-out (LOO) 
cross-validation method. In LOO, we set the number of folds equal to the 
number of training samples (k = n) so that only one training sample is 
used for testing during each iteration. This is a recommended approach 
for working with very small datasets.

A slight improvement over the standard k-fold cross-validation approach is  
stratified k-fold cross-validation, which can yield better bias and variance estimates, 
especially in cases of unequal class proportions, as it has been shown in a study by 
R. Kohavi et al. (R. Kohavi et al. A Study of Cross-validation and Bootstrap for Accuracy 
Estimation and Model Selection. In Ijcai, volume 14, pages 1137–1145, 1995). In stratified 
cross-validation, the class proportions are preserved in each fold to ensure that each 
fold is representative of the class proportions in the training dataset, which we will 
illustrate by using the StratifiedKFold iterator in scikit-learn:

>>> import numpy as np
>>> from sklearn.cross_validation import StratifiedKFold
>>> kfold = StratifiedKFold(y=y_train, 
...                         n_folds=10,
...                         random_state=1)
>>> scores = []
>>> for k, (train, test) in enumerate(kfold):
...    pipe_lr.fit(X_train[train], y_train[train])
...    score = pipe_lr.score(X_train[test], y_train[test])
...    scores.append(score)
...    print('Fold: %s, Class dist.: %s, Acc: %.3f' % (k+1, 
...                 np.bincount(y_train[train]), score))    
Fold: 1, Class dist.: [256 153], Acc: 0.891
Fold: 2, Class dist.: [256 153], Acc: 0.978
Fold: 3, Class dist.: [256 153], Acc: 0.978
Fold: 4, Class dist.: [256 153], Acc: 0.913
Fold: 5, Class dist.: [256 153], Acc: 0.935
Fold: 6, Class dist.: [257 153], Acc: 0.978
Fold: 7, Class dist.: [257 153], Acc: 0.933
Fold: 8, Class dist.: [257 153], Acc: 0.956
Fold: 9, Class dist.: [257 153], Acc: 0.978
Fold: 10, Class dist.: [257 153], Acc: 0.956
>>> print('CV accuracy: %.3f +/- %.3f' % (
...                 np.mean(scores), np.std(scores)))
CV accuracy: 0.950 +/- 0.029
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First, we initialized the StratifiedKfold iterator from the  
sklearn.cross_validation module with the class labels y_train in the  
training set, and specified the number of folds via the n_folds parameter.  
When we used the kfold iterator to loop through the k folds, we used the  
returned indices in train to fit the logistic regression pipeline that we set up  
at the beginning of this chapter. Using the pile_lr pipeline, we ensured that the 
samples were scaled properly (for instance, standardized) in each iteration. We 
then used the test indices to calculate the accuracy score of the model, which 
we collected in the scores list to calculate the average accuracy and the standard 
deviation of the estimate.

Although the previous code example was useful to illustrate how k-fold  
cross-validation works, scikit-learn also implements a k-fold cross-validation  
scorer, which allows us to evaluate our model using stratified k-fold  
cross-validation more efficiently:

>>> from sklearn.cross_validation import cross_val_score
>>> scores = cross_val_score(estimator=pipe_lr, 
...                          X=X_train, 
...                          y=y_train, 
...                          cv=10, 
...                          n_jobs=1)
>>> print('CV accuracy scores: %s' % scores)
CV accuracy scores: [ 0.89130435  0.97826087  0.97826087  
                      0.91304348  0.93478261  0.97777778
                      0.93333333  0.95555556  0.97777778  
                         0.95555556]
>>> print('CV accuracy: %.3f +/- %.3f' % (np.mean(scores), 
np.std(scores))) 
CV accuracy: 0.950 +/- 0.029

An extremely useful feature of the cross_val_score approach is that we can 
distribute the evaluation of the different folds across multiple CPUs on our machine. 
If we set the n_jobs parameter to 1, only one CPU will be used to evaluate the 
performances just like in our StratifiedKFold example previously. However, by 
setting n_jobs=2 we could distribute the 10 rounds of cross-validation to two CPUs 
(if available on our machine), and by setting n_jobs=-1, we can use all available 
CPUs on our machine to do the computation in parallel.
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Please note that a detailed discussion of how the variance of the 
generalization performance is estimated in cross-validation is 
beyond the scope of this book, but you can find a detailed discussion 
in this excellent article by M. Markatou et al (M. Markatou, H. Tian, 
S. Biswas, and G. M. Hripcsak. Analysis of Variance of Cross-validation 
Estimators of the Generalization Error. Journal of Machine Learning 
Research, 6:1127–1168, 2005).
You can also read about alternative cross-validation techniques, 
such as the .632 Bootstrap cross-validation method (B. Efron and 
R. Tibshirani. Improvements on Cross-validation: The 632+ Bootstrap 
Method. Journal of the American Statistical Association, 92(438):548–560, 
1997).

Debugging algorithms with learning and 
validation curves
In this section, we will take a look at two very simple yet powerful diagnostic tools 
that can help us to improve the performance of a learning algorithm: learning  
curves and validation curves. In the next subsections, we will discuss how we 
can use learning curves to diagnose if a learning algorithm has a problem with 
overfitting (high variance) or underfitting (high bias). Furthermore, we will  
take a look at validation curves that can help us address the common issues  
of a learning algorithm.
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Diagnosing bias and variance problems with 
learning curves
If a model is too complex for a given training dataset—there are too many degrees 
of freedom or parameters in this model—the model tends to overfit the training 
data and does not generalize well to unseen data. Often, it can help to collect more 
training samples to reduce the degree of overfitting. However, in practice, it can 
often be very expensive or simply not feasible to collect more data. By plotting the 
model training and validation accuracies as functions of the training set size, we can 
easily detect whether the model suffers from high variance or high bias, and whether 
the collection of more data could help to address this problem. But before we discuss 
how to plot learning curves in sckit-learn, let's discuss those two common model 
issues by walking through the following illustration:
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The graph in the upper-left shows a model with high bias. This model has both  
low training and cross-validation accuracy, which indicates that it underfits the 
training data. Common ways to address this issue are to increase the number of 
parameters of the model, for example, by collecting or constructing additional 
features, or by decreasing the degree of regularization, for example, in SVM or 
logistic regression classifiers. The graph in the upper-right shows a model that 
suffers from high variance, which is indicated by the large gap between the training 
and cross-validation accuracy. To address this problem of overfitting, we can collect 
more training data or reduce the complexity of the model, for example, by increasing 
the regularization parameter; for unregularized models, it can also help to decrease 
the number of features via feature selection (Chapter 4, Building Good Training 
Sets – Data Preprocessing) or feature extraction (Chapter 5, Compressing Data via 
Dimensionality Reduction). We shall note that collecting more training data decreases 
the chance of overfitting. However, it may not always help, for example, when the 
training data is extremely noisy or the model is already very close to optimal.

In the next subsection, we will see how to address those model issues using 
validation curves, but let's first see how we can use the learning curve function  
from scikit-learn to evaluate the model:

>>> import matplotlib.pyplot as plt
>>> from sklearn.learning_curve import learning_curve
>>> pipe_lr = Pipeline([
...           ('scl', StandardScaler()),
...           ('clf', LogisticRegression(
...                        penalty='l2', random_state=0))])
>>> train_sizes, train_scores, test_scores =\
...        learning_curve(estimator=pipe_lr, 
...                       X=X_train, 
...                       y=y_train, 
...                       train_sizes=np.linspace(0.1, 1.0, 10), 
...                       cv=10,
...                       n_jobs=1)
>>> train_mean = np.mean(train_scores, axis=1)
>>> train_std = np.std(train_scores, axis=1)
>>> test_mean = np.mean(test_scores, axis=1)
>>> test_std = np.std(test_scores, axis=1)
>>> plt.plot(train_sizes, train_mean, 
...          color='blue', marker='o', 
...          markersize=5, 
...          label='training accuracy')
>>> plt.fill_between(train_sizes, 
...                  train_mean + train_std,
...                  train_mean - train_std, 
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...                  alpha=0.15, color='blue')
>>> plt.plot(train_sizes, test_mean, 
...          color='green', linestyle='--', 
...          marker='s', markersize=5, 
...          label='validation accuracy')
>>> plt.fill_between(train_sizes, 
...                  test_mean + test_std,
...                  test_mean - test_std, 
...                  alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xlabel('Number of training samples')
>>> plt.ylabel('Accuracy')
>>> plt.legend(loc='lower right')
>>> plt.ylim([0.8, 1.0])
>>> plt.show()

After we have successfully executed the preceding code, we will obtain the following 
learning curve plot:
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Via the train_sizes parameter in the learning_curve function, we can control the 
absolute or relative number of training samples that are used to generate the learning 
curves. Here, we set train_sizes=np.linspace(0.1, 1.0, 10) to use 10 evenly 
spaced relative intervals for the training set sizes. By default, the learning_curve 
function uses stratified k-fold cross-validation to calculate the cross-validation 
accuracy, and we set 10k =  via the cv parameter. Then, we simply calculate the 
average accuracies from the returned cross-validated training and test scores for the 
different sizes of the training set, which we plotted using matplotlib's plot function. 
Furthermore, we add the standard deviation of the average accuracies to the plot 
using the fill_between function to indicate the variance of the estimate.

As we can see in the preceding learning curve plot, our model performs quite  
well on the test dataset. However, it may be slightly overfitting the training  
data indicated by a relatively small, but visible, gap between the training and  
cross-validation accuracy curves.

Addressing overfitting and underfitting with 
validation curves
Validation curves are a useful tool for improving the performance of a model by 
addressing issues such as overfitting or underfitting. Validation curves are related to 
learning curves, but instead of plotting the training and test accuracies as functions 
of the sample size, we vary the values of the model parameters, for example, the 
inverse regularization parameter C in logistic regression. Let's go ahead and see  
how we create validation curves via sckit-learn:

>>> from sklearn.learning_curve import validation_curve
>>> param_range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
>>> train_scores, test_scores = validation_curve(
...                estimator=pipe_lr, 
...                 X=X_train, 
...                 y=y_train, 
...                 param_name='clf__C', 
...                 param_range=param_range,
...                 cv=10)
>>> train_mean = np.mean(train_scores, axis=1)
>>> train_std = np.std(train_scores, axis=1)
>>> test_mean = np.mean(test_scores, axis=1)
>>> test_std = np.std(test_scores, axis=1)
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>>> plt.plot(param_range, train_mean, 
...          color='blue', marker='o', 
...          markersize=5, 
...          label='training accuracy')
>>> plt.fill_between(param_range, train_mean + train_std,
...                  train_mean - train_std, alpha=0.15,
...                  color='blue')
>>> plt.plot(param_range, test_mean, 
...          color='green', linestyle='--', 
...          marker='s', markersize=5, 
...          label='validation accuracy')
>>> plt.fill_between(param_range, 
...                  test_mean + test_std,
...                  test_mean - test_std, 
...                  alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xscale('log')
>>> plt.legend(loc='lower right')
>>> plt.xlabel('Parameter C')
>>> plt.ylabel('Accuracy')
>>> plt.ylim([0.8, 1.0])
>>> plt.show() 

Using the preceding code, we obtained the validation curve plot for the parameter C:
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Similar to the learning_curve function, the validation_curve function uses 
stratified k-fold cross-validation by default to estimate the performance of the model 
if we are using algorithms for classification. Inside the validation_curve function, 
we specified the parameter that we wanted to evaluate. In this case, it is C, the inverse 
regularization parameter of the LogisticRegression classifier, which we wrote as 
'clf__C' to access the LogisticRegression object inside the scikit-learn pipeline 
for a specified value range that we set via the param_range parameter. Similar to the 
learning curve example in the previous section, we plotted the average training and 
cross-validation accuracies and the corresponding standard deviations.

Although the differences in the accuracy for varying values of C are subtle, we can 
see that the model slightly underfits the data when we increase the regularization 
strength (small values of C). However, for large values of C, it means lowering the 
strength of regularization, so the model tends to slightly overfit the data. In this case, 
the sweet spot appears to be around C=0.1.

Fine-tuning machine learning models via 
grid search
In machine learning, we have two types of parameters: those that are learned from 
the training data, for example, the weights in logistic regression, and the parameters 
of a learning algorithm that are optimized separately. The latter are the tuning 
parameters, also called hyperparameters, of a model, for example, the regularization 
parameter in logistic regression or the depth parameter of a decision tree.

In the previous section, we used validation curves to improve the performance of a 
model by tuning one of its hyperparameters. In this section, we will take a look at a 
powerful hyperparameter optimization technique called grid search that can further 
help to improve the performance of a model by finding the optimal combination of 
hyperparameter values.
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Tuning hyperparameters via grid search
The approach of grid search is quite simple, it's a brute-force exhaustive search 
paradigm where we specify a list of values for different hyperparameters, and the 
computer evaluates the model performance for each combination of those to obtain 
the optimal set:

>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.svm import SVC
>>> pipe_svc = Pipeline([('scl', StandardScaler()),
...                      ('clf', SVC(random_state=1))])
>>> param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
>>> param_grid = [{'clf__C': param_range, 
...                'clf__kernel': ['linear']},
...               {'clf__C': param_range, 
...                'clf__gamma': param_range, 
...                'clf__kernel': ['rbf']}]
>>> gs = GridSearchCV(estimator=pipe_svc, 
...                   param_grid=param_grid, 
...                   scoring='accuracy', 
...                   cv=10,
...                   n_jobs=-1)
>>> gs = gs.fit(X_train, y_train)
>>> print(gs.best_score_) 
0.978021978022
>>> print(gs.best_params_)
{'clf__C': 0.1, 'clf__kernel': 'linear'}

Using the preceding code, we initialized a GridSearchCV object from the  
sklearn.grid_search module to train and tune a support vector machine (SVM) 
pipeline. We set the param_grid parameter of GridSearchCV to a list of dictionaries 
to specify the parameters that we'd want to tune. For the linear SVM, we only 
evaluated the inverse regularization parameter C; for the RBF kernel SVM, we tuned 
both the C and gamma parameter. Note that the gamma parameter is specific to kernel 
SVMs. After we used the training data to perform the grid search, we obtained the 
score of the best-performing model via the best_score_ attribute and looked at its 
parameters, that can be accessed via the best_params_ attribute. In this particular 
case, the linear SVM model with 'clf__C'= 0.1' yielded the best k-fold cross-
validation accuracy: 97.8 percent.
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Finally, we will use the independent test dataset to estimate the performance of the 
best selected model, which is available via the best_estimator_ attribute of the 
GridSearchCV object:

>>> clf = gs.best_estimator_
>>> clf.fit(X_train, y_train)
>>> print('Test accuracy: %.3f' % clf.score(X_test, y_test))
Test accuracy: 0.965

Although grid search is a powerful approach for finding the optimal set of 
parameters, the evaluation of all possible parameter combinations is also 
computationally very expensive. An alternative approach to sampling 
different parameter combinations using scikit-learn is randomized search. 
Using the RandomizedSearchCV class in scikit-learn, we can draw 
random parameter combinations from sampling distributions with a 
specified budget. More details and examples for its usage can be found 
at http://scikit-learn.org/stable/modules/grid_search.
html#randomized-parameter-optimization.

Algorithm selection with nested  
cross-validation
Using k-fold cross-validation in combination with grid search is a useful approach 
for fine-tuning the performance of a machine learning model by varying its 
hyperparameters values as we saw in the previous subsection. If we want to select 
among different machine learning algorithms though, another recommended 
approach is nested cross-validation, and in a nice study on the bias in error 
estimation, Varma and Simon concluded that the true error of the estimate is almost 
unbiased relative to the test set when nested cross-validation is used (S. Varma and 
R. Simon. Bias in Error Estimation When Using Cross-validation for Model Selection. BMC 
bioinformatics, 7(1):91, 2006).

http://scikit-learn.org/stable/modules/grid_search.html#randomized-parameter-optimization
http://scikit-learn.org/stable/modules/grid_search.html#randomized-parameter-optimization
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In nested cross-validation, we have an outer k-fold cross-validation loop to split the 
data into training and test folds, and an inner loop is used to select the model using 
k-fold cross-validation on the training fold. After model selection, the test fold is then 
used to evaluate the model performance. The following figure explains the concept 
of nested cross-validation with five outer and two inner folds, which can be useful 
for large data sets where computational performance is important; this particular 
type of nested cross-validation is also known as 5x2 cross-validation:

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs = GridSearchCV(estimator=pipe_svc, 
...                   param_grid=param_grid,
...                   scoring='accuracy', 
...                   cv=2, 
...                   n_jobs=-1)
>>> scores = cross_val_score(gs, X_train, y_train, scoring='accuracy', 
cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
...               np.mean(scores), np.std(scores)))
CV accuracy: 0.965 +/- 0.025
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The returned average cross-validation accuracy gives us a good estimate of what  
to expect if we tune the hyperparameters of a model and then use it on unseen data.  
For example, we can use the nested cross-validation approach to compare an  
SVM model to a simple decision tree classifier; for simplicity, we will only tune  
its depth parameter:

>>> from sklearn.tree import DecisionTreeClassifier
>>> gs = GridSearchCV(
...       estimator=DecisionTreeClassifier(random_state=0),
...       param_grid=[
...            {'max_depth': [1, 2, 3, 4, 5, 6, 7, None]}],
...       scoring='accuracy', 
...       cv=5)
>>> scores = cross_val_score(gs, 
...                          X_train, 
...                          y_train, 
...                          scoring='accuracy',
...                          cv=2)
>>> print('CV accuracy: %.3f +/- %.3f' % (
...                     np.mean(scores), np.std(scores)))
CV accuracy: 0.921 +/- 0.029

As we can see here, the nested cross-validation performance of the SVM  
model (97.8 percent) is notably better than the performance of the decision tree  
(90.8 percent). Thus, we'd expect that it might be the better choice for classifying  
new data that comes from the same population as this particular dataset.

Looking at different performance 
evaluation metrics
In the previous sections and chapters, we evaluated our models using the model 
accuracy, which is a useful metric to quantify the performance of a model in general. 
However, there are several other performance metrics that can be used to measure a 
model's relevance, such as precision, recall, and the F1-score.
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Reading a confusion matrix
Before we get into the details of different scoring metrics, let's print a so-called 
confusion matrix, a matrix that lays out the performance of a learning algorithm. 
The confusion matrix is simply a square matrix that reports the counts of the true 
positive, true negative, false positive, and false negative predictions of a classifier, 
as shown in the following figure:

Although these metrics can be easily computed manually by comparing the true and 
predicted class labels, scikit-learn provides a convenient confusion_matrix function 
that we can use as follows:

>>> from sklearn.metrics import confusion_matrix
>>> pipe_svc.fit(X_train, y_train)
>>> y_pred = pipe_svc.predict(X_test)
>>> confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
>>> print(confmat)
[[71  1]
 [ 2 40]]

The array that was returned after executing the preceding code provides us with 
information about the different types of errors the classifier made on the test dataset 
that we can map onto the confusion matrix illustration in the previous figure using 
matplotlib's matshow function:

>>> fig, ax = plt.subplots(figsize=(2.5, 2.5))
>>> ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
>>> for i in range(confmat.shape[0]):
...     for j in range(confmat.shape[1]):
...         ax.text(x=j, y=i,
...                 s=confmat[i, j], 
...                 va='center', ha='center')
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>>> plt.xlabel('predicted label')
>>> plt.ylabel('true label')
>>> plt.show()

Now, the confusion matrix plot as shown here should make the results a little bit 
easier to interpret:

Assuming that class 1 (malignant) is the positive class in this example, our model 
correctly classified 71 of the samples that belong to class 0 (true negatives) and 40 
samples that belong to class 1 (true positives), respectively. However, our model 
also incorrectly misclassified 1 sample from class 0 as class 1 (false positive), and 
it predicted that 2 samples are benign although it is a malignant tumor (false 
negatives). In the next section, we will learn how we can use this information to 
calculate various different error metrics.

Optimizing the precision and recall of a 
classification model
Both the prediction error (ERR) and accuracy (ACC) provide general information 
about how many samples are misclassified. The error can be understood as the sum 
of all false predictions divided by the number of total predictions, and the accuracy 
is calculated as the sum of correct predictions divided by the total number of 
predictions, respectively:

FP FNERR
FP FN TP TN

+
=

+ + +
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The prediction accuracy can then be calculated directly from the error:

1TP TNACC ERR
FP FN TP TN

+
= = −

+ + +

The true positive rate (TPR) and false positive rate (FPR) are performance metrics 
that are especially useful for imbalanced class problems:

FP FPFPR
N FP TN

= =
+

TP TPTPR
P FN TP

= =
+

In tumor diagnosis, for example, we are more concerned about the detection 
of malignant tumors in order to help a patient with the appropriate treatment. 
However, it is also important to decrease the number of benign tumors that were 
incorrectly classified as malignant (false positives) to not unnecessarily concern a 
patient. In contrast to the FPR, the true positive rate provides useful information 
about the fraction of positive (or relevant) samples that were correctly identified out 
of the total pool of positives (P).

Precision (PRE) and recall (REC) are performance metrics that are related to those 
true positive and true negative rates, and in fact, recall is synonymous to the true 
positive rate:

TPPRE
TP FP

=
+

TP TPREC TPR
P FN TP

= = =
+

In practice, often a combination of precision and recall is used, the so-called F1-score:

1 2 PRE RECF
PRE REC

×
=

+
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These scoring metrics are all implemented in scikit-learn and can be imported from 
the sklearn.metrics module, as shown in the following snippet:

>>> from sklearn.metrics import precision_score
>>> from sklearn.metrics  import recall_score, f1_score
>>> print('Precision: %.3f' % precision_score(
...              y_true=y_test, y_pred=y_pred))
Precision: 0.976
>>> print('Recall: %.3f' % recall_score(
...              y_true=y_test, y_pred=y_pred))
Recall: 0.952
>>> print('F1: %.3f' % f1_score(
...              y_true=y_test, y_pred=y_pred))
F1: 0.964

Furthermore, we can use a different scoring metric other than accuracy in 
GridSearch via the scoring parameter. A complete list of the different values that 
are accepted by the scoring parameter can be found at http://scikit-learn.org/
stable/modules/model_evaluation.html.

Remember that the positive class in scikit-learn is the class that is labeled as class 1. 
If we want to specify a different positive label, we can construct our own scorer via 
the make_scorer function, which we can then directly provide as an argument to the 
scoring parameter in GridSearchCV:

>>> from sklearn.metrics import make_scorer, f1_score
>>> scorer = make_scorer(f1_score, pos_label=0)
>>> gs = GridSearchCV(estimator=pipe_svc,
...                   param_grid=param_grid,
...                   scoring=scorer,
...                   cv=10)

Plotting a receiver operating characteristic
Receiver operator characteristic (ROC) graphs are useful tools for selecting models 
for classification based on their performance with respect to the false positive and 
true positive rates, which are computed by shifting the decision threshold of the 
classifier. The diagonal of an ROC graph can be interpreted as random guessing, 
and classification models that fall below the diagonal are considered as worse than 
random guessing. A perfect classifier would fall into the top-left corner of the graph 
with a true positive rate of 1 and a false positive rate of 0. Based on the ROC curve, 
we can then compute the so-called area under the curve (AUC) to characterize the 
performance of a classification model.

http://scikit-learn.org/stable/modules/model_evaluation.html
http://scikit-learn.org/stable/modules/model_evaluation.html
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Similar to ROC curves, we can compute precision-recall curves for the 
different probability thresholds of a classifier. A function for plotting 
those precision-recall curves is also implemented in scikit-learn and is 
documented at http://scikit-learn.org/stable/modules/
generated/sklearn.metrics.precision_recall_curve.html.

By executing the following code example, we will plot an ROC curve of a classifier 
that only uses two features from the Breast Cancer Wisconsin dataset to predict 
whether a tumor is benign or malignant. Although we are going to use the 
same logistic regression pipeline that we defined previously, we are making the 
classification task more challenging for the classifier so that the resulting ROC curve 
becomes visually more interesting. For similar reasons, we are also reducing the 
number of folds in the StratifiedKFold validator to three. The code is as follows:

>>> from sklearn.metrics import roc_curve, auc
>>> from scipy import interp
>>> pipe_lr = Pipeline([('scl', StandardScaler()),
...                   ('pca', PCA(n_components=2)),
...                   ('clf', LogisticRegression(penalty='l2',
...                                              random_state=0,
...                                              C=100.0))])
>>> X_train2 = X_train[:, [4, 14]]
>>> cv = StratifiedKFold(y_train, 
...                      n_folds=3, 
...                      random_state=1)
>>> fig = plt.figure(figsize=(7, 5))
>>> mean_tpr = 0.0
>>> mean_fpr = np.linspace(0, 1, 100)
>>> all_tpr = []

>>> for i, (train, test) in enumerate(cv):
...     probas = pipe_lr.fit(X_train2[train],                          
>>> y_train[train]).predict_proba(X_train2[test])    
...     fpr, tpr, thresholds = roc_curve(y_train[test], 

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
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...                                     probas[:, 1], 

...                                     pos_label=1)

...     mean_tpr += interp(mean_fpr, fpr, tpr)

...     mean_tpr[0] = 0.0

...     roc_auc = auc(fpr, tpr)

...     plt.plot(fpr, 

...              tpr, 

...              lw=1, 

...              label='ROC fold %d (area = %0.2f)' 

...                     % (i+1, roc_auc))
>>> plt.plot([0, 1], 
...          [0, 1], 
...          linestyle='--', 
...          color=(0.6, 0.6, 0.6), 
...          label='random guessing')
>>> mean_tpr /= len(cv)
>>> mean_tpr[-1] = 1.0
>>> mean_auc = auc(mean_fpr, mean_tpr)
>>> plt.plot(mean_fpr, mean_tpr, 'k--',
...          label='mean ROC (area = %0.2f)' % mean_auc, lw=2)
>>> plt.plot([0, 0, 1], 
...          [0, 1, 1], 
...          lw=2, 
...          linestyle=':', 
...          color='black', 
...          label='perfect performance')
>>> plt.xlim([-0.05, 1.05])
>>> plt.ylim([-0.05, 1.05])
>>> plt.xlabel('false positive rate')
>>> plt.ylabel('true positive rate')
>>> plt.title('Receiver Operator Characteristic')
>>> plt.legend(loc="lower right")
>>> plt.show()
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In the preceding code example, we used the already familiar StratifiedKFold class 
from scikit-learn and calculated the ROC performance of the LogisticRegression 
classifier in our pipe_lr pipeline using the roc_curve function from the  
sklearn.metrics module separately for each iteration. Furthermore, we 
interpolated the average ROC curve from the three folds via the interp function 
that we imported from SciPy and calculated the area under the curve via the auc 
function. The resulting ROC curve indicates that there is a certain degree of variance 
between the different folds, and the average ROC AUC (0.75) falls between a perfect 
score (1.0) and random guessing (0.5):

If we are just interested in the ROC AUC score, we could also directly import the 
roc_auc_score function from the sklearn.metrics submodule. The following code 
calculates the classifier's ROC AUC score on the independent test dataset after fitting 
it on the two-feature training set:

>>> pipe_lr = pipe_lr.fit(X_train2, y_train)
>>> y_pred2 = pipe_lr.predict(X_test[:, [4, 14]])



Chapter 6

[ 199 ]

>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.metrics import accuracy_score
>>> print('ROC AUC: %.3f' % roc_auc_score(
...        y_true=y_test, y_score=y_pred2))
ROC AUC: 0.662

>>> print('Accuracy: %.3f' % accuracy_score(
...        y_true=y_test, y_pred=y_pred2))
Accuracy: 0.711

Reporting the performance of a classifier as the ROC AUC can yield further insights 
in a classifier's performance with respect to imbalanced samples. However, while 
the accuracy score can be interpreted as a single cut-off point on a ROC curve, A. P. 
Bradley showed that the ROC AUC and accuracy metrics mostly agree with each 
other (A. P. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of 
Machine Learning Algorithms. Pattern recognition, 30(7):1145–1159, 1997).

The scoring metrics for multiclass 
classification
The scoring metrics that we discussed in this section are specific to binary 
classification systems. However, scikit-learn also implements macro and micro 
averaging methods to extend those scoring metrics to multiclass problems via  
One vs. All (OvA) classification. The micro-average is calculated from the individual 
true positives, true negatives, false positives, and false negatives of the system. 
For example, the micro-average of the precision score in a k-class system can be 
calculated as follows:

1

1 1

k
micro

k k

TP TPPRE
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+ +
=
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...
... ...

The macro-average is simply calculated as the average scores of the different systems:

1 k
macro

PRE PREPRE
k

+ +
=

...

Micro-averaging is useful if we want to weight each instance or prediction equally, 
whereas macro-averaging weights all classes equally to evaluate the overall 
performance of a classifier with regard to the most frequent class labels.
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If we are using binary performance metrics to evaluate multiclass classification 
models in scikit-learn, a normalized or weighted variant of the macro-average is 
used by default. The weighted macro-average is calculated by weighting the score of 
each class label by the number of true instances when calculating the average. The 
weighted macro-average is useful if we are dealing with class imbalances, that is, 
different numbers of instances for each label.

While the weighted macro-average is the default for multiclass problems in  
scikit-learn, we can specify the averaging method via the average parameter  
inside the different scoring functions that we import from the sklearn.metrics 
module, for example, the precision_score or make_scorer functions:

>>> pre_scorer = make_scorer(score_func=precision_score, 
...                          pos_label=1, 
...                          greater_is_better=True, 
...                          average='micro')

Summary
In the beginning of this chapter, we discussed how to chain different transformation 
techniques and classifiers in convenient model pipelines that helped us to train and 
evaluate machine learning models more efficiently. We then used those pipelines to 
perform k-fold cross-validation, one of the essential techniques for model selection 
and evaluation. Using k-fold cross-validation, we plotted learning and validation 
curves to diagnose the common problems of learning algorithms, such as overfitting 
and underfitting. Using grid search, we further fine-tuned our model. We concluded 
this chapter by looking at a confusion matrix and various different performance 
metrics that can be useful to further optimize a model's performance for a specific 
problem task. Now, we should be well-equipped with the essential techniques to 
build supervised machine learning models for classification successfully.

In the next chapter, we will take a look at ensemble methods, methods that allow 
us to combine multiple models and classification algorithms to boost the predictive 
performance of a machine learning system even further.
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Combining Different Models 
for Ensemble Learning

In the previous chapter, we focused on the best practices for tuning and evaluating 
different models for classification. In this chapter, we will build upon these 
techniques and explore different methods for constructing a set of classifiers that  
can often have a better predictive performance than any of its individual members. 
You will learn how to:

•	 Make predictions based on majority voting
•	 Reduce overfitting by drawing random combinations of the training set  

with repetition
•	 Build powerful models from weak learners that learn from their mistakes

Learning with ensembles
The goal behind ensemble methods is to combine different classifiers into a  
meta-classifier that has a better generalization performance than each individual 
classifier alone. For example, assuming that we collected predictions from 10 experts, 
ensemble methods would allow us to strategically combine these predictions by the 
10 experts to come up with a prediction that is more accurate and robust than the 
predictions by each individual expert. As we will see later in this chapter, there are 
several different approaches for creating an ensemble of classifiers. In this section, 
we will introduce a basic perception about how ensembles work and why they are 
typically recognized for yielding a good generalization performance.
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In this chapter, we will focus on the most popular ensemble methods that use the 
majority voting principle. Majority voting simply means that we select the class 
label that has been predicted by the majority of classifiers, that is, received more than 
50 percent of the votes. Strictly speaking, the term majority vote refers to binary 
class settings only. However, it is easy to generalize the majority voting principle to 
multi-class settings, which is called plurality voting. Here, we select the class label 
that received the most votes (mode). The following diagram illustrates the concept 
of majority and plurality voting for an ensemble of 10 classifiers where each unique 
symbol (triangle, square, and circle) represents a unique class label:

Using the training set, we start by training m different classifiers ( 1, , mC C… ). 
Depending on the technique, the ensemble can be built from different classification 
algorithms, for example, decision trees, support vector machines, logistic regression 
classifiers, and so on. Alternatively, we can also use the same base classification 
algorithm fitting different subsets of the training set. One prominent example of this 
approach would be the random forest algorithm, which combines different decision 
tree classifiers. The following diagram illustrates the concept of a general ensemble 
approach using majority voting:
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To predict a class label via a simple majority or plurality voting, we combine the 
predicted class labels of each individual classifier jC  and select the class label ŷ  that 
received the most votes:

( ) ( ) ( ){ }1 2ˆ , , , my mode C C C= …x x x

For example, in a binary classification task where 1 1class = −  and 2 1class = + , we can 
write the majority vote prediction as follows:

( ) ( ) ( )1 0

1

m
ji

j
j

if C
C sign C

otherwise

 ≥  = =  
−  

∑∑
x

x x

To illustrate why ensemble methods can work better than individual classifiers 
alone, let's apply the simple concepts of combinatorics. For the following example, 
we make the assumption that all n base classifiers for a binary classification task have 
an equal error rate ε . Furthermore, we assume that the classifiers are independent 
and the error rates are not correlated. Under those assumptions, we can simply 
express the error probability of an ensemble of base classifiers as a probability  
mass function of a binomial distribution:
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Here, nk  is the binomial coefficient n choose k. In other words, we compute the 
probability that the prediction of the ensemble is wrong. Now let's take a look  
at a more concrete example of 11 base classifiers ( 11n = ) with an error rate of  
0.25 ( 0.25ε = ):

( ) ( )
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11
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k
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As we can see, the error rate of the ensemble (0.034) is much lower than the error 
rate of each individual classifier (0.25) if all the assumptions are met. Note that, in 
this simplified illustration, a 50-50 split by an even number of classifiers n is treated 
as an error, whereas this is only true half of the time. To compare such an idealistic 
ensemble classifier to a base classifier over a range of different base error rates, let's 
implement the probability mass function in Python:

>>> from scipy.misc import comb
>>> import math
>>> def ensemble_error(n_classifier, error):
...     k_start = math.ceil(n_classifier / 2.0)
...     probs = [comb(n_classifier, k) * 
...              error**k * 
...              (1-error)**(n_classifier - k) 
...              for k in range(k_start, n_classifier + 1)]
...     return sum(probs)
>>> ensemble_error(n_classifier=11, error=0.25)
0.034327507019042969

After we've implemented the ensemble_error function, we can compute the 
ensemble error rates for a range of different base errors from 0.0 to 1.0 to visualize 
the relationship between ensemble and base errors in a line graph:

>>> import numpy as np
>>> error_range = np.arange(0.0, 1.01, 0.01)
>>> ens_errors = [ensemble_error(n_classifier=11, error=error) 
...               for error in error_range]
>>> import matplotlib.pyplot as plt
>>> plt.plot(error_range, ens_errors, 
...          label='Ensemble error', 
...          linewidth=2)
>>> plt.plot(error_range, error_range, 
...          linestyle='--', label='Base error',
...          linewidth=2)
>>> plt.xlabel('Base error')
>>> plt.ylabel('Base/Ensemble error')
>>> plt.legend(loc='upper left')
>>> plt.grid()
>>> plt.show()

As we can see in the resulting plot, the error probability of an ensemble is always 
better than the error of an individual base classifier as long as the base classifiers 
perform better than random guessing ( 0.5ε < ). Note that the y-axis depicts the base  
error (dotted line) as well as the ensemble error (continuous line):
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Implementing a simple majority vote 
classifier
After the short introduction to ensemble learning in the previous section, let's start 
with a warm-up exercise and implement a simple ensemble classifier for majority 
voting in Python. Although the following algorithm also generalizes to multi-class 
settings via plurality voting, we will use the term majority voting for simplicity as is 
also often done in literature.

The algorithm that we are going to implement will allow us to combine different 
classification algorithms associated with individual weights for confidence. Our 
goal is to build a stronger meta-classifier that balances out the individual classifiers' 
weaknesses on a particular dataset. In more precise mathematical terms, we can 
write the weighted majority vote as follows:

( )( )
1

ˆ arg max
m

j A ji j
y w C iχ

=

= =∑ x
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Here, jw  is a weight associated with a base classifier, jC , ŷ  is the predicted class label 
of the ensemble, Aχ  (Greek chi) is the characteristic function ( )jC i A = ∈ x , and A is the 
set of unique class labels. For equal weights, we can simplify this equation and write 
it as follows:

( ) ( ) ( ){ }1 2ˆ , , , my mode C C C= …x x x

To better understand the concept of weighting, we will now take a look at a  
more concrete example. Let's assume that we have an ensemble of three base 
classifiers jC  ( { })0,1j∈  and want to predict the class label of a given sample instance x. 
Two out of three base classifiers predict the class label 0, and one 3C  predicts that the 
sample belongs to class 1. If we weight the predictions of each base classifier equally, 
the majority vote will predict that the sample belongs to class 0:

( ) ( ) ( )1 2 30, 0, 1C x C x C x→ → →

{ }ˆ 0,0,1 0y mode= =

Now let's assign a weight of 0.6 to 3C  and weight 1C  and 2C  by a coefficient of 0.2, 
respectively.

( )( )
1

ˆ arg max
m

j A ji j
y w C iχ

=

= =∑ x

[ ]0 0 1arg max 0.2 0.2 0.6 1
i

i i i= × + × + × =

More intuitively, since 3 0.2 0.6× = , we can say that the prediction made by 3C  has 
three times more weight than the predictions by 1C  or 2C , respectively. We can write 
this as follows:

{ }ˆ 0,0,1,1,1 1y mode= =
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To translate the concept of the weighted majority vote into Python code, we can use 
NumPy's convenient argmax and bincount functions:

>>> import numpy as np
>>> np.argmax(np.bincount([0, 0, 1], 
...           weights=[0.2, 0.2, 0.6]))
1

As discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, 
certain classifiers in scikit-learn can also return the probability of a predicted class 
label via the predict_proba method. Using the predicted class probabilities instead 
of the class labels for majority voting can be useful if the classifiers in our ensemble 
are well calibrated. The modified version of the majority vote for predicting class 
labels from probabilities can be written as follows:

1

ˆ arg max
m

j iji j
y w p

=

= ∑

Here, ijp  is the predicted probability of the jth classifier for class label i.

To continue with our previous example, let's assume that we have a binary 
classification problem with class labels { }0,1i∈  and an ensemble of three classifiers jC

( { }1,2,3j∈ ). Let's assume that the classifier jC  returns the following class membership 
probabilities for a particular sample x :

( ) [ ] ( ) [ ] ( ) [ ]1 2 30.9,0.1 , 0.8,0.2 , 0.4,0.6C C C→ → →x x x

We can then calculate the individual class probabilities as follows:

( )0 | 0.2 0.9 0.2 0.8 0.6 0.4 0.58p i = × + × + × =x

( )1 | 0.2 0.1 0.2 0.2 0.6 0.06 0.42p i = × + × + × =x

( ) ( )0 1ˆ arg max | , | 0
i

y p i p i= =  x x
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To implement the weighted majority vote based on class probabilities, we can again 
make use of NumPy using numpy.average and np.argmax:

>>> ex = np.array([[0.9, 0.1],
...                [0.8, 0.2],
...                [0.4, 0.6]])
>>> p = np.average(ex, axis=0, weights=[0.2, 0.2, 0.6])
>>> p
array([ 0.58,  0.42])
>>> np.argmax(p)
0

Putting everything together, let's now implement a MajorityVoteClassifier  
in Python:

from sklearn.base import BaseEstimator
from sklearn.base import ClassifierMixin
from sklearn.preprocessing import LabelEncoder
from sklearn.externals import six
from sklearn.base import clone
from sklearn.pipeline import _name_estimators
import numpy as np
import operator

class MajorityVoteClassifier(BaseEstimator,
                             ClassifierMixin):
    """ A majority vote ensemble classifier

    Parameters
    ----------
    classifiers : array-like, shape = [n_classifiers]
      Different classifiers for the ensemble

    vote : str, {'classlabel', 'probability'}
      Default: 'classlabel'
      If 'classlabel' the prediction is based on
      the argmax of class labels. Else if
      'probability', the argmax of the sum of
      probabilities is used to predict the class label
      (recommended for calibrated classifiers).

    weights : array-like, shape = [n_classifiers]
      Optional, default: None
      If a list of `int` or `float` values are
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      provided, the classifiers are weighted by
      importance; Uses uniform weights if `weights=None`.

    """
    def __init__(self, classifiers,
                 vote='classlabel', weights=None):

        self.classifiers = classifiers
        self.named_classifiers = {key: value for
                                  key, value in
                                  _name_estimators(classifiers)}
        self.vote = vote
        self.weights = weights

    def fit(self, X, y):
        """ Fit classifiers.

        Parameters
        ----------
        X : {array-like, sparse matrix},
            shape = [n_samples, n_features]
            Matrix of training samples.

        y : array-like, shape = [n_samples]
            Vector of target class labels.

        Returns
        -------
        self : object

        """
        # Use LabelEncoder to ensure class labels start
        # with 0, which is important for np.argmax
        # call in self.predict
        self.lablenc_ = LabelEncoder()
        self.lablenc_.fit(y)
        self.classes_ = self.lablenc_.classes_
        self.classifiers_ = []
        for clf in self.classifiers:
            fitted_clf = clone(clf).fit(X,
                              self.lablenc_.transform(y))
            self.classifiers_.append(fitted_clf)
        return self
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I added a lot of comments to the code to better understand the individual parts. 
However, before we implement the remaining methods, let's take a quick break 
and discuss some of the code that may look confusing at first. We used the parent 
classes BaseEstimator and ClassifierMixin to get some base functionality for free, 
including the methods get_params and set_params to set and return the classifier's 
parameters as well as the score method to calculate the prediction accuracy, 
respectively. Also note that we imported six to make the MajorityVoteClassifier 
compatible with Python 2.7.

Next we will add the predict method to predict the class label via majority vote 
based on the class labels if we initialize a new MajorityVoteClassifier object 
with vote='classlabel'. Alternatively, we will be able to initialize the ensemble 
classifier with vote='probability' to predict the class label based on the class 
membership probabilities. Furthermore, we will also add a predict_proba method 
to return the average probabilities, which is useful to compute the Receiver Operator 
Characteristic area under the curve (ROC AUC).

    def predict(self, X):
        """ Predict class labels for X.

        Parameters
        ----------
        X : {array-like, sparse matrix},
            Shape = [n_samples, n_features]
            Matrix of training samples.

        Returns
        ----------
        maj_vote : array-like, shape = [n_samples]
            Predicted class labels.

        """
        if self.vote == 'probability':
            maj_vote = np.argmax(self.predict_proba(X),
                                 axis=1)
        else:  # 'classlabel' vote

            #  Collect results from clf.predict calls
            predictions = np.asarray([clf.predict(X)
                                      for clf in
                                      self.classifiers_]).T

            maj_vote = np.apply_along_axis(
                           lambda x:
                           np.argmax(np.bincount(x,                                             
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                                        weights=self.weights)),
                           axis=1,
                           arr=predictions)
        maj_vote = self.lablenc_.inverse_transform(maj_vote)
        return maj_vote

    def predict_proba(self, X):
        """ Predict class probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix},
            shape = [n_samples, n_features]
            Training vectors, where n_samples is
            the number of samples and
            n_features is the number of features.

        Returns
        ----------
        avg_proba : array-like,
            shape = [n_samples, n_classes]
            Weighted average probability for
            each class per sample.

        """
        probas = np.asarray([clf.predict_proba(X)
                             for clf in self.classifiers_])
        avg_proba = np.average(probas, 
                               axis=0, weights=self.weights)
        return avg_proba

    def get_params(self, deep=True):
        """ Get classifier parameter names for GridSearch"""
        if not deep:
            return super(MajorityVoteClassifier,
                         self).get_params(deep=False)
        else:
            out = self.named_classifiers.copy()
            for name, step in\ 
                    six.iteritems(self.named_classifiers):
                for key, value in six.iteritems(
                        step.get_params(deep=True)):
                    out['%s__%s' % (name, key)] = value
            return out
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Also, note that we defined our own modified version of the get_params methods to 
use the _name_estimators function in order to access the parameters of individual 
classifiers in the ensemble. This may look a little bit complicated at first, but it will 
make perfect sense when we use grid search for hyperparameter-tuning in  
later sections.

Although our MajorityVoteClassifier implementation is 
very useful for demonstration purposes, I also implemented a more 
sophisticated version of the majority vote classifier in scikit-learn. It 
will become available as sklearn.ensemble.VotingClassifier 
in the next release version (v0.17).

Combining different algorithms for 
classification with majority vote
Now it is about time to put the MajorityVoteClassifier that we implemented in 
the previous section into action. But first, let's prepare a dataset that we can test it 
on. Since we are already familiar with techniques to load datasets from CSV files, 
we will take a shortcut and load the Iris dataset from scikit-learn's dataset module. 
Furthermore, we will only select two features, sepal width and petal length, to make 
the classification task more challenging. Although our MajorityVoteClassifier 
generalizes to multiclass problems, we will only classify flower samples from the two 
classes, Iris-Versicolor and Iris-Virginica, to compute the ROC AUC. The code is  
as follows:

>>> from sklearn import datasets
>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.preprocessing import LabelEncoder
>>> iris = datasets.load_iris()
>>> X, y = iris.data[50:, [1, 2]], iris.target[50:]
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)
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Note that scikit-learn uses the predict_proba method (if applicable) 
to compute the ROC AUC score. In Chapter 3, A Tour of Machine Learning 
Classifiers Using Scikit-learn, we saw how the class probabilities are 
computed in logistic regression models. In decision trees, the probabilities 
are calculated from a frequency vector that is created for each node 
at training time. The vector collects the frequency values of each class 
label computed from the class label distribution at that node. Then the 
frequencies are normalized so that they sum up to 1. Similarly, the class 
labels of the k-nearest neighbors are aggregated to return the normalized 
class label frequencies in the k-nearest neighbors algorithm. Although the 
normalized probabilities returned by both the decision tree and k-nearest 
neighbors classifier may look similar to the probabilities obtained from a 
logistic regression model, we have to be aware that these are actually not 
derived from probability mass functions.

Next we split the Iris samples into 50 percent training and 50 percent test data:

>>> X_train, X_test, y_train, y_test =\
...        train_test_split(X, y, 
...                         test_size=0.5, 
...                         random_state=1)

Using the training dataset, we now will train three different classifiers—a  
logistic regression classifier, a decision tree classifier, and a k-nearest neighbors 
classifier—and look at their individual performances via a 10-fold cross-validation  
on the training dataset before we combine them into an ensemble classifier:

>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier 
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> clf1 = LogisticRegression(penalty='l2', 
...                           C=0.001, 
...                           random_state=0)
>>> clf2 = DecisionTreeClassifier(max_depth=1, 
...                               criterion='entropy', 
...                               random_state=0)
>>> clf3 = KNeighborsClassifier(n_neighbors=1, 
...                             p=2, 
...                             metric='minkowski')
>>> pipe1 = Pipeline([['sc', StandardScaler()],
...                   ['clf', clf1]])



Combining Different Models for Ensemble Learning

[ 214 ]

>>> pipe3 = Pipeline([['sc', StandardScaler()],
...                   ['clf', clf3]])
>>> clf_labels = ['Logistic Regression', 'Decision Tree', 'KNN']
>>> print('10-fold cross validation:\n')
>>> for clf, label in zip([pipe1, clf2, pipe3], clf_labels):
...     scores = cross_val_score(estimator=clf, 
>>>                              X=X_train, 
>>>                              y=y_train, 
>>>                              cv=10, 
>>>                              scoring='roc_auc')
>>>     print("ROC AUC: %0.2f (+/- %0.2f) [%s]" 
...                % (scores.mean(), scores.std(), label))

The output that we receive, as shown in the following snippet, shows that the 
predictive performances of the individual classifiers are almost equal:

10-fold cross validation:

ROC AUC: 0.92 (+/- 0.20) [Logistic Regression]
ROC AUC: 0.92 (+/- 0.15) [Decision Tree]
ROC AUC: 0.93 (+/- 0.10) [KNN]

You may be wondering why we trained the logistic regression and k-nearest 
neighbors classifier as part of a pipeline. The reason behind it is that, as discussed  
in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, both the  
logistic regression and k-nearest neighbors algorithms (using the Euclidean distance 
metric) are not scale-invariant in contrast with decision trees. Although the Iris 
features are all measured on the same scale (cm), it is a good habit to work with 
standardized features.

Now let's move on to the more exciting part and combine the individual classifiers 
for majority rule voting in our MajorityVoteClassifier:

>>> mv_clf = MajorityVoteClassifier(
...                 classifiers=[pipe1, clf2, pipe3])
>>> clf_labels += ['Majority Voting']
>>> all_clf = [pipe1, clf2, pipe3, mv_clf]
>>> for clf, label in zip(all_clf, clf_labels):
...     scores = cross_val_score(estimator=clf, 
...                              X=X_train, 
...                              y=y_train, 
...                              cv=10, 
...                              scoring='roc_auc')
...     print("Accuracy: %0.2f (+/- %0.2f) [%s]" 
...                % (scores.mean(), scores.std(), label))
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ROC AUC: 0.92 (+/- 0.20) [Logistic Regression]
ROC AUC: 0.92 (+/- 0.15) [Decision Tree]
ROC AUC: 0.93 (+/- 0.10) [KNN]
ROC AUC: 0.97 (+/- 0.10) [Majority Voting]

As we can see, the performance of the MajorityVotingClassifier has substantially 
improved over the individual classifiers in the 10-fold cross-validation evaluation.

Evaluating and tuning the ensemble 
classifier
In this section, we are going to compute the ROC curves from the test set to check if 
the MajorityVoteClassifier generalizes well to unseen data. We should remember 
that the test set is not to be used for model selection; its only purpose is to report an 
unbiased estimate of the generalization performance of a classifier system. The code 
is as follows:

>>> from sklearn.metrics import roc_curve
>>> from sklearn.metrics import auc
>>> colors = ['black', 'orange', 'blue', 'green']
>>> linestyles = [':', '--', '-.', '-']
>>> for clf, label, clr, ls \
...         in zip(all_clf, clf_labels, colors, linestyles):
...     # assuming the label of the positive class is 1
...     y_pred = clf.fit(X_train, 
...                      y_train).predict_proba(X_test)[:, 1]
...     fpr, tpr, thresholds = roc_curve(y_true=y_test, 
...                                      y_score=y_pred)
...     roc_auc = auc(x=fpr, y=tpr)
...     plt.plot(fpr, tpr, 
...              color=clr, 
...              linestyle=ls, 
...              label='%s (auc = %0.2f)' % (label, roc_auc))
>>> plt.legend(loc='lower right')
>>> plt.plot([0, 1], [0, 1], 
...          linestyle='--', 
...          color='gray', 
...          linewidth=2)
>>> plt.xlim([-0.1, 1.1])
>>> plt.ylim([-0.1, 1.1])
>>> plt.grid()
>>> plt.xlabel('False Positive Rate')
>>> plt.ylabel('True Positive Rate')
>>> plt.show()
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As we can see in the resulting ROC, the ensemble classifier also performs well on  
the test set (ROC AUC = 0.95), whereas the k-nearest neighbors classifier seems to  
be overfitting the training data (training ROC AUC = 0.93, test ROC AUC = 0.86):

Since we only selected two features for the classification examples, it would be 
interesting to see what the decision region of the ensemble classifier actually 
looks like. Although it is not necessary to standardize the training features prior 
to model fitting because our logistic regression and k-nearest neighbors pipelines 
will automatically take care of this, we will standardize the training set so that the 
decision regions of the decision tree will be on the same scale for visual purposes. 
The code is as follows:

>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> from itertools import product
>>> x_min = X_train_std[:, 0].min() - 1
>>> x_max = X_train_std[:, 0].max() + 1
>>> y_min = X_train_std[:, 1].min() - 1
>>> y_max = X_train_std[:, 1].max() + 1
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>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(nrows=2, ncols=2, 
...                         sharex='col', 
...                         sharey='row', 
...                         figsize=(7, 5))
>>> for idx, clf, tt in zip(product([0, 1], [0, 1]),
...                         all_clf, clf_labels):
...     clf.fit(X_train_std, y_train)
...     Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
...     Z = Z.reshape(xx.shape)
...     axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.3)    
...     axarr[idx[0], idx[1]].scatter(X_train_std[y_train==0, 0], 
...                                   X_train_std[y_train==0, 1], 
...                                   c='blue', 
...                                   marker='^',
...                                   s=50)    
...     axarr[idx[0], idx[1]].scatter(X_train_std[y_train==1, 0], 
...                                   X_train_std[y_train==1, 1], 
...                                   c='red', 
...                                   marker='o',
...                                   s=50)   
...     axarr[idx[0], idx[1]].set_title(tt)
>>> plt.text(-3.5, -4.5, 
...          s='Sepal width [standardized]', 
...          ha='center', va='center', fontsize=12)
>>> plt.text(-10.5, 4.5, 
...          s='Petal length [standardized]', 
...          ha='center', va='center', 
...          fontsize=12, rotation=90)
>>> plt.show()
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Interestingly but also as expected, the decision regions of the ensemble classifier 
seem to be a hybrid of the decision regions from the individual classifiers. At first 
glance, the majority vote decision boundary looks a lot like the decision boundary of 
the k-nearest neighbor classifier. However, we can see that it is orthogonal to the y 
axis for 1sepal width ≥ , just like the decision tree stump:

Before you learn how to tune the individual classifier parameters for ensemble 
classification, let's call the get_params method to get a basic idea of how we can 
access the individual parameters inside a GridSearch object:

>>> mv_clf.get_params()
{'decisiontreeclassifier': DecisionTreeClassifier(class_weight=None, 
criterion='entropy', max_depth=1,
             max_features=None, max_leaf_nodes=None, min_samples_
leaf=1,
             min_samples_split=2, min_weight_fraction_leaf=0.0,
             random_state=0, splitter='best'),
 'decisiontreeclassifier__class_weight': None,
 'decisiontreeclassifier__criterion': 'entropy',
 [...]
 'decisiontreeclassifier__random_state': 0,
 'decisiontreeclassifier__splitter': 'best',
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 'pipeline-1': Pipeline(steps=[('sc', StandardScaler(copy=True, with_
mean=True, with_std=True)), ('clf', LogisticRegression(C=0.001, class_
weight=None, dual=False, fit_intercept=True,
           intercept_scaling=1, max_iter=100, multi_class='ovr',
           penalty='l2', random_state=0, solver='liblinear', 
tol=0.0001,
           verbose=0))]),
 'pipeline-1__clf': LogisticRegression(C=0.001, class_weight=None, 
dual=False, fit_intercept=True,
           intercept_scaling=1, max_iter=100, multi_class='ovr',
           penalty='l2', random_state=0, solver='liblinear', 
tol=0.0001,
           verbose=0),
 'pipeline-1__clf__C': 0.001,
 'pipeline-1__clf__class_weight': None,
 'pipeline-1__clf__dual': False,
 [...]
 'pipeline-1__sc__with_std': True,
 'pipeline-2': Pipeline(steps=[('sc', StandardScaler(copy=True, with_
mean=True, with_std=True)), ('clf', KNeighborsClassifier(algorithm='au
to', leaf_size=30, metric='minkowski',
            metric_params=None, n_neighbors=1, p=2, 
weights='uniform'))]),
 'pipeline-2__clf': KNeighborsClassifier(algorithm='auto', leaf_
size=30, metric='minkowski',
            metric_params=None, n_neighbors=1, p=2, 
weights='uniform'),
 'pipeline-2__clf__algorithm': 'auto',
 [...]
 'pipeline-2__sc__with_std': True}

Based on the values returned by the get_params method, we now know how to 
access the individual classifier's attributes. Let's now tune the inverse regularization 
parameter C of the logistic regression classifier and the decision tree depth via a grid 
search for demonstration purposes. The code is as follows:

>>> from sklearn.grid_search import GridSearchCV
>>> params = {'decisiontreeclassifier__max_depth': [1, 2],
...           'pipeline-1__clf__C': [0.001, 0.1, 100.0]}
>>> grid = GridSearchCV(estimator=mv_clf, 
...                     param_grid=params, 
...                     cv=10, 
...                     scoring='roc_auc')
>>> grid.fit(X_train, y_train)
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After the grid search has completed, we can print the different hyperparameter  
value combinations and the average ROC AUC scores computed via 10-fold  
cross-validation. The code is as follows:

>>> for params, mean_score, scores in grid.grid_scores_:
...     print("%0.3f+/-%0.2f %r"
...            % (mean_score, scores.std() / 2, params))
0.967+/-0.05 {'pipeline-1__clf__C': 0.001, 'decisiontreeclassifier__
max_depth': 1}
0.967+/-0.05 {'pipeline-1__clf__C': 0.1, 'decisiontreeclassifier__max_
depth': 1}
1.000+/-0.00 {'pipeline-1__clf__C': 100.0, 'decisiontreeclassifier__
max_depth': 1}
0.967+/-0.05 {'pipeline-1__clf__C': 0.001, 'decisiontreeclassifier__
max_depth': 2}
0.967+/-0.05 {'pipeline-1__clf__C': 0.1, 'decisiontreeclassifier__max_
depth': 2}
1.000+/-0.00 {'pipeline-1__clf__C': 100.0, 'decisiontreeclassifier__
max_depth': 2}

>>> print('Best parameters: %s' % grid.best_params_)
Best parameters: {'pipeline-1__clf__C': 100.0, 
'decisiontreeclassifier__max_depth': 1}

>>> print('Accuracy: %.2f' % grid.best_score_)
Accuracy: 1.00

As we can see, we get the best cross-validation results when we choose a lower 
regularization strength (C = 100.0) whereas the tree depth does not seem to affect 
the performance at all, suggesting that a decision stump is sufficient to separate 
the data. To remind ourselves that it is a bad practice to use the test dataset more 
than once for model evaluation, we are not going to estimate the generalization 
performance of the tuned hyperparameters in this section. We will move on swiftly 
to an alternative approach for ensemble learning: bagging.

The majority vote approach we implemented in this section is 
sometimes also referred to as stacking. However, the stacking 
algorithm is more typically used in combination with a logistic 
regression model that predicts the final class label using the 
predictions of the individual classifiers in the ensemble as input, 
which has been described in more detail by David H. Wolpert in D. H. 
Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.
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Bagging – building an ensemble of 
classifiers from bootstrap samples
Bagging is an ensemble learning technique that is closely related to the 
MajorityVoteClassifier that we implemented in the previous section,  
as illustrated in the following diagram:
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However, instead of using the same training set to fit the individual classifiers in the 
ensemble, we draw bootstrap samples (random samples with replacement) from the 
initial training set, which is why bagging is also known as bootstrap aggregating. 
To provide a more concrete example of how bootstrapping works, let's consider 
the example shown in the following figure. Here, we have seven different training 
instances (denoted as indices 1-7) that are sampled randomly with replacement 
in each round of bagging. Each bootstrap sample is then used to fit a classifier jC , 
which is most typically an unpruned decision tree:

Bagging is also related to the random forest classifier that we introduced in  
Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. In fact, random 
forests are a special case of bagging where we also use random feature subsets  
to fit the individual decision trees. Bagging was first proposed by Leo Breiman  
in a technical report in 1994; he also showed that bagging can improve the accuracy 
of unstable models and decrease the degree of overfitting. I highly recommend  
you read about his research in L. Breiman. Bagging Predictors. Machine Learning, 
24(2):123–140, 1996, which is freely available online, to learn more about bagging.
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To see bagging in action, let's create a more complex classification problem using  
the Wine dataset that we introduced in Chapter 4, Building Good Training Sets – Data 
Preprocessing. Here, we will only consider the Wine classes 2 and 3, and we select two 
features: Alcohol and Hue.

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)
>>> df_wine.columns = ['Class label', 'Alcohol', 
...                    'Malic acid', 'Ash', 
...                    'Alcalinity of ash', 
...                    'Magnesium', 'Total phenols', 
...                    'Flavanoids', 'Nonflavanoid phenols',
...                    'Proanthocyanins', 
...                    'Color intensity', 'Hue', 
...                    'OD280/OD315 of diluted wines', 
...                    'Proline']
>>> df_wine = df_wine[df_wine['Class label'] != 1]
>>> y = df_wine['Class label'].values
>>> X = df_wine[['Alcohol', 'Hue']].values

Next we encode the class labels into binary format and split the dataset into  
60 percent training and 40 percent test set, respectively:

>>> from sklearn.preprocessing import LabelEncoder
>>> from sklearn.cross_validation import train_test_split
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)
>>> X_train, X_test, y_train, y_test =\
...            train_test_split(X, y, 
...                             test_size=0.40, 
...                             random_state=1)

A BaggingClassifier algorithm is already implemented in scikit-learn, which we 
can import from the ensemble submodule. Here, we will use an unpruned decision 
tree as the base classifier and create an ensemble of 500 decision trees fitted on 
different bootstrap samples of the training dataset:

>>> from sklearn.ensemble import BaggingClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
...                               max_depth=None,
...                               random_state=1)
>>> bag = BaggingClassifier(base_estimator=tree,
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...                         n_estimators=500, 

...                         max_samples=1.0, 

...                         max_features=1.0, 

...                         bootstrap=True, 

...                         bootstrap_features=False, 

...                         n_jobs=1, 

...                         random_state=1)

Next we will calculate the accuracy score of the prediction on the training and test 
dataset to compare the performance of the bagging classifier to the performance of a 
single unpruned decision tree:

>>> from sklearn.metrics import accuracy_score
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
...        % (tree_train, tree_test))
Decision tree train/test accuracies 1.000/0.833

Based on the accuracy values that we printed by executing the preceding  
code snippet, the unpruned decision tree predicts all class labels of the training 
samples correctly; however, the substantially lower test accuracy indicates high 
variance (overfitting) of the model:

>>> bag = bag.fit(X_train, y_train)
>>> y_train_pred = bag.predict(X_train)
>>> y_test_pred = bag.predict(X_test)
>>> bag_train = accuracy_score(y_train, y_train_pred) 
>>> bag_test = accuracy_score(y_test, y_test_pred) 
>>> print('Bagging train/test accuracies %.3f/%.3f'
...        % (bag_train, bag_test))
Bagging train/test accuracies 1.000/0.896

Although the training accuracies of the decision tree and bagging classifier are 
similar on the training set (both 1.0), we can see that the bagging classifier has a 
slightly better generalization performance as estimated on the test set. Next let's 
compare the decision regions between the decision tree and bagging classifier:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))
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>>> f, axarr = plt.subplots(nrows=1, ncols=2, 
...                         sharex='col', 
...                         sharey='row', 
...                         figsize=(8, 3))
>>> for idx, clf, tt in zip([0, 1],
...                         [tree, bag],
...                         ['Decision Tree', 'Bagging']):
...     clf.fit(X_train, y_train)
...     
...     Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
...     Z = Z.reshape(xx.shape)
...     axarr[idx].contourf(xx, yy, Z, alpha=0.3)
...     axarr[idx].scatter(X_train[y_train==0, 0], 
...                        X_train[y_train==0, 1], 
...                        c='blue', marker='^')    
...     axarr[idx].scatter(X_train[y_train==1, 0], 
...                        X_train[y_train==1, 1], 
...                        c='red', marker='o')    
...     axarr[idx].set_title(tt)
>>> axarr[0].set_ylabel(Alcohol', fontsize=12)
>>> plt.text(10.2, -1.2, 
...          s=Hue', 
...          ha='center', va='center', fontsize=12)
>>> plt.show()

As we can see in the resulting plot, the piece-wise linear decision boundary of the 
three-node deep decision tree looks smoother in the bagging ensemble:
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We only looked at a very simple bagging example in this section. In practice, more 
complex classification tasks and datasets' high dimensionality can easily lead to 
overfitting in single decision trees and this is where the bagging algorithm can really 
play out its strengths. Finally, we shall note that the bagging algorithm can be an 
effective approach to reduce the variance of a model. However, bagging is ineffective 
in reducing model bias, which is why we want to choose an ensemble of classifiers 
with low bias, for example, unpruned decision trees.

Leveraging weak learners via adaptive 
boosting
In this section about ensemble methods, we will discuss boosting with a special 
focus on its most common implementation, AdaBoost (short for Adaptive Boosting).

The original idea behind AdaBoost was formulated by Robert Schapire in 
1990 (R. E. Schapire. The Strength of Weak Learnability. Machine learning, 
5(2):197–227, 1990). After Robert Schapire and Yoav Freund presented the 
AdaBoost algorithm in the Proceedings of the Thirteenth International 
Conference (ICML 1996), AdaBoost became one of the most widely used 
ensemble methods in the years that followed (Y. Freund, R. E. Schapire, et 
al. Experiments with a New Boosting Algorithm. In ICML, volume 96, pages 
148–156, 1996). In 2003, Freund and Schapire received the Goedel Prize 
for their groundbreaking work, which is a prestigious prize for the most 
outstanding publications in the computer science field.

In boosting, the ensemble consists of very simple base classifiers, also often referred 
to as weak learners, that have only a slight performance advantage over random 
guessing. A typical example of a weak learner would be a decision tree stump. 
The key concept behind boosting is to focus on training samples that are hard 
to classify, that is, to let the weak learners subsequently learn from misclassified 
training samples to improve the performance of the ensemble. In contrast to bagging, 
the initial formulation of boosting, the algorithm uses random subsets of training 
samples drawn from the training dataset without replacement. The original boosting 
procedure is summarized in four key steps as follows:

1.	 Draw a random subset of training samples 1d  without replacement from the 
training set D  to train a weak learner 1C .

2.	 Draw second random training subset 2d  without replacement from the 
training set and add 50 percent of the samples that were previously 
misclassified to train a weak learner 2C .
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3.	 Find the training samples 3d  in the training set D  on which 1C  and 2C  
disagree to train a third weak learner 3C .

4.	 Combine the weak learners 1C , 2C , and 3C  via majority voting.

As discussed by Leo Breiman (L. Breiman. Bias, Variance, and Arcing Classifiers. 1996), 
boosting can lead to a decrease in bias as well as variance compared to bagging 
models. In practice, however, boosting algorithms such as AdaBoost are also known 
for their high variance, that is, the tendency to overfit the training data (G. Raetsch, 
T. Onoda, and K. R. Mueller. An Improvement of Adaboost to Avoid Overfitting. In Proc. 
of the Int. Conf. on Neural Information Processing. Citeseer, 1998).

In contrast to the original boosting procedure as described here, AdaBoost uses 
the complete training set to train the weak learners where the training samples are 
reweighted in each iteration to build a strong classifier that learns from the mistakes 
of the previous weak learners in the ensemble. Before we dive deeper into the 
specific details of the AdaBoost algorithm, let's take a look at the following  
figure to get a better grasp of the basic concept behind AdaBoost:
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To walk through the AdaBoost illustration step by step, we start with subfigure 1, 
which represents a training set for binary classification where all training samples 
are assigned equal weights. Based on this training set, we train a decision stump 
(shown as a dashed line) that tries to classify the samples of the two classes (triangles 
and circles) as well as possible by minimizing the cost function (or the impurity score 
in the special case of decision tree ensembles). For the next round (subfigure 2),  
we assign a larger weight to the two previously misclassified samples (circles). 
Furthermore, we lower the weight of the correctly classified samples. The next 
decision stump will now be more focused on the training samples that have the 
largest weights, that is, the training samples that are supposedly hard to classify. 
The weak learner shown in subfigure 2 misclassifies three different samples from 
the circle-class, which are then assigned a larger weight as shown in subfigure 3. 
Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we 
would then combine the three weak learners trained on different reweighted training 
subsets by a weighted majority vote, as shown in subfigure 4.

Now that have a better understanding behind the basic concept of AdaBoost, let's 
take a more detailed look at the algorithm using pseudo code. For clarity, we will 
denote element-wise multiplication by the cross symbol ( )×  and the dot product 
between two vectors by a dot symbol ( )⋅ , respectively. The steps are as follows:

1.	 Set weight vector w  to uniform weights where 1ii
w =∑

2.	 For j in m boosting rounds, do the following:
3.	 Train a weighted weak learner: (train , ,jC = X y w ).
4.	 Predict class labels: ( )ˆ predict ,jy C= X .
5.	 Compute weighted error rate: ( )ˆε = ⋅ ==w y y .

6.	 Compute coefficient: 10.5logj
εα
ε
−

= .

7.	 Update weights: ( )ˆ: exp jα= × − × ×w w y y .

8.	 Normalize weights to sum to 1: : ii
w= ∑w w / .

9.	 Compute final prediction: ( )( )( )1
ˆ predict , 0m

j jj
C

=
= × >∑y Xα .

Note that the expression ( )ˆ ==y y  in step 5 refers to a vector of 1s and 0s, where a 1 is 
assigned if the prediction is incorrect and 0 is assigned otherwise.
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Although the AdaBoost algorithm seems to be pretty straightforward, let's walk 
through a more concrete example using a training set consisting of 10 training 
samples as illustrated in the following table:

The first column of the table depicts the sample indices of the training samples 1 
to 10. In the second column, we see the feature values of the individual samples 
assuming this is a one-dimensional dataset. The third column shows the true class 
label iy  for each training sample ix , where { }1, 1iy ∈ − . The initial weights are shown in 
the fourth column; we initialize the weights to uniform and normalize them to sum 
to one. In the case of the 10 sample training set, we therefore assign the 0.1 to each 
weight iw  in the weight vector w . The predicted class labels ŷ  are shown in the  
fifth column, assuming that our splitting criterion is 3.0x ≤ . The last column of the 
table then shows the updated weights based on the update rules that we defined  
in the pseudocode.

Since the computation of the weight updates may look a little bit complicated at first, 
we will now follow the calculation step by step. We start by computing the weighted 
error rate ε  as described in step 5:

0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 1 0.1 1
30.1 1 0.1 0 0.3

10

ε = × + × + × + × + × + × + × + ×

+ × + × = =

Next we compute the coefficient jα  (shown in step 6), which is later used in step 7 to 
update the weights as well as for the weights in majority vote prediction (step 10):

10.5log 0.424j
εα
ε
− = ≈ 

 
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After we have computed the coefficient jα  we can now update the weight vector 
using the following equation:

( )ˆ: exp jα= × − × ×w w y y

Here, ˆ ×y y  is an element-wise multiplication between the vectors of the predicted 
and true class labels, respectively. Thus, if a prediction ˆiy  is correct, ˆi iy y×  will have a 
positive sign so that we decrease the ith weight since jα  is a positive number as well:

( )0.1 exp 0.424 1 1 0.065× − × × ≈

Similarly, we will increase the ith weight if ˆiy  predicted the label incorrectly  
like this:

( )( )0.1 exp 0.424 1 1 0.153× − × × − ≈

Or like this:

( ) ( )( )0.1 exp 0.424 1 1 0.153× − × − × ≈

After we update each weight in the weight vector, we normalize the weights so  
that they sum up to 1 (step 8):

:
ii
w

=
∑

ww

Here, 7 0.065 3 0.153 0.914ii
w = × + × =∑ .

Thus, each weight that corresponds to a correctly classified sample will be  
reduced from the initial value of 0.1 to 0.065 / 0.914 0.071≈  for the next round  
of boosting. Similarly, the weights of each incorrectly classified sample will  
increase from 0.1 to 0.153 / 0.914 0.167≈ .
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This was AdaBoost in a nutshell. Skipping to the more practical part, let's now train 
an AdaBoost ensemble classifier via scikit-learn. We will use the same Wine subset 
that we used in the previous section to train the bagging meta-classifier. Via the 
base_estimator attribute, we will train the AdaBoostClassifier on 500 decision 
tree stumps:

>>> from sklearn.ensemble import AdaBoostClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
...                               max_depth=None,
...                               random_state=0)
>>> ada = AdaBoostClassifier(base_estimator=tree,
...                          n_estimators=500, 
...                          learning_rate=0.1,
...                          random_state=0)
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
...       % (tree_train, tree_test))
Decision tree train/test accuracies 0.845/0.854

As we can see, the decision tree stump tends to underfit the training data in contrast 
with the unpruned decision tree that we saw in the previous section:

>>> ada = ada.fit(X_train, y_train)
>>> y_train_pred = ada.predict(X_train)
>>> y_test_pred = ada.predict(X_test)
>>> ada_train = accuracy_score(y_train, y_train_pred) 
>>> ada_test = accuracy_score(y_test, y_test_pred) 
>>> print('AdaBoost train/test accuracies %.3f/%.3f'
...       % (ada_train, ada_test))
AdaBoost train/test accuracies 1.000/0.875

As we can see, the AdaBoost model predicts all class labels of the training set 
correctly and also shows a slightly improved test set performance compared to the 
decision tree stump. However, we also see that we introduced additional variance by 
our attempt to reduce the model bias.
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Although we used another simple example for demonstration purposes, we can 
see that the performance of the AdaBoost classifier is slightly improved compared 
to the decision stump and achieved very similar accuracy scores to the bagging 
classifier that we trained in the previous section. However, we should note that it 
is considered bad practice to select a model based on the repeated usage of the test 
set. The estimate of the generalization performance may be too optimistic, which we 
discussed in more detail in Chapter 6, Learning Best Practices for Model Evaluation and 
Hyperparameter Tuning.

Finally, let's check what the decision regions look like:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))
>>> f, axarr = plt.subplots(1, 2, 
...                         sharex='col', 
...                         sharey='row', 
...                         figsize=(8, 3))
>>> for idx, clf, tt in zip([0, 1],
...                         [tree, ada],
...                         ['Decision Tree', 'AdaBoost']):
...     clf.fit(X_train, y_train)   
...     Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
...     Z = Z.reshape(xx.shape)
...     axarr[idx].contourf(xx, yy, Z, alpha=0.3)
...     axarr[idx].scatter(X_train[y_train==0, 0], 
...                        X_train[y_train==0, 1], 
...                        c='blue', 
...                        marker='^')
...     axarr[idx].scatter(X_train[y_train==1, 0], 
...                        X_train[y_train==1, 1], 
...                        c='red',
...                        marker='o')
... axarr[idx].set_title(tt)
... axarr[0].set_ylabel('Alcohol', fontsize=12)
>>> plt.text(10.2, -1.2, 
...          s=Hue', 
...          ha='center', 
...          va='center', 
...          fontsize=12)    
>>> plt.show()
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By looking at the decision regions, we can see that the decision boundary of the 
AdaBoost model is substantially more complex than the decision boundary of the 
decision stump. In addition, we note that the AdaBoost model separates the feature 
space very similarly to the bagging classifier that we trained in the previous section.

As concluding remarks about ensemble techniques, it is worth noting that  
ensemble learning increases the computational complexity compared to individual 
classifiers. In practice, we need to think carefully whether we want to pay the price 
of increased computational costs for an often relatively modest improvement of 
predictive performance.

An often-cited example of this trade-off is the famous $1 Million Netflix Prize, which 
was won using ensemble techniques. The details about the algorithm were published 
in A. Toescher, M. Jahrer, and R. M. Bell. The Bigchaos Solution to the Netflix Grand 
Prize. Netflix prize documentation, 2009 (which is available at http://www.stat.
osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf). Although the winning 
team received the $1 million prize money, Netflix never implemented their model 
due to its complexity, which made it unfeasible for a real-world application. To 
quote their exact words (http://techblog.netflix.com/2012/04/netflix-
recommendations-beyond-5-stars.html):

"[…] additional accuracy gains that we measured did not seem to justify the 
engineering effort needed to bring them into a production environment."

http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
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Summary
In this chapter, we looked at some of the most popular and widely used techniques 
for ensemble learning. Ensemble methods combine different classification models  
to cancel out their individual weaknesses, which often results in stable and  
well-performing models that are very attractive for industrial applications  
as well as machine learning competitions.

In the beginning of this chapter, we implemented a MajorityVoteClassifier in 
Python that allows us to combine different algorithms for classification. We then 
looked at bagging, a useful technique to reduce the variance of a model by drawing 
random bootstrap samples from the training set and combining the individually 
trained classifiers via majority vote. Then we discussed AdaBoost, which is an 
algorithm that is based on weak learners that subsequently learn from mistakes.

Throughout the previous chapters, we discussed different learning algorithms, 
tuning, and evaluation techniques. In the following chapter, we will look at a 
particular application of machine learning, sentiment analysis, which has certainly 
become an interesting topic in the era of the Internet and social media.
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Applying Machine Learning to 
Sentiment Analysis

In this Internet and social media time and age, people's opinions, reviews, and 
recommendations have become a valuable resource for political science and 
businesses. Thanks to modern technologies, we are now able to collect and analyze 
such data most efficiently. In this chapter, we will delve into a subfield of natural 
language processing (NLP) called sentiment analysis and learn how to use machine 
learning algorithms to classify documents based on their polarity: the attitude of the 
writer. The topics that we will cover in the following sections include:

•	 Cleaning and preparing text data
•	 Building feature vectors from text documents
•	 Training a machine learning model to classify positive and negative  

movie reviews
•	 Working with large text datasets using out-of-core learning

Obtaining the IMDb movie review dataset
Sentiment analysis, sometimes also called opinion mining, is a popular sub-
discipline of the broader field of NLP; it analyzes the polarity of documents. A 
popular task in sentiment analysis is the classification of documents based on the 
expressed opinions or emotions of the authors with regard to a particular topic.
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In this chapter, we will be working with a large dataset of movie reviews from the 
Internet Movie Database (IMDb) that has been collected by Maas et al. (A. L. Maas, 
R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors for 
Sentiment Analysis. In the proceedings of the 49th Annual Meeting of the Association 
for Computational Linguistics: Human Language Technologies, pages 142–150, 
Portland, Oregon, USA, June 2011. Association for Computational Linguistics). The 
movie review dataset consists of 50,000 polar movie reviews that are labeled as either 
positive or negative; here, positive means that a movie was rated with more than six 
stars on IMDb, and negative means that a movie was rated with fewer than five 
stars on IMDb. In the following sections, we will learn how to extract meaningful 
information from a subset of these movie reviews to build a machine learning  
model that can predict whether a certain reviewer liked or disliked a movie.

A compressed archive of the movie review dataset (84.1 MB) can be downloaded 
from http://ai.stanford.edu/~amaas/data/sentiment/ as a gzip-compressed 
tarball archive:

•	 If you are working with Linux or Mac OS X, you can open a new terminal 
window, use cd to go into the download directory, and execute tar -zxf 
aclImdb_v1.tar.gz to decompress the dataset

•	 If you are working with Windows, you can download a free archiver  
such as 7-Zip (http://www.7-zip.org) to extract the files from the 
download archive

Having successfully extracted the dataset, we will now assemble the individual 
text documents from the decompressed download archive into a single CSV file. 
In the following code section, we will be reading the movie reviews into a pandas 
DataFrame object, which can take up to 10 minutes on a standard desktop computer. 
To visualize the progress and estimated time until completion, we will use the 
PyPrind (Python Progress Indicator, https://pypi.python.org/pypi/PyPrind/) 
package that I developed several years ago for such purposes. PyPrind can be 
installed by executing the command: pip install pyprind.

>>> import pyprind
>>> import pandas as pd
>>> import os
>>> pbar = pyprind.ProgBar(50000)
>>> labels = {'pos':1, 'neg':0}
>>> df = pd.DataFrame()
>>> for s in ('test', 'train'):
...    for l in ('pos', 'neg'):
...        path ='./aclImdb/%s/%s' % (s, l)
...        for file in os.listdir(path):

http://ai.stanford.edu/~amaas/data/sentiment/
http://www.7-zip.org
https://pypi.python.org/pypi/PyPrind/
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...            with open(os.path.join(path, file), 'r') as infile:...                
txt = infile.read()
...           df = df.append([[txt, labels[l]]], ignore_index=True)
...            pbar.update()
>>> df.columns = ['review', 'sentiment']
0%                          100%
[##############################] | ETA[sec]: 0.000 
Total time elapsed: 725.001 sec

Executing the preceding code, we first initialized a new progress bar object pbar 
with 50,000 iterations, which is the number of documents we were going to read in. 
Using the nested for loops, we iterated over the train and test subdirectories in 
the main aclImdb directory and read the individual text files from the pos and neg 
subdirectories that we eventually appended to the DataFrame df—together with an 
integer class label (1 = positive and 0 = negative).

Since the class labels in the assembled dataset are sorted, we will now shuffle 
DataFrame using the permutation function from the np.random submodule—this 
will be useful to split the dataset into training and test sets in later sections when we 
will stream the data from our local drive directly. For our own convenience, we will 
also store the assembled and shuffled movie review dataset as a CSV file:

>>> import numpy as np
>>> np.random.seed(0)
>>> df = df.reindex(np.random.permutation(df.index))
>>> df.to_csv('./movie_data.csv', index=False)

Since we are going to use this dataset later in this chapter, let us quickly confirm that 
we successfully saved the data in the right format by reading in the CSV and printing 
an excerpt of the first three samples:

>>> df = pd.read_csv('./movie_data.csv')
>>> df.head(3)

If you are running the code examples in IPython Notebook, you should now see the 
first three samples of the dataset, as shown in the following table:

0

1

2

review sentiment

1

0

0

In 1974, the teenager Martha Moxley (Maggie Gr...

OK... so... I really like Kris Kristofferson a...

***SPOILER*** Do not read this, if you think a...
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Introducing the bag-of-words model
We remember from Chapter 4, Building Good Training Sets – Data Preprocessing, that 
we have to convert categorical data, such as text or words, into a numerical form 
before we can pass it on to a machine learning algorithm. In this section, we will 
introduce the bag-of-words model that allows us to represent text as numerical 
feature vectors. The idea behind the bag-of-words model is quite simple and can be 
summarized as follows:

1.	 We create a vocabulary of unique tokens—for example, words—from the 
entire set of documents.

2.	 We construct a feature vector from each document that contains the counts of 
how often each word occurs in the particular document.

Since the unique words in each document represent only a small subset of all the 
words in the bag-of-words vocabulary, the feature vectors will consist of mostly 
zeros, which is why we call them sparse. Do not worry if this sounds too abstract; in 
the following subsections, we will walk through the process of creating a simple bag-
of-words model step-by-step.

Transforming words into feature vectors
To construct a bag-of-words model based on the word counts in the respective 
documents, we can use the CountVectorizer class implemented in scikit-learn. As 
we will see in the following code section, the CountVectorizer class takes an array 
of text data, which can be documents or just sentences, and constructs the bag-of-
words model for us:

>>> import numpy as np
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count = CountVectorizer()
>>> docs = np.array([
...        'The sun is shining',
...        'The weather is sweet',
...        'The sun is shining and the weather is sweet'])
>>> bag = count.fit_transform(docs)

By calling the fit_transform method on CountVectorizer, we just constructed 
the vocabulary of the bag-of-words model and transformed the following three 
sentences into sparse feature vectors:

1.	 The sun is shining

2.	 The weather is sweet

3.	 The sun is shining and the weather is sweet
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Now let us print the contents of the vocabulary to get a better understanding of the 
underlying concepts:

>>> print(count.vocabulary_)
{'the': 5, 'shining': 2, 'weather': 6, 'sun': 3, 'is': 1, 'sweet': 4, 
'and': 0}

As we can see from executing the preceding command, the vocabulary is stored in a 
Python dictionary, which maps the unique words that are mapped to integer indices. 
Next let us print the feature vectors that we just created:

>>> print(bag.toarray())
[[0 1 1 1 0 1 0]
 [0 1 0 0 1 1 1]
 [1 2 1 1 1 2 1]]

Each index position in the feature vectors shown here corresponds to the integer 
values that are stored as dictionary items in the CountVectorizer vocabulary. For 
example, the first feature at index position 0 resembles the count of the word and, 
which only occurs in the last document, and the word is at index position 1 (the 2nd 
feature in the document vectors) occurs in all three sentences. Those values in the 
feature vectors are also called the raw term frequencies: tf (t,d)—the number of times 
a term t occurs in a document d.

The sequence of items in the bag-of-words model that we just created 
is also called the 1-gram or unigram model—each item or token in the 
vocabulary represents a single word. More generally, the contiguous 
sequences of items in NLP—words, letters, or symbols—is also called an 
n-gram. The choice of the number n in the n-gram model depends on the 
particular application; for example, a study by Kanaris et al. revealed that 
n-grams of size 3 and 4 yield good performances in anti-spam filtering 
of e-mail messages (Ioannis Kanaris, Konstantinos Kanaris, Ioannis 
Houvardas, and Efstathios Stamatatos. Words vs Character N-Grams 
for Anti-Spam Filtering. International Journal on Artificial Intelligence 
Tools, 16(06):1047–1067, 2007). To summarize the concept of the n-gram 
representation, the 1-gram and 2-gram representations of our first 
document "the sun is shining" would be constructed as follows:

•	 1-gram: "the", "sun", "is", "shining"
•	 2-gram: "the sun", "sun is", "is shining" 

The CountVectorizer class in scikit-learn allows us to use different 
n-gram models via its ngram_range parameter. While a 1-gram 
representation is used by default, we could switch to a 2-gram 
representation by initializing a new CountVectorizer instance with 
ngram_range=(2,2).



Applying Machine Learning to Sentiment Analysis

[ 240 ]

Assessing word relevancy via term 
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across 
multiple documents from both classes. Those frequently occurring words typically 
don't contain useful or discriminatory information. In this subsection, we will learn 
about a useful technique called term frequency-inverse document frequency  
(tf-idf) that can be used to downweight those frequently occurring words in the 
feature vectors. The tf-idf can be defined as the product of the term frequency and 
the inverse document frequency:

( ) ( ) ( )tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section,  
and the inverse document frequency idf(t, d) can be calculated as:

( ) ( )
idf t,d ,

1+df d,t
dnlog=

where dn  is the total number of documents, and df(d, t) is the number of documents 
d that contain the term t. Note that adding the constant 1 to the denominator is 
optional and serves the purpose of assigning a non-zero value to terms that occur in 
all training samples; the log is used to ensure that low document frequencies are not 
given too much weight.

Scikit-learn implements yet another transformer, the TfidfTransformer, that  
takes the raw term frequencies from CountVectorizer as input and transforms  
them into tf-idfs:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer()
>>> np.set_printoptions(precision=2)
>>> print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[ 0.    0.43  0.56  0.56  0.    0.43  0.  ]
 [ 0.    0.43  0.    0.    0.56  0.43  0.56]
 [ 0.4   0.48  0.31  0.31  0.31  0.48  0.31]] 
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As we saw in the previous subsection, the word is had the largest term frequency 
in the 3rd document, being the most frequently occurring word. However, after 
transforming the same feature vector into tf-idfs, we see that the word is is  
now associated with a relatively small tf-idf (0.31) in document 3 since it is 
also contained in documents 1 and 2 and thus is unlikely to contain any useful, 
discriminatory information.

However, if we'd manually calculated the tf-idfs of the individual terms in our 
feature vectors, we'd have noticed that the TfidfTransformer calculates the tf-idfs 
slightly differently compared to the standard textbook equations that we defined 
earlier. The equations for the idf and tf-idf that were implemented in scikit-learn are:

( ) ( )
1idf t,d

1 df d,t
dnlog +

=
+

The tf-idf equation that was implemented in scikit-learn is as follows:

( ) ( ) ( )( )tf-idf t,d t,d idf t,d 1tf= × +

While it is also more typical to normalize the raw term frequencies before  
calculating the tf-idfs, the TfidfTransformer normalizes the tf-idfs directly.  
By default (norm='l2'), scikit-learn's TfidfTransformer applies the  
L2-normalization, which returns a vector of length 1 by dividing an  
un-normalized feature vector v by its L2-norm:

( )1/22 2 2 2
2 1 2

1

norm n
n ii

v v vv
v v v v v

=

= = =
+ + + ∑�

To make sure that we understand how TfidfTransformer works, let us walk 
through an example and calculate the tf-idf of the word is in the 3rd document.

The word is has a term frequency of 2 (tf = 2) in document 3, and the document 
frequency of this term is 3 since the term is occurs in all three documents (df = 3). 
Thus, we can calculate the idf as follows:

( ) 1 3"is",d3 log 0
1 3

idf +
= =

+
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Now in order to calculate the tf-idf, we simply need to add 1 to the inverse document 
frequency and multiply it by the term frequency:

( ) ( )tf-idf " ",d3 2 0 1 2is = × + =

If we repeated these calculations for all terms in the 3rd document, we'd obtain the 
following tf-idf vectors: [1.69, 2.00, 1.29, 1.29, 1.29, 2.00, and 1.29]. However, we 
notice that the values in this feature vector are different from the values that we 
obtained from the TfidfTransformer that we used previously. The final step that 
we are missing in this tf-idf calculation is the L2-normalization, which can be applied 
as follows:

( )tf-idf " ",d3 0.48is =

As we can see, the results now match the results returned by scikit-learn's 
TfidfTransformer. Since we now understand how tf-idfs are calculated, let us 
proceed to the next sections and apply those concepts to the movie review dataset.

Cleaning text data
In the previous subsections, we learned about the bag-of-words model, term 
frequencies, and tf-idfs. However, the first important step—before we build our  
bag-of-words model—is to clean the text data by stripping it of all unwanted 
characters. To illustrate why this is important, let us display the last 50 characters 
from the first document in the reshuffled movie review dataset:

>>> df.loc[0, 'review'][-50:] 
'is seven.<br /><br />Title (Brazil): Not Available'

As we can see here, the text contains HTML markup as well as punctuation and 
other non-letter characters. While HTML markup does not contain much useful 
semantics, punctuation marks can represent useful, additional information in certain 
NLP contexts. However, for simplicity, we will now remove all punctuation marks 
but only keep emoticon characters such as ":)" since those are certainly useful for 
sentiment analysis. To accomplish this task, we will use Python's regular expression 
(regex) library, re, as shown here:

>>> import re
>>> def preprocessor(text):
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...     text = re.sub('<[^>]*>', '', text)

...     emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)

...     text = re.sub('[\W]+', ' ', text.lower()) + \  
                 '.join(emoticons).replace('-', '')
...     return text

Via the first regex <[^>]*> in the preceding code section, we tried to remove the 
entire HTML markup that was contained in the movie reviews. Although many 
programmers generally advise against the use of regex to parse HTML, this regex 
should be sufficient to clean this particular dataset. After we removed the HTML 
markup, we used a slightly more complex regex to find emoticons, which we 
temporarily stored as emoticons. Next we removed all non-word characters from 
the text via the regex [\W]+, converted the text into lowercase characters, and 
eventually added the temporarily stored emoticons to the end of the processed 
document string. Additionally, we removed the nose character (-) from the emoticons 
for consistency.

Although regular expressions offer an efficient and convenient 
approach to searching for characters in a string, they also come with 
a steep learning curve. Unfortunately, an in-depth discussion of 
regular expressions is beyond the scope of this book. However, you 
can find a great tutorial on the Google Developers portal at https://
developers.google.com/edu/python/regular-expressions or 
check out the official documentation of Python's re module at https://
docs.python.org/3.4/library/re.html.

Although the addition of the emoticon characters to the end of the cleaned document 
strings may not look like the most elegant approach, the order of the words doesn't 
matter in our bag-of-words model if our vocabulary only consists of 1-word tokens. 
But before we talk more about splitting documents into individual terms, words, or 
tokens, let us confirm that our preprocessor works correctly:

>>> preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
>>> preprocessor("</a>This :) is :( a test :-)!")
'this is a test :) :( :)'

Lastly, since we will make use of the cleaned text data over and over again during the 
next sections, let us now apply our preprocessor function to all movie reviews in 
our DataFrame:

>>> df['review'] = df['review'].apply(preprocessor)

https://developers.google.com/edu/python/regular-expressions
https://developers.google.com/edu/python/regular-expressions
https://docs.python.org/3.4/library/re.html
https://docs.python.org/3.4/library/re.html
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Processing documents into tokens
Having successfully prepared the movie review dataset, we now need to think 
about how to split the text corpora into individual elements. One way to tokenize 
documents is to split them into individual words by splitting the cleaned document 
at its whitespace characters:

>>> def tokenizer(text):
...    return text.split()
>>> tokenizer('runners like running and thus they run')
['runners', 'like', 'running', 'and', 'thus', 'they', 'run']

In the context of tokenization, another useful technique is word stemming, which is 
the process of transforming a word into its root form that allows us to map related 
words to the same stem. The original stemming algorithm was developed by Martin 
F. Porter in 1979 and is hence known as the Porter stemmer algorithm (Martin F. 
Porter. An algorithm for suffix stripping. Program: electronic library and information 
systems, 14(3):130–137, 1980). The Natural Language Toolkit for Python (NLTK, 
http://www.nltk.org) implements the Porter stemming algorithm, which we 
will use in the following code section. In order to install the NLTK, you can simply 
execute pip install nltk.

>>> from nltk.stem.porter import PorterStemmer
>>> porter = PorterStemmer()
>>> def tokenizer_porter(text):
...    return [porter.stem(word) for word in text.split()]
>>> tokenizer_porter('runners like running and thus they run') 
['runner', 'like', 'run', 'and', 'thu', 'they', 'run']

Although NLTK is not the focus of the chapter, I highly recommend you 
to visit the NLTK website as well as the official NLTK book, which is 
freely available at http://www.nltk.org/book/, if you are interested 
in more advanced applications in NLP.

Using PorterStemmer from the nltk package, we modified our tokenizer function 
to reduce words to their root form, which was illustrated by the previous simple 
example where the word running was stemmed to its root form run.

http://www.nltk.org
http://www.nltk.org/book/
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The Porter stemming algorithm is probably the oldest and simplest 
stemming algorithm. Other popular stemming algorithms include the 
newer Snowball stemmer (Porter2 or "English" stemmer) or the Lancaster 
stemmer (Paice-Husk stemmer), which is faster but also more aggressive 
than the Porter stemmer. Those alternative stemming algorithms are also 
available through the NLTK package (http://www.nltk.org/api/
nltk.stem.html).
While stemming can create non-real words, such as thu, (from thus) as 
shown in the previous example, a technique called lemmatization aims to 
obtain the canonical (grammatically correct) forms of individual words—
the so-called lemmas. However, lemmatization is computationally more 
difficult and expensive compared to stemming and, in practice, it has 
been observed that stemming and lemmatization have little impact on the 
performance of text classification (Michal Toman, Roman Tesar, and Karel 
Jezek. Influence of word normalization on text classification. Proceedings of 
InSciT, pages 354–358, 2006).

Before we jump into the next section where we will train a machine learning model 
using the bag-of-words model, let us briefly talk about another useful topic called 
stop-word removal. Stop-words are simply those words that are extremely common 
in all sorts of texts and likely bear no (or only little) useful information that can be 
used to distinguish between different classes of documents. Examples of stop-words 
are is, and, has, and the like. Removing stop-words can be useful if we are working 
with raw or normalized term frequencies rather than tf-idfs, which are already 
downweighting frequently occurring words.

In order to remove stop-words from the movie reviews, we will use the set of 127 
English stop-words that is available from the NLTK library, which can be obtained 
by calling the nltk.download function:

>>> import nltk
>>> nltk.download('stopwords')

After we have downloaded the stop-words set, we can load and apply the English 
stop-word set as follows:

>>> from nltk.corpus import stopwords
>>> stop = stopwords.words('english')
>>>  [w for w in tokenizer_porter('a runner likes running and runs a 
lot')[-10:] if w not in stop]

['runner', 'like', 'run', 'run', 'lot']

http://www.nltk.org/api/nltk.stem.html
http://www.nltk.org/api/nltk.stem.html
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Training a logistic regression model for 
document classification
In this section, we will train a logistic regression model to classify the movie reviews 
into positive and negative reviews. First, we will divide the DataFrame of cleaned 
text documents into 25,000 documents for training and 25,000 documents for testing:

>>> X_train = df.loc[:25000, 'review'].values
>>> y_train = df.loc[:25000, 'sentiment'].values
>>> X_test = df.loc[25000:, 'review'].values
>>> y_test = df.loc[25000:, 'sentiment'].values

Next we will use a GridSearchCV object to find the optimal set of parameters for our 
logistic regression model using 5-fold stratified cross-validation:

>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> tfidf = TfidfVectorizer(strip_accents=None, 
...                         lowercase=False, 
...                         preprocessor=None)
>>> param_grid = [{'vect__ngram_range': [(1,1)],
...               'vect__stop_words': [stop, None],
...               'vect__tokenizer': [tokenizer,
...                                   tokenizer_porter],
...               'clf__penalty': ['l1', 'l2'],
...               'clf__C': [1.0, 10.0, 100.0]},
...             {'vect__ngram_range': [(1,1)],
...               'vect__stop_words': [stop, None],
...               'vect__tokenizer': [tokenizer,
...                                   tokenizer_porter],
...               'vect__use_idf':[False],
...               'vect__norm':[None],
...               'clf__penalty': ['l1', 'l2'],
...               'clf__C': [1.0, 10.0, 100.0]}
...             ]
>>> lr_tfidf = Pipeline([('vect', tfidf),
...                     ('clf',
...                      LogisticRegression(random_state=0))])
>>> gs_lr_tfidf = GridSearchCV(lr_tfidf, param_grid, 
...                           scoring='accuracy',
...                           cv=5, verbose=1,
...                           n_jobs=-1)
>>> gs_lr_tfidf.fit(X_train, y_train)
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When we initialized the GridSearchCV object and its parameter grid using 
the preceding code, we restricted ourselves to a limited number of parameter 
combinations since the number of feature vectors, as well as the large vocabulary, 
can make the grid search computationally quite expensive; using a standard Desktop 
computer, our grid search may take up to 40 minutes to complete.

In the previous code example, we replaced the CountVectorizer and 
TfidfTransformer from the previous subsection with the TfidfVectorizer,  
which combines the latter transformer objects. Our param_grid consisted of two 
parameter dictionaries. In the first dictionary, we used the TfidfVectorizer  
with its default settings (use_idf=True, smooth_idf=True, and norm='l2') to 
calculate the tf-idfs; in the second dictionary, we set those parameters to  
use_idf=False, smooth_idf=False, and norm=None in order to train a model  
based on raw term frequencies. Furthermore, for the logistic regression classifier 
itself, we trained models using L2 and L1 regularization via the penalty parameter 
and compared different regularization strengths by defining a range of values for  
the inverse-regularization parameter C.

After the grid search has finished, we can print the best parameter set:

>>> print('Best parameter set: %s ' % gs_lr_tfidf.best_params_)
Best parameter set: {'clf__C': 10.0, 'vect__stop_words': None, 
'clf__penalty': 'l2', 'vect__tokenizer': <function tokenizer at 
0x7f6c704948c8>, 'vect__ngram_range': (1, 1)} 

As we can see here, we obtained the best grid search results using the regular 
tokenizer without Porter stemming, no stop-word library, and tf-idfs in combination 
with a logistic regression classifier that uses L2 regularization with the regularization 
strength C=10.0.

Using the best model from this grid search, let us print the average 5-fold cross-
validation accuracy score on the training set and the classification accuracy on the 
test dataset:

>>> print('CV Accuracy: %.3f' 
...       % gs_lr_tfidf.best_score_)
CV Accuracy: 0.897
>>> clf = gs_lr_tfidf.best_estimator_
>>> print('Test Accuracy: %.3f' 
...     % clf.score(X_test, y_test))
Test Accuracy: 0.899

The results reveal that our machine learning model can predict whether a movie 
review is positive or negative with 90 percent accuracy.
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A still very popular classifier for text classification is the Naïve Bayes 
classifier, which gained popularity in applications of e-mail spam 
filtering. Naïve Bayes classifiers are easy to implement, computationally 
efficient, and tend to perform particularly well on relatively small datasets 
compared to other algorithms. Although we don't discuss Naïve Bayes 
classifiers in this book, the interested reader can find my article about 
Naïve Text classification that I made freely available on arXiv (S. Raschka. 
Naive Bayes and Text Classification I - introduction and Theory. Computing 
Research Repository (CoRR), abs/1410.5329, 2014. http://arxiv.org/
pdf/1410.5329v3.pdf).

Working with bigger data – online 
algorithms and out-of-core learning
If you executed the code examples in the previous section, you may have noticed 
that it could be computationally quite expensive to construct the feature vectors for 
the 50,000 movie review dataset during grid search. In many real-world applications 
it is not uncommon to work with even larger datasets that may even exceed our 
computer's memory. Since not everyone has access to supercomputer facilities, we 
will now apply a technique called out-of-core learning that allows us to work with 
such large datasets.

Back in Chapter 2, Training Machine Learning Algorithms for Classification, we 
introduced the concept of stochastic gradient descent, which is an optimization 
algorithm that updates the model's weights using one sample at a time. In this 
section, we will make use of the partial_fit function of the SGDClassifier in 
scikit-learn to stream the documents directly from our local drive and train a logistic 
regression model using small minibatches of documents.

First, we define a tokenizer function that cleans the unprocessed text data from 
our movie_data.csv file that we constructed in the beginning of this chapter and 
separates it into word tokens while removing stop words.

>>> import numpy as np
>>> import re
>>> from nltk.corpus import stopwords
>>> stop = stopwords.words('english')
>>> def tokenizer(text):
...     text = re.sub('<[^>]*>', '', text)
...     emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
...                            text.lower())
...     text = re.sub('[\W]+', ' ', text.lower()) \

http://arxiv.org/pdf/1410.5329v3.pdf
http://arxiv.org/pdf/1410.5329v3.pdf
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...            + ' '.join(emoticons).replace('-', '')

...     tokenized = [w for w in text.split() if w not in stop]

...     return tokenized

Next we define a generator function, stream_docs, that reads in and returns one 
document at a time:

>>> def stream_docs(path):
...    with open(path, ‘r’, encoding=‘utf-8’) as csv:
...        next(csv) # skip header
...        for line in csv:
...            text, label = line[:-3], int(line[-2])
...            yield text, label

To verify that our stream_docs function works correctly, let us read in the first 
document from the movie_data.csv file, which should return a tuple consisting of 
the review text as well as the corresponding class label:

>>> next(stream_docs(path='./movie_data.csv'))
('"In 1974, the teenager Martha Moxley ... ',1)

We will now define a function, get_minibatch, that will take a document stream 
from the stream_docs function and return a particular number of documents 
specified by the size parameter:

>>> def get_minibatch(doc_stream, size):
...     docs, y = [], []
...         try:
...             for _ in range(size):
...                 text, label = next(doc_stream)
...                 docs.append(text)
...                 y.append(label)
...         except StopIteration:
...             return None, None
...         return docs, y

Unfortunately, we can't use the CountVectorizer for out-of-core learning since it 
requires holding the complete vocabulary in memory. Also, the TfidfVectorizer 
needs to keep the all feature vectors of the training dataset in memory to calculate 
the inverse document frequencies. However, another useful vectorizer for text 
processing implemented in scikit-learn is HashingVectorizer. HashingVectorizer 
is data-independent and makes use of the Hashing trick via the 32-bit MurmurHash3 
algorithm by Austin Appleby (https://sites.google.com/site/murmurhash/).

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> from sklearn.linear_model import SGDClassifier

https://sites.google.com/site/murmurhash/
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>>> vect = HashingVectorizer(decode_error='ignore', 
...                          n_features=2**21,
...                          preprocessor=None, 
...                          tokenizer=tokenizer)
>>> clf = SGDClassifier(loss='log', random_state=1, n_iter=1)
>>> doc_stream = stream_docs(path='./movie_data.csv')

Using the preceding code, we initialized HashingVectorizer with our tokenizer 
function and set the number of features to 212 . Furthermore, we reinitialized a 
logistic regression classifier by setting the loss parameter of the SGDClassifier to 
log—note that, by choosing a large number of features in the HashingVectorizer, 
we reduce the chance to cause hash collisions but we also increase the number of 
coefficients in our logistic regression model.

Now comes the really interesting part. Having set up all the complementary 
functions, we can now start the out-of-core learning using the following code:

>>> import pyprind
>>> pbar = pyprind.ProgBar(45)
>>> classes = np.array([0, 1])
>>> for _ in range(45):
...     X_train, y_train = get_minibatch(doc_stream, size=1000)
...     if not X_train:
...         break
...     X_train = vect.transform(X_train)
...     clf.partial_fit(X_train, y_train, classes=classes)
...     pbar.update()
0%                          100%
[##############################] | ETA[sec]: 0.000 
Total time elapsed: 50.063 sec

Again, we made use of the PyPrind package in order to estimate the progress of our 
learning algorithm. We initialized the progress bar object with 45 iterations and, in 
the following for loop, we iterated over 45 minibatches of documents where each 
minibatch consists of 1,000 documents each.

Having completed the incremental learning process, we will use the last 5,000 
documents to evaluate the performance of our model:

>>> X_test, y_test = get_minibatch(doc_stream, size=5000)
>>> X_test = vect.transform(X_test)
>>> print('Accuracy: %.3f' % clf.score(X_test, y_test))
Accuracy: 0.868
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As we can see, the accuracy of the model is 87 percent, slightly below the  
accuracy that we achieved in the previous section using the grid search for 
hyperparameter tuning. However, out-of-core learning is very memory-efficient  
and took less than a minute to complete. Finally, we can use the last 5,000  
documents to update our model:

>>> clf = clf.partial_fit(X_test, y_test)

If you are planning to continue directly with Chapter 9, Embedding a Machine Learning 
Model into a Web Application, I recommend you to keep the current Python session 
open. In the next chapter, we will use the model that we just trained to learn how to 
save it to disk for later use and embed it into a web application.

Although the bag-of-words model is still the most commonly used 
model for text classification, it does not consider sentence structure and 
grammar. A popular extension of the bag-of-words model is Latent 
Dirichlet allocation, which is a topic model that considers the latent 
semantics of words (D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet 
allocation. The Journal of machine Learning research, 3:993–1022, 2003).
A more modern alternative to the bag-of-words model is word2vec, an 
algorithm that Google released in 2013 (T. Mikolov, K. Chen, G. Corrado, 
and J. Dean. Efficient Estimation of Word Representations in Vector Space. 
arXiv preprint arXiv:1301.3781, 2013). The word2vec algorithm is an 
unsupervised learning algorithm based on neural networks that attempts 
to automatically learn the relationship between words. The idea behind 
word2vec is to put words that have similar meanings into similar clusters; 
via clever vector-spacing, the model can reproduce certain words using 
simple vector math, for example, king – man + woman = queen.
The original C-implementation, with useful links to the relevant papers 
and alternative implementations, can be found at https://code.
google.com/p/word2vec/.

https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
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Summary
In this chapter, we learned how to use machine learning algorithms to classify text 
documents based on their polarity, which is a basic task in sentiment analysis in 
the field of natural language processing. Not only did we learn how to encode a 
document as a feature vector using the bag-of-words model, but we also learned  
how to weight the term frequency by relevance using term frequency-inverse 
document frequency.

Working with text data can be computationally quite expensive due to the large 
feature vectors that are created during this process; in the last section, we learned 
how to utilize out-of-core or incremental learning to train a machine learning 
algorithm without loading the whole dataset into a computer's memory.

In the next chapter, we will use our document classifier and learn how to embed it 
into a web application.
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Embedding a Machine 
Learning Model into  

a Web Application
In the previous chapters, you learned about the many different machine  
learning concepts and algorithms that can help us with better and more efficient 
decision-making. However, machine learning techniques are not limited to offline 
applications and analyses, and they can be the predictive engine of your web 
services. For example, popular and useful applications of machine learning models 
in web applications include spam detection in submission forms, search engines, 
recommendation systems for media or shopping portals, and many more.

In this chapter, you will learn how to embed a machine learning model into  
a web application that can not only classify but also learn from data in real-time.  
The topics that we will cover are as follows:

•	 Saving the current state of a trained machine learning model
•	 Using SQLite databases for data storage
•	 Developing a web application using the popular Flask web framework
•	 Deploying a machine learning application to a public web server
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Serializing fitted scikit-learn estimators
Training a machine learning model can be computationally quite expensive, as we 
have seen in Chapter 8, Applying Machine Learning to Sentiment Analysis. Surely, we 
don't want to train our model every time we close our Python interpreter and want 
to make a new prediction or reload our web application? One option for model 
persistence is Python's in-built pickle module (https://docs.python.org/3.4/
library/pickle.html), which allows us to serialize and de-serialize Python object 
structures to compact byte code, so that we can save our classifier in its current state 
and reload it if we want to classify new samples without needing to learn the model 
from the training data all over again. Before you execute the following code, please 
make sure that you have trained the out-of-core logistic regression model from the 
last section of Chapter 8, Applying Machine Learning to Sentiment Analysis, and have it 
ready in your current Python session:

>>> import pickle
>>> import os
>>> dest = os.path.join('movieclassifier', 'pkl_objects')
>>> if not os.path.exists(dest):
...     os.makedirs(dest) 
>>> pickle.dump(stop, 
...          open(os.path.join(dest, 'stopwords.pkl'),'wb'),
...          protocol=4)   
>>> pickle.dump(clf,
...          open(os.path.join(dest, 'classifier.pkl'), 'wb'),
...          protocol=4)

Using the preceding code, we created a movieclassifier directory where we will 
later store the files and data for our web application. Within this movieclassifier 
directory, we created a pkl_objects subdirectory to save the serialized Python 
objects to our local drive. Via pickle's dump method, we then serialized the trained 
logistic regression model as well as the stop word set from the NLTK library so that 
we don't have to install the NLTK vocabulary on our server. The dump method takes 
as its first argument the object that we want to pickle, and for the second argument 
we provided an open file object that the Python object will be written to. Via the wb 
argument inside the open function, we opened the file in binary mode for pickle, 
and we set protocol=4 to choose the latest and most efficient pickle protocol that 
has been added to Python 3.4. (If you have problems using protocol 4, please check 
if you are using the latest Python 3 version install. Alternatively, you may consider 
choosing a lower protocol number.)

https://docs.python.org/3.4/library/pickle.html
https://docs.python.org/3.4/library/pickle.html
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Our logistic regression model contains several NumPy arrays, such as the 
weight vector, and a more efficient way to serialize NumPy arrays is to 
use the alternative joblib library. To ensure compatibility with the server 
environment that we will use in later sections, we will use the standard 
pickle approach. If you are interested, you can find more information 
about joblib at https://pypi.python.org/pypi/joblib.

We don't need to pickle the HashingVectorizer, since it does not need to be fitted. 
Instead, we can create a new Python script file, from which we can import the 
vectorizer into our current Python session. Now, copy the following code and  
save it as vectorizer.py in the movieclassifier directory:

from sklearn.feature_extraction.text import HashingVectorizer
import re
import os
import pickle

cur_dir = os.path.dirname(__file__)
stop = pickle.load(open(
                os.path.join(cur_dir, 
                'pkl_objects', 
                'stopwords.pkl'), 'rb'))

def tokenizer(text):
    text = re.sub('<[^>]*>', '', text)
    emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)',
                           text.lower())
    text = re.sub('[\W]+', ' ', text.lower()) \
                   + ' '.join(emoticons).replace('-', '')
    tokenized = [w for w in text.split() if w not in stop]
    return tokenized

vect = HashingVectorizer(decode_error='ignore',
                         n_features=2**21,
                         preprocessor=None,
                         tokenizer=tokenizer)

https://pypi.python.org/pypi/joblib
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After we have pickled the Python objects and created the vectorizer.py file, it  
would now be a good idea to restart our Python interpreter or IPython Notebook 
kernel to test if we can deserialize the objects without error. However, please note  
that unpickling data from an untrusted source can be a potential security risk since  
the pickle module is not secure against malicious code. From your terminal, navigate 
to the movieclassifier directory, start a new Python session and execute the 
following code to verify that you can import the vectorizer and unpickle the classifier:

>>> import pickle
>>> import re
>>> import os
>>> from vectorizer import vect
>>> clf = pickle.load(open(
...        os.path.join('pkl_objects', 
...                     'classifier.pkl'), 'rb'))

After we have successfully loaded the vectorizer and unpickled the classifier, we can 
now use these objects to pre-process document samples and make predictions about 
their sentiment:

>>> import numpy as np
>>> label = {0:'negative', 1:'positive'}
>>> example = ['I love this movie']
>>> X = vect.transform(example)
>>> print('Prediction: %s\nProbability: %.2f%%' %\
...       (label[clf.predict(X)[0]], 
...        np.max(clf.predict_proba(X))*100))
Prediction: positive
Probability: 91.56%

Since our classifier returns the class labels as integers, we defined a simple 
Python dictionary to map those integers to their sentiment. We then used the 
HashingVectorizer to transform the simple example document into a word vector 
X. Finally, we used the predict method of the logistic regression classifier to predict 
the class label as well as the predict_proba method to return the corresponding 
probability of our prediction. Note that the predict_proba method call returns an 
array with a probability value for each unique class label. Since the class label with 
the largest probability corresponds to the class label that is returned by the predict 
call, we used the np.max function to return the probability of the predicted class.
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Setting up a SQLite database for data 
storage
In this section, we will set up a simple SQLite database to collect optional feedback 
about the predictions from users of the web application. We can use this feedback to 
update our classification model. SQLite is an open source SQL database engine that 
doesn't require a separate server to operate, which makes it ideal for smaller projects 
and simple web applications. Essentially, a SQLite database can be understood 
as a single, self-contained database file that allows us to directly access storage 
files. Furthermore, SQLite doesn't require any system-specific configuration and is 
supported by all common operating systems. It has gained a reputation for being 
very reliable as it is used by popular companies, such as Google, Mozilla, Adobe, 
Apple, Microsoft, and many more. If you want to learn more about SQLite,  
I recommend you visit the official website at http://www.sqlite.org.

Fortunately, following Python's batteries included philosophy, there is already an 
API in the Python standard library, sqlite3, which allows us to work with SQLite 
databases (for more information about sqlite3, please visit https://docs.python.
org/3.4/library/sqlite3.html).

By executing the following code, we will create a new SQLite database inside the 
movieclassifier directory and store two example movie reviews:

>>> import sqlite3
>>> import os
>>> conn = sqlite3.connect('reviews.sqlite')
>>> c = conn.cursor()
>>> c.execute('CREATE TABLE review_db'\
...           ' (review TEXT, sentiment INTEGER, date TEXT)')
>>> example1 = 'I love this movie'
>>> c.execute("INSERT INTO review_db"\
...           " (review, sentiment, date) VALUES"\
...           " (?, ?, DATETIME('now'))", (example1, 1))
>>> example2 = 'I disliked this movie'
>>> c.execute("INSERT INTO review_db"\
...           " (review, sentiment, date) VALUES"\
...           " (?, ?, DATETIME('now'))", (example2, 0))
>>> conn.commit()
>>> conn.close()

http://www.sqlite.org
https://docs.python.org/3.4/library/sqlite3.html
https://docs.python.org/3.4/library/sqlite3.html
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Following the preceding code example, we created a connection (conn) to an SQLite 
database file by calling sqlite3's connect method, which created the new database 
file reviews.sqlite in the movieclassifier directory if it didn't already exist. 
Please note that SQLite doesn't implement a replace function for existing tables; 
you need to delete the database file manually from your file browser if you want to 
execute the code a second time. Next, we created a cursor via the cursor method, 
which allows us to traverse over the database records using the powerful SQL 
syntax. Via the first execute call, we then created a new database table, review_db. 
We used this to store and access database entries. Along with review_db, we also 
created three columns in this database table: review, sentiment, and date. We used 
these to store two example movie reviews and respective class labels (sentiments). 
Using the SQL command DATETIME('now'), we also added date-and timestamps 
to our entries. In addition to the timestamps, we used the question mark symbols 
(?) to pass the movie review texts (example1 and example2) and the corresponding 
class labels (1 and 0) as positional arguments to the execute method as members of 
a tuple. Lastly, we called the commit method to save the changes that we made to the 
database and closed the connection via the close method.

To check if the entries have been stored in the database table correctly, we will now 
reopen the connection to the database and use the SQL SELECT command to fetch all 
rows in the database table that have been committed between the beginning of the 
year 2015 and today:

>>> conn = sqlite3.connect('reviews.sqlite')
>>> c = conn.cursor()
>>> c.execute("SELECT * FROM review_db WHERE date"\
...     " BETWEEN '2015-01-01 00:00:00' AND DATETIME('now')")
>>> results = c.fetchall()
>>> conn.close()
>>> print(results)
[('I love this movie', 1, '2015-06-02 16:02:12'), ('I disliked this 
movie', 0, '2015-06-02 16:02:12')]

Alternatively, we could also use the free Firefox browser plugin SQLite Manager 
(available at https://addons.mozilla.org/en-US/firefox/addon/sqlite-
manager/), which offers a nice GUI interface for working with SQLite databases  
as shown in the following screenshot:

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
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Developing a web application with Flask
After we have prepared the code to classify movie reviews in the previous 
subsection, let's discuss the basics of the Flask web framework to develop our web 
application. After Armin Ronacher's initial release of Flask in 2010, the framework 
has gained huge popularity over the years and examples of popular applications that 
make use of Flask include LinkedIn and Pinterest. Since Flask is written in Python, it 
provides us Python programmers with a convenient interface for embedding existing 
Python code such as our movie classifier.

Flask is also known as a microframework, which means that its core is 
kept lean and simple but can be easily extended with other libraries. 
Although the learning curve of the lightweight Flask API is not 
nearly as steep as those of other popular Python web frameworks, 
such as Django, I encourage you to take a look at the official Flask 
documentation at http://flask.pocoo.org/docs/0.10/ to 
learn more about its functionality.

If the Flask library is not already installed in your current Python environment,  
you can simply install it via pip from your terminal (at the time of writing, the  
latest stable release was Version 0.10.1):

pip install flask

http://flask.pocoo.org/docs/0.10/
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Our first Flask web application
In this subsection, we will develop a very simple web application to become more 
familiar with the Flask API before we implement our movie classifier. First, we create 
a directory tree:

1st_flask_app_1/
    app.py
    templates/
        first_app.html

The app.py file will contain the main code that will be executed by the Python 
interpreter to run the Flask web application. The templates directory is the directory 
in which Flask will look for static HTML files for rendering in the web browser.  
Let's now take a look at the contents of app.py:

from flask import Flask, render_template

app = Flask(__name__)

@app.route('/')
def index():
    return render_template('first_app.html')

if __name__ == '__main__':
    app.run()

In this case, we run our application as a single module, thus we initialized a new 
Flask instance with the argument __name__ to let Flask know that it can find the 
HTML template folder (templates) in the same directory where it is located. Next, 
we used the route decorator (@app.route('/')) to specify the URL that should 
trigger the execution of the index function. Here, our index function simply renders 
the HTML file first_app.html, which is located in the templates folder. Lastly, 
we used the run function to only run the application on the server when this script 
is directly executed by the Python interpreter, which we ensured using the if 
statement with __name__ == '__main__'.
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Now, let's take a look at the contents of the first_app.html file. If you are not 
familiar with the HTML syntax yet, I recommend you visit https://developer.
mozilla.org/en-US/docs/Web/HTML for useful tutorials for learning the basics of 
HTML.

<!doctype html>
<html>
  <head>
    <title>First app</title>
  </head>
  <body>
  <div>Hi, this is my first Flask web app!</div>
  </body>
</html>

Here, we have simply filled an empty HTML template file with a div element  
(a block level element) that contains the sentence: Hi, this is my first Flask 
web app!. Conveniently, Flask allows us to run our apps locally, which is useful  
for developing and testing web applications before we deploy them on a public  
web server. Now, let's start our web application by executing the command from  
the terminal inside the 1st_flask_app_1 directory:

python3 app.py

We should now see a line such as the following displayed in the terminal:

* Running on http://127.0.0.1:5000/

This line contains the address of our local server. We can now enter this address in 
our web browser to see the web application in action. If everything has executed 
correctly, we should now see a simple website with the content: Hi, this is my first 
Flask web app!.

Form validation and rendering
In this subsection, we will extend our simple Flask web application with HTML 
form elements to learn how to collect data from a user using the WTForms library 
(https://wtforms.readthedocs.org/en/latest/), which can be installed via pip:

pip install wtforms

https://wtforms.readthedocs.org/en/latest/
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This web app will prompt a user to type in his or her name into a text field, as shown 
in the following screenshot:

After the submission button (Say Hello) has been clicked and the form is validated,  
a new HTML page will be rendered to display the user's name.

The new directory structure that we need to set up for this application looks like this:

1st_flask_app_2/
    app.py
    static/
        style.css
    templates/
        _formhelpers.html
        first_app.html
        hello.html

The following are the contents of our modified app.py file:

from flask import Flask, render_template, request
from wtforms import Form, TextAreaField, validators
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app = Flask(__name__)

class HelloForm(Form):
    sayhello = TextAreaField('',[validators.DataRequired()])

@app.route('/')
def index():
    form = HelloForm(request.form)
    return render_template('first_app.html', form=form)

@app.route('/hello', methods=['POST'])
def hello():
    form = HelloForm(request.form)
    if request.method == 'POST' and form.validate():
        name = request.form['sayhello']
        return render_template('hello.html', name=name)
    return render_template('first_app.html', form=form)

if __name__ == '__main__':
    app.run(debug=True)

Using wtforms, we extended the index function with a text field that we will 
embed in our start page using the TextAreaField class, which automatically checks 
whether a user has provided valid input text or not. Furthermore, we defined a 
new function, hello, which will render an HTML page hello.html if the form has 
been validated. Here, we used the POST method to transport the form data to the 
server in the message body. Finally, by setting the argument debug=True inside the 
app.run method, we further activated Flask's debugger. This is a useful feature for 
developing new web applications.

Now, we will implement a generic macro in the file _formhelpers.html via the 
Jinja2 templating engine, which we will later import in our first_app.html file  
to render the text field:

{% macro render_field(field) %}
  <dt>{{ field.label }}
  <dd>{{ field(**kwargs)|safe }}
  {% if field.errors %}
    <ul class=errors>
    {% for error in field.errors %}
      <li>{{ error }}</li>
    {% endfor %}
    </ul>
  {% endif %}
  </dd>
  </dt>
{% endmacro %}
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An in-depth discussion about the Jinja2 templating language is beyond the scope 
of this book. However, you can find a comprehensive documentation of the Jinja2 
syntax at http://jinja.pocoo.org.

Next, we set up a simple Cascading Style Sheets (CSS) file, style.css, to 
demonstrate how the look and feel of HTML documents can be modified. We have 
to save the following CSS file, which will simply double the font size of our HTML 
body elements, in a subdirectory called static, which is the default directory where 
Flask looks for static files such as CSS. The code is as follows:

body {
  font-size: 2em;
}

The following are the contents of the modified first_app.html file that will now 
render a text form where a user can enter a name:

<!doctype html>
<html>
  <head>
    <title>First app</title>
  <link rel="stylesheet" href="{{ url_for('static',  
    filename='style.css') }}">
  </head>
  <body>

{% from "_formhelpers.html" import render_field %}

<div>What's your name?</div>
<form method=post action="/hello">
  <dl>
    {{ render_field(form.sayhello) }}
  </dl>
  <input type=submit value='Say Hello' name='submit_btn'>
</form>
  </body>
</html>

http://jinja.pocoo.org
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In the header section of first_app.html, we loaded the CSS file. It should now 
alter the size of all text elements in the HTML body. In the HTML body section, we 
imported the form macro from _formhelpers.html and we rendered the sayhello 
form that we specified in the app.py file. Furthermore, we added a button to the 
same form element so that a user can submit the text field entry.

Lastly, we create a hello.html file that will be rendered via the line return  
render_template('hello.html', name=name) inside the hello function,  
which we defined in the app.py script to display the text that a user submitted  
via the text field. The code is as follows:

<!doctype html>
<html>
  <head>
    <title>First app</title>
  <link rel="stylesheet" href="{{ url_for('static',  
    filename='style.css') }}">
  </head>
  <body>

<div>Hello {{ name }}</div>
  </body>
</html>

Having set up our modified Flask web application, we can run it locally by executing 
the following command from the app's main directory and we can view the result in 
our web browser at http://127.0.0.1:5000/:

python3 app.py

If you are new to web development, some of those concepts may seem 
very complicated at first sight. In that case, I encourage you to simply 
set up the preceding files in a directory on your hard drive and examine 
them closely. You will see that the Flask web framework is actually pretty 
straightforward and much simpler than it might initially appear! Also, for 
more help, don't forget to look at the excellent Flask documentation and 
examples at http://flask.pocoo.org/docs/0.10/.

http://flask.pocoo.org/docs/0.10/
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Turning the movie classifier into a web 
application
Now that we are somewhat familiar with the basics of Flask web development, let's 
advance to the next step and implement our movie classifier into a web application. 
In this section, we will develop a web application that will first prompt a user to 
enter a movie review, as shown in the following screenshot:

After the review has been submitted, the user will see a new page that shows the 
predicted class label and the probability of the prediction. Furthermore, the user 
will be able to provide feedback about this prediction by clicking on the Correct or 
Incorrect button, as shown in the following screenshot:
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If a user clicked on either the Correct or Incorrect button, our classification model 
will be updated with respect to the user's feedback. Furthermore, we will also store 
the movie review text provided by the user as well as the suggested class label, 
which can be inferred from the button click, in a SQLite database for future reference. 
The third page that the user will see after clicking on one of the feedback buttons is a 
simple thank you screen with a Submit another review button that redirects the user 
back to the start page. This is shown in the following screenshot:

Before we take a closer look at the code implementation of this web application, I 
encourage you to take a look at the live demo that I uploaded at http://raschkas.
pythonanywhere.com to get a better understanding of what we are trying to 
accomplish in this section.

http://raschkas.pythonanywhere.com
http://raschkas.pythonanywhere.com
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To start with the big picture, let's take a look at the directory tree that we are going to 
create for this movie classification app, which is shown here:

In the previous section of this chapter, we already created the vectorizer.py file, 
the SQLite database reviews.sqlite, and the pkl_objects subdirectory with the 
pickled Python objects.

The app.py file in the main directory is the Python script that contains our Flask 
code, and we will use the review.sqlite database file (which we created earlier  
in this chapter) to store the movie reviews that are being submitted to our web app. 
The templates subdirectory contains the HTML templates that will be rendered by 
Flask and displayed in the browser, and the static subdirectory will contain  
a simple CSS file to adjust the look of the rendered HTML code.

Since the app.py file is rather long, we will conquer it in two steps. The first section 
of app.py imports the Python modules and objects that we are going to need, as  
well as the code to unpickle and set up our classification model:

from flask import Flask, render_template, request
from wtforms import Form, TextAreaField, validators
import pickle
import sqlite3
import os
import numpy as np
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# import HashingVectorizer from local dir
from vectorizer import vect

app = Flask(__name__)

######## Preparing the Classifier
cur_dir = os.path.dirname(__file__)
clf = pickle.load(open(os.path.join(cur_dir, 
                 'pkl_objects/classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

def classify(document):
    label = {0: 'negative', 1: 'positive'}
    X = vect.transform([document])
    y = clf.predict(X)[0]
    proba =  clf.predict_proba(X).max()
    return label[y], proba

def train(document, y):
    X = vect.transform([document])
    clf.partial_fit(X, [y])

def sqlite_entry(path, document, y):
    conn = sqlite3.connect(path)
    c = conn.cursor()
    c.execute("INSERT INTO review_db (review, sentiment, date)"\
    " VALUES (?, ?, DATETIME('now'))", (document, y))
    conn.commit()
    conn.close()

This first part of the app.py script should look very familiar to us by now. We simply 
imported the HashingVectorizer and unpickled the logistic regression classifier. 
Next, we defined a classify function to return the predicted class label as well 
as the corresponding probability prediction of a given text document. The train 
function can be used to update the classifier given that a document and a class label 
are provided. Using the sqlite_entry function, we can store a submitted movie 
review in our SQLite database along with its class label and timestamp for our 
personal records. Note that the clf object will be reset to its original, pickled state if 
we restart the web application. At the end of this chapter, you will learn how to use 
the data that we collect in the SQLite database to update the classifier permanently.
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The concepts in the second part of the app.py script should also look quite familiar 
to us:

app = Flask(__name__)
class ReviewForm(Form):
    moviereview = TextAreaField('',
                                [validators.DataRequired(),
                                validators.length(min=15)])

@app.route('/')
def index():
    form = ReviewForm(request.form)
    return render_template('reviewform.html', form=form)

@app.route('/results', methods=['POST'])
def results():
    form = ReviewForm(request.form)
    if request.method == 'POST' and form.validate():
        review = request.form['moviereview']
        y, proba = classify(review)
        return render_template('results.html',
                                content=review,
                                prediction=y,
                                probability=round(proba*100, 2))
    return render_template('reviewform.html', form=form)

@app.route('/thanks', methods=['POST'])
def feedback():
    feedback = request.form['feedback_button']
    review = request.form['review']
    prediction = request.form['prediction']

    inv_label = {'negative': 0, 'positive': 1}
    y = inv_label[prediction]
    if feedback == 'Incorrect':
        y = int(not(y))
    train(review, y)
    sqlite_entry(db, review, y)
    return render_template('thanks.html')

if __name__ == '__main__':
    app.run(debug=True)
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We defined a ReviewForm class that instantiates a TextAreaField, which will 
be rendered in the reviewform.html template file (the landing page of our web 
app). This, in turn, is rendered by the index function. With the validators.
length(min=15) parameter, we require the user to enter a review that contains at least 
15 characters. Inside the results function, we fetch the contents of the submitted web 
form and pass it on to our classifier to predict the sentiment of the movie classifier, 
which will then be displayed in the rendered results.html template.

The feedback function may look a little bit complicated at first glance. It essentially 
fetches the predicted class label from the results.html template if a user clicked 
on the Correct or Incorrect feedback button, and transforms the predicted sentiment 
back into an integer class label that will be used to update the classifier via the train 
function, which we implemented in the first section of the app.py script. Also, a new 
entry to the SQLite database will be made via the sqlite_entry function if feedback 
was provided, and eventually the thanks.html template will be rendered to thank 
the user for the feedback.

Next, let's take a look at the reviewform.html template, which constitutes the 
starting page of our application:

<!doctype html>
<html>
<head>
    <title>Movie Classification</title>
</head>
  <body>

<h2>Please enter your movie review:</h2>

{% from "_formhelpers.html" import render_field %}

<form method=post action="/results">
  <dl>
    {{ render_field(form.moviereview, cols='30', rows='10') }}
  </dl>
  <div>
    <input type=submit value='Submit review' name='submit_btn'>
  </div>
</form>

  </body>
</html>
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Here, we simply imported the same _formhelpers.html template that we defined 
in the Form validation and rendering section earlier in this chapter. The render_field 
function of this macro is used to render a TextAreaField where a user can provide a 
movie review and submit it via the Submit review button displayed at the bottom of 
the page. This TextAreaField is 30 columns wide and 10 rows tall.

Our next template, results.html, looks a little bit more interesting:

<!doctype html>
<html>
  <head>
    <title>Movie Classification</title>
  <link rel="stylesheet" href="{{ url_for('static',  
    filename='style.css') }}">
  </head>
  <body>

<h3>Your movie review:</h3>
<div>{{ content }}</div>

<h3>Prediction:</h3>
<div>This movie review is <strong>{{ prediction }}</strong>
  (probability: {{ probability }}%).</div>

<div class='button'>
  <form action="/thanks" method="post">
    <input type=submit value='Correct' name='feedback_button'>
    <input type=submit value='Incorrect' name='feedback_button'>
    <input type=hidden value='{{ prediction }}' name='prediction'>
    <input type=hidden value='{{ content }}' name='review'>
  </form>
</div>

<div class='button'>
  <form action="/">
    <input type=submit value='Submit another review'>
  </form>
</div>

  </body>
</html>
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First, we inserted the submitted review as well as the results of the prediction in the 
corresponding fields {{ content }}, {{ prediction }}, and {{ probability }}. 
You may notice that we used the {{ content }} and {{ prediction }} placeholder 
variables a second time in the form that contains the Correct and Incorrect buttons. 
This is a workaround to POST those values back to the server to update the classifier 
and store the review in case the user clicks on one of those two buttons. Furthermore, 
we imported a CSS file (style.css) at the beginning of the results.html file. The 
setup of this file is quite simple; it limits the width of the contents of this web app to 
600 pixels and moves the Incorrect and Correct buttons labeled with the div id  
button down by 20 pixels:

body{
  width:600px;
}
.button{
  padding-top: 20px;
}

This CSS file is merely a placeholder, so please feel free to adjust it to adjust the look 
and feel of the web app to your liking.

The last HTML file we will implement for our web application is the thanks.html 
template. As the name suggests, it simply provides a nice thank you message to the 
user after providing feedback via the Correct or Incorrect button. Furthermore, we 
put a Submit another review button at the bottom of this page, which will redirect 
the user to the starting page. The contents of the thanks.html file are as follows:

<!doctype html>
<html>
  <head>
    <title>Movie Classification</title>
</head>
  <body>

<h3>Thank you for your feedback!</h3>
<div id='button'>
  <form action="/">
    <input type=submit value='Submit another review'>
  </form>
</div>

  </body>
</html>
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Now, it would be a good idea to start the web app locally from our terminal via the 
following command before we advance to the next subsection and deploy it on a 
public web server:

python3 app.py

After we have finished testing our app, we also shouldn't forget to remove the 
debug=True argument in the app.run() command of our app.py script.

Deploying the web application to a public 
server
After we have tested the web application locally, we are now ready to deploy our 
web application onto a public web server. For this tutorial, we will be using the 
PythonAnywhere web hosting service, which specializes in the hosting of Python 
web applications and makes it extremely simple and hassle-free. Furthermore, 
PythonAnywhere offers a beginner account option that lets us run a single web 
application free of charge.

To create a new PythonAnywhere account, we visit the website at https://www.
pythonanywhere.com and click on the Pricing & signup link that is located in the 
top-right corner. Next, we click on the Create a Beginner account button where we 
need to provide a username, password, and a valid e-mail address. After we have 
read and agreed to the terms and conditions, we should have a new account.

Unfortunately, the free beginner account doesn't allow us to access the remote 
server via the SSH protocol from our command-line terminal. Thus, we need to use 
the PythonAnywhere web interface to manage our web application. But before we 
can upload our local application files to the server, we need to create a new web 
application for our PythonAnywhere account. After we click on the Dashboard 
button in the top-right corner, we have access to the control panel shown at the top 
of the page. Next, we click on the Web tab that is now visible at the top of the page. 
We proceed by clicking on the Add a new web app button on the left, which lets us 
create a new Python 3.4 Flask web application that we name movieclassifier.

After creating a new application for our PythonAnywhere account, we head over to 
the Files tab to upload the files from our local movieclassifier directory using the 
PythonAnywhere web interface. After uploading the web application files that we 
created locally on our computer, we should have a movieclassifier directory in 
our PythonAnywhere account. It contains the same directories and files as our local 
movieclassifier directory has, as shown in the following screenshot:

https://www.pythonanywhere.com
https://www.pythonanywhere.com


Chapter 9

[ 275 ]

Lastly, we head over to the Web tab one more time and click on the Reload 
<username>.pythonanywhere.com button to propagate the changes and refresh our 
web application. Finally, our web app should now be up and running and publicly 
available via the address <username>.pythonanywhere.com.

Unfortunately, web servers can be quite sensitive to the tiniest problems 
in our web app. If you are experiencing problems with running the web 
application on PythonAnywhere and are receiving error messages in your 
browser, you can check the server and error logs which can be accessed 
from the Web tab in your PythonAnywhere account to better diagnose 
the problem.
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Updating the movie review classifier
While our predictive model is updated on-the-fly whenever a user provides 
feedback about the classification, the updates to the clf object will be reset if the 
web server crashes or restarts. If we reload the web application, the clf object 
will be reinitialized from the classifier.pkl pickle file. One option to apply 
the updates permanently would be to pickle the clf object once again after each 
update. However, this would become computationally very inefficient with a 
growing number of users and could corrupt the pickle file if users provide feedback 
simultaneously. An alternative solution is to update the predictive model from the 
feedback data that is being collected in the SQLite database. One option would be 
to download the SQLite database from the PythonAnywhere server, update the clf 
object locally on our computer, and upload the new pickle file to PythonAnywhere. 
To update the classifier locally on our computer, we create an update.py script file 
in the movieclassifier directory with the following contents:

import pickle
import sqlite3
import numpy as np
import os

# import HashingVectorizer from local dir
from vectorizer import vect

def update_model(db_path, model, batch_size=10000):

    conn = sqlite3.connect(db_path)
    c = conn.cursor()
    c.execute('SELECT * from review_db')

    results = c.fetchmany(batch_size)
    while results:
        data = np.array(results)
        X = data[:, 0]
        y = data[:, 1].astype(int)

        classes = np.array([0, 1])
        X_train = vect.transform(X)
        model.partial_fit(X_train, y, classes=classes)
        results = c.fetchmany(batch_size)

    conn.close()
    return model
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cur_dir = os.path.dirname(__file__)

clf = pickle.load(open(os.path.join(cur_dir,
                 'pkl_objects',
                 'classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

update_model(db_path=db, model=clf, batch_size=10000)

# Uncomment the following lines if you are sure that
# you want to update your classifier.pkl file
# permanently.

# pickle.dump(clf, open(os.path.join(cur_dir,
#             'pkl_objects', 'classifier.pkl'), 'wb')
#             , protocol=4)

The update_model function will fetch entries from the SQLite database in batches of 
10,000 entries at a time unless the database contains fewer entries. Alternatively, we 
could also fetch one entry at a time by using fetchone instead of fetchmany, which 
would be computationally very inefficient. Using the alternative fetchall method 
could be a problem if we are working with large datasets that exceed the computer 
or server's memory capacity.

Now that we have created the update.py script, we could also upload it to the 
movieclassifier directory on PythonAnywhere and import the update_model 
function in the main application script app.py to update the classifier from the 
SQLite database every time we restart the web application. In order to do so, we just 
need to add a line of code to import the update_model function from the update.py 
script at the top of app.py:

# import update function from local dir
from update import update_model

We then need to call the update_model function in the main application body:

…
if __name__ == '__main__':
    clf = update_model(db_path=“db”, model=clf, batch_size=10000)
…
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Summary
In this chapter, you learned about many useful and practical topics that extend our 
knowledge of machine learning theory. You learned how to serialize a model after 
training and how to load it for later use cases. Furthermore, we created a SQLite 
database for efficient data storage and created a web application that lets us make 
our movie classifier available to the outside world.

Throughout this book, we have really discussed a lot about machine learning 
concepts, best practices, and supervised models for classification. In the next chapter, 
we will take a look at another subcategory of supervised learning, regression 
analysis, which lets us predict outcome variables on a continuous scale, in contrast 
to the categorical class labels of the classification models that we have been working 
with so far.
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Predicting Continuous  
Target Variables with 
Regression Analysis 

Throughout the previous chapters, you learned a lot about the main concepts  
behind supervised learning and trained many different models for classification tasks 
to predict group memberships or categorical variables. In this chapter, we will take  
a dive into another subcategory of supervised learning: regression analysis.

Regression models are used to predict target variables on a continuous scale, 
which makes them attractive for addressing many questions in science as well as 
applications in industry, such as understanding relationships between variables, 
evaluating trends, or making forecasts. One example would be predicting the sales  
of a company in future months.

In this chapter, we will discuss the main concepts of regression models and cover  
the following topics:

•	 Exploring and visualizing datasets
•	 Looking at different approaches to implement linear regression models
•	 Training regression models that are robust to outliers
•	 Evaluating regression models and diagnosing common problems
•	 Fitting regression models to nonlinear data
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Introducing a simple linear regression 
model
The goal of simple (univariate) linear regression is to model the relationship between 
a single feature (explanatory variable x) and a continuous valued response (target 
variable y). The equation of a linear model with one explanatory variable is defined 
as follows:

0 1y w w x= +

Here, the weight 0w  represents the y axis intercepts and 1w  is the coefficient of 
the explanatory variable. Our goal is to learn the weights of the linear equation to 
describe the relationship between the explanatory variable and the target variable, 
which can then be used to predict the responses of new explanatory variables that 
were not part of the training dataset.

Based on the linear equation that we defined previously, linear regression can be 
understood as finding the best-fitting straight line through the sample points, as 
shown in the following figure:

This best-fitting line is also called the regression line, and the vertical lines from the 
regression line to the sample points are the so-called offsets or residuals—the errors 
of our prediction.
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The special case of one explanatory variable is also called simple linear regression, 
but of course we can also generalize the linear regression model to multiple 
explanatory variables. Hence, this process is called multiple linear regression:

0 0 1 1
0

T
m m i i

i

m

y w x w x w x w x w x
=

= + +…+ = =∑

Here, 0w  is the y axis intercept with 0 1x = .

Exploring the Housing Dataset
Before we implement our first linear regression model, we will introduce a new 
dataset, the Housing Dataset, which contains information about houses in the 
suburbs of Boston collected by D. Harrison and D.L. Rubinfeld in 1978. The Housing 
Dataset has been made freely available and can be downloaded from the UCI machine 
learning repository at https://archive.ics.uci.edu/ml/datasets/Housing.

The features of the 506 samples may be summarized as shown in the excerpt of the 
dataset description:

•	 CRIM: This is the per capita crime rate by town
•	 ZN: This is the proportion of residential land zoned for lots larger than  

25,000 sq.ft.
•	 INDUS: This is the proportion of non-retail business acres per town
•	 CHAS: This is the Charles River dummy variable (this is equal to 1 if tract 

bounds river; 0 otherwise)
•	 NOX: This is the nitric oxides concentration (parts per 10 million)
•	 RM: This is the average number of rooms per dwelling
•	 AGE: This is the proportion of owner-occupied units built prior to 1940
•	 DIS: This is the weighted distances to five Boston employment centers
•	 RAD: This is the index of accessibility to radial highways
•	 TAX: This is the full-value property-tax rate per $10,000
•	 PTRATIO: This is the pupil-teacher ratio by town
•	 B: This is calculated as 1000(Bk - 0.63)^2, where Bk is the proportion of 

people of African American descent by town
•	 LSTAT: This is the percentage lower status of the population
•	 MEDV: This is the median value of owner-occupied homes in $1000s

https://archive.ics.uci.edu/ml/datasets/Housing
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For the rest of this chapter, we will regard the housing prices (MEDV) as our 
target variable—the variable that we want to predict using one or more of the 13 
explanatory variables. Before we explore this dataset further, let's fetch it from the 
UCI repository into a pandas DataFrame:

>>> import pandas as pd
>>> df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/housing/housing.data', 
...                 header=None, sep='\s+')
>>> df.columns = ['CRIM', 'ZN', 'INDUS', 'CHAS', 
...              'NOX', 'RM', 'AGE', 'DIS', 'RAD', 
...              'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
>>> df.head()

To confirm that the dataset was loaded successfully, we displayed the first five lines 
of the dataset, as shown in the following screenshot:

Visualizing the important characteristics of a 
dataset
Exploratory Data Analysis (EDA) is an important and recommended first step prior 
to the training of a machine learning model. In the rest of this section, we will use 
some simple yet useful techniques from the graphical EDA toolbox that may help 
us to visually detect the presence of outliers, the distribution of the data, and the 
relationships between features.

First, we will create a scatterplot matrix that allows us to visualize the pair-wise 
correlations between the different features in this dataset in one place. To plot the 
scatterplot matrix, we will use the pairplot function from the seaborn library 
(http://stanford.edu/~mwaskom/software/seaborn/), which is a Python library 
for drawing statistical plots based on matplotlib:

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set(style='whitegrid', context='notebook')
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>>> cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
>>> sns.pairplot(df[cols], size=2.5)
>>> plt.show()

As we can see in the following figure, the scatterplot matrix provides us with a 
useful graphical summary of the relationships in a dataset:

Importing the seaborn library modifies the default aesthetics of 
matplotlib for the current Python session. If you do not want to 
use seaborn's style settings, you can reset the matplotlib settings 
by executing the following command:

>>> sns.reset_orig()
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Due to space constraints and for purposes of readability, we only plotted five 
columns from the dataset: LSTAT, INDUS, NOX, RM, and MEDV. However,  
you are encouraged to create a scatterplot matrix of the whole DataFrame to  
further explore the data. 

Using this scatterplot matrix, we can now quickly eyeball how the data is distributed 
and whether it contains outliers. For example, we can see that there is a linear 
relationship between RM and the housing prices MEDV (the fifth column of the 
fourth row). Furthermore, we can see in the histogram (the lower right subplot in  
the scatter plot matrix) that the MEDV variable seems to be normally distributed  
but contains several outliers.

Note that in contrast to common belief, training a linear regression model 
does not require that the explanatory or target variables are normally 
distributed. The normality assumption is only a requirement for certain 
statistical tests and hypothesis tests that are beyond the scope of this book 
(Montgomery, D. C., Peck, E. A., and Vining, G. G. Introduction to linear 
regression analysis. John Wiley and Sons, 2012, pp.318–319).

To quantify the linear relationship between the features, we will now create a 
correlation matrix. A correlation matrix is closely related to the covariance matrix 
that we have seen in the section about principal component analysis (PCA) in 
Chapter 4, Building Good Training Sets – Data Preprocessing. Intuitively, we can 
interpret the correlation matrix as a rescaled version of the covariance matrix. 
In fact, the correlation matrix is identical to a covariance matrix computed from 
standardized data.

The correlation matrix is a square matrix that contains the Pearson product-moment 
correlation coefficients (often abbreviated as Pearson's r), which measure the linear 
dependence between pairs of features. The correlation coefficients are bounded 
to the range -1 and 1. Two features have a perfect positive correlation if 1r = , no 
correlation if 0r = , and a perfect negative correlation if 1r = − , respectively. As 
mentioned previously, Pearson's correlation coefficient can simply be calculated as 
the covariance between two features x  and y  (numerator) divided by the product 
of their standard deviations (denominator):
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Here, µ  denotes the sample mean of the corresponding feature, xyσ  is the 
covariance between the features x  and y , and xσ  and yσ  are the features'  
standard deviations, respectively.

We can show that the covariance between standardized features is in 
fact equal to their linear correlation coefficient.
Let's first standardize the features x  and y , to obtain their z-scores 
which we will denote as x′  and y′ , respectively:

, yx

x y

yxx y
µµ

σ σ
′ ′

−−
= =

Remember that we calculate the (population) covariance between two 
features as follows:
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Since standardization centers a feature variable at mean 0, we can now 
calculate the covariance between the scaled features as follows:
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Through resubstitution, we get the following result:
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We can simplify it as follows:
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In the following code example, we will use NumPy's corrcoef function on the five 
feature columns that we previously visualized in the scatterplot matrix, and we will 
use seaborn's heatmap function to plot the correlation matrix array as a heat map:

>>> import numpy as np
>>> cm = np.corrcoef(df[cols].values.T)
>>> sns.set(font_scale=1.5)
>>> hm = sns.heatmap(cm, 
...            cbar=True,
...            annot=True, 
...            square=True,
...            fmt='.2f',
...            annot_kws={'size': 15},
...            yticklabels=cols,
...            xticklabels=cols)
>>> plt.show()

As we can see in the resulting figure, the correlation matrix provides us with another 
useful summary graphic that can help us to select features based on their respective 
linear correlations:

To fit a linear regression model, we are interested in those features that have a high 
correlation with our target variable MEDV. Looking at the preceding correlation 
matrix, we see that our target variable MEDV shows the largest correlation with 
the LSTAT variable (-0.74). However, as you might remember from the scatterplot 
matrix, there is a clear nonlinear relationship between LSTAT and MEDV. On the 
other hand, the correlation between RM and MEDV is also relatively high (0.70) and 
given the linear relationship between those two variables that we observed in the 
scatterplot, RM seems to be a good choice for an explanatory variable to introduce 
the concepts of a simple linear regression model in the following section.
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Implementing an ordinary least squares 
linear regression model
At the beginning of this chapter, we discussed that linear regression can be 
understood as finding the best-fitting straight line through the sample points of 
our training data. However, we have neither defined the term best-fitting nor have 
we discussed the different techniques of fitting such a model. In the following 
subsections, we will fill in the missing pieces of this puzzle using the Ordinary 
Least Squares (OLS) method to estimate the parameters of the regression line that 
minimizes the sum of the squared vertical distances (residuals or errors) to the 
sample points.

Solving regression for regression parameters 
with gradient descent
Consider our implementation of the ADAptive LInear NEuron (Adaline) from 
Chapter 2, Training Machine Learning Algorithms for Classification; we remember that 
the artificial neuron uses a linear activation function and we defined a cost function 
( )J ⋅ , which we minimized to learn the weights via optimization algorithms, such as 

Gradient Descent (GD) and Stochastic Gradient Descent (SGD). This cost function 
in Adaline is the Sum of Squared Errors (SSE). This is identical to the OLS cost 
function that we defined:
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Here, ŷ  is the predicted value ˆ Ty w x=  (note that the term 1/2 is just used for 
convenience to derive the update rule of GD). Essentially, OLS linear regression 
can be understood as Adaline without the unit step function so that we obtain 
continuous target values instead of the class labels -1 and 1. To demonstrate the 
similarity, let's take the GD implementation of Adaline from Chapter 2, Training 
Machine Learning Algorithms for Classification, and remove the unit step function to 
implement our first linear regression model:

class LinearRegressionGD(object):

    def __init__(self, eta=0.001, n_iter=20):
        self.eta = eta
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        self.n_iter = n_iter

    def fit(self, X, y):
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        return self.net_input(X)

If you need a refresher about how the weights are being updated—taking a step in 
the opposite direction of the gradient—please revisit the Adaline section in Chapter 2, 
Training Machine Learning Algorithms for Classification.

To see our LinearRegressionGD regressor in action, let's use the RM (number of 
rooms) variable from the Housing Data Set as the explanatory variable to train a 
model that can predict MEDV (the housing prices). Furthermore, we will standardize 
the variables for better convergence of the GD algorithm. The code is as follows:

>>> X = df[['RM']].values
>>> y = df['MEDV'].values
>>> from sklearn.preprocessing import StandardScaler
>>> sc_x = StandardScaler()
>>> sc_y = StandardScaler()
>>> X_std = sc_x.fit_transform(X)
>>> y_std = sc_y.fit_transform(y)
>>> lr = LinearRegressionGD()
>>> lr.fit(X_std, y_std)
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We discussed in Chapter 2, Training Machine Learning Algorithms for Classification, 
that it is always a good idea to plot the cost as a function of the number of epochs 
(passes over the training dataset) when we are using optimization algorithms, such 
as gradient descent, to check for convergence. To cut a long story short, let's plot the 
cost against the number of epochs to check if the linear regression has converged:

>>> plt.plot(range(1, lr.n_iter+1), lr.cost_)
>>> plt.ylabel('SSE')
>>> plt.xlabel('Epoch')
>>> plt.show()

As we can see in the following plot, the GD algorithm converged after the fifth epoch:

Next, let's visualize how well the linear regression line fits the training data. To do 
so, we will define a simple helper function that will plot a scatterplot of the training 
samples and add the regression line:

>>> def lin_regplot(X, y, model):
...     plt.scatter(X, y, c='blue')
...     plt.plot(X, model.predict(X), color='red')    
...     return None

Now, we will use this lin_regplot function to plot the number of rooms against 
house prices:

>>> lin_regplot(X_std, y_std, lr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000\'s [MEDV] (standardized)')
>>> plt.show()
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As we can see in the following plot, the linear regression line reflects the general 
trend that house prices tend to increase with the number of rooms:

Although this observation makes intuitive sense, the data also tells us that the 
number of rooms does not explain the house prices very well in many cases. Later  
in this chapter, we will discuss how to quantify the performance of a regression 
model. Interestingly, we also observe a curious line 3y = , which suggests that the 
prices may have been clipped. In certain applications, it may also be important to 
report the predicted outcome variables on their original scale. To scale the predicted 
price outcome back on the Price in $1000's axes, we can simply apply the  
inverse_transform method of the StandardScaler:

>>> num_rooms_std = sc_x.transform([5.0]) 
>>> price_std = lr.predict(num_rooms_std)
>>> print("Price in $1000's: %.3f" % \
...       sc_y.inverse_transform(price_std))
Price in $1000's: 10.840

In the preceding code example, we used the previously trained linear regression 
model to predict the price of a house with five rooms. According to our model,  
such a house is worth $10,840.
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On a side note, it is also worth mentioning that we technically don't have to update 
the weights of the intercept if we are working with standardized variables since the  
y axis intercept is always 0 in those cases. We can quickly confirm this by printing 
the weights:

>>> print('Slope: %.3f' % lr.w_[1])
Slope: 0.695
>>> print('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression 
model via scikit-learn
In the previous section, we implemented a working model for regression  
analysis. However, in a real-world application, we may be interested in more 
efficient implementations, for example, scikit-learn's LinearRegression object  
that makes use of the LIBLINEAR library and advanced optimization algorithms 
that work better with unstandardized variables. This is sometimes desirable for 
certain applications:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression 
model fitted with the unstandardized RM and MEDV variables yielded different 
model coefficients. Let's compare it to our own GD implementation by plotting 
MEDV against RM:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Average number of rooms [RM]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.show()w
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Now, when we plot the training data and our fitted model by executing the code 
above, we can see that the overall result looks identical to our GD implementation:

As an alternative to using machine learning libraries, there is also 
a closed-form solution for solving OLS involving a system of linear 
equations that can be found in most introductory statistics textbooks:

( ) 1T Tw X X X y
−

=

We can implement it in Python as follows:
# adding a column vector of "ones"

>>> Xb = np.hstack((np.ones((X.shape[0], 1)), X))

>>> w = np.zeros(X.shape[1])

>>> z = np.linalg.inv(np.dot(Xb.T, Xb))

>>> w = np.dot(z, np.dot(Xb.T, y))

>>> print('Slope: %.3f' % w[1])

Slope: 9.102

>>> print('Intercept: %.3f' % w[0])

Intercept: -34.671

The advantage of this method is that it is guaranteed to find the optimal 
solution analytically. However, if we are working with very large 
datasets, it can be computationally too expensive to invert the matrix in 
this formula (sometimes also called the normal equation) or the sample 
matrix may be singular (non-invertible), which is why we may prefer 
iterative methods in certain cases.
If you are interested in more information on how to obtain the normal 
equations, I recommend you take a look at Dr. Stephen Pollock's chapter, 
The Classical Linear Regression Model from his lectures at the University 
of Leicester, which are available for free at http://www.le.ac.uk/
users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf.

http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf
http://www.le.ac.uk/users/dsgp1/COURSES/MESOMET/ECMETXT/06mesmet.pdf
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Fitting a robust regression model using 
RANSAC
Linear regression models can be heavily impacted by the presence of outliers. 
In certain situations, a very small subset of our data can have a big effect on the 
estimated model coefficients. There are many statistical tests that can be used to 
detect outliers, which are beyond the scope of the book. However, removing  
outliers always requires our own judgment as a data scientist, as well as our  
domain knowledge.

As an alternative to throwing out outliers, we will look at a robust method of 
regression using the RANdom SAmple Consensus (RANSAC) algorithm,  
which fits a regression model to a subset of the data, the so-called inliers.

We can summarize the iterative RANSAC algorithm as follows:

1.	 Select a random number of samples to be inliers and fit the model.
2.	 Test all other data points against the fitted model and add those points  

that fall within a user-given tolerance to the inliers.
3.	 Refit the model using all inliers.
4.	 Estimate the error of the fitted model versus the inliers.
5.	 Terminate the algorithm if the performance meets a certain user-defined 

threshold or if a fixed number of iterations has been reached; go back to  
step 1 otherwise.

Let's now wrap our linear model in the RANSAC algorithm using scikit-learn's 
RANSACRegressor object:

>>> from sklearn.linear_model import RANSACRegressor
>>> ransac = RANSACRegressor(LinearRegression(), 
...            max_trials=100, 
...            min_samples=50, 
...            residual_metric=lambda x: np.sum(np.abs(x), axis=1), 
...            residual_threshold=5.0, 
...            random_state=0)
>>> ransac.fit(X, y)
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We set the maximum number of iterations of the RANSACRegressor to 100, and using 
min_samples=50, we set the minimum number of the randomly chosen samples to 
be at least 50. Using the residual_metric parameter, we provided a callable lambda 
function that simply calculates the absolute vertical distances between the fitted line 
and the sample points. By setting the residual_threshold parameter to 5.0, we 
only allowed samples to be included in the inlier set if their vertical distance to the 
fitted line is within 5 distance units, which works well on this particular dataset. By 
default, scikit-learn uses the MAD estimate to select the inlier threshold, where MAD 
stands for the Median Absolute Deviation of the target values y. However, the choice 
of an appropriate value for the inlier threshold is problem-specific, which is one 
disadvantage of RANSAC. Many different approaches have been developed over the 
recent years to select a good inlier threshold automatically. You can find a detailed 
discussion in R. Toldo and A. Fusiello's. Automatic Estimation of the Inlier Threshold in 
Robust Multiple Structures Fitting (in Image Analysis and Processing–ICIAP 2009,  
pages 123–131. Springer, 2009).

After we have fitted the RANSAC model, let's obtain the inliers and outliers from the 
fitted RANSAC linear regression model and plot them together with the linear fit:

>>> inlier_mask = ransac.inlier_mask_
>>> outlier_mask = np.logical_not(inlier_mask)
>>> line_X = np.arange(3, 10, 1)
>>> line_y_ransac = ransac.predict(line_X[:, np.newaxis])
>>> plt.scatter(X[inlier_mask], y[inlier_mask], 
...             c='blue', marker='o', label='Inliers')
>>> plt.scatter(X[outlier_mask], y[outlier_mask],
...             c='lightgreen', marker='s', label='Outliers')
>>> plt.plot(line_X, line_y_ransac, color='red')
>>> plt.xlabel('Average number of rooms [RM]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.legend(loc='upper left')
>>> plt.show()
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As we can see in the following scatterplot, the linear regression model was fitted on 
the detected set of inliers shown as circles:

When we print the slope and intercept of the model executing the following code, 
we can see that the linear regression line is slightly different from the fit that we 
obtained in the previous section without RANSAC:

>>> print('Slope: %.3f' % ransac.estimator_.coef_[0])
Slope: 9.621
>>> print('Intercept: %.3f' % ransac.estimator_.intercept_)
Intercept: -37.137

Using RANSAC, we reduced the potential effect of the outliers in this dataset,  
but we don't know if this approach has a positive effect on the predictive 
performance for unseen data. Thus, in the next section we will discuss how to 
evaluate a regression model for different approaches, which is a crucial part of 
building systems for predictive modeling.
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Evaluating the performance of linear 
regression models
In the previous section, we discussed how to fit a regression model on training data. 
However, you learned in previous chapters that it is crucial to test the model on data 
that it hasn't seen during training to obtain an unbiased estimate of its performance.

As we remember from Chapter 6, Learning Best Practices for Model Evaluation and 
Hyperparameter Tuning, we want to split our dataset into separate training and 
test datasets where we use the former to fit the model and the latter to evaluate its 
performance to generalize to unseen data. Instead of proceeding with the simple 
regression model, we will now use all variables in the dataset and train a multiple 
regression model:

>>> from sklearn.cross_validation import train_test_split
>>> X = df.iloc[:, :-1].values
>>> y = df['MEDV'].values
>>> X_train, X_test, y_train, y_test = train_test_split(
...       X, y, test_size=0.3, random_state=0)
>>> slr = LinearRegression()
>>> slr.fit(X_train, y_train)
>>> y_train_pred = slr.predict(X_train)
>>> y_test_pred = slr.predict(X_test)

Since our model uses multiple explanatory variables, we can't visualize the linear 
regression line (or hyperplane to be precise) in a two-dimensional plot, but we 
can plot the residuals (the differences or vertical distances between the actual and 
predicted values) versus the predicted values to diagnose our regression model. 
Those residual plots are a commonly used graphical analysis for diagnosing 
regression models to detect nonlinearity and outliers, and to check if the errors  
are randomly distributed.

Using the following code, we will now plot a residual plot where we simply subtract 
the true target variables from our predicted responses:

>>> plt.scatter(y_train_pred, y_train_pred - y_train, 
...             c='blue', marker='o', label='Training data')
>>> plt.scatter(y_test_pred,  y_test_pred - y_test,
...             c='lightgreen', marker='s', label='Test data')
>>> plt.xlabel('Predicted values')
>>> plt.ylabel('Residuals')
>>> plt.legend(loc='upper left')
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.xlim([-10, 50])
>>> plt.show()
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After executing the code, we should see a residual plot with a line passing through 
the x axis origin as shown here:

In the case of a perfect prediction, the residuals would be exactly zero, which we will 
probably never encounter in realistic and practical applications. However, for a good 
regression model, we would expect that the errors are randomly distributed and 
the residuals should be randomly scattered around the centerline. If we see patterns 
in a residual plot, it means that our model is unable to capture some explanatory 
information, which is leaked into the residuals as we can slightly see in our preceding 
residual plot. Furthermore, we can also use residual plots to detect outliers, which are 
represented by the points with a large deviation from the centerline.

Another useful quantitative measure of a model's performance is the so-called  
Mean Squared Error (MSE), which is simply the average value of the SSE cost 
function that we minimize to fit the linear regression model. The MSE is useful  
to for comparing  different regression models or for tuning their parameters via  
a grid search and cross-validation:
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Execute the following code:

>>> from sklearn.metrics import mean_squared_error
>>> print('MSE train: %.3f, test: %.3f' % (
        mean_squared_error(y_train, y_train_pred),
        mean_squared_error(y_test, y_test_pred)))
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We will see that the MSE on the training set is 19.96, and the MSE of the test set is 
much larger with a value of 27.20, which is an indicator that our model is overfitting 
the training data.

Sometimes it may be more useful to report the coefficient of determination ( 2R ), which 
can be understood as a standardized version of the MSE, for better interpretability of 
the model performance. In other words, 2R  is the fraction of response variance that is 
captured by the model. The 2R  value is defined as follows:

2 1 SSER
SST

= −

Here, SSE is the sum of squared errors and SST is the total sum of squares 
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= −∑ , or in other words, it is simply the variance of the response.

Let's quickly show that 2R  is indeed just a rescaled version of the MSE:
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For the training dataset, 2R  is bounded between 0 and 1, but it can become  
negative for the test set. If 2 1R = , the model fits the data perfectly with a 
corresponding 0MSE = .

Evaluated on the training data, the 2R  of our model is 0.765, which doesn't sound 
too bad. However, the 2R  on the test dataset is only 0.673, which we can compute  
by executing the following code:

>>> from sklearn.metrics import r2_score
>>> print('R^2 train: %.3f, test: %.3f' % 
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...       (r2_score(y_train, y_train_pred),

...        r2_score(y_test, y_test_pred)))

Using regularized methods for regression
As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using  
Scikit-learn, regularization is one approach to tackle the problem of overfitting by 
adding additional information, and thereby shrinking the parameter values of the 
model to induce a penalty against complexity. The most popular approaches to 
regularized linear regression are the so-called Ridge Regression, Least Absolute 
Shrinkage and Selection Operator (LASSO) and Elastic Net method.

Ridge regression is an L2 penalized model where we simply add the squared sum of 
the weights to our least-squares cost function:
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By increasing the value of the hyperparameter λ , we increase the regularization 
strength and shrink the weights of our model. Please note that we don't regularize 
the intercept term 0w .

An alternative approach that can lead to sparse models is the LASSO. Depending 
on the regularization strength, certain weights can become zero, which makes the 
LASSO also useful as a supervised feature selection technique:
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However, a limitation of the LASSO is that it selects at most n  variables if m > n . A 
compromise between Ridge regression and the LASSO is the Elastic Net, which has a 
L1 penalty to generate sparsity and a L2 penalty to overcome some of the limitations 
of the LASSO, such as the number of selected variables.
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Those regularized regression models are all available via scikit-learn, and the 
usage is similar to the regular regression model except that we have to specify the 
regularization strength via the parameter λ , for example, optimized via k-fold  
cross-validation.

A Ridge Regression model can be initialized as follows:

>>> from sklearn.linear_model import Ridge
>>> ridge = Ridge(alpha=1.0)

Note that the regularization strength is regulated by the parameter alpha, which is 
similar to the parameter λ . Likewise, we can initialize a LASSO regressor from the  
linear_model submodule:

>>> from sklearn.linear_model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear_model import ElasticNet
>>> lasso = ElasticNet(alpha=1.0, l1_ratio=0.5)

For example, if we set l1_ratio to 1.0, the ElasticNet regressor would be 
equal to LASSO regression. For more detailed information about the different 
implementations of linear regression, please see the documentation at  
http://scikit-learn.org/stable/modules/linear_model.html.

Turning a linear regression model into a 
curve – polynomial regression
In the previous sections, we assumed a linear relationship between explanatory and 
response variables. One way to account for the violation of linearity assumption is  
to use a polynomial regression model by adding polynomial terms:

2 2
0 1 2 ... d

dy w w x w x x w x= + + + +

http://scikit-learn.org/stable/modules/linear_model.html
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Here, d  denotes the degree of the polynomial. Although we can use polynomial 
regression to model a nonlinear relationship, it is still considered a multiple  
linear regression model because of the linear regression coefficients w .

We will now discuss how to use the PolynomialFeatures transformer class from 
scikit-learn to add a quadratic term ( 2d = ) to a simple regression problem with  
one explanatory variable, and compare the polynomial to the linear fit. The steps  
are as follows:

1.	 Add a second degree polynomial term:
from sklearn.preprocessing import PolynomialFeatures
>>> X = np.array([258.0, 270.0, 294.0,
…                          320.0, 342.0, 368.0,
…                          396.0, 446.0, 480.0,
…                          586.0])[:, np.newaxis]

>>> y = np.array([236.4, 234.4, 252.8,
…                         298.6, 314.2, 342.2,
…                         360.8, 368.0, 391.2,
…                         390.8])
>>> lr = LinearRegression()
>>> pr = LinearRegression()
>>> quadratic = PolynomialFeatures(degree=2)
>>> X_quad = quadratic.fit_transform(X)

2.	 Fit a simple linear regression model for comparison:
>>> lr.fit(X, y)
>>> X_fit = np.arange(250,600,10)[:, np.newaxis]
>>> y_lin_fit = lr.predict(X_fit)

3.	 Fit a multiple regression model on the transformed features for  
polynomial regression:

>>> pr.fit(X_quad, y)
>>> y_quad_fit = pr.predict(quadratic.fit_transform(X_fit))
Plot the results:
>>> plt.scatter(X, y, label='training points')
>>> plt.plot(X_fit, y_lin_fit, 
...          label='linear fit', linestyle='--')
>>> plt.plot(X_fit, y_quad_fit,
...          label='quadratic fit')
>>> plt.legend(loc='upper left')
>>> plt.show()
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In the resulting plot, we can see that the polynomial fit captures the relationship 
between the response and explanatory variable much better than the linear fit:

>>> y_lin_pred = lr.predict(X)
>>> y_quad_pred = pr.predict(X_quad)
>>> print('Training MSE linear: %.3f, quadratic: %.3f' % (
...         mean_squared_error(y, y_lin_pred),
...         mean_squared_error(y, y_quad_pred)))
Training MSE linear: 569.780, quadratic: 61.330
>>> print('Training R^2 linear: %.3f, quadratic: %.3f' % (
...         r2_score(y, y_lin_pred),
...         r2_score(y, y_quad_pred)))
Training R^2 linear: 0.832, quadratic: 0.982

As we can see after executing the preceding code, the MSE decreased from 570 
(linear fit) to 61 (quadratic fit), and the coefficient of determination reflects a closer  
fit to the quadratic model ( 2 0.982R = ) as opposed to the linear fit ( 2 0.832R = ) in  
this particular toy problem.

Modeling nonlinear relationships in the 
Housing Dataset
After we discussed how to construct polynomial features to fit nonlinear relationships 
in a toy problem, let's now take a look at a more concrete example and apply those 
concepts to the data in the Housing Dataset. By executing the following code, we will 
model the relationship between house prices and LSTAT (percent lower status of the 
population) using second degree (quadratic) and third degree (cubic) polynomials  
and compare it to a linear fit.
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The code is as follows:

>>> X = df[['LSTAT']].values
>>> y = df['MEDV'].values
>>> regr = LinearRegression()

# create polynomial features
>>> quadratic = PolynomialFeatures(degree=2)
>>> cubic = PolynomialFeatures(degree=3)
>>> X_quad = quadratic.fit_transform(X)
>>> X_cubic = cubic.fit_transform(X)

# linear fit
>>> X_fit = np.arange(X.min(), X.max(), 1)[:, np.newaxis]
>>> regr = regr.fit(X, y)
>>> y_lin_fit = regr.predict(X_fit)
>>> linear_r2 = r2_score(y, regr.predict(X))

# quadratic fit
>>> regr = regr.fit(X_quad, y)
>>> y_quad_fit = regr.predict(quadratic.fit_transform(X_fit))
>>> quadratic_r2 = r2_score(y, regr.predict(X_quad))

# cubic fit
>>> regr = regr.fit(X_cubic, y)
>>> y_cubic_fit = regr.predict(cubic.fit_transform(X_fit))
>>> cubic_r2 = r2_score(y, regr.predict(X_cubic))

# plot results
>>> plt.scatter(X, y, 
...             label='training points', 
...             color='lightgray')
>>> plt.plot(X_fit, y_lin_fit, 
...          label='linear (d=1), $R^2=%.2f$' 
...            % linear_r2, 
...          color='blue', 
...          lw=2, 
...          linestyle=':')
>>> plt.plot(X_fit, y_quad_fit, 
...          label='quadratic (d=2), $R^2=%.2f$' 
...            % quadratic_r2,
...          color='red', 
...          lw=2,
...          linestyle='-')
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>>> plt.plot(X_fit, y_cubic_fit, 
...          label='cubic (d=3), $R^2=%.2f$' 
...            % cubic_r2,
...          color='green', 
...          lw=2, 
...          linestyle='--')
>>> plt.xlabel('% lower status of the population [LSTAT]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.legend(loc='upper right')
>>> plt.show()

As we can see in the resulting plot, the cubic fit captures the relationship between 
the house prices and LSTAT better than the linear and quadratic fit. However, we 
should be aware that adding more and more polynomial features increases the 
complexity of a model and therefore increases the chance of overfitting. Thus, in 
practice, it is always recommended that you evaluate the performance of the model 
on a separate test dataset to estimate the generalization performance:

In addition, polynomial features are not always the best choice for modeling nonlinear 
relationships. For example, just by looking at the MEDV-LSTAT scatterplot, we could 
propose that a log transformation of the LSTAT feature variable and the square root of 
MEDV may project the data onto a linear feature space suitable for a linear regression 
fit. Let's test this hypothesis by executing the following code:

# transform features
>>> X_log = np.log(X)
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>>> y_sqrt = np.sqrt(y)

# fit features
>>> X_fit = np.arange(X_log.min()-1, 
...                   X_log.max()+1, 1)[:, np.newaxis]
>>> regr = regr.fit(X_log, y_sqrt)
>>> y_lin_fit = regr.predict(X_fit)
>>> linear_r2 = r2_score(y_sqrt, regr.predict(X_log))

# plot results
>>> plt.scatter(X_log, y_sqrt,
...             label='training points',
...             color='lightgray')
>>> plt.plot(X_fit, y_lin_fit, 
...          label='linear (d=1), $R^2=%.2f$' % linear_r2, 
...          color='blue', 
...          lw=2)
>>> plt.xlabel('log(% lower status of the population [LSTAT])')
>>> plt.ylabel('$\sqrt{Price \; in \; \$1000\'s [MEDV]}$')
>>> plt.legend(loc='lower left')
>>> plt.show()

After transforming the explanatory onto the log space and taking the square root 
of the target variables, we were able to capture the relationship between the two 
variables with a linear regression line that seems to fit the data better ( 2 0.69R = )  
than any of the polynomial feature transformations previously:
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Dealing with nonlinear relationships using 
random forests
In this section, we are going to take a look at random forest regression, which is 
conceptually different from the previous regression models in this chapter. A random 
forest, which is an ensemble of multiple decision trees, can be understood as the sum 
of piecewise linear functions in contrast to the global linear and polynomial regression 
models that we discussed previously. In other words, via the decision tree algorithm, 
we are subdividing the input space into smaller regions that become more manageable.

Decision tree regression
An advantage of the decision tree algorithm is that it does not require any 
transformation of the features if we are dealing with nonlinear data. We remember 
from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that we grow 
a decision tree by iteratively splitting its nodes until the leaves are pure or a stopping 
criterion is satisfied. When we used decision trees for classification, we defined 
entropy as a measure of impurity to determine which feature split maximizes the 
Information Gain (IG), which can be defined as follows for a binary split:
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Here, x  is the feature to perform the split, pN  is the number of samples in the 
parent node, I  is the impurity function, pD  is the subset of training samples in the 
parent node, and leftD  and rightD  are the subsets of training samples in the left and 
right child node after the split. Remember that our goal is to find the feature split 
that maximizes the information gain, or in other words, we want to find the feature 
split that reduces the impurities in the child nodes. In Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn, we used entropy as a measure of impurity, 
which is a useful criterion for classification. To use a decision tree for regression,  
we will replace entropy as the impurity measure of a node t  by the MSE:
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Here, 
tN  is the number of training samples at node t , tD  is the training subset  

at node t , ( )iy  is the true target value, and ˆty  is the predicted target value  
(sample mean):
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In the context of decision tree regression, the MSE is often also referred to as 
within-node variance, which is why the splitting criterion is also better known 
as variance reduction. To see what the line fit of a decision tree looks like, let's use 
the DecisionTreeRegressor implemented in scikit-learn to model the nonlinear 
relationship between the MEDV and LSTAT variables:

>>> from sklearn.tree import DecisionTreeRegressor
>>> X = df[['LSTAT']].values
>>> y = df['MEDV'].values
>>> tree = DecisionTreeRegressor(max_depth=3)
>>> tree.fit(X, y)
>>> sort_idx = X.flatten().argsort()
   >>> lin_regplot(X[sort_idx], y[sort_idx], tree)
>>> plt.xlabel('% lower status of the population [LSTAT]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.show()

As we can see from the resulting plot, the decision tree captures the general  
trend in the data. However, a limitation of this model is that it does not capture 
the continuity and differentiability of the desired prediction. In addition, we 
need to be careful about choosing an appropriate value for the depth of the tree 
to not overfit or underfit the data; here, a depth of 3 seems to be a good choice:
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In the next section, we will take a look at a more robust way for fitting regression 
trees: random forests.

Random forest regression
As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using  
Scikit-learn, the random forest algorithm is an ensemble technique that combines 
multiple decision trees. A random forest usually has a better generalization 
performance than an individual decision tree due to randomness that helps to 
decrease the model variance. Other advantages of random forests are that they are 
less sensitive to outliers in the dataset and don't require much parameter tuning.  
The only parameter in random forests that we typically need to experiment with 
is the number of trees in the ensemble. The basic random forests algorithm for 
regression is almost identical to the random forest algorithm for classification that 
we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. 
The only difference is that we use the MSE criterion to grow the individual decision 
trees, and the predicted target variable is calculated as the average prediction over all 
decision trees.

Now, let's use all the features in the Housing Dataset to fit a random forest 
regression model on 60 percent of the samples and evaluate its performance  
on the remaining 40 percent. The code is as follows:

>>> X = df.iloc[:, :-1].values
>>> y = df['MEDV'].values
>>> X_train, X_test, y_train, y_test =\
...       train_test_split(X, y, 
...                        test_size=0.4, 
...                        random_state=1)

>>> from sklearn.ensemble import RandomForestRegressor
>>> forest = RandomForestRegressor(                             ..
.                                n_estimators=1000, 
...                                criterion='mse', 
...                                random_state=1, 
...                                n_jobs=-1)
>>> forest.fit(X_train, y_train)
>>> y_train_pred = forest.predict(X_train)
>>> y_test_pred = forest.predict(X_test)
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>>> print('MSE train: %.3f, test: %.3f' % (
...        mean_squared_error(y_train, y_train_pred),
...        mean_squared_error(y_test, y_test_pred)))
>>> print('R^2 train: %.3f, test: %.3f' % (
...        r2_score(y_train, y_train_pred),
...        r2_score(y_test, y_test_pred)))
MSE train: 1.642, test: 11.635
R^2 train: 0.960, test: 0.871

Unfortunately, we see that the random forest tends to overfit the training data. 
However, it's still able to explain the relationship between the target and  
explanatory variables relatively well ( 2 0.871R =  on the test dataset).

Lastly, let's also take a look at the residuals of the prediction:

>>> plt.scatter(y_train_pred,  
...             y_train_pred - y_train, 
...             c='black', 
...             marker='o', 
...             s=35,
...             alpha=0.5,
...             label='Training data')
>>> plt.scatter(y_test_pred,  
...             y_test_pred - y_test, 
...             c='lightgreen', 
...             marker='s', 
...             s=35,
...             alpha=0.7,
...             label='Test data')
>>> plt.xlabel('Predicted values')
>>> plt.ylabel('Residuals')
>>> plt.legend(loc='upper left')
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.xlim([-10, 50])
>>> plt.show()
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As it was already summarized by the 2R  coefficient, we can see that the model  
fits the training data better than the test data, as indicated by the outliers in the y 
axis direction. Also, the distribution of the residuals does not seem to be completely 
random around the zero center point, indicating that the model is not able to  
capture all the exploratory information. However, the residual plot indicates a  
large improvement over the residual plot of the linear model that we plotted  
earlier in this chapter:

In Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, 
we also discussed the kernel trick that can be used in combination 
with support vector machine (SVM) for classification, which is useful 
if we are dealing with nonlinear problems. Although a discussion is 
beyond of the scope of this book, SVMs can also be used in nonlinear 
regression tasks. The interested reader can find more information 
about Support Vector Machines for regression in an excellent report 
by S. R. Gunn: S. R. Gunn et al. Support Vector Machines for Classification 
and Regression. (ISIS technical report, 14, 1998). An  SVM regressor is 
also implemented in scikit-learn, and more information about its usage 
can be found at http://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVR.html#sklearn.svm.SVR.

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
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Summary
At the beginning of this chapter, you learned about using simple linear regression 
analysis to model the relationship between a single explanatory variable and a 
continuous response variable. We then discussed a useful explanatory data analysis 
technique to look at patterns and anomalies in data, which is an important first step 
in predictive modeling tasks.

We built our first model by implementing linear regression using a gradient-based 
optimization approach. We then saw how to utilize scikit-learn's linear models 
for regression and also implement a robust regression technique (RANSAC) as an 
approach for dealing with outliers. To assess the predictive performance of regression 
models, we computed the mean sum of squared errors and the related 2R  metric. 
Furthermore, we also discussed a useful graphical approach to diagnose the problems 
of regression models: the residual plot.

After we discussed how regularization can be applied to regression models to reduce 
the model complexity and avoid overfitting, we also introduced several approaches 
to model nonlinear relationships, including polynomial feature transformation and 
random forest regressors.

We discussed supervised learning, classification, and regression analysis, in great 
detail throughout the previous chapters. In the next chapter, we are going to discuss 
another interesting subfield of machine learning: unsupervised learning. In the next 
chapter, you will learn how to use cluster analysis for finding hidden structures in 
data in the absence of target variables.
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Working with Unlabeled  
Data – Clustering Analysis

In the previous chapters, we used supervised learning techniques to build machine 
learning models using data where the answer was already known—the class labels 
were already available in our training data. In this chapter, we will switch gears and 
explore cluster analysis, a category of unsupervised learning techniques that allows 
us to discover hidden structures in data where we do not know the right answer 
upfront. The goal of clustering is to find a natural grouping in data such that items  
in the same cluster are more similar to each other than those from different clusters.

Given its exploratory nature, clustering is an exciting topic and, in this chapter, 
you will learn about the following concepts that can help you to organize data into 
meaningful structures:

•	 Finding centers of similarity using the popular k-means algorithm
•	 Using a bottom-up approach to build hierarchical cluster trees
•	 Identifying arbitrary shapes of objects using a density-based  

clustering approach



Working with Unlabeled Data – Clustering Analysis

[ 314 ]

Grouping objects by similarity using 
k-means
In this section, we will discuss one of the most popular clustering algorithms, 
k-means, which is widely used in academia as well as in industry. Clustering  
(or cluster analysis) is a technique that allows us to find groups of similar  
objects, objects that are more related to each other than to objects in other groups. 
Examples of business-oriented applications of clustering include the grouping 
of documents, music, and movies by different topics, or finding customers 
that share similar interests based on common purchase behaviors as a basis for 
recommendation engines.

As we will see in a moment, the k-means algorithm is extremely easy to implement 
but is also computationally very efficient compared to other clustering algorithms, 
which might explain its popularity. The k-means algorithm belongs to the category 
of prototype-based clustering. We will discuss two other categories of clustering, 
hierarchical and density-based clustering, later in this chapter. Prototype-based 
clustering means that each cluster is represented by a prototype, which can either 
be the centroid (average) of similar points with continuous features, or the medoid 
(the most representative or most frequently occurring point) in the case of categorical 
features. While k-means is very good at identifying clusters of spherical shape, one 
of the drawbacks of this clustering algorithm is that we have to specify the number 
of clusters k a priori. An inappropriate choice for k can result in poor clustering 
performance. Later in this chapter, we will discuss the elbow method and silhouette 
plots, which are useful techniques to evaluate the quality of a clustering to help us 
determine the optimal number of clusters k.

Although k-means clustering can be applied to data in higher dimensions, we will 
walk through the following examples using a simple two-dimensional dataset for  
the purpose of visualization:

>>> from sklearn.datasets import make_blobs
>>> X, y = make_blobs(n_samples=150, 
...                   n_features=2, 
...                   centers=3,
...                   cluster_std=0.5, 
...                   shuffle=True, 
...                   random_state=0)

>>> import matplotlib.pyplot as plt
>>> plt.scatter(X[:,0],
...             X[:,1], 
...             c='white', 
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...             marker='o', 

...             s=50)
>>> plt.grid()
>>> plt.show()

The dataset that we just created consists of 150 randomly generated points that are 
roughly grouped into three regions with higher density, which is visualized via a 
two-dimensional scatterplot:

In real-world applications of clustering, we do not have any ground truth category 
information about those samples; otherwise, it would fall into the category of 
supervised learning. Thus, our goal is to group the samples based on their feature 
similarities, which we can be achieved using the k-means algorithm that can be 
summarized by the following four steps:

1.	 Randomly pick k centroids from the sample points as initial cluster centers.

2.	 Assign each sample to the nearest centroid ( )jµ , { }1, ,j k∈ … .
3.	 Move the centroids to the center of the samples that were assigned to it.
4.	 Repeat steps 2 and 3 until the cluster assignments do not change or a  

user-defined tolerance or a maximum number of iterations is reached.
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Now the next question is how do we measure similarity between objects? We can define 
similarity as the opposite of distance, and a commonly used distance for clustering 
samples with continuous features is the squared Euclidean distance between two 
points x and y in m-dimensional space:

( ) ( )2 22

2
1

,
m

j j
j

d x y
=

= − = −∑x y x y

Note that, in the preceding equation, the index j refers to the jth dimension  
(feature column) of the sample points x and y. In the rest of this section, we will use 
the superscripts i and j to refer to the sample index and cluster index, respectively.

Based on this Euclidean distance metric, we can describe the k-means algorithm  
as a simple optimization problem, an iterative approach for minimizing the within-
cluster sum of squared errors (SSE), which is sometimes also called cluster inertia:

( ) ( ) ( ) 2,
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i j i j

i j
SSE w

= =
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Here, ( )jµ  is the representative point (centroid) for cluster j, and ( ), 1i jw =  if the sample 
( )ix  is in cluster j; ( ), 0i jw =  otherwise.

Now that you have learned how the simple k-means algorithm works, let's apply it 
to our sample dataset using the KMeans class from scikit-learn's cluster module:

>>> from sklearn.cluster import KMeans
>>> km = KMeans(n_clusters=3, 
...             init='random', 
...             n_init=10,
...             max_iter=300, 
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)

Using the preceding code, we set the number of desired clusters to 3; specifying the 
number of clusters a priori is one of the limitations of k-means. We set n_init=10 to 
run the k-means clustering algorithms 10 times independently with different random 
centroids to choose the final model as the one with the lowest SSE. Via the max_iter 
parameter, we specify the maximum number of iterations for each single run (here, 
300). Note that the k-means implementation in scikit-learn stops early if it converges 
before the maximum number of iterations is reached. 
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However, it is possible that k-means does not reach convergence for a particular 
run, which can be problematic (computationally expensive) if we choose relatively 
large values for max_iter. One way to deal with convergence problems is to choose 
larger values for tol, which is a parameter that controls the tolerance with regard to 
the changes in the within-cluster sum-squared-error to declare convergence. In the 
preceding code, we chose a tolerance of 1e-04 (=0.0001).

K-means++
So far, we discussed the classic k-means algorithm that uses a random seed to 
place the initial centroids, which can sometimes result in bad clusterings or slow 
convergence if the initial centroids are chosen poorly. One way to address this 
issue is to run the k-means algorithm multiple times on a dataset and choose the 
best performing model in terms of the SSE. Another strategy is to place the initial 
centroids far away from each other via the k-means++ algorithm, which leads 
to better and more consistent results than the classic k-means (D. Arthur and S. 
Vassilvitskii. k-means++: The Advantages of Careful Seeding. In Proceedings of the 
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. 
Society for Industrial and Applied Mathematics, 2007). 

The initialization in k-means++ can be summarized as follows:

1.	 Initialize an empty set M  to store the k centroids being selected.
2.	 Randomly choose the first centroid ( )jµ  from the input samples and  

assign it to M .
3.	 For each sample ( )ix  that is not in M , find the minimum squared distance 

( )( )2
,id Mx  to any of the centroids in M .

4.	 To randomly select the next centroid ( )pµ , use a weighted probability 

distribution equal to 
( )( )
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x .
5.	 Repeat steps 2 and 3 until k  centroids are chosen.
6.	 Proceed with the classic k-means algorithm.

To use k-means++ with scikit-learn's KMeans object, we just 
need to set the init parameter to k-means++ (the default 
setting) instead of random.
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Another problem with k-means is that one or more clusters can be empty. Note that 
this problem does not exist for k-medoids or fuzzy C-means, an algorithm that we 
will discuss in the next subsection. However, this problem is accounted for in the 
current k-means implementation in scikit-learn. If a cluster is empty, the algorithm 
will search for the sample that is farthest away from the centroid of the empty 
cluster. Then it will reassign the centroid to be this farthest point.

When we are applying k-means to real-world data using a Euclidean 
distance metric, we want to make sure that the features are measured 
on the same scale and apply z-score standardization or min-max 
scaling if necessary.

After we predicted the cluster labels y_km and discussed the challenges of the 
k-means algorithm, let's now visualize the clusters that k-means identified in  
the dataset together with the cluster centroids. These are stored under the  
centers_ attribute of the fitted KMeans object:

>>> plt.scatter(X[y_km==0,0], 
...             X[y_km==0,1], 
...             s=50, 
...             c='lightgreen', 
...             marker='s', 
...             label='cluster 1')
>>> plt.scatter(X[y_km==1,0], 
...             X[y_km==1,1], 
...             s=50, 
...             c='orange', 
...             marker='o', 
...             label='cluster 2')
>>> plt.scatter(X[y_km==2,0], 
...             X[y_km==2,1], 
...             s=50, 
...             c='lightblue', 
...             marker='v', 
...             label='cluster 3')
>>> plt.scatter(km.cluster_centers_[:,0],
...             km.cluster_centers_[:,1], 
...             s=250, 
...             marker='*', 
...             c='red', 
...             label='centroids')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()
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In the following scatterplot, we can see that k-means placed the three centroids at the 
center of each sphere, which looks like a reasonable grouping given this dataset:

Although k-means worked well on this toy dataset, we need to note some of the 
main challenges of k-means. One of the drawbacks of k-means is that we have to 
specify the number of clusters k a priori, which may not always be so obvious in  
real-world applications, especially if we are working with a higher dimensional 
dataset that cannot be visualized. The other properties of k-means are that clusters 
do not overlap and are not hierarchical, and we also assume that there is at least  
one item in each cluster.

Hard versus soft clustering
Hard clustering describes a family of algorithms where each sample in a dataset 
is assigned to exactly one cluster, as in the k-means algorithm that we discussed in 
the previous subsection. In contrast, algorithms for soft clustering (sometimes also 
called fuzzy clustering) assign a sample to one or more clusters. A popular example 
of soft clustering is the fuzzy C-means (FCM) algorithm (also called soft k-means 
or fuzzy k-means). The original idea goes back to the 1970s where Joseph C. Dunn 
first proposed an early version of fuzzy clustering to improve k-means (J. C. Dunn. 
A Fuzzy Relative of the Isodata Process and its Use in Detecting Compact Well-separated 
Clusters. 1973). Almost a decade later, James C. Bedzek published his work on the 
improvements of the fuzzy clustering algorithm, which is now known as the FCM 
algorithm (J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. 
Springer Science & Business Media, 2013).
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The FCM procedure is very similar to k-means. However, we replace the hard  
cluster assignment by probabilities for each point belonging to each cluster. In 
k-means, we could express the cluster membership of a sample x by a sparse  
vector of binary values:
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Here, the index position with value 1 indicates the cluster centroid ( )jµ  the sample 
is assigned to (assuming { }3, 1, 2, 3k j= ∈ ). In contrast, a membership vector in FCM 
could be represented as follows:
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Here, each value falls in the range [0, 1] and represents a probability of membership 
to the respective cluster centroid. The sum of the memberships for a given sample is 
equal to 1. Similarly to the k-means algorithm, we can summarize the FCM algorithm 
in four key steps:

1.	 Specify the number of k centroids and randomly assign the cluster 
memberships for each point.

2.	 Compute the cluster centroids ( )jµ , { }1, ,j k∈ … .
3.	 Update the cluster memberships for each point.
4.	 Repeat steps 2 and 3 until the membership coefficients do not change or a 

user-defined tolerance or a maximum number of iterations is reached.

The objective function of FCM—we abbreviate it by mJ —looks very similar to the 
within cluster sum-squared-error that we minimize in k-means:
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However, note that the membership indicator ( ),i jw  is not a binary value as in 
k-means ( ) { }, 0,1i jw ∈ ) but a real value that denotes the cluster membership probability 

( ) [ ],( 0,1i jw ∈ ). You also may have noticed that we added an additional exponent  
to ( ),i jw ; the exponent m, any number greater or equal to 1 (typically m = 2), is the 
so-called fuzziness coefficient (or simply fuzzifier) that controls the degree of 
fuzziness. The larger the value of m , the smaller the cluster membership ( ),i jw  
becomes, which leads to fuzzier clusters. The cluster membership probability  
itself is calculated as follows:
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For example, if we chose three cluster centers as in the previous k-means example, 
we could calculate the membership of the ( )ix  sample belonging to the ( )jµ  cluster as:
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The center ( )jµ  of a cluster itself is calculated as the mean of all samples in the cluster 
weighted by the membership degree of belonging to its own cluster:
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Just by looking at the equation to calculate the cluster memberships, it is intuitive 
to say that each iteration in FCM is more expensive than an iteration in k-means. 
However, FCM typically requires fewer iterations overall to reach convergence. 
Unfortunately, the FCM algorithm is currently not implemented in scikit-learn. 
However, it has been found in practice that both k-means and FCM produce very 
similar clustering outputs, as described in a study by Soumi Ghosh and Sanjay K. 
Dubey (S. Ghosh and S. K. Dubey. Comparative Analysis of k-means and Fuzzy c-means 
Algorithms. IJACSA, 4:35–38, 2013).
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Using the elbow method to find the optimal 
number of clusters
One of the main challenges in unsupervised learning is that we do not know the 
definitive answer. We don't have the ground truth class labels in our dataset that 
allow us to apply the techniques that we used in Chapter 6,  Learning Best Practices for 
Model Evaluation and Hyperparameter Tuning, in order to evaluate the performance of 
a supervised model. Thus, in order to quantify the quality of clustering, we need to 
use intrinsic metrics—such as the within-cluster SSE (distortion) that we discussed 
earlier in this chapter—to compare the performance of different k-means clusterings. 
Conveniently, we don't need to compute the within-cluster SSE explicitly as it is 
already accessible via the inertia_ attribute after fitting a KMeans model:

>>> print('Distortion: %.2f' % km.inertia_)
Distortion: 72.48

Based on the within-cluster SSE, we can use a graphical tool, the so-called elbow 
method, to estimate the optimal number of clusters k for a given task. Intuitively,  
we can say that, if k increases, the distortion will decrease. This is because the  
samples will be closer to the centroids they are assigned to. The idea behind the 
elbow method is to identify the value of k where the distortion begins to increase 
most rapidly, which will become more clear if we plot distortion for different  
values of k:

>>> distortions = []
>>> for i in range(1, 11):
...     km = KMeans(n_clusters=i, 
...                 init='k-means++', 
...                 n_init=10, 
...                 max_iter=300, 
...                 random_state=0)
>>>     km.fit(X)
>>>     distortions.append(km.inertia_)
>>> plt.plot(range(1,11), distortions, marker='o')
>>> plt.xlabel('Number of clusters')
>>> plt.ylabel('Distortion')
>>> plt.show()
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As we can see in the following plot, the elbow is located at k = 3, which provides 
evidence that k = 3 is indeed a good choice for this dataset:

Quantifying the quality of clustering via 
silhouette plots
Another intrinsic metric to evaluate the quality of a clustering is silhouette analysis, 
which can also be applied to clustering algorithms other than k-means that we will 
discuss later in this chapter. Silhouette analysis can be used as a graphical tool to plot 
a measure of how tightly grouped the samples in the clusters are. To calculate the 
silhouette coefficient of a single sample in our dataset, we can apply the following 
three steps:

1.	 Calculate the cluster cohesion ( )ia  as the average distance between a sample 
( )ix  and all other points in the same cluster.

2.	 Calculate the cluster separation ( )ib  from the next closest cluster as  
the average distance between the sample ( )ix  and all samples in the  
nearest cluster.

3.	 Calculate the silhouette ( )is  as the difference between cluster cohesion and 
separation divided by the greater of the two, as shown here:

( )
( ) ( )

( ) ( ){ }max ,

i i
i

i i

b as
b a
−

=



Working with Unlabeled Data – Clustering Analysis

[ 324 ]

The silhouette coefficient is bounded in the range -1 to 1. Based on the preceding 
formula, we can see that the silhouette coefficient is 0 if the cluster separation 
and cohesion are equal ( ( ) ( )i ib a= ). Furthermore, we get close to an ideal silhouette 
coefficient of 1 if ( ) ( )i ib a>> , since ( )ib  quantifies how dissimilar a sample is to other 
clusters, and ( )ia  tells us how similar it is to the other samples in its own cluster, 
respectively.

The silhouette coefficient is available as silhouette_samples from scikit-learn's 
metric module, and optionally the silhouette_scores can be imported. This 
calculates the average silhouette coefficient across all samples, which is equivalent to 
numpy.mean(silhouette_samples(…)). By executing the following code, we will 
now create a plot of the silhouette coefficients for a k-means clustering with 3k = :

>>> km = KMeans(n_clusters=3, 
...             init='k-means++', 
...             n_init=10, 
...             max_iter=300,
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)

>>> import numpy as np
>>> from matplotlib import cm
>>> from sklearn.metrics import silhouette_samples
>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(X, 
...                                      y_km, 
...                                      metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
>>> yticks = []
>>> for i, c in enumerate(cluster_labels):
...     c_silhouette_vals = silhouette_vals[y_km == c]
...     c_silhouette_vals.sort()
...     y_ax_upper += len(c_silhouette_vals)
...     color = cm.jet(i / n_clusters)
...     plt.barh(range(y_ax_lower, y_ax_upper), 
...              c_silhouette_vals, 
...              height=1.0, 
...              edgecolor='none', 
...              color=color)
...     yticks.append((y_ax_lower + y_ax_upper) / 2)
...     y_ax_lower += len(c_silhouette_vals)
>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg,
...             color="red", 
...             linestyle="--") 
>>> plt.yticks(yticks, cluster_labels + 1)
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>>> plt.ylabel('Cluster')
>>> plt.xlabel('Silhouette coefficient')
>>> plt.show()

Through a visual inspection of the silhouette plot, we can quickly scrutinize the sizes 
of the different clusters and identify clusters that contain outliers:

As we can see in the preceding silhouette plot, our silhouette coefficients are not even 
close to 0, which can be an indicator of a good clustering. Furthermore, to summarize 
the goodness of our clustering, we added the average silhouette coefficient to the 
plot (dotted line).

To see how a silhouette plot looks for a relatively bad clustering, let's seed the 
k-means algorithm with two centroids only:

>>> km = KMeans(n_clusters=2, 
...             init='k-means++', 
...             n_init=10, 
...             max_iter=300,
...             tol=1e-04,
...             random_state=0)
>>> y_km = km.fit_predict(X)

>>> plt.scatter(X[y_km==0,0], 
...             X[y_km==0,1], 
...             s=50, c='lightgreen', 
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...             marker='s', 

...             label='cluster 1')
>>> plt.scatter(X[y_km==1,0], 
...             X[y_km==1,1], 
...             s=50, 
...             c='orange', 
...             marker='o', 
...             label='cluster 2')
>>> plt.scatter(km.cluster_centers_[:,0], 
...             km.cluster_centers_[:,1], 
...             s=250, 
...             marker='*', 
...             c='red', 
...             label='centroids')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()

As we can see in the following scatterplot, one of the centroids falls between two of 
the three spherical groupings of the sample points. Although the clustering does not 
look completely terrible, it is suboptimal.

Next we create the silhouette plot to evaluate the results. Please keep in mind that 
we typically do not have the luxury of visualizing datasets in two-dimensional 
scatterplots in real-world problems, since we typically work with data in higher 
dimensions:

>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(X, 
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...                                      y_km, 

...                                      metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
yticks = []
>>> for i, c in enumerate(cluster_labels):
...     c_silhouette_vals = silhouette_vals[y_km == c]
...     c_silhouette_vals.sort()
...     y_ax_upper += len(c_silhouette_vals)
...     color = cm.jet(i / n_clusters)
...     plt.barh(range(y_ax_lower, y_ax_upper), 
...              c_silhouette_vals, 
...              height=1.0, 
...              edgecolor='none', 
...              color=color)
...     yticks.append((y_ax_lower + y_ax_upper) / 2)
...     y_ax_lower += len(c_silhouette_vals)
>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg, color="red", linestyle="--") 
>>> plt.yticks(yticks, cluster_labels + 1)
>>> plt.ylabel('Cluster')
>>> plt.xlabel('Silhouette coefficient')
>>> plt.show()

As we can see in the resulting plot, the silhouettes now have visibly different lengths 
and width, which yields further evidence for a suboptimal clustering:
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Organizing clusters as a hierarchical tree
In this section, we will take a look at an alternative approach to prototype-based 
clustering: hierarchical clustering. One advantage of hierarchical clustering 
algorithms is that it allows us to plot dendrograms (visualizations of a binary 
hierarchical clustering), which can help with the interpretation of the results by 
creating meaningful taxonomies. Another useful advantage of this hierarchical 
approach is that we do not need to specify the number of clusters upfront.

The two main approaches to hierarchical clustering are agglomerative and divisive 
hierarchical clustering. In divisive hierarchical clustering, we start with one cluster 
that encompasses all our samples, and we iteratively split the cluster into smaller 
clusters until each cluster only contains one sample. In this section, we will focus 
on agglomerative clustering, which takes the opposite approach. We start with each 
sample as an individual cluster and merge the closest pairs of clusters until only one 
cluster remains.

The two standard algorithms for agglomerative hierarchical clustering are single 
linkage and complete linkage. Using single linkage, we compute the distances 
between the most similar members for each pair of clusters and merge the two 
clusters for which the distance between the most similar members is the smallest. 
The complete linkage approach is similar to single linkage but, instead of comparing 
the most similar members in each pair of clusters, we compare the most dissimilar 
members to perform the merge. This is shown in the following diagram:
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Other commonly used algorithms for agglomerative hierarchical 
clustering include average linkage and Ward's linkage. In average 
linkage, we merge the cluster pairs based on the minimum average 
distances between all group members in the two clusters. In Ward's 
method, those two clusters that lead to the minimum increase of the  
total within-cluster SSE are merged.

In this section, we will focus on agglomerative clustering using the complete  
linkage approach. This is an iterative procedure that can be summarized by the 
following steps:

1.	 Compute the distance matrix of all samples.
2.	 Represent each data point as a singleton cluster.
3.	 Merge the two closest clusters based on the distance of the most dissimilar 

(distant) members.
4.	 Update the distance matrix.
5.	 Repeat steps 2 to 4 until one single cluster remains.

Now we will discuss how to compute the distance matrix (step 1). But first, let's 
generate some random sample data to work with. The rows represent different 
observations (IDs 0 to 4), and the columns are the different features (X, Y, Z) of  
those samples:

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(123)
>>> variables = ['X', 'Y', 'Z']
>>> labels = ['ID_0','ID_1','ID_2','ID_3','ID_4']
>>> X = np.random.random_sample([5,3])*10
>>> df = pd.DataFrame(X, columns=variables, index=labels)
>>> df
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After executing the preceding code, we should now see the following  
DataFrame containing the randomly generated samples:

Performing hierarchical clustering on a 
distance matrix
To calculate the distance matrix as input for the hierarchical clustering algorithm,  
we will use the pdist function from SciPy's spatial.distance submodule:

>>> from scipy.spatial.distance import pdist, squareform
>>> row_dist = pd.DataFrame(squareform(
...            pdist(df, metric='euclidean')), 
...            columns=labels, index=labels)
>>> row_dist

Using the preceding code, we calculated the Euclidean distance between each pair 
of sample points in our dataset based on the features X, Y, and Z. We provided 
the condensed distance matrix—returned by pdist—as input to the squareform 
function to create a symmetrical matrix of the pair-wise distances, as shown here:
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Next we will apply the complete linkage agglomeration to our clusters using the 
linkage function from SciPy's cluster.hierarchy submodule, which returns  
a so-called linkage matrix.

However, before we call the linkage function, let's take a careful look at the function 
documentation:

>>> from scipy.cluster.hierarchy import linkage
>>> help(linkage)
[…]
Parameters:
  y : ndarray
    A condensed or redundant distance matrix. A condensed 
    distance matrix is a flat array containing the upper 
    triangular of the distance matrix. This is the form 
    that pdist returns. Alternatively, a collection of m 
    observation vectors in n dimensions may be passed as 
    an m by n array.

  method : str, optional
    The linkage algorithm to use. See the Linkage Methods 
    section below for full descriptions.

  metric : str, optional
    The distance metric to use. See the distance.pdist 
    function for a list of valid distance metrics.

 Returns:
  Z : ndarray
    The hierarchical clustering encoded as a linkage matrix.
[…]

Based on the function description, we conclude that we can use a condensed distance 
matrix (upper triangular) from the pdist function as an input attribute. Alternatively, 
we could also provide the initial data array and use the euclidean metric as a function 
argument in linkage. However, we should not use the squareform distance matrix 
that we defined earlier, since it would yield different distance values from those 
expected. To sum it up, the three possible scenarios are listed here:

•	 Incorrect approach: In this approach, we use the squareform distance matrix. 
The code is as follows:
>>> from scipy.cluster.hierarchy import linkage
>>> row_clusters = linkage(row_dist, 
...                        method='complete', 
...                        metric='euclidean')
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•	 Correct approach: In this approach, we use the condensed distance matrix. 
The code is as follows:
>>> row_clusters = linkage(pdist(df, metric='euclidean'),
...                        method='complete')

•	 Correct approach: In this approach, we use the input sample matrix.  
The code is as follows:

>>> row_clusters = linkage(df.values, 
...                        method='complete', 
...                        metric='euclidean')

To take a closer look at the clustering results, we can turn them to a pandas 
DataFrame (best viewed in IPython Notebook) as follows:

>>> pd.DataFrame(row_clusters, 
...      columns=['row label 1', 
...               'row label 2', 
...               'distance', 
...               'no. of items in clust.'],
...      index=['cluster %d' %(i+1) for i in
...             range(row_clusters.shape[0])])

As shown in the following table, the linkage matrix consists of several rows where 
each row represents one merge. The first and second columns denote the most 
dissimilar members in each cluster, and the third row reports the distance between 
those members. The last column returns the count of the members in each cluster.

Now that we have computed the linkage matrix, we can visualize the results in the 
form of a dendrogram:

>>> from scipy.cluster.hierarchy import dendrogram
# make dendrogram black (part 1/2)
# from scipy.cluster.hierarchy import set_link_color_palette
# set_link_color_palette(['black'])
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>>> row_dendr = dendrogram(row_clusters, 
...                       labels=labels,
...                       # make dendrogram black (part 2/2)
...                       # color_threshold=np.inf
...                       )
>>> plt.tight_layout()
>>> plt.ylabel('Euclidean distance')
>>> plt.show()

If you are executing the preceding code or reading the e-book version of this book, 
you will notice that the branches in the resulting dendrogram are shown in different 
colors. The coloring scheme is derived from a list of matplotlib colors that are 
cycled for the distance thresholds in the dendrogram. For example, to display the 
dendrograms in black, you can uncomment the respective sections that I inserted in 
the preceding code.

Such a dendrogram summarizes the different clusters that were formed during the 
agglomerative hierarchical clustering; for example, we can see that the samples  
ID_0 and ID_4, followed by ID_1 and ID_2, are the most similar ones based on  
the Euclidean distance metric.



Working with Unlabeled Data – Clustering Analysis

[ 334 ]

Attaching dendrograms to a heat map
In practical applications, hierarchical clustering dendrograms are often used in 
combination with a heat map, which allows us to represent the individual values in 
the sample matrix with a color code. In this section, we will discuss how to attach a 
dendrogram to a heat map plot and order the rows in the heat map correspondingly.

However, attaching a dendrogram to a heat map can be a little bit tricky, so let's go 
through this procedure step by step:

1.	 We create a new figure object and define the x axis position, y axis 
position, width, and height of the dendrogram via the add_axes attribute. 
Furthermore, we rotate the dendrogram 90 degrees counter-clockwise.  
The code is as follows:
>>> fig = plt.figure(figsize=(8,8), facecolor='white')
>>> axd = fig.add_axes([0.09,0.1,0.2,0.6])
>>> row_dendr = dendrogram(row_clusters, orientation='right')
# note: for matplotlib >= v1.5.1, please use orientation=‘left’

2.	 Next we reorder the data in our initial DataFrame according to the clustering 
labels that can be accessed from the dendrogram object, which is essentially a 
Python dictionary, via the leaves key. The code is as follows:
>>> df_rowclust = df.ix[row_dendr['leaves'][::-1]]

3.	 Now we construct the heat map from the reordered DataFrame and position 
it right next to the dendrogram:
>>> axm = fig.add_axes([0.23,0.1,0.6,0.6])
>>> cax = axm.matshow(df_rowclust, 
...              interpolation='nearest', cmap='hot_r')

4.	 Finally we will modify the aesthetics of the heat map by removing the axis 
ticks and hiding the axis spines. Also, we will add a color bar and assign  
the feature and sample names to the x and y axis tick labels, respectively.  
The code is as follows:

>>> axd.set_xticks([])
>>> axd.set_yticks([])
>>> for i in axd.spines.values():
...     i.set_visible(False)
>>> fig.colorbar(cax)
>>> axm.set_xticklabels([''] + list(df_rowclust.columns))
>>> axm.set_yticklabels([''] + list(df_rowclust.index))
>>> plt.show()
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After following the previous steps, the heat map should be displayed with the 
dendrogram attached:

As we can see, the row order in the heat map reflects the clustering of the samples  
in the dendrogram. In addition to a simple dendrogram, the color-coded values  
of each sample and feature in the heat map provide us with a nice summary of  
the dataset.
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Applying agglomerative clustering via  
scikit-learn
In this section, we saw how to perform agglomerative hierarchical clustering  
using SciPy. However, there is also an AgglomerativeClustering implementation 
in scikit-learn, which allows us to choose the number of clusters that we want to 
return. This is useful if we want to prune the hierarchical cluster tree. By setting  
the n_cluster parameter to 2, we will now cluster the samples into two groups 
using the same complete linkage approach based on the Euclidean distance metric  
as before:

>>> from sklearn.cluster import AgglomerativeClustering
>>> ac = AgglomerativeClustering(n_clusters=2,
...                              affinity='euclidean', 
...                              linkage='complete')
>>> labels = ac.fit_predict(X)
>>> print('Cluster labels: %s' % labels)
Cluster labels: [0 1 1 0 0]

Looking at the predicted cluster labels, we can see that the first, fourth, and fifth 
sample (ID_0, ID_3, and ID_4) were assigned to one cluster (0), and the samples 
ID_1 and ID_2 were assigned to a second cluster (1), which is consistent with the 
results that we can observe in the dendrogram.

Locating regions of high density via 
DBSCAN
Although we can't cover the vast number of different clustering algorithms in this 
chapter, let's at least introduce one more approach to clustering: Density-based 
Spatial Clustering of Applications with Noise (DBSCAN). The notion of density  
in DBSCAN is defined as the number of points within a specified radius ε .

In DBSCAN, a special label is assigned to each sample (point) using the  
following criteria:

•	 A point is considered as core point if at least a specified number (MinPts) of 
neighboring points fall within the specified radius ε

•	 A border point is a point that has fewer neighbors than MinPts within ε ,  
but lies within the ε  radius of a core point

•	 All other points that are neither core nor border points are considered as 
noise points
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After labeling the points as core, border, or noise points, the DBSCAN algorithm can 
be summarized in two simple steps:

1.	 Form a separate cluster for each core point or a connected group of core 
points (core points are connected if they are no farther away than ε ).

2.	 Assign each border point to the cluster of its corresponding core point.

To get a better understanding of what the result of DBSCAN can look like before 
jumping to the implementation, let's summarize what you have learned about core 
points, border points, and noise points in the following figure:

One of the main advantages of using DBSCAN is that it does not assume that the 
clusters have a spherical shape as in k-means. Furthermore, DBSCAN is different 
from k-means and hierarchical clustering in that it doesn't necessarily assign each 
point to a cluster but is capable of removing noise points.

For a more illustrative example, let's create a new dataset of half-moon-shaped 
structures to compare k-means clustering, hierarchical clustering, and DBSCAN:

>>> from sklearn.datasets import make_moons
>>> X, y = make_moons(n_samples=200, 
...                   noise=0.05, 
...                   random_state=0)
>>> plt.scatter(X[:,0], X[:,1])
>>> plt.show()
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As we can see in the resulting plot, there are two visible, half-moon-shaped groups 
consisting of 100 sample points each:

We will start by using the k-means algorithm and complete linkage clustering to see 
whether one of those previously discussed clustering algorithms can successfully 
identify the half-moon shapes as separate clusters. The code is as follows:

>>> f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,3))
>>> km = KMeans(n_clusters=2, 
...             random_state=0)
>>> y_km = km.fit_predict(X)
>>> ax1.scatter(X[y_km==0,0], 
...             X[y_km==0,1], 
...             c='lightblue', 
...             marker='o', 
...             s=40, 
...             label='cluster 1')
>>> ax1.scatter(X[y_km==1,0], 
...             X[y_km==1,1], 
...             c='red', 
...             marker='s', 
...             s=40, 
...             label='cluster 2')
>>> ax1.set_title('K-means clustering')
>>> ac = AgglomerativeClustering(n_clusters=2, 
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...                              affinity='euclidean',

...                              linkage='complete')
>>> y_ac = ac.fit_predict(X)
>>> ax2.scatter(X[y_ac==0,0], 
...             X[y_ac==0,1], 
...             c='lightblue', 
...             marker='o', 
...             s=40, 
...             label='cluster 1')
>>> ax2.scatter(X[y_ac==1,0], 
...             X[y_ac==1,1], 
...             c='red', 
...             marker='s', 
...             s=40, 
...             label='cluster 2')
>>> ax2.set_title('Agglomerative clustering')
>>> plt.legend()
>>> plt.show()

Based on the visualized clustering results, we can see that the k-means algorithm is 
unable to separate the two clusters, and the hierarchical clustering algorithm was 
challenged by those complex shapes:

Finally, let's try the DBSCAN algorithm on this dataset to see if it can find the two 
half-moon-shaped clusters using a density-based approach:

>>> from sklearn.cluster import DBSCAN
>>> db = DBSCAN(eps=0.2, 
...             min_samples=5, 
...             metric='euclidean')
>>> y_db = db.fit_predict(X)
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>>> plt.scatter(X[y_db==0,0], 
...             X[y_db==0,1], 
...             c='lightblue', 
...             marker='o', 
...             s=40, 
...             label='cluster 1')
>>> plt.scatter(X[y_db==1,0], 
...             X[y_db==1,1], 
...             c='red', 
...             marker='s', 
...             s=40, 
...             label='cluster 2')
>>> plt.legend()
>>> plt.show()

The DBSCAN algorithm can successfully detect the half-moon shapes, which 
highlights one of the strengths of DBSCAN (clustering data of arbitrary shapes)
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However, we should also note some of the disadvantages of DBSCAN. With an 
increasing number of features in our dataset—given a fixed size training set—the 
negative effect of the curse of dimensionality increases. This is especially a problem 
if we are using the Euclidean distance metric. However, the problem of the curse of 
dimensionality is not unique to DBSCAN; it also affects other clustering algorithms 
that use the Euclidean distance metric, for example, the k-means and hierarchical 
clustering algorithms. In addition, we have two hyperparameters in DBSCAN 
(MinPts and ε ) that need to be optimized to yield good clustering results. Finding a 
good combination of MinPts and ε  can be problematic if the density differences in 
the dataset are relatively large.

So far, we saw three of the most fundamental categories of clustering 
algorithms: prototype-based clustering with k-means, agglomerative 
hierarchical clustering, and density-based clustering via DBSCAN. 
However, I also want to mention a fourth class of more advanced 
clustering algorithms that we have not covered in this chapter: 
graph-based clustering. Probably the most prominent members of 
the graph-based clustering family are spectral clustering algorithms. 
Although there are many different implementations of spectral 
clustering, they all have in common that they use the eigenvectors 
of a similarity matrix to derive the cluster relationships. Since 
spectral clustering is beyond the scope of this book, you can read 
the excellent tutorial by Ulrike von Luxburg to learn more about this 
topic (U. Von Luxburg. A Tutorial on Spectral Clustering. Statistics and 
computing, 17(4):395–416, 2007). It is freely available from arXiv at 
http://arxiv.org/pdf/0711.0189v1.pdf.

Note that, in practice, it is not always obvious which algorithm will perform best on 
a given dataset, especially if the data comes in multiple dimensions that make it hard 
or impossible to visualize. Furthermore, it is important to emphasize that a successful 
clustering does not only depend on the algorithm and its hyperparameters. Rather, 
the choice of an appropriate distance metric and the use of domain knowledge that 
can help guide the experimental setup can be even more important.

http://arxiv.org/pdf/0711.0189v1.pdf
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Summary
In this chapter, you learned about three different clustering algorithms that can 
help us with the discovery of hidden structures or information in data. We started 
this chapter with a prototype-based approach, k-means, which clusters samples 
into spherical shapes based on a specified number of cluster centroids. Since 
clustering is an unsupervised method, we do not enjoy the luxury of ground truth 
labels to evaluate the performance of a model. Thus, we looked at useful intrinsic 
performance metrics such as the elbow method or silhouette analysis as an attempt 
to quantify the quality of clustering.

We then looked at a different approach to clustering: agglomerative  
hierarchical clustering. Hierarchical clustering does not require specifying  
the number of clusters upfront, and the result can be visualized in a dendrogram 
representation, which can help with the interpretation of the results. The last 
clustering algorithm that we saw in this chapter was DBSCAN, an algorithm that 
groups points based on local densities and is capable of handling outliers and 
identifying nonglobular shapes.

After this excursion into the field of unsupervised learning, it is now about time to 
introduce some of the most exciting machine learning algorithms for supervised 
learning: multilayer artificial neural networks. After their recent resurgence, neural 
networks are once again the hottest topic in machine learning research. Thanks to 
the recently developed deep learning algorithms, neural networks are conceived 
as state-of-the-art for many complex tasks such as image classification and speech 
recognition. In Chapter 12, Training Artificial Neural Networks for Image Recognition, 
we will construct our own multilayer neural network from scratch. In Chapter 13, 
Parallelizing Neural Network Training with Theano, we will introduce powerful libraries 
that can help us to train complex network architectures most efficiently.
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Training Artificial Neural 
Networks for Image 

Recognition
As you may know, deep learning is getting a lot of press and is without any doubt 
the hottest topic in the machine learning field. Deep learning can be understood 
as a set of algorithms that were developed to train artificial neural networks with 
many layers most efficiently. In this chapter, you will learn the basic concepts of 
artificial neural networks so that you will be well equipped to further explore the 
most exciting areas of research in the machine learning field, as well as the advanced 
Python-based deep learning libraries that are currently being developed.

The topics that we will cover are as follows:

•	 Getting a conceptual understanding of multi-layer neural networks
•	 Training neural networks for image classification
•	 Implementing the powerful backpropagation algorithm
•	 Debugging neural network implementations
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Modeling complex functions with 
artificial neural networks
At the beginning of this book, we started our journey through machine learning 
algorithms with artificial neurons in Chapter 2, Training Machine Learning Algorithms 
for Classification. Artificial neurons represent the building blocks of the multi-layer 
artificial neural networks that we are going to discuss in this chapter. The basic 
concept behind artificial neural networks was built upon hypotheses and models 
of how the human brain works to solve complex problem tasks. Although artificial 
neural networks have gained a lot of popularity in recent years, early studies of 
neural networks go back to the 1940s when Warren McCulloch and Walter Pitt first 
described how neurons could work. However, in the decades that followed the first 
implementation of the McCulloch-Pitt neuron model, Rosenblatt's perceptron in 
the 1950s, many researchers and machine learning practitioners slowly began to lose 
interest in neural networks since no one had a good solution for training a neural 
network with multiple layers. Eventually, interest in neural networks was rekindled 
in 1986 when D.E. Rumelhart, G.E. Hinton, and R.J. Williams were involved in the 
(re)discovery and popularization of the backpropagation algorithm to train neural 
networks more efficiently, which we will discuss in more detail later in this chapter 
(Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986). Learning 
Representations by Back-propagating Errors. Nature 323 (6088): 533–536).

During the previous decade, many more major breakthroughs resulted in what we 
now call deep learning algorithms, which can be used to create feature detectors 
from unlabeled data to pre-train deep neural networks—neural networks that are 
composed of many layers. Neural networks are a hot topic not only in academic 
research, but also in big technology companies such as Facebook, Microsoft, and 
Google who invest heavily in artificial neural networks and deep learning research. 
As of today, complex neural networks powered by deep learning algorithms are 
considered as state-of-the-art when it comes to complex problem solving such as 
image and voice recognition. Popular examples of the products in our everyday life 
that are powered by deep learning are Google's image search and Google Translate, 
an application for smartphones that can automatically recognize text in images 
for real-time translation into 20 languages (http://googleresearch.blogspot.
com/2015/07/how-google-translate-squeezes-deep.html). 

http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html
http://googleresearch.blogspot.com/2015/07/how-google-translate-squeezes-deep.html
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Many more exciting applications of deep neural networks are under active 
development at major tech companies, for example, Facebook's DeepFace for 
tagging images (Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing 
the gap to human-level performance in face verification. In Computer Vision and 
Pattern Recognition CVPR, 2014 IEEE Conference, pages 1701–1708) and Baidu's 
DeepSpeech, which is able to handle voice queries in Mandarin (A. Hannun, 
C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. 
Sengupta, A. Coates, et al. DeepSpeech: Scaling up end-to-end speech recognition. arXiv 
preprint arXiv:1412.5567, 2014). In addition, the pharmaceutical industry recently 
started to use deep learning techniques for drug discovery and toxicity prediction, 
and research has shown that these novel techniques substantially exceed the 
performance of traditional methods for virtual screening (T. Unterthiner, A. Mayr, G. 
Klambauer, and S. Hochreiter. Toxicity prediction using deep learning. arXiv preprint 
arXiv:1503.01445, 2015).

Single-layer neural network recap
This chapter is all about multi-layer neural networks, how they work, and how 
to train them to solve complex problems. However, before we dig deeper into a 
particular multi-layer neural network architecture, let's briefly reiterate some of the 
concepts of single-layer neural networks that we introduced in Chapter 2, Training 
Machine Learning Algorithms for Classification, namely, the ADAptive LInear NEuron 
(Adaline) algorithm that is shown in the following figure:
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In Chapter 2, Training Machine Learning Algorithms for Classification, we implemented 
the Adaline algorithm to perform binary classification, and we used a gradient 
descent optimization algorithm to learn the weight coefficients of the model. In  
every epoch (pass over the training set), we updated the weight vector w  using  
the following update rule:

( ): , where Jη= + ∆ ∆ = − ∇w w w w w

In other words, we computed the gradient based on the whole training set and 
updated the weights of the model by taking a step into the opposite direction of the 
gradient ( )J∇ w . In order to find the optimal weights of the model, we optimized an 
objective function that we defined as the Sum of Squared Errors (SSE) cost function 
( )J w . Furthermore, we multiplied the gradient by a factor, the learning rate η , which 

we chose carefully to balance the speed of learning against the risk of overshooting 
the global minimum of the cost function.

In gradient descent optimization, we updated all weights simultaneously after each 
epoch, and we defined the partial derivative for each weight jw  in the weight vector 
w  as follows:

( ) ( ) ( )( ) ( )ii i
j

ij

J y a x
w
∂

= −
∂ ∑w

Here ( )iy  is the target class label of a particular sample ( )ix , and ( )ia  is the activation 
of the neuron, which is a linear function in the special case of Adaline. Furthermore, 
we defined the activation function ( )φ ⋅  as follows:

( )z z aφ = =

Here, the net input  is a linear combination of the weights that are connecting the 
input to the output layer:

j jj
z w x= =∑ Tw x

While we used the activation ( )zφ  to compute the gradient update, we implemented 
a threshold function (Heaviside function) to squash the continuous-valued output 
into binary class labels for prediction:

( )1 0ˆ
1
if g z

y
otherwise

 ≥
= 
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Note that although Adaline consists of two layers, one input layer 
and one output layer, it is called a single-layer network because of 
its single link between the input and output layers.

Introducing the multi-layer neural network 
architecture
In this section, we will see how to connect multiple single neurons to a multi-layer 
feedforward neural network; this special type of network is also called a multi-layer 
perceptron (MLP). The following figure explains the concept of an MLP consisting 
of three layers: one input layer, one hidden layer, and one output layer. The units in 
the hidden layer are fully connected to the input layer, and the output layer is fully 
connected to the hidden layer, respectively. If such a network has more than one 
hidden layer, we also call it a deep artificial neural network.

We could add an arbitrary number of hidden layers to the MLP to create 
deeper network architectures. Practically, we can think of the number of 
layers and units in a neural network as additional hyperparameters that 
we want to optimize for a given problem task using the cross-validation 
that we discussed in Chapter 6, Learning Best Practices for Model Evaluation 
and Hyperparameter Tuning.
However, the error gradients that we will calculate later via 
backpropagation would become increasingly small as more layers are 
added to a network. This vanishing gradient problem makes the model 
learning more challenging. Therefore, special algorithms have been 
developed to pretrain such deep neural network structures, which is 
called deep learning.
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As shown in the preceding figure, we denote the i th activation unit in the l th layer 
as ( )l

ia , and the activation units ( )1
0a  and ( )2

0a  are the bias units, respectively, which we  
set equal to 1. The activation of the units in the input layer is just its input plus the 
bias unit:

( )

( )

( )

( )

( )

( )

1
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1
1 11

1

1
i

i
mm
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xaa

xa

   
   
   = =   
   
     

��

Each unit in layer l  is connected to all units in layer 1l +  via a weight coefficient. 
For example, the connection between the k th unit in layer l  to the j th unit in layer 

1l +  would be written as ( )
,
l
j kw . Please note that the superscript i  in ( )i

mx  stands for 
the i th sample, not the i th layer. In the following paragraphs, we will often omit the 
superscript i  for clarity.

While one unit in the output layer would suffice for a binary classification task, 
we saw a more general form of a neural network in the preceding figure, which 
allows us to perform multi-class classification via a generalization of the One-vs-
All (OvA) technique. To better understand how this works, remember the one-hot 
representation of categorical variables that we introduced in Chapter 4, Building Good 
Training Sets – Data Preprocessing. For example, we would encode the three class 
labels in the familiar Iris dataset (0=Setosa, 1=Versicolor, 2=Virginica)  
as follows:

1 0 0
0 0 , 1 1 , 2 0

0 0 1

     
     = = =     
          

This one-hot vector representation allows us to tackle classification tasks with an 
arbitrary number of unique class labels present in the training set.
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If you are new to neural network representations, the terminology around the indices 
(subscripts and superscripts) may look a little bit confusing at first. You may wonder 
why we wrote ( )

,
l
j kw  and not ( )

,
l
k jw  to refer to the weight coefficient that connects the  

k th unit in layer l  to the j th unit in layer 1l + . What may seem a little bit quirky 
at first will make much more sense in later sections when we vectorize the neural 
network representation. For example, we will summarize the weights that connect 
the input and hidden layer by a matrix ( ) [ ]11 h m× +∈�W , where h  is the number of 
hidden units and 1m +  is the number of input units plus bias unit. Since it is 
important to internalize this notation to follow the concepts later in this chapter, let's 
summarize what we just discussed in a descriptive illustration of a simplified 3-4-3 
multi-layer perceptron:

Activating a neural network via forward 
propagation
In this section, we will describe the process of forward propagation to calculate the 
output of an MLP model. To understand how it fits into the context of learning an 
MLP model, let's summarize the MLP learning procedure in three simple steps:

1.	 Starting at the input layer, we forward propagate the patterns of the training 
data through the network to generate an output.

2.	 Based on the network's output, we calculate the error that we want to 
minimize using a cost function that we will describe later.

3.	 We backpropagate the error, find its derivative with respect to each weight in 
the network, and update the model.
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Finally, after repeating the steps for multiple epochs and learning the weights of 
the MLP, we use forward propagation to calculate the network output and apply a 
threshold function to obtain the predicted class labels in the one-hot representation, 
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate  
an output from the patterns in the training data. Since each unit in the hidden layer  
is connected to all units in the input layers, we first calculate the activation ( )2

1a   
as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 1 1 1
1 0 1,0 1 1,1 1,m mz a w a w a w= + + +�

( ) ( )( )2 2
1 1a zφ=

Here, ( )2
1z  is the net input and ( )φ ⋅  is the activation function, which has to be 

differentiable to learn the weights that connect the neurons using a gradient-based 
approach. To be able to solve complex problems such as image classification, we 
need nonlinear activation functions in our MLP model, for example, the sigmoid 
(logistic) activation function that we used in logistic regression in Chapter 3, A Tour 
of Machine Learning Classifiers Using Scikit-learn:

( ) 1
1 zz
e

φ −=
+

As we can remember, the sigmoid function is an S-shaped curve that maps the net 
input  onto a logistic distribution in the range 0 to 1, which cuts the y axis at z=0,  
as shown in the following graph:
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The MLP is a typical example of a feedforward artificial neural network. The term 
feedforward refers to the fact that each layer serves as the input to the next layer 
without loops, in contrast to recurrent neural networks, an architecture that we will 
discuss later in this chapter. The term multi-layer perceptron may sound a little 
bit confusing, since the artificial neurons in this network architecture are typically 
sigmoid units, not perceptrons. Intuitively, we can think of the neurons in the MLP as 
logistic regression units that return values in the continuous range between 0 and 1.

For purposes of code efficiency and readability, we will now write the activation in a 
more compact form using the concepts of basic linear algebra, which will allow us to 
vectorize our code implementation via NumPy rather than writing multiple nested 
and expensive Python for loops:

( ) ( ) ( )2 1 1=z W a

( ) ( )( )2 2φ= za
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Everywhere you read h on this page, you can think of h as h+1 to 
include the bias unit (and in order to get the dimensions right).

Here, ( )1a  is our [ ]1 1m + ×  dimensional feature vector of a sample ( )ix  plus bias unit. 
( )1W  is an [ ]1h m× +  dimensional weight matrix where h  is the number of hidden 

units in our neural network. After matrix-vector multiplication, we obtain the 1h×  
dimensional net input vector ( )2z  to calculate the activation ( )2a  (where ( )2 1h×∈�a ). 
Furthermore, we can generalize this computation to all n  samples in the training set:

( ) ( ) ( )2 1 1 T
 =  Z W A

Here, ( )1A  is now an [ ]1n m× +  matrix, and the matrix-matrix multiplication will result 
in a h n×  dimensional net input matrix ( )2Z . Finally, we apply the activation function 
( )φ ⋅  to each value in the net input matrix to get the h n×  activation matrix ( )2A  for the 

next layer (here, output layer):

( ) ( )( )2 2φ=A Z

Similarly, we can rewrite the activation of the output layer in the vectorized form:

( ) ( ) ( )3 2 2Z = W A

Here, we multiply the t h×  matrix ( )2W  (t is the number of output units) by the h n×  
dimensional matrix ( )2A  to obtain the t n×  dimensional matrix ( )3Z  (the columns in this 
matrix represent the outputs for each sample).

Lastly, we apply the sigmoid activation function to obtain the continuous valued 
output of our network:

( ) ( )( ) ( ), t nφ ×∈3 3 3 �A = Z A

Classifying handwritten digits
In the previous section, we covered a lot of the theory around neural networks, 
which can be a little bit overwhelming if you are new to this topic. Before we 
continue with the discussion of the algorithm for learning the weights of the MLP 
model, backpropagation, let's take a short break from the theory and see a neural 
network in action.
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Neural network theory can be quite complex, thus I want to recommend 
two additional resources that cover some of the concepts that we discuss 
in this chapter in more detail:
T. Hastie, J. Friedman, and R. Tibshirani. The Elements of Statistical 
Learning, Volume 2. Springer, 2009.
C. M. Bishop et al. Pattern Recognition and Machine Learning, Volume 1. 
Springer New York, 2006.

In this section, we will train our first multi-layer neural network to classify 
handwritten digits from the popular MNIST dataset (short for Mixed National 
Institute of Standards and Technology database) that has been constructed 
by Yann LeCun et al. and serves as a popular benchmark dataset for machine 
learning algorithms (Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based 
Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324, 
November 1998).

Obtaining the MNIST dataset
The MNIST dataset is publicly available at http://yann.lecun.com/exdb/mnist/ 
and consists of the following four parts:

•	 Training set images: train-images-idx3-ubyte.gz (9.9 MB, 47 MB 
unzipped, and 60,000 samples)

•	 Training set labels: train-labels-idx1-ubyte.gz (29 KB, 60 KB unzipped, 
and 60,000 labels)

•	 Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 7.8 MB, unzipped 
and 10,000 samples)

•	 Test set labels: t10k-labels-idx1-ubyte.gz (5 KB, 10 KB unzipped, and 
10,000 labels)

The MNIST dataset was constructed from two datasets of the US National Institute 
of Standards and Technology (NIST). The training set consists of handwritten digits 
from 250 different people, 50 percent high school students, and 50 percent employees 
from the Census Bureau. Note that the test set contains handwritten digits from 
different people following the same split.

After downloading the files, I recommend unzipping the files using the Unix/Linux  
gzip tool from the command line terminal for efficiency using the following 
command in your local MNIST download directory:

gzip *ubyte.gz -d

http://yann.lecun.com/exdb/mnist/
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Alternatively, you could use your favorite unzipping tool if you are working with  
a machine running on Microsoft Windows. The images are stored in byte format,  
and we will read them into NumPy arrays that we will use to train and test our  
MLP implementation:

import os
import struct
import numpy as np

def load_mnist(path, kind='train'):
    """Load MNIST data from `path`"""
    labels_path = os.path.join(path, 
                               '%s-labels-idx1-ubyte' 
                                % kind)
    images_path = os.path.join(path, 
                               '%s-images-idx3-ubyte' 
                               % kind)
        
    with open(labels_path, 'rb') as lbpath:
        magic, n = struct.unpack('>II', 
                                 lbpath.read(8))
        labels = np.fromfile(lbpath, 
                             dtype=np.uint8)

    with open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack(">IIII", 
                                               imgpath.read(16))
        images = np.fromfile(imgpath, 
                    dtype=np.uint8).reshape(len(labels), 784)
 
    return images, labels

The load_mnist function returns two arrays, the first being an n m×  dimensional 
NumPy array (images), where n  is the number of samples and m  is the number 
of features. The training dataset consists of 60,000 training digits and the test set 
contains 10,000 samples, respectively. The images in the MNIST dataset consist of 
28 28×  pixels, and each pixel is represented by a gray scale intensity value. Here, we 
unroll the 28 28×  pixels into 1D row vectors, which represent the rows in our image 
array (784 per row or image). The second array (labels) returned by the load_mnist 
function contains the corresponding target variable, the class labels (integers 0-9) of 
the handwritten digits.
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The way we read in the image might seem a little bit strange at first:

magic, n = struct.unpack('>II', lbpath.read(8))
labels = np.fromfile(lbpath, dtype=np.int8)

To understand how these two lines of code work, let's take a look at the dataset 
description from the MNIST website:

 [offset] [type]          [value]          [description]

0000     32 bit integer  0x00000801(2049) magic number (MSB first)

0004     32 bit integer  60000            number of items

0008     unsigned byte   ??               label

0009     unsigned byte   ??               label

........

xxxx     unsigned byte   ??               label

Using the two lines of the preceding code, we first read in the magic number, which is 
a description of the file protocol as well as the number of items (n) from the file buffer 
before we read the following bytes into a NumPy array using the fromfile method. 
The fmt parameter value >II that we passed as an argument to struct.unpack has 
two parts:

•	 >: This is big-endian (defines the order in which a sequence of bytes is 
stored); if you are unfamiliar with the terms big-endian and small-endian,  
you can find an excellent article about Endianness on Wikipedia  
(https://en.wikipedia.org/wiki/Endianness).

•	 I: This is an unsigned integer.

By executing the following code, we will now load the 60,000 training instances as 
well as the 10,000 test samples from the mnist directory where we unzipped the 
MNIST dataset:

>>> X_train, y_train = load_mnist('mnist', kind='train')
>>> print('Rows: %d, columns: %d' 
...        % (X_train.shape[0], X_train.shape[1]))
Rows: 60000, columns: 784

>>> X_test, y_test = load_mnist('mnist', kind='t10k')
>>> print('Rows: %d, columns: %d'
...        % (X_test.shape[0], X_test.shape[1]))
Rows: 10000, columns: 784

https://en.wikipedia.org/wiki/Endianness
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To get a idea what the images in MNIST look like, let's visualize examples of the 
digits 0-9 after reshaping the 784-pixel vectors from our feature matrix into the 
original 28 × 28 image that we can plot via matplotlib's imshow function:

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True, 
sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(10):
...    img = X_train[y_train == i][0].reshape(28, 28)
...    ax[i].imshow(img, cmap='Greys', interpolation='nearest')
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

We should now see a plot of the 2 5×  subfigures showing a representative image of 
each unique digit:

In addition, let's also plot multiple examples of the same digit to see how different 
those handwriting examples really are:

>>> fig, ax = plt.subplots(nrows=5, 
...                        ncols=5, 
...                        sharex=True, 
...                        sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
...     img = X_train[y_train == 7][i].reshape(28, 28)
...     ax[i].imshow(img, cmap='Greys', interpolation='nearest')
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()
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After executing the code, we should now see the first 25 variants of the digit 7.

Optionally, we can save the MNIST image data and labels as CSV files to open them 
in programs that do not support their special byte format. However, we should be 
aware that the CSV file format will take up substantially more space on your local 
drive, as listed here:

•	 train_img.csv: 109.5 MB
•	 train_labels.csv: 120 KB
•	 test_img.csv: 18.3 MB
•	 test_labels.csv: 20 KB

If we decide to save those CSV files, we can execute the following code in our Python 
session after loading the MNIST data into NumPy arrays:

>>> np.savetxt('train_img.csv', X_train, 
...            fmt='%i', delimiter=',')
>>> np.savetxt('train_labels.csv', y_train,
...            fmt='%i', delimiter=',')
>>> np.savetxt('test_img.csv', X_test,
...            fmt='%i', delimiter=',')
>>> np.savetxt('test_labels.csv', y_test, 
...            fmt='%i', delimiter=',')
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Once we have saved the CSV files, we can load them back into Python using 
NumPy's genfromtxt function:

>>> X_train = np.genfromtxt('train_img.csv', 
...                         dtype=int, delimiter=',')
>>> y_train = np.genfromtxt('train_labels.csv',
...                         dtype=int, delimiter=',')
>>> X_test = np.genfromtxt('test_img.csv',
...                        dtype=int, delimiter=',')
>>> y_test = np.genfromtxt('test_labels.csv',
...                        dtype=int, delimiter=',')

However, it will take substantially longer to load the MNIST data from the CSV files, 
thus I recommend you stick to the original byte format if possible.

Implementing a multi-layer perceptron
In this subsection, we will now implement the code of an MLP with one input, one 
hidden, and one output layer to classify the images in the MNIST dataset. I have tried 
to keep the code as simple as possible. However, it may seem a little bit complicated 
at first, and I encourage you to download the sample code for this chapter from the 
Packt Publishing website, where you can find this MLP implementation annotated 
with comments and syntax highlighting for better readability. If you are not running 
the code from the accompanying IPython notebook, I recommend you copy it  
into a Python script file in your current working directory, for example,  
neuralnet.py, which you can then import into your current Python session  
via the following command:

from neuralnet import NeuralNetMLP

The code will contain parts that we have not talked about yet, such as the 
backpropagation algorithm, but most of the code should look familiar to you based 
on the Adaline implementation in Chapter 2, Training Machine Learning Algorithms 
for Classification, and the discussion of forward propagation in earlier sections. Do 
not worry if not all of the code makes immediate sense to you; we will follow up 
on certain parts later in this chapter. However, going over the code at this stage can 
make it easier to follow the theory later.

import numpy as np
from scipy.special import expit
import sys

class NeuralNetMLP(object):
    def __init__(self, n_output, n_features, n_hidden=30,
                 l1=0.0, l2=0.0, epochs=500, eta=0.001, 
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                 alpha=0.0, decrease_const=0.0, shuffle=True, 
                 minibatches=1, random_state=None):
        np.random.seed(random_state)
        self.n_output = n_output
        self.n_features = n_features
        self.n_hidden = n_hidden
        self.w1, self.w2 = self._initialize_weights()
        self.l1 = l1
        self.l2 = l2
        self.epochs = epochs
        self.eta = eta
        self.alpha = alpha
        self.decrease_const = decrease_const
        self.shuffle = shuffle
        self.minibatches = minibatches

    def _encode_labels(self, y, k):
        onehot = np.zeros((k, y.shape[0]))
        for idx, val in enumerate(y):
            onehot[val, idx] = 1.0
        return onehot

    def _initialize_weights(self):
        w1 = np.random.uniform(-1.0, 1.0,       
                     size=self.n_hidden*(self.n_features + 1))
        w1 = w1.reshape(self.n_hidden, self.n_features + 1)
        w2 = np.random.uniform(-1.0, 1.0,
                     size=self.n_output*(self.n_hidden + 1))
        w2 = w2.reshape(self.n_output, self.n_hidden + 1)
        return w1, w2

    def _sigmoid(self, z):
        # expit is equivalent to 1.0/(1.0 + np.exp(-z))
        return expit(z)

    def _sigmoid_gradient(self, z):
        sg = self._sigmoid(z)
        return sg * (1 - sg)

    def _add_bias_unit(self, X, how='column'):
        if how == 'column':
            X_new = np.ones((X.shape[0], X.shape[1]+1))
            X_new[:, 1:] = X
        elif how == 'row':
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            X_new = np.ones((X.shape[0]+1, X.shape[1]))
            X_new[1:, :] = X
        else:
            raise AttributeError('`how` must be `column` or `row`')
        return X_new

    def _feedforward(self, X, w1, w2):
        a1 = self._add_bias_unit(X, how='column')
        z2 = w1.dot(a1.T)
        a2 = self._sigmoid(z2)
        a2 = self._add_bias_unit(a2, how='row')
        z3 = w2.dot(a2)
        a3 = self._sigmoid(z3)
        return a1, z2, a2, z3, a3

    def _L2_reg(self, lambda_, w1, w2):
        return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2)\
                + np.sum(w2[:, 1:] ** 2))

    def _L1_reg(self, lambda_, w1, w2):
        return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum()\
                + np.abs(w2[:, 1:]).sum())

    def _get_cost(self, y_enc, output, w1, w2):
        term1 = -y_enc * (np.log(output))
        term2 = (1 - y_enc) * np.log(1 - output)
        cost = np.sum(term1 - term2)
        L1_term = self._L1_reg(self.l1, w1, w2)
        L2_term = self._L2_reg(self.l2, w1, w2)
        cost = cost + L1_term + L2_term
        return cost

    def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2):
        # backpropagation
        sigma3 = a3 - y_enc
        z2 = self._add_bias_unit(z2, how='row')
        sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2)
        sigma2 = sigma2[1:, :]
        grad1 = sigma2.dot(a1)
        grad2 = sigma3.dot(a2.T)

        # regularize
        grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2))
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        grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2))

        return grad1, grad2

    def predict(self, X):
        a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2)
        y_pred = np.argmax(z3, axis=0)
        return y_pred

    def fit(self, X, y, print_progress=False):
        self.cost_ = []
        X_data, y_data = X.copy(), y.copy()
        y_enc = self._encode_labels(y, self.n_output)

        delta_w1_prev = np.zeros(self.w1.shape)
        delta_w2_prev = np.zeros(self.w2.shape)

        for i in range(self.epochs):

            # adaptive learning rate
            self.eta /= (1 + self.decrease_const*i)

            if print_progress:
                sys.stderr.write(
                        '\rEpoch: %d/%d' % (i+1, self.epochs))
                sys.stderr.flush()

            if self.shuffle:
                idx = np.random.permutation(y_data.shape[0])
                X_data, y_enc = X_data[idx], y_enc[:,idx]

            mini = np.array_split(range(
                         y_data.shape[0]), self.minibatches)
            for idx in mini:

                # feedforward
                a1, z2, a2, z3, a3 = self._feedforward(
                                     X_data[idx], self.w1, self.w2)
                cost = self._get_cost(y_enc=y_enc[:, idx],
                                      output=a3,
                                      w1=self.w1,
                                      w2=self.w2)
                self.cost_.append(cost)
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                # compute gradient via backpropagation
                grad1, grad2 = self._get_gradient(a1=a1, a2=a2,
                                            a3=a3, z2=z2,
                                            y_enc=y_enc[:, idx],
                                            w1=self.w1,
                                            w2=self.w2)

                # update weights
                delta_w1, delta_w2 = self.eta * grad1,\
                                     self.eta * grad2
                self.w1 -= (delta_w1 + (self.alpha * delta_w1_prev))
                self.w2 -= (delta_w2 + (self.alpha * delta_w2_prev))
                delta_w1_prev, delta_w2_prev = delta_w1, delta_w2

        return self

Now, let's initialize a new 784-50-10 MLP, a neural network with 784 input units 
(n_features), 50 hidden units (n_hidden), and 10 output units (n_output):

>>> nn = NeuralNetMLP(n_output=10, 
...                   n_features=X_train.shape[1], 
...                   n_hidden=50, 
...                   l2=0.1, 
...                   l1=0.0, 
...                   epochs=1000, 
...                   eta=0.001,
...                   alpha=0.001,
...                   decrease_const=0.00001,
...                   shuffle=True,
...                   minibatches=50, 
...                   random_state=1)

As you may have noticed, by going over our preceding MLP implementation,  
we also implemented some additional features, which are summarized here:

•	 l2: The λ  parameter for L2 regularization to decrease the degree of 
overfitting; equivalently, l1 is the λ  parameter for L1 regularization.

•	 epochs: The number of passes over the training set.
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•	 eta: The learning rate η .
•	 alpha: A parameter for momentum learning to add a factor of the previous 

gradient to the weight update for faster learning ( ) 1Jt t tη α −∆ = ∇ + ∆w w w  
(where t  is the current time step or epoch).

•	 decrease_const: The decrease constant d  for an adaptive learning rate n  
that decreases over time for better convergence /1 t dη + × .

•	 shuffle: Shuffling the training set prior to every epoch to prevent the 
algorithm from getting stuck in cycles.

•	 Minibatches: Splitting of the training data into k mini-batches in each epoch. 
The gradient is computed for each mini-batch separately instead of the entire 
training data for faster learning.

Next, we train the MLP using 60,000 samples from the already shuffled MNIST 
training dataset. Before you execute the following code, please note that training the 
neural network may take 10-30 minutes on standard desktop computer hardware:

>>> nn.fit(X_train, y_train, print_progress=True)
Epoch: 1000/1000

Similar to our previous Adaline implementation, we save the cost for each epoch  
in a cost_ list that we can now visualize, making sure that the optimization 
algorithm reached convergence. Here, we only plot every 50th step to account for  
the 50 mini-batches (50 mini-batches × 1000 epochs). The code is as follows:

>>> plt.plot(range(len(nn.cost_)), nn.cost_)
>>> plt.ylim([0, 2000])
>>> plt.ylabel('Cost')
>>> plt.xlabel('Epochs * 50')
>>> plt.tight_layout()
>>> plt.show()
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As we see in the following plot, the graph of the cost function looks very noisy.  
This is due to the fact that we trained our neural network with mini-batch learning,  
a variant of stochastic gradient descent.

Although we can already see in the plot that the optimization algorithm converged 
after approximately 800 epochs (40,000/50 = 800), let's plot a smoother version of 
the cost function against the number of epochs by averaging over the mini-batch 
intervals. The code is as follows:

>>> batches = np.array_split(range(len(nn.cost_)), 1000)
>>> cost_ary = np.array(nn.cost_)
>>> cost_avgs = [np.mean(cost_ary[i]) for i in batches]

>>> plt.plot(range(len(cost_avgs)),
...          cost_avgs, 
...          color='red')
>>> plt.ylim([0, 2000])
>>> plt.ylabel('Cost')
>>> plt.xlabel('Epochs')
>>> plt.tight_layout()
>>> plt.show()
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The following plot gives us a clearer picture indicating that the training algorithm 
converged shortly after the 800th epoch:

Now, let's evaluate the performance of the model by calculating the  
prediction accuracy:

>>> y_train_pred = nn.predict(X_train)
>>> acc = np.sum(y_train == y_train_pred, axis=0) / X_train.shape[0]
>>> print('Training accuracy: %.2f%%' % (acc * 100))
Training accuracy: 97.59%

As we can see, the model classifies most of the training digits correctly, but how does 
it generalize to data that it has not seen before? Let's calculate the accuracy on 10,000 
images in the test dataset:

>>> y_test_pred = nn.predict(X_test)
>>> acc = np.sum(y_test == y_test_pred, axis=0) / X_test.shape[0]
>>> print('Test accuracy: %.2f%%' % (acc * 100))
Test accuracy: 95.62%

Based on the small discrepancy between training and test accuracy, we can conclude 
that the model only slightly overfits the training data. To further fine-tune the 
model, we could change the number of hidden units, values of the regularization 
parameters, learning rate, values of the decrease constant, or the adaptive learning 
using the techniques that we discussed in Chapter 6, Learning Best Practices for Model 
Evaluation and Hyperparameter Tuning (this is left as an exercise for the reader).
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Now, let's take a look at some of the images that our MLP struggles with:

>>> miscl_img = X_test[y_test != y_test_pred][:25]
>>> correct_lab = y_test[y_test != y_test_pred][:25]
>>> miscl_lab= y_test_pred[y_test != y_test_pred][:25]

>>> fig, ax = plt.subplots(nrows=5, 
...                        ncols=5, 
...                        sharex=True, 
...                        sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
...     img = miscl_img[i].reshape(28, 28)
...     ax[i].imshow(img, 
...                  cmap='Greys', 
...                  interpolation='nearest')
...     ax[i].set_title('%d) t: %d p: %d' 
...                     % (i+1, correct_lab[i], miscl_lab[i]))
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

We should now see a 5 5×  subplot matrix where the first number in the subtitles 
indicates the plot index, the second number indicates the true class label (t), and the 
third number stands for the predicted class label (p).
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As we can see in the preceding figure, some of those images are even challenging  
for us humans to classify correctly. For example, we can see that the digit 9 is 
classified as a 3 or 8 if the lower part of the digit has a hook-like curvature  
(subplots 3, 16, and 17).

Training an artificial neural network
Now that we have seen a neural network in action and have gained a basic 
understanding of how it works by looking over the code, let's dig a little bit deeper 
into some of the concepts, such as the logistic cost function and the backpropagation 
algorithm that we implemented to learn the weights.

Computing the logistic cost function
The logistic cost function that we implemented as the _get_cost method is actually 
pretty simple to follow since it is the same cost function that we described in the 
logistic regression section in Chapter 3, A Tour of Machine Learning Classifiers  
Using Scikit-learn.

( ) ( ) ( )( ) ( )( ) ( )( )
1

log 1 log 1
n

i i i i

i
J y a y a

=

= − + − −∑w

Here, ( )ia  is the sigmoid activation of the i th unit in one of the layers which we 
compute in the forward propagation step:

( ) ( )( )i ia zφ=

Now, let's add a regularization term, which allows us to reduce the degree of 
overfitting. As you will recall from earlier chapters, the L2 and L1 regularization 
terms are defined as follows (remember that we don't regularize the bias units):

2 12
2 1

1 1
2 and 1

m m

j j
j j

L w L wλ λ λ λ
= =

= = = =∑ ∑w w
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Although our MLP implementation supports both L1 and L2 regularization, we will 
now only focus on the L2 regularization term for simplicity. However, the same 
concepts apply to the L1 regularization term. By adding the L2 regularization term  
to our logistic cost function, we obtain the following equation:

( ) ( ) ( )( ) ( )( ) ( )( ) 2

2
1

log 1 log 1
2

n
i i i i

i
J y a y a λ

=

 = − + − − +  
∑w w

Since we implemented an MLP for multi-class classification, this returns an output 
vector of t  elements, which we need to compare with the 1t×  dimensional target 
vector in the one-hot encoding representation. For example, the activation of the 
third layer and the target class (here: class 2) for a particular sample may look  
like this:

( )3

0.1 0
0.9 1

,

0.3 0

a y

   
   
   = =
   
   
   

� �

Thus, we need to generalize the logistic cost function to all activation units j  in our 
network. So our cost function (without the regularization term) becomes:

( ) ( ) ( )( ) ( )( ) ( )( )
1 1

log 1 log 1
n t

i i i i
j j j j

i j
J y a y a

= =

= − + − −∑∑w

Here, the superscript i  is the index of a particular sample in our training set.

The following generalized regularization term may look a little bit complicated at 
first, but here we are just calculating the sum of all weights of a layer l  (without the 
bias term) that we added to the first column:

( ) ( ) ( )( )( ) ( )( ) ( )( )( )
( )( )
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The following expression represents the L2-penalty term:

( )( )
11 2

,
1 1 12

l lu uL
l
j i

l i j
wλ +−

= = =
∑∑∑

Remember that our goal is to minimize the cost function ( )J w . Thus, we need to 
calculate the partial derivative of matrix W  with respect to each weight for every 
layer in the network:

( ) ( )
,
l
j i

J
w
∂

∂
W

In the next section, we will talk about the backpropagation algorithm, which allows 
us to calculate these partial derivatives to minimize the cost function.

Note that W  consists of multiple matrices. In a multi-layer perceptron with one 
hidden layer, we have the weight matrix ( )1W , which connects the input to the hidden 
layer, and ( )2W , which connects the hidden layer to the output layer. An intuitive 
visualization of the matrix W  is provided in the following figure:

In this simplified figure, it may seem that both ( )1W  and ( )2W  have the same number 
of rows and columns, which is typically not the case unless we initialize an MLP 
with the same number of hidden units, output units, and input features.
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If this may sound confusing, stay tuned for the next section where we will 
discuss the dimensionality of ( )1W  and ( )2W  in more detail in the context of the 
backpropagation algorithm.

Training neural networks via backpropagation
In this section, we will go through the math of backpropagation to understand 
how you can learn the weights in a neural network very efficiently. Depending 
on how comfortable you are with mathematical representations, the following 
equations may seem relatively complicated at first. Many people prefer a bottom-up 
approach and like to go over the equations step by step to develop an intuition for 
algorithms. However, if you prefer a top-down approach and want to learn about 
backpropagation without all the mathematical notations, I recommend you to read 
the next section Developing your intuition for backpropagation first and revisit this 
section later.

In the previous section, we saw how to calculate the cost as the difference between 
the activation of the last layer and the target class label. Now, we will see how the 
backpropagation algorithm works to update the weights in our MLP model, which 
we implemented in the _get_gradient method. As we recall from the beginning 
of this chapter, we first need to apply forward propagation in order to obtain the 
activation of the output layer, which we formulated as follows:

( ) ( ) ( ) ( )2 1 1 net input of the hidden layer
T

 
 Z = W A

( ) ( )( ) ( )2 2 activation of the hidden layerφA = Z

( ) ( ) ( ) ( )2 2 net input of theoutput layer=3Z W A

( ) ( )( ) ( )3 activation of theoutput layerφ= 3A Z
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Concisely, we just forward propagate the input features through the connection in 
the network as shown here:

In backpropagation, we propagate the error from right to left. We start by calculating 
the error vector of the output layer:

( ) ( )3 3a yδ = −

Here, y  is the vector of the true class labels.

Next, we calculate the error term of the hidden layer:

( ) ( )( ) ( )
( )( )

( )

2
2 2 3

2

T z

z

φ∂
= ∗

∂
Wδ δ

Here, 
( )( )

( )

2

2

z

z

φ∂

∂
 is simply the derivative of the sigmoid activation function, which we 

implemented as _sigmoid_gradient:

( )( )
( )

( ) ( )( )( )
2

2 2
2 1
z

a a
z

φ∂
= ∗ −

∂

Note that the asterisk symbol ( )∗  means element-wise multiplication in this context.



Training Artificial Neural Networks for Image Recognition

[ 372 ]

Although, it is not important to follow the next equations, you may be 
curious as to how I obtained the derivative of the activation function. I 
summarized the derivation step by step here:

( ) 1  
1 zz

z e
φ −

∂  =  ∂ + 
′

( )2
1

z

z

e

e

−

−
=
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2

2
1 1

11

z

zz

e
ee

−

−−

+  = −  + +

( )
21 1

11 zz ee −−

 = −  ++  

( ) ( )( )2
z zφ φ= −

( ) ( )( )1z zφ φ= −

( )1a a= −

To better understand how we compute the ( )3δ  term, let's walk through it in more 
detail. In the preceding equation, we multiplied the transpose ( )( )2 T

W  of the t h×  
dimensional matrix ( )2W ; t is the number of output class labels and h is the number 
of hidden units. Now, ( )( )2 T

W  becomes an h t×  dimensional matrix with ( )3δ , which 
is a 1t×  dimensional vector. We then performed a pair-wise multiplication between 

( )( ) ( )2 3T
δW  and ( ) ( )( )( )2 21a a∗ − , which is also a 1t×  dimensional vector. Eventually,  

after obtaining the δ  terms, we can now write the derivation of the cost function  
as follows:

( ) ( ) ( ) ( )1

,

l l
j il

i j

J a
w

δ +∂
=

∂
W
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Next, we need to accumulate the partial derivative of every j th node in layer l  and 
the i th error of the node in layer 1l + :

( ) ( ) ( ) ( )1
, ,:l l l l
i j i j j ia δ +∆ = ∆ +

Remember that we need to compute ( )
,
l
i j∆  for every sample in the training set. Thus, 

it is easier to implement it as a vectorized version like in our preceding MLP code 
implementation:

( ) ( ) ( ) ( )( )1 Tl l l lδ +∆ = ∆ + A

After we have accumulated the partial derivatives, we can add the regularization 
term as follows:

( ) ( ) ( ) ( ): except for the bias terml l lλ∆ = ∆ +

Lastly, after we have computed the gradients, we can now update the weights by 
taking an opposite step towards the gradient:

( ) ( ) ( ):l l lη= − ∆W W

To bring everything together, let's summarize backpropagation in the  
following figure:
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Developing your intuition for 
backpropagation
Although backpropagation was rediscovered and popularized almost 30 years 
ago, it still remains one of the most widely used algorithms to train artificial neural 
networks very efficiently. In this section, we'll see a more intuitive summary and the 
bigger picture of how this fascinating algorithm works.

In essence, backpropagation is just a very computationally efficient approach 
to compute the derivatives of a complex cost function. Our goal is to use those 
derivatives to learn the weight coefficients for parameterizing a multi-layer  
artificial neural network. The challenge in the parameterization of neural networks 
is that we are typically dealing with a very large number of weight coefficients in 
a high-dimensional feature space. In contrast to other cost functions that we have 
seen in previous chapters, the error surface of a neural network cost function is not 
convex or smooth. There are many bumps in this high-dimensional cost surface 
(local minima) that we have to overcome in order to find the global minimum  
of the cost function.

You may recall the concept of the chain rule from your introductory calculus classes. 
The chain rule is an approach to deriving a complex, nested function, for example, 

( )( )f g x y=  that is broken down into basic components:

y f g
x g x
∂ ∂ ∂

=
∂ ∂ ∂

In the context of computer algebra, a set of techniques has been developed to solve 
such problems very efficiently, which is also known as automatic differentiation. If you 
are interested in learning more about automatic differentiation in machine learning 
applications, I recommend you to refer to the following resource: A. G. Baydin and 
B. A. Pearlmutter. Automatic Differentiation of Algorithms for Machine Learning. arXiv 
preprint arXiv:1404.7456, 2014, which is freely available on arXiv at http://arxiv.
org/pdf/1404.7456.pdf.

http://arxiv.org/pdf/1404.7456.pdf
http://arxiv.org/pdf/1404.7456.pdf
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Automatic differentiation comes with two modes, the forward and the reverse mode, 
respectively. Backpropagation is simply just a special case of the reverse-mode 
automatic differentiation. The key point is that applying the chain rule in the forward 
mode can be quite expensive since we would have to multiply large matrices for 
each layer (Jacobians) that we eventually multiply by a vector to obtain the output. 
The trick of the reverse mode is that we start from right to left: we multiply a matrix 
by a vector, which yields another vector that is multiplied by the next matrix and 
so on. Matrix-vector multiplication is computationally much cheaper than matrix-
matrix multiplication, which is why backpropagation is one of the most popular 
algorithms used in neural network training.

Debugging neural networks with gradient 
checking
Implementations of artificial neural networks can be quite complex, and it is always 
a good idea to manually check that we have implemented backpropagation correctly. 
In this section, we will talk about a simple procedure called gradient checking, 
which is essentially a comparison between our analytical gradients in the network 
and numerical gradients. Gradient checking is not specific to feedforward neural 
networks but can be applied to any other neural network architecture that uses 
gradient-based optimization. Even if you are planning to implement more trivial 
algorithms using gradient-based optimization, such as linear regression, logistic 
regression, and support vector machines, it is generally not a bad idea to check if the 
gradients are computed correctly.

In the previous sections, we defined a cost function ( )J W  where W  is the matrix 
of the weight coefficients of an artificial network. Note that ( )J W  is—roughly 
speaking—a "stacked" matrix consisting of the matrices ( )1W  and ( )2W  in a multi-layer 
perceptron with one hidden unit. We defined ( )1W  as the [ ]1h m× + -dimensional matrix 
that connects the input layer to the hidden layer, where h  is the number of hidden 
units and m  is the number of features (input units). The matrix ( )2W  that connects the 
hidden layer to the output layer has the dimensions t h× , where t  is the number of 
output units. We then calculated the derivative of the cost function for a weight ( )

,
l
i jw  

as follows:

( ) ( )
,
l
i j

J
w
∂

∂
W
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Remember that we are updating the weights by taking an opposite step towards the 
direction of the gradient. In gradient checking, we compare this analytical solution to 
a numerically approximated gradient:

( ) ( )
( )( ) ( )( ), ,

,

 l l
i j i j

l
i j

J w J w
J

w

ε

ε

+ −∂
≈

∂

 
W

Here, ε  is typically a very small number, for example 1e-5 (note that 1e-5 is just 
a more convenient notation for 0.00001). Intuitively, we can think of this finite 
difference approximation as the slope of the secant line connecting the points of the 
cost function for the two weights w  and w ε+  (both are scalar values), as shown in 
the following figure. We are omitting the superscripts and subscripts for simplicity.

An even better approach that yields a more accurate approximation of the  
gradient is to compute the symmetric (or centered) difference quotient given  
by the two-point formula:

( )( ) ( )( ), , 
 

2

l l
i j i jJ w J wε ε

ε

+ − − 
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Typically, the approximated difference between the numerical gradient  nJ ′  and 
analytical gradient  aJ ′  is then calculated as the L2 vector norm. For practical 
reasons, we unroll the computed gradient matrices into flat vectors so that we can 
calculate the error (the difference between the gradient vectors) more conveniently:

2
'  'n aerror J J= −

One problem is that the error is not scale invariant (small errors are more significant 
if the weight vector norms are small too). Thus, it is recommended to calculate a 
normalized difference:

2

2 2

'  '
  

' '
n a

n a

J J
relativeerror

J J
−

=
+

Now, we want the relative error between the numerical gradient and the analytical 
gradient to be as small as possible. Before we implement gradient checking, we need 
to discuss one more detail: what is the acceptable error threshold to pass the gradient 
check? The relative error threshold for passing the gradient check depends on the 
complexity of the network architecture. As a rule of thumb, the more hidden layers 
we add, the larger the difference between the numerical and analytical gradient can 
become if backpropagation is implemented correctly. Since we have implemented a 
relatively simple neural network architecture in this chapter, we want to be rather 
strict about the threshold and define the following rules:

•	 Relative error <= 1e-7 means everything is okay!
•	 Relative error <= 1e-4 means the condition is problematic, and we should 

look into it.
•	 Relative error > 1e-4 means there is probably something wrong in our code.

Now that we have established these ground rules, let's implement gradient checking.  
To do so, we can simply take the NeuralNetMLP class that we implemented 
previously and add the following method to the class body:

def _gradient_checking(self, X, y_enc, w1, 
                       w2, epsilon, grad1, grad2):
    """ Apply gradient checking (for debugging only)

    Returns
    ---------
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    relative_error : float
      Relative error between the numerically
      approximated gradients and the backpropagated gradients.

    """
    num_grad1 = np.zeros(np.shape(w1))
    epsilon_ary1 = np.zeros(np.shape(w1))
    for i in range(w1.shape[0]):
        for j in range(w1.shape[1]):
            epsilon_ary1[i, j] = epsilon
            a1, z2, a2, z3, a3 = self._feedforward(
                                           X, 
                                           w1 - epsilon_ary1, 
                                           w2)
            cost1 = self._get_cost(y_enc, 
                                   a3, 
                                   w1-epsilon_ary1, 
                                   w2)
            a1, z2, a2, z3, a3 = self._feedforward(
                                         X, 
                                         w1 + epsilon_ary1, 
                                         w2)
            cost2 = self._get_cost(y_enc, 
                                   a3, 
                                   w1 + epsilon_ary1, 
                                   w2)
            num_grad1[i, j] = (cost2 - cost1) / (2 * epsilon)
            epsilon_ary1[i, j] = 0

    num_grad2 = np.zeros(np.shape(w2))
    epsilon_ary2 = np.zeros(np.shape(w2))
    for i in range(w2.shape[0]):
        for j in range(w2.shape[1]):
            epsilon_ary2[i, j] = epsilon
            a1, z2, a2, z3, a3 = self._feedforward(
                                            X, 
                                            w1, 
                                            w2 - epsilon_ary2)
            cost1 = self._get_cost(y_enc, 
                                   a3, 
                                   w1, 
                                   w2 - epsilon_ary2)
            a1, z2, a2, z3, a3 = self._feedforward(
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                                          X, 
                                          w1, 
                                          w2 + epsilon_ary2)
            cost2 = self._get_cost(y_enc, 
                                   a3, 
                                   w1, 
                                   w2 + epsilon_ary2)
            num_grad2[i, j] = (cost2 - cost1) / (2 * epsilon)
            epsilon_ary2[i, j] = 0

    num_grad = np.hstack((num_grad1.flatten(),
                          num_grad2.flatten()))
    grad = np.hstack((grad1.flatten(), grad2.flatten()))
    norm1 = np.linalg.norm(num_grad - grad)
    norm2 = np.linalg.norm(num_grad)
    norm3 = np.linalg.norm(grad)
    relative_error = norm1 / (norm2 + norm3)
    return relative_error 

The _gradient_checking code seems rather simple. However, my personal 
recommendation is to keep it as simple as possible. Our goal is to double-check 
the gradient computation, so we want to make sure that we do not introduce any 
additional mistakes in gradient checking by writing efficient but complex code. 
Next, we only need to make a small modification to the fit method. In the following 
code, I omitted the code at the beginning of the fit function for clarity, and the only 
lines that we need to add to the method are implemented between the comments ## 
start gradient checking and ## end gradient checking:

class MLPGradientCheck(object):
    [...]
    def fit(self, X, y, print_progress=False):
        [...] 
                # compute gradient via backpropagation
                grad1, grad2 = self._get_gradient(
                                       a1=a1, 
                                       a2=a2,
                                       a3=a3, 
                                       z2=z2,
                                       y_enc=y_enc[:, idx],
                                       w1=self.w1,
                                       w2=self.w2)
                
                ## start gradient checking
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                grad_diff = self._gradient_checking(
                                     X=X[idx],
                                     y_enc=y_enc[:, idx],
                                     w1=self.w1, 
                                     w2=self.w2,
                                     epsilon=1e-5,
                                     grad1=grad1, 
                                     grad2=grad2)
                if grad_diff <= 1e-7:
                    print('Ok: %s' % grad_diff)
                elif grad_diff <= 1e-4:
                    print('Warning: %s' % grad_diff)
                else:
                    print('PROBLEM: %s' % grad_diff)
              
                ## end gradient checking
                
                # update weights; [alpha * delta_w_prev] 
                # for momentum learning
                delta_w1 = self.eta * grad1
                delta_w2 = self.eta * grad2
                self.w1 -= (delta_w1 +\
                           (self.alpha * delta_w1_prev))
                self.w2 -= (delta_w2 +\
                           (self.alpha * delta_w2_prev))
                delta_w1_prev = delta_w1
                delta_w2_prev = delta_w2

        return self

Assuming that we named our modified multi-layer perceptron class 
MLPGradientCheck, we can now initialize a new MLP with 10 hidden layers. Also, 
we disable regularization, adaptive learning, and momentum learning. In addition, 
we use regular gradient descent by setting minibatches to 1. The code is as follows:

>>> nn_check = MLPGradientCheck(n_output=10, 
                                n_features=X_train.shape[1], 
                                n_hidden=10, 
                                l2=0.0, 
                                l1=0.0, 
                                epochs=10, 
                                eta=0.001,
                                alpha=0.0,
                                decrease_const=0.0,
                                minibatches=1, 
                                random_state=1)
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One downside of gradient checking is that it is computationally very, very expensive. 
Training a neural network with gradient checking enabled is so slow that we really 
only want to use it for debugging purposes. For this reason, it is not uncommon to 
run gradient checking only on a handful of training samples (here, we choose 5).  
The code is as follows:

>>> nn_check.fit(X_train[:5], y_train[:5], print_progress=False)
Ok: 2.56712936241e-10
Ok: 2.94603251069e-10
Ok: 2.37615620231e-10
Ok: 2.43469423226e-10
Ok: 3.37872073158e-10
Ok: 3.63466384861e-10
Ok: 2.22472120785e-10
Ok: 2.33163708438e-10
Ok: 3.44653686551e-10
Ok: 2.17161707211e-10 

As we can see from the code output, our multi-layer perceptron passes this test with 
excellent results.

Convergence in neural networks
You might be wondering why we did not use regular gradient descent but  
mini-batch learning to train our neural network for the handwritten digit 
classification. You may recall our discussion on stochastic gradient descent that we 
used to implement online learning. In online learning, we compute the gradient based 
on a single training example ( )1k =  at a time to perform the weight update. Although 
this is a stochastic approach, it often leads to very accurate solutions with a much 
faster convergence than regular gradient descent. Mini-batch learning is a special 
form of stochastic gradient descent where we compute the gradient based on a subset 
k  of the n  training samples with 1 k n< < . Mini-batch learning has the advantage 
over online learning that we can make use of our vectorized implementations to 
improve computational efficiency. However, we can update the weights much faster 
than in regular gradient descent. Intuitively, you can think of mini-batch learning 
as predicting the vote turnout of a presidential election from a poll by asking only a 
representative subset of the population rather than asking the entire population.
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In addition, we added more tuning parameters such as the decrease constant and 
a parameter for an adaptive learning rate. The reason is that neural networks are 
much harder to train than simpler algorithms such as Adaline, logistic regression, or 
support vector machines. In multi-layer neural networks, we typically have hundreds, 
thousands, or even billions of weights that we need to optimize. Unfortunately, the 
output function has a rough surface and the optimization algorithm can easily become 
trapped in local minima, as shown in the following figure:

Note that this representation is extremely simplified since our neural network has 
many dimensions; it makes it impossible to visualize the actual cost surface for the 
human eye. Here, we only show the cost surface for a single weight on the x axis. 
However, the main message is that we do not want our algorithm to get trapped in 
local minima. By increasing the learning rate, we can more readily escape such local 
minima. On the other hand, we also increase the chance of overshooting the global 
optimum if the learning rate is too large. Since we initialize the weights randomly, 
we start with a solution to the optimization problem that is typically hopelessly 
wrong. A decrease constant, which we defined earlier, can help us to climb down the 
cost surface faster in the beginning and the adaptive learning rate allows us to better 
anneal to the global minimum.
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Other neural network architectures
In this chapter, we discussed one of the most popular feedforward neural network 
representations, the multi-layer perceptron. Neural networks are currently one of the 
most active research topics in the machine learning field, and there are many other 
neural network architectures that are well beyond the scope of this book. If you are 
interested in learning more about neural networks and algorithms for deep learning, 
I recommend reading the introduction and overview; Y. Bengio. Learning Deep 
Architectures for AI. Foundations and Trends in Machine Learning, 2(1):1–127, 2009. 
Yoshua Bengio's book is currently freely available at http://www.iro.umontreal.
ca/~bengioy/papers/ftml_book.pdf. 

Although neural networks really are a topic for another book, let's take at least a 
brief look at two other popular architectures, convolutional neural networks and 
recurrent neural networks.

Convolutional Neural Networks
Convolutional Neural Networks (CNNs or ConvNets) gained popularity in 
computer vision due to their extraordinary good performance on image classification 
tasks. As of today, CNNs are one of the most popular neural network architectures in 
deep learning. The key idea behind convolutional neural networks is to build many 
layers of feature detectors to take the spatial arrangement of pixels in an input image 
into account. Note that there exist many different variants of CNNs. In this section, 
we will discuss only the general idea behind this architecture. If you are interested 
in learning more about CNNs, I recommend you to take a look at the publications of 
Yann LeCun (http://yann.lecun.com), who is one of the co-inventors of CNNs. In 
particular, I can recommend the following literature for getting started with CNNs:

•	 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based Learning 
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 
1998.

•	 P. Y. Simard, D. Steinkraus, and J. C. Platt. Best Practices for Convolutional 
Neural Networks Applied to Visual Document Analysis. IEEE, 2003, p.958.

http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://yann.lecun.com
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As you will recall from our multi-layer perceptron implementation, we unrolled 
the images into feature vectors and these inputs were fully connected to the hidden 
layer—spatial information was not encoded in this network architecture. In CNNs, 
we use receptive fields to connect the input layer to a feature map. These receptive 
fields can be understood as overlapping windows that we slide over the pixels of 
an input image to create a feature map. The stride lengths of the window sliding as 
well as the window size are additional hyperparameters of the model that we need 
to define a priori. The process of creating the feature map is also called convolution. 
An example of such a convolutional layer, the layer that connects the input pixels to 
each unit in the feature map, is shown in the following figure:

It is important to note that the feature detectors are replicates, which means that the 
receptive fields that map the features to the units in the next layer share the same 
weights. Here, the key idea is that if a feature detector is useful in one part of the 
image, it might be useful in another part as well. The nice side effect of this approach 
is that it greatly reduces the number of parameters that need to be learned. Since 
we allow different patches of the image to be represented in different ways, CNNs 
are particularly good at recognizing objects of different sizes and different positions 
in an image. We do not need to worry so much about rescaling and centering the 
images as it has been done in MNIST.

In CNNs, a convolutional layer is followed by a pooling layer (sometimes also 
called sub-sampling). In pooling, we summarize neighboring feature detectors to 
reduce the number of features for the next layer. Pooling can be understood as a 
simple method of feature extraction where we take the average or maximum value 
of a patch of neighboring features and pass it on to the next layer. To create a deep 
convolutional neural network, we stack multiple layers—alternating between 
convolutional and pooling layers—before we connect it to a multi-layer perceptron 
for classification. This is shown in the following figure:
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) can be thought of as feedforward neural 
networks with feedback loops or backpropagation through time. In RNNs, the 
neurons only fire for a limited amount of time before they are (temporarily) 
deactivated. In turn, these neurons activate other neurons that fire at a later point 
in time. Basically, we can think of recurrent neural networks as MLPs with an 
additional time variable. The time component and dynamic structure allows  
the network to use not only the current inputs but also the inputs that it  
encountered earlier.
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Although RNNs achieved remarkable results in speech recognition, language 
translation, and connected handwriting recognition, these network architectures 
are typically much harder to train. This is because we cannot simply backpropagate 
the error layer by layer; we have to consider the additional time component, 
which amplifies the vanishing and exploding gradient problem. In 1997, Juergen 
Schmidhuber and his co-workers introduced the so-called long short-term memory 
units to overcome this problem: Long Short Term Memory (LSTM) units;  
S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural Computation, 
9(8):1735–1780, 1997.

However, we should note that there are many different variants of RNNs, and a 
detailed discussion is beyond the scope of this book.

A few last words about neural network 
implementation
You might be wondering why we went through all of this theory just to implement 
a simple multi-layer artificial network that can classify handwritten digits instead 
of using an open source Python machine learning library. One reason is that at 
the time of writing this book, scikit-learn does not have an MLP implementation. 
More importantly, we (machine learning practitioners) should have at least a basic 
understanding of the algorithms that we are using in order to apply machine 
learning techniques appropriately and successfully.

Now that we know how feedforward neural networks work, we are ready to 
explore more sophisticated Python libraries built on top of NumPy such as Theano 
(http://deeplearning.net/software/theano/), which allows us to construct 
neural networks more efficiently. We will see this in Chapter 13, Parallelizing Neural 
Network Training with Theano. Over the last couple of years, Theano has gained a lot of 
popularity among machine learning researchers, who use it to construct deep neural 
networks because of its ability to optimize mathematical expressions for computations 
on multi-dimensional arrays utilizing Graphical Processing Units (GPUs).

A great collection of Theano tutorials can be found at http://deeplearning.net/
software/theano/tutorial/index.html#tutorial.

There are also a number of interesting libraries that are being actively developed to 
train neural networks in Theano, which you should keep on your radar:

•	 Pylearn2 (http://deeplearning.net/software/pylearn2/)
•	 Lasagne (https://lasagne.readthedocs.org/en/latest/)
•	 Keras (http://keras.io)

(http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/tutorial/index.html#tutorial
http://deeplearning.net/software/theano/tutorial/index.html#tutorial
http://deeplearning.net/software/pylearn2/
https://lasagne.readthedocs.org/en/latest/
http://keras.io
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Summary
In this chapter, you have learned about the most important concepts behind  
multi-layer artificial neural networks, which are currently the hottest topic in 
machine learning research. In Chapter 2, Training Machine Learning Algorithms for 
Classification, we started our journey with simple single-layer neural network 
structures and now we have connected multiple neurons to a powerful neural 
network architecture to solve complex problems such as handwritten digit 
recognition. We demystified the popular backpropagation algorithm, which is one of 
the building blocks of many neural network models that are used in deep learning. 
After learning about the backpropagation algorithm, we were able to update the 
weights of such a complex neural network. We also added useful modifications such 
as mini-batch learning and an adaptive learning rate that allows us to train a neural 
network more efficiently.
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Parallelizing Neural Network 
Training with Theano

In the previous chapter, we went over a lot of mathematical concepts to understand 
how feedforward artificial neural networks and multilayer perceptrons in particular 
work. First and foremost, having a good understanding of the mathematical 
underpinnings of machine learning algorithms is very important, since it helps 
us to use those powerful algorithms most effectively and correctly. Throughout 
the previous chapters, you dedicated a lot of time to learning the best practices of 
machine learning, and you even practiced implementing algorithms yourself from 
scratch. In this chapter, you can lean back a little bit and rest on your laurels, I want 
you to enjoy this exciting journey through one of the most powerful libraries that 
is used by machine learning researchers to experiment with deep neural networks 
and train them very efficiently. Most of modern machine learning research utilizes 
computers with powerful Graphics Processing Units (GPUs). If you are interested 
in diving into deep learning, which is currently the hottest topic in machine learning 
research, this chapter is definitely for you. However, do not worry if you do not have 
access to GPUs; in this chapter, the use of GPUs will be optional, not required.

Before we get started, let me give you a brief overview of the topics that we will 
cover in this chapter:

•	 Writing optimized machine learning code with Theano
•	 Choosing activation functions for artificial neural networks
•	 Using the Keras deep learning library for fast and easy experimentation
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Building, compiling, and running 
expressions with Theano
In this section, we will explore the powerful Theano tool, which has been 
designed to train machine learning models most effectively using Python. The 
Theano development started back in 2008 in the LISA lab (short for Laboratoire 
d'Informatique des Systèmes Adaptatifs (http://lisa.iro.umontreal.ca)) lead 
by Yoshua Bengio.

Before we discuss what Theano really is and what it can do for us to speed up our 
machine learning tasks, let's discuss some of the challenges when we are running 
expensive calculations on our hardware. Luckily, the performance of computer 
processors keeps on improving constantly over the years, which allows us to train 
more powerful and complex learning systems to improve the predictive performance 
of our machine learning models. Even the cheapest desktop computer hardware 
that is available nowadays comes with processing units that have multiple cores. 
In the previous chapters, we saw that many functions in scikit-learn allow us to 
spread the computations over multiple processing units. However, by default, 
Python is limited to execution on one core, due to the Global Interpreter Lock (GIL). 
However, although we take advantage of its multiprocessing library to distribute 
computations over multiple cores, we have to consider that even advanced desktop 
hardware rarely comes with more than 8 or 16 such cores.

If we think back of the previous chapter where we implemented a very simple 
multilayer perceptron with only one hidden layer consisting of 50 units, we already 
had to optimize approximately 1000 weights to learn a model for a very simple 
image classification task. The images in MNIST are rather small (28 x 28 pixels), 
and we can only imagine the explosion in the number of parameters if we want to 
add additional hidden layers or work with images that have higher pixel densities. 
Such a task would quickly become unfeasible for a single processing unit. Now, the 
question is how can we tackle such problems more effectively? The obvious solution 
to this problem is to use GPUs. GPUs are real power horses. You can think of a 
graphics card as a small computer cluster inside your machine. Another advantage is 
that modern GPUs are relatively cheap compared to the state-of-the-art CPUs, as we 
can see in the following overview:

http://lisa.iro.umontreal.ca
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Sources for this can be found on the following websites:

•	 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-
ti/specifications

•	 http://ark.intel.com/products/82930/Intel-Core-i7-5960X-
Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz

(date: August 20, 2015)

At 70 percent of the price of a modern CPU, we can get a GPU that has 450 times 
more cores, and is capable of around 15 times more floating-point calculations per 
second. So, what is holding us back from utilizing GPUs for our machine learning 
tasks? The challenge is that writing code to target GPUs is not as trivial as executing 
Python code in our interpreter. There are special packages such as CUDA and 
OpenCL that allow us to target the GPU. However, writing code in CUDA or 
OpenCL is probably not the most convenient environment for implementing  
and running machine learning algorithms. The good news is that this is what  
Theano was developed for!

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980-ti/specifications
http://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz
http://ark.intel.com/products/82930/Intel-Core-i7-5960X-Processor-Extreme-Edition-20M-Cache-up-to-3_50-GHz
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What is Theano?
What exactly is Theano—a programming language, a compiler, or a Python 
library? It turns out that it fits all these descriptions. Theano has been developed to 
implement, compile, and evaluate mathematical expressions very efficiently with 
a strong focus on multidimensional arrays (tensors). It comes with an option to 
run code on CPU(s). However, its real power comes from utilizing GPUs to take 
advantage of the large memory bandwidths and great capabilities for floating point 
math. Using Theano, we can easily run code in parallel over shared memory as well. 
In 2010, the developers of Theano reported an 1.8x faster performance than NumPy 
when the code was run on the CPU, and if Theano targeted the GPU, it was even 11x 
faster than NumPy (J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. 
Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU Math 
Compiler in Python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.). Now, keep 
in mind that this benchmark is from 2010, and Theano has improved significantly 
over the years, and so have the capabilities of modern graphics cards.

So, how does Theano relate to NumPy? Theano is built on top of NumPy and it has 
a very similar syntax, which makes the usage very convenient for people who are 
already familiar with the latter. To be fair, Theano is not just "NumPy on steroids" 
as many people would describe it, but it also shares some similarities with SymPy 
(http://www.sympy.org), a Python package for symbolic computations (or symbolic 
algebra). As we saw in previous chapters, in NumPy, we describe what our variables 
are, and how we want to combine them; then, the code is executed line by line. In 
Theano, however, we write down the problem first and the description of how  
we want to analyze it. Then, Theano optimizes and compiles code for us using  
C/C++, or CUDA/OpenCL if we want to run it on the GPU. In order to generate the 
optimized code for us, Theano needs to know the scope of our problem; think of it 
as a tree of operations (or a graph of symbolic expressions). Note that Theano is still 
under active development, and many new features are added and improvements are 
made on a regular basis. In this chapter, we will explore the basic concepts behind 
Theano and learn how to use it for machine learning tasks. Since Theano is a large 
library with many advanced features, it would be impossible to cover all of them in 
this book. However, I will provide useful links to the excellent online documentation 
(http://deeplearning.net/software/theano/) if you want to learn more about 
this library.

http://www.sympy.org
http://deeplearning.net/software/theano/
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First steps with Theano
In this section, we will take our first steps with Theano. Depending on how your 
system is set up, you typically can just use the pip installer and install Theano from 
PyPI by executing the following from your command-line terminal:

pip install Theano

If you should experience problems with the installation procedure, I recommend you 
to read more about system and platform-specific recommendations that are provided 
at http://deeplearning.net/software/theano/install.html. Note that all 
the code in this chapter can be run on your CPU; using the GPU is entirely optional 
but recommended if you fully want to enjoy the benefits of Theano. If you have a 
graphics card that supports either CUDA or OpenCL, please refer to the up-to-date 
tutorial at http://deeplearning.net/software/theano/tutorial/using_gpu.
html#using-gpu to set it up appropriately.

At its core, Theano is built around so-called tensors to evaluate symbolic 
mathematical expressions. Tensors can be understood as a generalization of scalars, 
vectors, matrices, and so on. More concretely, a scalar can be defined as a rank-0 
tensor, a vector as a rank-1 tensor, a matrix as rank-2 tensor, and matrices stacked in 
a third dimension as rank-3 tensors. As a warm-up exercise, we will start with the 
use of simple scalars from the Theano tensor module to compute a net input z  of a 
sample point x  in a one dimensional dataset with weight 1w  and bias 0w :

1 1 0z x w w= × +

The code is as follows:

>>> import theano
>>> from theano import tensor as T

# initialize
>>> x1 = T.scalar()
>>> w1 = T.scalar()
>>> w0 = T.scalar()
>>> z1 = w1 * x1 + w0

# compile
>>> net_input = theano.function(inputs=[w1, x1, w0], 
...                             outputs=z1)

# execute
>>> print('Net input: %.2f' % net_input(2.0, 1.0, 0.5))
Net input: 2.50

http://deeplearning.net/software/theano/install.html
http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
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This was pretty straightforward, right? If we write code in Theano, we just have to 
follow three simple steps: define the symbols (Variable objects), compile the code, 
and execute it. In the initialization step, we defined three symbols, x1, w1, and w0, to 
compute z1. Then, we compiled a function net_input to compute the net input z1.

However, there is one particular detail that deserves special attention if we write 
Theano code: the type of our variables (dtype). Consider it as a blessing or burden, 
but in Theano we need to choose whether we want to use 64 or 32 bit integers or 
floats, which greatly affects the performance of the code. Let's discuss those variable 
types in more detail in the next section.

Configuring Theano
Nowadays, no matter whether we run Mac OS X, Linux, or Microsoft Windows,  
we mainly use software and applications using 64-bit memory addresses. However, 
if we want to accelerate the evaluation of mathematical expressions on GPUs, we 
still often rely on the older 32-bit memory addresses. Currently, this is the only 
supported computing architecture in Theano. In this section, we will see how  
to configure Theano appropriately. If you are interested in more details about  
the Theano configuration, please refer to the online documentation at  
http://deeplearning.net/software/theano/library/config.html.

When we are implementing machine learning algorithms, we are mostly working 
with floating point numbers. By default, both NumPy and Theano use the double-
precision floating-point format (float64). However, it would be really useful to 
toggle back and forth float64 (CPU), and float32 (GPU) when we are developing 
Theano code for prototyping on CPU and execution on GPU. For example, to access 
the default settings for Theano's float variables, we can execute the following code in 
our Python interpreter:

>>> print(theano.config.floatX)
float64

If you have not modified any settings after the installation of Theano, the floating 
point default should be float64. However, we can simply change it to float32 in 
our current Python session via the following code:

>>> theano.config.floatX = 'float32'

Note that although the current GPU utilization in Theano requires float32 types, 
we can use both float64 and float32 on our CPUs. Thus, if you want to change the 
default settings globally, you can change the settings in your THEANO_FLAGS variable 
via the command-line (Bash) terminal:

export THEANO_FLAGS=floatX=float32 

http://deeplearning.net/software/theano/library/config.html
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Alternatively, you can apply these settings only to a particular Python script,  
by running it as follows:

THEANO_FLAGS=floatX=float32 python your_script.py

So far, we discussed how to set the default floating-point types to get the best bang 
for the buck on our GPU using Theano. Next, let's discuss the options to toggle 
between CPU and GPU execution. If we execute the following code, we can check 
whether we are using CPU or GPU:

>>> print(theano.config.device)
cpu

My personal recommendation is to use cpu as default, which makes prototyping  
and code debugging easier. For example, you can run Theano code on your CPU  
by executing it as a script, as from your command-line terminal:

THEANO_FLAGS=device=cpu,floatX=float64 python your_script.py

However, once we have implemented the code and want to run it most efficiently 
utilizing our GPU hardware, we can then run it via the following code without 
making additional modifications to our original code:

THEANO_FLAGS=device=gpu,floatX=float32 python your_script.py

It may also be convenient to create a .theanorc file in your home directory to  
make these configurations permanent. For example, to always use float32 and the 
GPU, you can create such a .theanorc file including these settings. The command is 
as follows:

echo -e "\n[global]\nfloatX=float32\ndevice=gpu\n" >> ~/.theanorc

If you are not operating on a MacOS X or Linux terminal, you can create a .theanorc 
file manually using your favorite text editor and add the following contents:

[global]
floatX=float32
device=gpu

Now that we know how to configure Theano appropriately with respect to our 
available hardware, we can discuss how to use more complex array structures in  
the next section.
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Working with array structures
In this section, we will discuss how to use array structures in Theano using its 
tensor module. By executing the following code, we will create a simple 2 x 3 
matrix, and calculate the column sums using Theano's optimized tensor expressions:

>>> import numpy as np

# initialize
# if you are running Theano on 64 bit mode,
# you need to use dmatrix instead of fmatrix
>>> x = T.fmatrix(name='x')
>>> x_sum = T.sum(x, axis=0)

# compile
>>> calc_sum = theano.function(inputs=[x], outputs=x_sum)

# execute (Python list)
>>> ary = [[1, 2, 3], [1, 2, 3]]
>>> print('Column sum:', calc_sum(ary))
Column sum: [ 2.  4.  6.]

# execute (NumPy array)
>>> ary = np.array([[1, 2, 3], [1, 2, 3]], 
...                dtype=theano.config.floatX)
>>> print('Column sum:', calc_sum(ary))
Column sum: [ 2.  4.  6.]

As we saw earlier, there are just three basic steps that we have to follow when we 
are using Theano: defining the variable, compiling the code, and executing it. The 
preceding example shows that Theano can work with both Python and NumPy 
types: list and numpy.ndarray.

Note that we used the optional name argument (here, x) when we created 
the fmatrix TensorVariable, which can be helpful to debug our code 
or print the Theano graph. For example, if we'd print the fmatrix 
symbol x without giving it a name, the print function would return its 
TensorType:

>>> print(x)
<TensorType(float32, matrix)>

However, if the TensorVariable was initialized with a name  
argument x as in our preceding example, it would be returned by  
the print function:

>>> print(x)
x

The TensorType can be accessed via the type method:
>>> print(x.type())
<TensorType(float32, matrix)>
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Theano also has a very smart memory management system that reuses memory 
to make it fast. More concretely, Theano spreads memory space across multiple 
devices, CPUs and GPUs; to track changes in the memory space, it aliases the 
respective buffers. Next, we will take a look at the shared variable, which allows us 
to spread large objects (arrays) and grants multiple functions read and write access, 
so that we can also perform updates on those objects after compilation. A detailed 
description of the memory handling in Theano is beyond the scope of this book. 
Thus, I encourage you to follow-up on the up-to-date information about Theano and 
memory management at http://deeplearning.net/software/theano/tutorial/
aliasing.html.

# initialize
>>> x = T.fmatrix('x')
>>> w = theano.shared(np.asarray([[0.0, 0.0, 0.0]], 
                                 dtype=theano.config.floatX))
>>> z = x.dot(w.T)
>>> update = [[w, w + 1.0]]

# compile
>>> net_input = theano.function(inputs=[x], 
...                             updates=update, 
...                             outputs=z)

# execute
>>> data = np.array([[1, 2, 3]], 
...                 dtype=theano.config.floatX)
>>> for i in range(5):
...     print('z%d:' % i, net_input(data))
z0: [[ 0.]]
z1: [[ 6.]]
z2: [[ 12.]]
z3: [[ 18.]]
z4: [[ 24.]]

As you can see, sharing memory via Theano is really easy: In the preceding example, 
we defined an update variable where we declared that we want to update an array w 
by a value 1.0 after each iteration in the for loop. After we defined which object we 
want to update and how, we passed this information to the update parameter of the 
theano.function compiler.

http://deeplearning.net/software/theano/tutorial/aliasing.html
http://deeplearning.net/software/theano/tutorial/aliasing.html
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Another neat trick in Theano is to use the givens variable to insert values into 
the graph before compiling it. Using this approach, we can reduce the number of 
transfers from RAM over CPUs to GPUs to speed up learning algorithms that use 
shared variables. If we use the inputs parameter in theano.function, data is 
transferred from the CPU to the GPU multiple times, for example, if we iterate over a 
dataset multiple times (epochs) during gradient descent. Using givens, we can keep 
the dataset on the GPU if it fits into its memory (for example, if we are learning with 
mini-batches). The code is as follows:

# initialize
>>> data = np.array([[1, 2, 3]], 
...                 dtype=theano.config.floatX)
>>> x = T.fmatrix('x')
>>> w = theano.shared(np.asarray([[0.0, 0.0, 0.0]], 
...                              dtype=theano.config.floatX))
>>> z = x.dot(w.T)
>>> update = [[w, w + 1.0]]

# compile
>>> net_input = theano.function(inputs=[], 
...                             updates=update, 
...                             givens={x: data},
...                             outputs=z)

# execute
>>> for i in range(5):
...     print('z:', net_input())
z0: [[ 0.]]
z1: [[ 6.]]
z2: [[ 12.]]
z3: [[ 18.]]
z4: [[ 24.]]

Looking at the preceding code example, we also see that the givens attribute  
is a Python dictionary that maps a variable name to the actual Python object.  
Here, we set this name when we defined the fmatrix.
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Wrapping things up – a linear regression 
example
Now that we familiarized ourselves with Theano, let's take a look at a really practical 
example and implement Ordinary Least Squares (OLS) regression. For a quick 
refresher on regression analysis, please refer to Chapter 10, Predicting Continuous 
Target Variables with Regression Analysis.

Let's start by creating a small one-dimensional toy dataset with ten training samples:

>>> X_train = np.asarray([[0.0], [1.0], 
...                       [2.0], [3.0], 
...                       [4.0], [5.0], 
...                       [6.0], [7.0], 
...                       [8.0], [9.0]], 
...                      dtype=theano.config.floatX)
>>> y_train = np.asarray([1.0, 1.3, 
...                       3.1, 2.0, 
...                       5.0, 6.3, 
...                       6.6, 7.4, 
...                       8.0, 9.0], 
...                      dtype=theano.config.floatX)

Note that we are using theano.config.floatX when we construct the NumPy 
arrays, so we can optionally toggle back and forth between CPU and GPU  
if we want.

Next, let's implement a training function to learn the weights of the linear regression 
model, using the sum of squared errors cost function. Note that 0w  is the bias unit  
(the y axis intercept at 0x = ). The code is as follows:

import theano
from theano import tensor as T
import numpy as np

def train_linreg(X_train, y_train, eta, epochs):

    costs = []
    # Initialize arrays
    eta0 = T.fscalar('eta0')
    y = T.fvector(name='y') 
    X = T.fmatrix(name='X')   
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    w = theano.shared(np.zeros(
                        shape=(X_train.shape[1] + 1),
                        dtype=theano.config.floatX),
                      name='w')
    
    # calculate cost
    net_input = T.dot(X, w[1:]) + w[0]
    errors = y - net_input
    cost = T.sum(T.pow(errors, 2)) 

    # perform gradient update
    gradient = T.grad(cost, wrt=w)
    update = [(w, w - eta0 * gradient)]

    # compile model
    train = theano.function(inputs=[eta0],
                            outputs=cost,
                            updates=update,
                            givens={X: X_train,
                                    y: y_train,})      
    
    for _ in range(epochs):
        costs.append(train(eta))
    
    return costs, w

A really nice feature in Theano is the grad function that we used in the preceding 
code example. The grad function automatically computes the derivative of an 
expression with respect to its parameters that we passed to the function as the  
wrt argument.

After we implemented the training function, let's train our linear regression model 
and take a look at the values of the Sum of Squared Errors (SSE) cost function to 
check if it converged:

>>> import matplotlib.pyplot as plt
>>> costs, w = train_linreg(X_train, y_train, eta=0.001, epochs=10)
>>> plt.plot(range(1, len(costs)+1), costs)
>>> plt.tight_layout()
>>> plt.xlabel('Epoch')
>>> plt.ylabel('Cost')
>>> plt.show()
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As we can see in the following plot, the learning algorithm already converged after 
the fifth epoch:

So far so good; by looking at the cost function, it seems that we built a working 
regression model from this particular dataset. Now, let's compile a new function  
to make predictions based on the input features:

def predict_linreg(X, w):
    Xt = T.matrix(name='X')
    net_input = T.dot(Xt, w[1:]) + w[0]
    predict = theano.function(inputs=[Xt], 
                              givens={w: w}, 
                              outputs=net_input)
    return predict(X)

Implementing a predict function was pretty straightforward following the three-
step procedure of Theano: define, compile, and execute. Next, let's plot the linear 
regression fit on the training data:

>>> plt.scatter(X_train, 
...             y_train, 
...             marker='s', 
...             s=50)
>>> plt.plot(range(X_train.shape[0]), 
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...          predict_linreg(X_train, w), 

...          color='gray', 

...          marker='o', 

...          markersize=4, 

...          linewidth=3)
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.show()

As we can see in the resulting plot, our model fits the data points appropriately:

Implementing a simple regression model was a good exercise to become familiar 
with the Theano API. However, our ultimate goal is to play out the advantages of 
Theano, that is, implementing powerful artificial neural networks. We should now be 
equipped with all the tools we would need to implement the multilayer perceptron 
from Chapter 12, Training Artificial Neural Networks for Image Recognition, in Theano. 
However, this would be rather boring, right? Thus, we will take a look at one of my 
favorite deep learning libraries built on top of Theano to make the experimentation 
with neural networks as convenient as possible. However, before we introduce the 
Keras library, let's first discuss the different choices of activation functions in neural 
networks in the next section.
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Choosing activation functions for 
feedforward neural networks
For simplicity, we have only discussed the sigmoid activation function in context 
of multilayer feedforward neural networks so far; we used it in the hidden layer as 
well as the output layer in the multilayer perceptron implementation in Chapter 12, 
Training Artificial Neural Networks for Image Recognition. Although we referred to this 
activation function as sigmoid function—as it is commonly called in literature—the 
more precise definition would be logistic function or negative log-likelihood function. In 
the following subsections, you will learn more about alternative sigmoidal functions 
that are useful for implementing multilayer neural networks.

Technically, we could use any function as activation function in multilayer  
neural networks as long as it is differentiable. We could even use linear activation 
functions such as in Adaline (Chapter 2, Training Machine Learning Algorithms 
for Classification). However, in practice, it would not be very useful to use linear 
activation functions for both hidden and output layers, since we want to introduce 
nonlinearity in a typical artificial neural network to be able to tackle complex 
problem tasks. The sum of linear functions yields a linear function after all.

The logistic activation function that we used in the previous chapter probably 
mimics the concept of a neuron in a brain most closely: we can think of it as 
probability of whether a neuron fires or not. However, logistic activation functions 
can be problematic if we have highly negative inputs, since the output of the sigmoid 
function would be close to zero in this case. If the sigmoid function returns outputs 
that are close to zero, the neural network would learn very slowly and it becomes 
more likely that it gets trapped in local minima during training. This is why people 
often prefer a hyperbolic tangent as activation function in hidden layers. Before we 
discuss what a hyperbolic tangent looks like, let's briefly recapitulate some of the 
basics of the logistic function and look at a generalization that makes it more useful 
for multi-class classification tasks.
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Logistic function recap
As we mentioned it in the introduction to this section, the logistic function, often 
just called the sigmoid function, is in fact a special case of a sigmoid function. 
We recall from the section on logistic regression in Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn, that we can use the logistic function to model 
the probability that sample x  belongs to the positive class (class 1) in a binary 
classification task:
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+

Here, the scalar variable z  is defined as the net input:
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Note that 0w  is the bias unit (y-axis intercept, 0 1x = ). To provide a more concrete 
example, let's assume a model for a two-dimensional data point x and a model with 
the following weight coefficients assigned to the vector w :

>>> X = np.array([[1, 1.4, 1.5]])
>>> w = np.array([0.0, 0.2, 0.4])

>>> def net_input(X, w):
...     z = X.dot(w)
...     return z

>>> def logistic(z):
...     return 1.0 / (1.0 + np.exp(-z))

>>> def logistic_activation(X, w):
...     z = net_input(X, w)
...     return logistic(z)

>>> print('P(y=1|x) = %.3f' 
...       % logistic_activation(X, w)[0])
P(y=1|x) = 0.707
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If we calculate the net input and use it to activate a logistic neuron with those 
particular feature values and weight coefficients, we get back a value of 0.707,  
which we can interpret as a 70.7 percent probability that this particular sample x  
belongs to the positive class. In Chapter 12, Training Artificial Neural Networks for  
Image Recognition, we used the one-hot encoding technique to compute the values  
in the output layer consisting of multiple logistic activation units. However, as 
we will demonstrate with the following code example, an output layer consisting 
of multiple logistic activation units does not produce meaningful, interpretable 
probability values:

# W : array, shape = [n_output_units, n_hidden_units+1]
#          Weight matrix for hidden layer -> output layer.
# note that first column (A[:][0] = 1) are the bias units
>>> W = np.array([[1.1, 1.2, 1.3, 0.5],
...               [0.1, 0.2, 0.4, 0.1],
...               [0.2, 0.5, 2.1, 1.9]])

# A : array, shape = [n_hidden+1, n_samples]
#          Activation of hidden layer.
# note that first element (A[0][0] = 1) is the bias unit
>>> A = np.array([[1.0], 
...               [0.1], 
...               [0.3], 
...               [0.7]])

# Z : array, shape = [n_output_units, n_samples]
#          Net input of the output layer.
>>> Z = W.dot(A) 
>>> y_probas = logistic(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [[ 0.87653295]
 [ 0.57688526]
 [ 0.90114393]]

As we can see in the output, the probability that the particular sample belongs to the 
first class is almost 88 percent, the probability that the particular sample belongs to 
the second class is almost 58 percent, and the probability that the particular sample 
belongs to the third class is 90 percent, respectively. This is clearly confusing, since 
we all know that a percentage should intuitively be expressed as a fraction of 100. 
However, this is in fact not a big concern if we only use our model to predict the 
class labels, not the class membership probabilities.

>>> y_class = np.argmax(Z, axis=0)
>>> print('predicted class label: %d' % y_class[0])
predicted class label: 2
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However, in certain contexts, it can be useful to return meaningful class probabilities 
for multi-class predictions. In the next section, we will take a look at a generalization 
of the logistic function, the softmax function, which can help us with this task.

Estimating probabilities in multi-class 
classification via the softmax function
The softmax function is a generalization of the logistic function that allows us 
to compute meaningful class-probabilities in multi-class settings (multinomial 
logistic regression). In softmax, the probability of a particular sample with net 
input z  belongs to the i th class can be computed with a normalization term in the 
denominator that is the sum of all M  linear functions:
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To see softmax in action, let's code it up in Python:

>>> def softmax(z): 
...     return np.exp(z) / np.sum(np.exp(z))

>>> def softmax_activation(X, w):
...     z = net_input(X, w)
...     return softmax(z)

>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [[ 0.40386493]
 [ 0.07756222]
 [ 0.51857284]]
>>> y_probas.sum()
1.0
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As we can see, the predicted class probabilities now sum up to one, as we would 
expect. It is also notable that the probability for the second class is close to zero, since 
there is a large gap between 1z  and ( )max z . However, note that the predicted class 
label is the same as in the logistic function. Intuitively, it may help to think of the 
softmax function as a normalized logistic function that is useful to obtain meaningful 
class-membership predictions in multi-class settings.

>>> y_class = np.argmax(Z, axis=0)
>>> print('predicted class label: 
...        %d' % y_class[0])
predicted class label: 2

Broadening the output spectrum by using a 
hyperbolic tangent
Another sigmoid function that is often used in the hidden layers of artificial neural 
networks is the hyperbolic tangent (tanh), which can be interpreted as a rescaled 
version of the logistic function.
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The advantage of the hyperbolic tangent over the logistic function is that it has a 
broader output spectrum and ranges the open interval (-1, 1), which can improve the 
convergence of the back propagation algorithm (C. M. Bishop. Neural networks for 
pattern recognition. Oxford university press, 1995, pp. 500-501). In contrast, the logistic 
function returns an output signal that ranges the open interval (0, 1). For an intuitive 
comparison of the logistic function and the hyperbolic tangent, let's plot the two 
sigmoid functions:

>>> import matplotlib.pyplot as plt

>>> def tanh(z):
...     e_p = np.exp(z) 
...     e_m = np.exp(-z)
...     return (e_p - e_m) / (e_p + e_m)  

>>> z = np.arange(-5, 5, 0.005)
>>> log_act = logistic(z)
>>> tanh_act = tanh(z)

>>> plt.ylim([-1.5, 1.5])
>>> plt.xlabel('net input $z$')
>>> plt.ylabel('activation $\phi(z)$')
>>> plt.axhline(1, color='black', linestyle='--')
>>> plt.axhline(0.5, color='black', linestyle='--')
>>> plt.axhline(0, color='black', linestyle='--')
>>> plt.axhline(-1, color='black', linestyle='--')

>>> plt.plot(z, tanh_act, 
...          linewidth=2, 
...          color='black', 
...          label='tanh')
>>> plt.plot(z, log_act, 
...          linewidth=2, 
...          color='lightgreen', 
...          label='logistic')

>>> plt.legend(loc='lower right')
>>> plt.tight_layout()
>>> plt.show()
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As we can see, the shapes of the two sigmoidal curves look very similar; however, 
the tanh function has 2x larger output space than the logistic function:

Note that we implemented the logistic and tanh functions verbosely for the 
purpose of illustration. In practice, we can use NumPy's tanh function to achieve  
the same results:

>>>  tanh_act = np.tanh(z)

In addition, the logistic function is available in SciPy's special module:

>>> from scipy.special import expit
>>> log_act = expit(z)
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Now that we know more about the different activation functions that are commonly 
used in artificial neural networks, let's conclude this section with an overview of the 
different activation functions that we encountered in this book.

Training neural networks efficiently using 
Keras
In this section, we will take a look at Keras, one of the most recently developed 
libraries to facilitate neural network training. The development on Keras started in 
the early months of 2015; as of today, it has evolved into one of the most popular 
and widely used libraries that are built on top of Theano, and allows us to utilize our 
GPU to accelerate neural network training. One of its prominent features is that it's 
a very intuitive API, which allows us to implement neural networks in only a few 
lines of code. Once you have Theano installed, you can install Keras from PyPI by 
executing the following command from your terminal command line:

pip install Keras
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For more information about Keras, please visit the official website at  
http://keras.io.

To see what neural network training via Keras looks like, let's implement  
a multilayer perceptron to classify the handwritten digits from the MNIST  
dataset, which we introduced in the previous chapter. The MNIST dataset  
can be downloaded from http://yann.lecun.com/exdb/mnist/ in four  
parts as listed here:

•	 train-images-idx3-ubyte.gz: These are training set images  
(9912422 bytes)

•	 train-labels-idx1-ubyte.gz: These are training set labels (28881 bytes)
•	 t10k-images-idx3-ubyte.gz: These are test set images (1648877 bytes)
•	 t10k-labels-idx1-ubyte.gz: These are test set labels (4542 bytes)

After downloading and unzipping the archives, we place the files into a directory 
mnist in our current working directory, so that we can load the training as well as  
the test dataset using the following function:

import os
import struct
import numpy as np
 
def load_mnist(path, kind='train'):
    """Load MNIST data from `path`"""
    labels_path = os.path.join(path, 
                               '%s-labels-idx1-ubyte' 
                                % kind)
    images_path = os.path.join(path, 
                               '%s-images-idx3-ubyte' 
                               % kind)
        
    with open(labels_path, 'rb') as lbpath:
        magic, n = struct.unpack('>II', 
                                 lbpath.read(8))
        labels = np.fromfile(lbpath, 
                             dtype=np.uint8)

    with open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack(">IIII", 
                                               imgpath.read(16))
        images = np.fromfile(imgpath, 
                             dtype=np.uint8).reshape(len(labels), 784)
 

http://keras.io
http://yann.lecun.com/exdb/mnist/
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    return images, labels
X_train, y_train = load_mnist('mnist', kind='train')
print('Rows: %d, columns: %d' % (X_train.shape[0], X_train.shape[1]))
Rows: 60000, columns: 784
X_test, y_test = load_mnist('mnist', kind='t10k')
print('Rows: %d, columns: %d' % (X_test.shape[0], X_test.shape[1]))
Rows: 10000, columns: 784

On the following pages, we will walk through the code examples for using Keras 
step by step, which you can directly execute from your Python interpreter. However, 
if you are interested in training the neural network on your GPU, you can either put 
it into a Python script, or download the respective code from the Packt Publishing 
website. In order to run the Python script on your GPU, execute the following 
command from the directory where the mnist_keras_mlp.py file is located:

    THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python mnist_
keras_mlp.py

To continue with the preparation of the training data, let's cast the MNIST image 
array into 32-bit format:

>>> import theano 
>>> theano.config.floatX = 'float32'
>>> X_train = X_train.astype(theano.config.floatX) 
>>> X_test = X_test.astype(theano.config.floatX)

Next, we need to convert the class labels (integers 0-9) into the one-hot format. 
Fortunately, Keras provides a convenient tool for this:

>>> from keras.utils import np_utils
>>> print('First 3 labels: ', y_train[:3])
First 3 labels:  [5 0 4]
>>> y_train_ohe = np_utils.to_categorical(y_train) 
>>> print('\nFirst 3 labels (one-hot):\n', y_train_ohe[:3])
First 3 labels (one-hot):
 [[ 0.  0.  0.  0.  0.  1.  0.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.]]
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Now, we can get to the interesting part and implement a neural network. Here, we 
will use the same architecture as in Chapter 12, Training Artificial Neural Networks for 
Image Recognition. However, we will replace the logistic units in the hidden layer 
with hyperbolic tangent activation functions, replace the logistic function in the 
output layer with softmax, and add an additional hidden layer. Keras makes these 
tasks very simple, as you can see in the following code implementation:

>>> from keras.models import Sequential
>>> from keras.layers.core import Dense
>>> from keras.optimizers import SGD

>>> np.random.seed(1) 

>>> model = Sequential()
>>> model.add(Dense(input_dim=X_train.shape[1], 
...                 output_dim=50, 
...                 init='uniform', 
...                 activation='tanh'))

>>> model.add(Dense(input_dim=50, 
...                 output_dim=50, 
...                 init='uniform', 
...                 activation='tanh'))

>>> model.add(Dense(input_dim=50, 
...                 output_dim=y_train_ohe.shape[1], 
...                 init='uniform', 
...                 activation='softmax'))

>>> sgd = SGD(lr=0.001, decay=1e-7, momentum=.9)
>>> model.compile(loss='categorical_crossentropy', optimizer=sgd)

First, we initialize a new model using the Sequential class to implement a 
feedforward neural network. Then, we can add as many layers to it as we like. 
However, since the first layer that we add is the input layer, we have to make sure 
that the input_dim attribute matches the number of features (columns) in the 
training set (here, 768). Also, we have to make sure that the number of output units 
(output_dim) and input units (input_dim) of two consecutive layers match. In the 
preceding example, we added two hidden layers with 50 hidden units plus 1 bias 
unit each. Note that bias units are initialized to 0 in fully connected networks in 
Keras. This is in contrast to the MLP implementation in Chapter 12, Training Artificial 
Neural Networks for Image Recognition, where we initialized the bias units to 1, which 
is a more common (not necessarily better) convention. 



Parallelizing Neural Network Training with Theano

[ 414 ]

Finally, the number of units in the output layer should be equal to the number of 
unique class labels—the number of columns in the one-hot encoded class label 
array. Before we can compile our model, we also have to define an optimizer. In the 
preceding example, we chose a stochastic gradient descent optimization, which we 
are already familiar with, from previous chapters. Furthermore, we can set values 
for the weight decay constant and momentum learning to adjust the learning rate 
at each epoch as discussed in Chapter 12, Training Artificial Neural Networks for Image 
Recognition. Lastly, we set the cost (or loss) function to categorical_crossentropy. 
The (binary) cross-entropy is just the technical term for the cost function in logistic 
regression, and the categorical cross-entropy is its generalization for multi-class 
predictions via softmax. After compiling the model, we can now train it by calling 
the fit method. Here, we are using mini-batch stochastic gradient with a batch size 
of 300 training samples per batch. We train the MLP over 50 epochs, and we can 
follow the optimization of the cost function during training by setting verbose=1. 
The validation_split parameter is especially handy, since it will reserve 10 
percent of the training data (here, 6,000 samples) for validation after each epoch,  
so that we can check if the model is overfitting during training.

>>> model.fit(X_train, 
...           y_train_ohe, 
...           nb_epoch=50, 
...           batch_size=300, 
...           verbose=1, 
...           validation_split=0.1, 
...           show_accuracy=True)
Train on 54000 samples, validate on 6000 samples
Epoch 0
54000/54000 [==============================] - 1s - loss: 2.2290 - 
acc: 0.3592 - val_loss: 2.1094 - val_acc: 0.5342
Epoch 1
54000/54000 [==============================] - 1s - loss: 1.8850 - 
acc: 0.5279 - val_loss: 1.6098 - val_acc: 0.5617
Epoch 2
54000/54000 [==============================] - 1s - loss: 1.3903 - 
acc: 0.5884 - val_loss: 1.1666 - val_acc: 0.6707
Epoch 3
54000/54000 [==============================] - 1s - loss: 1.0592 - 
acc: 0.6936 - val_loss: 0.8961 - val_acc: 0.7615
[…]
Epoch 49
54000/54000 [==============================] - 1s - loss: 0.1907 - 
acc: 0.9432 - val_loss: 0.1749 - val_acc: 0.9482
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Printing the value of the cost function is extremely useful during training, since 
we can quickly spot whether the cost is decreasing during training and stop the 
algorithm earlier if otherwise to tune the hyperparameter values.

To predict the class labels, we can then use the predict_classes method to return 
the class labels directly as integers:

>>> y_train_pred = model.predict_classes(X_train, verbose=0)
>>> print('First 3 predictions: ', y_train_pred[:3])
>>> First 3 predictions:  [5 0 4]

Finally, let's print the model accuracy on training and test sets:

>>> train_acc = np.sum(
...       y_train == y_train_pred, axis=0) / X_train.shape[0]
>>> print('Training accuracy: %.2f%%' % (train_acc * 100))
Training accuracy: 94.51%

>>> y_test_pred = model.predict_classes(X_test, verbose=0)
>>> test_acc = np.sum(y_test == y_test_pred,
...                   axis=0) / X_test.shape[0]
print('Test accuracy: %.2f%%' % (test_acc * 100))
Test accuracy: 94.39%

Note that this is just a very simple neural network without optimized tuning 
parameters. If you are interested in playing more with Keras, please feel free  
to further tweak the learning rate, momentum, weight decay, and number of  
hidden units.

Although Keras is a great library for implementing and 
experimenting with neural networks, there are many other 
Theano wrapper libraries that are worth mentioning. A prominent 
example is Pylearn2 (http://deeplearning.net/software/
pylearn2/), which has been developed in the LISA lab in Montreal. 
Also, Lasagne (https://github.com/Lasagne/Lasagne) may 
be of interest to you if you prefer a more minimalistic but extensible 
library, that offers more control over the underlying Theano code.

http://deeplearning.net/software/pylearn2/
http://deeplearning.net/software/pylearn2/
https://github.com/Lasagne/Lasagne
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Summary
I hope you enjoyed this last chapter of an exciting tour of machine learning. 
Throughout this book, we covered all of the essential topics that this field has to 
offer, and you should now be well equipped to put those techniques into action to 
solve real-world problems.

We started our journey with a brief overview of the different types of learning  
tasks: supervised learning, reinforcement learning, and unsupervised learning.  
We discussed several different learning algorithms that can be used for classification, 
starting with simple single-layer neural networks in Chapter 2, Training Machine 
Learning Algorithms for Classification. Then, we discussed more advanced classification 
algorithms in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, and 
you learned about the most important aspects of a machine learning pipeline in 
Chapter 4, Building Good Training Sets – Data Preprocessing and Chapter 5, Compressing 
Data via Dimensionality Reduction. Remember that even the most advanced algorithm 
is limited by the information in the training data that it gets to learn from. In  
Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning,  
you learned about the best practices to build and evaluate predictive models,  
which is another important aspect in machine learning applications. If one single 
learning algorithm does not achieve the performance we desire, it can sometimes  
be helpful to create an ensemble of experts to make a prediction. We discussed this  
in Chapter 7, Combining Different Models for Ensemble Learning. In Chapter 8, Applying 
Machine Learning to Sentiment Analysis, we applied machine learning to analyze 
the probably most interesting form of data in the modern age that is dominated by 
social media platforms on the Internet: text documents. However, machine learning 
techniques are not limited to offline data analysis, and in Chapter 9, Embedding a 
Machine Learning Model into a Web Application, we saw how to embed a machine 
learning model into a web application to share it with the outside world. For the 
most part, our focus was on algorithms for classification, probably the most popular 
application of machine learning. However, this is not where it ends! In Chapter 10, 
Predicting Continuous Target Variables with Regression Analysis, we explored several 
algorithms for regression analysis to predict continuous-valued output values. 
Another exciting subfield of machine learning is clustering analysis, which can help 
us to find hidden structures in data even if our training data does not come with the  
right answers to learn from. We discussed this in Chapter 11, Working with Unlabeled 
Data – Clustering Analysis.
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In the last two chapters of this book, we caught a glimpse of the most beautiful 
and most exciting algorithms in the whole machine learning field: artificial neural 
networks. Although deep learning really is beyond the scope of this book, I hope I 
could at least kindle your interest to follow the most recent advancement in this field. 
If you are considering a career as a machine learning researcher, or even if you just 
want to keep up to date with the current advancement in this field, I can recommend 
you to follow the works of the leading experts in this field, such as Geoff Hinton 
(http://www.cs.toronto.edu/~hinton/), Andrew Ng (http://www.andrewng.
org), Yann LeCun (http://yann.lecun.com), Juergen Schmidhuber (http://
people.idsia.ch/~juergen/), and Yoshua Bengio (http://www.iro.umontreal.
ca/~bengioy), just to name a few. Also, please do not hesitate to join the scikit-learn, 
Theano, and Keras mailing lists to participate in interesting discussions around these 
libraries, and machine learning in general. I am looking forward to meeting you 
there! You are always welcome to contact me if you have any questions about this 
book or need some general tips about machine learning.

I hope this journey through the different aspects of machine learning was really 
worthwhile, and you learned many new and useful skills to advance your career  
and apply them to real-world problem solving.

http://www.cs.toronto.edu/~hinton/
http://www.andrewng.org
http://www.andrewng.org
http://yann.lecun.com
http://people.idsia.ch/~juergen/
http://people.idsia.ch/~juergen/
http://www.iro.umontreal.ca/~bengioy
http://www.iro.umontreal.ca/~bengioy
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Thinking in Machine Learning
Machine learning systems have a profound and exciting ability to provide important 
insights to an amazing variety of applications; from groundbreaking and life-saving 
medical research, to discovering fundamental physical aspects of our universe. From 
providing us with better, cleaner food, to web analytics and economic modeling. 
In fact, there are hardly any areas of our lives that have not been touched by this 
technology in some way. With an expanding Internet of Things, there is a staggering 
amount of data being generated, and it is clear that intelligent systems are changing 
societies in quite dramatic ways. With open source tools, such as those provided by 
Python and its libraries, and the increasing open source knowledge base represented 
by the Web, it is relatively easy and cheap to learn and apply this technology in new 
and exciting ways. In this chapter, we will cover the following topics:

•	 Human interface
•	 Design principles
•	 Models
•	 Unified modelling language
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The human interface
For those of you old enough, or unfortunate enough, to have used early versions of 
the Microsoft office suite, you will probably remember the Mr Clippy office assistant. 
This feature, first introduced in Office 97, popped up uninvited from the bottom 
right-hand side of your computer screen every time you typed the word 'Dear' at 
the beginning of a document, with the prompt "it looks like you are writing a letter, 
would you like help with that?".

Mr Clippy, turned on by default in early versions of Office, was almost universally 
derided by users of the software and could go down in history as one of machine 
learning's first big fails.

So, why was the cheery Mr Clippy so hated? Clearly the folks at Microsoft, at the 
forefront of consumer software development, were not stupid, and the idea that 
an automated assistant could help with day to day office tasks is not necessarily a 
bad idea. Indeed, later incarnations of automated assistants, the best ones at least, 
operate seamlessly in the background and provide a demonstrable increase in work 
efficiency. Consider predictive text. There are many examples, some very funny, 
of where predictive text has gone spectacularly wrong, but in the majority of cases 
where it doesn't fail, it goes unnoticed. It just becomes part of our normal work flow.

At this point, we need a distinction between error and failure. Mr Clippy failed 
because it was obtrusive and poorly designed, not necessarily because it was in error; 
that is, it could make the right suggestion, but chances are you already know that 
you are writing a letter. Predictive text has a high error rate, that is, it often gets the 
prediction wrong, but it does not fail largely because of the way it is designed to fail: 
unobtrusively.

The design of any system that has a tightly coupled human interface, to use systems 
engineering speak, is difficult. Human behavior, like the natural world in general, 
is not something we can always predict. Expression recognition systems, natural 
language processing, and gesture recognition technology, amongst other things, 
all open up new ways of human-machine interaction, and this has important 
applications for the machine learning specialist.

Whenever we are designing a system that requires human input, we need to 
anticipate the possible ways, not just the intended ways, a human will interact with 
the system. In essence, what we are trying to do with these systems is to instil in 
them some understanding of the broad panorama of human experience.
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In the first years of the web, search engines used a simple system based on the 
number of times search terms appeared in articles. Web developers soon began 
gaming the system by increasing the number of key search terms. Clearly, this 
would lead to a keyword arms race and result in a very boring web. The page rank 
system measuring the number of quality inbound links was designed to provide 
a more accurate search result. Now, of course, modern search engines use more 
sophisticated and secret algorithms.

What is also important for ML designers is the ever increasing amount of data that 
is being generated. This presents several challenges, most notably its sheer vastness. 
However, the power of algorithms in extracting knowledge and insights that 
would not have been possible with smaller data sets is massive. So, many human 
interactions are now digitized, and we are only just beginning to understand and 
explore the many ways in which this data can be used.

As a curious example, consider the study The expression of emotion in 20th century books 
(Acerbi et al, 2013). Though strictly more of a data analysis study, rather than machine 
learning, it is illustrative for several reasons. Its purpose was to chart the emotional 
content, in terms of a mood score, of text extracted from books of the 20th century. 
With access to a large volume of digitized text through the project Gutenberg digital 
library, WordNet (http://wordnet.princeton.edu/wordnet/), and Google's Ngram 
database (books.google.com/ngrams), the authors of this study were able to map 
cultural change over the 20th century as reflected in the literature of the time. They did 
this by mapping trends in the usage of the mood words.

For this study, the authors labeled each word (a 1gram) and associated it with a mood 
score and the year it was published. We can see that emotion words, such as joy, 
sadness, fear, and so forth, can be scored according to the positive or negative mood 
they evoke. The mood score was obtained from WordNet (wordnet.princeton.
edu). WordNet assigns an affect score to each mood word. Finally, the authors 
simply counted the occurrences of each mood word:

1

1 n
i

i the

cM
n C=

= ∑
 

M
z

M

MM µ
σ
−

=

http://wordnet.princeton.edu/wordnet/
books.google.com/ngrams
wordnet.princeton.edu
wordnet.princeton.edu


Thinking in Machine Learning

[ 424 ]

Here, ci is the count of a particular mood word, n is the total count of mood words 
(not all words, just words with a mood score), and Cthe is the count of the word the in  
the text. This normalizes the sum to take into account that some years more books 
were written (or digitized). Also, since many later books tend to contain more 
technical language, the word the was used to normalize rather than get the total word 
count. This gives a more accurate representation of emotion over a long time period 
in prose text. Finally, the score is normalized according to a normal distribution, Mz, 
by subtracting the mean and dividing by the standard deviation.

This figure is taken from The expression of Emotions in 20th Century Books, (Alberto 
Acerbi, Vasileios Lampos, Phillip Garnett, R. Alexander Bentley) PLOS.

Here we can see one of the graphs generated by this study. It shows the joy-sadness 
score for books written in this period, and clearly shows a negative trend associated 
with the period of World War II.

This study is interesting for several reasons. Firstly, it is an example of data-driven  
science, where previously considered soft sciences, such as sociology and 
anthropology, are given a solid empirical footing. Despite some pretty impressive 
results, this study was relatively easy to implement. This is mainly because most of 
the hard work had already been done by WordNet and Google. This highlights how 
using data resources that are freely available on the Internet, and software tools such 
as the Python's data and machine learning packages, anyone with the data skills and 
motivation can build on this work.
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Design principles
An analogy is often made between systems design and designing other things such as 
a house. To a certain extent, this analogy holds true. We are attempting to place design 
components into a structure that meets a specification. The analogy breaks down when 
we consider their respective operating environments. It is generally assumed in the 
design of a house that the landscape, once suitably formed, will not change.

Software environments are slightly different. Systems are interactive and dynamic. 
Any system that we design will be nested inside other systems, either electronic, 
physical, or human. In the same way different layers in computer networks 
(application layer, transport layer, physical layer, and so on) nest different sets of 
meanings and function, so to do activities performed at different levels of a project.

As the designer of these systems, we must also have a strong awareness of the 
setting, that is, the domain in which we work. This knowledge gives us clues to 
patterns in our data and helps us give context to our work.

Machine learning projects can be divided into five distinct activities, shown as follows:

•	 Defining the object and specification
•	 Preparing and exploring the data
•	 Model building
•	 Implementation
•	 Testing
•	 Deployment

The designer is mainly concerned with the first three. However, they often play, and 
in many projects must play, a major role in other activities. It should also be said 
that a project's timeline is not necessarily a linear sequence of these activities. The 
important point is that they are distinct activities. They may occur in parallel to each 
other, and in other ways interact with each other, but they generally involve different 
types of tasks that can be separated in terms of human and other resources, the stage 
of the project, and externalities. Also, we need to consider that different activities 
involve distinct operational modes. Consider the different ways in which your brain 
works when you are sketching out an idea, as compared to when you are working on 
a specific analytical task, say a piece of code.
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Often, the hardest question is where to begin. We can start drilling into the different 
elements of a problem, with an idea of a feature set and perhaps an idea of the model 
or models we might use. This may lead to a defined object and specification, or we 
may have to do some preliminary research such as checking possible data sets and 
sources, available technologies, or talking to other engineers, technicians, and users of 
the system. We need to explore the operating environment and the various constraints; 
is it part of a web application, or is it a laboratory research tool for scientists?

In the early stages of design, our work flow will flip between working on the different 
elements. For instance, we start with a general problem—perhaps having an idea 
of the task, or tasks, necessary to solve it—then we divide it into what we think are 
the key features, try it out on a few models with a toy dataset, go back to refine the 
feature set, adjust our model, precisely define tasks, and refine the model. When we 
feel our system is robust enough, we can test it out on some real data. Of course, then 
we may need to go back and change our feature set.

Selecting and optimizing features is often a major activity (really, a task in itself) for 
the machine learning designer. We cannot really decide what features we need until 
we have adequately described the task, and of course, both the task and features are 
constrained by the types of feasible models we can build.

Types of questions
As designers, we are asked to solve a problem. We are given some data and an 
expected output. The first step is to frame the problem in a way that a machine can 
understand it, and in a way that carries meaning for a human. The following six 
broad approaches are what we can take to precisely define our  
machine learning problem:

•	 Exploratory: Here, we analyze data, looking for patterns such as a trend or 
relationship between variables. Exploration will often lead to a hypothesis 
such as linking diet with disease, or crime rate with urban dwellings.

•	 Descriptive: Here, we try to summarize specific features of our data. For 
instance, the average life expectancy, average temperature, or the number  
of left-handed people in a population.

•	  Inferential: An inferential question is one that attempts to support a 
hypothesis, for instance, proving (or disproving) a general link between  
life expectancy and income by using different data sets.

•	 Predictive: Here, we are trying to anticipate future behavior. For instance, 
predicting life expectancy by analyzing income.
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•	 Casual: This is an attempt to find out what causes something. Does low 
income cause a lower life expectancy?

•	 Mechanistic: This tries to answer questions such as "what are the 
mechanisms that link income with life expectancy?"

Most machine learning problems involve several of these types of questions during 
development. For instance, we may first explore the data looking for patterns or 
trends, and then we may describe certain key features of our data. This may enable us 
to make a prediction, and find a cause or a mechanism behind a particular problem.

Are you asking the right question?
The question must be plausible and meaningful in its subject area. This domain 
knowledge enables you to understand the things that are important in your data  
and to see where a certain pattern or correlation has meaning.

The question should be as specific as possible, while still giving a meaningful 
answer. It is common for it to begin as a generalized statement, such as "I wonder 
if wealthy means healthy". So, you do some further research and find you can get 
statistics for wealth by geographic region, say from the tax office. We can measure 
health through its inverse, that is, illness, say by hospital admissions, and we can 
test our initial proposition, "wealthy means healthy", by tying illness to geographic 
region. We can see that a more specific question relies on several, perhaps 
questionable, assumptions.

We should also consider that our results may be confounded by the fact that poorer 
people may not have healthcare insurance, so are less likely to go to a hospital 
despite illness. There is an interaction between what we want to find out and what 
we are trying to measure. This interaction perhaps hides a true rate of illness. All is 
not lost, however. Because we know about these things, then perhaps we can account 
for them in our model.

We can make things a lot easier by learning as much as we can about the domain we 
are working in.

You could possibly save yourself a lot of time by checking whether the question you 
are asking, or part of it, has already been answered, or if there are data sets available 
that may shed some light on that topic. Often, you have to approach a problem from 
several different angles at once. Do as much preparatory research as you can. It is 
quite likely that other designers have done work that could shed light on your own.
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Tasks
A task is a specific activity conducted over a period of time. We have to distinguish 
between the human tasks (planning, designing, and implementing) to the machine 
tasks (classification, clustering, regression, and so on). Also consider when there 
is overlap between human and machine, for example, as in selecting features for a 
model. Our true goal in machine learning is to transform as many of these tasks as 
we can from human tasks to machine tasks.

It is not always easy to match a real world problem to a specific task. Many real 
world problems may seem to be conceptually linked but require a very different 
solution. Alternatively, problems that appear completely different may require 
similar methods. Unfortunately, there is no simple lookup table to match a particular 
task to a problem. A lot depends on the setting and domain. A similar problem in 
one domain may be unsolvable in another, perhaps because of lack of data. There 
are, however, a small number of tasks that are applied to a large number of methods 
to solve many of the most common problem types. In other words, in the space 
of all possible programming tasks, there is a subset of tasks that are useful to our 
particular problem. Within this subset, there is a smaller subset of tasks that are  
easy and can actually be applied usefully to our problem.

Machine learning tasks occur in three broad settings:

•	 Supervised learning: The goal here is to learn a model from labeled training 
data that allows predictions to be made on unseen future data.

•	 Unsupervised learning: Here we deal with unlabeled data and our goal is to 
find hidden patterns in this data to extract meaningful information.

•	 Reinforcement learning: The goal here is to develop a system that improves 
its performance based on the interactions it has with its environment. This 
usually involves a reward signal. This is similar to supervised learning, 
except that rather than having a labeled training set, reinforcement learning 
uses a reward function to continually improve its performance.

Now, let's take a look at some of the major machine learning tasks. The following 
diagram should give you a starting point to try and decide what type of task is 
appropriate for different machine learning problems:
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Classification
Classification is probably the most common type of task; this is due in part to the 
fact that it is relatively easy, well understood, and solves a lot of common problems. 
Classification is about assigning classes to a set of instances, based on their features. 
This is a supervised learning method because it relies on a labeled training set to 
learn a set of model parameters. This model can then be applied to unlabeled data 
to make a prediction on what class each instance belongs to. There are broadly two 
types of classification tasks: binary classification and multiclass classification. A 
typical binary classification task is e-mail spam detection. Here we use the contents 
of an e-mail to determine if it belongs to one of the two classes: spam or not spam. 
An example of multiclass classification is handwriting recognition, where we try to 
predict a class, for example, the letter name. In this case, we have one class for each 
of the alpha numeric characters. Multiclass classification can sometimes be achieved 
by chaining binary classification tasks together, however, we lose information 
this way, and we are unable to define a single decision boundary. For this reason, 
multiclass classification is often treated separately from binary classification.

Regression
There are cases where what we are interested in are not discrete classes, but a 
continuous variable, for instance, a probability. These types of problems are regression 
problems. The aim of regression analysis is to understand how changes to the input, 
independent variables, effect changes to the dependent variable. The simplest 
regression problems are linear and involve fitting a straight line to a set of data in order 
to make a prediction. This is usually done by minimizing the sum of squared errors 
in each instance in the training set. Typical regression problems include estimating 
the likelihood of a disease given a range and severity of symptoms, or predicting test 
scores given past performance.
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Clustering
Clustering is the most well known unsupervised method. Here, we are concerned 
with making a measurement of similarity between instances in an unlabeled dataset. 
We often use geometric models to determine the distance between instances, 
based on their feature values. We can use an arbitrary measurement of closeness 
to determine what cluster each instance belongs to. Clustering is often used in data 
mining and exploratory data analysis. There are a large variety of methods and 
algorithms that perform this task, and some of the approaches include the distance-
based method, as well as finding a center point for each cluster, or using statistical 
techniques based on distributions.

Related to clustering is association; this is an unsupervised task to find a certain type 
of pattern in the data. This task is behind product recommender systems such as 
those provided by Amazon and other on-line shops.

Dimensionality reduction
Many data sets contain a large number of features or measurements associated 
with each instance. This can present a challenge in terms of computational power 
and memory allocation. Also many features may contain redundant information or 
information that is correlated to other features. In these cases, the performance of 
our learning model may be significantly degraded. Dimensionality reduction is most 
often used in feature prepossessing; it compresses the data into a lower dimension 
sub space while retaining useful information. Dimensionality reduction is also used 
when we want to visualize data, typically by projecting higher dimensions onto one, 
two, or three dimensions.

From these basic machine tasks, there are a number of derived tasks. In many 
applications, this may simply be applying the learning model to a prediction to 
establish a casual relationship. We must remember that explaining and predicting 
are not the same. A model can make a prediction, but unless we know explicitly how 
it made the prediction, we cannot begin to form a comprehensible explanation. An 
explanation requires human knowledge of the domain.

We can also use a prediction model to find exceptions from a general pattern. Here 
we are interested in the individual cases that deviate from the predictions. This is 
often called anomaly detection and has wide applications in things like detecting 
bank fraud, noise filtering, and even in the search for extraterrestrial life.



Chapter 1

[ 431 ]

An important and potentially useful task is subgroup discovery. Our goal here is 
not, as in clustering, to partition the entire domain, but rather to find a subgroup that 
has a substantially different distribution. In essence, subgroup discovery is trying 
to find relationships between a dependent target variables and many independent 
explaining variables. We are not trying to find a complete relationship, but rather a 
group of instances that are different in ways that are important to the domain. For 
instance, establishing a subgroup, smoker = true and family history = true for a target 
variable of heart disease = true.

Finally, we consider control type tasks. These act to optimize control settings to 
maximize a payoff, given different conditions. This can be achieved in several ways. 
We can clone expert behavior: the machine learns directly from a human and makes 
predictions on actions given different conditions. The task is to learn a prediction 
model for the expert's actions. This is similar to reinforcement learning, where the 
task is to learn a relationship between conditions and optimal action.

Errors
In machine learning systems, software flaws can have very serious real world 
consequences; what happens if your algorithm, embedded in an assembly line robot, 
classifies a human as a production component? Clearly, in critical systems, you need 
to plan for failure. There should be a robust fault and error detection procedure 
embedded in your design process and systems.

Sometimes it is necessary to design very complex systems simply for the purpose 
of debugging and checking for logic flaws. It may be necessary to generate data sets 
with specific statistical structures, or create artificial humans to mimic an interface. For 
example, developing a methodology to verify that the logic of your design is sound 
at the data, model, and task levels. Errors can be hard to track, and as a scientist, you 
must assume that there are errors and try to prove otherwise.

The idea of recognizing and gracefully catching errors is important for the software 
designer, but as machine learning systems designers, we must take it a step further. 
We need to be able to capture, in our models, the ability to learn from an error.

Consideration must be given to how we select our test set, and in particular, how 
representative it is of the rest of the dataset. For instance, if it is noisy compared to 
the training set, it will give poor results on the test set, suggesting that our model 
is overfitting, when in fact, this is not the case. To avoid this, a process of cross 
validation is used. This works by randomly dividing the data into, for example, ten 
chunks of equal size. We use nine chunks for training the model and one for testing. 
We do this 10 times, using each chunk once for testing. Finally, we take an average 
of test set performance. Cross validation is used with other supervised learning 
problems besides classification, but as you would expect, unsupervised learning 
problems need to be evaluated differently.
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With an unsupervised task we do not have a labeled training set. Evaluation can 
therefore be a little tricky since we do not know what a correct answer looks like. In 
a clustering problem, for instance, we can compare the quality of different models 
by measures such as the ratio of cluster diameter compared to the distance between 
clusters. However, in problems of any complexity, we can never tell if there is 
another model, not yet built, which is better.

Optimization
Optimization problems are ubiquitous in many different domains, such as finance, 
business, management, sciences, mathematics, and engineering. Optimization 
problems consist of the following:

•	 An objective function that we want to maximize or minimize.
•	 Decision variables, that is, a set of controllable inputs. These inputs are varied 

within the specified constraints in order to satisfy the objective function.
•	 Parameters, which are uncontrollable or fixed inputs.
•	 Constraints are relations between decision variables and parameters. They 

define what values the decision variables can have.

Most optimization problems have a single objective function. In the cases where 
we may have multiple objective functions, we often find that they conflict with 
each other, for example, reducing costs and increasing output. In practice, we try 
to reformulate multiple objectives into a single function, perhaps by creating a 
weighted combination of objective functions. In our costs and output example,  
a variable along the lines of cost per unit might work.

The decision variables are the variables we control to achieve the objective. They 
may include things such as resources or labor. The parameters of the module are 
fixed for each run of the model. We may use several cases, where we choose different 
parameters to test variations in multiple conditions.

There are literally thousands of solution algorithms to the many different types of 
optimization problems. Most of them involve first finding a feasible solution, then 
iteratively improving on it by adjusting the decision variables to hopefully find an 
optimum solution. Many optimization problems can be solved reasonably well with 
linear programming techniques. They assume that the objective function and all the 
constraints are linear with respect to the decision variables. Where these relationships 
are not linear, we often use a suitable quadratic function. If the system is non-linear, 
then the objective function may not be convex. That is, it may have more than one  
local minima, and there is no assurance that a local minima is a global minima.
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Linear programming
Why are linear models so ubiquitous? Firstly, they are relatively easy to understand 
and implement. They are based on a well founded mathematical theory that 
was developed around the mid 1700s and that later played a pivotal role in the 
development of the digital computer. Computers are uniquely tasked to implement 
linear programs because computers were conceptualized largely on the basis of the 
theory of linear programming. Linear functions are always convex, meaning they 
have only one minima. Linear Programming (LP) problems are usually solved using 
the simplex method. Suppose that we want to solve the optimization problem, we 
would use the following syntax:

max x1 + x2 with constraints: 2x1 + x2 ≤ 4 and x1 + 2x2 ≤ 3

We assume that x1 and x2 are greater than or equal to 0. The first thing we need 
to do is convert it to the standard form. This is done by ensuring the problem is a 
maximization problem, that is, we convert min z to max -z. We also need to convert 
the inequalities to equalities by adding non-negative slack variables. The example 
here is already a maximization problem, so we can leave our objective function as  
it is. We do need to change the inequalities in the constraints to equalities:

2x1 + x2 + x3 = 4 and x1 + 2x2 + x4 = 3

If we let z denote the value of the objective function, we can then write the following:

z - x1 - x2 = 0

We now have the following system of linear equations:

•	 Objective: z - x1 - x2 + 0 + 0 = 0
•	 Constraint 1: 2x1 + x2 + x3 + 0 = 4
•	 Constraint 2: x1 + 2x2 + 0 + x4 = 3

Our objective is to maximize z, remembering that all variables are non-negative.  
We can see that x1 and x2 appear in all the equations and are called non-basic. The x3 
and x4 value only appear in one equation each. They are called basic variables. We 
can find a basic solution by assigning all non-basic variables to 0. Here, this gives us 
the following:

x1 = x2 = 0; x3 = 4; x4 = 3; z = 0
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Is this an optimum solution, remembering that our goal is to maximize z? We can see 
that since z subtracts x1 and x2 in the first equation in our linear system, we are able 
to increase these variables. If the coefficients in this equation were all non-negative, 
then there would be no way to increase z. We will know that we have found an 
optimum solution when all coefficients in the objective equation are positive.

This is not the case here. So, we take one of the non-basic variables with a negative 
coefficient in the objective equation (say x1, which is called the entering variable) and 
use a technique called pivoting to turn it from a non-basic to a basic variable. At the 
same time, we will change a basic variable, called the leaving variable, into a non-
basic one. We can see that x1 appears in both the constraint equations, so which one 
do we choose to pivot? Remembering that we need to keep the coefficients positive. 
We find that by using the pivot element that yields the lowest ratio of right-hand side 
of the equations to their respective entering coefficients, we can find another basic 
solution. For x1, in this example, it gives us 4/2 for the first constraint and 3/1 for the 
second. So, we will pivot using x1 in constraint 1.

We divide constraint 1 by 2, and get the following:

x1 + ½ x2 + ½x3 = 2

We can now write this in terms of x1, and substitute it into the other equations  
to eliminate x1 from those equations. Once we have performed a bit of algebra,  
we end up with the following linear system:

z - 1/2x2 + 1/3 x3 = 2

x1 + 1/2 x2 + 1/2x3 = 2

3/2x2 – 1/2x3 + x4 = 1

We have another basic solution. But, is this the optimal solution? Since we still have 
a minus coefficient in the first equation, the answer is no. We can now go through  
the same pivot process with x2, and using the ratio rule, we find that we can pivot  
on 3/2x2 in the third equation. This gives us the following:

z + 1/3x3 + 1/3x4 = 7/3

x1 + 2/3x3 - 1/3 x4 = 5/3

x2 - 1/3x3 + 2/3 x4 = 2/3
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This gives us the solution to x3 = x4 = 0, x1 = 5/3, x2 = 2/3, and z = 7/3. This is the 
optimal solution because there are no more negatives in the first equation.

We can visualize this with the following graph. The shaded area is the region where 
we will find a feasible solution:

The two variable optimization problem

Models
Linear programming gives us a strategy for encoding real world problems into the 
language of computers. However, we must remember that our goal is not to just 
solve an instance of a problem, but to create a model that will solve unique problems 
from new data. This is the essence of learning. A learning model must have a 
mechanism to evaluate its output, and in turn, change its behavior to a state that is 
closer to a solution.

The model is essentially a hypothesis, that is, a proposed explanation of a phenomena. 
The goal is for it to apply a generalization to the problem. In the case of a supervised 
learning problem, knowledge gained from the training set is applied to the unlabeled 
test. In the case of an unsupervised learning problem, such as clustering, the system 
does not learn from a training set. It must learn from the characteristics of the data set 
itself, such as the degree of similarity. In both cases, the process is iterative. It repeats a 
well-defined set of tasks, which moves the model closer to a correct hypothesis.
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Models are the core of a machine learning system. They are what does the learning. 
There are many models, with as many variations on these models, as there are 
unique solutions. We can see that the problems machine learning systems solve 
(regression, classification, association, and so on) come up in many different settings. 
They have been used successfully in almost all branches of science, engineering, 
mathematics, commerce, and also in the social sciences; they are as diverse as the 
domains they operate in.

This diversity of models gives machine learning systems great problem solving 
power. However, it can also be a bit daunting for the designer to decide which is  
the best model, or models, are for a particular problem. To complicate things,  
there are often several models that may solve your task, or your task may need 
several models. Which is the most accurate and efficient pathway through an  
original problem is something you simply cannot know when you embark upon 
such a project.

For our purposes here, let's break this broad canvas into three overlapping, non-
mutual, and exclusive categories: geometric, probabilistic, and logical. Within these 
three models, a distinction must be made regarding how a model divides up the 
instance space. The instance space can be considered as all the possible instances of 
your data, regardless of whether each instance appears in the data. The actual data  
is a subset of the space of the instance space.

There are two approaches to dividing up this space: grouping and grading. The 
key difference between the two is that grouping models divide the instance space 
into fixed discrete units called segments. They have a finite resolution and cannot 
distinguish between classes beyond this resolution. Grading, on the other hand, 
forms a global model over the entire instance space, rather than dividing the space 
into segments. In theory, their resolution is infinite, and they can distinguish between 
instances no matter how similar they are. The distinction between grouping and 
grading is not absolute, and many models contain elements of both. For instance, 
a linear classifier is generally considered a grading model because it is based on 
a continuous function. However, there are instances that the linear model cannot 
distinguish between, for example, a line or surface parallel to the decision boundary.
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Geometric models
Geometric models use the concept of instance space. The most obvious example of 
geometric models is when all the features are numerical and can become coordinates 
in a Cartesian coordinate system. When we only have two or three features, they are 
easy to visualize. However, since many machine learning problems have hundreds 
or thousands of features, and therefore dimensions, visualizing these spaces is 
impossible. However, many of the geometric concepts, such as linear transformations, 
still apply in this hyper space. This can help us better understand our models. For 
instance, we expect that many learning algorithms will be translation invariant, that 
is, it does not matter where we place the origin in the coordinate system. Also, we can 
use the geometric concept of Euclidean distance to measure any similarities between 
instances; this gives us a method to cluster like instances and form a decision boundary 
between them.

Supposing we are using our linear classifier to classify paragraphs as either happy  
or sad and we have devised a set of tests. Each test is associated with a weight, w,  
to determine how much each test contributes to the overall result.

We can simply sum up each test and multiply it by its weight to get an overall score 
and create a decision rule that will create a boundary, for example, if the happy score 
is greater than a threshold, t.

1

n

i i
i
w x t

=

>∑

Each feature contributes independently to the overall result, hence the rules linearity. 
This contribution depends on each feature's relative weight. This weight can be 
positive or negative, and each individual feature is not subject to the threshold  
while calculating the overall score.

We can rewrite this sum with vector notation using w for a vector of weights  
(w1, w2, ..., wn) and x for a vector of test results (x1, x2, ..., xn). Also, if we make it an 
equality, we can define the decision boundary:

w . x = t

We can think of w as a vector pointing between the "centers of mass" of the positive 
(happy) examples, P, and the negative examples, N. We can calculate these centers  
of mass by averaging the following:

1P pX
n

= ∑
 and 

1N nX
n

= ∑
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Our aim now is to create a decision boundary half way between these centers of 
mass. We can see that w is proportional, or equal, to P - N, and that (P + N)/2 will be 
on the decision boundary. So, we can write the following:

( ) ( ) ( )2 2

2 2

P NP N
t P N

−+
= − =i

Fig of Decision boundary

In practice, real data is noisy and not necessarily that is easy to separate. Even when 
data is easily separable, a particular decision boundary may not have much meaning. 
Consider data that is sparse, such as in text classification where the number of words 
is large compared to the number of instances of each word. In this large area of 
empty instance space, it may be easy to find a decision boundary, but which is the 
best one? One way to choose is to use a margin to measure the distance between the 
decision boundary and its closest instance. We will explore these techniques later in 
the book.

Probabilistic models
A typical example of a probabilistic model is the Bayesian classifier, where you  
are given some training data (D), and a probability based on an initial training  
set (a particular hypothesis, h), getting the posteriori probability, P (h/D).

( ) ( ) ( )
( )

|
|

P D h P h
P h D

P D
=
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As an example, consider that we have a bag of marbles. We know that 40 percent of 
them are red and 60 percent are blue. We also know that half of the red marbles and 
all the blue marbles have flecks of white. When we reach into the bag to select  
a marble, we can feel by its texture that it has flecks. What are the chances of it  
being red?

Let P(RF) be equal to the probability that a randomly drawn marble with flecks is red:

P(FR) = the probability of a red marble with flecks is 0.5.

P(R) = the probability a marble being red is 0.4.

P(F) = the probability that a marble has flecks is 0.5 x 0.4 + 1 x 0.6= 0.8.

( ) ( ) ( )
( )

| 0.5 0.4| 0.25
0.8

P F R P R XP R F
P F

= = =

Probabilistic models allow us to explicitly calculate probabilities, rather than just 
a binary true or false. As we know, the key thing we need to do is create a model 
that maps or features a variable to a target variable. When we take a probabilistic 
approach, we assume that there is an underlying random process that creates a well 
defined but unknown probability distribution.

Consider a spam detector. Our feature variable, X, could consist of a set of words 
that indicate the email might be spam. The target variable, Y, is the instance class, 
either spam or ham. We are interested in the conditional probability of Y given X. 
For each email instance, there will be a feature vector, X, consisting of Boolean values 
representing the presence of our spam words. We are trying to find out whether Y, 
our target Boolean, is representing spam or not spam.

Now, consider that we have two words, x1 and x2, that constitute our feature vector X. 
From our training set, we can construct a table such as the following one:

P(Y = spam| x1, x2) P(Y = not spam| x1, x2)
P(Y| x1 = 0,  x2  = 0) 0.1 0.9
P(Y| x1 = 0,  x2  = 1) 0.7 0.3
P(Y| x1 = 1,  x2  = 0) 0.4 0.6
P(Y| x1 = 1,  x2  = 1) 0.8 0.2

Table 1.1
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We can see that once we begin adding more words to our feature vector, it will 
quickly grow unmanageable. With a feature vector of n size, we will have 2n cases to 
distinguish. Fortunately, there are other methods to deal with this problem, as we 
shall see later.

The probabilities in the preceding table are known as posterior probabilities. These are 
used when we have knowledge from a prior distribution. For instance, that one in ten 
emails is spam. However, consider a case where we may know that X contains x2 = 1, 
but we are unsure of the value of x1. This instance could belong in row 2, where the 
probability of it being spam is 0.7, or in row 4, where the probability is 0.8. The solution 
is to average these two rows using the probability of x1 = 1 in any instance. That is, the 
probability that a word, x1, will appear in any email, spam or not:

P(Y|x2 = 1) = P(Y|x1 = 0, x2 = 1)P(x1 = 0) + P(x1 = 1,x2 = 1)P(x1 = 1)

This is called a likelihood function. If we know, from a training set, that the probability 
that x1 is one is 0.1 then the probability that it is zero is 0.9 since these probabilities 
must sum to 1. So, we can calculate the probability that an e-mail contains the spam 
word 0.7 * 0.9 + 0.8 * 0.1 = 0.71.

This is an example of a likelihood function: P(X|Y). So, why do we want to know the 
probability of X, which is something we all ready know, conditioned on Y, which is 
something we know nothing about? A way to look at this is to consider the probability 
of any email containing a particular random paragraph, say, the 127th paragraph of 
War and Peace. Clearly, this probability is small, regardless of whether the e-mail is 
spam or not. What we are really interested in is not the magnitude of these likelihoods, 
but rather their ratio. How much more likely is an email containing a particular 
combination of words to be spam or not spam? These are sometimes called generative 
models because we can sample across all the variables involved.

We can use Bayes' rule to transform between prior distributions and a likelihood 
function:

( ) ( ) ( )
( )

P XY P Y
P YX

P X
=
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P(Y) is the prior probability, that is, how likely each class is, before having observed 
X. Similarly, P(X) is the probability without taking into account Y. If we have only 
two classes, we can work with ratios. For instance, if we want to know how much  
the data favors each class, we can use the following:

( )
( )

( )
( )

( )
( )

P Y spam X P X Y spam P Y spam
P Y ham X P X Y ham P Y ham

= = =
=

= = =

If the odds are less than one, we assume that the class in the denominator is the most 
likely. If it is greater than one, then the class in the enumerator is the most likely. If 
we use the data from Table 1.1, we calculate the following posterior odds:

( )
( )

1 2

1 2

0, 0 0.1 0.11
0, 0 0.9

P Y spam x x
P Y ham x x

= = =
= =

= = =

( )
( )

1 2

1 2

1, 1 0.8 0.4
1, 1 0.2

P Y spam x x
P Y ham x x

= = =
= =

= = =

( )
( )

1 2

1 2

0, 1 0.7 2.3
0, 1 0.3

P Y spam x x
P Y ham x x

= = =
= =

= = =

( )
( )

1 2

1 2

1, 0 0.4 0.66
1, 0 0.6

P Y spam x x
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= = =
= =

= = =

The likelihood function is important in machine learning because it creates a 
generative model. If we know the probability distribution of each word in a 
vocabulary, together with the likelihood of each one appearing in either a spam  
or not spam e-mail, we can generate a random spam e-mail according to the 
conditional probability, P(X|Y = spam).
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Logical models
Logical models are based on algorithms. They can be translated into a set of formal 
rules that can be understood by humans. For example, if both x1 and x2 are 1 then the 
email is classified as spam.

These logical rules can be organized into a tree structure. In the following figure, 
we see that the instance space is iteratively partitioned at each branch. The leaves 
consist of rectangular areas (or hyper rectangles in the case of higher dimensions) 
representing segments of the instance space. Depending on the task we are solving, 
the leaves are labeled with a class, probability, real number, and so on.

The figure feature tree

Feature trees are very useful when representing machine learning problems; even 
those that, at first sight, do not appear to have a tree structure. For instance, in the 
Bayes classifier in the previous section, we can partition our instance space into 
as many regions as there are combinations of feature values. Decision tree models 
often employ a pruning technique to delete branches that give an incorrect result. 
In Chapter 3, Turning Data into Information, we will look at a number of ways to 
represent decision trees in Python.

Note that decision rules may overlap and make 
contradictory predictions.

They are then said to be logically inconsistent. Rules can also be incomplete when 
they do not take into account all the coordinates in the feature space. There are a 
number of ways that we can address these issues, and we will look at these in detail 
later in the book.
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Since tree learning algorithms usually work in a top down manner, the first task is to 
find a good feature to split on at the top of the tree. We need to find a split that will 
result in a higher degree of purity in subsequent nodes. By purity, I mean the degree 
to which training examples all belong to the same class. As we descend down the 
tree, at each level, we find the training examples at each node increase in purity, that 
is, they increasingly become separated into their own classes until we reach the leaf 
where all examples belong to the same class.

To look at this in another way, we are interested in lowering the entropy of 
subsequent nodes in our decision tree. Entropy, a measure of disorder, is high at 
the top of the tree (the root) and is progressively lowered at each node as the data is 
divided up into its respective classes.

In more complex problems, those with larger feature sets and decision rules, finding 
the optimum splits is sometimes not possible, at least not in an acceptable amount 
of time. We are really interested in creating the shallowest tree to reach our leaves in 
the shortest path. In the time it takes to analyze, each node grows exponentially with 
each additional feature, so the optimum decision tree may take longer to find than 
actually using a sub-optimum tree to perform the task.

An important property of logical models is that they can, to some extent, provide an 
explanation for their predictions. For example, consider the predictions made by a 
decision tree. By tracing the path from leaf to root we can determine the conditions 
that resulted in the final result. This is one of the advantages of logical models: they 
can be inspected by a human to reveal more about the problem.

Features
In the same way that decisions are only as good as the information available to us 
in real life, in a machine learning task, the model is only as good as its features. 
Mathematically, features are a function that maps from the instance space to a set of 
values in a particular domain. In machine learning, most measurements we make are 
numerical, and therefore the most common feature domain is the set of real numbers. 
Other common domains include Boolean, true or false, integers (say, when we are 
counting the occurrence of a particular feature), or finite sets such as a set of colors  
or shapes.

Models are defined in terms of their features. Also, single features can be turned into 
a model, which is known as a univariate model. We can distinguish between two 
uses of features. This is related to the distinction between grouping and grading.
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Firstly, we can group our features by zooming into an area in the instance space. Let 
f be a feature counting the number of occurrences of a word, x1, in an e-mail, X. We 
can set up conditions such as the following:

Where f(X)=0, representing emails that do not contain x1 or where f(X)>0 representing 
emails that contain x1 one or more times. These conditions are called binary splits 
because they divide the instance space into two groups: those that satisfy the 
condition and those that don't. We can also split the instance space into more than 
two segments to create non-binary splits. For instance, where f(X) = 0; 0 < F(X) < 5; 
F(X) > 5, and so on.

Secondly, we can grade our features to calculate the independent contribution each 
one makes to the overall result. Recall our simple linear classifier, the decision rule  
of the following form:

1

n

i i
i
w x t

=

<∑

Since this rule is linear, each feature makes an independent contribution to the score 
of an instance. This contribution depends on wi. If it is positive, then a positive xi will 
increase the score. If wi is negative, a positive xi decreases the score. If wi is small or 
zero, then the contribution it makes to the overall result is negligible. It can be seen 
that the features make a measurable contribution to the final prediction.

These two uses of features, as splits (grouping) and predictors (grading), can be 
combined into one model. A typical example occurs when we want to approximate a 
non-linear function, say y sin π x, on the interval, -1 < x < 1. Clearly, the simple linear 
model will not work. Of course, the simple answer is to split the x axis into -1 < x 0 
and 0 <. On each of these segments, we can find a reasonable linear approximation.

Using grouping and grading
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A lot of work can be done to improve our model's performance by feature construction 
and transformation. In most machine learning problems, the features are not 
necessarily explicitly available. They need to be constructed from raw datasets and 
then transformed into something that our model can make use of. This is especially 
important in problems such as text classification. In our simple spam example, we used 
what is known as a bag of words representation because it disregards the order of the 
words. However, by doing this, we lose important information about the meaning of 
the text.

An important part of feature construction is discretization. We can sometimes extract 
more information, or information that is more relevant to our task, by dividing features 
into relevant chunks. For instance, supposing our data consists of a list of people's 
precise incomes, and we are trying to determine whether there is a relationship 
between financial income and the suburb a person lives in. Clearly, it would be 
appropriate if our feature set did not consist of precise incomes but rather ranges 
of income, although strictly speaking, we would lose information. If we choose our 
intervals appropriately, we will not lose information related to our problem, and our 
model will perform better and give us results that are easier to interpret.

This highlights the major tasks of feature selection: separating the signal from the noise.

Real world data will invariably contain a lot of information that we do not need, as 
well as just plain random noise, and separating the, perhaps small, part of the data 
that is relevant to our needs is important to the success of our model. It is of course 
important that we do not throw out information that may be important to us.

Often, our features will be non-linear, and linear regression may not give us good 
results. A trick is to transform the instance space itself. Supposing we have data such 
as what is shown in the following figure. Clearly, linear regression only gives us a 
reasonable fit, as shown in the figure on the left-hand side. However, we can improve 
this result if we square the instance space, that is, we make x = x2 and y =  y2, as shown 
in the figure on the right-hand side:

		  Variance = .92		  Variance = .97

Transforming the instance space
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We can go further and use a technique called the kernel trick. The idea is that we can 
create a higher dimensional implicit feature space. Pairs of data points are mapped 
from the raw dataset to this higher dimensional space via a specified function, 
sometimes called a similarity function.

For instance, let x1 = (x1, y1) and x2 = (x2, y2).

We create a 2D to 3D mapping, shown as follows:

( ) ( )2 2, , , 2x y x y xy�

The points in the 3D space corresponding to the 2D points, x1 and x2, are as follows:

( )2 2
1 1 1 1 1, , 2x x y x y′ =

 and 
( )2 2

2 2 2 2 2, , 2x x y x y′ =

Now, the dot product of these two vectors is:

( ) ( )22 2 2 2
1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 22x x x x y y x y x y x x y y x x′ ′ = + + = + =i i

We can see that by squaring the dot product in the original 2D space, we obtain the 
dot product in the 3D space without actually creating the feature vectors themselves. 
Here, we have defined the kernel k(x1,x2) = (x1,x2)2. Calculating the dot product in a 
higher dimensional space is often computationally cheaper, and as we will see, this 
technique is used quite widely in machine learning from Support Vector Machines 
(SVM), Principle Component Analysis (PCA), and correlation analysis.

The basic linear classifier we looked at earlier defines a decision boundary, w • x = t.  
The vector, w, is equal to the difference between the mean of the positive example 
and the mean of the negative examples, p-n. Suppose that we have the points n= (0,0) 
and p = (0,1). Let's assume that we have obtained a positive mean from two training 
examples, p1 = (-1,1) and p2 = (1,1). Therefore, we have the following:

 
( )1 2

1
2

p p p= +

We can now write the decision boundary as the following:

1 2
1 1
2 2
p x p x n x t+ − =i i i
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Using the kernel trick, we can obtain the following decision boundary:

( ) ( ) ( )1 2
1 1, , ,
2 2
k p x k p x k n x t+ − =

With the kernel we defined earlier, we get the following:

( ) ( ) ( ) ( ) ( )2 2
1 2, , , , 0k p x x y k p x x y and k n x= − + = + =

We can now derive the decision boundary:

( ) ( )2 2 2 21 1
2 2

x y x y x y− + + + = +

This is simply a circle around the origin with a radius √t.

Using the kernel trick, on the other hand, each new instance is evaluated against 
each training example. In return for this more complex calculation we obtain a more 
flexible non-linear decision boundary.

A very interesting and important aspect is the interaction between features. One 
form of interaction is correlation. For example, words in a blog post, where we 
might perhaps expect there to be a positive correlation between the words winter 
and cold, and a negative correlation between winter and hot. What this means for 
your model depends on your task. If you are doing a sentiment analysis, you might 
want to consider reducing the weights of each word if they appear together since the 
addition of another correlated word would be expected to contribute marginally less 
weight to the overall result than if that word appeared by itself.

Also with regards to sentiment analysis, we often need to transform certain features 
to capture their meaning. For example, the phrase not happy contains a word that 
would, if we just used 1-grams, contribute to a positive sentiment score even though 
its sentiment is clearly negative. A solution (apart from using 2-grams, which may 
unnecessarily complicate the model) would be to recognize when these two words 
appear in a sequence and create a new feature, not_happy, with an associated 
sentiment score.
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Selecting and optimizing features is time well spent. It can be a significant part of 
the design of learning systems. This iterative nature of design flips between two 
phases. Firstly, understanding the properties of the phenomena you are studying, 
and secondly, testing your ideas with experimentation. This experimentation gives 
us deeper insight into the phenomena, allowing us to optimize our features and gain 
deeper understanding, among other things, until we are satisfied about our model 
giving us an accurate reflection of reality.

Unified modeling language
Machine learning systems can be complex. It is often difficult for a human brain to 
understand all the interactions of a complete system. We need some way to abstract 
the system into a set of discrete functional components. This enables us to visualize 
our system's structure and behavior with diagrams and plots.

UML is a formalism that allows us to visualize and communicate our design ideas 
in a precise way. We implement our systems in code, and the underlying principles 
are expressed in mathematics, but there is a third aspect, which is, in a sense, 
perpendicular to these, and that is a visual representation of our system. The process 
of drawing out your design helps conceptualize it from a different perspective. 
Perhaps we could consider trying to triangulate a solution.

Conceptual models are theoretical devices for describing elements of a problem. 
They can help us clarify assumptions, prove certain properties, and give us a 
fundamental understanding of the structures and interactions of systems.

UML arose out of the need to both simplify this complexity and allow our designs to 
be communicated clearly and unambiguously to team members, clients, and other 
stakeholders. A model is a simplified representation of a real system. Here, we use 
the word model in a more general sense, as compared to its more precise machine 
learning definition. UML can be used to model almost any system imaginable. The 
core idea is to strip away any irrelevant and potentially confusing elements with a 
clear representation of core attributes and functions.
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Class diagrams
The class diagram models the static structure of a system. Classes represent abstract 
entities with common characteristics. They are useful because they express, and 
enforce, an object-oriented approach to our programming. We can see that by 
separating distinct objects in our code, we can work more clearly on each object 
as a self-contained unit. We can define it with a specific set of characteristics, and 
define how it relates to other objects. This enables complex programs to be broken 
down into separate functional components. It also allows us to subclass objects via 
inheritance. This is extremely useful and mirrors how we model the particularly 
hierarchical aspect of our world (that is, programmer is a subclass of human, and 
Python programmer is a subclass of programmer). Object programming can speed up 
the overall development time because it allows the reuse of components. There is a 
rich class library of developed components to draw upon. Also, the code produced 
tends to be easier to maintain because we can replace or change classes and are able 
to (usually) understand how this will affect the overall system.

In truth, object coding does tend to result in a larger code base, and this can mean 
that programs will be slower to run. In the end, it is not an "either, or" situation. For 
many simple tasks, you probably do not want to spend the time creating a class if 
you may never use it again. In general, if you find yourself typing the same bits of 
code, or creating the same type of data structures, it is probably a good idea to create 
a class. The big advantage of object programming is that we can encapsulate the data 
and the functions that operate on the data in one object. These software objects can 
correspond in quite a direct way with real world objects.

Designing object-oriented systems may take some time, initially. However, while 
establishing a workable class structure and class definitions, the coding tasks 
required to implement the class becomes clearer. Creating a class structure can 
be a very useful way to begin modeling a system. When we define a class, we are 
interested in a specific set of attributes, as a subset of all possible attributes or actual 
irrelevant attributes. It should be an accurate representation of a real system, and we 
need to make the judgment as to what is relevant and what is not. This is difficult 
because real world phenomena are complex, and the information we have about 
the system is always incomplete. We can only go by what we know, so our domain 
knowledge (the understanding of the system(s) we are trying to model), whether it 
be a software, natural, or human, is critically important.
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Object diagrams
Object diagrams are a logical view of the system at runtime. They are a snapshot at 
a particular instant in time and can be understood as an instance of a class diagram. 
Many parameters and variables change value as the program is run, and the object 
diagram's function is to map these. This runtime binding is one of the key things 
object diagrams represent. By using links to tie objects together, we can model a 
particular runtime configuration. Links between objects correspond to associations 
between the objects class. So, the link is bound by the same constraints as the class 
that it enforces on its object.

The object diagram

Both, the class diagram and the object diagram, are made of the same basic elements. 
While the class diagram represents an abstract blueprint of the class. The object 
diagram represents the real state of an object at a particular point in time. A single-
object diagram cannot represent every class instance, so when drawing these diagrams, 
we must confine ourselves to the important instances and instances that cover the basic 
functionality of the system. The object diagram should clarify the association between 
objects and indicate the values of important variables.

Activity diagrams
The purpose of an activity diagram is to model the system's work flow by chaining 
together separate actions that together represent a process. They are particularly good 
at modeling sets of coordinated tasks. Activity diagrams are one of the most used in 
the UML specification because they are intuitive to understand as their formats are 
based on traditional flow chart diagrams. The main components of an activity diagram 
are actions, edges (sometimes called paths) and decisions. Actions are represented by 
rounded rectangles, edges are represented by arrows, and decisions are represented by 
a diamond. Activity diagrams usually have a start node and an end node.
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A figure of an example activity diagram

State diagrams
State diagrams are used to model systems that change behavior depending on 
what state they are in. They are represented by states and transitions. States are 
represented by rounded rectangles and transitions by arrows. Each transition has  
a trigger, and this is written along the arrow.

Many state diagrams will include an initial pseudo state and a final state. Pseudo 
states are states that control the flow of traffic. Another example is the choice pseudo 
state. This indicates that a Boolean condition determines a transition.

A state transition system consists of four elements; they are as follows:

•	 S = {s1, s2, …}: A set of states
•	 A= {a1, a2,  ...}: A set of actions
•	 E ={e1, e2, ...}: A set of events
•	 y: S(A U E)→2s: A state transition function
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The first element, S, is the set of all possible states the world can be in. Actions are 
the things an agent can do to change the world. Events can happen in the world 
and are not under the control of an agent. The state transition function, y, takes two 
things as input: a state of the world and the union of actions and events. This gives 
us all the possible states as a result of applying a particular action or event.

Consider that we have a warehouse that stocks three items. We consider the 
warehouse only stocks, at most, one of each item. We can represent the possible 
states of the warehouse by the following matrix:

0 1 0 1 0 0 1 1
0 0 1 1 1 0 0 1
0 0 0 0 1 1 1 1

S =

This can define similar binary matrices for E, representing the event sold, and A, 
which is an action order.

In this simple example, our transition function is applied to an instance (s, which is 
a column in S), which is s' = s + a - e, where s' is the system's final state, s is its initial 
state, and a and e  are an activity and an event respectively.

We can represent this with the following transition diagram:

The figure of a transition Diagram
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Summary
So far, we have introduced a broad cross-section of machine learning problems, 
techniques, and concepts. Hopefully by now, you have an idea of how to begin 
tackling a new and unique problem by breaking it up into its components. We have 
reviewed some of the essential mathematics and explored ways to visualize our 
designs. We can see that the same problem can have many different representations, 
and that each one may highlight different aspects. Before we can begin modeling, 
we need a well-defined objective, phrased as a specific, feasible, and meaningful 
question. We need to be clear how we can phrase the question in a way that a 
machine can understand.

The design process, although consisting of different and distinct activities, is not 
necessarily a linear process, but rather more of an iterative one. We cycle through 
each particular phase, proposing and testing ideas until we feel we can jump to the 
next phase. Sometimes we may jump back to a previous stage. We may sit at an 
equilibrium point, waiting for a particular event to occur; we may cycle through 
stages or go through several stages in parallel.

In the next chapter, we will begin our exploration of the practical tools that are 
available in the various Python libraries.





[ 455 ]

Tools and Techniques
Python comes equipped with a large library of packages for machine learning tasks.

The packages we will look at in this chapter are as follows:

•	 The IPython console
•	 NumPy, which is an extension that adds support for multi-dimensional 

arrays, matrices, and high-level mathematical functions
•	 SciPy, which is a library of scientific formulae, constants, and mathematical 

functions
•	 Matplotlib, which is for creating plots
•	 Scikit-learn, which is a library for machine learning tasks such as 

classification, regression, and clustering

There is only enough space to give you a flavor of these huge libraries, and an 
important skill is being able to find and understand the reference material for 
the various packages. It is impossible to present all the different functionality in 
a tutorial style documentation, and it is important to be able to find your way 
around the sometimes dense API references. A thing to remember is that the 
majority of these packages are put together by the open source community. They 
are not monolithic structures like you would expect from a commercial product, 
and therefore, understanding the various package taxonomies can be confusing. 
However, the diversity of approaches of open source software, and the fact that  
ideas are being contributed continually, give it an important advantage.
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However, the evolving quality of open source software has its down side, especially 
for ML applications. For example, there was considerable reluctance on behalf of 
the Python machine learning user community to move from Python 2 to 3. Because 
Python 3 broke backwards compatibility; importantly, in terms of its numerical 
handling, it was not a trivial process to update the relevant packages. At the time of 
writing, all of the important (well important for me!) packages, and all those used 
in this book, were working with Python 2.7 or 3x. The major distributions of Python 
have Python 3 versions with a slightly different package set.

Python for machine learning
Python is a versatile general purpose programming language. It is an interpreted 
language and can run interactively from a console. It does not require a compiler 
like C++ or Java, so the development time tends to be shorter. It is available for free 
download and can be installed on many different operating systems including UNIX, 
Windows, and Macintosh. It is especially popular for scientific and mathematical 
applications. Python is relatively easy to learn compared to languages such as C++ 
and Java, with similar tasks using fewer lines of code.

Python is not the only platform for machine learning, but it is certainly one of the 
most used. One of its major alternatives is R. Like Python, it is open source, and 
while it is popular for applied machine learning, it lacks the large development 
community of Python. R is a specialized tool for machine learning and statistical 
analysis. Python is a general-purpose, widely-used programming language that  
also has excellent libraries for machine learning applications.

Another alternative is Matlab. Unlike R and Python, it is a commercial product. 
As would be expected, it contains a polished user interface and exhaustive 
documentation. Like R, however, it lacks the versatility of Python. Python is such an 
incredibly useful language that your effort to learn it, compared to the other platforms, 
will provide far greater pay-offs. It also has excellent libraries for network, web 
development, and microcontroller programming. These applications can complement 
or enhance your work in machine learning, all without the pain of clumsy integrations 
and the learning or remembering of the specifics of different languages.

IPython console
The Ipython package has had some significant changes with the release of version 4. 
A former monolithic package structure, it has been split into sub-packages. Several 
IPython projects have split into their own separate project. Most of the repositories 
have been moved to the Jupyter project (jupyter.org).
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At the core of IPython is the IPython console: a powerful interactive interpreter 
that allows you to test your ideas in a very fast and intuitive way. Instead of having 
to create, save, and run a file every time you want to test a code snippet, you can 
simply type it into a console. A powerful feature of IPython is that it decouples the 
traditional read-evaluate-print loop that most computing platforms are based on. 
IPython puts the evaluate phase into its own process: a kernel (not to be confused 
with the kernel function used in machine learning algorithms). Importantly, more 
than one client can access the kernel. This means you can run code in a number of 
files and access them, for example, running a method from the console. Also, the 
kernel and the client do not need to be on the same machine. This has powerful 
implications for distributed and networked computing.

The IPython console adds command-line features, such as tab completion and 
%magic commands, which replicate terminal commands. If you are not using a 
distribution of Python with IPython already installed, you can start IPython by 
typing ipython into a Python command line. Typing %quickref into the IPython 
console will give you a list of commands and their function.

The IPython notebook should also be mentioned. The notebook has merged into 
another project known as Jupyter (jupyter.org). This web application is a powerful 
platform for numerical computing in over 40 languages. The notebook allows you  
to share and collaborate on live code and publish rich graphics and text.

Installing the SciPy stack
The SciPy stack consists of Python along with the most commonly used scientific, 
mathematical, and ML libraries. (visit: scipy.org). These include NumPy, 
Matplotlib, the SciPy library itself, and IPython. The packages can be installed 
individually on top of an existing Python installation, or as a complete distribution 
(distro). The easiest way to get started is using a distro, if you have not got Python 
installed on your computer. The major Python distributions are available for most 
platforms, and they contain everything you need in one package. Installing all the 
packages and their dependencies separately does take some time, but it may be an 
option if you already have a configured Python installation on your machine.

Most distributions give you all the tools you need, and many come with powerful 
developer environments. Two of the best are Anaconda (www.continuum.io/
downloads) and Canopy (http://www.enthought.com/products/canopy/). Both 
have free and commercial versions. For reference, I will be using the Anaconda 
distribution of Python.

www.continuum.io/downloads
www.continuum.io/downloads
http://www.enthought.com/products/canopy/
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Installing the major distributions is usually a pretty painless task.

Be aware that not all distributions include the same set of Python 
modules, and you may have to install modules, or reinstall the 
correct version of a module.

NumPY
We should know that there is a hierarchy of types for representing data in Python. 
At the root are immutable objects such as integers, floats, and Boolean. Built on this, 
we have sequence types. These are ordered sets of objects indexed by non-negative 
integers. They are iterative objects that include strings, lists, and tuples. Sequence 
types have a common set of operations such as returning an element (s[i]) or a slice 
(s[i:j]), and finding the length (len(s)) or the sum (sum(s)). Finally, we have mapping 
types. These are collections of objects indexed by another collection of key objects. 
Mapping objects are unordered and are indexed by numbers, strings, or other 
objects. The built-in Python mapping type is the dictionary.

NumPy builds on these data objects by providing two further objects: an 
N-dimensional array object (ndarray) and a universal function object (ufunc). The 
ufunc object provides element-by-element operations on ndarray objects, allowing 
typecasting and array broadcasting. Typecasting is the process of changing one 
data type into another, and broadcasting describes how arrays of different sizes 
are treated during arithmetic operations. There are sub-packages for linear algebra 
(linalg), random number generation (random), discrete Fourier transforms (fft), 
and unit testing (testing).

NumPy uses a dtype object to describe various aspects of the data. This includes 
types of data such as float, integer, and so on, the number of bytes in the data type 
(if the data is structured), and also, the names of the fields and the shape of any sub 
arrays. NumPy has several new data types, including the following:

•	 8, 16, 32, and 64 bit int values
•	 16, 32, and 64 bit float values
•	 64 and 128 bit complex types
•	 Ndarray structured array types
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We can convert between types using the np.cast object. This is simply a dictionary 
that is keyed according to destination cast type, and whose value is the appropriate 
function to perform the casting. Here we cast an integer to a float32:

f= np.cast['f'] (2)

NumPy arrays can be created in several ways such as converting them from other 
Python data structures, using the built-in array creation objects such as arange(), 
ones() and zeros(), or from files such as .csv or .html.

Indexing and slicingNumPy builds on the slicing and indexing techniques used in 
sequences. You should already be familiar with slicing sequences, such as lists and 
tuples, in Python using the [i:j:k] syntax, where i is the start index, j is the end, 
and k is the step. NumPy extends this concept of the selection tuple to N-dimensions.

Fire up a Python console and type the following commands:

import numpy as np

a=np.arange(60).reshape(3,4,5)

print(a)

You will observe the following:

This will print the preceding 3 by 4 by 5 array. You should know that we can access 
each item in the array using a notation such as a[2,3,4]. This returns 59. Remember 
that indexing begins at 0.

We can use the slicing technique to return a slice of the array.
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The following image shows the A[1:2:] array:

Using the ellipse (…), we can select any remaining unspecified dimensions. For 
example, a[...,1] is equivalent to a[:,:,1]:

You can also use negative numbers to count from the end of the axis:

With slicing, we are creating views; the original array remains untouched, and the 
view retains a reference to the original array. This means that when we create a slice, 
even though we assign it to a new variable, if we change the original array, these 
changes are also reflected in the new array. The following figure demonstrates this:

Here, a and b are referring to the same array. When we assign values in a, this is also 
reflected in b. To copy an array rather than simply make a reference to it, we use the 
deep copy() function from the copy package in the standard library:

import copy

c=copy.deepcopy(a)

Here, we have created a new independent array, c. Any changes made in array a will 
not be reflected in array c.
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Constructing and transforming arrays
This slicing functionality can also be used with several NumPy classes as an efficient 
means of constructing arrays. The numpy.mgrid object, for example, creates a 
meshgrid object, which provides, in certain circumstances, a more convenient 
alternative to arange(). Its primary purpose is to build a coordinate array for a 
specified N-dimensional volume. Refer to the following figure as an example:

Sometimes, we will need to manipulate our data structures in other ways. These 
include:

•	 concatenating: By using the np.r_ and np.c_ functions, we can concatenate 
along one or two axes using the slicing constructs. Here is an example:

Here we have used the complex number 5j as the step size, which is 
interpreted by Python as the number of points, inclusive, to fit between  
the specified range, which here is -1 to 1.

•	 newaxis: This object expands the dimensions of an array:

This creates an extra axis in the first dimension. The following creates the 
new axis in the second dimension:
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You can also use a Boolean operator to filter:

a[a<5]

Out[]: array([0, 1, 2, 3, 4])

•	 Find the sum of a given axis:

Here we have summed using axis 2.

Mathematical operations
As you would expect, you can perform mathematical operations such as addition, 
subtraction, multiplication, as well as the trigonometric functions on NumPy arrays. 
Arithmetic operations on different shaped arrays can be carried out by a process 
known as broadcasting. When operating on two arrays, NumPy compares their 
shapes element-wise from the trailing dimension. Two dimensions are compatible if 
they are the same size, or if one of them is 1. If these conditions are not met, then a 
ValueError exception is thrown.

This is all done in the background using the ufunc object. This object operates on 
ndarrays on a element-by-element basis. They are essentially wrappers that provide 
a consistent interface to scalar functions to allow them to work with NumPy arrays. 
There are over 60 ufunc objects covering a wide variety of operations and types. The 
ufunc objects are called automatically when you perform operations such as adding 
two arrays using the + operator.

Let's look into some additional mathematical features:

•	 Vectors: We can also create our own vectorized versions of scalar functions 
using the np.vectorize() function. It takes a Python scalar function or 
method as a parameter and returns a vectorized version of this function:
def myfunc(a,b):

def myfunc(a,b):

if a > b:

        return a-b

    else:

        return a + b

vfunc=np.vectorize(myfunc)
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We will observe the following output:

•	 Polynomial functions: The poly1d class allows us to deal with polynomial 
functions in a natural way. It accepts as a parameter an array of coefficients 
in decreasing powers. For example, the polynomial, 2x2 + 3x + 4, can be 
entered by the following:

We can see that it prints out the polynomial in a human-readable way.  
We can perform various operations on the polynomial, such as evaluating  
at a point:

•	 Find the roots:

We can use asarray(p) to give the coefficients of the polynomial an array so that it 
can be used in all functions that accept arrays.

As we will see, the packages that are built on NumPy give us a powerful and flexible 
framework for machine learning.
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Matplotlib
Matplotlib, or more importantly, its sub-package PyPlot, is an essential tool for 
visualizing two-dimensional data in Python. I will only mention it briefly here 
because its use should become apparent as we work through the examples. It is built 
to work like Matlab with command style functions. Each PyPlot function makes 
some change to a PyPlot instance. At the core of PyPlot is the plot method. The 
simplest implementation is to pass plot a list or a 1D array. If only one argument 
is passed to plot, it assumes it is a sequence of y values, and it will automatically 
generate the x values. More commonly, we pass plot two 1D arrays or lists for the 
co-ordinates x and y. The plot method can also accept an argument to indicate line 
properties such as line width, color, and style. Here is an example:

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(0., 5., 0.2)

plt.plot(x, x**4, 'r', x, x*90, 'bs', x, x**3, 'g^')

plt.show()

This code prints three lines in different styles: a red line, blue squares, and green 
triangles. Notice that we can pass more than one pair of coordinate arrays to plot 
multiple lines. For a full list of line styles, type the help(plt.plot) function.

Pyplot, like Matlab, applies plotting commands to the current axes. Multiple axes can 
be created using the subplot command. Here is an example:

x1 = np.arange(0., 5., 0.2)

x2 = np.arange(0., 5., 0.1)

plt.figure(1)

plt.subplot(211)

plt.plot(x1, x1**4, 'r', x1, x1*90, 'bs', x1, x1**3, 'g^',linewidth=2.0)

plt.subplot(212)

plt.plot(x2,np.cos(2*np.pi*x2), 'k')

plt.show()
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The output of the preceding code is as follows:

Another useful plot is the histogram. The hist() object takes an array, or a sequence 
of arrays, of input values. The second parameter is the number of bins. In this 
example, we have divided a distribution into 10 bins. The normed parameter, when 
set to 1 or true, normalizes the counts to form a probability density. Notice also that 
in this code, we have labeled the x and y axis, and displayed a title and some text at a 
location given by the coordinates:

mu, sigma = 100, 15

x = mu + sigma * np.random.randn(1000)

n, bins, patches = plt.hist(x, 10, normed=1, facecolor='g')

plt.xlabel('Frequency')

plt.ylabel('Probability')

plt.title('Histogram Example')

plt.text(40,.028, 'mean=100 std.dev.=15')

plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()
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The output for this code will look like this:

The final 2D plot we are going to look at is the scatter plot. The scatter object takes 
two sequence objects, such as arrays, of the same length and optional parameters to 
denote color and style attributes. Let's take a look at this code:

N = 100

x = np.random.rand(N)

y = np.random.rand(N)

#colors = np.random.rand(N)

colors=('r','b','g')

area = np.pi * (10 * np.random.rand(N))**2  # 0 to 10 point radiuses

plt.scatter(x, y, s=area, c=colors, alpha=0.5)

plt.show()
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We will observe the following output:

Matplotlib also has a powerful toolbox for rendering 3D plots. The following code 
demonstrations are simple examples of 3D line, scatter, and surface plots. 3D plots 
are created in a very similar way to 2D plots. Here, we get the current axis with the 
gca function and set the projection parameter to 3D. All the plotting methods work 
much like their 2D counterparts, except that they now take a third set of input values 
for the z axis:

import matplotlib as mpl

from mpl_toolkits.mplot3d import Axes3D

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

mpl.rcParams['legend.fontsize'] = 10

fig = plt.figure()

ax = fig.gca(projection='3d')

theta = np.linspace(-3 * np.pi, 6 * np.pi, 100)

z = np.linspace(-2, 2, 100)

r = z**2 + 1

x = r * np.sin(theta)

y = r * np.cos(theta)

ax.plot(x, y, z)
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theta2 = np.linspace(-3 * np.pi, 6 * np.pi, 20)

z2 = np.linspace(-2, 2, 20)

r2=z2**2 +1

x2 = r2 * np.sin(theta2)

y2 = r2 * np.cos(theta2)

ax.scatter(x2,y2,z2, c= 'r')

x3 = np.arange(-5, 5, 0.25)

y3 = np.arange(-5, 5, 0.25)

x3, y3 = np.meshgrid(x3, y3)

R = np.sqrt(x3**2 + y3**2)

z3 = np.sin(R)

surf = ax.plot_surface(x3,y3,z3, rstride=1, cstride=1, cmap=cm.Greys_r,

                       linewidth=0, antialiased=False)

ax.set_zlim(-2, 2)

plt.show()

We will observe this output:

Pandas
The Pandas library builds on NumPy by introducing several useful data structures 
and functionalities to read and process data. Pandas is a great tool for general 
data munging. It easily handles common tasks such as dealing with missing data, 
manipulating shapes and sizes, converting between data formats and structures,  
and importing data from different sources.
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The main data structures introduced by Pandas are:

•	 Series
•	 The DataFrame
•	 Panel

The DataFrame is probably the most widely used. It is a two-dimensional structure 
that is effectively a table created from either a NumPy array, lists, dicts, or series. 
You can also create a DataFrame by reading from a file.

Probably the best way to get a feel for Pandas is to go through a typical use 
case. Let's say that we are given the task of discovering how the daily maximum 
temperature has changed over time. For this example, we will be working with 
historical weather observations from the Hobart weather station in Tasmania. 
Download the following ZIP file and extract its contents into a folder called  
data in your Python working directory:

http://davejulian.net/mlbook/data

The first thing we do is create a DataFrame from it:

import pandas as pd

df=pd.read_csv('data/sampleData.csv')

Check the first few rows in this data:

df.head()

We can see that the product code and the station number are the same for each row 
and that this information is superfluous. Also, the days of accumulated maximum 
temperature are not needed for our purpose, so we will delete them as well:

del df['Bureau of Meteorology station number']

del df['Product code']

del df['Days of accumulation of maximum temperature']

Let's make our data a little easier to read by shorting the column labels:

df=df.rename(columns={'Maximum temperature (Degree C)':'maxtemp'})

We are only interested in data that is of high quality, so we include only records that 
have a Y in the quality column:

df=df[(df.Quality=='Y')]

http://davejulian.net/mlbook/data
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We can get a statistical summary of our data:

df.describe()

If we import the matplotlib.pyplot package, we can graph the data:

import matplotlib.pyplot as plt

plt.plot(df.Year, df.maxtemp)

Notice that PyPlot correctly formats the date axis and deals with the missing data by 
connecting the two known points on either side. We can convert a DataFrame into a 
NumPy array using the following:

ndarray = df.values

If the DataFrame contains a mixture of data types, then this function will convert 
them to the lowest common denominator type, which means that the one that 
accommodates all values will be chosen. For example, if the DataFrame consists  
of a mix of float16 and float32 types, then the values will be converted to float 32.
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The Pandas DataFrame is a great object for viewing and manipulating simple 
text and numerical data. However, Pandas is probably not the right tool for more 
sophisticated numerical processing such as calculating the dot product, or finding 
the solutions to linear systems. For numerical applications, we generally use the 
NumPy classes.

SciPy
SciPy (pronounced sigh pi) adds a layer to NumPy that wraps common scientific 
and statistical applications on top of the more purely mathematical constructs of 
NumPy. SciPy provides higher-level functions for manipulating and visualizing 
data, and it is especially useful when using Python interactively. SciPy is organized 
into sub-packages covering different scientific computing applications. A list of the 
packages most relevant to ML and their functions appear as follows:

Package Description
cluster This contains two sub-packages:

cluster.vq for K-means clustering and vector quantization.
cluster.hierachy for hierarchical and agglomerative clustering, 
which is useful for distance matrices, calculating statistics on 
clusters, as well as visualizing clusters with dendrograms.

constants These are physical and mathematical constants such as pi and e.
integrate These are differential equation solvers
interpolate These are interpolation functions for creating new data points within 

a range of known points.
io This refers to input and output functions for creating string, binary, 

or raw data streams, and reading and writing to and from files.
optimize This refers to optimizing and finding roots.
linalg This refers to linear algebra routines such as basic matrix 

calculations, solving linear systems, finding determinants and 
norms, and decomposition.

ndimage This is N-dimensional image processing.
odr This is orthogonal distance regression.
stats This refers to statistical distributions and functions.
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Many of the NumPy modules have the same name and similar functionality as 
those in the SciPy package. For the most part, SciPy imports its NumPy equivalent 
and extends its functionality. However, be aware that some identically named 
functions in SciPy modules may have slightly different functionality compared to 
those in NumPy. It also should be mentioned that many of the SciPy classes have 
convenience wrappers in the scikit-learn package, and it is sometimes easier to use 
those instead.

Each of these packages requires an explicit import; here is an example:

import scipy.cluster

You can get documentation from the SciPy website (scipy.org) or from the console, 
for example, help(sicpy.cluster).

As we have seen, a common task in many different ML settings is that of 
optimization. We looked at the mathematics of the simplex algorithm in the last 
chapter. Here is the implementation using SciPy. We remember simplex optimizes  
a set of linear equations. The problem we looked at was as follows:

Maximize x1 + x2 within the constraints of: 2x1 + x2 ≤ 4 and x1 + 2x2 ≤ 3

The linprog object is probably the simplest object that will solve this problem. It is  
a minimization algorithm, so we reverse the sign of our objective.

From scipy.optimize, import linprog:

objective=[-1,-1]

con1=[[2,1],[1,2]]

con2=[4,3]

res=linprog(objective,con1,con2)

print(res)

You will observe the following output:
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There is also an optimisation.minimize object that is suitable for slightly more 
complicated problems. This object takes a solver as a parameter. There are currently 
about a dozen solvers available, and if you need a more specific solver, you can 
write your own. The most commonly used, and suitable for most problems, is the 
nelder-mead solver. This particular solver uses a downhill simplex algorithm that is 
basically a heuristic search that replaces each test point with a high error with a point 
located in the centroid of the remaining points. It iterates through this process until it 
converges on a minimum.

In this example, we use the Rosenbrock function as our test problem. This is a 
non-convex function that is often used to test optimization problems. The global 
minimum of this function is on a long parabolic valley, and this makes it challenging 
for an algorithm to find the minimum in a large, relatively flat valley. We will see 
more of this function:

import numpy as np

from scipy.optimize import minimize

def rosen(x):

    return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

def nMin(funct,x0):

    return(minimize(rosen, x0, method='nelder-mead', options={'xtol':

        1e-8, 'disp': True}))

x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])

nMin(rosen,x0)

The output for the preceding code is as follows:
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The minimize function takes two mandatory parameters. These are the objective 
function and the initial value of x0. The minimize function also takes an optional 
parameter for the solver method, in this example we use the nelder-mead method. 
The options are a solver-specific set of key-value pairs, represented as a dictionary. 
Here, xtol is the relative error acceptable for convergence, and disp is set to print a 
message. Another package that is extremely useful for machine learning applications 
is scipy.linalg. This package adds the ability to perform tasks such as inverting 
matrices, calculating eigenvalues, and matrix decomposition.

Scikit-learn
This includes algorithms for the most common machine learning tasks, such as 
classification, regression, clustering, dimensionality reduction, model selection,  
and preprocessing.

Scikit-learn comes with several real-world data sets for us to practice with. Let's take 
a look at one of these—the Iris data set:

from sklearn import datasets

iris = datasets.load_iris()

iris_X = iris.data

iris_y = iris.target

iris_X.shape

(150, 4)

The data set contains 150 samples of three types of irises (Setosa, Versicolor, and 
Virginica), each with four features. We can get a description on the dataset:

iris.DESCR

We can see that the four attributes, or features, are sepal width, sepal length, petal 
length, and petal width in centimeters. Each sample is associated with one of three 
classes. Setosa, Versicolor, and Virginica. These are represented by 0, 1, and 2 
respectively.

Let's look at a simple classification problem using this data. We want to predict 
the type of iris based on its features: the length and width of its sepal and petals. 
Typically, scikit-learn uses estimators to implement a fit(X, y) method and for 
training a classifier, and a predict(X) method that if given unlabeled observations, 
X, returns the predicted labels, y. The fit() and predict() methods usually take a 
2D array-like object.
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Here, we are going to use the K Nearest Neighbors (K-NN) technique to solve this 
classification problem. The principle behind K-NN is relatively simple. We classify 
an unlabeled sample according to the classification of its nearest neighbors. Each 
data point is assigned class membership according to the majority class of a small 
number, k, of its nearest neighbors. K-NN is an example of instanced-based learning, 
where classification is not done according to an inbuilt model, but with reference to 
a labeled test set. The K-NN algorithm is known as non generalizing, since it simply 
remembers all its training data and compares it to each new sample. Despite, or 
perhaps because of, its apparent simplicity, K-NN is a very well used technique for 
solving a variety of classification and regression problems.

There are two different K-NN classifiers in Sklearn. KNeighborsClassifier requires 
the user to specify k, the number of nearest neighbors. RadiusNeighborsClassifier, 
on the other hand, implements learning based on the number of neighbors within a 
fixed radius, r, of each training point. KNeighborsClassifier is the more commonly 
used one. The optimal value for k is very much dependent on the data. In general, 
a larger k value is used with noisy data. The trade off being the classification 
boundary becomes less distinct. If the data is not uniformly sampled, then 
RadiusNeighborsClassifier may be a better choice. Since the number of neighbors  
is based on the radius, k will be different for each point. In sparser areas, k will be 
lower than in areas of high sample density:

from sklearn.neighbors import KNeighborsClassifier as knn

from sklearn import datasets

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

def knnDemo(X,y, n):

    #cresates the the classifier and fits it to the data

    res=0.05

    k1 = knn(n_neighbors=n,p=2,metric='minkowski')

    k1.fit(X,y)

    #sets up the grid

    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1

    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, res),np.arange(x2_
min, x2_max, res))
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    #makes the prediction

    Z = k1.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

    Z = Z.reshape(xx1.shape)

    #creates the color map

    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])

    cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

    #Plots the decision surface

    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap_light)

    plt.xlim(xx1.min(), xx1.max())

    plt.ylim(xx2.min(), xx2.max())

    #plots the samples

    for idx, cl in enumerate(np.unique(y)):

        plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)

    plt.show()

iris = datasets.load_iris()

X1 = iris.data[:, 0:3:2]

X2 = iris.data[:, 0:2]

X3 = iris.data[:,1:3]

y = iris.target

knnDemo(X2,y,15)

Here is the output of the preceding commands:
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Let's now look at regression problems with Sklearn. The simplest solution is to 
minimize the sum of the squared error. This is performed by the LinearRegression 
object. This object has a fit() method that takes two vectors: X, the feature vector, 
and y, the target vector:

from sklearn import linear_model

clf = linear_model.LinearRegression()

clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])

clf.coef_

array([ 0.5,  0.5])

The LinearRegression object has four optional parameters:

•	 fit_intercept: A Boolean, which if set to false, will assume that the data 
is centered, and the model will not use an intercept in its calculation. The 
default value is true.

•	 normalize: If true, X will be normalized to zero mean and unit variance 
before regression. This is sometimes useful because it can make interpreting 
the coefficients a little more explicit. The default is false.

•	 copy_X: Defaults to true. If set to false, it will allow X to be overwritten.
•	 n_jobs: Is the number of jobs to use for the computation. This defaults  

to 1. This can be used to speed up computation for large problems on 
multiple CPUs.

Its output has the following attributes:

•	 coef_: An array of the estimated coefficients for the linear regression 
problem. If y is multidimensional, that is there are multiple target variables, 
then coef_ will be a 2D array of the form (n_targets, n_features). If 
only one target variable is passed, then coef_ will be a 1D array of length 
(n_features).

•	 intercept_: This is an array of the intercept or independent terms in the 
linear model.

For the Ordinary Least Squares to work, we assume that the features are 
independent. When these terms are correlated, then the matrix, X, can approach 
singularity. This means that the estimates become highly sensitive to small changes 
in the input data. This is known as multicollinearity and results in a large variance 
and ultimately instability. We discuss this in greater detail later, but for now, let's 
look at an algorithm that, to some extent, addresses these issues.
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Ridge regression not only addresses the issue of multicollinearity, but also situations 
where the number of input variables greatly exceeds the number of samples. The 
linear_model.Ridge() object uses what is known as L2 regularization. Intuitively, 
we can understand this as adding a penalty on the extreme values of the weight 
vector. This is sometimes called shrinkage because it makes the average weights 
smaller. This tends to make the model more stable because it reduces its sensitivity  
to extreme values.

The Sklearn object, linear_model.ridge, adds a regularization parameter, alpha. 
Generally, small positive values for alpha improves the model's stability. It can 
either be a float or an array. If it is an array, it is assumed that the array corresponds 
to specific targets, and therefore, it must be the same size as the target. We can try 
this out with the following simple function:

from sklearn.linear_model import Ridge

import numpy as np

def ridgeReg(alpha):

    n_samples, n_features = 10, 5

    y = np.random.randn(n_samples)

    X = np.random.randn(n_samples, n_features)

    clf = Ridge(.001)

    res=clf.fit(X, y)

    return(res)

res= ridgeReg(0.001)

print (res.coef_)

print (res.intercept_)

Let's now look at some scikit-learn algorithms for dimensionality reduction. This 
is important for machine learning because it reduces the number of input variables 
or features that a model has to consider. This makes a model more efficient and can 
make the results easier to interpret. It can also increase a model's generalization by 
reducing overfitting.

It is important, of course, to not discard information that will reduce the accuracy 
of the model. Determining what is redundant or irrelevant is the major function of 
dimensionality reduction algorithms. There are basically two approaches: feature 
extraction and feature selection. Feature selection attempts to find a subset of the 
original feature variables. Feature extraction, on the other hand, creates new feature 
variables by combining correlated variables.
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Let's first look at probably the most common feature extraction algorithm, that is, 
Principle Component Analysis or PCA. This uses an orthogonal transformation 
to convert a set of correlated variables into a set of uncorrelated variables. The 
important information, the length of vectors, and the angle between them does 
not change. This information is defined in the inner product and is preserved in 
an orthogonal transformation. PCA constructs a feature vector in such a way that 
the first component accounts for as much of the variability in the data as possible. 
Subsequent components then account for decreasing amounts of variability. This 
means that, for many models, we can just choose the first few principle components 
until we are satisfied that they account for as much variability in our data as is 
required by the experimental specifications.

Probably the most versatile kernel function, and the one that gives good results in 
most situations, is the Radial Basis Function (RBF). The rbf kernel takes a parameter, 
gamma, which can be loosely interpreted as the inverse of the sphere of influence of 
each sample. A low value of gamma means that each sample has a large radius of 
influence on samples selected by the model. The KernalPCA fit_transform method 
takes the training vector, fits it to the model, and then transforms it into its principle 
components. Let's look at the commands:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import KernelPCA

from sklearn.datasets import make_circles

np.random.seed(0)

X, y = make_circles(n_samples=400, factor=.3, noise=.05)

kpca = KernelPCA(kernel='rbf', gamma=10)

X_kpca = kpca.fit_transform(X)

plt.figure()

plt.subplot(2, 2, 1, aspect='equal')

plt.title("Original space")

reds = y == 0

blues = y == 1

plt.plot(X[reds, 0], X[reds, 1], "ro")

plt.plot(X[blues, 0], X[blues, 1], "bo")

plt.xlabel("$x_1$")

plt.ylabel("$x_2$")

plt.subplot(2, 2, 3, aspect='equal')

plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro")



Tools and Techniques

[ 480 ]

plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo")

plt.title("Projection by KPCA")

plt.xlabel("1st principal component in space induced by $\phi$")

plt.ylabel("2nd component")

plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35)

plt.show()

#print('gamma= %0.2f' %gamma)

As we have seen, a major obstacle to the success of a supervised learning algorithm 
is the translation from training data to test data. A labeled training set may have 
distinctive characteristics that are not present in new unlabeled data. We have seen 
that we can train our model to be quite precise on training data, yet this precision 
may not be translated to our unlabeled test data. Overfitting is an important problem 
in supervised learning and there are many techniques you can use to minimize it. A 
way to evaluate the estimator performance of the model on a training set is to use 
cross validation. Let's try this out on our iris data using a support vector machine. 
The first thing that we need to do is split our data into training and test sets. The 
train_test_split method takes two data structures: the data itself and the target. 
They can be either NumPy arrays, Pandas DataFrames lists, or SciPy matrices. As 
you would expect, the target needs to be the same length as the data. The test_size 
argument can either be a float between 0 and 1, representing the proportion of data 
included in the split, or an int representing the number of test samples. Here, we 
have used a test_size object as .3, indicating that we are holding out 40% of our 
data for testing.

In this example, we use the svm.SVC class and the .score method to return the mean 
accuracy of the test data in predicting the labels:

from sklearn.cross_validation import train_test_split

from sklearn import datasets

from sklearn import svm

from sklearn import cross_validation

iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split (iris.data,  
iris.target, test_size=0.4, random_state=0)

clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)

scores=cross_validation.cross_val_score(clf, X_train, y_train, cv=5)

print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
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You will observe the following output:

Support vector machines have a penalty parameter that has to be set manually, and 
it is quite likely that we will run the SVC many times and adjust this parameter until 
we get an optimal fit. Doing this, however, leaks information from the training set to 
the test set, so we may still have the problem of over fitting. This is a problem for any 
estimator that has parameters that must be set manually, and we will explore this 
further in Chapter 4, Models – Learning from Information.

Summary
We have seen a basic kit of machine learning tools and a few indications of their 
uses on simple datasets. What you may be beginning to wonder is how these tools 
can be applied to real-world problems. There is considerable overlap between 
each of the libraries we have discussed. Many perform the same task, but add or 
perform the same function in a different way. Choosing which library to use for each 
problem is not necessarily a definitive decision. There is no best library; there is only 
the preferred library, and this varies from person to person, and of course, to the 
specifics of the application.

In the next chapter, we will look at one of the most important, and often overlooked, 
aspects of machine learning, that is, data.
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Turning Data into Information
Raw data can be in many different formats and of varying quantity and quality. 
Sometimes, we are overwhelmed with data, and sometimes we struggle to get every 
last drop of information from our data. For data to become information, it requires 
some meaningful structure. We often have to deal with incompatible formats, 
inconsistencies, errors, and missing data. It is important to be able to access different 
parts of the dataset or extract subsets of the data based on some relational criteria. 
We need to spot patterns in our data and get a feel for how the data is distributed. 
We can use many tools to find this information hidden in data from visualizations, 
running algorithms, or just looking at the data in a spreadsheet.

In this chapter, we are going to introduce the following broad topics:

•	 Big data
•	 Data properties
•	 Data sources
•	 Data processing and analysis

But first, let's take a look into the following explanations:
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What is data?
Data can be stored on a hard drive, streamed through a network, or captured live 
through sensors such as video cameras and microphones. If we are sampling from 
physical phenomena, such as a video or sound recording, the space is continuous 
and effectively infinite. Once this space is sampled, that is digitalized, a finite subset 
of this space has been created and at least some minimal structure has been imposed 
on it. The data is on a hard drive, encoded in bits, given some attributes such as a 
name, creation date, and so on. Beyond this, if the data is to be made use of in an 
application, we need to ask, "how is the data organized and what kinds of queries 
does it efficiently support?"

When faced with an unseen dataset, the first phase is exploration. Data exploration 
involves examining the components and structure of data. How many samples does 
it contain, and how many dimensions are in each sample? What are the data types 
of each dimension? We should also get a feel for the relationships between variables 
and how they are distributed. We need to check whether the data values are in line 
with what we expect. Are there are any obvious errors or gaps in the data?

Data exploration must be framed within the scope of a particular problem. Obviously, 
the first thing to find out is if it is likely that the dataset will provide useful answers. 
Is it worth our while to continue, or do we need to collect more data? Exploratory 
data analysis is not necessarily carried out with a particular hypothesis in mind, but 
perhaps with a sense of which hypotheses are likely to provide useful information.

Data is evidence that can either support or disprove a hypothesis. This evidence is 
only meaningful if it can be compared to a competing hypothesis. In any scientific 
process, we use a control. To test a hypothesis, we need to compare it to an 
equivalent system where the set of variables we are interested in remain fixed. We 
should attempt to show causality with a mechanism and explanation. We need a 
plausible reason for our observations. We should also consider that the real world is 
composed of multiple interacting components, and dealing with multivariate data 
can lead to exponentially increasing complexity.

It is with these things in mind, a sketch of the territory we are seeking to explore, that 
we approach new datasets. We have an objective, a point we hope to get to, and our 
data is a map through this unknown terrain.

Big data
The amount of data that's being created and stored on a global level is almost 
inconceivable, and it just keeps growing. Big data is a term that describes the large 
volume of data—both structured and unstructured. Let's now delve deeper into big 
data, beginning with the challenges of big data.
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Challenges of big data
Big data is characterized by three challenges. They are as follows:

•	 The volume of the data
•	 The velocity of the data
•	 The variety of the data

Data volume
The volume problem can be approached from three different directions: efficiency, 
scalability, and parallelism. Efficiency is about minimizing the time it takes for an 
algorithm to process a unit of information. A component of this is the underlying 
processing power of the hardware. The other component, and the one that we 
have more control over, is ensuring that our algorithms are not wasting precious 
processing cycles with unnecessary tasks.

Scalability is really about brute force and throwing as much hardware at a problem 
as you can. Taking into account Moore's law, which states that the trend of computer 
power doubling every two years, will continue until it reaches its limit; it is clear 
that scalability is not, by itself, going to be able to keep up with the ever-increasing 
amounts of data. Simply adding more memory and faster processors is not, in many 
cases, going to be a cost effective solution.

Parallelism is a growing area of machine learning, and it encompasses a number of 
different approaches, from harnessing the capabilities of multi-core processors, to 
large-scale distributed computing on many different platforms. Probably, the most 
common method is to simply run the same algorithm on many machines, each with 
a different set of parameters. Another method is to decompose a learning algorithm 
into an adaptive sequence of queries, and have these queries processed in parallel. 
A common implementation of this technique is known as MapReduce, or its open 
source version, Hadoop.

Data velocity
The velocity problem is often approached in terms of data producers and data 
consumers. The rate of data transfer between the two is called the velocity, and it 
can be measured in interactive response times. This is the time it takes from a query 
being made to its response being delivered. Response times are constrained by 
latencies, such as hard disk read and write times, and the time it takes to transmit 
data across a network.
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Data is being produced at ever greater rates, and this is largely driven by the rapid 
expansion of mobile networks and devices. The increasing instrumentation of daily 
life is revolutionizing the way products and services are delivered. This increasing 
flow of data has led to the idea of streaming processing. When input data is at 
a velocity that makes it impossible to store in its entirety, a level of analysis is 
necessary as the data streams, in essence, deciding what data is useful and should be 
stored, and what data can be thrown away. An extreme example is the Large Hadron 
Collider at CERN, where the vast majority of data is discarded. A sophisticated 
algorithm must scan the data as it is being generated, looking at the information 
needle in the data haystack. Another instance that processing data streams may be 
important is when an application requires an immediate response. This is becoming 
increasingly used in applications such as online gaming and stock market trading.

It is not just the velocity of incoming data that we are interested in; in many 
applications, particularly on the web, the velocity of a systems output is also 
important. Consider applications such as recommender systems that need to  
process a large amount of data and present a response in the time it takes for  
a web page to load.

Data variety
Collecting data from different sources invariably means dealing with misaligned 
data structures and incompatible formats. It also often means dealing with different 
semantics and having to understand a data system that may have been built on a 
fairly different set of logical premises. We have to remember that, very often, data 
is repurposed for an entirely different application from the one it was originally 
intended for. There is a huge variety of data formats and underlying platforms. 
Significant time can be spent converting data into one consistent format. Even when 
this is done, the data itself needs to be aligned such that each record consists of the 
same number of features and is measured in the same units.

Consider the relatively simple task of harvesting data from web pages. The data is 
already structured through the use of a mark language, typically HTML or XML,  
and this can help give us some initial structure. Yet, we just have to peruse the 
web to see that there is no standard way of presenting and tagging content in an 
information-relevant way. The aim of XML is to include content-relevant information 
in markup tags, for instance, by using tags for author or subject. However, the usage 
of such tags is far from universal and consistent. Furthermore, the web is a dynamic 
environment and many web sites go through frequent structural changes. These 
changes will often break web applications that expect a specific page structure.
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The following diagram shows two dimensions of the big data challenge. I have 
included a few examples where these domains might approximately sit in this space. 
Astronomy, for example, has very few sources. It has a relatively small number of 
telescopes and observatories. Yet the volume of data that astronomers deal with is 
huge. On the other hand, perhaps, let's compare it to something like environmental 
sciences, where the data comes from a variety of sources, such as remote sensors, 
field surveys, validated secondary materials, and so on.

Integrating different data sets can take a significant amount of development time; up 
to 90 percent in some cases. Each project's data requirements will be different, and an 
important part of the design process is positioning our data sets with regard to these 
three elements.

Data models
A fundamental question for the data scientist is how the data is stored. We can talk 
about the hardware, and in this respect, we mean nonvolatile memory such as the 
hard drive of a computer or flash disk. Another way of interpreting the question  
(a more logical way) is how is the data organized? In a personal computer, the most 
visible way that data is stored is hierarchically, in nested folders and files. Data can 
also be stored in a table format or in a spreadsheet. When we are thinking about 
structure, we are interested in categories and category types, and how they are 
related. In a table, how many columns do we need, and in a relational data base,  
how are tables linked? A data model should not try to impose a structure on the 
data, but rather find a structure that most naturally emerges from the data.
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Data models consist of three components:

•	 Structure: A table is organized into columns and rows; tree structures have 
nodes and edges, and dictionaries have the structure of key value pairs.

•	 Constraints: This defines the type of valid structures. For a table, this would 
include the fact that all rows have the same number of columns, and each 
column contains the same data type for every row. For example, a column, 
items sold, would only contain integer values. For hierarchical structures,  
a constraint would be a folder that can only have one immediate parent.

•	 Operations: This includes actions such as finding a particular value, given 
a key, or finding all rows where the items sold are greater than 100. This is 
sometimes considered separate from the data model because it is often a 
higher-level software layer. However, all three of these components are tightly 
coupled, so it makes sense to think of the operations as part of the data model.

To encapsulate raw data with a data model, we create databases. Databases solve 
some key problems:

•	 They allow us to share data: It gives multiple users access to the same data 
with varying read and write privileges.

•	 They enforce a data model: This includes not only the constraints imposed 
by the structure, say parent child relationships in a hierarchy, but also 
higher-level constraints such as only allowing one user named bob, or  
being a number between one and eight.

•	 They allow us to scale: Once the data is larger than the allocated size of  
our volatile memory, mechanisms are needed to both facilitate the transfer  
of data and also allow the efficient traversal of a large number of rows  
and columns.

•	 Databases allow flexibility: They essentially try to hide complexity and 
provide a standard way of interacting with data.

Data distributions
A key characteristic of data is its probability distribution. The most familiar 
distribution is the normal or Gaussian distribution. This distribution is found in 
many (all?) physical systems, and it underlies any random process. The normal 
function can be defined in terms of a probability density function:
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Here, δ (sigma) is the standard deviation and µ (mu) is the mean. This equation 
simply describes the relative likelihood a random variable, x, will take on a given 
value. We can interpret the standard deviation as the width of a bell curve, and 
the mean as its center. Sometimes, the term variance is used, and this is simply the 
square of the standard deviation. The standard deviation essentially measures how 
spread out the values are. As a general rule of thumb, in a normal distribution, 68% 
of the values are within 1 standard deviation of the mean, 95% of values are within  
2 standard deviations of the mean, and 99.7% are within 3 standard deviations of  
the mean.

We can get a feel for what these terms do by running the following code and calling 
the normal() function with different values for the mean and variance. In this 
example, we create the plot of a normal distribution, with a mean of 1 and a variance 
of 0.5:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.mlab as mlab

def normal(mean = 0, var = 1):

    sigma = np.sqrt(var)

    x = np.linspace(-3,3,100)

    plt.plot(x,mlab.normpdf(x,mean,sigma))

    plt.show()

normal(1,0.5)
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Related to the Gaussian distribution is the binomial distribution. We actually obtain 
a normal distribution by repeating a binomial process, such as tossing a coin. Over 
time, the probability approaches that half the tosses will result in heads.

( ) ( )
( )( )

( ) ( )!
! !

x n xn
P x p q

x n x
−=

−

In this formula, n is the number coin tosses, p is the probability that half the tosses 
are heads, and q is the probability (1-p) that half the tosses are tails. In a typical 
experiment, say to determine the probability of various outcomes of a series of coin 
tosses, n, we can perform this many times, and obviously the more times we perform 
the experiment, the better our understanding of the statistical behavior of the system:

from scipy.stats import binom

def binomial(x=10,n=10, p=0.5):

    fig, ax = plt.subplots(1, 1)

    x=range(x)

    rv = binom(n, p)

    plt.vlines(x, 0, (rv.pmf(x)), colors='k', linestyles='-')

    plt.show()

binomial()

You will observe the following output:
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Another aspect of discrete distributions is understanding the likelihood of a given 
number of events occurring within a particular space and/or time. If we know that a 
given event occurs at an average rate, and each event occurs independently, we can 
describe it as a Poisson distribution. We can best understand this distribution using 
a probability mass function. This measures the probability of a given event that will 
occur at a given point in space/time.

The Poisson distribution has two parameters associated with it: lambda ,λ, a real 
number greater than 0, and k, an integer that is 0, 1, 2, and so on.

( ) ( ); Pr !k ef k X k
k

λ

λ λ= = =

Here, we generate the plot of a Poisson distribution using the scipy.stats module:

from scipy.stats import poisson

def pois(x=1000):

    xr=range(x)

    ps=poisson(xr)

    plt.plot(ps.pmf(x/2))

pois()

The output of the preceding commands is as shown in the following diagram:
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We can describe continuous data distributions using probability density functions. 
This describes the likelihood that a continuous random variable will take on a 
specified value. For univariate distributions, that is, those where there is only one 
random variable, the probability of finding a point X on an interval (a,b) is given by 
the following:

( )
b

X
a

f x dx∫

This describes the fraction of a sampled population for which a value, x, lies between 
a and b. Density functions really only have meaning when they are integrated, 
and this will tell us how densely a population is distributed around certain values. 
Intuitively, we understand this as the area under the graph of its probability function 
between these two points. The Cumulative Density Function (CDF) is defined as the 
integral of its probability density functions, fx:
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The CDF describes the proportion of a sampled population having values for a 
particular variable that is less than x. The following code shows a discrete (binomial) 
cumulative distribution function. The s1 and s2 shape parameters determine the  
step size:

import scipy.stats as stats

def cdf(s1=50,s2=0.2):

    x = np.linspace(0,s2 * 100,s1 *2)

    cd = stats.binom.cdf

    plt.plot(x,cd(x, s1, s2))

    plt.show()
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Data from databases
We generally interact with databases via a query language. One of the most popular 
query languages is MySQL. Python has a database specification, PEP 0249, which 
creates a consistent way to work with numerous database types. This makes the 
code we write more portable across databases and allows a richer span of database 
connectivity. To illustrate how simple this is, we are going to use the mysql.
connector class as an example. MySQL is one of the most popular database formats, 
with a straight forward, human-readable query language. To practice using this 
class, you will need to have a MySQL server installed on your machine. This is 
available from https://dev.mysql.com/downloads/mysql/.

This should also come with a test database called world, which includes statistical 
data on world cities.

Ensure that the MySQL server is running, and run the following code:

import mysql.connector

from mysql.connector import errorcode

cnx = mysql.connector.connect(user='root', password='password',

                                database='world', buffered=True)

cursor=cnx.cursor(buffered=True)

query=("select * from city where population > 1000000 order by 
population")

cursor.execute(query)

worldList=[]

for (city) in cursor:

    worldList.append([city[1],city[4]])

cursor.close()

cnx.close()

Data from the Web
Information on the web is structured into HTML or XML documents. Markup tags 
give us clear hooks for us to sample our data. Numeric data will often appear in a 
table, and this makes it relatively easy to use because it is already structured in a 
meaningful way. Let's look at a typical excerpt from an HTML document:

<table border="0" cellpadding="5" cellspacing="2" class="details"  
width="95%">

https://dev.mysql.com/downloads/mysql/
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  <tbody>

  <th>Species</th>
  <th>Data1</th>
  <th>data2</th>
  </tr>

  <td>whitefly</td>
  <td>24</td>
  <td>76</td>
  </tr>
  </tbody>
</table>

This shows the first two rows of a table, with a heading and one row of data 
containing two values. Python has an excellent library, Beautiful Soup, for 
extracting data from HTML and XML documents. Here, we read some test data 
into an array, and put it into a format that would be suitable for input in a machine 
learning algorithm, say a linear classifier:

import urllib

from bs4 import BeautifulSoup

import numpy as np

url = urllib.request.urlopen 
("http://interthing.org/dmls/species.html");

html = url.read()

soup = BeautifulSoup(html, "lxml")

table = soup.find("table")

headings = [th.get_text() for th in table.find("tr").find_all("th")]

datasets = []

for row in table.find_all("tr")[1:]:

    dataset = list(zip(headings, (td.get_text() for td in row.find_
all("td"))))

    datasets.append(dataset)

nd=np.array(datasets)
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features=nd[:,1:,1].astype('float')

targets=(nd[:,0,1:]).astype('str')

print(features)

print(targets)

As we can see, this is relatively straight forward. What we need to be aware of is that 
we are relying on our source web page to remain unchanged, at least in terms of its 
overall structure. One of the major difficulties with harvesting data off the web in 
this way is that if the owners of the site decide to change the layout of their page,  
it will likely break our code.

Another data format you are likely to come across is the JSON format. Originally used 
for serializing Javascript objects, JSON is not, however, dependent on JavaScript. It is 
merely an encoding format. JSON is useful because it can represent hierarchical and 
multivariate data structures. It is basically a collection of key value pairs:

{"Languages":[{"Language":"Python","Version":"0"},{"Language": 
"PHP","Version":"5"}],
"OS":{"Microsoft":"Windows 10", "Linux":"Ubuntu 14"},
"Name":"John\"the fictional\" Doe",
"location":{"Street":"Some Street", "Suburb":"Some Suburb"},
"Languages":[{"Language":"Python","Version":"0"},{"Language":"PHP" 
,"Version":"5"}]
}

If we save the preceding JSON to a file called jsondata.json:

import json

from pprint import pprint

with open('jsondata.json') as file:    

    data = json.load(file)

pprint(data)
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Data from natural language
Natural language processing is one of the more difficult things to do in machine 
learning because it is focuses on what machines, at the moment, are not very good  
at: understanding the structure in complex phenomena.

As a starting point, we can make a few statements about the problem space we 
are considering. The number of words in any language is usually very large 
compared to the subset of words that are used in a particular conversation. Our 
data is sparse compared to the space it exists in. Moreover, words tend to appear in 
predefined sequences. Certain words are more likely to appear together. Sentences 
have a certain structure. Different social settings, such as at work, home, or out 
socializing; or in formal settings such as communicating with regulatory authorities, 
government, and bureaucratic settings, all require the use overlapping subsets of a 
vocabulary. A part from cues such as body language, intonation eye contact, and so 
forth, the social setting is probably the most important factor when trying to extract 
meaning from natural language.

To work with natural language in Python, we can use the the Natural Language 
Tool Kit (NLTK). If it is not installed, you can execute the pip install -U nltk 
command.

The NLTK also comes with a large library of lexical resources. You will need to 
download these separately, and NLTK has a download manager accessible through 
the following code:

import nltk

nltk.download()

A window should open where you can browse through the various files. This 
includes a range of books and other written material, as well as various lexical 
models. To get started, you can just download the package, Book.

A text corpus is a large body of text consisting of numerous individual text files. 
NLTK comes with corpora from a variety of sources such as classical literature  
(the Gutenberg Corpus), the web and chat text, Reuter news, and corpus containing 
text categorized by genres such as new, editorial, religion, fiction, and so on. You can 
also load any collection of text files using the following code:

from nltk.corpus import PlaintextCorpusReader

corpusRoot= 'path/to/corpus'

yourCorpus=PlaintextCorpusReader(corpusRoot, '.*')
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The second argument to the PlaintextCorpusReader method is a regular 
expression indicating the files to include. Here, it simply indicates that all the files 
in that directory are included. This second parameter could also be a list of file 
locations, such as ['file1', 'dir2/file2'].

Let's take a look at one of the existing corpora, and as an example, we are going to 
load the Brown corpus:

from nltk.corpus import brown

cat=brown.categories()

print(cat)

['adventure', 'belles_lettres', 'editorial', 'fiction', 'government',  
'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion',  
'reviews', 'romance', 'science_fiction']

The Brown corpus is useful because it enables us to study the systemic differences 
between genres. Here is an example:

from nltk.corpus import brown

cats=brown.categories()

for cat in cats:

    text=brown.words(categories=cat)

    fdist = nltk.FreqDist(w.lower() for w in text)

    posmod = ['love', 'happy', 'good', 'clean']

    negmod = ['hate', 'sad', 'bad', 'dirty']

    pcount=[]

    ncount=[] 

    for m in posmod:

        pcount.append(fdist[m])

    for m in negmod:

        ncount.append(fdist[m])

    print(cat + ' positive: ' + str(sum(pcount)))

    print(cat + ' negative: ' + str(sum(ncount)))

    rat=sum(pcount)/sum(ncount)

    print('ratio= %s'%rat )

    print() 

Here, we have sort of extracted sentiment data from different genres by comparing 
the occurrences of four positive sentiment words with their antonyms.
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Data from images
Images are a rich and easily available source of data, and they are useful for learning 
applications such as object recognition, grouping, grading objects, as well as image 
enhancement. Images, of course, can be put together as a time series. Animating 
images is useful for both presentation and analysis; for example, we can use video  
to study trajectories, monitor environments, and learn dynamic behavior.

Image data is structured as a grid or matrix with color values assigned to each pixel. 
We can get a feel of how this works by using the Python Image Library. For this 
example, you will need to execute the following lines:

from PIL import Image

from matplotlib import pyplot as plt

import numpy as np

image= np.array(Image.open('data/sampleImage.jpg'))

plt.imshow(image, interpolation='nearest')

plt.show()

print(image.shape)

Out[10]: (536, 800, 3)

We can see that this particular image is 536 pixels wide and 800 pixels high. There 
are 3 values per pixel, representing color values between 0 and 255, for red, green, 
and blue respectively. Note that the co-ordinate system's origin (0,0) is the top left 
corner. Once we have our images as NumPy arrays, we can start working with them 
in interesting ways, for example, taking slices:

im2=image[0:100,0:100,2]

Data from application programming interfaces
Many social networking platforms have Application programming interfaces (APIs) 
that give the programmer access to various features. These interfaces can generate 
quite large amounts of streaming data. Many of these APIs have variable support 
for Python 3 and some other operating systems, so be prepared to do some research 
regarding the compatibility of systems.

Gaining access to a platform's API usually involves registering an application with 
the vendor and then using supplied security credentials, such as public and private 
keys, to authenticate your application.
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Let's take a look at the Twitter API, which is relatively easy to access and has a well-
developed library for Python. To get started, we need to load the Twitter library. If 
you do not have it already, simply execute the pip install twitter command 
from your Python command prompt.

You will need a Twitter account. Sign in and go to apps.twitter.com. Click on 
the Create New App button and fill out the details on the Create An Application 
page. Once you have submitted this, you can access your credential information by 
clicking on your app from the application management page and then clicking on  
the Keys and Access Tokens tab.

The four items we are interested in here are the API Key, the API Secret, The Access 
token, and the Access Token secret. Now, to create our Twitter object:

from twitter import Twitter, OAuth

#create our twitter object

t = Twitter(auth=OAuth(accesToken, secretToken, apiKey, apiSecret))

#get our home time line

home=t.statuses.home_timeline()

#get a public timeline

anyone= t.statuses.user_timeline(screen_name="abc730")

#search for a hash tag 

pycon=t.search.tweets(q="#pycon")

#The screen name of the user who wrote the first 'tweet'

user=anyone[0]['user']['screen_name']

#time tweet was created

created=anyone[0]['created_at']

#the text of the tweet

text= anyone[0]['text']

You will, of course, need to fill in the authorization credentials that you obtained 
from Twitter earlier. Remember that in a publicly accessible application, you never 
have these credentials in a human-readable form, and certainly not in the file itself, 
and preferably encrypted outside a public directory.

apps.twitter.com
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Signals
A form of data that is often encountered in primary scientific research is various 
binary streams. There are specific codecs for video and audio transmission and 
storage, and often, we are looking for higher-level tools to deal with each specific 
format. There are various signal sources we might be considering such as from a 
radio telescopes, sensor on a camera, or the electrical impulses from a microphone. 
Signals all share the same underlying principles based on wave mechanics and 
harmonic motion.

Signals are generally studied using time frequency analysis. The central concept 
here is that a continuous signal in time and space can be decomposed into frequency 
components. We use what is known as a Fourier Transform to move between the 
time and frequency domains. This utilizes the interesting fact that states that any 
given function, including non periodic functions, can be represented by a series of 
sine and cosine functions. This is illustrated by the following:
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To make this useful, we need to find the values for an and bn. We do this by multiplying 
both sides of the equation cosine, mx, and integrating. Here m is an integer.
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This is called an orthogonal function, in a similar notion to how we consider x, 
y, and z to be orthogonal in a vector space. Now, if you can remember all your 
trigonometric functions, you will know that sine times cosine with integer coefficients 
is always zero between negative pi and pi. If we do the calculation, it turns out that 
the middle term on the left-hand side is zero, except when n equals m. In this case, 
the term equals pi. Knowing this, we can write the following:
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So, in the first step, if we multiply by sin mx instead of cosine mx, then we can derive 
the value of bn.
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We can see that we have decomposed a signal into a series of sine values and cosine 
values. This enables us to separate the frequency components of a signal.

Data from sound
One of the most common and easy to study signals is audio. We are going to use the 
soundfile module. You can install it via pip if you do not have it. The soundfile 
module has a wavfile.read class that returns the .wav file data as a NumPy array.  
To try the following code, you will need a short 16 bit wave file called audioSamp.wav. 
This can be downloaded from http://davejulian.net/mlbook/data. Save it in your 
data directory, in your working directory:

import soundfile as sf

import matplotlib.pyplot as plt

import numpy as np

sig, samplerate = sf.read('data/audioSamp.wav')

sig.shape

We see that the sound file is represented by a number of samples, each with two 
values. This is effectively the function as a vector, which describes the .wav file.  
We can, of course, create slices of our sound file:

slice=sig[0:500,:]

Here, we slice the first 500 samples. Let's calculate the Fourier transform of the slice 
and plot it:

ft=np.abs(np.fft.fft(slice))

Finally lets plot the result

plt.plot(ft)

plt.plot(slice)

http://davejulian.net/mlbook/data
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The output of the preceding commands is as follows:

Cleaning data
To gain an understanding of which cleaning operations may be required for a 
particular dataset, we need to consider how the data was collected. One of the major 
cleaning operations involves dealing with missing data. We have already encountered 
an example of this in the last chapter, when we examined the temperature data. 
In this instance, the data had a quality parameter, so we could simply exclude the 
incomplete data. However, this may not be the best solution for many applications. It 
may be necessary to fill in the missing data. How do we decide what data to use? In 
the case of our temperature data, we could fill the missing values in with the average 
values for that time of year. Notice that we presuppose some domain knowledge, for 
example, the data is more or less periodic; it is in line with the seasonal cycle. So, it is a 
fair assumption that we could take the average for that particular date for every year 
we have a reliable record. However, consider that we are attempting to find a signal 
representing an increase in temperature due to climate change. In that case, taking the 
average for all years would distort the data and potentially hide a signal that could 
indicate warming. Once again, this requires extra knowledge and is specific about 
what we actually want to learn from the data.

Another consideration is that missing data may be one of three types, which are  
as follows:

•	 empty

•	 zero

•	 null
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Different programming environments may treat these slightly differently. Out of 
the three, only zero is a measurable quantity. We know that zero can be placed on a 
number line before 1, 2, 3, and so on, and we can compare other numbers to zero. So, 
normally zero is encoded as numeric data. Empties are not necessarily numeric, and 
despite being empty, they may convey information. For example, if there is a field 
for middle name in a form, and the person filling out the form does not have a middle 
name, then an empty field accurately represents a particular situation, that is, having 
no middle name. Once again, this depends on the domain. In our temperature data, 
an empty field indicates missing data as it does not make sense for a particular day to 
have no maximum temperature. Null values, on the other hand, in computing, mean 
something slightly different from its everyday usage. For the computer scientist, 
null is not the same thing as no value or zero. Null values cannot be compared to 
anything else; they indicate that a field has a legitimate reason for not having an 
entry. Nulls are different than empty values. In our middle name example, a null 
value would indicate that it is unknown if the person has a middle name or not.

Another common data cleaning task is converting the data to a particular format. 
For our purposes here, the end data format we are interested in is a Python data 
structure such as a NumPy array. We have already looked at converting data from 
the JSON and HTML formats, and this is fairly straight forward.

Another format that we are likely to come across is the Acrobats Portable Document 
Format (PDF). Importing data from PDF files can be quite difficult because PDF 
files are built on page layout primitives, and unlike HTML or JSON, they do not 
have meaningful markup tags. There are several non-Python tools for turning PDFs 
into text such as pdftotext. This is a command line tool that is included in many 
Linux distributions and is also available for Windows. Once we have converted the 
PDF file into text, we still need to extract the data, and the data embedded in the 
document determines how we can extract it. If the data is separated from the rest of 
the document, say in a table, then we can use Python's text parsing tools to extract it. 
Alternatively, we can use a Python library for working with PDF documents such as 
pdfminer3k.

Another common cleaning task is converting between data types. There is always 
the risk of losing data when converting between types. This happens when the target 
type stores less data than the source, for instance, converting to float 16 from float 32. 
Sometimes, we need to convert data at the file level. This occurs when a file has an 
implicit typing structure, for example, a spreadsheet. This is usually done within the 
application that created the file. For example, an Excel spreadsheet can be saved as a 
comma separated text file and then imported into a Python application.
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Visualizing data
There are a number of reasons for why we visually represent the data. At the data 
exploration stage, we can gain an immediate understanding of data properties. 
Visual representation serves to highlight patterns in data and suggest modeling 
strategies. Exploratory graphs are usually made quickly and in large numbers. We 
are not so much concerned with aesthetic or stylistic issues, but we simply want to 
see what the data looks like.

Beyond using graphs to explore data, they are a primary means of communicating 
information about our data. Visual representation helps clarify data properties and 
stimulate viewer engagement. The human visual system is the highest bandwidth 
channel to the brain, and visualization is the most efficient way to present a large 
amount of information. By creating a visualization, we can immediately get a sense 
of important parameters, such as the maximum, minimum, and trends that may be 
present in the data. Of course, this information can be extracted from data through 
statistical analysis, however, analysis may not reveal specific patterns in the data  
that visualization will. The human visual pattern recognition system is, at the 
moment, significantly superior to that of a machine. Unless we have clues as to  
what we are looking for, algorithms may not pick out important patterns that a 
human visual system will.

The central problem for data visualization is mapping data elements to visual 
attributes. We do this by first classifying the data types as nominal, ordinal, or 
quantitative, and then determining which visual attributes represent each data type 
most effectively. Nominal or categorical data refers to a name, such as the species, 
male or female, and so on. Nominal data does not have a specific order or numeric 
value. Ordinal data has an intrinsic order, such as house numbers in a street, but is 
different from quantitative data in that it does not imply a mathematical interval. 
For example, it does not make much sense to multiply or divide house numbers. 
Quantitative data has a numeric value such as size or volume. Clearly, certain visual 
attributes are inappropriate for nominal data, such as size or position; they imply 
ordinal or quantitative information.
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Sometimes, it is not immediately clear what each data type in a particular dataset 
is. One way to disambiguate this is to find what operations are applicable for each 
data type. For example, when we are comparing nominal data, we can use equals, 
for instance, the species Whitefly is not equal to the species Thrip. However, we 
cannot use operations such as greater than or less than. It does not make sense to 
say, in an ordinal sense, that one species is greater than another. With ordinal data, 
we can apply operations such as greater than or less than. Ordinal data has an 
implicit order that we can map on a number line. For quantitative data, this consists 
of an interval, such as a date range, to which we can apply additional operations 
such as subtractions. For example, we can not only say that a particular date occurs 
after another date, but we can also calculate the difference between the two dates. 
With quantitative data that has a fixed axis, that is a ratio of some fixed amount as 
opposed to an interval, we can use operations such as division. We can say that a 
particular object weighs twice as much or is twice as long as another object.

Once we are clear on our data types, we can start mapping them to attributes. Here, 
we will consider six visual attributes. They are position, size, texture, color, orientation, 
and shape. Of these, only position and size can accurately represent all three types of 
data. Texture, color, orientation, and shape, on the other hand, can only accurately 
represent nominal data. We cannot say that one shape or color is greater than another. 
However, we can associate a particular color or texture with a name.

Another thing to consider is the perceptual properties of these visual attributes. 
Research in psychology and psycho physics have established that visual attributes 
can be ranked in terms of how accurately they are perceived. Position is perceived 
most accurately, followed by length, angle, slope, area, volume, and finally, color 
and density, which are perceived with the least accuracy. It makes sense, therefore, 
to assign position and then length to the most important quantitative data. Finally, it 
should also be mentioned that we can encode, to some extent, ordinal data in a colors 
value (from dark to light) or continuous data in a color gradient. We cannot generally 
encode this data in a colors hue. For instance, there is no reason to perceive the color 
blue as somehow greater than the color red, unless you are making a reference to  
its frequency.

The color gradient to represent ordinal data 
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The next thing to consider is the number of dimensions that we need to display. 
For uni-variate data, that is, where we only need to display one variable, we have 
many choices such as dots, lines, or box plots. For bi-variate data, where we need to 
display two dimensions, the most common is with a scatter plot. For tri-variate data, 
it is possible to use a 3D plot, and this can be useful for plotting geometric functions 
such as manifolds. However, 3D plots have some drawbacks for many data types. 
It can be a problem to work out relative distances on a 3D plot. For instance, in the 
following figure, it is difficult to gauge the exact positions of each element. However, 
if we encode the z dimension as size, the relative values become more apparent:

Encoding Three Dimensions

There is a large design space for encoding data into visual attributes. The challenge 
is to find the best mapping for our particular dataset and purpose. The starting point 
should be to encode the most important information in the most perceptually accurate 
way. Effective visual coding will depict all the data and not imply anything that 
is not in the data. For example, length implies quantitative data, so encoding non-
quantitative data into length is incorrect. Another aspect to consider is consistency. 
We should choose attributes that make the most sense for each data type and use 
consistent and well-defined visual styles.
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Summary
You have learned that there are a large number of data source, formats, and 
structures. You have hopefully gained some understanding of how to begin working 
with some of them. It is important to point out that in any machine learning 
project, working with the data at this fundamental level can comprise a significant 
proportion of the overall project development time.

In the next chapter, we will look at how we can put our data to work by exploring 
the most common machine learning models.
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Models – Learning from 
Information

So far in this book, we have examined a range of tasks and techniques. We introduced 
the basics of data types, structures, and properties, and we familiarized ourselves with 
some of the machine learning tools that are available.

In this chapter, we will look at three broad types of model:

•	 Logical models
•	 Tree models
•	 Rule models

The next chapter will be devoted to another important type of model—the linear 
model. Much of the material in this chapter is theoretical, and its purpose is to 
introduce some of the mathematical and logical tools needed for machine learning 
tasks. I encourage you to work through these ideas and formulate them in ways  
that may help solve problems that we come across.

Logical models
Logical models divide the instance space, that is the set of all possible or allowable, 
instances, into segments. The goal is to ensure that the data in each segment 
is homogeneous with respect to a particular task. For example, if the task is 
classification, then we aim to ensure that each segment contains a majority of 
instances of the same class.
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Logical models use logical expressions to explain a particular concept. The simplest 
and most general logical expressions are literals, and the most common of these is 
equality. The equality expression can be applied to all types—nominative, numerical, 
and ordinal. For numerical and ordinal types, we can include the inequality literals: 
greater than or less than. From here, we can build more complex expressions using 
four logical connectives. These are conjunction (logical AND), which is denoted by 
∧; disjunction (logical OR), which is denoted by ∨; implication, which is denoted by 
→; and negation, which is denoted by ┌. This provides us with a way to express the 
following equivalences:

┌┌A ≡ A = A → B ≡ ┌A ∨ B

┌ (A ∧ B) ≡ ┌A ∨ ┌B = ┌(A ∨ B) ≡ ┌A ∧ ┌B

We can apply these ideas in a simple example. Let's say you come across a grove of 
trees that all appear to be from the same species. Our goal is to identify the defining 
features of this tree species for use in a classification task. For simplicity sake, let's 
say we are just dealing with the following four features:

•	 Size: This has three values—small, medium, and large
•	 Leaf type: This has two values—scaled or non-scaled
•	 Fruit: This has two values—yes or no
•	 Buttress: This has two values—yes or no

The first tree we identify can be described by the following conjunction:

Size = Large ∧ Leaf = Scaled ∧ Fruit = No ∧ Buttress = Yes

The next tree that we come across is medium-sized. If we drop the size condition, 
then the statement becomes more general. That is, it will cover more samples:

Leaf = Scaled ∧ Fruit = No ∧ Buttress = Yes

The next tree is also medium-sized, but it does not have buttresses, so we remove 
this condition and generalize it to the following:

Leaf = Scaled ∧ Fruit = No
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The trees in the grove all satisfy this conjunction, and we conclude that they are 
conifers. Obviously, in a real-world example, we would use a greater range of 
features and values and employ more complex logical constructs. However, even in 
this simple example, the instance space is 3 2 2 2, which makes 24 possible instances. 
If we consider the absence of a feature as an additional value, then the hypothesis 
space, that is, the space that we can use to describe this set, is 4 3 3 3 = 108. The 
number of sets of instances , or extensions, that are possible is 224. For example if you 
were to randomly choose a set of in. For example if you were to randomly choose 
a set of instances, the odds that you could find a conjunctive concept that exactly 
describes them is well over 100,000 to one.stances, the odds that you could find a 
conjunctive concept that exactly describes them is well over 100,000 to one.

Generality ordering
We can begin to map this hypothesis space from the most general statements to 
the most specific statements. For example, in the neighborhood of our conifer 
hypothesis, the space looks like this:
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Here, we are ordering our hypothesis by generality. At the top is the most general 
hypothesis—all trees are conifers. The more general hypothesis will cover a greater 
number of instances, and therefore the most general hypothesis, that is, all trees are 
conifers, applies to all instances. Now, while this might apply to the grove we are 
standing in, when we attempt to apply this hypothesis to new data, that is, to trees 
outside the grove, it will fail. At the bottom of the preceding diagram, we have the 
least general hypothesis. As we make more observations and move up through the 
nodes, we can eliminate hypothesis and establish the next most general complete 
hypothesis. The most conservative generalization we can make from the data is 
called the least general generalization (LGG) of these instances. We can understand 
this as being the point in the hypothesis space where the paths upward from each of 
the instances intersect.

Let's describe our observations in a table:

Size Scaled Fruit Buttress Label
L Y N Y p1
M Y N Y p2
M Y N N p3
M Y N Y p4

Sooner or later, of course, you wander out of the grove and you observe negative 
examples—trees that are clearly not conifers. You note the following features;

Size Scaled Fruit Buttress Label
S N N N n1
M N N N n2
S N Y N n3
M Y N N n4

So, with the addition of the negative examples, we can still see that our least general 
complete hypothesis is still Scale = Y ∧ Fruit =N. However, you will notice that a 
negative example, n4, is covered. The hypothesis is therefore not consistent.
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Version space
This simple example may lead you to the conclusion that there is only one LGG. 
But this is not necessarily true. We can expand our hypothesis space by adding a 
restricted form of disjunction called internal disjunction. In our previous example, 
we had three positive examples of conifers with either medium or large size. We 
can add a condition Size = Medium ∨ Size = Large, and we can write this as size [m,l]. 
Internal disjunction will only work with features that have more than two values 
because something like Leaves = Scaled ∨ Leaves = Non-Scaled is always true.

In the previous conifer example, we dropped the size condition to accommodate our 
second and third observations. This gave us the following LGG:

Leaf = Scaled ∧ Leaf =  = No

Given our internal disjunction, we can rewrite the preceding LGG as follows:

Size[m,l] ∧ Leaf = Scaled ∧ Fruit = No

Now, consider the first non-conifer, or negative non-conifer example:

Size = Small ∧ Leaf =Non-scaled ∧ Fruit = No

We can drop any of the three conditions in the LGG with the internal disjunction 
without covering this negative example. However, when we attempt to generalize 
further to single conditions, we see that Size[m,l] and Leaf = Scaled are OK but  
Fruit = No is not, since it covers the negative example.

Now, we are interested in the hypothesis that is both complete and consistent, that 
is, it covers all the positive examples and none of the negative. Let's now redraw 
our diagram considering just our four positive (p1 - p4) examples and one negative 
example (n1).
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This is sometimes referred to as the version space. Note that we have one least 
general hypothesis, three intermediate, and, now, two most general hypotheses. The 
version space forms a convex set. This means we can interpolate between members 
of this set. If an element lies between a most general and least general member of the 
set, then it is also a member of that set. In this way, we can fully describe the version 
space by its most and least general members.

Consider a case where the least general generalization covers one or more of the 
negative instances. In such cases, we can say that the data is not conjunctively 
separable and the version space is empty. We can apply different approach whereby 
we search for the most general consistent hypothesis. Here we are interested in 
consistency as opposed to completeness. This essentially involves iterating through 
paths in the hypothesis space from the most general. We take downward steps by, 
for example, adding a conjunct or removing a value from an internal conjunct. At 
each step, we minimize the specialization of the resulting hypothesis.

Coverage space
When our data is not conjunctively separable, we need a way to optimize between 
consistency and completeness. A useful approach is in terms of mapping the coverage 
space of positive and negative instances, as shown in the following diagram:
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We can see that learning a hypothesis involves finding a path through the hypothesis 
space ordered by generality. Logical models involve finding a pathway through a 
latticed structured hypothesis space. Each hypothesis in this space covers a set of 
instances. Each of these sets has upper and lower bounds, in and are ordered by, 
generality. So far, we have only used single conjunctions of literals. With a rich 
logical language at our disposal, why not incorporate a variety of logical connectives 
into our expressions? There are basically two reasons why we may want to keep our 
expressions simple, as follows:

•	 More expressive statements lead to specialization, which will result in a 
model overfitting training data and performing poorly on test data

•	 Complicated descriptions are computationally more expensive than  
simple descriptions

As we saw when learning about the conjunctive hypothesis, uncovered positive 
examples allow us to drop literals from the conjunction, making it more general. On 
the other hand, covered negative examples require us to increase specialization by 
adding literals.

Rather than describing each hypothesis in terms of conjunctions of single literals, we 
can describe it in terms of disjunctions of clauses, where each clause can be of the 
form A → B. Here, A is a conjunction of literals and B is a single literal. Let's consider 
the following statement that covers a negative example:

Butt =Y ∧ Scaled = N ∧ Size = S ∧ ┌ Fruit = N

To exclude this negative example, we can write the following clause:

Butt = Y ∧ Scaled = N ∧ Size = S → Fruit = N

There are of course, other clauses that exclude the negative, such as Butt = Y → Fruit 
= N; however, we are interested in the most specific clause because it is less likely to 
also exclude covered positives.
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PAC learning and computational complexity
Given that, as we increase the complexity of our logical language, we impose a 
computational cost, we need a metric to gauge the learnability of a language. To these 
ends, we can use the idea of Probably Approximately Correct (PAC) learning.

When we select one hypothesis from a set of hypotheses, the goal is to ensure that 
our selection will have, with high probability, a low generalization error. This will 
perform with a high degree of accuracy on a test set. This introduces the idea of 
computational complexity. This is a formalization to gauge the computational cost 
of a given algorithm in relation to the accuracy of its output.

PAC learning makes allowance for mistakes on non-typical examples, and this 
typicality is determined by an unspecified probability distribution, D. We can 
evaluate an error rate of a hypothesis with respect to this distribution. For example, 
let's assume that our data is noise-free and that the learner always outputs a complete 
and consistent hypothesis within the training samples. Let's choose an arbitrary error 
rate ϵ < 0.5 and a failure rate δ= 0.5. We require our learning algorithm to output 
a hypothesis that has a probability ≥ 1 - δ such that the error rate will be less than 
ϵ. It turns out that this will always be true for any reasonably sized training set. 
For example, if our hypothesis space, H, contains a single bad hypothesis, then the 
probability that it is complete and consistent on n independent training samples is less 
than or equal to (1 - ϵ)n. For any 0 ≤ ϵ  ≤ 1, this probability is less than e-n ϵ. We need to 
keep this below our error rate, δ, which we achieve by setting n ≥ 1/ ϵ ln 1/ δ. Now, if H 
contains a number of bad hypotheses, k ≤ | H |, then the probability that at least one 
of them is complete and consistent on n independent samples is at maximum:

k(1 - ϵ)n ≤ | H | (1 - ϵ)n ≤ | H | e-n ϵ

This maximum will be less than f if the following condition is met:

1 1ln lnn H
δ

 ≤ + ∈ 

This is known as the sample complexity and you will notice that it is logarithmic in 
1/δ and linear in 1/ϵ.

This implies that it is exponentially cheaper to reduce the failure rate 
than it is to reduce the error rate.
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To conclude  this section, I will make one further point. The hypothesis space H is a 
subset of U, a universe of explanation for any given phenomena. How do we know 
whether the correct hypothesis actually exists inside H rather than elsewhere in U? 
Bayes theorem shows a relationship between the relative probabilities of H and ┌ H as 
well as their relative prior probabilities. However, there is no real way we can know 
the value of P┌ H because there is no way to calculate the probabilities of a hypothesis 
that has not yet been conceived. Moreover, the contents of this hypothesis consist 
of a, currently unknown, universe of possible objects. This paradox occurs in any 
description that uses comparative hypothesis checking where we evaluate our current 
hypothesis against other hypotheses within H. Another approach would be to find a 
way to evaluate H. We can see that, as we expand H, the computability of hypothesis 
within it becomes more difficult. To evaluate H, we need to restrict our universe to 
the universe of the known. For a human, this is a life of experiences that has been 
imprinted in our brains and nervous system; for a machine, it is the memory banks 
and algorithms. The ability to evaluate this global hypothesis space is one of the key 
challenges of artificial intelligence.

Tree models
Tree models are ubiquitous in machine learning. They are naturally suited to divide 
and conquer iterative algorithms. One of the main advantages of decision tree 
models is that they are naturally easy to visualize and conceptualize. They allow 
inspection and do not just give an answer. For example, if we have to predict a 
category, we can also expose the logical steps that give rise to a particular result. 
Also tree models generally require less data preparation than other models and can 
handle numerical and categorical data. On the down side, tree models can create 
overly complex models that do not generalize to new data very well. Another 
potential problem with tree models is that they can become very sensitive to changes 
in the input data and, as we will see later, this problem can be mitigated against 
using them as ensemble learners.
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An important difference between decision trees and the hypothesis mapping used 
in the previous section is that the tree model does not use internal disjunction on 
features with more than two values but instead branches on each value. We can see 
this with the size feature in the following diagram:

Another point to note is that decision trees are more expressive than the conjunctive 
hypothesis and we can see this here, where we have been able to separate the data 
where the conjunctive hypothesis covered negative examples. This expressiveness, 
of course, comes with a price: the tendency to overfit on training data. A way to force 
generalization and reduce overfitting is to introduce an inductive bias toward less 
complex hypotheses.

We can quite easily implement our little example using the Sklearn 
DecisionTreeClassifier and create an image of the resultant tree:

from sklearn import tree

names=['size','scale','fruit','butt']

labels=[1,1,1,1,1,0,0,0]

p1=[2,1,0,1]

p2=[1,1,0,1]

p3=[1,1,0,0]

p4=[1,1,0,0]
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n1=[0,0,0,0]

n2=[1,0,0,0]

n3=[0,0,1,0]

n4=[1,1,0,0]

data=[p1,p2,p3,p4,n1,n2,n3,n4]

def pred(test, data=data):

    dtre=tree.DecisionTreeClassifier()

    dtre=dtre.fit(data,labels)

    print(dtre.predict([test]))

    with open('data/treeDemo.dot', 'w') as f:

        f=tree.export_graphviz(dtre,out_file=f,

                               feature_names=names)

pred([1,1,0,1])

Running the preceding code creates a treeDemo.dot file. The decision tree classifier, 
saved as a .dot file, can be converted into an image file such as a .png, .jpeg or .gif 
using the Graphiz graph visualization software. You can download Graphviz from 
http://graphviz.org/Download.php. Once you have it installed, use it to convert 
the .dot file into an image file format of your choice.

This gives you a clear picture of how the decision tree has been split.

http://graphviz.org/Download.php
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We can see from the full tree that we recursively split on each node, increasing the 
proportion of samples of the same class with each split. We continue down nodes 
until we reach a leaf node where we aim to have a homogeneous set of instances. 
This notion of purity is an important one because it determines how each node is 
split and it is behind the Gini values in the preceding diagram.

Purity
How do we understand the usefulness of each feature in relation to being able to 
split samples into classes that contain minimal or no samples from other classes? 
What are the indicative sets of features that give a class its label? To answer this, we 
need to consider the idea of purity of a split. For example, consider we have a set of 
Boolean instances, where D is split into D1 and D2. If we further restrict ourselves 
to just two classes, Dpos and Dneg, we can see that the optimum situation is where D 
is split perfectly into positive and negative examples. There are two possibilities for 
this: either where D1pos = Dpos and D1neg = {}, or D1neg = Dneg and D1pos = {}.

If this is true, then the children of the split are said to be pure. We can measure the 
impurity of a split by the relative magnitude of npos and nneg. This is the empirical 
probability of a positive class and it can be defined by the proportion p=npos /(npos + nneg). 
There are several requirements for an impurity function. First, if we switch the positive 
and negative class (that is, replace p with 1-p) then the impurity should not change. 
Also the function should be zero when p=0 or p=1, and it should reach its maximum 
when p=0.5. In order to split each node in a meaningful way, we need an optimization 
function with these characteristics.

There are three functions that are typically used for impurity measures, or splitting 
criteria, with the following properties.

•	 Minority class: This is simply a measure of the proportion of misclassified 
examples assuming we label each leaf with the majority class. The higher this 
proportion is, the greater the number of errors and the greater the impurity 
of the split. This is sometimes called the classification error, and is calculated 
as min(p,1-p).

•	 Gini index: This is the expected error if we label examples either positive, 
with probability p, or negative, with probability 1-p. Sometimes, the square 
root of the Gini index is used as well, and this can have some advantages 
when dealing with highly skewed data where a large proportion of samples 
belongs to one class.
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•	 Entropy: This measure of impurity is based on the expected information 
content of the split. Consider a message telling you about the class of a 
series of randomly drawn samples. The purer the set of samples, the more 
predictable this message becomes, and therefore the smaller the expected 
information. Entropy is measured by the following formula:

( ) ( )2 21 log 1plog p p p− − − −

These three splitting criteria, for a probability range of between 0 and 1, are plotted 
in the following diagram. The entropy criteria are scaled by 0.5 to enable them to 
be compared to the other two. We can use the output from the decision tree to see 
where each node lies on this curve.

Rule models
We can best understand rule models using the principles of discrete mathematics. 
Let's review some of these principles.

Let X be a set of features, the feature space, and C be a set of classes. We can define 
the ideal classifier for X as follows:

c: X → C

A set of examples in the feature space with class c is defined as follows:

D = {(x1, c( x1)), ... , (xn, c( xn)) ⊆ X × C
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A splitting of X is partitioning X into a set of mutually exclusive subsets X1....Xs,  
so we can say the following:

X = X1 ∪ ..  ∪ Xs

This induces a splitting of D into D1,...Ds. We define Dj where j = 1,...,s and is  
{(x,c(x) ∈ D | x ∈ Xj)}.

This is just defining a subset in X called Xj where all the members of Xj are  
perfectly classified.

In the following table we define a number of measurements using sums of indicator 
functions. An indicator function uses the notation where I[...] is equal to one if the 
statement between the square brackets is true and zero if it is false. Here τc(x) is the 
estimate of c(x).

Let's take a look at the following table:

Number of 
positives ( ) ( )x DP I c x pos∈= ∑ =  

Number of 
negatives ( ) ( )x DN I c x neg∈= ∑ =  

True 
positives ( ) ( ) ( )x DTP I c x c x posτ∈= ∑ = =  

True 
negatives ( ) ( ) ( )x DTN I c x c x negτ∈= ∑ = =  

False 
positives ( ) ( ) ( ),x DFP I c x pos c x negτ∈= ∑ = =  

False 
negatives ( ) ( ) ( ),x DFN I x neg c x posτ∈= ∑ = =  

Accuracy

( ) ( ) ( )1
x Dacc I c x c x

D
τ∈= ∑ =  

Error rate

( ) ( ) ( )1
x Derr I c x c x

D
τ∈= ∑ ≠  

True 
positive rate 
(sensitivity, 
recall)

( ) ( ) ( )( )
( ) ( )( )

x D

x D

I c x c x pos TPtpr
PI c x pos

τ∈

∈

∑ = =  
= =

∑ =  
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True negative 
rate (negative 
recall)

( ) ( ) ( )( )
( ) ( )( )

x D

x D

I c x c x neg TNtnr
NI c x neg

τ∈

∈

∑ = =  
= =

∑ =  

Precision, 
confidence ( ) ( ) ( )( )

( ) ( )( ) ( )
x D

x D

I c x c x pos TPprec
TP FPI c x pos

τ

τ
∈

∈

∑ = =  
= =

+∑ =  

Rule models comprise not only sets or lists of rules, but importantly, a specification 
on how to combine these rules to form predictions. They are a logical model but 
differ from the tree approach in that, trees split into mutually exclusive branches, 
whereas rules can overlap, possibly carrying additional information. In supervised 
learning there are essentially two approaches to rule models. One is to find a 
combination of literals, as we did previously, to form a hypothesis that covers a 
sufficiently homogeneous set of samples, and then find a label. Alternatively, we 
can do the opposite; that is, we can first select a class and then find rules that cover a 
sufficiently large subset of samples of that class. The first approach tends to lead to 
an ordered list of rules, and in the second approach, rules are an unordered set. Each 
deals with overlapping rules in its own characteristic way, as we will see. Let's look 
at the ordered list approach first.

The ordered list approach
As we add literals to a conjunctive rule, we aim to increase the homogeneity of each 
subsequent set of instances covered by the rule. This is similar to constructing a 
path in the hypothesis space as we did for our logical trees in the last section. A key 
difference with the rule approach is that we are only interested in the purity of one 
of the children, the one where the added literal is true. With tree-based models, we 
use the weighted average of both children to find the purity of both branches of a 
binary split. Here, we are still interested in calculating the purity of subsequent rules; 
however, we only follow one side of each split. We can still use the same methods for 
finding purity, but we no longer need to average over all children. As opposed to the 
divide and conquer strategy of decision trees, rule-based learning is often described 
as separate and conquer.



Models – Learning from Information

[ 524 ]

Let's briefly consider an example using our conifer categorization problem from the 
previous section.

There are several options for choosing a rule that will result in the purest split. 
Supposing we choose the rule If scaled = N then class is negative, we have covered 
three out of four negative samples. In the next iteration, we remove these samples 
from consideration and continue this process of searching for literals with maximum 
purity. Effectively, what we are doing is building an ordered list of rules joined with 
the if and else clauses. We can rewrite our rules to be mutually exclusive, and this 
would mean that the set of rules does not need to be ordered. The tradeoff here is 
that we would have to use either negated literals or internal disjunctions to deal  
with features that have more than two values.

There are certain refinements we can make to this model. For example, we can 
introduce a stopping criterion that halts iteration if certain conditions are met, such 
as in the case of noisy data where we may want to stop iteration when the number  
of samples in each class falls below a certain number.

Ordered rule models have a lot in common with decision trees, especially, in that, they 
use an objective function based on the notion of purity that is the relative number of 
positive and negative class instances in each split. They have structures that are easy  
to visualize and they are used in many different machine learning settings.
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Set-based rule models
With set based rule models rules are learned one class at a time, and our objective 
function simply becomes maximize p, rather than minimizing min(p,1-p). Algorithms 
that use this method typically iterate over each class and only cover samples of each 
class that are removed after a rule is found. Set-based models use precision (refer 
to table 4-1) as a search heuristic and this can make the model focus too much on 
the purity of the rule; it may miss near pure rules that can be further specialized to 
form a pure rule. Another approach, called beam search, uses a heuristic to order a 
predetermined number of best partial solutions.

Ordered lists give us a convex coverage for the training set. This is 
not necessarily true of the uncorded set-based approach where there 
is no global optimum order for a given set of rules. Because of this, 
we have access to rule overlaps expressed as a conjunction A∧B, 
where A and B are two rule sets. If these two rules are in an ordered 
list, we have either, if the order is AB, A = (A∧B) ∨ (A∧┌B) or, if the 
order is BA, B = (A∧B) ∨ (┌A∧B). This means that the rule space 
is potentially enlarged; however, because we have to estimate the 
coverage of overlaps, we sacrifice convexity.

Rule models, in general, are well suited to predictive models. We can, as we will 
see later, extend our rule models to perform such tasks as clustering and regression. 
Another important application of rule models is to build descriptive models. When 
we are building classification models, we generally look for rules that will create 
pure subsets of the training samples. However, this not necessarily true if we are 
looking for other distinguishing characteristics of a particular sample set. This is 
sometimes referred to as subgroup discovery. Here, we are not interested in a 
heuristic that is based on class purity but rather in one that looks for distinguishing 
class distributions. This is done using a defined quality function based on the idea 
of local exceptional testing. This function can take the form q=TP/(FP +g). Here g 
is a generalization factor that determines the allowable number of nontarget class 
instances relative to the number of instances covered by the rule. For a small value 
of g, say less than 1, rules will be generated that are more specific because every 
additional nontarget example incurs greater relative expense. Higher values of g, say 
greater than 10, create more general rules covering more nontarget samples. There 
is no theoretical maximum value for g; however, it does not make much sense for it 
to exceed the number of samples. The value of g is governed by the size of the data 
and the proportion of positive samples. The value of g can be varied, thus guiding 
subgroup discovery to certain points in the TP versus FP space.
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We can use subjective or objective quality functions. We can incorporate subjective 
interestingness coefficients into the model to reflect things such as understandability, 
unexpectedness, or, based on templates describing the interesting class, relationship 
patterns. Objective measurements are derived from the statistical and structural 
properties of the data itself. They are very amenable to the use of coverage plots to 
highlight subgroups that have statistical properties that differ from the population  
as a whole.

Finally, in this section on rule-based models, we will consider rules that can be learned 
entirely unsupervised. This is called association rule learning, and its typical use  
cases include data mining, recommender systems and natural language processing. 
We will use as an example a hardware shop that sells four items: hammers, nails, 
screws, and paint.

Let's take a look at the following table:

Transaction Items
1 Nails
2 Hammers and nails
3 Hammers, nails, paint, and screws
4 Hammers, nails, and paint
5 Screws
6 Paint and screws
7 Screws and nails
8 Paint

In this table, we have grouped transactions with items. We could also have grouped 
each item with the transactions it was involved in. For example, nails were involved in 
transactions 1, 2, 3, 4, and 7, and hammers were involved in 2, 3, 4, and so on. We can 
also do this with sets of items, for example, hammers and nails were both involved in 
transactions 2, 3, and 4. We can write this as the item set {hammer,nails} covers the 
transaction set [2,3,4]. There are 16 item sets including the empty set, which covers 
all transactions.
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The relationship between transaction sets forms a lattice structure connecting 
items with their respective sets. In order to build associative rules, we need to 
create frequent item sets that exceed the threshold FT. For example, a frequent item 
set where F

T
 = 3 is {screws}, {hammer,nails}, and {paint}. These are simply 

the items sets that are associated with three or more transactions. The following 
is a diagram showing part of the lattice from our example. In a similar way, we 
found the least general generalization in our hypothesis space mapping. Here, we 
are interested in the lowest boundary of the largest item set. In this example, it is 
{nails,hammer}.

 

We can now create association rules of the form if A then B, where A and B are 
item sets that frequently appear together in a transaction. If we select an edge on 
this diagram, say the edge between {nails} with a frequency of 5, and {nails, 
hammer} with a frequency of 3, then we can say that the confidence of the association 
rule if nails then hammer is 3/5. Using a frequency threshold together with the 
confidence of a rule, an algorithm can find all rules that exceed this threshold. This is 
called association rule mining, and it often includes a post-processing phase where 
unnecessary rules are filtered out, for example—where a more specific rule does not 
have a higher confidence than a more general parent.
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Summary
We began this chapter by exploring a logical language and creating a hypothesis 
space mapping for a simple example. We discussed the idea of least general 
generalizations and how to find a path through this space from the most general to 
the least general hypothesis. We briefly looked at the concept of learnability. Next, we 
looked at tree models and found that they can be applied to a wide range of tasks 
and are both descriptive and easy to interpret. Trees by themselves, however, are 
prone to overfitting and the greedy algorithms employed by most tree models can 
be prone to over-sensitivity to initial conditions. Finally, we discussed both ordered 
rule lists and unordered rule set-based models. The two different rule models are 
distinguished by how they handle rule overlaps. The ordered approach is to find 
a combination of literals that will separate the samples into more homogeneous 
groups. The unordered approach searches for a hypotheses one class at a time.

In the next chapter, we will look at quite a different type of model—the linear model. 
These models employ the mathematics of geometry to describe the problem space 
and, as we will see, form the basis for support vector machines and neural nets.
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Linear Models
Linear models are one of the most widely used models and form the foundation 
of many advanced nonlinear techniques such as support vector machines and 
neural networks. They can be applied to any predictive task such as classification, 
regression, or probability estimation.

When responding to small changes in the input data, and provided that our data 
consists of entirely uncorrelated features, linear models tend to be more stable than 
tree models. As we mentioned in the last chapter, tree models can over-respond 
to small variations in training data. This is because splits at the root of a tree have 
consequences that are not recoverable further down the line, that is, producing 
different branching and potentially making the rest of the tree significantly different. 
Linear models on the other hand are relatively stable, being less sensitive to initial 
conditions. However, as you would expect, this has the opposite effect, changing 
less sensitive data to nuanced data. This is described by the terms variance (for over 
fitting models) and bias (for under fitting models). A linear model is typically  
low-variance and high-bias.

Linear models are generally best approached from a geometric perspective. We 
know we can easily plot two dimensions of space in a Cartesian co-ordinate system, 
and we can use the illusion of perspective to illustrate a third. We have also been 
taught to think of time as being a fourth dimension, but when we start speaking of n 
dimensions, a physical analogy breaks down. Intriguingly, we can still use many of 
the mathematical tools that we intuitively apply to three dimensions of space. While 
it becomes difficult to visualize these extra dimensions, we can still use the same 
geometric concepts, such as lines, planes, angles, and distance, to describe them. With 
geometric models, we describe each instance as having a set of real-value features, 
each of which is a dimension in our geometric space. Let's begin this chapter with a 
review of the formalism associated with linear models.
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We have already disused the basic numerical linear model solution by the least 
squared method for two variables. It is straightforward and easy to visualize on a 2D 
coordinate system. When we try to add parameters, as we add features to our model, 
we need a formalism to replace, or augment, an intuitive visual representation. In 
this chapter, we will be looking at the following topics:

•	 The least squares method
•	 The normal equation method
•	 Logistic regression
•	 Regularization

Let's start with the basic model.

Introducing least squares
In a simple one-feature model, our hypothesis function is as follows:

( ) 0 1h x w w x= +

If we graph this, we can see that it is a straight line crossing the y axis at w0 and 
having a slope of w1. The aim of a linear model is to find the parameter values 
that will create a straight line that most closely matches the data. We call these the 
functions parameter values. We define an objective function, Jw, which we want  
to minimize:

( )( ) ( )( )
2

1

1
2

m
i i

w w
i

minJ h x y
m =

= −∑

Here, m is the number of training samples, hw(x(i)) is the estimated value of the ith 
training sample, and yi is its actual value. This is the cost function of h, because it 
measures the cost of the error; the greater the error, the higher the cost. This method 
of deriving the cost function is sometime referred to as the sum of the squared error 
because it sums up the difference between the predicted value and the actual value. 
This sum is halved as a convenience, as we will see. There are actually two ways 
that we can solve this. We can either use an iterative gradient descent algorithm or 
minimize the cost function in one step using the normal equation. We will look at  
the gradient descent first.
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Gradient descent
When we graph parameter values against the cost function, we get a bowl shaped 
convex function. As parameter values diverge from their optimized values in either 
direction (from a single minima), the cost of our model grows. As the hypothesis 
function is linear, the cost function is convex. If this was not the case, then it would 
be unable to distinguish between global and local minimum.

The gradient descent algorithm is expressed by the following update rule:

( ):j j w
j

repeat until converges w w J
w
δα
δ

= −

Where δ is the first derivative of Jw as it uses the sign of the derivative to determine 
which way to step. This is simply the sign of the slope of the tangent at each point. 
The algorithm takes a hyper parameter, α, which is the learning rate that we need 
to set. It is called a hyper parameter to distinguish it from the w parameters that are 
estimated by our model. If we set the learning rate too small, it will take longer to 
find the minimum; if set too high, it will overshoot. We may find that we need to  
run the model several times to determine the best learning rate.
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When we apply gradient descent to linear regression, the following formulas, which 
are the parameters of our model, can be derived. We can rewrite the derivative term 
to make it easier to calculate. The derivations themselves are quite complex, and it is 
unnecessary to work through them here. If you know calculus, you will be able to see 
that the following rules are equivalent. Here, we repeatedly apply two update rules to 
the hypothesis, employing a stopping function. This is usually when the differences 
between the parameters on subsequent iterations drop below a threshold, that is, t.

Initialize w0 and w1 and repeat:

( )( ) ( )( )
( )( ) ( )( )( )

0 0
1

1 0
1
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1:

}

m
i i

w
i

m
i i

w i
i

wold wnew t

w w a h x y
m
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=

− <

− −

− −

∑

∑

It is important that these update rules are applied simultaneously, that is, they are 
both applied in the same iteration, so the new values of both w0 and w1 are plugged 
back in the next iteration. This is sometimes called batch gradient descent because  
it updates all the training samples in one batch.

It is fairly straightforward to apply these update rules on linear regression  
problems that have multiple features. This is true if we do not worry about the 
precise derivations.

For multiple features, our hypothesis function will look like this:

( ) 0 0 1 1 2 2
T

w n nh x w x w x w x w x w x= = + + + +�

Here, x0 = 1, often called our bias feature, is added to help us with the following 
calculations. We see can see that, by using vectors, we can also write this as simply 
the transpose of the parameter values multiplied by the feature value vector, x. With 
multiple feature gradient descents, our cost function will apply to a vector of the 
parameter values, rather than just a single parameter. This is the new cost function.

( ) ( )( ) ( )( )2
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m
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J w h x y
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= −∑
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J(w) is simply J(w0, w1 …,wn), where n is the number of features. J is a function of the 
parameter vector, w. Now, our gradient descent update rule is as follows:

( ) ( ) ( )( ) ( )

1

10, , :
m

i i i
j j j j

i
updatew for j n w w x y x

m
α α

=

 = − − − 
 

∑…

Notice that we now have multiple features. Therefore, we write the x value with the 
subscript j to indicate the jth feature. We can break this apart and see that it really 
represents the j + 1 nested update rules. Each one is identical, apart from their 
subscripts, to the training rule that we used for single features.

An important point to mention here, and one that we will revisit in later chapters, 
is that, to make our models work more efficiently, we can define our own features. 
For a simple situation, where our hypothesis is to estimate the price of a block of 
land based on two features, width and depth, obviously, we can multiply these two 
features to get one feature, that is, area. So, depending on a particular insight that 
you might have about a problem, it can make more sense to use derived features. 
We can take this idea further and create our own features to enable our model to 
fit nonlinear data. A technique to do this is polynomial regression. This involves 
adding power terms to our hypothesis function, making it a polynomial. Here is  
an example:

( ) 2 3
0 1 2 3wh x w w x w x w x= + + +

A way to apply this, in the case of our land price example, is to simply add the 
square and the cube of our area feature. There are many possible choices for these 
terms, and in fact, a better choice in our housing example might be in taking the 
square root of one of the terms to stop the function exploding to infinity. This 
highlights an important point, that is, when using polynomial regression, we must 
be very careful about feature scaling. We can see that the terms in the function get 
increasingly larger as x gets larger.

We now have a model to fit nonlinear data, however, at this stage, we are just 
manually trying different polynomials. Ideally, we need to be able to incorporate 
feature selection, to some extent, in our models, rather than have a human try 
to figure out an appropriate function. We also need to be aware that correlated 
features may make our models unstable, so we need to devise ways of decomposing 
correlated features into their components. We look at these aspects in Chapter 7, 
Features – How Algorithms See the World.
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The following is a simple implementation of batch gradient descent. Try running  
it with different values of the learning rate alpha, and on data with a greater bias 
and/or variance, and also after changing the number of iterations to see what effect 
this has on the performance of our model:

import numpy as np

import random

import matplotlib.pyplot as plt

def gradientDescent(x, y, alpha, numIterations):

    xTrans = x.transpose()

    m, n = np.shape(x)

    theta = np.ones(n)

    for i in range(0, numIterations):

        hwx = np.dot(x, theta)

        loss = hwx - y

        cost = np.sum(loss ** 2) / (2 * m)

        print("Iteration %d | Cost: %f " % (i, cost))

        gradient = np.dot(xTrans, loss) / m

        theta = theta - alpha * gradient

    return theta

def genData(numPoints, bias, variance):

    x = np.zeros(shape=(numPoints, 2))

    y = np.zeros(shape=numPoints)

    for i in range(0, numPoints):

        x[i][0] = 1

        x[i][1] = i

        y[i] = (i + bias) + random.uniform(0, 1) * variance

    return x, y

def plotData(x,y,theta):

    plt.scatter(x[...,1],y)

    plt.plot(x[...,1],[theta[0] + theta[1]*xi for xi in x[...,1]])

x, y = genData(20, 25, 10)
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iterations= 10000

alpha = 0.001

theta=gradientDescent(x,y,alpha,iterations)

plotData(x,y,theta)

The output of the code is as shown in the following screenshot:

This is called batch gradient descent because, on each iteration, it updates the 
parameter values based on all the training samples at once. With Stochastic gradient 
descent, on the other hand, the gradient is approximated by the gradient of a single 
example at a time. Several passes may be made over the data until the algorithm 
converges. On each pass, the data is shuffled to prevent it from getting stuck in a 
loop. Stochastic gradient descent has been successfully applied to large scale learning 
problems such as natural language processing. One of the disadvantages is that it 
requires a number of hyper parameters, although this does present opportunities 
for tweaking such as choosing a loss function or the type of regularization applied. 
Stochastic gradient descent is also sensitive to feature scaling. Many implementations 
of this, such as SGDClassifier and SGDRegressor from the Sklearn package, will use 
an adaptive learning rate by default. This reduces the learning rate as the algorithm 
moves closer to the minimum. To make these algorithms work well, it is usually 
necessary to scale the data so that each value in the input vector, X, is scaled between 
0 and 1 or between -1 and 1. Alternatively, ensure that the data values have a mean of 
0 and a variance of 1. This is most easily done using the StandardScaler class from 
sklearn.preprocessing.
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Gradient descent is not the only algorithm, and in many ways, it is not the most 
efficient way to minimize the cost function. There are a number of advanced 
libraries that will compute values for the parameters much more efficiently than 
if we implemented the gradient descent update rules manually. Fortunately, we 
do not have to worry too much about the details because there are a number of 
sophisticated and efficient algorithms for regression already written in Python. For 
example, in the sklearn.linear_model module, there are the Ridge, Lasso, and 
ElasticNet algorithms that may perform better, depending on your application.

The normal equation
Let's now look at the linear regression problem from a slightly different angle. As I 
mentioned earlier, there is a numerical solution; thus, rather than iterate through our 
training set, as we do with gradient descent, we can use what is called the normal 
equation to solve it in one step. If you know some calculus, you will recall that we 
can minimize a function by taking its derivative and then setting the derivative to 
zero to solve for a variable. This makes sense because, if we consider our convex 
cost function, the minimum will be where the slope of the tangent is zero. So, in our 
simple case with one feature, we differentiate J(w) with respect to w and set it to zero 
and solve for w. The problem we are interested in is when w is an n +1 parameter 
vector and the cost function, J(w), is a function of this vector. One way to minimize 
this is to take the partial derivative of J(w) for the parameter values in turn and then 
set these derivatives to zero, solving for each value of w. This gives us the values  
of w that are needed to minimize the cost function.

It turns out that an easy way to solve, what could be a long and complicated 
calculation, is what is known as the normal equation. To see how this works,  
we first define a feature matrix, shown as follows:
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This creates an m by n + 1 matrix, where m is the number of training examples, and 
n is the number of features. Notice that, in our notation, we now define our training 
label vector as follows:

( )

( )

( )

1

2

m

y

yy

y

=
�

Now, it turns out that we can compute the parameter values to minimize this cost 
function by the following equation:

( ) 1T Tw X X X y
−

=

This is the normal equation. There are of course many ways to implement 
this in Python. Here is one simple way using the NumPy matrix class. Most 
implementations will have a regularization parameter that, among other things, 
prevents an error arising from attempting to transpose a singular matrix. This will 
occur when we have more features than training data, that is, when n is greater  
than m; the normal equation without regularization will not work. This is because  
the matrix XTX is non-transposable, and so, there is no way to calculate our term, 
(XTX)-1. Regularization has other benefits, as we will see shortly:

import numpy as np

def normDemo(la=.9):

    X = np.matrix('1 2 5 ; 1 4 6')

    y=np.matrix('8; 16')

    xtrans=X.T

    idx=np.matrix(np.identity(X.shape[1]))

    xti = (xtrans.dot(X)+la * idx).I

    xtidt = xti.dot(xtrans)

    return(xtidt.dot(y))



Linear Models

[ 538 ]

One of the advantages of using the normal equation is that you do not need to worry 
about feature scaling. Features that have different ranges (for example, if one feature 
has values between 1 and 10, and another feature has values between zero and 1000) 
will likely cause problems for gradient descent. Using the normal equation, you 
do not need to worry about this. Another advantage of the normal equation is that 
you do not need to choose the learning rate. We saw that, with gradient descent; an 
incorrectly chosen learning rate could either make the model unnecessarily slow or, 
if the learning rate is too large, it can cause the model to overshoot the minimum. 
This may entail an extra step in our testing phase for gradient descent.

The normal equation has its own particular disadvantages; foremost is that it does 
not scale as well when we have data with a large number of features. We need to 
calculate the inverse of the transpose of our feature matrix, X. This calculation results 
in an n by n matrix. Remember that n is the number of features. This actually means 
that on most platforms the time it takes to invert a matrix grows, approximately, as 
a cube of n. So, for data with a large number of features, say greater than 10,000, you 
should probably consider using gradient descent rather than the normal equation. 
Another problem that arises when using the normal equation is that, when we 
have more features than training data, that is, when n is greater than m, the normal 
equation without regularization will not work. This is because the matrix, XTX, is 
non-transposable, and so there is no way to calculate our term, (XTX)-1.

Logistic regression
With our least squares model, we have applied it to solve the minimization problem. 
We can also use a variation of this idea to solve classification problems. Consider 
what happens when we apply linear regression to a classification problem. Let's take 
the simple case of binary classification with one feature. We can plot our feature on 
the x axis against the class labels on the y axis. Our feature variable is continuous, 
but our target variable on the y axis is discrete. For binary classification, we usually 
represent a 0 for the negative class, and a 1 for the positive class. We construct a 
regression line through the data and use a threshold on the y axis to estimate the 
decision boundary. Here we use a threshold of 0.5.
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In the figure on the left-hand side, where the variance is small and our positive 
and negative cases are well separated, we get an acceptable result. The algorithm 
correctly classifies the training set. In the image on the right-hand side, we have a 
single outlier in the data. This makes our regression line flatter and shifts our cutoff 
to the right. The outlier, which clearly belongs in class 1, should not make any 
difference to the model's prediction, however, now with the same cutoff point,  
the prediction misclassifies the first instance of class 1 as class 0.

One way that we approach the problem is to formulate a different hypothesis 
representation. For logistic regression, we are going use the linear function as  
an input to another function, g.

( ) ( ) 0 1T
w wh x g W x where h= ≤ ≤

The term g is called the sigmoid or logistic function. You will notice from its graph 
that, on the y axis, it has asymptotes at zero and one, and it crosses the axis at 0.5.

Now, if we replace the z with WT x, we can rewrite our hypothesis function like this:

( ) ( )
1

1
Tw w

h x
e x−

=
+
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As with linear regression, we need to fit the parameters, w, to our training data to 
give us a function that can make predictions. Before we try and fit the model, let's 
look at how we can interpret the output from our hypothesis function. Since this 
will return a number between zero and one, the most natural way to interpret this is 
as it being the probability of the positive class. Since we know, or assume, that each 
sample can only belong in one of two classes, then the probability of the positive 
class plus the probability of the negative class must be equal to one. Therefore, if we 
can estimate the positive class, then we can estimate the probability of the negative 
class. Since we are ultimately trying to predict the class of a particular sample, we 
can interpret the output of the hypothesis function as positive if it returns a value 
greater than or equal to 0.5, or negative otherwise. Now, given the characteristics of 
the sigmoid function, we can write the following:

( ) 0.5 0T T
xh g W x whenever W x= ≥ ≥

Whenever our hypothesis function, on a particular training sample, returns a 
number greater than or equal to zero, we can predict a positive class. Let's look at a 
simple example. We have not yet fitted our parameters to this model, and we will 
do so shortly, but for the sake of this example, let's assume that we have a parameter 
vector as follows:

3
1
1

W
−

=

Our hypothesis function, therefore, looks like this:

( ) ( )1 23wh x g x x= − + +

We can predict y = 1 if the following condition is met:

1 23 0x x− + + ≥

Equivalently:

1 2 3x x+ ≥
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This can be sketched with the following graph:

This is simply a straight line between x=3 and y=3, and it represents the decision 
boundary. It creates two regions where we predict either y = 0 or y = 1. What 
happens when the decision boundary is not a straight line? In the same way that we 
added polynomials to the hypothesis function in linear regression, we can also do 
this with logistic regression. Let's write a new hypothesis function with some higher 
order terms to see how we can fit it to the data:

( ) ( )2 2
0 1 1 2 2 3 1 4 2wh x g w w x w x w x w x= + + + +

Here we have added two squared terms to our function. We will see how to fit the 
parameters shortly, but for now, let's set our parameter vector to the following:

1
0
0
1
1

w

−

=

So, we can now write the following:

2 2
1 21 1 0Predict y if x x= − + + ≥
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Or alternatively, we can write this:

2 2
1 21 1Predict y if x x= + =

This, you may recognize, is the equation for a circle centered around the origin, and 
we can use this as our decision boundary. We can create more complex decision 
boundaries by adding higher order polynomial terms.

The Cost function for logistic regression
Now, we need to look at the important task of fitting the parameters to the data. If 
we rewrite the cost function we used for linear regression more simply, we can see 
that the cost is one half of the squared error:

( )( ) ( )( )21,
2w wCost h x y h x y= −

The interpretation is that it is simply calculating the cost we want the model to incur, 
given a certain prediction, that is, hw(x), and a training label, y.

This will work to a certain extent with logistic regression, however, there is a 
problem. With logistic regression, our hypothesis function is dependent on the 
nonlinear sigmoid function, and when we plot this against our parameters, it will 
usually produce a function that is not convex. This means that, when we try to  
apply an algorithm such as gradient descent to the cost function, it will not 
necessarily converge to the global minimum. A solution is to define a cost function 
that is convex, and it turns out that the following two functions, one for each class, 
are suitable for our purposes:

( )( ) ( )( ) ( )( ) ( )( )log 1 log 1 0w x w xCost h x h w if y Cost h x h w if y= − = = − − =



Chapter 5

[ 543 ]

This gives us the following graphs:

Intuitively, we can see that this does what we need it to do. If we consider a single 
training sample in the positive class, that is y = 1, and if our hypothesis function, 
hw(x), correctly predicts 1, then the cost, as you would expect, is 0. If the output of 
the hypothesis function is 0, it is incorrect, so the cost approaches infinity. When y 
is in the negative class, our cost function is the graph on the right. Here the cost is 
zero when hw(x) is 0 and rises to infinity when hw(x) is 1. We can write this in a more 
compact way, remembering that y is either 0 or 1:

( )( ) ( )( ) ( ) ( )( ), log 1 log 1w w wCost h x y y h x y h x= − − − −

We can see that, for each of the possibilities, y=1 or y=0, the irrelevant term is 
multiplied by 0, leaving the correct term for each particular case. So, now we can 
write our cost function as follows:

( ) ( ) ( )( ) ( )( ) ( )( )( )
1

1 1 1
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J w y logh x y log h x
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−  = + − −  
∑

So, if we are given a new, unlabeled value of x, how do we make a prediction? As with 
linear regression, our aim is to minimize the cost function, J(w). We can use the same 
update rule that we used for linear regression, that is, using the partial derivative to 
find the slope, and when we rewrite the derivative, we get the following:
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Multiclass classification
So far, we have just looked at binary classification. For multiclass classification, we 
assume that each instance belongs to only one class. A slightly different classification 
problem is where each sample can belong to more than one target class. This is called 
multi-label classification. We can employ similar strategies on each of these types  
of problem.

There are two basic approaches:
•	 One versus all
•	 One versus many

In the one versus all approach, a single multiclass problem is transformed into a 
number of binary classification problems. This is called the one versus all technique 
because we take each class in turn and fit a hypothesis function for that particular class, 
assigning a negative class to the other classes. We end up with different classifiers, 
each of which is trained to recognize one of the classes. We make a prediction given a 
new input by running all the classifiers and picking the classifier that predicts a class 
with the highest probability. To formalize it, we write the following:

( ) ( )i
wh x for each class i predict probability y i=

To make a prediction, we pick the class that maximizes the following:

( ) ( )i
wh x

With another approach called the one versus one method, a classifier is constructed 
for each pair of classes. When the model makes a prediction, the class that receives 
the most votes wins. This method is generally slower than the one versus many 
method, especially when there are a large number of classes.

All Sklearn classifiers implement multiclass classification. We saw this in Chapter 2, 
Tools and Techniques, with the K-nearest neighbors example, where we attempted 
to predict one of three classes using the iris dataset. Sklearn implements the one 
versus all algorithm using the OneVsRestClassifier class and the one versus one 
algorithm with OneVsOneClassifier. These are called meta-estimators because they 
take another estimator as an input. They have the advantage of being able to permit 
changing the way more than two classes are handled, and this can result in better 
performance, either in terms of computational efficiency, or generalization error. 
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In the following example, we use the SVC:

from sklearn import datasets

from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier

from sklearn.svm import LinearSVC

X,y = datasets.make_classification(n_samples=10000, n_features=5)

X1,y1 = datasets.make_classification(n_samples=10000, n_features=5)

clsAll=OneVsRestClassifier(LinearSVC(random_state=0)).fit(X, y)

clsOne=OneVsOneClassifier(LinearSVC(random_state=0)).fit(X1, y1)

print("One vs all cost= %f" % clsAll.score(X,y))

print("One vs one cost= %f" % clsOne.score(X1,y1))

We will observe the following output:

Regularization
We mentioned earlier that linear regression can become unstable, that is, highly 
sensitive to small changes in the training data, if features are correlated. Consider the 
extreme case where two features are perfectly negatively correlated such that any 
increase in one feature is accompanied by an equivalent decrease in another feature. 
When we apply our linear regression algorithm to just these two features, it will 
result in a function that is constant, so this is not really telling us anything about the 
data. Alternatively, if the features are positively correlated, small changes in them 
will be amplified. Regularization helps moderate this.

We saw previously that we could get our hypothesis to more closely fit the training 
data by adding polynomial terms. As we add these terms, the shape of the function 
becomes more complicated, and this usually results in the hypothesis overfitting 
the training data and performing poorly on the test data. As we add features, either 
directly from the data or the ones we derive ourselves, it becomes more likely that 
the model will overfit the data. One approach is to discard features that we think are 
less important. However, we cannot know for certain, in advance, what features may 
contain relevant information. A better approach is to not discard features but rather 
to shrink them. Since we do not know how much information each feature contains, 
regularization reduces the magnitude of all the parameters.
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We can simply add the term to the cost function.
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The hyper parameter, lambda, controls a tradeoff between two goals—the need to 
fit the training data, and the need to keep the parameters small to avoid overfitting. 
We do not apply the regularization parameter to our bias feature, so we separate the 
update rule for the first feature and add a regularization parameter to all subsequent 
features. We can write it like this:
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Here, we have added our regularization term, λ wj /m. To see more clearly how this 
works, we can group all the terms that depend on wj, and our update rule can be 
rewritten as follows:
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The regularization parameter, λ, is usually a small number greater than zero. In order 
for it to have the desired effect, it is set such that α λ /m is a number slightly less than 1. 
This will shrink wj on each iteration of the update.

Now, let's see how we can apply regularization to the normal equation. The equation 
is as follows:

( ) 1T Tw X X I X yλ
−

= +

This is sometimes referred to as the closed form solution. We add the identity 
matrix, I, multiplied by the regularization parameter. The identity matrix is an (n+1) 
by (n+1) matrix consisting of ones on the main diagonal and zeros everywhere else.
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In some implementations, we might also make the first entry, the top-left corner, of 
the matrix zero reflect the fact that we are not applying a regularization parameter to 
the first bias feature. However, in practice, this will rarely make much difference to 
our model.

When we multiply it with the identity matrix, we get a matrix where the main 
diagonal contains the value of λ, with all other positions as zero. This makes sure 
that, even if we have more features than training samples, we will still be able to 
invert the matrix XTX. It also makes our model more stable if we have correlated 
variables. This form of regression is sometimes called ridge regression, and we saw 
an implementation of this in Chapter 2, Tools and Techniques. An interesting alternative 
to ridge regression is lasso regression. It replaces the ridge regression regularization 
term, ∑iwi 2, with ∑i | wi |. That is, instead of using the sum of the squares of the 
weights, it uses the sum of the average of the weights. The result is that some of 
the weights are set to 0 and others are shrunk. Lasso regressions tends to be quite 
sensitive to the regularization parameter. Unlike ridge regression, lasso regression 
does not have a closed-form solution, so other forms of numerical optimization need 
to be employed. Ridge regression is sometimes referred to as using the L2 norm, and 
lasso regularization, the L1 norm.

Finally, we will look at how to apply regularization to logistic regression. As with 
linear regression, logistic regression can suffer from the same problems of overfitting 
if our hypothesis functions contain higher-order terms or many features. We can 
modify our logistic regression cost function to add the regularization parameter,  
as shown as follows:
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To implement gradient descent for logistic regression, we end up with an equation 
that, on the surface, looks identical to the one we used for gradient descent for linear 
regression. However, we must remember that our hypothesis function is the one we 
used for logistic regression.
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Using the hypothesis function, we get the following:

( ) ( )
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=
+

Summary
In this chapter, we studied some of the most used techniques in machine learning. 
We created hypothesis representations for linear and logistic regression. You learned 
how to create a cost function to measure the performance of the hypothesis on training 
data, and how to minimize the cost function in order to fit the parameters, using 
both gradient descent and the normal equation. We showed how you could fit the 
hypothesis function to nonlinear data by using polynomial terms in the hypothesis 
function. Finally, we looked at regularization, its uses, and how to apply it to logistic 
and linear regression.

These are powerful techniques used widely in many different machine learning 
algorithms. However, as you have probably realized, there is a lot more to the story. 
The models we have looked at so far usually require considerable human intervention 
to get them to perform usefully. For example, we have to set the hyper parameters, 
such as the learning rate or regularization parameter, and, in the case of non linear 
data, we have to try and find polynomial terms that will force our hypothesis to fit the 
data. It will be difficult to determine exactly what these terms are, especially when we 
have many features. In the next chapter, we will look at the ideas that drive some of 
the most powerful learning algorithms on the planet, that is, neural networks.
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Neural Networks
Artificial neural networks, as the name suggests, are based algorithms that attempt to 
mimic the way neurons work in the brain. Conceptual work began in the 1940s, but 
it is only somewhat recently that a number of important insights, together with the 
availability of hardware to run these more computationally expensive models, have 
given neural networks practical application. They are now state-of-the-art techniques 
that are at the heart of many advanced machine learning applications.

In this chapter, we will introduce the following topics:

•	 Logistic units
•	 The cost function for neural networks
•	 Implementing a neural network
•	 Other neural network architectures

Getting started with neural networks
We saw in the last chapter how we could create a nonlinear decision boundary by 
adding polynomial terms to our hypothesis function. We can also use this technique 
in linear regression to fit nonlinear data. However, this is not the ideal solution for a 
number of reasons. Firstly, we have to choose polynomial terms, and for complicated 
decision boundaries, this can be an imprecise and time-intensive process, which 
can take quite a bit of trial and error. We also need to consider what happens when 
we have a large number of features. It becomes difficult to understand exactly how 
added polynomial terms will change the decision boundary. It also means that the 
possible number of derived features will grow exponentially. To fit complicated 
boundaries, we will need many higher-order terms, and our model will become 
unwieldy, computationally expensive, and hard to understand.
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Consider applications such as computer vision, where in a gray scale image, each 
pixel is a feature that has a value between 0 and 255. For a small image, say 100 
pixels by 100 pixels, we have 10,000 features. If we include just quadratic terms, 
we end up with around 50 million possible features, and to fit complex decision 
boundaries, we likely need cubic and higher order terms. Clearly, such a model is 
entirely unworkable.

When we approach the problem of trying to mimic the brain, we are faced with a 
number of difficulties. Considering all the different things that the brain does, we 
might first think that the brain consists of a number of different algorithms, each 
specialized to do a particular task, and each hard wired into different parts of the 
brain. This approach basically considers the brain as a number of subsystems, each 
with its own program and task. For example, the auditory cortex for perceiving 
sound has its own algorithm that, for example, does a Fourier transform on the 
incoming sound wave to detect pitch. The visual cortex, on the other hand, has its 
own distinct algorithm for decoding and converting the signals from the optic nerve 
into the sense of sight. There is, however, growing evidence that the brain does not 
function like this at all.

Recent experiments on animals have shown the remarkable adaptabilities of brain 
tissue. Rewiring the optic nerve to the auditory cortex in animals, scientists found 
that the brain could learn to see using the machinery of the auditory cortex. The 
animals were tested to have full vision despite the fact that their visual cortex had been 
bypassed. It appears that brain tissue, in different parts of the brain, can relearn how 
to interpret its inputs. So, rather than the brain consisting of specialized subsystems 
programmed to perform specific tasks, it uses the same algorithm to learn different 
tasks. This single algorithm approach has many advantages, not least of which is that 
it is relatively easy to implement. It also means that we can create generalized models 
and then train them to perform specialized tasks. Like in real brains using a single 
algorithm to describe how each neuron communicates with the other neurons around 
it, it allows artificial neural networks to be adaptable and able to carry out multiple 
higher-level tasks. But, what is the nature of this single algorithm?

When trying to mimic real brain functions, we are forced to greatly simplify many 
things. For example, there is no way to take into account the role of the chemical 
state of the brain, or the state of the brain at different stages of development and 
growth. Most of the neural net models currently in use employ discrete layers of 
artificial neurons, or units, connected in a well ordered linear sequence or in layers. 
The brain, on the other hand, consists of many complex, nested, and interconnected 
neural circuits. Some progress has been made in attempting to imitate these  
complex feedback systems, and we will look at these at the end of this chapter. 
However, there is still much that we do not know about real brain action and  
how to incorporate this complex behavior into artificial neural networks.
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Logistic units
As a starting point, we use the idea of a logistic unit over the simplified model of 
a neuron. It consists of a set of inputs and outputs and an activation function. This 
activation function is essentially performing a calculation on the set of inputs, and 
subsequently giving an output. Here, we set the activation function to the sigmoid 
that we used for logistic regression in the previous chapter:

We have Two input units, x1  and x2 and a bias unit, x0, that is set to one. These 
are fed into a hypothesis function that uses the sigmoid logistic function and a 
weight vector, w, which parameterizes the hypothesis function. The feature vector, 
consisting of binary values, and the parameter vector for the preceding example 
consist of the following:

0 0

1 1

2 2

3 3

1x W
x x W W
x W
x W

=
= =

To see how we can get this to perform logical functions, let's give the model some 
weights. We can write this as a function of the sigmoid, g, and our weights. To get 
started, we are just going to choose some weights. We will learn shortly how to train 
the model to learn its own weights. Let's say that we set out weight such that we 
have the following hypothesis function:

( ) ( )1 2
15 10 10w x xh x g= − + +
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We feed our model some simple labeled data and construct a truth table:

( )
( )
( )
( )
( )

1 2

0 0 1 15 0
0 1 0 5 0
1 0 0 5 0
1 1 1 5 1

wx x y h x
g
g
g
g

− ≈
− ≈
− ≈

≈

Although this data appears relatively simple, the decision boundary that is needed 
to separate the classes is not. Our target variable, y, forms the logical XNOR with the 
input variables. The output is 1 only when both x1 and x2 are either 0 or 1.

Here, our hypothesis has given us a logical AND. That is, it returns a 1 when both 
x1 and x2 are 1. By setting the weights to other values, we can get our single artificial 
neuron to form other logical functions.

This gives us the logical OR function:

1 25 10 10wh x x= − + +

To perform an XNOR, we combine the AND, OR, and NOT functions. To perform 
negation, that is, a logical NOT, we simply choose large negative weights for the 
input variable that we want to negate.

Logistics units are connected together to form artificial neural networks. These 
networks consist of an input layer, one or more hidden layers, and an output layer. 
Each unit has an activation function, here the sigmoid, and is parameterized by the 
weight matrix W:
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We can write out the activation functions for each of the units in the hidden layer:

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2 1 1 1 1
1 10 0 11 1 12 2 13 3

2 1 1 1 1
2 20 0 21 1 22 2 23 3

2 1 1 1 1
3 30 0 31 1 32 2 33 3

a g W x W x W x W x

a g W x W x W x W x

a g W x W x W x W x

= + + +

= + + +

= + + +

The activation function for the output layer is as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 2 2 2 2 2 2 2 2
1 10 0 11 1 12 2 13 3wh x a g W a W a W a W a= = + + +

More generally, we can say a function mapping from a given layer, j, to the layer 
j+1 is determined by the parameter matrix, Wj. The super script j represents the jth 
layer, and the subscript, i, denotes the unit in that layer. We denote the parameter or 
weight matrix, W(j), which governs the mapping from the layer j to the layer j + 1. We 
denote the individual weights in the subscript of their matrix index.

Note that the dimensions of the parameter matrix for each layer will be the number 
of units in the next layer multiplied by the number of units in the current layer plus 1; 
this is for x0, which is the bias layer. More formally, we can write the dimension of the 
parameter matrix for a given layer, j, as follows:

( )1 1jjd d+ × +

The subscript (j + 1) refers to the number of units in the next input layer and the 
forward layer, and the dj + 1 refers to the number of units in the current layer plus 1.

Let's now look at how we can calculate these activation functions using a vector 
implementation. We can write these functions more compactly by defining a new 
term, Z, which consists of the weighted linear combination of the input values for 
each unit on a given layer. Here is an example:

( )
( )( )22
11a g Z=
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We are just replacing everything in the inner term of our activation function with 
a single function, Z. Here, the super script (2) represents the layer number, and the 
subscript 1 indicates the unit in that layer. So, more generally, the matrix that defines 
the activation function for the layer j is as follows:

( )

( ) ( )

( )

1

2

..

j

j j

j
n

Z

Z Z

Z

=

=

=

So, in our three layer example, our output layer can be defined as follows:

( ) ( ) ( )( )3 3wh x a g z= =

We can learn features by first looking at just the three units on the single hidden layer 
and how it maps its input to the input of the single unit on the output layer. We can see 
that it is only performing logistic regression using the set of features (a2). The difference 
is that now the input features of the hidden layer have themselves been computed 
using the weights learned from the raw features at the input layer. Through hidden 
layers, we can start to fit more complicated nonlinear functions.

We can solve our XNOR problem using the following neural net architecture:
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Here, we have three units on the input layer, two units plus the bias unit on the 
single hidden layer, and one unit on the output layer. We can set the weights for 
the first unit in the hidden layer (not including the bias unit) to perform the logical 
function x1 AND x2. The weights for the second unit perform the functions (NOT x1) 
AND (NOT x2). Finally, our output layer performs the OR function.

We can write our activation functions as follows:

( ) ( )
( ) ( )
( ) ( )

2
1 0 1 2

2
2 0 1 2

3
1 0 1 2

15 10 10

10 20 20
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The truth table for this network looks like this:

( ) ( ) ( )2 2
1 2 1 2

0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
1 1 1 0 1

wx x a a h x

To perform multiclass classification with neural networks, we use architectures with 
an output unit for each class that we are trying to classify. The network outputs 
a vector of binary numbers with 1 indicating that the class is present. This output 
variable is an i dimensional vector, where i is the number of output classes. The 
output space for four features, for example, would look like this:

( ) ( ) ( ) ( )1 2 3 4

1 0 0 0
0 ; 1 ; 0 ; 0
0 0 1 0
0 0 0 1

y y y y
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Our goal is to define a hypothesis function to approximately equal one of these  
four vectors:

( ) ( )i
wh x y≈

This is essentially a one versus all representation.

We can describe a neural network architecture by the number of layers, L, and by  
the number of units in each layer by a number, si, where the subscript indicates the 
layer number. For convenience, I am going to define a variable, t, indicating the 
number of units on the layer l + 1, where l + 1 is the forward layer, that is, the layer 
to the right-hand side of the diagram.

Cost function
To fit the weights in a neural net for a given training set, we first need to define a  
cost function:

( ) ( )( )( ) ( )( ) ( )( )( )( ) ( )( )
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This is very similar to the cost function we used for logistic regression, except that 
now we are also summing over k output units. The triple summation used in the 
regularization term looks a bit complicated, but all it is really doing is summing 
over each of the terms in the parameter matrix, and using this to calculate the 
regularization. Note that the summation, i, l, and j start at 1, rather than 0; this  
is to reflect the fact that we do not apply regularization to the bias unit.

Minimizing the cost function
Now that we have cost function, we need to work out a way to minimize it. As with 
gradient descent, we need to compute the partial derivatives to calculate the slope 
of the cost function. This is done using the back propagation algorithm. It is called 
back propagation because we begin by calculating the error at the output layer, then 
calculating the error for each previous layer in turn. We can use these derivatives 
calculated by the cost function to work out parameter values for each of the units  
in our neural network. To do this, we need to define an error term:

( ) |l
j error of node j in layerδ =
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For this example, let's assume that we have a total of three layers, including the input 
and output layers. The error at the output layer can be written as follows:

( ) ( ) ( )3 3
j j j w ja y h x yδ = − = −

The activation function in the final layer is equivalent to our hypothesis function, and 
we can use simple vector subtraction to calculate the difference between the values 
predicted by our hypothesis, and the actual values in our training set. Once we know 
the error in our output layer, we are able to back propagate to find the error, which is 
the delta values, in previous layers:

( ) ( )( ) ( ) ( )( )2 2 3 2.
T

W g zδ δ ′= ∗

This will calculate the error for layer three. We use the transpose of the parameter 
vector of the current layer, in this example layer 2, multiplied by the error vector from 
the forward layer, in this case layer 3. We then use pairwise multiplication, indicated 
by the * symbol, with the derivative of the activation function, g, evaluated at the input 
values given by z(3). We can calculate this derivative term by the following:

( )( ) ( ) ( )( )3 3 3. 1g z a a′ = ∗ −

If you know calculus, it is a fairly straight forward procedure to prove this, but for 
our purposes, we will not go into it here. As you would expect when we have more 
than one hidden layer, we can calculate the delta values for each hidden layer in 
exactly the same way, using the parameter vector, the delta vector for the forward 
layer, and the derivative of the activation function for the current layer. We do 
not need to calculate the delta values for layer 1 because these are just the features 
themselves without any errors. Finally, through a rather complicated mathematical 
proof that we will not go into here, we can write the derivative of the cost function, 
ignoring regularization, as follows:

( ) ( ) ( ) ( )1l l
j il

ij

J W a
W

δ +∂
=
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By computing the delta terms using back propagation, we can find these partial 
derivatives for each of the parameter values. Now, let's see how we apply this to 
a dataset of training samples. We need to define capital delta, Δ, which is just the 
matrix of the delta terms and has the dimensions, l:i:j. This will act as an accumulator 
of the delta values from each node in the neural network, as the algorithm loops 
through each training sample. Within each loop, it performs the following functions 
on each training sample:

1.	 It sets the activation functions in the first layer to each value of x, that is, our 
input features.

2.	 It performs forward propagation on each subsequent layer in turn up to the 
output layer to calculate the activation functions for each layer.

3.	 It computes the delta values at the output layer and begins the process of 
back propagation. This is similar to the process we performed in forward 
propagation, except that it occurs in reverse. So, for our output layer in our 
3-layer example, it is demonstrated as follows:

( ) ( ) ( )3 3 ia yδ = −

Remember that this is all happening in a loop, so we are dealing with one training 
sample at a time; y(i) represents the target value of the ith training sample. We can now 
use the back propagation algorithm to calculate the delta values for previous layers. 
We can now add these values to the accumulator, using the update rule:

( )
( )

( )
( ) ( ) ( )1:l l l l

jij ij a δ +∆ = ∆ +

This formula can be expressed in its vectorized form, updating all training samples 
at once, as shown:

( ) ( ) ( ) ( )( )1 1:
Tl l laδ +∆ = ∆ +

Now, we can add our regularization term:

( ) ( ) ( ):i i iλ∆ = +∆ +

Finally, we can update the weights by performing gradient descent:

( ) ( ) ( ):l l lW W α= − ∆
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Remember that α is the learning rate, that is, a hyper parameter we set to a small 
number between 0 and 1.

Implementing a neural network
There is one more thing we need to consider, and that is the initialization of our 
weights. If we initialize them to 0, or all to the same number, all the units on 
the forward layer will be computing the same function at the input, making the 
calculation highly redundant and unable to fit complex data. In essence, what we 
need to do is break the symmetry so that we give each unit a slightly different 
starting point that actually allows the network to create more interesting functions.

Now, let's look at how we might implement this in code. This implementation 
is written by Sebastian Raschka, taken from his excellent book, Python Machine 
Learning, released by Packt Publishing:

import numpy as np

from scipy.special import expit

import sys

class NeuralNetMLP(object):

  

    def __init__(self, n_output, n_features, n_hidden=30,

                 l1=0.0, l2=0.0, epochs=500, eta=0.001, 

                 alpha=0.0, decrease_const=0.0, shuffle=True,

                 minibatches=1, random_state=None):

        np.random.seed(random_state)

        self.n_output = n_output

        self.n_features = n_features

        self.n_hidden = n_hidden

        self.w1, self.w2 = self._initialize_weights()

        self.l1 = l1

        self.l2 = l2

        self.epochs = epochs

        self.eta = eta

        self.alpha = alpha
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        self.decrease_const = decrease_const

        self.shuffle = shuffle

        self.minibatches = minibatches

    def _encode_labels(self, y, k):

        onehot = np.zeros((k, y.shape[0]))

        for idx, val in enumerate(y):

            onehot[val, idx] = 1.0

        return onehot

    def _initialize_weights(self):

        """Initialize weights with small random numbers."""

        w1 = np.random.uniform(-1.0, 1.0, size=self.n_hidden*(self.n_
features + 1))

        w1 = w1.reshape(self.n_hidden, self.n_features + 1)

        w2 = np.random.uniform(-1.0, 1.0, size=self.n_output*(self.n_
hidden + 1))

        w2 = w2.reshape(self.n_output, self.n_hidden + 1)

        return w1, w2

    def _sigmoid(self, z):

        # return 1.0 / (1.0 + np.exp(-z))

        return expit(z)

    def _sigmoid_gradient(self, z):

        sg = self._sigmoid(z)

        return sg * (1 - sg)

    def _add_bias_unit(self, X, how='column'):

        if how == 'column':

            X_new = np.ones((X.shape[0], X.shape[1]+1))

            X_new[:, 1:] = X
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        elif how == 'row':

            X_new = np.ones((X.shape[0]+1, X.shape[1]))

            X_new[1:, :] = X

        else:

            raise AttributeError('`how` must be `column` or `row`')

        return X_new

    def _feedforward(self, X, w1, w2):

        a1 = self._add_bias_unit(X, how='column')

        z2 = w1.dot(a1.T)

        a2 = self._sigmoid(z2)

        a2 = self._add_bias_unit(a2, how='row')

        z3 = w2.dot(a2)

        a3 = self._sigmoid(z3)

        return a1, z2, a2, z3, a3

    def _L2_reg(self, lambda_, w1, w2):

        """Compute L2-regularization cost"""

        return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2) + np.sum(w2[:, 1:] 
** 2))

    def _L1_reg(self, lambda_, w1, w2):

        """Compute L1-regularization cost"""

        return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum() + np.abs(w2[:, 
1:]).sum())

    def _get_cost(self, y_enc, output, w1, w2):

        term1 = -y_enc * (np.log(output))

        term2 = (1 - y_enc) * np.log(1 - output)

        cost = np.sum(term1 - term2)

        L1_term = self._L1_reg(self.l1, w1, w2)

        L2_term = self._L2_reg(self.l2, w1, w2)

        cost = cost + L1_term + L2_term
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        return cost

    def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2):

        # backpropagation

        sigma3 = a3 - y_enc

        z2 = self._add_bias_unit(z2, how='row')

        sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2)

        sigma2 = sigma2[1:, :]

        grad1 = sigma2.dot(a1)

        grad2 = sigma3.dot(a2.T)

        # regularize

        grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2))

        grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2))

        return grad1, grad2

    def predict(self, X):

        if len(X.shape) != 2:

            raise AttributeError('X must be a [n_samples, n_features] 
array.\n'

                                 'Use X[:,None] for 1-feature 
classification,'

                                 '\nor X[[i]] for 1-sample 
classification')

        a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2)

        y_pred = np.argmax(z3, axis=0)

        return y_pred

    def fit(self, X, y, print_progress=False):

        self.cost_ = []

        X_data, y_data = X.copy(), y.copy()
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        y_enc = self._encode_labels(y, self.n_output)

        delta_w1_prev = np.zeros(self.w1.shape)

        delta_w2_prev = np.zeros(self.w2.shape)

        for i in range(self.epochs):

            # adaptive learning rate

            self.eta /= (1 + self.decrease_const*i)

            if print_progress:

                sys.stderr.write('\rEpoch: %d/%d' % (i+1, self.epochs))

                sys.stderr.flush()

            if self.shuffle:

                idx = np.random.permutation(y_data.shape[0])

                X_data, y_data = X_data[idx], y_data[idx]

            mini = np.array_split(range(y_data.shape[0]), self.
minibatches)

            for idx in mini:

                # feedforward

                a1, z2, a2, z3, a3 = self._feedforward(X[idx], self.w1, 
self.w2)

                cost = self._get_cost(y_enc=y_enc[:, idx],

                                      output=a3,

                                      w1=self.w1,

                                      w2=self.w2)

                self.cost_.append(cost)

                # compute gradient via backpropagation

                grad1, grad2 = self._get_gradient(a1=a1, a2=a2,

                                                  a3=a3, z2=z2,

                                                  y_enc=y_enc[:, idx],
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                                                  w1=self.w1,

                                                  w2=self.w2)

                delta_w1, delta_w2 = self.eta * grad1, self.eta * grad2

                self.w1 -= (delta_w1 + (self.alpha * delta_w1_prev))

                self.w2 -= (delta_w2 + (self.alpha * delta_w2_prev))

                delta_w1_prev, delta_w2_prev = delta_w1, delta_w2

        return self

Now, let's apply this neural net to the iris sample dataset. Remember that this dataset 
contains three classes, so we set the n_output parameter (the number of output 
layers) to 3. The shape of the first axis in the dataset refers to the number of features. 
We create 50 hidden layers and 100 epochs, with each epoch being a complete loop 
over all the training set. Here, we set the learning rate, alpha, to .001, and we 
display a plot of the cost against the number of epochs:

iris = datasets.load_iris()

X=iris.data

y=iris.target

nn= NeuralNetMLP(3, X.shape[1],n_hidden=50, epochs=100, alpha=.001)

nn.fit(X,y)

plt.plot(range(len(nn.cost_)),nn.cost_)

plt.show()

Here is the output:
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The graph shows how the cost is decreasing on each epoch. To get a feel for how 
the model works, spend some time experimenting with it on other data sets and 
with a variety of input parameters. One particular data set that is used often when 
testing multiclass classification problems is the MNIST dataset, which is available at 
http://yann.lecun.com/exdb/mnist/. This consists of datasets with 60,000 images 
of hand drawn letters, along with their labels. It is often used as a benchmark for 
machine learning algorithms.

Gradient checking
Back propagation, and neural nets in general, are a little difficult to conceptualize. So, 
it is often not easy to understand how changing any of the model (hyper) parameters 
will affect the outcome. Furthermore, with different implementations, it is possible 
to get results that indicate that an algorithm is working correctly, that is, the cost 
function is decreasing on each level of gradient descent. However, as with any 
complicated software, there can be hidden bugs that might only manifest themselves 
under very specific conditions. A way to help eliminate these is through a procedure 
called gradient checking. This is a numerical way of approximating gradients, and 
we can understand this intuitively by examining the following diagram:

The derivative of J(w), with respect to w, can be approximated as follows:

( ) ( ) ( )( )
( )2

J w J wd J w
dw

+∈ − −∈
≈

∈

http://yann.lecun.com/exdb/mnist/
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The preceding formula approximates the derivative when the parameter is a single 
value. We need to evaluate these derivatives on a cost function, where the weights 
are a vector. We do this by performing a partial derivative on each of the weights in 
turn. Here is an example:
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Other neural net architectures
Much of the most important work being done in the field of neural net models, and 
indeed machine learning in general, is using very complex neural nets with many 
layers and features. This approach is often called deep architecture or deep learning. 
Human and animal learning occurs at a rate and depth that no machine can match. 
Many of the elements of biological learning still remain a mystery. One of the key 
areas of research, and one of the most useful in practical applications, is that of object 
recognition. This is something quite fundamental to living systems, and higher 
animals have evolved an extraordinary ability to learn complex relationships between 
objects. Biological brains have many layers; each synaptic event exists in a long chain 
of synaptic processes. In order to recognize complex objects, such as people's faces 
or handwritten digits, a fundamental task that is needed is to create a hierarchy of 
representation from the raw input to higher and higher levels of abstraction. The goal 
is to transform raw data, such as a set of pixel values, into something we can describe 
as, say, a person riding bicycle. An approach to solving these sorts of problems is to use 
a sparse representation that creates higher dimensional feature spaces, where there 
are many features, but only very few of them have non-zero values. This approach is 
attractive for several reasons. Firstly, features may become more linearly separable 
in higher feature spaces. Also, it has been shown in certain models that sparsity can 
be used to make training more efficient and help extract information from very noisy 
data. We will explore this idea and the general concept of feature extraction in greater 
detail in the next chapter.
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Another interesting idea is that of recurrent neural networks or RNNs. These are in 
many ways quite distinct from the feed forward networks that we have considered so 
far. Rather than simply static mappings between input and output, RNNs have at least 
one cyclic feedback path. RNNs introduce a time component to the network because 
a unit's input may include inputs that it received earlier via a feedback loop. All 
biological neural networks are highly recurrent. Artificial RNNs have shown promise 
in areas such as speech and hand writing recognition. However, they are, in general, 
much harder to train because we cannot simply back propagate the error. We have to 
take into consideration the time component and the dynamic, nonlinear characteristics 
of such systems. RNNs will provide a very interesting area for future research.

Summary
In this chapter, we introduced the powerful machine learning algorithms of artificial 
neural networks. We saw how these networks are a simplified model of neurons in 
the brain. They can perform complex learning tasks, such as learning highly nonlinear 
decision boundaries, using layers of artificial neurons, or units, to learn new features 
from labelled data. In the next chapter, we will look at the crucial component of any 
machine learning algorithm, that is, its features.
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Features – How Algorithms 
See the World

So far in this book, we suggested a number of ways and a number of reasons for 
creating, extracting, or, otherwise, manipulating features. In this chapter, we will 
address this topic head on. The right features, sometimes called attributes, are the 
central component for machine learning models. A sophisticated model with the 
wrong features is worthless. Features are how our applications see the world. For 
all but the most simple tasks, we will process our features before feeding them to a 
model. There are many interesting ways in which we can do this, and it is such an 
important topic that it's appropriate to devote an entire chapter to it.

It has only been in the last decade or so that machine learning models have been 
routinely using tens of thousands of features or more. This allows us to tackle 
many different problems, such as those where our feature set is large compared 
to the number of samples. Two typical applications are genetic analysis and text 
categorization. For genetic analysis, our variables are a set of gene expression 
coefficients. These are based on the number of mRNA present in a sample, for 
example, taken from a tissue biopsy. A classification task might be performed to 
predict whether a patient has cancer or not. The number of training and test samples 
together may be a number less than 100. On the other hand, the number of variables 
in the raw data may range from 6,000 to 60,000. Not only will this translate to a large 
number of features, it also means that the range of values between features is quite 
large too. In this chapter, we will cover the following topics:

•	 Feature types
•	 Operations and statistics
•	 Structured features
•	 Transforming features
•	 Principle component analysis
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Feature types
There are three distinct types of features: quantitative, ordinal, and categorical. We 
can also consider a fourth type of feature—the Boolean—as this type does have a  
few distinct qualities, although it is actually a type of categorical feature. These 
feature types can be ordered in terms of how much information they convey. 
Quantitative features have the highest information capacity followed by ordinal, 
categorical, and Boolean.

Let's take a look at the tabular analysis:

Feature type Order Scale Tendency Dispersion Shape
Quantitative Yes Yes Mean Range, 

variance, 
and standard 
deviation

Skewness, 
kurtosis

Ordinal Yes No Median Quantiles NA
Categorical No No Mode NA NA

The preceding table shows the three types of features, their statistics, and properties. 
Each feature inherits the statistics from the features from the next row it in the table. 
For example, the measurement of central tendency for quantitative features includes 
the median and mode.

Quantitative features
The distinguishing characteristic of quantitative features is that they are continuous, 
and they usually involve mapping them to real numbers. Often, feature values can be 
mapped to a subset of real numbers, for example, expressing age in years; however, 
care must be taken to use the full scale when calculating statistics, such as mean or 
standard deviation. Because quantitative features have a meaningful numeric scale, 
they are often used in geometric models. When they are used in tree models, they 
result in a binary split, for example, using a threshold value where values above the 
threshold go to one child and values equal to or below the threshold go to the other 
child. Tree models are insensitive to monotonic transformations of scale, that is, 
transformations that do not change the ordering of the feature values. For example, 
it does not matter to a tree model if we measure length in centimeters or inches, or 
use a logarithmic or linear scale, we simply have to change the threshold values to 
the same scale. Tree models ignore the scale of quantitative features and treat them 
as ordinal. This is also true for rule-based models. For probabilistic models, such as 
the naïve Bayes classifier, quantitative features need to be discretized into a finite 
number of bins, and therefore, converted to categorical features.
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Ordinal features
Ordinal features are features that have a distinct order but do not have a scale. They 
can be encoded as integer values; however, doing so does not imply any scale. A 
typical example is that of house numbers. Here, we can discern the position of a 
house on a street by its number. We assume that house number 1 will come before 
house number 20 and that houses with the numbers 10 and 11 would be located 
close to each other. However, the size of the number does not imply any scale; for 
example, there is no reason to believe that house number 20 will be larger than 
house number 1. The domain of an ordinal feature is a totally ordered set such as a 
set of characters or strings. Because ordinal features lack a linear scale, it does not 
make sense to add or subtract them; therefore, operations such as averaging ordinal 
features do not usually make sense or yield any information about the features. 
Similar to quantitative features in tree models, ordinal features result in a binary 
split. In general, ordinal features are not readily used in most geometric models. 
For example, linear models assume a Euclidian instance space where feature values 
are treated as Cartesian coordinates. For distance-based models, we can use ordinal 
features if we encode them as integers and the distance between them is simply their 
difference. This is sometimes referred to as the hamming distance.

Categorical features
Categorical features, sometimes called nominal features, do not have any ordering 
or scale, and therefore, they do not allow any statistical summary apart from the 
mode indicating the most frequent occurrence of a value. Categorical features 
are often best handled by probabilistic models; however, they can also be used in 
distance-based models using the hamming distance and by setting the distance to 
0 for equal values and 1 for unequal values. A subtype of categorical features is the 
Boolean feature, which maps into the Boolean values of true or false.

Operations and statistics
Features can be defined by the allowable operations that can be performed on them. 
Consider two features: a person's age and their phone number. Although both these 
features can be described by integers, they actually represent two very different 
types of information. This is clear when we see which operations we can usefully 
perform on them. For example, calculating the average age of a group of people  
will give us a meaningful result; calculating the average phone number will not.

We can call the range of possible calculations that can be performed on a feature as 
its statistics. These statistics describe three separate aspects of data. These are—its 
central tendency, its dispersion, and its shape.
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To calculate the central tendency of data, we usually use one or more of the 
following statistics: the mean (or average), the median (or the middle value in an 
ordered list), and the mode (or the majority of all values). The mode is the only 
statistic that can be applied to all data types. To calculate the median, we need 
feature values that can be somehow ordered, that is ordinal or quantitative. To 
calculate the mean, values must be expressed on some scale, such as the linear  
scale. In other words they will need to be quantitative features.

The most common way of calculating dispersion is through the statistics of variance 
or standard deviation. These are both really the same measure but on different 
scales, with standard deviation being useful because it is expressed on the same scale 
as the feature itself. Also, remember that the absolute difference between the mean 
and the median is never larger than the standard deviation. A simpler statistic for 
measuring dispersion is the range, which is just the difference between the minimum 
and maximum values. From here, of course, we can estimate the feature's central 
tendency by calculating the mid-range point. Another way to measure dispersion 
is using units such as percentiles or deciles to measure the ratio of instances falling 
below a particular value. For example, the pth percentile is the value that p percent  
of instances fall below.

Measuring shape statistics is a little more complicated and can be understood using 
the idea of the central moment of a sample. This is defined as follows:
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Here, n is the number of samples, μ is the sample mean, and k is an integer. When  
k = 1, the first central moment is 0 because this is simply the average deviation from 
the mean, which is always 0. The second central moment is the average squared 
deviation from the mean, which is the variance. We can define skewness as follows:
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Here ơ is the standard deviation. If this formula gives a value that is positive, then 
there are more instances with values above the mean rather than below. The data, 
when graphed, is skewed to the right. When the skew is negative, the converse  
is true.
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We can define kurtosis as a similar relationship for the fourth central moment:

4
4

m
σ

It can be shown that a normal distribution has a kurtosis of 3. At values above this, 
the distribution will be more peaked. At kurtosis values below 3, the distribution will 
be flatter.

We previously discussed the three types of data, that is, categorical, ordinal,  
and quantitative.

Machine learning models will treat the different data types in very distinct ways. 
For example, a decision tree split on a categorical feature will give rise to as many 
children as there are values. For ordinal and quantitative features, the splits will be 
binary, with each parent giving rise to two children based on a threshold value. As a 
consequence, tree models treat quantitative features as ordinal, ignoring the features 
scale. When we consider probabilistic models such as the Bayes classifier, we can see 
that it actually treats ordinal features as categorical, and the only way in which it can 
handle quantitative features is to turn them into a finite number of discrete values, 
therefore converting them to categorical data.

Geometric models, in general, require features that are quantitative. For example, 
linear models operate in a Euclidean instance space, with the features acting as 
Cartesian coordinates. Each feature value is considered as a scalar relationship to 
other feature values. Distance-based models, such as the k-nearest neighbor, can 
incorporate categorical features by setting the distance to 0 for equal values and 1 for 
unequal values. Similarly, we can incorporate ordinal features into distance-based 
models by counting the number of values between two values. If we are encoding 
feature values as integers, then the distance is simply the numerical difference. By 
choosing an appropriate distance metric, it is possible to incorporate ordinal and 
categorical features into distance-based models.
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Structured features
We assume that each instance can be represented as a vector of feature values and 
that all relevant aspects are represented by this vector. This is sometimes called an 
abstraction because we filter out unnecessary information and represent a real-world 
phenomena with a vector. For example, representing the entire works of Leo Tolstoy 
as a vector of word frequencies is an abstraction. We make no pretense that this 
abstraction will serve any more than a very particular limited application. We may 
learn something about Tolstoy's use of language and perhaps elicit some information 
regarding the sentiment and subject of Tolstoy's writing. However, we are unlikely 
to gain any significant insights into the broad canvas of the 19th century Russia 
portrayed in these works. A human reader, or a more sophisticated algorithm, will 
gain these insights not from the counting of each word but by the structure that these 
words are part of.

We can think of structured features in a similar way to how we may think about 
queries in a database programming language, such as SQL. A SQL query can represent 
an aggregation over variables to do things such as finding a particular phrase or 
finding all the passages involving a particular character. What we are doing in a 
machine learning context is creating another feature with these aggregate properties.

Structured features can be created prior to building the model or as part of the model 
itself. In the first case, the process can be understood as being a translation from the 
first order logic to a propositional logic. A problem with this approach is that it can 
create an explosion in the number of potential features as a result of combinations 
with existing features. Another important point is that, in the same way that in SQL 
one clause can cover a subset of another clause, structural features can also be logically 
related. This is exploited in the branch of machine learning that is particularly well 
suited to natural language processing, known as inductive logic programming.

Transforming features
When we transform features, our aim, obviously, is to make them more useful to our 
models. This can be done by adding, removing, or changing information represented 
by the feature. A common feature transformation is that of changing the feature type. 
A typical example is binarization, that is, transforming a categorical feature into a 
set of binary ones. Another example is changing an ordinal feature into a categorical 
feature. In both these cases, we lose information. In the first instance, the value of 
a single categorical feature is mutually exclusive, and this is not conveyed by the 
binary representation. In the second instance, we lose the ordering information. 
These types of transformations can be considered inductive because they consist of a 
well-defined logical procedure that does not involve an objective choice apart from 
the decision to carry out these transformations in the first place.
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Binarization can be easily carried out using the sklearn.preprocessing.
Binarizer module. Let's take a look at the following commands:

from sklearn.preprocessing import Binarizer

from random import randint

bin=Binarizer(5)

X=[randint(0,10) for b in range(1,10)]

print(X)

print(bin.transform(X))

The following is the output for the preceding commands:

Features that are categorical often need to be encoded into integers. Consider a very 
simple dataset with just one categorical feature, City, with three possible values, 
Sydney, Perth, and Melbourne, and we decide to encode the three values as 0, 1, 
and 2, respectively. If this information is to be used in a linear classifier, then we 
write the constraint as a linear inequality with a weight parameter. The problem, 
however, is that this weight cannot encode for a three way choice. Suppose we have 
two classes, east coast and west coast, and we need our model to come up with a 
decision function that will reflect the fact that Perth is on the west coast and both 
Sydney and Melbourne are on the east coast. With a simple linear model, when the 
features are encoded in this way, then the decision function cannot come up with a 
rule that will put Sydney and Melbourne in the same class. The solution is to blow 
up the feature space to three features, each getting their own weights. This is called 
one hot encoding. Sciki-learn implements the OneHotEncoder() function to perform 
this task. This is an estimator that transforms each categorical feature, with m 
possible values into m binary features. Consider that we are using a model with data 
that consists of the city feature as described in the preceding example and two other 
features—gender, which can be either male or female, and an occupation, which 
can have three values—doctor, lawyer, or banker. So, for example, a female banker 
from Sydney would be represented as [1,2,0]. Three more samples are added for the 
following example:

from sklearn.preprocessing import OneHotEncoder

enc = OneHotEncoder()

enc.fit([[1,2,0], [1, 1, 0], [0, 2, 1], [1, 0, 2]])

print(enc.transform([1,2,0]).toarray())
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We will get the following output:

Since we have two genders, three cities, and three jobs in this dataset, the first two 
numbers in the transform array represent the gender, the next three represent the 
city, and the final three represent the occupation.

Discretization
I have already briefly mentioned the idea of thresholding in relation to decision 
trees, where we transform an ordinal or quantitative feature into a binary feature 
by finding an appropriate feature value to split on. There are a number of methods, 
both supervised and unsupervised, that can be used to find an appropriate split in 
continuous data, for example, using the statistics of central tendency (supervised), 
such as the mean or median or optimizing an objective function based on criteria 
such as information gain.

We can go further and create multiple thresholds, transforming a quantitative feature 
into an ordinal one. Here, we divide a continuous quantitative feature into numerous 
discrete ordinal values. Each of these values is referred to as a bin, and each bin 
represents an interval on the original quantitative feature. Many machine learning 
models require discrete values. It becomes easier and more comprehensible to create 
rule-based models using discrete values. Discretization also makes features more 
compact and may make our algorithms more efficient.

One of the most common approaches is to choose bins such that each bin has 
approximately the same number of instances. This is called equal frequency 
discretization, and if we apply it to just two bins, then this is the same as using the 
median as a threshold. This approach can be quite useful because the bin boundaries 
can be set up in such a way that they represent quantiles. For example, if we have 
100 bins, then each bin represents a percentile.

Alternatively, we can choose the boundaries so that each bin has the same interval 
width. This is called equal width discretization. A way of working out the value of 
this bin's width interval is simply to divide the feature range by the number of bins. 
Sometimes, the features do not have an upper or lower limit, and we cannot calculate 
its range. In this case, integer numbers of standard deviations above and below the 
mean can be used. Both width and frequency discretization are unsupervised. They 
do not require any knowledge of the class labels to work.
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Let's now turn our attention to supervised discretization. There are essentially 
two approaches: the top-down or divisive, and the agglomerative or bottom-up 
approach. As the names suggest, divisive works by initially assuming that all 
samples belong to the same bin and then progressively splits the bins. Agglomerative 
methods begin with a bin for each instance and progressively merges these bins. 
Both methods require some stopping criteria to decide if further splits are necessary.

The process of recursively partitioning feature values through thresholding is an 
example of divisive discretization. To make this work, we need a scoring function 
that finds the best threshold for particular feature values. A common way to do 
this is to calculate the information gain of the split or its entropy. By determining 
how many positive and negative samples are covered by a particular split, we can 
progressively split features based on this criterion.

Simple discretization operations can be carried out by the Pandas cut and qcut 
methods. Consider the following example:

import pandas as pd

import numpy as np

print(pd.cut(np.array([1,2,3,4]), 3, retbins = True, right = False))

Here is the output observed:

Normalization
Thresholding and discretization, both, remove the scale of a quantitative feature and, 
depending on the application, this may not be what we want. Alternatively, we may 
want to add a measure of scale to ordinal or categorical features. In an unsupervised 
setting, we refer to this as normalization. This is often used to deal with quantitative 
features that have been measured on a different scale. Feature values that 
approximate a normal distribution can be converted to z scores. This is simply a 
signed number of standard deviations above or below the mean. A positive z score 
indicates a number of standard deviations above the mean, and a negative z score 
indicates the number of standard deviations below the mean. For some features, it 
may be more convenient to use the variance rather than the standard deviation.
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A stricter form of normalization expresses a feature on a 0 to 1 scale. If we know 
a features range, we can simply use a linear scaling, that is, divide the difference 
between the original feature value and the lowest value with the difference between 
the lowest and highest value. This is expressed in the following:
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Here, fn is the normalized feature, f is the original feature, and l and h are the lowest 
and highest values, respectively. In many cases, we may have to guess the range. 
If we know something about a particular distribution, for example, in a normal 
distribution more than 99% of values are likely to fall within +3 or -3 standard 
deviations of the mean, then we can write a linear scaling such as the following:
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Here, μ is the mean and ơ is the standard deviation.

Calibration
Sometimes, we need to add scale information to an ordinal or categorical feature. 
This is called feature calibration. It is a supervised feature transformation that has a 
number of important applications. For example, it allows models that require scaled 
features, such as linear classifiers, to handle categorical and ordinal data. It also gives 
models the flexibility to treat features as ordinal, categorical, or quantitative. For 
binary classification, we can use the posterior probability of the positive class, given 
a features value, to calculate the scale. For many probabilistic models, such as naive 
Bayes, this method of calibration has the added advantage in that the model does 
not require any additional training once the features are calibrated. For categorical 
features, we can determine these probabilities by simply collecting the relative 
frequencies from a training set.
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There are cases where we might need to turn quantitative or ordinal features in to 
categorical features yet maintain an ordering. One of the main ways we do this is 
through a process of logistic calibration. If we assume that the feature is normally 
distributed with the same variance, then it turns out that we can express a likelihood 
ratio, the ration of positive and negative classes, given a feature value v, as follows:
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To neutralize the effect of nonuniform class distributions, we can calculate calibrated 
features using the following:
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This, you may notice, is exactly the sigmoid activation function we used for logistic 
regression. To summarize logistic calibration, we essentially use three steps:

1.	 Estimate the class means for the positive and negative classes.
2.	 Transform the features into z scores.
3.	 Apply the sigmoid function to give calibrated probabilities.

Sometimes, we may skip the last step, specifically if we are using distance-based 
models where we expect the scale to be additive in order to calculate Euclidian 
distance. You may notice that our final calibrated features are multiplicative in scale.
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Another calibration technique, isotonic calibration, is used on both quantitative 
and ordinal features. This uses what is known as a ROC curve (stands for Receiver 
Operator Characteristic) similar to the coverage maps used in the discussion of 
logical models in Chapter 4, Models – Learning from Information. The difference is  
that with an ROC curve, we normalize the axis to [0,1].

We can use the sklearn package to create an ROC curve:

import matplotlib.pyplot as plt

from sklearn import svm, datasets

from sklearn.metrics import roc_curve, auc

from sklearn.cross_validation import train_test_split

from sklearn.preprocessing import label_binarize

from sklearn.multiclass import OneVsRestClassifier

X, y = datasets.make_classification(n_samples=100,n_classes=3,n_
features=5, n_informative=3, n_redundant=0,random_state=42)

# Binarize the output

y = label_binarize(y, classes=[0, 1, 2])

n_classes = y.shape[1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5)

classifier = OneVsRestClassifier(svm.SVC(kernel='linear', 
probability=True, ))

y_score = classifier.fit(X_train, y_train).decision_function(X_test)

fpr, tpr, _ = roc_curve(y_test[:,0], y_score[:,0]) 

roc_auc = auc(fpr, tpr)

plt.figure()

plt.plot(fpr, tpr, label='ROC AUC %0.2f' % roc_auc)

plt.plot([0, 1], [0, 1], 'k--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver operating characteristic')

plt.legend(loc="best")

plt.show()
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Here is the output observed:

The ROC curve maps the true positive rates against the false positive rate for 
different threshold values. In the preceding diagram, this is represented by the 
dotted line. Once we have constructed the ROC curve, we calculate the number of 
positives, mi, and the total number of instances, ni, in each segment of the convex 
hull. The following formula is then used to calculate the calibrated feature values:
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In this formula, c is the prior odds, that is, the ratio of the probability of the positive 
class over the probability of the negative class.

So far in our discussion on feature transformations, we assumed that we know all 
the values for every feature. In the real world, this is often not the case. If we are 
working with probabilistic models, we can estimate the value of a missing feature 
by taking a weighted average over all features values. An important consideration 
is that the existence of missing feature values may be correlated with the target 
variable. For example, data in an individual's medical history is a reflection of the 
types of testing that are performed, and this in turn is related to an assessment on 
risk factors for certain diseases.
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If we are using a tree model, we can randomly choose a missing value, allowing the 
model to split on it. This, however, will not work for linear models. In this case, we 
need to fill in the missing values through a process of imputation. For classification, 
we can simply use the statistics of the mean, median, and mode over the observed 
features to impute the missing values. If we want to take feature correlation into 
account, we can construct a predictive model for each incomplete feature to predict 
missing values.

Since scikit-learn estimators always assume that all values in an array are numeric, 
missing values, either encoded as blanks, NaN, or other placeholders, will generate 
errors. Also, since we may not want to discard entire rows or columns, as these may 
contain valuable information, we need to use an imputation strategy to complete the 
dataset. In the following code snippet, we will use the Imputer class:

from sklearn.preprocessing import Binarizer, Imputer, OneHotEncoder

imp = Imputer(missing_values='NaN', strategy='mean', axis=0)

print(imp.fit_transform([[1, 3], [4, np.nan], [5, 6]]))

Here is the output:

Many machine learning algorithms require that features are standardized. This 
means that they will work best when the individual features look more or less 
like normally distributed data with near-zero mean and unit variance. The easiest 
way to do this is by subtracting the mean value from each feature and scaling it by 
dividing by the standard deviation. This can be achieved by the scale() function 
or the standardScaler() function in the sklearn.preprocessing() function. 
Although these functions will accept sparse data, they probably should not be used 
in such situations because centering sparse data would likely destroy its structure. It 
is recommended to use the MacAbsScaler() or maxabs_scale() function in these 
cases. The former scales and translates each feature individually by its maximum 
absolute value. The latter scales each feature individually to a range of [-1,1]. 
Another specific case is when we have outliers in the data. In these cases using the 
robust_scale() or RobustScaler() function is recommended.

Often, we may want to add complexity to a model by adding polynomial terms. This 
can be done using the PolynomialFeatures() function:

from sklearn.preprocessing import PolynomialFeatures

X=np.arange(9).reshape(3,3)
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poly=PolynomialFeatures(degree=2)

print(X)

print(poly.fit_transform(X))

We will observe the following output:

Principle component analysis
Principle Component Analysis (PCA) is the most common form of dimensionality 
reduction that we can apply to features. Consider the example of a dataset consisting 
of two features and we would like to convert this two-dimensional data into one 
dimension. A natural approach would be to draw a line of the closest fit and project 
each data point onto this line, as shown in the following graph:
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PCA attempts to find a surface to project the data by minimizing the distance 
between the data points and the line we are attempting to project this data to. For the 
more general case where we have n dimensions and we want to reduce this space to 
k-dimensions, we find k vectors u(1),u(2), ..., u(k) onto which to project the data so as 
to minimize the projection error. That is we are trying to find a k-dimensional surface 
to project the data.

This looks superficially like linear regression however it is different in several 
important ways. With linear regression we are trying to predict the value of some 
output variable given an input variable. In PCA we are not trying to predict an 
output variable, rather we are trying to find a subspace onto which to project our 
input data. The error distances, as represented in the preceding graph, is not the 
vertical distance between a point and the line, as is the case for linear regression, but 
rather the closest orthogonal distance between the point and the line. Thus, the error 
lines are at an angle to the axis and form a right angle with our projection line.

An important point is that in most cases, PCA requires that the features are scaled 
and are mean normalized, that is, the features have zero mean and have a comparable 
range of values. We can calculate the mean using the following formula:
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The sum is calculated by replacing the following:
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If the features have scales that are significantly different, we can rescale using  
the following:
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These functions are available in the sklearn.preprocessing module.
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The mathematical process of calculating both the lower dimensional vectors and the 
points on these vectors where we project our original data involve first calculating the 
covariance matrix and then calculating the eigenvectors of this matrix. To calculate 
these values from first principles is quite a complicated process. Fortunately, the 
sklearn package has a library for doing just this:

from sklearn.decomposition import PCA

import numpy as np

X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

pca = PCA(n_components=1)

pca.fit(X)

print(pca.transform(X))

We will get the following output:

Summary
There are a rich variety of ways in which we can both transform and construct new 
features to make our models work more efficiently and give more accurate results. 
In general, there are no hard and fast rules for deciding which of the methods to use 
for a particular model. Much depends on the feature types (quantitative, ordinal, 
or categorical) that you are working with. A good first approach is to normalize 
and scale the features, and if the model requires it, transform the feature to an 
appropriate type, as we do through discretization. If the model performs poorly, it 
may be necessary to apply further preprocessing such as PCA. In the next chapter, 
we will look at ways in which we can combine different types of models, through the 
use of ensembles, to improve performance and provide greater predictive power.
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Learning with Ensembles
The motivation for creating machine learning ensembles comes from clear intuitions 
and is grounded in a rich theoretical history. Diversity, in many natural and  
human-made systems, makes them more resilient to perturbations. Similarly, we 
have seen that averaging results from a number of measurements can often result in 
a more stable models that are less susceptible to random fluctuations, such as outliers 
or errors in data collection.

In this chapter, we will divide this rather large and diverse space into the  
following topics:

•	 Ensemble types
•	 Bagging
•	 Random forests
•	 Boosting

Ensemble types
Ensemble techniques can be broadly divided into two types:

•	 Averaging method: This is the method in which several estimators are run 
independently and their predictions are averaged. This includes random 
forests and bagging methods.

•	 Boosting method: This is the method in which weak learners are built 
sequentially using weighted distributions of the data based on the error rates.
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Ensemble methods use multiple models to obtain better performance than any single 
constituent model. The aim is to not only build diverse and robust models, but also 
work within limitations, such as processing speed and return times. When working 
with large datasets and quick response times, this can be a significant developmental 
bottleneck. Troubleshooting and diagnostics are an important aspect of working with 
all machine learning models, but especially when we are dealing with models that 
may take days to run.

The types of machine learning ensembles that can be created are as diverse as the 
models themselves, and the main considerations revolve around three things: how 
we divide our data, how we select the models, and the methods we use to combine 
their results. This simplistic statement actually encompasses a very large and  
diverse space.

Bagging
Bagging, also called bootstrap aggregating, comes in a few flavors and these 
are defined by the way they draw random subsets from the training data. Most 
commonly, bagging refers to drawing samples with replacement. Because the 
samples are replaced, it is possible for the generated datasets to contain duplicates. 
It also means that data points may be excluded from a particular generated dataset, 
even if this generated set is the same size as the original. Each of the generated 
datasets will be different and this is a way to create diversity among the models in 
an ensemble. We can calculate the probability that a data point is not selected in a 
sample using the following example:

11
n

n
 − 
 

Here, n is the number of bootstrap samples. Each of the n bootstrap samples results 
in a different hypothesis. The class is predicted either by averaging the models or 
by choosing the class predicted by the majority of models. Consider an ensemble of 
linear classifiers. If we use majority voting to determine the predicted class, we create 
a piece-wise linear classifier boundary. If we transform the votes to probabilities, 
then we partition the instance space into segments that can each potentially have a 
different score.

It should also be mentioned that it is possible, and sometimes desirable, to use 
random subsets of features; this is called subspace sampling. Bagging estimators 
work best with complex models such as fully developed decision trees because they 
can help reduce overfitting. They provide a simple, out-of-the-box, way to improve  
a single model.
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Scikit-learn implements a BaggingClassifier and BaggingRegressor objects. Here 
are some of their most important parameters:

Parameter Type Description Default
base_estimator Estimator This is the model the ensemble is built on. Decision 

tree
n_estimators Int This is the number of base estimators. 10
max_samples Int or float This is the number of samples to draw. If 

float draw max_samples*X.shape[0].
1.0

max_features Int or float This is the number of features to draw. If 
float draw max_features*X.shape[1].

1.0

bootstrap Boolean These are the samples drawn with 
replacement.

True

bootstrap_
features

Boolean These are the features drawn with 
replacement.

False

As an example, the following snippet instantiates a bagging classifier comprising of 
50 decision tree classifier base estimators each built on random subsets of half the 
features and half the samples:

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn import datasets

bcls=BaggingClassifier(DecisionTreeClassifier(),max_samples=0.5, max_
features=0.5, n_estimators=50)

X,y=datasets.make_blobs(n_samples=8000,centers=2, random_state=0, 
cluster_std=4)

bcls.fit(X,y)

print(bcls.score(X,y))

Random forests
Tree-based models are particularly well suited to ensembles, primarily because they 
can be sensitive to changes in the training data. Tree models can be very effective 
when used with subspace sampling, resulting in more diverse models and, since 
each model in the ensemble is working on only a subset of the features, it reduces the 
training time. This builds each tree using a different random subset of the features 
and is therefore called a random forest.
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A random forest partitions an instance space by finding the intersection of the 
partitions in the individual trees in the forest. It defines a partition that can be finer, that 
is, will take in more detail, than a partition created by any individual tree in the forest. 
In principle, a random forest can be mapped back to an individual tree, since each 
intersection corresponds to combining the branches of two different trees. The random 
forest can be thought of as essentially an alternative training algorithm for tree-based 
models. A linear classifier in a bagging ensemble is able to learn a complicated decision 
boundary that would be impossible for a single linear classifier to learn.

The sklearn.ensemble module has two algorithms based on decision trees, 
random forests and extremely randomized trees. They both create diverse 
classifiers by introducing randomness into their construction and both include 
classes for classification and regression. With the RandomForestClassifier and 
RandomForestRegressor class each tree is built using bootstrap samples. The split 
chosen by the model is not the best split among all features, but is chosen from a 
random subset of features.

Extra trees
The extra trees method, as with random forests, uses a random subset of  
features, but instead of using the most discriminative thresholds, the best of a 
randomly generated set of thresholds is used. This acts to reduce variance at the 
expense of a small increase in bias. The two classes are ExtraTreesClassifier  
and ExtraTreesRegressor.

Let's take a look at an example of the random forest classifier and the extra trees 
classifier. In this example, we use VotingClassifier to combine different classifiers. 
The voting classifier can help balance out an individual model's weakness. In this 
example, we pass four weights to the function. These weights determine each 
individual model's contribution to the overall result. We can see that the two tree 
models overfit the training data, but also tend to perform better on the test data. 
We can also see that ExtraTreesClassifier achieved slightly better results on the 
test set compared to the RandomForest object. Also, the VotingClasifier object 
performed better on the test set than all its constituent classifiers. It is worth, while 
running this with different weightings as well as on different datasets, seeing how 
the performance of each model changes:

from sklearn import cross_validation

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import GaussianNB
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from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import VotingClassifier

from sklearn import datasets

def vclas(w1,w2,w3, w4):

    X , y = datasets.make_classification(n_features= 10, n_informative=4, 
n_samples=500, n_clusters_per_class=5)

    Xtrain,Xtest, ytrain,ytest= cross_validation.train_test_
split(X,y,test_size=0.4)

    clf1 = LogisticRegression(random_state=123)

    clf2 = GaussianNB()

    clf3 = RandomForestClassifier(n_estimators=10,bootstrap=True, random_
state=123)

    clf4= ExtraTreesClassifier(n_estimators=10, bootstrap=True,random_
state=123)

    clfes=[clf1,clf2,clf3,clf4]

    eclf = VotingClassifier(estimators=[('lr', clf1), ('gnb', clf2), 
('rf', clf3),('et',clf4)],

                            voting='soft',

                            weights=[w1, w2, w3,w4])

    [c.fit(Xtrain, ytrain) for c in (clf1, clf2, clf3,clf4, eclf)]

    N = 5

    ind = np.arange(N)

    width = 0.3

    fig, ax = plt.subplots()

    for i, clf in enumerate(clfes):

        print(clf,i)
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        p1=ax.bar(i,clfes[i].score(Xtrain,ytrain,), 
width=width,color="black")

        p2=ax.bar(i+width,clfes[i].score(Xtest,ytest,), 
width=width,color="grey")

    ax.bar(len(clfes)+width,eclf.score(Xtrain,ytrain,), 
width=width,color="black")

    ax.bar(len(clfes)+width *2,eclf.score(Xtest,ytest,), 
width=width,color="grey")

    plt.axvline(3.8, color='k', linestyle='dashed')

    ax.set_xticks(ind + width)

    ax.set_xticklabels(['LogisticRegression',

                        'GaussianNB',

                        'RandomForestClassifier',

                        'ExtraTrees',

                        'VotingClassifier'],

                       rotation=40,

                       ha='right')

    plt.title('Training and test score for different classifiers')

    plt.legend([p1[0], p2[0]], ['training', 'test'], loc='lower left')

    plt.show()

vclas(1,3,5,4)

You will observe the following output:
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Tree models allow us to assess the relative rank of features in terms of the expected 
fraction of samples they contribute to. Here, we use one to evaluate the importance 
of each features in a classification task. A feature's relative importance is based on 
where it is represented in the tree. Features at the top of a tree contribute to the final 
decision of a larger proportion of input samples.

The following example uses an ExtraTreesClassifier class to map feature 
importance. The dataset we are using consists of 10 images, each of 40 people, which 
is 400 images in total. Each image has a label indicating the person's identity. In this 
task, each pixel is a feature; in the output, the pixel's brightness represents the feature's 
relative importance. The brighter the pixel, the more important the features. Note that 
in this model, the brightest pixels are in the forehead region and we should be careful 
how we interpret this. Since most photographs are illuminated from above the head, 
the apparently high importance of these pixels may be due to the fact that foreheads 
tend to be better illuminated, and therefore reveal more detail about an individual, 
rather than the intrinsic properties of a person's forehead in indicating their identity:

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces

from sklearn.ensemble import ExtraTreesClassifier

data = fetch_olivetti_faces()

def importance(n_estimators=500, max_features=128, n_jobs=3, random_
state=0):

    X = data.images.reshape((len(data.images), -1))

    y = data.target

    forest = ExtraTreesClassifier(n_estimators,max_features=max_features, 
n_jobs=n_jobs, random_state=random_state)

    forest.fit(X, y)

    dstring=" cores=%d..." % n_jobs + " features=%s..." % max_features 
+"estimators=%d..." %n_estimators + "random=%d" %random_state  

    print(dstring)

    importances = forest.feature_importances_

    importances = importances.reshape(data.images[0].shape)

    plt.matshow(importances, cmap=plt.cm.hot)

    plt.title(dstring)

    #plt.savefig('etreesImportance'+ dstring + '.png')

    plt.show()

importance()
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The output for the preceding code is as follows:

Boosting
Earlier in this book, I introduced the idea of the PAC learning model and the idea 
of concept classes. A related idea is that of weak learnability. Here each of the 
learning algorithms in the ensemble need only perform slightly better than chance. 
For example if each algorithm in the ensemble is correct at least 51% of the time 
then the criteria of weak learnability are satisfied. It turns out that the ideas of PAC 
and weak learnability are essentially the same except that for the latter, we drop the 
requirement that the algorithm must achieve arbitrarily high accuracy. However, it 
merely performs better than a random hypothesis. How is this useful, you may ask? 
It is often easier to find rough rules of thumb rather than a highly accurate prediction 
rule. This weak learning model may only perform slightly better than chance; 
however, if we boost this learner by running it many times on different weighted 
distributions of the data and by combining these learners, we can, hopefully, build 
a single prediction rule that performs much better than any of the individual weak 
learning rules.
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Boosting is a simple and powerful idea. It extends bagging by taking into account 
a model's training error. For example, if we train a linear classifier and find that it 
misclassified a certain set of instances. If we train a subsequent model on a dataset 
containing duplicates of these misclassified instances, then we would expect that this 
newly trained model would perform better on a test set. By including duplicates of 
misclassified instances in the training set, we are shifting the mean of the data set 
towards these instances. This forces the learner to focus on the most difficult-to-classify 
examples. This is achieved in practice by giving misclassified instances higher weight 
and then modifying the model to take this in to account, for example, in a linear 
classifier we can calculate the class means by using weighted averages.

Starting from a dataset of uniform weights that sum to one, we run the classifier  
and will likely misclassify some instances. To boost the weight of these instances,  
we assign them half the total weight. For example, consider a classifier that gives  
us the following results:

Predicted positive Predicted negative Total
Actual pos. 24 16 40
Actual neg. 9 51 60
Totals 33 67 100

The error rate is ɛ = (9 + 16)/100 = 0.25.

We want to assign half the error weight to the misclassified samples, and since 
we started with uniform weights that sum to 1, the current weight assigned to the 
misclassified examples is simply the error rate. To update the weights, therefore, we 
multiply them by the factor 1/2ɛ. Assuming that the error rate is less than 0.5, this 
results in an increase in the weights of the misclassified examples. To ensure that the 
weights still sum to 1, we multiply the correctly classified examples by ½(1-ɛ). In this 
example, the error rate, the initial weights of the incorrectly classified samples, is .25 
and we want it to be .5, that is, half the total weights, so we multiply this initial error 
rate by 2. The weights for the correctly classified instances are 1/2(1-ɛ) = 2/3. Taking 
these weights into account results into the following table:

Predicted positive Predicted negative Total
Actual pos. 16 32 48
Actual neg. 18 34 60
Total 33 67 100
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The final piece we need is a confidence factor, α, which is applied to each model in 
the ensemble. This is used to make an ensemble prediction based on the weighted 
averages from each individual model. We want this to increase with decreasing 
errors. A common way to ensure this happens is to set the confidence factor to  
the following:
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So we are given a dataset, such as following:
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With the normalization factor, such as the following:
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Note that exp(-yi ht(xi)) is positive and greater than 1 if -yi ht(xi) is positive, and  
this happens if xi is misclassified. The result is that the update rule will increase  
the weight of a misclassified example and decrease the weight of correctly  
classified samples.
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We can write the final classifier as follows:
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Adaboost
One of the most popular boosting algorithms is called AdaBoost or adaptive 
boosting. Here, a decision tree classifier is used as the base learner and it builds  
a decision boundary on data that is not linearly separable:

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import make_blobs

plot_colors = "br"

plot_step = 0.02

class_names = "AB"

tree= DecisionTreeClassifier()

boost=AdaBoostClassifier()

X,y=make_blobs(n_samples=500,centers=2, random_state=0, cluster_std=2)

boost.fit(X,y)

plt.figure(figsize=(10, 5))

# Plot the decision boundaries

plt.subplot(121)

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

                     np.arange(y_min, y_max, plot_step))

Z = boost.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)
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cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)

plt.axis("tight")

for i, n, c in zip(range(2), class_names, plot_colors):

    idx = np.where(y == i)

    plt.scatter(X[idx, 0], X[idx, 1],

                c=c, cmap=plt.cm.Paired,

                label="Class %s" % n)

plt.title('Decision Boundary')

twoclass_output = boost.decision_function(X)

plot_range = (twoclass_output.min(), twoclass_output.max())

plt.subplot(122)

for i, n, c in zip(range(2), class_names, plot_colors):

    plt.hist(twoclass_output[y == i],

             bins=20,

             range=plot_range,

             facecolor=c,

             label='Class %s' % n,

             alpha=.5)

x1, x2, y1, y2 = plt.axis()

plt.axis((x1, x2, y1, y2))

plt.legend(loc='upper left')

plt.ylabel('Samples')

plt.xlabel('Score')

plt.title('Decision Scores')

plt.show()

print("Mean Accuracy =%f" % boost.score(X,y))
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The following is the output of the preceding commands:

Gradient boosting
Gradient tree boosting is a very useful algorithm for both regression and 
classification problems. One of its major advantages is that it naturally handles 
mixed data types, and it is also quite robust to outliers. Additionally, it has better 
predictive powers than many other algorithms; however, its sequential architecture 
makes it unsuitable for parallel techniques, and therefore, it does not scale well to 
large data sets. For datasets with a large number of classes, it is recommended to use 
RandomForestClassifier instead. Gradient boosting typically uses decision trees 
to build a prediction model based on an ensemble of weak learners, applying an 
optimization algorithm on the cost function.

In the following example, we create a function that builds a gradient boosting 
classifier and graphs its cumulative loss versus the number of iterations. The 
GradientBoostingClassifier class has an oob_improvement_ attribute and is 
used here calculate an estimate of the test loss on each iteration. This gives us a 
reduction in the loss compared to the previous iteration. This can be a very useful 
heuristic for determining the number of optimum iterations. Here, we plot the 
cumulative improvement of two gradient boosting classifiers. Each classifier is 
identical but for a different learning rate, .01 in the case of the dotted line and .001  
for the solid line. 
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The learning rate shrinks the contribution of each tree, and this means that there is 
a tradeoff with the number of estimators. Here, we actually see that with a larger 
learning rate, the model appears to reach its optimum performance faster than the 
model with a lower learning rate. However, this models appears to achieve better 
results overall. What usually occurs in practice is that oob_improvement deviates  
in a pessimistic way over a large number of iterations. Let's take a look at the 
following commands:

import numpy as np

import matplotlib.pyplot as plt

from sklearn import ensemble

from sklearn.cross_validation import train_test_split

from sklearn import datasets

def gbt(params, X,y,ls):

    clf = ensemble.GradientBoostingClassifier(**params)

    clf.fit(X_train, y_train)

    cumsum = np.cumsum(clf.oob_improvement_)

    n = np.arange(params['n_estimators'])

    oob_best_iter = n[np.argmax(cumsum)]

    plt.xlabel('Iterations')

    plt.ylabel('Improvement')

    plt.axvline(x=oob_best_iter,linestyle=ls)

    plt.plot(n, cumsum, linestyle=ls)

X,y=datasets.make_blobs(n_samples=50,centers=5, random_state=0, cluster_
std=5)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, 
random_state=9)

p1 = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5,

          'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 
3}

p2 = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5,

          'learning_rate': 0.001, 'min_samples_leaf': 1, 'random_state': 
3}

gbt(p1, X,y, ls='--')

gbt(p2, X,y, ls='-')
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You will observe the following output:

Ensemble strategies
We looked at two broad ensemble techniques: bagging, as applied random forests 
and extra trees, and boosting, in particular AdaBoost and gradient tree boosting. 
There are of course many other variants and combinations of these. In the last 
section of this chapter, I want to examine some strategies for choosing and applying 
different ensembles to particular tasks.

Generally, in classification tasks, there are three reasons why a model may 
misclassify a test instance. Firstly, it may simply be unavoidable if features from 
different classes are described by the same feature vectors. In probabilistic models, 
this happens when the class distributions overlap so that an instance has non-zero 
likelihoods for several classes. Here we can only approximate a target hypothesis.

The second reason for classification errors is that the model does not have the 
expressive capabilities to fully represent the target hypothesis. For example, even 
the best linear classifier will misclassify instances if the data is not linearly separable. 
This is due to the bias of the classifier. Although there is no single agreed way to 
measure bias, we can see that a nonlinear decision boundary will have less bias 
than a linear one, or that more complex decision boundaries will have less bias than 
simpler ones. We can also see that tree models have the least bias because they can 
continue to branch until only a single instance is covered by each leaf.
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Now, it may seem that we should attempt to minimize bias; however, in most cases, 
lowering the bias tends to increase the variance and vice versa. Variance, as you have 
probably guessed, is the third source of classification errors. High variance models 
are highly dependent on training data. The nearest neighbor's classifier, for example, 
segments the instance space into single training points. If a training point near the 
decision boundary is moved, then that boundary will change. Tree models are also 
high variance, but for a different reason. Consider that we change the training data 
in such a way that a different feature is selected at the root of the tree. This will likely 
result in the rest of the tree being different.

A bagged ensemble of  linear classifiers is able to learn a more complicated decision 
boundary  through piecewise construction. Each classifier in the ensemble creates a 
segment of the decision boundary. This shows that bagging, indeed any ensemble 
method, is capable of reducing the bias of high bias models. However, what we find 
in practice is that boosting is generally a more effective way of reducing bias.

Bagging is primarily a variance reduction technique and boosting 
is primarily a bias reduction technique.

Bagging ensembles work most effectively with high variance models, such as 
complex trees, whereas boosting is typically used with high bias models such as 
linear classifiers.

We can look at boosting in terms of the margin. This can be understood as being the 
signed distance from the decision boundary; a positive sign indicates the correct class 
and a negative sign a false one. What can be shown is that boosting can increase this 
margin, even when samples are already on the correct side of the decision boundary. 
In other words, boosting can continue to improve performance on the test set even 
when the training error is zero.

Other methods
The major variations on ensemble methods are achieved by changing the way 
predictions of the base models are combined. We can actually define this as a 
learning problem in itself, given that the predictions of a set of base classifiers 
as features learn a meta-model that best combines their predictions. Learning a 
linear meta-model is known as stacking or stacked generalization. Stacking uses 
a weighted combination of all learners and, in a classification task, a combiner 
algorithm such as logistic regression is used to make the final prediction. Unlike 
bagging or boosting, and like bucketing, stacking is often used with models of 
different types. 
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Typical stacking routines involve the following steps:

1.	 Split the training set into two disjointed sets.
2.	 Train several base learners on the first set.
3.	 Test the base learner on the second set.
4.	 Use the predictions from the previous step to train a higher level learner.

Note that the first three steps are identical to cross validation; however, rather 
than taking a winner-takes-all approach, the base learners are combined, possibly 
nonlinearly.

A variation on this theme is bucketing. Here, a selection algorithm is used to choose 
the best model for each problem. This can be done, for example, using a perception 
to pick the best model by giving a weight to the predictions of each model. With a 
large set of diverse models, some will take longer to train than others. A way to use 
this in an ensemble is to first use the fast but imprecise algorithms to choose which 
slower, but more accurate, algorithms will likely do best.

We can incorporate diversity using a heterogeneous set of base learners. This 
diversity comes from the different learning algorithms and not the data. This means 
that each model can use the same training set. Often, the base models consist of sets 
of the same type but with different hyper parameter settings.

Ensembles, in general, consist of a set of base models and a meta-model that 
are trained to find the best way to combine these base models. If we are using a 
weighted set of models and combining their output in some way, we assume that 
if a model has a weight close to zero, then it will have very little influence on the 
output. It is conceivable that a base classifier has a negative weight, and in this case, 
its prediction would be inverted, relative to the other base models. We can even go 
further and attempt to predict how well a base model is likely to perform even before 
we train it. This is sometimes called meta-learning. This involves, first, training a 
variety of models on a large collection of data and constructing a model that will 
help us answer questions such as which model is likely to outperform another model 
on a particular dataset, or does the data indicate that particular (meta) parameters 
are likely to work best?

Remember that no learning algorithm can outperform another when evaluated over 
the space of all possible problems, such as predicting the next number is a sequence 
if all possible sequences are likely. Of course, learning problems in the real world 
have nonuniform distributions, and this enables us to build prediction models on 
them. The important question in meta-learning is how to design the features on 
which the meta-model is built. They need to combine the relevant characteristics  
of both the trained model and the dataset. This must include aspects of the data 
beyond the number and type of features, and the number of samples.
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Summary
In this chapter, we looked at the major ensemble methods and their implementations 
in scikit-learn. It is clear that there is a large space to work in and finding what 
techniques work best for different types of problems is the key challenge. We saw that 
the problems of bias and variance each have their own solution, and it is essential to 
understand the key indicators of each of these. Achieving good results usually involves 
much experimentation, and using some of the simple techniques described in this 
chapter, you can begin your journey into machine learning ensembles.

In the next and last chapter, we will introduce the most important topic—model 
selection and evaluation—and examine some real-world problems from different 
perspectives.
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Design Strategies and  
Case Studies

With the possible exception of data munging, evaluating is probably what machine 
learning scientists spend most of their time doing. Staring at lists of numbers and 
graphs, watching hopefully as their models run, and trying earnestly to make sense 
of their output. Evaluation is a cyclical process; we run models, evaluate the results, 
and plug in new parameters, each time hoping that this will result in a performance 
gain. Our work becomes more enjoyable and productive as we increase the efficiency 
of each evaluation cycle, and there are some tools and techniques that can help us 
achieve this. This chapter will introduce some of these through the following topics:

•	 Evaluating model performance
•	 Model selection
•	 Real-world case studies.
•	 Machine learning design at a glance

Evaluating model performance
Measuring a model's performance is an important machine learning task, and there 
are many varied parameters and heuristics for doing this. The importance of defining 
a scoring strategy should not be underestimated, and in Sklearn, there are basically 
three approaches:

•	 Estimator score: This refers to using the estimator's inbuilt score() method, 
specific to each estimator

•	 Scoring parameters: This refers to cross-validation tools relying on an 
internal scoring strategy

•	 Metric functions: These are implemented in the metrics module
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We have seen examples of the estimator score() method, for example, clf.
score(). In the case of a linear classifier, the score() method returns the mean 
accuracy. It is a quick and easy way to gauge an individual estimator's performance. 
However, this method is usually insufficient in itself for a number of reasons.

If we remember, accuracy is the sum of the true positive and true negative cases 
divided by the number of samples. Using this as a measure would indicate that if 
we performed a test on a number of patients to see if they had a particular disease, 
simply predicting that every patient was disease free would likely give us a high 
accuracy. Obviously, this is not what we want.

A better way to measure performance is using by precision, (P) and Recall, (R). If you 
remember from the table in Chapter 4, Models – Learning from Information, precision, 
or specificity, is the proportion of predicted positive instances that are correct, that is, 
TP/(TP+FP). Recall, or sensitivity, is TP/(TP+FN). The F-measure is defined as 2*R*P/
(R+P). These measures ignore the true negative rate, and so they are not making an 
evaluation on how well a model handles negative cases.

Rather than use the score method of the estimator, it often makes sense to use 
specific scoring parameters such as those provided by the cross_val_score object. 
This has a cv parameter that controls how the data is split. It is usually set as an int, 
and it determines how many random consecutive splits are made on the data. Each 
of these has a different split point. This parameter can also be set to an iterable of 
train and test splits, or an object that can be used as a cross validation generator.

Also important in cross_val_score is the scoring parameter. This is usually set by 
a string indicating a scoring strategy. For classification, the default is accuracy, and 
some common values are f1, precision, recall, as well as the micro-averaged, 
macro-averaged, and weighted versions of these. For regression estimators, the 
scoring values are mean_absolute_error, mean_squared error, median_
absolute_error, and r2.

The following code estimates the performance of three models on a dataset using 10 
consecutive splits. Here, we print out the mean of each score, using several measures, 
for each of the four models. In a real-world situation, we will probably need to 
preprocess our data in one or more ways, and it is important to apply these data 
transformations to our test set as well as the training set. To make this easier, we can 
use the sklearn.pipeline module. This sequentially applies a list of transforms and 
a final estimator, and it allows us to assemble several steps that can be cross-validated 
together. Here, we also use the StandardScaler() class to scale the data. Scaling is 
applied to the logistic regression model and the decision tree by using two pipelines:

from sklearn import cross_validation

from sklearn.tree import DecisionTreeClassifier
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from sklearn import svm

from sklearn.linear_model import LogisticRegression

from sklearn.datasets import samples_generator

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.cross_validation import cross_val_score

from sklearn.pipeline import Pipeline

X, y = samples_generator.make_classification(n_samples=1000,n_
informative=5, n_redundant=0,random_state=42)

le=LabelEncoder()

y=le.fit_transform(y)

Xtrain, Xtest, ytrain, ytest = cross_validation.train_test_split(X, y, 
test_size=0.5, random_state=1)

clf1=DecisionTreeClassifier(max_depth=2,criterion='gini').
fit(Xtrain,ytrain)

clf2= svm.SVC(kernel='linear', probability=True, random_state=0).
fit(Xtrain,ytrain)

clf3=LogisticRegression(penalty='l2', C=0.001).fit(Xtrain,ytrain)

pipe1=Pipeline([['sc',StandardScaler()],['mod',clf1]])

mod_labels=['Decision Tree','SVM','Logistic Regression' ]

print('10 fold cross validation: \n')

for mod,label in zip([pipe1,clf2,clf3], mod_labels):

    #print(label)

    auc_scores= cross_val_score(estimator= mod, X=Xtrain, y=ytrain, 
cv=10, scoring ='roc_auc')

    p_scores= cross_val_score(estimator= mod, X=Xtrain, y=ytrain, cv=10, 
scoring ='precision_macro')

    r_scores= cross_val_score(estimator= mod, X=Xtrain, y=ytrain, cv=10, 
scoring ='recall_macro')

    f_scores= cross_val_score(estimator= mod, X=Xtrain, y=ytrain, cv=10, 
scoring ='f1_macro')

    print(label)

    print("auc scores %2f +/- %2f " % (auc_scores.mean(), auc_scores.
std()))

    print("precision %2f +/- %2f " % (p_scores.mean(), p_scores.std()))

    print("recall %2f +/- %2f ]" % (r_scores.mean(), r_scores.std()))

    print("f scores %2f +/- %2f " % (f_scores.mean(), f_scores.std()))
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On execution, you will see the following output:

There are several variations on these techniques, most commonly using what is known 
as k-fold cross validation. This uses what is sometimes referred to as the leave one 
out strategy. First, the model is trained using k—1 of the folds as training data. The 
remaining data is then used to compute the performance measure. This is repeated for 
each of the folds. The performance is calculated as an average of all the folds.

Sklearn implements this using the cross_validation.KFold object. The important 
parameters are a required int, indicating the total number of elements, and an 
n_folds parameter, defaulting to 3, to indicate the number of folds. It also takes 
optional shuffle and random_state parameters indicating whether to shuffle the 
data before splitting, and what method to use to generate the random state. The 
default random_state parameter is to use the NumPy random number generator.

In the following snippet, we use the LassoCV object. This is a linear model trained 
with L1 regularization. The optimization function for regularized linear regression, if 
you remember, includes a constant (alpha) that multiplies the L1 regularization term. 
The LassoCV object automatically sets this alpha value, and to see how effective this 
is, we can compare the selected alpha and the score on each of the k-folds:

import numpy as np

from sklearn import cross_validation, datasets, linear_model

X,y=datasets.make_blobs(n_samples=80,centers=2, random_state=0, cluster_
std=2)

alphas = np.logspace(-4, -.5, 30)

lasso_cv = linear_model.LassoCV(alphas=alphas)
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k_fold = cross_validation.KFold(len(X), 5)

alphas = np.logspace(-4, -.5, 30)

for k, (train, test) in enumerate(k_fold):

    lasso_cv.fit(X[train], y[train])

    print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}".

          format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test])))

The output of the preceding commands is as follows:

Sometimes, it is necessary to preserve the percentages of the classes in each fold. This 
is done using stratified cross validation. It can be helpful when classes are unbalanced, 
that is, when there is a larger number of some classes and very few of others. Using the 
stratified cv object may help correct defects in models that might cause bias because 
a class is not represented in a fold in large enough numbers to make an accurate 
prediction. However, this may also cause an unwanted increase in variance.

In the following example, we use stratified cross validation to test how significant 
the classification score is. This is done by repeating the classification procedure after 
randomizing the labels. The p value is the percentage of runs by which the score is 
greater than the classification score obtained initially. This code snippet uses the 
cross_validation.permutation_test_score method that takes the estimator, 
data, and labels as parameters. Here, we print out the initial test score, the p value, 
and the score on each permutation:

import numpy as np

from sklearn import linear_model

from sklearn.cross_validation import StratifiedKFold, permutation_test_
score

from sklearn import datasets

X,y=datasets.make_classification(n_samples=100, n_features=5)

n_classes = np.unique(y).size

cls=linear_model.LogisticRegression()
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cv = StratifiedKFold(y, 2)

score, permutation_scores, pvalue = permutation_test_score(cls, X, y, 
scoring="f1", cv=cv, n_permutations=10, n_jobs=1)

print("Classification score %s (pvalue : %s)" % (score, pvalue))

print("Permutation scores %s" % (permutation_scores))

This gives the following output:

Model selection
There are a number of hyper parameters that can be adjusted to improve 
performance. It is often not a straightforward process, determining the effect of 
the various parameters, both individually and in combination with each other. 
Common things to try include getting more training examples, adding or removing 
features, adding polynomial features, and increasing or decreasing the regularization 
parameter. Given that we can spend a considerable amount of time collecting more 
data, or manipulating data in other ways, it is important that the time you spend is 
likely to result in a productive outcome. One of the most important ways to do this  
is using a process known as grid search.

Gridsearch
The sklearn.grid_search.GridSearchCV object is used to perform an exhaustive 
search on specified parameter values. This allows iteration through defined sets 
of parameters and the reporting of the result in the form of various metrics. The 
important parameters for GridSearchCV objects are an estimator and a parameter 
grid. The param_grid parameter is a dictionary, or list of dictionaries, with parameter 
names as keys and a list of parameter settings to try as values. This enables searching 
over any sequence of the estimators parameter values. Any of an estimator's adjustable 
parameters can be used with grid search. By default, grid search uses the score() 
function of the estimator to evaluate a parameter value. For classification, this is the 
accuracy, and as we have seen, this may not be the best measure. In this example, we 
set the scoring parameter of the GridSearchCV object to f1. 
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In the following code, we perform a search over a range of C values (the inverse 
regularization parameter), under both L1 and L2 regularization. We use the metrics.
classification_report class to print out a detailed classification report:

from sklearn import datasets

from sklearn.cross_validation import train_test_split

from sklearn.grid_search import GridSearchCV

from sklearn.metrics import classification_report

from sklearn.linear_model import LogisticRegression as lr

X,y=datasets.make_blobs(n_samples=800,centers=2, random_state=0, cluster_
std=4)

X_train, X_test, y_train, y_test = train_test_split(

    X, y, test_size=0.5, random_state=0)

tuned_parameters = [{'penalty': ['l1'], 

                     'C': [0.01, 0.1, 1, 5]},

                    {'penalty': ['l2'], 'C': [0.01, 0.1, 1, 5]}]

scores = ['precision', 'recall','f1']

for score in scores:

    clf = GridSearchCV(lr(C=1), tuned_parameters, cv=5,

                       scoring='%s_weighted' % score)

    clf.fit(X_train, y_train)

    print("Best parameters on development set:")

    print()

    print(clf.best_params_)

    print("Grid scores on development set:")

    for params, mean_score, scores in clf.grid_scores_:

        print("%0.3f (+/-%0.03f) for %r"

              % (mean_score, scores.std() * 2, params))

    print("classification report:")

    y_true, y_pred = y_test, clf.predict(X_test)

    print(classification_report(y_true, y_pred))
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We observe the following output:

Grid search is probably the most used method of optimization hyper 
parameters, however, there are times when it may not be the best choice. The 
RandomizedSearchCV object implements a randomized search over possible 
parameters. It uses a dictionary similar to the GridSearchCV object, however, for 
each parameter, a distribution can be set, over which a random search of values 
will be made. If the dictionary contains a list of values, then these will be sampled 
uniformly. Additionally, the RandomizedSearchCV object also contains an n_iter 
parameter that is effectively a computational budget of the number of parameter 
settings sampled. It defaults to 10, and at high values, will generally give better 
results. However, this is at the expense of runtime.

There are alternatives to the brute force approach of the grid search, and these are 
provided in estimators such as LassoCV and ElasticNetCV. Here, the estimator itself 
optimizes its regularization parameter by fitting it along a regularization, path. This 
is usually more efficient than using a grid search.
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Learning curves
An important way to understand how a model is performing is by using learning 
curves. Consider what happens to the training and test errors as we increase the 
number of samples. Consider a simple linear model. With few training samples, it is 
very easy for it to fit the parameters, the training error will be small. As the training 
set grows, it becomes harder to fit, and the average training error will likely grow. On 
the other hand, the cross validation error will likely decrease, at least at the beginning, 
as samples are added. With more samples to train on, the model will be better able to 
acclimatize to new samples. Consider a model with high bias, for example, a simple 
linear classifier with two parameters. This is just a straight line, so as we start adding 
training examples, the cross validation error will initially decrease. However, after a 
certain point, adding training examples will not reduce the error significantly simply 
because of the limitations of a straight line, it simply cannot fit nonlinear data. If we 
look at the training error, we see that, like earlier, it initially increases with more 
training samples, and at a certain point, it will approximately equal the cross validation 
error. Both the cross validation and train errors will be high in a high-bias example. 
What this shows is that if we know our learning algorithm has high bias, then just 
adding more training examples will be unlikely to improve the model significantly.

Now, consider a model with high variance, say with a large number of polynomial 
terms, and a small value for the regularization parameter. As we add more samples, 
the training error will increase slowly but remain relatively small. As more training 
samples are added the error on the cross validation set will decrease. This is an 
indication of over-fitting. The indicative characteristic of a model with high variance is 
a large difference between the training error and the test error. What this is showing is 
that increasing training examples will lower the cross validation error, and therefore, 
adding training samples is a likely way to improve a model with high variance.

In the following code, we use the learning curve object to plot the test error and the 
training error as we increase the sample size. This should give you an indication when 
a particular model is suffering from high bias or high variance. In this case, we are 
using a logistic regression model. We can see from the output of this code that the 
model may be suffering from bias, since both the training test errors are relatively high:

from sklearn.pipeline import Pipeline

from sklearn.learning_curve import learning_curve

import matplotlib.pyplot as plt

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LogisticRegression
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from sklearn import cross_validation

from sklearn import datasets

X, y = datasets.make_classification(n_samples=2000,n_informative=2, n_
redundant=0,random_state=42)

Xtrain, Xtest, ytrain, ytest = cross_validation.train_test_split(X, y, 
test_size=0.5, random_state=1)

pipe = Pipeline ([('sc' , StandardScaler()),('clf', LogisticRegression( 
penalty = 'l2'))])

trainSizes, trainScores, testScores = learning_curve(estimator=pipe, 
X=Xtrain, y= ytrain,train_sizes=np.linspace(0.1,1,10),cv=10, n_jobs=1)

trainMeanErr=1-np.mean(trainScores, axis=1)

testMeanErr=1-np.mean(testScores, axis=1)

plt.plot(trainSizes, trainMeanErr, color='red', marker='o', markersize=5, 
label = 'training error')  

plt.plot(trainSizes, testMeanErr, color='green', marker='s', 
markersize=5, label = 'test error')

plt.grid()

plt.xlabel('Number of Training Samples')

plt.ylabel('Error')

plt.legend(loc=0)

plt.show()

Here is the output of the preceding code:
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Real-world case studies
Now, we will move on to some real-world machine learning scenarios. First, we 
will build a recommender system, and then we will look into some integrated pest 
management systems in greenhouses.

Building a recommender system
Recommender systems are a type of information filtering, and there are two general 
approaches: content-based filtering and collaborative filtering. In content-based 
filtering, the system attempts to model a user's long term interests and select items 
based on this. On the other hand, collaborative filtering chooses items based on the 
correlation with items chosen by people with similar preferences. As you would 
expect, many systems use a hybrid of these two approaches.

Content-based filtering
Content-based filtering uses the content of items, which is represented as a set of 
descriptor terms, and matches them with a user profile. A user profile is constructed 
using the same terms extracted from items that the user has previously viewed. 
A typical online book store will extract key terms from texts to create a user 
profile and to make recommendations. This procedure of extracting these terms 
can be automated in many cases, although in situations where specific domain 
knowledge is required, these terms may need to be added manually. The manual 
addition of terms is particularly relevant when dealing with non-text based 
items. It is relatively easy to extract key terms from, say, a library of books, say by 
associating fender amplifiers with electric guitars. In many cases, this will involve 
a human creating these associations based on specific domain knowledge, say by 
associating fender amplifiers with electric guitars. Once this is constructed, we need 
to choose a learning algorithm that can learn a user profile and make appropriate 
recommendations. The two models that are most often used are the vector space 
model and the latent semantic indexing model. With the vector space model, 
we create a sparse vector representing a document where each distinct term in a 
document corresponds to a dimension of the vector. Weights are used to indicate 
whether a term appears in a document. When it does appear, it shows the weight of 
1, and when it does not, it shows the weight of 0. Weights based on the number of 
times a word appears are also used.
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The alternative model, latent semantic indexing, can improve the vector model in 
several ways. Consider the fact that the same concept is often described by many 
different words, that is, with synonyms. For example, we need to know that a 
computer monitor and computer screen are, for most purposes, the same thing. 
Also, consider that many words have more than one distinct meaning, for example, 
the word mouse can either be an animal or a computer interface. Semantic indexing 
incorporates this information by building a term-document matrix. Each entry 
represents the number of occurrences of a particular term in the document. There is 
one row for each of the terms in a set of documents, and there is one column for every 
document. Through a mathematical  process known as single value decomposition 
this single matrix can be decomposed into three matrices representing documents and 
terms as vectors of factor values. Essentially this is a dimension reduction technique 
whereby we create single features that represent multiple words. A recommendation 
is made based on these derived features. This recommendation is based on  semantic 
relationships within the document rather than simply matching on identical words. 
The disadvantages of this technique is that it is computationally expensive and may be 
slow to run. This can be a significant constraint for a recommender system that has to 
work in realtime.

Collaborative filtering
Collaborative filtering takes a different approach and is used in a variety of settings, 
particularly, in the context of social media, and there are a variety of ways to 
implement it. Most take a neighborhood approach. This is based on the idea that 
you are more likely to trust your friends' recommendations, or those with similar 
interests, rather than people you have less in common with.

In this approach, a weighted average of the recommendations of other people is 
used. The weights are determined by the correlation between individuals. That 
is, those with similar preferences will be weighted higher than those that are less 
similar. In a large system with many thousands of users, it becomes infeasible to 
calculate all the weights at runtime. Instead, the recommendations of a neighborhood 
are used. This neighborhood is selected either by using a certain weight threshold,  
or by selecting based on the highest correlation.
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n the following code, we use a dictionary of users and their ratings of music albums. 
The geometric nature of this model is most apparent when we plot users' ratings of 
two albums. It is easy to see that the distance between users on the plot is a good 
indication of how similar their ratings are. The Euclidean distance measures how far 
apart users are, in terms of how closely their preferences match. We also need a way 
to take into account associations between two people, and for this we use the Pearson 
correlation index. Once we can compute the similarity between users, we rank them in 
order of similarity. From here, we can work out what albums could be recommended. 
This is done by multiplying the similarity score of each user by their ratings. This is 
then summed and divided by the similarity score, essentially calculating a weighted 
average based on the similarity score.

Another approach is to find the similarities between items. This is called item-based 
collaborative filtering; this in contrast with user-based collaborative filtering, which 
we used to calculate the similarity score. The item-based approach is to find similar 
items for each item. Once we have the similarities between all the albums, we can 
generate recommendations for a particular user.

Let's take a look at a sample code implementation:

import pandas as pd 

from scipy.stats import pearsonr

import matplotlib.pyplot as plt

userRatings={'Dave': {'Dark Side of Moon': 9.0,

  'Hard Road': 6.5,'Symphony 5': 8.0,'Blood Cells': 4.0},'Jen': {'Hard 
Road': 7.0,'Symphony 5': 4.5,'Abbey Road':8.5,'Ziggy Stardust': 9,'Best 
Of Miles':7},'Roy': {'Dark Side of Moon': 7.0,'Hard Road': 3.5,'Blood 
Cells': 4,'Vitalogy': 6.0,'Ziggy Stardust': 8,'Legend': 7.0,'Abbey 
Road': 4},'Rob': {'Mass in B minor': 10,'Symphony 5': 9.5,'Blood Cells': 
3.5,'Ziggy Stardust': 8,'Black Star': 9.5,'Abbey Road': 7.5},'Sam': 
{'Hard Road': 8.5,'Vitalogy': 5.0,'Legend': 8.0,'Ziggy Stardust': 
9.5,'U2 Live': 7.5,'Legend': 9.0,'Abbey Road': 2},'Tom': {'Symphony 5': 
4,'U2 Live': 7.5,'Vitalogy': 7.0,'Abbey Road': 4.5},'Kate': {'Horses': 
8.0,'Symphony 5': 6.5,'Ziggy Stardust': 8.5,'Hard Road': 6.0,'Legend': 
8.0,'Blood Cells': 9,'Abbey Road': 6}}

# Returns a distance-based similarity score for user1 and user2

def distance(prefs,user1,user2):

    # Get the list of shared_items

    si={}
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    for item in prefs[user1]:

        if item in prefs[user2]:

            si[item]=1

    # if they have no ratings in common, return 0

    if len(si)==0: return 0

    # Add up the squares of all the differences

    sum_of_squares=sum([pow(prefs[user1][item]-prefs[user2][item],2)

    for item in prefs[user1] if item in prefs[user2]])

    return 1/(1+sum_of_squares)

def Matches(prefs,person,n=5,similarity=pearsonr):

    scores=[(similarity(prefs,person,other),other)

        for other in prefs if other!=person]

    scores.sort( )

    scores.reverse( )

    return scores[0:n]

def getRecommendations(prefs,person,similarity=pearsonr):

    totals={}

    simSums={}

    for other in prefs:

        if other==person: continue

        sim=similarity(prefs,person,other)

        if sim<=0: continue

        for item in prefs[other]:

            # only score albums not yet rated

            if item not in prefs[person] or prefs[person][item]==0:

                # Similarity * Score

                totals.setdefault(item,0)

                totals[item]+=prefs[other][item]*sim

                # Sum of similarities

                simSums.setdefault(item,0)

                simSums[item]+=sim

    # Create a normalized list

    rankings=[(total/simSums[item],item) for item,total in totals.items( 
)]

    # Return a sorted list

    rankings.sort( )
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    rankings.reverse( )

    return rankings

def transformPrefs(prefs):

    result={}

    for person in prefs:

        for item in prefs[person]:

            result.setdefault(item,{})

            # Flip item and person

            result[item][person]=prefs[person][item]

    return result

transformPrefs(userRatings)

def calculateSimilarItems(prefs,n=10):

    # Create a dictionary similar items

    result={}

    # Invert the preference matrix to be item-centric

    itemPrefs=transformPrefs(prefs)

    for item in itemPrefs:

#        if c%100==0: print("%d / %d" % (c,len(itemPrefs)))

        scores=Matches(itemPrefs,item,n=n,similarity=distance)

        result[item]=scores

    return result

def getRecommendedItems(prefs,itemMatch,user):

    userRatings=prefs[user]

    scores={}

    totalSim={}

    # Loop over items rated by this user

    for (item,rating) in userRatings.items( ):

        # Loop over items similar to this one

        for (similarity,item2) in itemMatch[item]:

            # Ignore if this user has already rated this item

            if item2 in userRatings: continue
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            # Weighted sum of rating times similarity

            scores.setdefault(item2,0)

            scores[item2]+=similarity*rating

            # Sum of all the similarities

            totalSim.setdefault(item2,0)

            totalSim[item2]+=similarity

    # Divide each total score by total weighting to get an average

    rankings=[(score/totalSim[item],item) for item,score in scores.items( 
)]

    # Return the rankings from highest to lowest

    rankings.sort( )

    rankings.reverse( )

    return rankings

itemsim=calculateSimilarItems(userRatings)

def plotDistance(album1, album2):

    data=[]

    for i in userRatings.keys():

        try:

            data.append((i,userRatings[i][album1], userRatings[i]
[album2]))

        except:

            pass

    df=pd.DataFrame(data=data, columns = ['user', album1, album2])

    plt.scatter(df[album1],df[album2])

    plt.xlabel(album1)

    plt.ylabel(album2)

    for i,t in enumerate(df.user):

        plt.annotate(t,(df[album1][i], df[album2][i]))

    plt.show()

    print(df)

plotDistance('Abbey Road', 'Ziggy Stardust')

print(getRecommendedItems(userRatings, itemsim,'Dave'))
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You will observe the following output:

Here we have plotted the user ratings of two albums, and based on this, we can 
see that the users Kate and Rob are relatively close, that is, their preferences with 
regard to these two albums are similar. On the other hand, the users Rob and Sam 
are far apart, indicating different preferences for these two albums. We also print 
out recommendations for the user Dave and the similarity score for each album 
recommended.

Since collaborative filtering is reliant on the ratings of other users, a problem arises 
when the number of documents becomes much larger than the number of ratings, so 
the number of items that a user has rated is a tiny proportion of all the items. There 
are a few different approaches to help you fix this. Ratings can be inferred from the 
type of items they browse for on the site. Another way is to supplement the ratings 
of users with content-based filtering in a hybrid approach.
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Reviewing the case study
Some important aspects of this case study are as follows:

•	 It is part of a web application. It must run in realtime, and it relies on  
user interactivity.

•	 There are extensive practical and theoretical resources available. This is a 
well thought out problem and has several well defined solutions. We do  
not have to reinvent the wheel.

•	 This is largely a marketing project. It has a quantifiable metric of success in 
that of sale volumes based on recommendation.

•	 The cost of failure is relatively low. A small level of error is acceptable.

Insect detection in greenhouses
A growing population and increasing climate variability pose unique challenges 
for agriculture in the 21st century. The ability of controlled environments, such as 
greenhouses, to provide optimum growing conditions and maximize the efficient 
use of inputs, such as water and nutrients, will enable us to continue to feed growing 
populations in a changing global climate.

There are many food production systems that today are largely automated, and 
these can be quite sophisticated. Aquaculture systems can cycle nutrients and water 
between fish tanks and growing racks, in essence, creating a very simple ecology in 
an artificial environment. The nutrient content of the water is regulated, as are the 
temperature, moisture levels, humidity, and carbon dioxide levels. These features 
exist within very precise ranges to optimize for production.

The environmental conditions inside greenhouses can be very conducive to the 
rapid spread of disease and pests. Early detection and the detection of precursor 
symptoms, such as fungi or insect egg production, are essential to managing these 
diseases and pests. For environmental, food quality, and economic reasons, we want 
to only apply minimum targeted controls, since this mostly involves the application, 
a pesticide, or any other bio agent.

The goal here is to create an automated system that will detect the type and location 
of a disease or insect and subsequently choose, and ideally implement, a control. 
This is quite a large undertaking with a number of different components. Many of 
the technologies exist separately, but here we are combining them in a number of 
non-standard ways. The approach is largely experimental:
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The usual method of detection has been direct human observation. This is a very 
time intensive task and requires some particular skills. It is also very error prone. 
Automating this would be of huge benefit in itself, as well as being an important 
starting point for creating an automated IPM system. One of the first tasks is to 
define a set of indicators for each of the targets. A natural approach would be to get 
an expert, or a panel of experts, to classify short video clips as either being pest free 
or infected with one or more target species. Next, a classifier is trained on these clips, 
and hopefully, it is able to obtain a prediction. This approach has been used in the 
past, for example, Early Pest Detection in Greenhouses (Martin, Moisan, 2004), in the 
detection of insect pests.
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In a typical setup, video cameras are placed throughout the greenhouse to maximize 
the sampling area. For the early detection of pests, key plant organs such as the 
stems, leaf nodes, and other areas are targeted. Since video and image analysis 
can be computationally expensive, motion sensitive cameras that are intelligently 
programmed to begin recording when they detect insect movement can be used.

The changes in early outbreaks are quite subtle and can be indicated to be a 
combination of plant damage, discolorations, reduced growth, and the presence of 
insects or their eggs. This difficulty is compounded by the variable light conditions in 
greenhouses. A way of coping with these issues is to use a cognitive vision approach. 
This divides the problem into a number of sub-problems, each of which is context 
dependent. For example, the use a different model for when it is sunny, or based on 
the light conditions at different times of the day. The knowledge of this context can 
be built into the model at a preliminary, weak learning stage. This gives it an inbuilt 
heuristic to apply an appropriate learning algorithm in a given context.

An important requirement is that we distinguish between different insect species, 
and a way to do this is by capturing the dynamic components of insects, that is, their 
behavior. Many insects can be distinguished by their type of movement, for example, 
flying in tight circles, or stationary most of the time with short bursts of flight. Also, 
insects may have other behaviors, such as mating or laying eggs, that might be an 
important indicator of a control being required.

Monitoring can occur over a number of channels, most notably video and still 
photography, as well as using signals from other sensors such as infrared, 
temperature, and humidity sensors. All these inputs need to be time and location 
stamped so that they can be used meaningfully in a machine learning model.

Video processing first involves subtracting the background and isolating the moving 
components of the sequence. At the pixel-level, the lighting condition results in 
a variation of intensity, saturation, and inter-pixel contrast. At the image level, 
conditions such as shadows affect only a portion of the image, whereas backlighting 
affects the entire image.

In this example, we extract frames from the video recordings and process them in 
their own separate path in the system. As opposed to video processing, where we 
were interested in the sequence of frames over time in an effort to detect movement, 
here we are interested in single frames from several cameras, focused on the same 
location at the same time. This way, we can build up a three-dimensional model,  
and this can be useful, especially for tracking changes to biomass volume.
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The final inputs for our machine learning model are environmental sensors. 
Standard control systems measure temperature, relative humidity, carbon dioxide 
levels, and light. In addition, hyper-spectral and multi-spectral sensors are capable 
of detecting frequencies outside the visible spectrum. The nature of these signals 
requires their own distinctive processing paths. As an example of how they might 
be used, consider that one of our targets is a fungus that we know exists in a narrow 
range of humidity and temperature. Supposing an ultraviolet sensor in a part of 
the greenhouse briefly detects the frequency range indicative of the fungi. Our 
model would register this, and if the humidity and temperature are in this range, 
then a control may be initiated. This control may be simply the opening of a vent or 
the switching on of a fan near the possible outbreak to locally cool the region to a 
temperature at which the fungi cannot survive.

Clearly, the most complex part of the system is the action controller. This really 
comprises of two elements: A multi label classifier outputting a binary vector 
representing the presence or not of the target pests and the action classifier itself 
which outputs a control strategy.

There are many different components and a number of distinct systems that are 
needed to detect the various pathogens and pests. The standard approach has been 
to create a separate learning model for each target. This multi-model approach 
works if we are instigating controls for each of these as separate, unrelated activities. 
However, many of the processes, such as the development and spread of disease and 
a sudden outbreak of insects, may be precipitated by a common cause.

Reviewing the case study
Some important aspects of this case study are as follows:

•	 It is largely a research project. It has a long timeline involving a large space  
of unknowns.

•	 It comprises a number of interrelated systems. Each one can be worked  
on separately, but at some point needs to be integrated back into the  
entire system.

•	 It requires significant domain knowledge.
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Machine learning at a glance
The physical design process (involving humans, decisions, constraints, and the most 
potent of all: unpredictability) has parallels with the machine learning systems we 
are building. The decision boundary of a classifier, data constraints, and the uses of 
randomness to initialize or introduce diversity in models are just three connections 
we can make. The deeper question is how far can we take this analogy. If we are 
trying to build artificial intelligence, the question is, "Are we trying to replicate the 
process of human intelligence, or simply imitate its consequences, that is, make a 
reasonable decision?" This of course is ripe for vigorous philosophical discussion and, 
though interesting, is largely irrelevant to the present discussion. The important point, 
however, is that much can be learned from observing natural systems, such as the 
brain, and attempting to mimic their actions.

Real human decision making occurs in a wider context of complex brain action, and in 
the setting of a design process, the decisions we make are often group decisions. The 
analogy to an artificial neural net ensemble is irresistible. Like with an ensemble of 
learning candidates with mostly weak learners, the decisions made, over the lifespan 
of a project, will end up with a result far greater than any individual contribution. 
Importantly, an incorrect decision, analogous say to a poor split in a decision tree, 
is not wasted time since part of the role of weak learners is to rule out incorrect 
possibilities. In a complex machine learning project, it can be frustrating to realize that 
much of the work done does not directly lead to a successful result. The initial focus 
should be on providing convincing arguments that a positive result is possible.

The analogy between machine learning systems and the design process itself is, 
of course, over simplistic. There are many things in team dynamics that are not 
represented by a machine learning ensemble. For example, human decision making 
occurs in the rather illusive context of emotion, intuition, and a lifetime of experience. 
Also, team dynamics are often shaped by personnel ambition, subtle prejudices, and 
by relationships between team members. Importantly, managing a team must be 
integrated into the design process.

A machine learning project of any scale will require collaboration. The space is simply 
too large for any one person to be fully cognizant of all the different interrelated 
elements. Even the simple demonstration tasks outlined in this book would not be 
possible if it were not for the effort of many people developing the theory, writing the 
base algorithms, and collecting and organizing data.
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Successfully orchestrating a major project within time and resource constraints 
requires significant skill, and these are not necessarily the skills of a software 
engineer or a data scientist. Obviously, we must define what success, in any 
given context, means. A theoretical research project either disproving or proving 
a particular theory with a degree of certainty, or a small degree of uncertainty, 
is considered a success. Understanding the constraints may give us realistic 
expectations, in other words, an achievable metric of success.

One of the most common and persistent constraints is that of insufficient, or inaccurate, 
data. The data collection methodology is such an important aspect, yet in many 
projects it is overlooked. The data collection process is interactive. It is impossible 
to interrogate any dynamic system without changing that system. Also, some 
components of a system are simply easier to observe than others, and therefore, may 
become inaccurate representations of wider unobserved, or unobservable, components. 
In many cases, what we know about a complex system is dwarfed by what we do not 
know. This uncertainty is embedded in the stochastic nature of physical reality, and it 
is the reason that we must resort to probabilities in any predictive task. Deciding what 
level of probability is acceptable for a given action, say to treat a potential patient based 
on the estimated probability of a disease, depends on the consequences of treating the 
disease or not, and this usually relies on humans, either the doctor or the patient, to 
make the final decision. There are many issues outside the domain that may influence 
such a decision.

Human problem solving, although sharing many similarities, is the fundamental 
difference from machine problem solving. It is dependent on so many things, not 
least of which is the emotional and physical state, that is, the chemical and electrical 
bath a nervous system is enveloped in. Human thought is not a deterministic 
process, and this is actually a good thing because it enables us to solve problems in 
novel ways. Creative problem solving involves the ability to link disparate ideas or 
concepts. Often, the inspiration for this comes from an entirely irrelevant event, the 
proverbial Newton's apple. The ability of the human brain to knit these often random 
events of every day experience into some sort of coherent, meaningful structure is 
the illusive ability we aspire to build into our machines.

Summary
There is no doubt that the hardest thing to do in machine learning is to apply it to 
unique, previously unsolved problems. We have experimented with numerous 
example models and used some of the most popular algorithms for machine 
learning. The challenge is now to apply this knowledge to important new problems 
that you care about. I hope this book has taken you some way as an introduction to 
the possibilities of machine learning with Python.
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Unsupervised  
Machine Learning

In this chapter, you will learn how to apply unsupervised learning techniques to 
identify patterns and structure within datasets.

Unsupervised learning techniques are a valuable set of tools for exploratory analysis. 
They bring out patterns and structure within datasets, which yield information that 
may be informative in itself or serve as a guide to further analysis. It's critical to 
have a solid set of unsupervised learning tools that you can apply to help break up 
unfamiliar or complex datasets into actionable information.

We'll begin by reviewing Principal Component Analysis (PCA), a fundamental data 
manipulation technique with a range of dimensionality reduction applications. Next, 
we will discuss k-means clustering, a widely-used and approachable unsupervised 
learning technique. Then, we will discuss Kohenen's Self-Organizing Map (SOM), a 
method of topological clustering that enables the projection of complex datasets into 
two dimensions.

Throughout the chapter, we will spend some time discussing how to effectively 
apply these techniques to make high-dimensional datasets readily accessible. We 
will use the UCI Handwritten Digits dataset to demonstrate technical applications 
of each algorithm. In the course of discussing and applying each technique, we will 
review practical applications and methodological questions, particularly regarding 
how to calibrate and validate each technique as well as which performance measures 
are valid. To recap, then, we will be covering the following topics in order:

•	 Principal component analysis
•	 k-means clustering
•	 Self-organizing maps
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Principal component analysis
In order to work effectively with high-dimensional datasets, it is important to have a 
set of techniques that can reduce this dimensionality down to manageable levels. The 
advantages of this dimensionality reduction include the ability to plot multivariate 
data in two dimensions, capture the majority of a dataset's informational content 
within a minimal number of features, and, in some contexts, identify collinear  
model components.

For those in need of a refresher, collinearity in a machine learning 
context refers to model features that share an approximately linear 
relationship. For reasons that will likely be obvious, these features tend 
to be unhelpful as the related features are unlikely to add information 
mutually that either one provides independently. Moreover, collinear 
features may emphasize local minima or other false leads.

Probably the most widely-used dimensionality reduction technique today is PCA. As 
we'll be applying PCA in multiple contexts throughout this book, it's appropriate for 
us to review the technique, understand the theory behind it, and write Python code 
to effectively apply it.

PCA – a primer
PCA is a powerful decomposition technique; it allows one to break down a highly 
multivariate dataset into a set of orthogonal components. When taken together in 
sufficient number, these components can explain almost all of the dataset's variance. 
In essence, these components deliver an abbreviated description of the dataset. PCA 
has a broad set of applications and its extensive utility makes it well worth our time 
to cover.

Note the slightly cautious phrasing here—a given set of components 
of length less than the number of variables in the original dataset 
will almost always lose some amount of the information content 
within the source dataset. This lossiness is typically minimal, given 
enough components, but in cases where small numbers of principal 
components are composed from very high-dimensional datasets, 
there may be substantial lossiness. As such, when performing PCA, 
it is always appropriate to consider how many components will be 
necessary to effectively model the dataset in question.
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PCA works by successively identifying the axis of greatest variance in a dataset (the 
principal components). It does this as follows:

1.	 Identifying the center point of the dataset.
2.	 Calculating the covariance matrix of the data.
3.	 Calculating the eigenvectors of the covariance matrix.
4.	 Orthonormalizing the eigenvectors.
5.	 Calculating the proportion of variance represented by each eigenvector.

Let's unpack these concepts briefly:

•	 Covariance is effectively variance applied to multiple dimensions; it is the 
variance between two or more variables. While a single value can capture the 
variance in one dimension or variable, it is necessary to use a 2 x 2 matrix to 
capture the covariance between two variables, a 3 x 3 matrix to capture the 
covariance between three variables, and so on. So the first step in PCA is to 
calculate this covariance matrix.

•	 An Eigenvector is a vector that is specific to a dataset and linear 
transformation. Specifically, it is the vector that does not change in direction 
before and after the transformation is performed. To get a better feeling for 
how this works, imagine that you're holding a rubber band, straight, between 
both hands. Let's say you stretch the band out until it is taut between your 
hands. The eigenvector is the vector that did not change direction between 
before the stretch and during it; in this case, it's the vector running directly 
through the center of the band from one hand to the other.

•	 Orthogonalization is the process of finding two vectors that are  
orthogonal (at right angles) to one another. In an n-dimensional data space, 
the process of orthogonalization takes a set of vectors and yields a set of 
orthogonal vectors.

•	 Orthonormalization is an orthogonalization process that also normalizes  
the product.

•	 Eigenvalue (roughly corresponding to the length of the eigenvector) is used 
to calculate the proportion of variance represented by each eigenvector. 
This is done by dividing the eigenvalue for each eigenvector by the sum of 
eigenvalues for all eigenvectors.
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In summary, the covariance matrix is used to calculate Eigenvectors. An 
orthonormalization process is undertaken that produces orthogonal, normalized 
vectors from the Eigenvectors. The eigenvector with the greatest eigenvalue is the 
first principal component with successive components having smaller eigenvalues. 
In this way, the PCA algorithm has the effect of taking a dataset and transforming it 
into a new, lower-dimensional coordinate system.

Employing PCA
Now that we've reviewed the PCA algorithm at a high level, we're going to jump 
straight in and apply PCA to a key Python dataset—the UCI handwritten digits 
dataset, distributed as part of scikit-learn.

This dataset is composed of 1,797 instances of handwritten digits gathered from  
44 different writers. The input (pressure and location) from these authors' writing 
is resampled twice across an 8 x 8 grid so as to yield maps of the kind shown in the 
following image:
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These maps can be transformed into feature vectors of length 64, which are then 
readily usable as analysis input. With an input dataset of 64 features, there is an 
immediate appeal to using a technique like PCA to reduce the set of variables to a 
manageable amount. As it currently stands, we cannot effectively explore the dataset 
with exploratory visualization!

We will begin applying PCA to the handwritten digits dataset with the  
following code:

import numpy as np
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from sklearn.lda import LDA
import matplotlib.cm as cm

digits = load_digits()
data = digits.data

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

This code does several things for us:

1.	 First, it loads up a set of necessary libraries, including numpy, a set of 
components from scikit-learn, including the digits dataset itself, PCA and 
data scaling functions, and the plotting capability of matplotlib.

2.	 The code then begins preparing the digits dataset. It does several things  
in order:

°° First, it loads the dataset before creating helpful variables
°° The data variable is created for subsequent use, and the number of 

distinct digits in the target vector (0 through to 9, so n_digits 
= 10) is saved as a variable that we can easily access for subsequent 
analysis

°° The target vector is also saved as labels for later use
°° All of this variable creation is intended to simplify subsequent analysis
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3.	 With the dataset ready, we can initialize our PCA algorithm and apply it to 
the dataset:
pca = PCA(n_components=10)
data_r = pca.fit(data).transform(data)

print('explained variance ratio (first two components): %s' % 
str(pca.explained_variance_ratio_))
print('sum of explained variance (first two components): %s' % 
str(sum(pca.explained_variance_ratio_)))

4.	 This code outputs the variance explained by each of the first ten principal 
components ordered by explanatory power.

In the case of this set of 10 principal components, they collectively explain 0.589 
of the overall dataset variance. This isn't actually too bad, considering that it's 
a reduction from 64 variables to 10 components. It does, however, illustrate the 
potential lossiness of PCA. The key question, though, is whether this reduced set 
of components makes subsequent analysis or classification easier to achieve; that 
is, whether many of the remaining components contained variance that disrupts 
classification attempts.

Having created a data_r object containing the output of pca performed over the 
digits dataset, let's visualize the output. To do so, we'll first create a vector of 
colors for class coloration. We then simply create a scatterplot with colorized 
classes:

X = np.arange(10)
ys = [i+x+(i*x)**2 for i in range(10)]

plt.figure()
colors = cm.rainbow(np.linspace(0, 1, len(ys)))
for c, i target_name in zip(colors, [1,2,3,4,5,6,7,8,9,10], labels):
   plt.scatter(data_r[labels == I, 0], data_r[labels == I, 1],     
   c=c, alpha = 0.4)
   plt.legend()
   plt.title('Scatterplot of Points plotted in first \n'
   '10 Principal Components')
   plt.show()
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The resulting scatterplot looks as follows:

This plot shows us that, while there is some separation between classes in the first 
two principal components, it may be tricky to classify highly accurately with this 
dataset. However, classes do appear to be clustered and we may be able to get 
reasonably good results by employing a clustering analysis. In this way, PCA has 
given us some insight into how the dataset is structured and has informed our 
subsequent analysis.

At this point, let's take this insight and move on to examine clustering by the 
application of the k-means clustering algorithm.

Introducing k-means clustering
In the previous section, you learned that unsupervised machine learning algorithms 
are used to extract key structural or information content from large, possibly 
complex datasets. These algorithms do so with little or no manual input and 
function without the need for training data (sets of labeled explanatory and response 
variables needed to train an algorithm in order to recognize the desired classification 
boundaries). This means that unsupervised algorithms are effective tools to generate 
information about the structure and content of new or unfamiliar datasets. They 
allow the analyst to build a strong understanding in a fraction of the time.
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Clustering – a primer
Clustering is probably the archetypal unsupervised learning technique for several 
reasons.

A lot of development time has been sunk into optimizing clustering algorithms, with 
efficient implementations available in most data science languages including Python.

Clustering algorithms tend to be very fast, with smoothed implementations 
running in polynomial time. This makes it uncomplicated to run multiple clustering 
configurations, even over large datasets. Scalable clustering implementations also 
exist that parallelize the algorithm to run over TB-scale datasets.

Clustering algorithms are frequently easily understood and their operation is thus 
easy to explain if necessary.

The most popular clustering algorithm is k-means; this algorithm forms k-many 
clusters by first randomly initiating the clusters as k-many points in the data space. 
Each of these points is the mean of a cluster. An iterative process then occurs, 
running as follows:

•	 Each point is assigned to a cluster based on the least (within cluster) sum of 
squares, which is intuitively the nearest mean.

•	 The center (centroid) of each cluster becomes the new mean. This causes each 
of the means to shift.

Over enough iterations, the centroids move into positions that minimize a 
performance metric (the performance metric most commonly used is the "within 
cluster least sum of squares" measure). Once this measure is minimized, observations 
are no longer reassigned during iteration; at this point the algorithm has converged 
on a solution.

Kick-starting clustering analysis
Now that we've reviewed the clustering algorithm, let's run through the code and 
see what clustering can do for us:

from time import time
import numpy as np
import matplotlib.pyplot as plt

np.random.seed()

digits = load_digits()
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data = scale(digits.data)

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

sample_size = 300

print("n_digits: %d, \t n_samples %d, \t n_features %d"
   % (n_digits, n_samples, n_features))

print(79 * '_')
print('% 9s' % 'init''         time   inertia   homo   compl   v-meas   
ARI     AMI  silhouette')

def bench_k_means(estimator, name, data):
   t0 = time()
   estimator.fit(data)
   print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f'
      % (name, (time() - t0), estimator.inertia_,
         metrics.homogeneity_score(labels, estimator.labels_),
         metrics.completeness_score(labels, estimator.labels_),
         metrics.v_measure_score(labels, estimator.labels_),
         metrics.adjusted_rand_score(labels, estimator.labels_),
         metrics.silhouette_score(data, estimator.labels_,
            metric='euclidean',
            sample_size=sample_size)))

One critical difference between this code and the PCA code we saw 
previously is that this code begins by applying a scale function to the 
digits dataset. This function scales values in the dataset between 0 and 
1. It's critically important to scale data wherever needed, either on a log 
scale or bound scale, so as to prevent the magnitude of different feature 
values to have disproportionately powerful effects on the dataset. The 
key to determining whether the data needs scaling at all (and what kind 
of scaling is needed, within which range, and so on) is very much tied 
to the shape and nature of the data. If the distribution of the data shows 
outliers or variation within a large range, it may be appropriate to apply 
log-scaling. Whether this is done manually through visualization and 
exploratory analysis techniques or through the use of summary statistics, 
decisions around scaling are tied to the data under inspection and the 
analysis techniques to be used. A further discussion of scaling decisions 
and considerations may be found in Chapter 7, Feature Engineering Part II.
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Helpfully, scikit-learn uses the k-means++ algorithm by default, which improves 
over the original k-means algorithm in terms of both running time and success rate 
in avoiding poor clusterings.

The algorithm achieves this by running an initialization procedure to find cluster 
centroids that approximate minimal variance within classes.

You may have spotted from the preceding code that we're using a set of performance 
estimators to track how well our k-means application is performing. It isn't practical 
to measure the performance of a clustering algorithm based on a single correctness 
percentage or using the same performance measures that are commonly used with 
other algorithms. The definition of success for clustering algorithms is that they 
provide an interpretation of how input data is grouped that trades off between 
several factors, including class separation, in-group similarity, and cross-group 
difference.

The homogeneity score is a simple, zero-to-one-bounded measure of the degree to 
which clusters contain only assignments of a given class. A score of one indicates that 
all clusters contain measurements from a single class. This measure is complimented 
by the completeness score, which is a similarly bounded measure of the extent 
to which all members of a given class are assigned to the same cluster. As such, 
a completeness score and homogeneity score of one indicates a perfect clustering 
solution.

The validity measure (v-measure) is a harmonic mean of the homogeneity and 
completeness scores, which is exactly analogous to the F-measure for binary 
classification. In essence, it provides a single, 0-1-scaled value to monitor both 
homogeneity and completeness.

The Adjusted Rand Index (ARI) is a similarity measure that tracks the consensus 
between sets of assignments. As applied to clustering, it measures the consensus 
between the true, pre-existing observation labels and the labels predicted as an 
output of the clustering algorithm. The Rand index measures labeling similarity on a 
0-1 bound scale, with one equaling perfect prediction labels.

The main challenge with all of the preceding performance measures as well as other 
similar measures (for example, Akaike's mutual information criterion) is that they 
require an understanding of the ground truth, that is, they require some or all of the 
data under inspection to be labeled. If labels do not exist and cannot be generated, 
these measures won't work. In practice, this is a pretty substantial drawback as very 
few datasets come prelabeled and the creation of labels can be time-consuming.
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One option to measure the performance of a k-means clustering solution without 
labeled data is the Silhouette Coefficient. This is a measure of how well-defined the 
clusters within a model are. The Silhouette Coefficient for a given dataset is the mean 
of the coefficient for each sample, where this coefficient is calculated as follows:

( )max ,
b as
a b
−

=

The definitions of each term are as follows:

•	 a: The mean distance between a sample and all other points in the same 
cluster

•	 b: The mean distance between a sample and all other points in the next 
nearest cluster

This score is bounded between -1 and 1, with -1 indicating incorrect clustering, 1 
indicating very dense clustering, and scores around 0 indicating overlapping clusters. 
This tends to fit our expectations of how a good clustering solution is composed.

In the case of the digits dataset, we can employ all of the performance measures 
described here. As such, we'll complete the preceding example by initializing our 
bench_k_means function over the digits dataset:

bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_
init=10), name="k-means++", data=data)
print(79 * '_')

This yields the following output (note that the random seed means your results will 
vary from mine!):

Lets take a look at these results in more detail.

The Silhouette score at 0.123 is fairly low, but not surprisingly so, given that the 
handwritten digits data is inherently noisy and does tend to overlap. However, some 
of the other scores are not that impressive. The V-measure at 0.619 is reasonable, but 
in this case is held back by a poor homogeneity measure, suggesting that the cluster 
centroids did not resolve perfectly. Moreover, the ARI at 0.465 is not great.
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Let's put this in context. The worst case classification attempt, 
random assignment, would give at best 10% classification accuracy. 
All of our performance measures would be accordingly very low. 
While we're definitely doing a lot better than that, we're still trailing 
far behind the best computational classification attempts. As we'll 
see in Chapter 4, Convolutional Neural Networks, convolutional 
nets achieve results with extremely low classification errors on 
handwritten digit datasets. We're unlikely to achieve this level of 
accuracy with traditional k-means clustering!

All in all, it's reasonable to think that we could do better.

To give this another try, we'll apply an additional stage of processing. To learn 
how to do this, we'll apply PCA—the technique we previously walked through—
to reduce the dimensionality of our input dataset. The code to achieve this is very 
simple, as follows:

pca = PCA(n_components=n_digits).fit(data)
bench_k_means(KMeans(init=pca.components_, n_clusters=10),
name="PCA-based",
data=data) 

This code simply applies PCA to the digits dataset, yielding as many principal 
components as there are classes (in this case, digits). It can be sensible to review the 
output of PCA before proceeding as the presence of any small principal components 
may suggest a dataset that contains collinearity or otherwise merits further 
inspection.

This instance of clustering shows noticeable improvement:

The V-measure and ARI have increased by approximately 0.08 points, with the 
V-measure reading a fairly respectable 0.693. The Silhouette Coefficient did not 
change significantly. Given the complexity and interclass overlap within the digits 
dataset, these are good results, particularly stemming from such a simple code 
addition!
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Inspection of the digits dataset with clusters superimposed shows that some 
meaningful clusters appear to have been formed. It is also apparent from the 
following plot that actually detecting the character from the input feature vectors 
may be a challenging task:

Tuning your clustering configurations
The previous examples described how to apply k-means, walked through relevant 
code, showed how to plot the results of a clustering analysis, and identified 
appropriate performance metrics. However, when applying k-means to real-world 
datasets, there are some extra precautions that need to be taken, which we will discuss.

Another critical practical point is how to select an appropriate value for k. Initializing 
k-means clustering with a specific k value may not be harmful, but in many cases it 
is not clear initially how many clusters you might find or what values of k may be 
helpful.

We can rerun the preceding code for multiple values of k in a batch and look at the 
performance metrics, but this won't tell us which instance of k is most effectively 
capturing structure within the data. The risk is that as k increases, the Silhouette 
Coefficient or unexplained variance may decrease dramatically, without meaningful 
clusters being formed. The extreme case of this would be if k = o, where o is the 
number of observations in the sample; every point would have its own cluster, the 
Silhouette Coefficient would be low, but the results wouldn't be meaningful. There 
are, however, many less extreme cases in which overfitting may occur due to an 
overly high k value.
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To mitigate this risk, it's advisable to use supporting techniques to motivate a 
selection of k. One useful technique in this context is the elbow method. The elbow 
method is a very simple technique; for each instance of k, plot the percentage of 
explained variance against k. This typically leads to a plot that frequently looks like a 
bent arm.

For the PCA-reduced dataset, this code looks like the following snippet:

import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

digits = load_digits()
data = scale(digits.data)

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

K = range(1,20)
explainedvariance= []
for k in K:
   reduced_data = PCA(n_components=2).fit_transform(data)
   kmeans = KMeans(init = 'k-means++', n_clusters = k, n_init = k)
   kmeans.fit(reduced_data)
   explainedvariance.append(sum(np.min(cdist(reduced_data, 
   kmeans.cluster_centers_, 'euclidean'), axis =   
   1))/data.shape[0])
   plt.plot(K, meandistortions, 'bx-')
   plt.show()
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This application of the elbow method takes the PCA reduction from the previous code 
sample and applies a test of the explained variance (specifically, a test of the variance 
within clusters). The result is output as a measure of unexplained variance for each 
value of k in the range specified. In this case, as we're using the digits dataset 
(which we know to have ten classes), the range specified was 1 to 20:

The elbow method involves selecting the value of k that maximizes explained 
variance while minimizing K; that is, the value of k at the crook of the elbow.  
The technical sense underlying this is that a minimal gain in explained variance  
at greater values of k is offset by the increasing risk of overfitting.

Elbow plots may be more or less pronounced and the elbow may not always be 
clearly identifiable. This example shows a more gradual progression than may be 
observable in other cases with other datasets. It's worth noting that, while we know 
the number of classes within the dataset to be ten, the elbow method starts to show 
diminishing returns on k increases almost immediately and the elbow is located at 
around five classes. This has a lot to do with the substantial overlap between classes, 
which we saw in previous plots. While there are ten classes, it becomes increasingly 
difficult to clearly identify more than five or so.

With this in mind, it's worth noting that the elbow method is intended for use 
as a heuristic rather than as some kind of objective principle. The use of PCA as 
a preprocess to improve clustering performance also tends to smooth the graph, 
delivering a more gradual curve than otherwise.
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In addition to making use of the elbow method, it can be valuable to look at the 
clusters themselves, as we did earlier in the chapter, using PCA to reduce the 
dimensionality of the data. By plotting the dataset and projecting cluster assignation 
onto the data, it is sometimes very obvious when a k-means implementation has 
fitted to a local minima or has overfit the data. The following plot demonstrates 
extreme overfitting of our previous k-means clustering algorithm to the digits 
dataset, artificially prompted by using K = 150. In this example, some clusters 
contain a single observation; there's really no way that this output would generalize 
to other samples well:

Plotting the elbow function or cluster assignments is quick to achieve and 
straightforward to interpret. However, we've spoken of these techniques in terms of 
being heuristics. If a dataset contains a deterministic number of classes, we may not 
be sure that a heuristic method will deliver generalizable results.

Another drawback is that visual plot checking is a very manual technique, which 
makes it poorly-suited for production environments or automation. In such 
circumstances, it's ideal to find a code-based, automatable method. One solid option 
in this case is v-fold cross-validation, a widely-used validation technique.

Cross-validation is simple to undertake. To make it work, one splits the dataset into 
v parts. One of the parts is set aside individually as a test set. The model is trained 
against the training data, which is all parts except the test set. Let's try this now, 
again using the digits dataset:

import numpy as np
from sklearn import cross_validation
from sklearn.cluster import KMeans
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from sklearn.datasets import load_digits
from sklearn.preprocessing import scale

digits = load_digits()
data = scale(digits.data)

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=n_
digits)
cv = cross_validation.ShuffleSplit(n_samples, n_iter = 10, test_size = 
0.4, random_state = 0)
scores = cross_validation.cross_val_score(kmeans, data, labels, cv = 
cv, scoring = 'adjusted_rand_score')
print(scores)
print(sum(scores)/cv.n_iter)

This code performs some now familiar data loading and preparation and initializes 
the k-means clustering algorithm. It then defines cv, the cross-validation parameters. 
This includes specification of the number of iterations, n_iter, and the amount 
of data that should be used in each fold. In this case, we're using 60% of the data 
samples as training data and 40% as test data.

We then apply the k-means model and cv parameters that we've specified within the 
cross-validation scoring function and print the results as scores. Let's take a look at 
these scores now:

[ 0.39276606  0.49571292  0.43933243  0.53573558  0.42459285           

  0.55686854  0.4573401   0.49876358  0.50281585  0.4689295 ]

0.4772857426

This output gives us, in order, the adjusted Rand score for cross-validated, 
k-means++ clustering performed across each of the 10 folds in order. We can see 
that results do fluctuate between around 0.4 and 0.55; the earlier ARI score for 
k-means++ without PCA fell within this range (at 0.465). What we've created, then, 
is code that we can incorporate into our analysis in order to check the quality of our 
clustering automatically on an ongoing basis.
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As noted earlier in this chapter, your choice of success measure is contingent on what 
information you already have. In most cases, you won't have access to ground truth 
labels from a dataset and will be obliged to use a measure such as the Silhouette 
Coefficient that we discussed previously.

Sometimes, even using both cross-validation and visualizations 
won't provide a conclusive result. Especially with unfamiliar 
datasets, it's not unheard of to run into issues where some noise or 
secondary signal resolves better at a different k value than the signal 
you're attempting to analyze.
As with every other algorithm discussed in this book, it is imperative 
to understand the dataset one wishes to work with. Without this 
insight, it's entirely possible for even a technically correct and 
rigorous analysis to deliver inappropriate conclusions. Chapter 6, 
Text Feature Engineering will discuss principles and techniques for the 
inspection and preparation of unfamiliar datasets more thoroughly.

Self-organizing maps
A SOM is a technique to generate topological representations of data in reduced 
dimensions. It is one of a number of techniques with such applications, with a  
better-known alternative being PCA. However, SOMs present unique opportunities, 
both as dimensionality reduction techniques and as a visualization format.

SOM – a primer
The SOM algorithm involves iteration over many simple operations. When applied 
at a smaller scale, it behaves similarly to k-means clustering (as we'll see shortly). At 
a larger scale, SOMs reveal the topology of complex datasets in a powerful way.
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An SOM is made up of a grid (commonly rectangular or hexagonal) of nodes, where 
each node contains a weight vector that is of the same dimensionality as the input 
dataset. The nodes may be initialized randomly, but an initialization that roughly 
approximates the distribution of the dataset will tend to train faster.

The algorithm iterates as observations are presented as input. Iteration takes the 
following form:

•	 Identifying the winning node in the current configuration—the Best 
Matching Unit (BMU). The BMU is identified by measuring the Euclidean 
distance in the data space of all the weight vectors.

•	 The BMU is adjusted (moved) towards the input vector.
•	 Neighboring nodes are also adjusted, usually by lesser amounts, with the 

magnitude of neighboring movement being dictated by a neighborhood 
function. (Neighborhood functions vary. In this chapter, we'll use a Gaussian 
neighborhood function.)

This process repeats over potentially many iterations, using sampling if appropriate, 
until the network converges (reaching a position where presenting a new input does 
not provide an opportunity to minimize loss).

A node in an SOM is not unlike that of a neural network. It typically possesses a 
weight vector of length equal to the dimensionality of the input dataset. This means 
that the topology of the input dataset can be preserved and visualized through a 
lower-dimensional mapping.

The code for this SOM class implementation is available in the book repository  
in the som.py script. For now, let's start working with the SOM algorithm in a 
familiar context.
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Employing SOM
As discussed previously, the SOM algorithm is iterative, being based around 
Euclidean distance comparisons of vectors.

This mapping tends to form a fairly readable 2D grid. In the case of the  
commonly-used Iris tutorial dataset, an SOM will map it out pretty cleanly:

In this diagram, the classes have been separated and also ordered spatially. The 
background coloring in this case is a clustering density measure. There is some 
minimal overlap between the blue and green classes, where the SOM performed an 
imperfect separation. On the Iris dataset, an SOM will tend to approach a converged 
solution on the order of 100 iterations, with little visible improvement after 1,000. For 
more complex datasets containing less clearly divisible cases, this process can take 
tens of thousands of iterations.

Awkwardly, there aren't implementations of the SOM algorithm within pre-existing 
Python packages like scikit-learn. This makes it necessary for us to use our own 
implementation.

The SOM code we'll be working with for this purpose is located in the associated 
GitHub repository. For now, let's take a look at the relevant script and get an 
understanding of how the code works:

import numpy as np
from sklearn.datasets import load_digits
from som import Som
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from pylab import plot,axis,show,pcolor,colorbar,bone

digits = load_digits()
data = digits.data
labels = digits.target

At this point, we've loaded the digits dataset and identified labels as a separate 
set of data. Doing this will enable us to observe how the SOM algorithm separates 
classes when assigning them to map:

som = Som(16,16,64,sigma=1.0,learning_rate=0.5)
som.random_weights_init(data)
print("Initiating SOM.")
som.train_random(data,10000) 
print("\n. SOM Processing Complete")

bone()
pcolor(som.distance_map().T) 
colorbar()

At this point, we have utilized a Som class that is provided in a separate file, Som.
py, in the repository. This class contains the methods required to deliver the SOM 
algorithm we discussed earlier in the chapter. As arguments to this function, we 
provide the dimensions of the map (After trialing a range of options, we'll start out 
with 16 x 16 in this case—this grid size gave the feature map enough space to spread 
out while retaining some overlap between groups.) and the dimensionality of the 
input data. (This argument determines the length of the weight vector within the 
SOM's nodes.) We also provide values for sigma and learning rate.

Sigma, in this case, defines the spread of the neighborhood function. As noted 
previously, we're using a Gaussian neighborhood function. The appropriate value 
for sigma varies by grid size. For an 8 x 8 grid, we would typically want to use a 
value of 1.0 for Sigma, while in this case we're using 1.3 for a 16 x 16 grid. It is fairly 
obvious when one's value for sigma is off; if the value is too small, values tend to 
cluster near the center of the grid. If the values are too large, the grid typically ends 
up with several large, empty spaces towards the center.

The learning rate self-explanatorily defines the initial learning rate for the SOM. As 
the map continues to iterate, the learning rate adjusts according to the following 
function:

( ) ( )( )1 0.5learning rate t learning rate t t= + ∗
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Here, t is the iteration index.

We follow up by first initializing our SOM with random weights.

As with k-means clustering, this initialization method is slower than 
initializing based on an approximation of the data distribution. A 
preprocessing step similar to that employed by the k-means++ algorithm 
would accelerate the SOM's runtime. Our SOM runs sufficiently quickly 
over the digits dataset to make this optimization unnecessary for now.

Next, we set up label and color assignations for each class, so that we can distinguish 
classes on the plotted SOM. Following this, we iterate through each data point.

On each iteration, we plot a class-specific marker for the BMU as calculated by our 
SOM algorithm.

When the SOM finishes iteration, we add a U-Matrix (a colorized matrix of relative 
observation density) as a monochrome-scaled plot layer:

labels[labels == '0'] = 0
labels[labels == '1'] = 1
labels[labels == '2'] = 2
labels[labels == '3'] = 3
labels[labels == '4'] = 4
labels[labels == '5'] = 5
labels[labels == '6'] = 6
labels[labels == '7'] = 7
labels[labels == '8'] = 8
labels[labels == '9'] = 9

markers = ['o', 'v', '1', '3', '8', 's', 'p', 'x', 'D', '*']
colors = ["r", "g", "b", "y", "c", (0,0.1,0.8), (1,0.5,0), (1,1,0.3), 
"m", (0.4,0.6,0)]
for cnt,xx in enumerate(data):
   w = som.winner(xx) 
   plot(w[0]+.5,w[1]+.5,markers[labels[cnt]],    
   markerfacecolor='None', markeredgecolor=colors[labels[cnt]], 
   markersize=12, markeredgewidth=2)
   axis([0,som.weights.shape[0],0,som.weights.shape[1]])
   show()
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This code generates a plot similar to the following:

This code delivers a 16 x 16 node SOM plot. As we can see, the map has done a 
reasonably good job of separating each cluster into topologically distinct areas of 
the map. Certain classes (particularly the digits five in cyan circles and nine in green 
stars) have been located over multiple parts of the SOM space. For the most part, 
though, each class occupies a distinct region and it's fair to say that the SOM has 
been reasonably effective. The U-Matrix shows that regions with a high density of 
points are co-habited by data from multiple classes. This isn't really a surprise as we 
saw similar results with k-means and PCA plotting.
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Further reading
Victor Powell and Lewis Lehe provide a fantastic interactive, visual explanation of 
PCA at http://setosa.io/ev/principal-component-analysis/, this is ideal for 
readers who are new to the core concepts of PCA or who are not quite getting it.

For a lengthier and more mathematically-involved treatment of PCA, touching on 
underlying matrix transformations, Jonathon Shlens from Google research provides 
a clear and thorough explanation at http://arxiv.org/abs/1404.1100.

For a thorough worked example that translates Jonathon's description into clear 
Python code, consider Sebastian Raschka's demonstration using the Iris dataset at 
http://sebastianraschka.com/Articles/2015_pca_in_3_steps.html.

Finally, consider the sklearn documentation for more details on arguments to the 
PCA class at http://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.PCA.html.

For a lively and expert treatment of k-means, including detailed investigations of 
the conditions that cause it to fail, and potential alternatives in such cases, consider 
David Robinson's fantastic blog, variance explained at http://varianceexplained.
org/r/kmeans-free-lunch/. 

A specific discussion of the Elbow method is provided by Rick Gove at  
https://bl.ocks.org/rpgove/0060ff3b656618e9136b.

Finally, consider sklearn's documentation for another view on unsupervised learning 
algorithms, including k-means at http://scikit-learn.org/stable/tutorial/
statistical_inference/unsupervised_learning.html. 

Much of the existing material on Kohonen's SOM is either rather old, very  
high-level, or formally expressed. A decent alternative to the description in this book 
is provided by John Bullinaria at http://www.cs.bham.ac.uk/~jxb/NN/l16.pdf.

For readers interested in a deeper understanding of the underlying mathematics,  
I'd recommend reading the work of Tuevo Kohonen directly. The 2012 edition of 
self-organising maps is a great place to start.

The concept of multicollinearity, referenced in the chapter, is given a clear 
explanation for the unfamiliar at https://onlinecourses.science.psu.edu/
stat501/node/344.

http://setosa.io/ev/principal-component-analysis/
http://arxiv.org/abs/1404.1100
http://sebastianraschka.com/Articles/2015_pca_in_3_steps.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://varianceexplained.org/r/kmeans-free-lunch/
http://varianceexplained.org/r/kmeans-free-lunch/
https://bl.ocks.org/rpgove/0060ff3b656618e9136b
http://scikit-learn.org/stable/tutorial/statistical_inference/unsupervised_learning.html
http://scikit-learn.org/stable/tutorial/statistical_inference/unsupervised_learning.html
http://www.cs.bham.ac.uk/~jxb/NN/l16.pdf
https://onlinecourses.science.psu.edu/stat501/node/344
https://onlinecourses.science.psu.edu/stat501/node/344
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Summary
In this chapter, we've reviewed three techniques with a broad range of applications 
for preprocessing and dimensionality reduction. In doing so, you learned a lot about 
an unfamiliar dataset.

We started out by applying PCA, a widely-utilized dimensionality reduction 
technique, to help us understand and visualize a high-dimensional dataset. We then 
followed up by clustering the data using k-means clustering, identifying means of 
improving and measuring our k-means analysis through performance metrics, the 
elbow method, and cross-validation. We found that k-means on the digits dataset, 
taken as is, didn't deliver exceptional results. This was due to class overlap that we 
spotted through PCA. We overcame this weakness by applying PCA as a preprocess 
to improve our subsequent clustering results.

Finally, we developed an SOM algorithm that delivered a cleaner separation of the 
digit classes than PCA.

Having learned some key basics around unsupervised learning techniques and 
analytical methodology, let's dive into the use of some more powerful unsupervised 
learning algorithms.
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Deep Belief Networks
In the preceding chapter, we looked at some widely-used dimensionality reduction 
techniques, which enable a data scientist to get greater insight into the nature  
of datasets.

The next few chapters will focus on some more sophisticated techniques, 
drawing from the area of deep learning. This chapter is dedicated to building an 
understanding of how to apply the Restricted Boltzmann Machine (RBM) and 
manage the deep learning architecture one can create by chaining RBMs—the deep 
belief network (DBN). DBNs are trainable to effectively solve complex problems in 
text, image, and sound recognition. They are used by leading companies for object 
recognition, intelligent image search, and robotic spatial recognition.

The first thing that we're going to do is get a solid grounding in the algorithm 
underlying DBN; unlike clustering or PCA, this code isn't widely-known by data 
scientists and we're going to review it in some depth to build a strong working 
knowledge. Once we've worked through the theory, we'll build upon it by stepping 
through code that brings the theory into focus and allows us to apply the technique 
to real-world data. The diagnosis of these techniques is not trivial and needs to be 
rigorous, so we'll emphasize the thought processes and diagnostic techniques that 
enable us to effectively watch and control the success of your implementation.

By the end of this chapter, you'll understand how the RBM and DBN algorithms 
work, know how to use them, and feel confident in your ability to improve the 
quality of the results you get out of them. To summarize, the contents of this  
chapter are as follows:

•	 Neural networks – a primer
•	 Restricted Boltzmann Machines
•	 Deep belief networks
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Neural networks – a primer
The RBM is a form of recurrent neural network. In order to understand how the RBM 
works, it is necessary to have a more general understanding of neural networks. 
Readers with an understanding of artificial neural network (hereafter neural 
network, for the sake of simplicity) algorithms will find familiar elements in the 
following description.

There are many accounts that cover neural networks in great theoretical detail; we 
won't go into great detail retreading this ground. For the purposes of this chapter, we 
will first describe the components of a neural network, common architectures, and 
prevalent learning processes.

The composition of a neural network
For unfamiliar readers, neural networks are a class of mathematical models that 
train to produce and optimize a definition for a function (or distribution) over a set 
of input features. The specific objective of a given neural network application can be 
defined by the operator using a performance measure (typically a cost function); in 
this way, neural networks may be used to classify, predict, or transform their inputs.

The use of the word neural in neural networks is the product of a long tradition 
of drawing from heavy-handed biological metaphors to inspire machine learning 
research. Hence, artificial neural networks algorithms originally drew (and 
frequently still draw) from biological neuronal structures.

A neural network is composed of the following elements:

•	 A learning process: A neural network learns by adjusting parameters 
within the weight function of its nodes. This occurs by feeding the output 
of a performance measure (as described previously, in supervised learning 
contexts this is frequently a cost function, some measure of inaccuracy 
relative to the target output of the network) into the learning function of the 
network. This learning function outputs the required weight adjustments 
(Technically, it typically calculates the partial derivatives—terms required by 
gradient descent.) to minimize the cost function.
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•	 A set of neurons or weights: Each contains a weight function (the activation 
function) that manipulates input data. The activation function may vary 
substantially between networks (with one well-known example being 
the hyperbolic tangent). The key requirement is that the weights must be 
adaptive, that is,, adjustable based on updates from the learning process. 
In order to model non-parametrically (that is, to model effectively without 
defining details of the probability distribution), it is necessary to use both 
visible and hidden units. Hidden units are never observed.

•	 Connectivity functions: They control which nodes can relay data to which 
other nodes. Nodes may be able to freely relay input to one another in an 
unrestricted or restricted fashion, or they may be more structured in layers 
through which input data must flow in a directed fashion. There is a broad 
range of interconnection patterns, with different patterns producing very 
different network properties and possibilities.

Utilizing this set of elements enables us to build a broad range of neural networks, 
ranging from the familiar directed acyclic graph (with perhaps the best-known 
example being the Multi-Layer Perceptron (MLP)) to creative alternatives. The  
Self-Organizing Map (SOM) that we employed in the preceding chapter was a type 
of neural network, with a unique learning process. The algorithm that we'll examine 
later in this chapter, that of the RBM, is another neural network algorithm with some 
unique properties.

Network topologies
There are many variations on how the neurons in a neural network are connected, 
with structural decisions being an important factor in determining the network's 
learning capabilities. Common topologies in unsupervised learning tend to differ from 
those common to supervised learning. One common and now familiar unsupervised 
learning topology is that of the SOM that we discussed in the last chapter.

The SOM, as we saw, directly projects individual input cases onto a weight vector 
contained by each node. It then proceeds to reorder these nodes until an appropriate 
mapping of the dataset is converged on. The actual structure of the SOM was a 
variant based on the details of training, specific outcome of a given instance of 
training, and design decisions taken in structuring the network, but square or 
hexagonal grid structures are becoming increasingly common.
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A very common topology type in supervised learning is that of a three-layer, 
feedforward network, with the classical case being the MLP. In this network 
topology model, the neurons in the network are split into layers, with each layer 
communicating to the layer "beyond" it. The first layer contains inputs that are fed 
to a hidden layer. The hidden layer develops a representation of the data using 
weight activations (with the right activation function, for example, sigmoid or 
gauss, an MLP can act as a universal function approximator) and activation values 
are communicated to the output layer. The output layer typically delivers network 
results. This topology, therefore, looks as follows:
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Other network topologies deliver different capabilities. The topology of a Boltzmann 
Machine, for instance, differs from those described previously. The Boltzmann 
machine contains hidden and visible neurons, like those of a three-layer network, but 
all of these neurons are connected to one another in a directed, cyclic graph:

This topology makes Boltzmann machines stochastic—probabilistic rather than 
deterministic—and able to develop in one of several ways given a sufficiently 
complex problem. The Boltzmann machine is also generative, which means that it is 
able to fully (probabilistically) model all of the input variables, rather than using the 
observed variables to specifically model the target variables.

Which network topology is appropriate depends to a large extent on your 
specific challenge and the desired output. Each tends to be strong in certain areas. 
Furthermore, each of the topologies described here will be accompanied by a 
learning process that enables the network to iteratively converge on an (ideally 
optimal) solution.

There are a broad range of learning processes, with specific processes and topologies 
being more or less compatible with one another. The purpose of a learning process is 
to enable the network to adjust its weights, iteratively, in such a way as to create an 
increasingly accurate representation of the input data.
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As with network topologies, there are a great many learning processes to consider. 
Some familiarity is assumed and a great many excellent resources on learning 
processes exist (some good examples are given at the end of this chapter). This 
section will focus on delivering a common characterization of learning processes, 
while later in the chapter, we'll look in greater detail at a specific example.

As noted, the objective of learning in a neural network is to iteratively improve 
the distribution of weights across the model so that it approximates the function 
underlying input data with increasing accuracy. This process requires a performance 
measure. This may be a classification error measure, as is commonly used in 
supervised, classification contexts (that is, with the backpropagation learning 
algorithm in MLP networks). In stochastic networks, it may be a probability 
maximization term (such as energy in energy-based networks).

In either case, once there is a measure to increase probability, the network is 
effectively attempting to reduce that measure using an optimization method. In 
many cases, the optimization of the network is achieved using gradient descent. 
As far as the gradient descent algorithm method is concerned, the size of your 
performance measure value on a given training iteration is analogous to the slope 
of your gradient. Minimizing the performance measure is therefore a question of 
descending that gradient to the point at which the error measure is at its lowest for 
that set of weights.

The size of the network's updates for the next iteration (the learning rate of your 
algorithm) may be influenced by the magnitude of your performance measure, or it 
may be hard-coded.

The weight updates by which your network adjusts may be derived from the error 
surface itself; if so, your network will typically have a means of calculating the 
gradient, that is, deriving the values to which updates need to adjust the parameters 
on your network's activated weight functions so as to continue to reduce the 
performance measure.

Having reviewed the general concepts underlying network topologies and learning 
methods, let's move into the discussion of a specific neural network, the RBM. As 
we'll see, the RBM is a key part of a powerful deep learning algorithm.
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Restricted Boltzmann Machine
The RBM is a fundamental part of this chapter's subject deep learning architecture—
the DBN. The following sections will begin by introducing the theory behind an 
RBM, including the architectural structure and learning processes.

Following that, we'll dive straight into the code for an RBM class, making links 
between the theoretical elements and functions in code. We'll finish by touching  
on the applications of RBMs and the practical factors associated with implementing 
an RBM.

Introducing the RBM
A Boltzmann machine is a particular type of stochastic, recurrent neural network. It 
is an energy-based model, which means that it uses an energy function to associate 
an energy value with each configuration of the network.

We briefly discussed the structure of a Boltzmann machine in the previous section. 
As mentioned, a Boltzmann machine is a directed cyclic graph, where every node is 
connected to all other nodes. This property enables it to model in a recurrent fashion, 
such that the model's outputs evolve and can be viewed over time.

The learning loop in a Boltzmann machine involves maximizing the probability of 
the training dataset, X. As noted, the specific performance measure used is energy, 
which is characterized as the negative log of the probability for a dataset X, given a 
vector of model parameters, Θ. This measure is calculated and used to update the 
network's weights in such a way as to minimize the free energy in the network.

The Boltzmann machine has seen particular success in processing image data, 
including photographs, facial features, and handwriting classification contexts.

Unfortunately, the Boltzmann machine is not practical for more challenging ML 
problems. This is due to the fact that there are challenges with the machine's ability 
to scale; as the number of nodes increases, the compute time grows exponentially, 
eventually leaving us in a position where we're unable to compute the free energy of 
the network.
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For those with an interest in the underlying formal reasoning, this 
happens because the probability of a data point, x, p(x; Θ), must 
integrate to 1 over all x. Achieving this requires that we use a partition 
function, Z, used as a normalizing constant. (Z is a constant such that 
multiplying a non-negative function by Z will make the non-negative 
function integrate to 1 over all inputs; in this case, over all x.)
The probability model function is a function of a set of normal 
distributions. In order to get the energy for our model, we need 
to differentiate for each of the model's parameters; however, this 
becomes complicated because of the partition function. Each model 
parameter produces equations dependent on other model parameters 
and we ultimately find ourselves unable to calculate the energy 
without (potentially) hugely expensive calculations, whose cost 
increases as the network scales.

In order to overcome the weaknesses of the Boltzmann machine, it is necessary to 
make adjustments to both the network topology and training process.

Topology
The main topological change that delivers efficiency improvements is the restriction 
of connectivity between nodes. First, one must prevent connection between nodes 
within the same layer. Additionally, all skip-layer connections (that is, direct 
connections between non-consecutive layers) must be prevented. A Boltzmann 
machine with this architecture is referred to as an RBM and appears as shown in the 
following diagram:
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One advantage of this topology is that the hidden and visible layers are conditionally 
independent given one another. As such, it is possible to sample from one layer 
using the activations of the other.

Training
We observed previously that, for Boltzmann machines, the training time of the 
machine scales extremely poorly as the machine is scaled up to additional nodes, 
putting us in a position where we cannot evaluate the energy function that we're 
attempting to use in training.

The RBM is typically trained using a procedure with a different learning algorithm at 
its heart, the Permanent Contrastive Divergence (PCD) algorithm, which provides 
an approximation of maximum likelihood. PCD doesn't evaluate the energy function 
itself, but instead allows us to estimate the gradient of the energy function. With this 
information, we can proceed by making very small adjustments in the direction of the 
steepest gradient via which we may progress, as desired, toward the local minimum.

The PCD algorithm is made up of two phases. These are referred to as the positive 
and negative phases, and each phase has a corresponding effect on the energy  
of the model. The positive phase increases the probability of the training dataset, 
X, thus reducing the energy of the model. Following this, the negative phase uses 
a sampling approach from the model to estimate the negative phase gradient. 
The overall effect of the negative phase is to decrease the probability of samples 
generated by the model.

Sampling in the negative phase and throughout the update process is achieved using 
a form of sampling called Gibbs sampling.
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Gibbs sampling is a variant of the Markov Chain Monte Carlo (MCMC) 
family of algorithms, and samples from an approximated multivariate 
probability distribution. What this means is, rather than using a summed 
calculation in building our probabilistic model (just as we might do, for 
instance, when we flip a coin a certain number of times; in such cases, we 
may sum the number of heads attempts as a proportion of the sum of all 
attempts), we approximate the value of an integral instead. The subject 
of how to create a probabilistic model by approximating an integral 
deserves more time than this book can give it. As such the Further reading 
section of this chapter provides an excellent paper reference. The key 
points to bear in mind for now (and stripping out a lot of important 
detail!) are that, instead of summing each case exactly once, we sample 
based on the (often non-uniform) distribution of the data in question. 
Gibbs sampling is a probabilistic sampling method for each parameter 
in a model, based on all of the other parameter values in that model. As 
soon as a new parameter value is obtained, it is immediately used in 
sampling calculations for other parameters.

Some of you may be asking at this point why PCD is necessary. Why not use a more 
familiar method, such as gradient descent with line search? To put it simply, we 
cannot easily calculate the free energy of our network as this calculation involves an 
integration across all the network's nodes. We recognized this limitation when we 
called out the big weakness of the Boltzmann machine—that the compute time grows 
exponentially as the number of nodes increases, leaving us in a situation where we're 
trying to minimize a function whose value we cannot calculate!

What PCD provides is a way to estimate the gradient of the energy function. This 
enables an approximation of the network's free energy, which is fast enough to be 
viable for application and has shown to be generally accurate. (Refer to the Further 
reading section for a performance comparison.)

As we saw previously, the RBM's probability model function is the joint distribution 
of our model parameters, making Gibbs sampling appropriate!

The training loop in an initialized RBM involves several steps:

1.	 We obtain the current iteration's activated hidden layer weight values.
2.	 We perform the positive phase of PCD, using the state of the Gibbs chain 

from the previous iteration as input.
3.	 We perform the negative phase of PCD using the pre-existing state of the 

Gibbs chain. This gives us the free energy value.
4.	 We update the activated weights on the hidden layer using the energy value 

we've calculated.
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This algorithm allows the RBM to iteratively step toward a decreased free  
energy value. The RBM continues to train until both the probability of the training 
dataset integrates to one and free energy is equal to zero, at which point the RBM  
has converged.

Now that we've had a chance to review the RBM's topology and training process, 
let's apply the algorithm to classify a substantial real dataset.

Applications of the RBM
Now that we have a general working knowledge of the RBM algorithm, let's walk 
through code to create an RBM. We'll be working with an RBM class that will allow 
us to classify the MNIST handwritten digits dataset. The code we're about to review 
does the following:

•	 It sets up the initial parameters of an RBM, including layer size, shareable 
bias vectors, and shareable weight matrix for connectivity with external 
network structures (this enables deep belief networks)

•	 It defines functions for communication and inference between hidden and 
visible layers

•	 It defines functions that allow us to update the parameters of network nodes
•	 It defines functions that handle efficient sampling for the learning process, 

using PCD-k to accelerate sampling (making it possible to compute in a 
reasonable frame of time)

•	 It defines functions that compute the free energy of the model (used to 
calculate the gradient required for PCD-k updates)

•	 It identifies the Psuedo-Likelihood (PL), usable as a log-likelihood proxy to 
guide the selection of appropriate hyperparameters

Let's begin examining our RBM class:

class RBM(object):
    def __init__(
        self,
        input=None,
        n_visible=784,
        n_hidden=500,
        w=None,
        hbias=None,
        vbias=None,
        numpy_rng=None,
        theano_rng=None
    ):
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The first element that we need to build is an RBM constructor, which we can use to 
define the parameters of the model, such as the number of visible and hidden nodes 
(n_visible and n_hidden) as well as additional parameters that can be used to 
adjust how the RBM's inference functions and CD updates are performed.

The w parameter can be used as a pointer to a shared weight matrix. This becomes 
more relevant when implementing a DBN, as we'll see later in the chapter; in such 
architectures, the weight matrix needs to be shared between different parts of  
the network.

The hbias and vbias parameters are used similarly as optional references to shared 
hidden and visible (respectively) units' bias vectors. Again, these are used in DBNs.

The input parameter enables the RBM to be connected, top-to-tail, to other graph 
elements. This allows one to, for instance, chain RBMs.

Having set up this constructor, we next need to flesh out each of the preceding 
parameters:

        self.n_visible = n_visible
        self.n_hidden = n_hidden

        if numpy_rng is None:
            numpy_rng = numpy.random.RandomState(1234)

        if theano_rng is None:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

This is fairly straightforward stuff; we set the visible and hidden nodes for our RBM 
and set up two random number generators. The theano_rng parameter will be used 
later in our code to sample from the RBM's hidden units:

        if W is None:
            initial_W = numpy.asarray(
                numpy_rng.uniform(
                    low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
                    high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
                    size=(n_visible, n_hidden)
                ),
                dtype=theano.config.floatX
            )
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This code switches up the data type for W so that it can be run over the GPU. Next, 
we set up shared variables using theano.shared, which allows a variable's storage 
to be shared between functions that it appears in. Within the current example, the 
shared variables that we create will be the weight vector (W) and bias variables for 
hidden and visible units (hbias and vbias, respectively). When we move on to 
creating deep networks with multiple components, the following code will allow us 
to share components between parts of our networks:

            W = theano.shared(value=initial_W, name='W', borrow=True)

        if hbias is None: 
            hbias = theano.shared(
                value=numpy.zeros(
                    n_hidden,
                    dtype=theano.config.floatX
                ),
                name='hbias',
                borrow=True
            )

        if vbias is None:
            vbias = theano.shared(
                value=numpy.zeros(
                    n_visible,
                    dtype=theano.config.floatX
                ),
                name='vbias',
                borrow=True
            )

At this point, we're ready to initialize the input layer as follows:

        self.input = input
        if not input:
            self.input = T.matrix('input')

        self.W = W
        self.hbias = hbias
        self.vbias = vbias
        self.theano_rng = theano_rng
        self.params = [self.W, self.hbias, self.vbias]
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As we now have an initialized input layer, our next task is to create the symbolic 
graph that we described earlier in the chapter. Achieving this is a matter of creating 
functions to manage the interlayer propagation and activation computation 
operations of the network:

def propup(self, vis):
        pre_sigmoid_activation = T.dot(vis, self.W) + self.hbias
        return [pre_sigmoid_activation, T.nnet.sigmoid(pre_sigmoid_
activation)]

    def propdown(self, hid):
        pre_sigmoid_activation = T.dot(hid, self.W.T) + self.vbias
        return [pre_sigmoid_activation, T.nnet.sigmoid(pre_sigmoid_
activation)]

These two functions pass the activation of one layer's units to the other layer. The 
first function passes the visible units' activation upward to the hidden units so 
that the hidden units can compute their activation conditional on a sample of the 
visible units. The second function does the reverse—propagating the hidden layer's 
activation downward to the visible units.

It's probably worth asking why we're creating both propup and propdown. As we 
reviewed it, PCD only requires that we perform sampling from the hidden units. So 
what's the value of propup?

In a nutshell, sampling from the visible layer becomes useful when we want to 
sample from the RBM to review its progress. In most applications where our RBM is 
processing visual data, it is immediately valuable to periodically take the output of 
sampling from the visible layer and plot it, as shown in the following example:
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As we can see here, over the course of iteration, our network begins to change its 
labeling; in the first case, 7 morphs into 9, while elsewhere 9 becomes 6 and the 
network gradually reaches a definition of 3-ness.

As we discussed earlier, it's helpful to have as many views on the operation of your 
RBM as possible to ensure that it's delivering meaningful results. Sampling from the 
outputs it generates is one way to improve this visibility.

Armed with information about the visible layer's activation, we can deliver a  
sample of the unit activations from the hidden layer, given the activation of the 
hidden nodes:

    def sample_h_given_v(self, v0_sample):
     
 pre_sigmoid_h1, h1_mean = self.propup(v0_sample)
    h1_sample = self.theano_rng.binomial(size=h1_mean.shape,
    n=1, p=h1_mean, dtype=theano.config.floatX)

    return [pre_sigmoid_h1, h1_mean, h1_sample]

Likewise, we can now sample from the visible layer given hidden unit activation 
information:

    def sample_v_given_h(self, h0_sample):
    pre_sigmoid_v1, v1_mean = self.propdown(h0_sample)
      v1_sample = self.theano_rng.binomial(size=v1_mean.shape,
      n=1, p=v1_mean, dtype=theano.config.floatX)

      return [pre_sigmoid_v1, v1_mean, v1_sample]

We've now achieved the connectivity and update loop required to perform a Gibbs 
sampling step, as described earlier in this chapter. Next, we should define this 
sampling step!

    def gibbs_hvh(self, h0_sample):
        
        pre_sigmoid_v1, v1_mean, v1_sample = 
        self.sample_v_given_h(h0_sample)
        pre_sigmoid_h1, h1_mean, h1_sample = 
        self.sample_h_given_v(v1_sample)
        return [pre_sigmoid_v1, v1_mean, v1_sample,
                pre_sigmoid_h1, h1_mean, h1_sample]
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As discussed, we need a similar function to sample from the visible layer:

    def gibbs_vhv(self, v0_sample):
        
        pre_sigmoid_h1, h1_mean, h1_sample = 
        self.sample_h_given_v(v0_sample)
        pre_sigmoid_v1, v1_mean, v1_sample = 
        self.sample_v_given_h(h1_sample)
        return [pre_sigmoid_h1, h1_mean, h1_sample,
                pre_sigmoid_v1, v1_mean, v1_sample]

The code that we've written so far gives us some of our model. It set up the nodes 
and layers and connections between layers. We've written the code that we need in 
order to update the network based on Gibbs sampling from the hidden layer.

What we're still missing is code that allows us to perform the following:

•	 Compute the free energy of the model. As we discussed, the model uses 
energy as the term to do the following:

°° Implement PCD using our Gibbs sampling step code, and setting the 
Gibbs step count parameter, k = 1, to compute the parameter gradient 
for gradient descent

°° Create a means to feed the output of PCD (the computed gradient) to 
our previously defined network update code

•	 Develop the means to track the progress and success of our RBM throughout 
the training.

First off, we'll create the means to calculate the free energy of our RBM. Note that 
this is the inverse log of the probability distribution for the hidden layer, which we 
discussed earlier:

  def free_energy(self, v_sample):
        
        wx_b = T.dot(v_sample, self.W) + self.hbias
        vbias_term = T.dot(v_sample, self.vbias)
        hidden_term = T.sum(T.log(1 + T.exp(wx_b)), axis=1)
        return -hidden_term - vbias_term

Next, we'll implement PCD. At this point, we'll be setting a couple of interesting 
parameters. The lr, short for learning rate, is an adjustable parameter used to adjust 
learning speed. The k parameter points to the number of steps to be performed by 
PCD (remember the PCD-k notation from earlier in the chapter?).
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We discussed the PCD as containing two phases, positive and negative. The 
following code computes the positive phase of PCD:

def get_cost_updates(self, lr=0.1, persistent = , k=1):

        pre_sigmoid_ph, ph_mean, ph_sample =  
        self.sample_h_given_v(self.input)

        
       
            chain_start = persistent

Meanwhile, the following code implements the negative phase of PCD. To do so, we 
scan the gibbs_hvh function k times, using Theano's scan operation, performing one 
Gibbs sampling step with each scan. After completing the negative phase, we acquire 
the free energy value:

        (
            [
                pre_sigmoid_nvs,
                nv_means,
                nv_samples,
                pre_sigmoid_nhs,
                nh_means,
                nh_samples
            ],
            updates
        ) = theano.scan(
            self.gibbs_hvh,
            outputs_info=[None, None, None, None, None, chain_start],
            n_steps=k
        )

        chain_end = nv_samples[-1]

        cost = T.mean(self.free_energy(self.input)) - T.mean(
            self.free_energy(chain_end))

        gparams = T.grad(cost, self.params, 
        consider_constant=[chain_end])
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Having written code that performs the full PCD process, we need a way to feed the 
outputs to our network. At this point, we're able to connect our PCD learning process 
to the code to update the network that we reviewed earlier. The preceding updates 
dictionary points to theano.scan of the gibbs_hvh function. As you may recall, 
gibbs_hvh currently contains rules for random states of theano_rng. What we need 
to do now is add the new parameter values and variable containing the state of the 
Gibbs chain to the dictionary (the updates variable):

        for gparam, param in zip(gparams, self.params):
            updates[param] = param - gparam * T.cast(
                lr,
                dtype=theano.config.floatX
            )
        
            updates = nh_samples[-1]
            monitoring_cost =  
            self.get_pseudo_likelihood_cost(updates)
        

        return monitoring_cost, updates

We now have almost all the parts that we need to make our RBM work. What's 
clearly missing is a means to inspect training, either during or after completion,  
to ensure that our RBM is learning an appropriate representation of the data.

We talked previously about how to train an RBM, specifically about challenges 
posed by the partition function. Furthermore, earlier in the code, we implemented 
one means by which we can inspect an RBM during training; we created the  
gibbs_vhv function to perform Gibbs sampling from the model.

In our previous discussion around how to validate an RBM, we discussed visually 
plotting the filters that the RBM has created. We'll review how this can be achieved 
shortly.

The final possibility is to use the inverse log of the PL as a more tractable proxy to 
the likelihood itself. Technically, the log-PL is the sum of the log-probabilities of each 
data point (each x) conditioned on all other data points. As discussed, this becomes 
too expensive with larger-dimensional datasets, so a stochastic approximation to  
log-PL is used.
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We referenced a function that will enable us to get PL cost during the get_cost_
updates function, specifically the get_pseudo_likelihood_cost function. Now it's 
time to flesh out this function and obtain the pseudo-likelihood:

def get_pseudo_likelihood_cost(self, updates):

        bit_i_idx = theano.shared(value=0, name='bit_i_idx')
        xi = T.round(self.input)

        fe_xi = self.free_energy(xi)

        xi_flip = T.set_subtensor(xi[:, bit_i_idx], 1 - xi[:, 
        bit_i_idx])

        fe_xi_flip = self.free_energy(xi_flip)

        cost = T.mean(self.n_visible * 
        T.log(T.nnet.sigmoid(fe_xi_flip - fe_xi)))

        
        updates[bit_i_idx] = (bit_i_idx + 1) % self.n_visible

        return cost

We've now filled out each element on the list of missing components and have 
completely reviewed the RBM class. We've explored how each element ties into the 
theory behind the RBM and should now have a thorough understanding of how the 
RBM algorithm works. We understand what the outputs of our RBM will be and 
will soon be able to review and assess them. In short, we're ready to train our RBM. 
Beginning the training of the RBM is a matter of running the following code, which 
triggers the train_set_x function. We'll discuss this function in greater depth later 
in this chapter:

    train_rbm = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * 
            batch_size]
        },
        name='train_rbm'
    )

    plotting_time = 0.
    start_time = time.clock()
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Having updated the RBM's updates and training set, we run through training 
epochs. Within each epoch, we train over the training data before plotting the 
weights as a matrix (as described earlier in the chapter):

    for epoch in xrange(training_epochs):

        mean_cost = []
        for batch_index in xrange(n_train_batches):
            mean_cost += [train_rbm(batch_index)]

        print 'Training epoch %d, cost is ' % epoch, 
        numpy.mean(mean_cost)

        plotting_start = time.clock()
        image = Image.fromarray(
            tile_raster_images(
                X=rbm.W.get_value(borrow=True).T,
                img_shape=(28, 28),
                tile_shape=(10, 10),
                tile_spacing=(1, 1)
            )
        )
        image.save('filters_at_epoch_%i.png' % epoch)
        plotting_stop = time.clock()
        plotting_time += (plotting_stop - plotting_start)

    end_time = time.clock()

    pretraining_time = (end_time - start_time) - plotting_time

    print ('Training took %f minutes' % (pretraining_time / 60.))

The weights tend to plot fairly recognizably and resemble Gabor filters (linear 
filters commonly used for edge detection in images). If your dataset is handwritten 
characters on a fairly low-noise background, you tend to find that the weights trace 
the strokes used. For photographs, the filters will approximately trace edges in the 
image. The following image shows an example output:
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Finally, we create the persistent Gibbs chains that we need to derive our samples. 
The following function performs a single Gibbs step, as discussed previously, then 
updates the chain:

plot_every = 1000

    (
        [
            presig_hids,
            hid_mfs,
            hid_samples,
            presig_vis,
            vis_mfs,
            vis_samples
        ],
        updates
    ) = theano.scan(
        rbm.gibbs_vhv,
        outputs_info=[None, None, None, None, None, persistent_vis_
chain],
        n_steps=plot_every
    )
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This code runs the gibbs_vhv function we described previously, plotting network 
output samples for our inspection:

    updates.update({persistent_vis_chain: vis_samples[-1]})
    sample_fn = theano.function(
        [],
        [
            vis_mfs[-1],
            vis_samples[-1]
        ],
        updates=updates,
        name='sample_fn'
    )

    image_data = numpy.zeros(
        (29 * n_samples + 1, 29 * n_chains - 1),
        dtype='uint8'
    )
    for idx in xrange(n_samples):
        
        vis_mf, vis_sample = sample_fn()
        print ' ... plotting sample ', idx
        image_data[29 * idx:29 * idx + 28, :] = tile_raster_images(
            X=vis_mf,
            img_shape=(28, 28),
            tile_shape=(1, n_chains),
            tile_spacing=(1, 1)
        )

    image = Image.fromarray(image_data)
    image.save('samples.png')

At this point, we have an entire RBM. We have the PCD algorithm and the ability 
to update the network using this algorithm and Gibbs sampling. We have several 
visible output methods so that we can assess how well our RBM has trained.

However, we're not done yet! Next, we'll begin to see what the most frequent and 
powerful application of the RBM is.
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Further applications of the RBM
We can use the RBM as an ML algorithm in and of itself. It functions comparably 
well with other algorithms. Advantageously, it can be scaled up to a point where it 
can learn high-dimensional datasets. However, this isn't where the real strength of 
the RBM lies.

The RBM is most commonly used as a pretraining mechanism for a highly effective 
deep network architecture called a DBN. DBNs are extremely powerful tools to learn 
and classify a range of image datasets. They possess a very good ability to generalize 
to unknown cases and are among the best image-learning tools available. For this 
reason, DBNs are in use at many of the world's top tech and data science companies, 
primarily in image search and recognition contexts.

Deep belief networks
A DBN is a graphical model, constructed using multiple stacked RBMs. While the 
first RBM trains a layer of features based on input from the pixels of the training data, 
subsequent layers treat the activations of preceding layers as if they were pixels and 
attempt to learn the features in subsequent hidden layers. This is frequently described 
as learning the representation of data and is a common theme in deep learning.

How many multiple RBMs there should be depends on what is needed for the 
problem at hand. From a practical perspective, it's a trade-off between increasing 
accuracy and increasing computational cost. It is the case that each layer of RBMs 
will improve the lower bound of the log probability of the training data. In other 
words; the DBN almost inevitably becomes less bad with each additional layer  
of features.

As far as layer size is concerned, it is generally advantageous to reduce the number 
of nodes in the hidden layers of successive RBMs. One should avoid contexts in 
which an RBM has at least as many visible units as the RBM preceding it has hidden 
units (which raises the risk of simply learning the identity function of the network).

It can be advantageous (but is by no means necessary) when successive RBMs 
decrease in layer size until the final RBM has a layer size approximating the 
dimensionality of variance in the data. Affixing an MLP to the end of a DBN whose 
layers have too many nodes will harm classification performance; it's like trying to 
affix a drinking straw to the end of a hosepipe! Even an MLP with many neurons 
may not successfully train in such contexts. On a related note, it has been noted that 
even if the layers don't contain very many nodes, with enough layers, more or less 
any function can be modeled.
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Determining what the dimensionality of variance in the data is, is not a simple task. 
One tool that can support this task is PCA; as we saw in the preceding chapter, PCA 
can enable us to get a reasonable idea as to how many components of meaningful 
size exist in the input data.

Training a DBN
Training a DBN is typically done greedily, which is to say that it trains to optimize 
locally at each layer, rather than attempting to reach a global optimum. The learning 
process is as follows:

•	 The first layer of the DBN is trained using the method that we saw in  
our earlier discussion of RBM learning. As such, the first layer converts its 
data distribution to a posterior distribution using Gibbs sampling over the 
hidden units.

•	 This distribution is far more conducive for RBM training than the input data 
itself so the next RBM layer learns that distribution!

•	 Successive RBM layers continue to train on the samples output by  
preceding layers.

•	 All of the parameters within this architecture are tuned using a  
performance measure.

This performance measure may vary. It may be a log-likelihood proxy used in 
gradient descent, as discussed earlier in the chapter. In supervised contexts, a 
classifier (for example, an MLP) can be added as the final layer of the architecture 
and prediction accuracy can be used as the performance measure to fine-tune the 
deep architecture.

Let's move on to using the DBN in practice.

Applying the DBN
Having discussed the DBN and theory surrounding it, it's time to set up our own. 
We'll be working in a similar way to the RBM, by walking through a DBN class and 
connecting the code to the theory, discussing what to expect and how to review  
the network's performance, before initializing and training our network to see  
it in action.

Let's take a look at our DBN class:

class DBN(object):

    def __init__(self, numpy_rng, theano_rng=None, n_ins=784,
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                 hidden_layers_sizes=[500, 500], n_outs=10):
       
        self.sigmoid_layers = []
        self.rbm_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)

        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

       
        self.x = T.matrix('x')
        self.y = T.ivector('y')

The DBN class contains a number of parameters that bear further explanation. The 
numpy_rng and theano_rng parameters, used to determine initial weights, are 
already familiar from our examination of the RBM class. The n_ins parameter is a 
pointer to the dimension (in features) of the DBN's input. The hidden_layers_
sizes parameter is a list of hidden layer sizes. Each value in this list will guide 
the DBN constructor in creating an RBM layer of the relevant size; as you'll note, 
the n_layers parameter refers to the number of layers in the network and is set by 
hidden_layers_sizes. Adjustment of values in this list enables us to make DBNs 
whose layer sizes taper down from the input layer size, to increasingly succinct 
representations, as discussed earlier in the chapter.

It's also worth noting that self.sigmoid_layers will store the MLP component 
(the final layer of the DBN), while self.rbm_layers stores the RBM layers used to 
pretrain the MLP.

With this done, we do the following to complete our DBN architecture:

•	 We create n_layers sigmoid layers
•	 We connect the sigmoid layers to form an MLP
•	 We construct an RBM for each sigmoid layer with a shared weight matrix 

and hidden bias between each sigmoid layer and RBM

The following code creates n_layers many layers with sigmoid activations; first 
creating the input layer, then creating hidden layers whose size corresponds to the 
values in our hidden_layers_sizes list:

       for i in xrange(self.n_layers):
       
            if i == 0:
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                input_size = n_ins
            else:
                       input_size = hidden_layers_sizes[i - 1]
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            self.params.extend(sigmoid_layer.params)

Next up, we create an RBM that shares weights with the sigmoid layers. This directly 
leverages the RBM class that we described previously:

            rbm_layer = RBM(numpy_rng=numpy_rng,
                            theano_rng=theano_rng,
                            input=layer_input,
                            n_visible=input_size,
                            n_hidden=hidden_layers_sizes[i],
                            W=sigmoid_layer.W,
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)

Finally, we add a logistic regression layer to the end of the DBN so as to form  
an MLP:

        self.logLayer = LogisticRegression(
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs)
        self.params.extend(self.logLayer.params)

        self.finetune_cost = self.logLayer.negative_log_
likelihood(self.y)

        self.errors = self.logLayer.errors(self.y)
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Now that we've put together our MLP class, let's construct DBN. The following code 
constructs the network with 28 * 28 inputs (that is, 28*28 pixels in the MNIST 
image data), three hidden layers of decreasing size, and 10 output values (for each of 
the 10 handwritten number classes in the MNIST dataset):

    numpy_rng = numpy.random.RandomState(123)
    print '... building the model'
    dbn = DBN(numpy_rng=numpy_rng, n_ins=28 * 28,
              hidden_layers_sizes=[1000, 800, 720],
              n_outs=10)

As discussed earlier in this section, a DBN trains in two stages—a layer-wise 
pretraining in which each layer takes the output of the preceding layer to train on, 
which is followed by a fine-tuning step (backpropagation) that allows for weight 
adjustment across the whole network. The first stage, pretraining, is achieved by 
performing one step of PCD within each layer's RBM. The following code will 
perform this pretraining step:

    print '... getting the pretraining functions'
    pretraining_fns = 
    dbn.pretraining_functions(train_set_x=train_set_x,
    batch_size=batch_size, k=k)

    print '... pre-training the model'
    start_time = time.clock()
   
    for i in xrange(dbn.n_layers):
        for epoch in xrange(pretraining_epochs):
            c = []
            for batch_index in xrange(n_train_batches):
                c.append(pretraining_fns[i](index=batch_index,
                                            lr=pretrain_lr))
            print 'Pre-training layer %i, epoch %d, cost ' % (i, 
epoch),
            print numpy.mean(c)

    end_time = time.clock()

Running the pretrained DBN is then achieved by the following command:

python code/DBN.py

Note that even with GPU acceleration, this code will spend 
quite a lot of time pretraining, and it is therefore suggested 
that you run it overnight.
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Validating the DBN
Validation of a DBN as a whole is done in a very familiar way. We can use the 
minimal validation error from cross-validation as one error measure. However,  
the minimal cross-validation error can underestimate the error expected on  
cross-validation data as the meta-parameters may overfit to the new data.

As such, we should use our cross-validation error to adjust our metaparameters 
until the cross-validation error is minimized. Then we should expose our DBN to the 
held-out test set, using test error as our validation measure. Our DBN class performs 
exactly this training process.

However, this doesn't tell us exactly what to do if the network fails to train 
adequately. What do we do if our DBN is underperforming?

The first thing to do is recognize the potential causes and, in this area, there are some 
usual culprits. We know that the training of underlying RBMs is also quite tricky and 
any individual layer may fail to train. Thankfully, our RBM class gives us the ability to 
tap into and view the weights (filters) being generated by each layer, and we can plot 
these to get a view on what our network is attempting to represent.

Additionally, we want to ask whether our network is overfitting, or else, 
underfitting. Either is entirely possible and it's useful to recognize how and why this 
might be happening. In the case of underfitting, the training process may simply be 
unable to find good parameters for the model. This is particularly common when 
you are using a larger network to resolve a large problem space, but can be seen 
even with some smaller models. If you think that underfitting might be happening 
with your DBN, you have a couple of options. The first is to simply reduce the size 
of your hidden layers. This may, or may not, work well. A better alternative is to 
gradually taper your hidden layers such that each layer learns a refined version of 
the preceding layer's representation. How to do this, how sharply to taper, and when 
to stop is a matter of trial and error in the first case and of experience-based learning 
over the long term.

Overfitting is a well-known phenomenon where your algorithm trains overly 
specifically on the training data provided. This class of problem is typically identified 
at the point of cross-validation (where your error rate will increase dramatically), 
but can be quite pernicious. Means of resolving an overfitting issue do exist; one can 
increase the training dataset size. A more heavy-handed Bayesian approach would 
be to attach an additional criterion (for example, a prior) that is used to reduce the 
value of fitting the training data. Some of the most effective methods to improve 
classification performance are preprocessing methods, which we'll discuss in 
Chapters 6, Text Feature Engineering and Chapter 7, Feature Engineering Part II.
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Though this code will initialize from a predefined position (given a seed value), the 
stochastic nature of the model means that it will quickly diverge and results may vary. 
When running on my system, this DBN achieved a minimal cross-validation error of 
1.19%. More importantly, it achieved a test error of 1.30% after 46 supervised epochs. 
These are good results; indeed, they are comparable with field-leading examples!

Further reading
For a primer on neural networks, it makes sense to read from a range of sources. 
There are many concerns to be aware of and different authors emphasize on different 
material. A solid introduction is provided by Kevin Gurney in An Introduction to 
Neural Networks.

An excellent piece on the intuitions underlying Markov Chain Monte Carlo is 
available at http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/.

For readers with a specific interest in the intuitions supporting Gibbs Sampling, 
Philip Resnik, and Eric Hardisty's paper, Gibbs Sampling for the Uninitiated, provides 
a technical, but clear description of how Gibbs works. It's particularly notable to 
have some really first-rate analogies! Find them at https://www.umiacs.umd.
edu/~resnik/pubs/LAMP-TR-153.pdf.

There aren't many good explanations of Contrastive Divergence, one I like is 
provided by Oliver Woodford at http://www.robots.ox.ac.uk/~ojw/files/
NotesOnCD.pdf. If you're a little daunted by the heavy use of formal expressions, I 
would still recommend that you read it for its articulate description of theory and 
practical concerns involved.

This chapter used the Theano documentation available at http://deeplearning.
net/tutorial/contents.html as a base for discussion and implementation of RBM 
and DBN classes.

https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf
https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf
http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
http://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
http://deeplearning.net/tutorial/contents.html
http://deeplearning.net/tutorial/contents.html
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Summary
We've covered a lot of ground in this chapter! We began with an overview of Neural 
Networks, focusing on the general properties of topology and learning method 
before taking a deep dive into the RBM algorithm and RBM code itself. We took 
this solid understanding forward to create a DBN. In doing so, we linked the DBN 
theory and code together, before firing up our DBN to work over the MNIST dataset. 
We performed image classification in a 10-class problem and achieved an extremely 
competitive result, with classification error below 2%!

In the next chapter, we'll continue to build on your mastery of deep learning 
by introducing you to another deep learning architecture—Stacked Denoising 
Autoencoders (SDA).
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Stacked Denoising 
Autoencoders

In this chapter, we'll continue building our skill with deep architectures by  
applying Stacked Denoising Autoencoders (SdA) to learn feature representations 
for high-dimensional input data.

We'll start, as before, by gaining a solid understanding of the theory and concepts 
that underpin autoencoders. We'll identify related techniques and call out the 
strengths of autoencoders as part of your data science toolkit. We'll discuss the 
use of Denoising Autoencoders (dA), a variation of the algorithm that introduces 
stochastic corruption to the input data, obliging the autoencoder to decorrupt the 
input and, in so doing, build a more effective feature representation.

We'll follow up on theory, as before, by walking through the code for a dA class, 
linking theory and implementation details to build a strong understanding of  
the technique.

At this point, we'll take a journey very similar to that taken in the preceding 
chapter—by stacking dA, we'll create a deep architecture that can be used to pretrain 
an MLP network, which offers substantial performance improvements in a range of 
unsupervised learning applications including speech data processing.

Autoencoders
The autoencoder (also called the Diabolo network) is another crucial component of 
deep architectures. The autoencoder is related to the RBM, with autoencoder training 
resembling RBM training; however, autoencoders can be easier to train than RBMs 
with contrastive divergence and are thus preferred in contexts where RBMs train  
less effectively.
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Introducing the autoencoder
An autoencoder is a simple three-layer neural network whose output units are 
directly connected back to the input units. The objective of the autoencoder is to 
encode the i-dimensional input into an h-dimensional representation, where h < i, 
before reconstructing (decoding) the input at the output layer. The training process 
involves iteration over this process until the reconstruction error is minimized—at 
which point one should have arrived at the most efficient representation of input 
data (should, barring the possibility of arriving at local minima!).

In a preceding chapter, we discussed PCA as being a powerful dimensionality 
reduction technique. This description of autoencoders as finding the most efficient 
reduced-dimensional representation of input data will no doubt be familiar and you 
may be asking why we're exploring another technique that fulfils the same role.

The simple answer is that like the SOM, autoencoders can provide nonlinear 
reductions, which enables them to process high-dimensional input data more 
effectively than PCA. This revives a form of our earlier question—why discuss 
autoencoders if they deliver what an SOM does, without even providing the 
illuminating visual presentation?

Simply put, autoencoders are a more developed and sophisticated set of techniques; 
the use of denoising and stacking techniques enable reductions of high-dimensional, 
multimodal data that can be trained with relative ease to greater accuracy, at greater 
scale, than the techniques that we discussed in Chapter 1, Unsupervised Machine 
Learning.

Having discussed the capabilities of autoencoders at a high level, let's dig in a  
little further to understand the topology of autoencoders as well as what their 
training involves.

Topology
As described earlier in this chapter, an autoencoder has a relatively simple 
structure. It is a three-layer neural network, with input, hidden, and output layers. 
The input feeds forward into the hidden layer, then the output layer, as with 
most neural network architectures. One topological feature worth mentioning is 
that the hidden layer is typically of fewer nodes than the input or output layers. 
(However, as intimated previously, the required number of hidden nodes is really 
a function of the complexity of the input data; the goal of the hidden layer is to 
bottleneck the information content from the input and force the network to identify 
a representation that captures underlying statistical properties. Representing very 
complex input accurately might require a large quantity of hidden nodes.)
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The key feature of an autoencoder is that the output is typically set to be the input; 
the performance measure for an autoencoder is its accuracy in reconstructing the 
input after encoding it within the hidden layer. Autoencoder topology tends to take 
the following form:

output

hidden

input

decode

encode

The encoding function that occurs between the input and hidden layers is a 
mapping of an input (x) to a new form (y). A simple example mapping function 
might be a nonlinear (in this case sigmoid, s) function of the input as follows:

( )y s Wx b= +

However, more sophisticated encodings may exist or be developed to accommodate 
specific subject domains. In this case, of course, W represents the weight values 
assigned to x and b is an adjustable variable that can be tuned to enable the 
minimization of reconstruction error.

The autoencoder then decodes to deliver its output. This reconstruction is intended 
to take the same shape as x and will occur through a similar transformation as 
follows:

( )z s W y b′ ′= +

Here, b' and W' are typically also configurable to allow network optimization.

Training
The network trains, as discussed, by minimizing the reconstruction error.  
One popular method to measure this error is a simple squared error measure,  
as shown in the following formula:

21
2

E z x= −
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However, different and more appropriate error measures exist for cases where the 
input is in a less generic format (such as a set of bit probabilities).

While the intention is that autoencoders capture the main axes of variation in the 
input dataset, it is possible for an autoencoder to learn something far less useful—the 
identity function of the input.

Denoising autoencoders
While autoencoders can work well in some applications, they can be challenging to 
apply to problems where the input data contains a complex distribution that must be 
modeled in high dimensionality. The major challenge is that, with autoencoders that 
have n-dimensional input and an encoding of at least n, there is a real likelihood that 
the autoencoder will just learn the identity function of the input. In such cases, the 
encoding is a literal copy of the input. Such autoencoders are called overcomplete.

One of the most important properties when training a machine learning 
technique is to understand how the dimensionality of hidden layers 
affects the quality of the resulting model. In cases where the input 
data is complex and the hidden layer has too few nodes to capture that 
complexity effectively, the result is obvious—the network fails to train as 
well as it might with more nodes.
To capture complex distributions in input data, then, you may wish to 
use a large number of hidden nodes. In cases where the hidden layer has 
at least as many nodes as the input, there is a strong possibility that the 
network will learn the identity of the input; in such cases, each element of 
the input is learned as a specific unique case. Naturally, a model that has 
been trained to do this will work very well over training data, but as it has 
learned a trivial pattern that cannot be generalized to unfamiliar data, it is 
liable to fail catastrophically when validated.

This is particularly relevant when modeling complex data, such as speech data. Such 
data is frequently complex in distribution, so the classification of speech signals 
requires multimodal encoding and a high-dimensional hidden layer. Of course, this 
brings an increased risk of the autoencoder (or any of a large number of models as 
this is not an autoencoder-specific problem) learning the identity function.

While (rather surprisingly) overcomplete autoencoders can and do learn  
error-minimizing representations under certain configurations (namely, ones in 
which the first hidden layer needs very small weights so as to force the hidden 
units into a linear orientation and subsequent weights have large values), such 
configurations are difficult to optimize for, and it has been desirable to find another 
way to prevent overcomplete autoencoders from learning the identity function.
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There are several different ways that an overcomplete autoencoder can be prevented 
from learning the identity function while still capturing something useful within its 
representation. By far, the most popular approach is to introduce noise to the input 
data and force the autoencoder to train on the noisy data by learning distributions 
and statistical regularities rather than identity. This can be effectively achieved by 
multiple methods, including using sparseness constraints or dropout techniques 
(wherein input values are randomly set to zero).

The process that we'll be using to introduce noise to the input in this chapter is 
dropout. Via this method, up to half of the inputs are randomly set to zero. To achieve 
this, we create a stochastic corruption process that operates on our input data:

def get_corrupted_input(self, input, corruption_level):

   return self.theano_rng.binomial(size=input.shape, n=1, p=1 -   
   corruption_level, dtype=theano.config.floatX) * input

In order to accurately model the input data, the autoencoder has to predict the 
corrupted values from the uncorrupted values, thus learning meaningful statistical 
properties (that is, distribution).

In addition to preventing an autoencoder from learning the identity values of data, 
adding a denoising process also tends to produce models that are substantially 
more robust to input variations or distortion. This proves to be particularly useful 
for input data that is inherently noisy, such as speech or image data. One commonly 
recognized advantage of deep learning techniques, mentioned in the preface to this 
book, is that deep learning algorithms minimize the need for feature engineering. 
Where many learning algorithms require lengthy and complicated preprocessing 
of input data (filtering of images or manipulation of audio signals) to reconstruct 
the denoised input and enable the model to train, a dA can work effectively with 
minimal preprocessing. This can dramatically decrease the time it takes to train a 
model over your input data to practical levels of accuracy.

Finally, it's worth observing that an autoencoder that learns the identity function 
of the input dataset is probably misconfigured in a fundamental way. As the main 
added value of the autoencoder is to find a lower-dimensional representation of the 
feature set, an autoencoder that has learned the identity function of the input data 
may simply have too many nodes. If in doubt, consider reducing the number of 
nodes in your hidden layer.

Now that we've discussed the topology of an autoencoder—the means by which 
one might be effectively trained and the role of denoising in improving autoencoder 
performance—let's review Theano code for a dA so as to carry the preceding theory 
into practice.
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Applying a dA
At this point, we're ready to step through the implementation of a dA. Once again, 
we're leveraging the Theano library to apply a dA class.

Unlike the RBM class that we explored in the previous chapter, the 
DenoisingAutoencoder is relatively simple and tying the functionality of the dA to 
the theory and math that we examined earlier in this chapter is relatively simple.

In Chapter 2, Deep Belief Networks, we applied an RBM class that had a number of 
elements that, while not necessary for the correct functioning of the RBM in itself, 
enabled shared parameters within multilayer, deep architectures. The dA class we'll 
be using possesses similar shared elements that will provide us with the means to 
build a multilayer autoencoder architecture later in the chapter.

We begin by initializing a dA class. We specify the number of visible units,  
n_visible, as well as the number of hidden units, n_hidden. We additionally 
specify variables for the configuration of the input (input) as well as the weights 
(W) and the hidden and visible bias values (bhid and bvis respectively). The four 
additional variables enable autoencoders to receive configuration parameters from 
other elements of a deep architecture:

class dA(object):

    def __init__(
        self,
        numpy_rng,
        theano_rng=None,
        input=None,
        n_visible=784,
        n_hidden=500,
        W=None,
        bhid=None,
        bvis=None
):

        self.n_visible = n_visible
        self.n_hidden = n_hidden
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We follow up by initialising the weight and bias variables. We set the weight vector, 
W to an initial value, initial_W, which we obtain using random, uniform sampling 
from the range:

( ) ( )
6. 6.4 4

_ _
hidden visible

to
n hidden n visible n n

− ∗ ∗
+ + i

We then set the visible and hidden bias variables to arrays of zeroes using  
numpy.zeros:

   if not theano_rng:
      theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

   if not W:
      initial_W = numpy.asarray(
         numpy_rng.uniform(
            low=-4 * numpy.sqrt(6. / (n_hidden + n_visible)),
            high=4 * numpy.sqrt(6. / (n_hidden + n_visible)),
            size=(n_visible, n_hidden)
         ),
         dtype=theano.config.floatX
      )
      W = theano.shared(value=initial_W, name='W', borrow=True)

   if not bvis:
      bvis = theano.shared(
         value=numpy.zeros(
            n_visible,
            dtype=theano.config.floatX
         ),
         borrow=True
      )

   if not bhid:
      bhid = theano.shared(
         value=numpy.zeros(
            n_hidden,
            dtype=theano.config.floatX
         ),
         name='b',
         borrow=True
      )
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Earlier in the chapter, we described how the autoencoder translates between visible 
and hidden layers via mappings such as ( )y s Wx b= + . To enable such translation, 
it is necessary to define W, b, W', and b' in relation to the previously described 
autoencoder parameters, bhid, bvis, and W. W' and b' are referred to as W_prime and 
b_prime in the following code:

self.W = W
self.b = bhid
self.b_prime = bvis
self.W_prime = self.W.T
self.theano_rng = theano_rng
if input is None:
   self.x = T.dmatrix(name='input')
else:
   self.x = input

self.params = [self.W, self.b, self.b_prime]

The preceding code sets b and b_prime to bhid and bvis respectively, while  
W_prime is set as the transpose of W; in other words, the weights are tied. Tied 
weights are sometimes, but not always, used in autoencoders for several reasons:

•	 Tying weights improves the quality of results in several contexts (albeit  
often in contexts where the optimal solution is PCA, which is the solution  
an autoencoder with tied weights will tend to reach)

•	 Tying weights improves the memory consumption of the autoencoder by 
reducing the number of parameters that need be stored

•	 Most importantly, tied weights provide a regularization effect; they require 
one less parameter to be optimized (thus one less thing that can go wrong!)

However, in other contexts, it's both common and appropriate to use untied weights. 
This is true, for instance, in cases where the input data is multimodal and the optimal 
decoder models a nonlinear set of statistical regularities. In such cases, a linear 
model, such as PCA, will not effectively model the nonlinear trends and you will 
tend to obtain better results using untied weights.
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Having configured the parameters to our autoencoder, the next step is to define 
the functions that enable it to learn. Earlier in this chapter, we determined that 
autoencoders learn effectively by adding noise to input data, then attempting to 
learn an encoded representation of that input that can in turn be reconstructed into 
the input. What we need next, then, are functions that deliver this functionality. We 
begin by corrupting the input data:

def get_corrupted_input(self, input, corruption_level):

   return self.theano_rng.binomial(size=input.shape, n=1, p=1 – 
   corruption_level, dtype=theano.config.floatX) * input

The degree of corruption is configurable using a corruption_level parameter; as 
we recognized earlier, the corruption of the input through dropout typically does 
not exceed 50% of cases, or 0.5. The function takes a random set of cases, where the 
number of cases is that proportion of the input whose size is equal to corruption_
level. The function produces a corruption vector of 0's and 1's equal in length 
to the input, where a corruption_level sized proportion of the vector is 0. The 
corrupted input vector is then simply a multiple of the autoencoder's input vector 
and corruption vector:

def get_hidden_values(self, input):
   return T.nnet.sigmoid(T.dot(input, self.W) + self.b)

Next, we obtain the hidden values. This is done via code that performs the equation 
( )y s Wx b= +  to obtain y (the hidden values). To get the autoencoder's output (z), 

we reconstruct the hidden layer via code that uses the previously defined b_prime 
and W_prime to perform ( )z s W y b′ ′= + :

defget_reconstructed_input(self, hidden):
   returnT.nnet.sigmoid(T.dot(hidden, self.W_prime) +   
   self.b_prime)

The final missing piece is the calculation of cost updates. We reviewed one cost 

function previously, a simple squared error measure: 
21

2
E z x= − . Let's use  

this cost function to calculate our cost updates, based on the input (x) and 

reconstruction (z):

def get_cost_updates(self, corruption_level, learning_rate):

   tilde_x = self.get_corrupted_input(self.x, corruption_level)
   y = self.get_hidden_values(tilde_x)
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   z = self.get_reconstructed_input(y)
   E = (0.5 * (T.z – T.self.x)) ^ 2
   cost = T.mean(E)

   gparams = T.grad(cost, self.params)
   updates = [
      (param, param - learning_rate * gparam)
      for param, gparam in zip(self.params, gparams)
   ]

return (cost, updates)

At this point, we have a functional dA! It may be used to model nonlinear properties 
of input data and can work as an effective tool to learn valid and lower-dimensional 
representations of input data. However, the real power of autoencoders comes from 
the properties that they display when stacked together, as the building blocks of a 
deep architecture.

Stacked Denoising Autoencoders
While autoencoders are valuable tools in themselves, significant accuracy can be 
obtained by stacking autoencoders to form a deep network. This is achieved by 
feeding the representation created by the encoder on one layer into the next layer's 
encoder as the input to that layer.

Stacked denoising autoencoders (SdAs) are currently in use in many leading data 
science teams for sophisticated natural language analyses as well as a hugely broad 
range of signals, image, and text analysis.

The implementation of a SdA will be very familiar after the previous chapter's 
discussion of deep belief networks. The SdA is used in much the same way as the 
RBMs in our deep belief networks were used. Each layer of the deep architecture 
will have a dA and sigmoid component, with the autoencoder component being 
used to pretrain the sigmoid network. The performance measure used by a stacked 
denoising autoencoder is the training set error, with an intensive period of layer-to-
layer (layer-wise) pretraining used to gradually align network parameters before 
a final period of fine-tuning. During fine-tuning, the network is trained using 
validation and test data, over fewer epochs but with larger update steps. The goal 
is to have the network converge at the end of the fine-tuning in order to deliver an 
accurate result.
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In addition to delivering on the typical advantages of deep networks (the ability 
to learn feature representations for complex or high-dimensional datasets, and the 
ability to train a model without extensive feature engineering), stacked autoencoders 
have an additional, interesting property.

Correctly configured stacked autoencoders can capture a hierarchical grouping 
of their input data. Successive layers of a stacked denoised autoencoder may learn 
increasingly high-level features. Where the first layer might learn some first-order 
features from input data (such as learning edges in a photo image), a second layer 
may learn some grouping of first-order features (for instance, by learning given 
configurations of edges that correspond to contours or structural elements in the 
input image).

There's no golden rule to determine how many layers or how large layers should 
be for a given problem. The best solution is usually to experiment with these model 
parameters until you find an optimal point. This experimentation is best done with a 
hyperparameter optimization technique or genetic algorithm (subjects we'll discuss 
in later chapters of this book).

Higher layers may learn increasingly high-order configurations, enabling a 
stacked denoised autoencoder to learn to recognize facial features, alphanumerical 
characters, or generalized forms of objects (such as a bird). This is what gives SdAs 
their unique capability to learn very sophisticated, high-level abstractions of their 
input data.

Autoencoders can be stacked indefinitely, and it has been demonstrated that 
continuing to stack autoencoders can improve the effectiveness of the deep 
architecture (with the main constraint becoming compute cost in time). In this 
chapter, we'll look at stacking three autoencoders to solve a natural language 
processing challenge.

Applying the SdA
Now that we've had a chance to understand the advantages and power of the SdA as 
a deep learning architecture, let's test our skills on a real-world dataset.

For this chapter, let's step away from image datasets and work with the OpinRank 
Review dataset, a text dataset of around 259,000 hotel reviews from TripAdvisor—
accessible via the UCI machine learning dataset repository. This freely-available 
dataset provides review scores (as floating point numbers from 1 to 5) and review 
text for a broad range of hotels; we'll be applying our stacked dA to attempt to 
identify the scoring of each hotel from its review text.
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We'll be applying our autoencoder to analyze a preprocessed version of 
this data, which is accessible from the GitHub share accompanying this 
chapter. We'll be discussing the techniques by which we prepare text 
data in an upcoming chapter. For the interested reader, the source data 
is available at https://archive.ics.uci.edu/ml/datasets/
OpinRank+Review+Dataset.

In order to get started, we're going to need a stacked denoising autoencoder 
(hereafter SdA) class:

class SdA(object):

    def __init__(
        self,
        numpy_rng,
        theano_rng=None,
        n_ins=280,
        hidden_layers_sizes=[500, 500],
        n_outs=5,
        corruption_levels=[0.1, 0.1]
):

As we previously discussed, the SdA is created by feeding the encoding from 
one layer's autoencoder as the input to the subsequent layer. This class supports 
the configuration of the layer count (reflected in, but not set by, the length of 
the hidden_layers_sizes and corruption_levels vectors). It also supports 
differentiated layer sizes (in nodes) at each layer, which can be set using hidden_
layers_sizes. As we discussed, the ability to configure successive layers of the 
autoencoder is critical to developing successful representations.

Next, we need parameters to store the MLP (self.sigmoid_layers) and dA (self.
dA_layers) elements of the SdA. In order to specify the depth of our architecture,  
we use the self.n_layers parameter to specify the number of sigmoid and dA 
layers required:

self.sigmoid_layers = []
self.dA_layers = []
self.params = []
self.n_layers = len(hidden_layers_sizes)

assertself.n_layers> 0

https://archive.ics.uci.edu/ml/datasets/OpinRank+Review+Dataset
https://archive.ics.uci.edu/ml/datasets/OpinRank+Review+Dataset
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Next, we need to construct our sigmoid and dA layers. We begin by setting the 
hidden layer size to be set either from the input vector size or by the activation of 
the preceding layer. Following this, sigmoid_layer and dA_layer components are 
created, with the dA layer drawing from the dA class that we discussed earlier in  
this chapter:

for i in xrange(self.n_layers):
   if i == 0:
      input_size = n_ins
   else:
      input_size = hidden_layers_sizes[i - 1]

if i == 0:
   layer_input = self.x
else:
   layer_input = self.sigmoid_layers[-1].output

sigmoid_layer = HiddenLayer(rng=numpy_rng, 
input=layer_input, 
n_in=input_size, 
n_out=hidden_layers_sizes[i], 
activation=T.nnet.sigmoid)

self.sigmoid_layers.append(sigmoid_layer)
self.params.extend(sigmoid_layer.params)

dA_layer = dA(numpy_rng=numpy_rng, 
theano_rng=theano_rng, 
input=layer_input, 
n_visible=input_size, 
n_hidden=hidden_layers_sizes[i], 
W=sigmoid_layer.W, 
bhid=sigmoid_layer.b)

self.dA_layers.append(dA_layer)

Having implemented the layers of our stacked dA, we'll need a final, logistic 
regression layer to complete the MLP component of the network:

self.logLayer = LogisticRegression(
   input=self.sigmoid_layers[-1].output,
   n_in=hidden_layers_sizes[-1],
   n_out=n_outs
)

self.params.extend(self.logLayer.params)
self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
self.errors = self.logLayer.errors(self.y)
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This completes the architecture of our SdA. Next up, we need to generate the 
training functions used by the SdA class. Each function will the minibatch index 
(index) as an argument, together with several other elements—the corruption_
level and learning_rate are enabled here so that we can adjust them (for example, 
gradually increase or decrease them) during training. Additionally, we identify 
variables that help identify where the batch starts and ends—batch_begin and 
batch_end, respectively:

The ability to dynamically adjust the learning rate is particularly very 
helpful and may be applied in one of two ways. Once a technique has 
begun to converge on an appropriate solution, it is very helpful to be 
able to reduce the learning rate. If you do not do this, you risk creating 
a situation in which the network oscillates between values located 
around the optimum without ever hitting it. In some contexts, it can be 
helpful to tie the learning rate to the network's performance measure. 
If the error rate is high, it makes sense to make larger adjustments until 
the error rate begins to decrease!

def pretraining_functions(self, train_set_x, batch_size):
    index = T.lscalar('index')  
    corruption_level = T.scalar('corruption')  
    learning_rate = T.scalar('lr')  
    batch_begin = index * batch_size
    batch_end = batch_begin + batch_size

    pretrain_fns = []
    for dA in self.dA_layers:
        cost, updates = dA.get_cost_updates(corruption_level, 
          learning_rate)
        fn = theano.function(
            inputs=[
                index,
                theano.Param(corruption_level, default=0.2),
                theano.Param(learning_rate, default=0.1)
            ],
            outputs=cost,
            updates=updates,
            givens={
                self.x: train_set_x[batch_begin: batch_end]
            }
         )
         pretrain_fns.append(fn)

    return pretrain_fns
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The pretraining functions that we've created takes the minibatch index and 
can optionally take the corruption level or learning rate. It performs one step of 
pretraining and outputs the cost value and vector of weight updates.

In addition to pretraining, we need to build functions to support the fine-tuning 
stage, wherein the network is run iteratively over the validation and test data to 
optimize network parameters. The training function (train_fn) seen in the code 
below implements a single step of fine-tuning. The valid_score is a Python function 
that computes a validation score using the error measure produced by the SdA over 
validation data. Similarly, test_score computes the error score over test data.

To get this process off the ground, we first need to set up training, validation, 
and test datasets. Each stage requires two datasets (set x and set y) containing the 
features and class labels, respectively. The required number of minibatches for 
validation and test is determined, and an index is created to track the batch size (and 
provide a means of identifying at which entries a batch starts and ends). Training, 
validation, and testing occurs for each batch and afterward, both valid_score and 
test_score are calculated across all batches:

def build_finetune_functions(self, datasets, batch_size, 
  learning_rate):

   (train_set_x, train_set_y) = datasets[0]
   (valid_set_x, valid_set_y) = datasets[1]
   (test_set_x, test_set_y) = datasets[2]

   n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
   n_valid_batches /= batch_size
   n_test_batches = test_set_x.get_value(borrow=True).shape[0]
   n_test_batches /= batch_size

   index = T.lscalar('index')  

   gparams = T.grad(self.finetune_cost, self.params)

   updates = [
       (param, param - gparam * learning_rate)
       For param, gparam in zip(self.params, gparams)
]

train_fn = theano.function(
   inputs=[index],
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   outputs=self.finetune_cost,
   updates=updates,
   givens={
      self.x: train_set_x[
         index * batch_size: (index + 1) * batch_size
      ],
      self.y: train_set_y[
         index * batch_size: (index + 1) * batch_size
      ]
   },
   name='train'
)

test_score_i = theano.function(
    [index],
   self.errors,
   givens={
      self.x: test_set_x[
      index * batch_size: (index + 1) * batch_size
   ],
      self.y: test_set_y[
      index * batch_size: (index + 1) * batch_size
   ]
},
   name='test'
)

valid_score_i = theano.function(
   [index],
   self.errors,
   givens={
      self.x: valid_set_x[
         index * batch_size: (index + 1) * batch_size
      ],
      self.y: valid_set_y[
         index * batch_size: (index + 1) * batch_size
      ]
   },
   name='valid'
)

def valid_score():
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   return [valid_score_i(i) for i inxrange(n_valid_batches)]

def test_score():
   return [test_score_i(i) for i inxrange(n_test_batches)]

return train_fn, valid_score, test_score

With the training functionality in place, the following code initiates our stacked dA:

numpy_rng = numpy.random.RandomState(89677)
print '... building the model'
   sda = SdA(
      numpy_rng=numpy_rng,
      n_ins=280,
      hidden_layers_sizes=[240, 170, 100],
      n_outs=5
   )

It should be noted that, at this point, we should be trying an initial configuration 
of layer sizes to see how we do. In this case, the layer sizes used are the product of 
some initial testing. As we discussed, training the SdA occurs in two stages. The first 
is a layer-wise pretraining process that loops over all of the SdA's layers. The second 
is a process of fine-tuning over validation and test data.

To pretrain the SdA, we provide the required corruption levels to train each layer and 
iterate over the layers using our previously defined pretraining_fns:

print '... getting the pretraining functions'
pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x,
batch_size=batch_size)

print '... pre-training the model'
start_time = time.clock()
corruption_levels = [.1, .2, .2]
for i in xrange(sda.n_layers):

   for epoch in xrange(pretraining_epochs):
      c = []
      for batch_index in xrange(n_train_batches):
         c.append(pretraining_fns[i](index=batch_index,
         corruption=corruption_levels[i],
         lr=pretrain_lr))
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print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),

print numpy.mean(c)

end_time = time.clock()

print(('The pretraining code for file ' +
os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_
time) / 60.)), file = sys.stderr)

At this point, we're able to initialize our SdA class via calling the preceding code 
stored within this book's GitHub repository: MasteringMLWithPython/Chapter3/
SdA.py

Assessing SdA performance
The SdA will take a significant length of time to run. With 15 epochs per layer  
and each layer typically taking an average of 11 minutes, the network will run for 
around 500 minutes on a modern desktop system with GPU acceleration and a 
single-threaded GotoBLAS.

On a system without GPU acceleration, the network will take substantially longer 
to train, and it is recommended that you use the alternative, which runs over a 
significantly smaller input dataset: MasteringMLWithPython/Chapter3/SdA_no_
blas.py

The results are of high quality, with a validation error score of 3.22% and test error 
score of 3.14%. These results are particularly impressive given the ambiguous and 
sometimes challenging nature of natural language processing applications.

It was noticeable that the network classified more correctly for the 1-star and 5-star 
rating cases than for the intermediate levels. This is largely due to the ambiguous 
nature of unpolarized or unemotional language.

Part of the reason that this input data was classifiable was via significant feature 
engineering. While time-consuming and sometimes problematic, we've seen that 
well-executed feature engineering combined with an optimized model can deliver  
an excellent level of accuracy. In Chapter 6, Text Feature Engineering, we'll be applying 
the techniques used to prepare this dataset ourselves.
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Further reading
A well-informed overview of autoencoders (amongst other subjects) is provided by 
Quoc V. Le from the Google Brain team. Read about it at https://cs.stanford.
edu/~quocle/tutorial2.pdf. 

This chapter used the Theano documentation available at http://deeplearning.
net/tutorial/contents.html as a base for discussion as Theano was the main 
library used in this chapter.

Summary
In this chapter, we introduced the autoencoder, an effective dimensionality reduction 
technique with some unique applications. We focused on the theory behind the 
stacked denoised autoencoder, an extension of autoencoders whereby any number of 
autoencoders are stacked in a deep architecture. We were able to apply the stacked 
denoised autoencoder to a challenging natural language processing problem and met 
with great success, delivering highly accurate sentiment analysis of hotel reviews.

In the next chapter, we will discuss supervised deep learning methods, including 
Convolutional Neural Networks (CNN).

https://cs.stanford.edu/~quocle/tutorial2.pdf
https://cs.stanford.edu/~quocle/tutorial2.pdf
http://deeplearning.net/tutorial/contents.html
http://deeplearning.net/tutorial/contents.html
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Convolutional Neural 
Networks

In this chapter, you'll be learning how to apply the convolutional neural network 
(also referred to as the CNN or convnet), perhaps the best-known deep architecture, 
via the following steps:

•	 Taking a look at the convnet's topology and learning processes, including 
convolutional and pooling layers

•	 Understanding how we can combine convnet components into successful 
network architectures

•	 Using Python code to apply a convnet architecture so as to solve a  
well-known image classification task

Introducing the CNN
In the field of machine learning, there is an enduring preference for developing 
structures in code that parallel biological structures. One of the most obvious 
examples is that of the MLP neural network, whose topology and learning  
processes are inspired by the neurons of the human brain.

This preference has turned out to be highly efficient; the availability of specialized, 
optimized biological structures that excel at specific sets of tasks gives us a wealth of 
templates and clues from which to design and create effective learning models.
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The design of convolutional neural networks takes inspiration from the visual 
cortex—the area of the brain that processes visual input. The visual cortex has 
several specializations that enable it to effectively process visual data; it contains 
many receptor cells that detect light in overlapping regions of the visual field. All 
receptor cells are subject to the same convolution operation, which is to say that they 
all process their input in the same way. These specializations were incorporated into 
the design of convnets, making their topology noticeably distinct from that of other 
neural networks.

It's safe to say that CNN (convnets for short) are underpinning many of the  
most impactful current advances in artificial intelligence and machine learning. 
Variants of CNN are applied to some of the most sophisticated visual, linguistic,  
and problem-solving applications in existence. Some examples include the following:

•	 Google has developed a range of specialized convnet architectures, 
including GoogLeNet, a 22-layer convnet architecture. In addition, Google's 
DeepDream program, which became well-known for its overtrained, 
hallucinogenic imagery, also uses a convolutional neural network.

•	 Convolutional nets have been taught to play the game Go (a long-standing 
AI challenge), achieving win-rates ranging between 85% and 91% against 
highly-ranked players.

•	 Facebook uses convolutional nets in face verification (DeepFace).
•	 Baidu, Microsoft research, IBM, and Twitter are among the many other  

teams using convnets to tackle the challenges around trying to deliver  
next-generation intelligent applications.

In recent years, object recognition challenges, such as the 2014 ImageNet challenge, 
have been dominated by winners employing specialized convnet implementations or 
multiple-model ensembles that combine convnets with other architectures.

While we'll cover how to create and effectively apply ensembles in Chapter 8, 
Ensemble Methods, this chapter focuses on the successful application of convolutional 
neural networks to large-scale visual classification contexts.
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Understanding the convnet topology
The convolutional neural network's architecture should be fairly familiar; the 
network is an acyclic graph composed of layers of increasingly few nodes, where 
each layer feeds into the next. This will be very familiar from many well-known 
network topologies such as the MLP.

Perhaps the most immediate difference between a convolutional neural network and 
most other networks is that all of the neurons in a convnet are identical! All neurons 
possess the same parameters and weight values. As you can see, this will immediately 
reduce the number of parameter values controlled by the network, bringing 
substantial efficiency savings. It also typically improves network learning rate as there 
are fewer free parameters to be managed and computed over. As we'll see later in this 
chapter, shared weights also enable a convnet to learn features irrespective of their 
position in the input (for example, the input image or audio signal).

Another big difference between convolutional networks and other architectures is 
that the connectivity between nodes is limited such as to develop a spatially local 
connectivity pattern. In other words, the inputs to a given node will be limited 
to only those nodes whose receptor fields are contiguous. This may be spatially 
contiguous, as in the case of image data; in such cases, each neuron's inputs will 
ultimately draw from a continuous subset of the image. In the case of audio signal 
data, the input might instead be a continuous window of time.

To illustrate this more clearly, let's take an example input image and discuss how 
a convolutional network might process parts of that image across specific nodes. 
Nodes in the first layer of a convolutional neural network will be assigned subsets of 
the input image. In this case, let's say that they take a 3 x 3 pixel subset of the image 
each. Our coverage covers the entire image without any overlap between the areas 
taken as input by nodes and without any gaps. (Note that none of these conditions 
are automatically true for convnet implementations.) Each node is assigned a 3 x 3 
pixel subset of the image (the receptive field of the node) and outputs a transformed 
version of that input. We'll disregard the specifics of that transformation for now.
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This output is usually then picked up by a second layer of nodes. In this case, let's 
say that our second layer is taking a subset of all of the outputs from nodes in the 
first layer. For example, it might be taking a contiguous 6 x 6 pixel subset of the 
original image; that is, it has a receptive field that covers the outputs of exactly  
four nodes from the preceding layer. This becomes a little more intuitive when 
explained visually:
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Each layer is composable; the output of one convolutional layer may be fed  
into the next layer as an input. This provides the same effect that we saw in the 
Chapter 3, Stacked Denoising Autoencoders; successive layers develop representations 
of increasingly high-level, abstract features. Furthermore, as we build downward—
adding layers—the representation becomes responsive to a larger region of 
pixel space. Ultimately, by stacking layers, we can work our way toward global 
representations of the entire input.

Understanding convolution layers
As described, in order to prevent each node from learning an unpredictable (and 
difficult to tune!) set of very local, free parameters, weights in a layer are shared 
across the entire layer. To be completely precise, the filters applied in a convolutional 
layer are a single set of filters, which are slid (convolved) across the input dataset. 
This produces a two-dimensional activation map of the input, which is referred to as 
the feature map.

The filter itself is subject to four hyperparameters: size, depth, stride, and zero-
padding. The size of the filter is fairly self-explanatory, being the area of the filter 
(obviously, found by multiplying height and width; a filter need not be square!). 
Larger filters will tend to overlap more, and as we'll see, this can improve the 
accuracy of classification. Crucially, however, increasing the filter size will create 
increasingly large outputs. As we'll see, managing the size of outputs from 
convolutional layers is a huge factor in controlling the efficiency of a network.

Depth defines the number of nodes in the layer that connect to the same region of 
the input. The trick to understanding depth is to recognize that looking at an image 
(for people or networks) involves processing multiple different types of property. 
Anyone who has ever looked at all the image adjustment sliders in Photoshop has an 
idea of what this might entail. Depth is sometimes referred to as a dimension in its 
own right; it almost relates to the complexity of an image, not in terms of its contents 
but in terms of the number of channels needed to accurately describe it.

It's possible that the depth might describe color channels, with nodes mapped to 
recognize green, blue, or red in the input. This, incidentally, leads to a common 
convention where depth is set to three (particularly at the first convolution layer).  
It's very important to recognize that some nodes commonly learn to express less 
easily-described properties of input images that happen to enable a convnet to learn 
that image more accurately. Increasing the depth hyperparameter tends to enable 
nodes to encode more information about inputs, with the attendant problems and 
benefits that you might expect.
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As a result, setting the depth parameter to too small a value tends to lead to poor 
results because the network doesn't have the expressive depth (in terms of channel 
count) required to accurately characterize input data. This is a problem analogous to 
not having enough features, except that it's more easily fixed; one can tune the depth 
of the network upward to improve the expressive depth of the convnet.

Equally, setting the depth parameter to too small a value can be redundant or 
harmful to performance, thereafter. If in doubt, consider testing the appropriate 
depth value during network configuration via hyperparameter optimization, the 
elbow method, or another technique.

Stride is a measure of spacing between neurons. A stride value of one will lead every 
element of the input (for an image, potentially every pixel) to be the center of a filter 
instance. This naturally leads to a high degree of overlap and very large outputs. 
Increasing the stride causes less of an overlap in the receptive fields and the output's 
size is reduced. While tuning the stride of a convnet is a question of weighing accuracy 
against output size, it can generally be a good idea to use smaller strides, which tend 
to work better. In addition, a stride value of one enables us to manage down-sampling 
and scale reduction at pooling layers (as we'll discuss later in the chapter).

The following diagram graphically displays both Depth and Stride:
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The final hyperparameter, zero-padding, offers an interesting convenience. Zero-
padding is the process of setting the outer values (the border) of each receptive field 
to zero, which has the effect of reducing the output size for that layer. It's possible 
to set one, or multiple, pixels around the border of the field to zero, which reduces 
the output size accordingly. There are, of course, limits; obviously, it's not a good 
idea to set zero-padding and stride such that areas of the input are not touched by a 
filter! More generally, increasing the degree of zero-padding can cause a decrease in 
effectiveness, which is tied to the increased difficulty of learning features via coarse 
coding. (Refer to the Understanding pooling layers section in this chapter.)

However, zero-padding is very helpful because it enables us to adjust the input and 
output sizes to be the same. This is a very common practice; using zero-padding 
to ensure that the size of the input layer and output layer are equal, we are able 
to easily manage the stride and depth values. Without using zero-padding in this 
way, we would need to do a lot of work tracking input sizes and managing network 
parameters simply to make the network function correctly. In addition, zero-padding 
also improves performance as, without it, a convnet will tend to gradually degrade 
content at the edges of the filter.

In order to calibrate the number of nodes, appropriate stride, and padding for 
successive layers when we define our convnet, we need to know the size of the 
output from the preceding layer. We can calculate the spatial size of a layer's output 
(O) as a function of the input image size (W), filter size (F), stride (S), and the amount 
of zero-padding applied (P), as follows:

2
1

W F PO
S
− +

=
+

If O is not an integer, the filters do not tile across the input neatly and instead extend 
over the edge of the input. This can cause some problematic issues when training 
(normally involving thrown exceptions)! By adjusting the stride value, one can find 
a whole-number solution for O and train effectively. It is normal for the stride to be 
constrained to what is possible given the other hyperparameter values and size of 
the input.

We've discussed the hyperparameters involved in correctly configuring the 
convolutional layer, but we haven't yet discussed the convolution process itself. 
Convolution is a mathematical operator, like addition or derivation, which is 
heavily used in signal processing applications and in many other contexts where its 
application helps simplify complex equations.
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Loosely speaking, convolution is an operation over two functions, such as to produce 
a third function that is a modified version of one of the two original functions. In the 
case of convolution within a convnet, the first component is the network's input. In 
the case of convolution applied to images, convolution is applied in two dimensions 
(the width and height of the image). The input image is typically three matrices of 
pixels—one for each of the red, blue, and green color channels, with values ranging 
between 0 and 255 in each channel.

At this point, it's worth introducing the concept of a tensor. Tensor is 
a term commonly used to refer to an n-dimensional array or matrix of 
input data, commonly applied in deep learning contexts. It's effectively 
analogous to a matrix or array. We'll be discussing tensors in more detail, 
both in this chapter and in Chapter 9, Additional Python Machine Learning 
Tools (where we review the TensorFlow library). It's worth noting that 
the term tensor is noticing a resurgence of use in the machine learning 
community, largely through the influence of Google machine intelligence 
research teams.

The second input to the convolution operation is the convolution kernel, a single 
matrix of floating point numbers that acts as a filter on the input matrices. The 
output of this convolution operation is the feature map. The convolution operation 
works by sliding the filter across the input, computing the dot product of the two 
arguments at each instance, which is written to the feature map. In cases where the 
stride of the convolutional layer is one, this operation will be performed across each 
pixel of the input image.

The main advantage of convolution is that it reduces the need for feature 
engineering. Creating and managing complex kernels and performing the highly 
specialized feature engineering processes needed is a demanding task, made more 
challenging by the fact that feature engineering processes that work well in one 
context can work poorly in most others. While we discuss feature engineering  
in detail in Chapter 7, Feature Engineering Part II, convolutional nets offer a powerful 
alternative.

CNN, however, incrementally improve their kernel's ability to filter a given input, 
thus automatically optimizing their kernel. This process is accelerated by learning 
multiple kernels in parallel at once. This is feature learning, which we've encountered 
in previous chapters. Feature learning can offer tremendous advantages in time and 
in increasing the accessibility of many problems. As with our earlier SDA and DBN 
implementations, we would look to pass our learned features to a much simpler, 
shallow neural network, which uses these features to classify the input image.
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Understanding pooling layers
Stacking convolutional layers allows us to create a topology that effectively  
creates features as feature maps for complex, noisy input data. However, 
convolutional layers are not the only component of a deep network. It is common  
to weave convolutional layers in with pooling layers. Pooling is an operation  
over feature maps, where multiple feature values are aggregated into a single 
value—mostly using a max (max-pooling), mean (mean-pooling), or summation 
(sum-pooling) operation.

Pooling is a fairly natural approach that offers substantial advantages. If we do not 
aggregate feature maps, we tend to find ourselves with a huge amount of features. 
The CIFAR-10 dataset that we'll be classifying later in this chapter contains 60,000  
32 x 32 pixel images. If we hypothetically learned 200 features for each image—over 
8 x 8 inputs—then at each convolution, we'd find ourselves with an output vector of 
size (32 – 8+1) * (32 – 8+1) * 200, or 125,000 features per image. Convolution produces 
a huge amount of features that tend to make computation very expensive and can 
also introduce significant overfitting problems.

The other major advantage provided by a pooling operation is that it provides a 
level of robustness against the many, small deviations and variances that occur in 
modeling noisy, high-dimensional data. Specifically, pooling prevents the network 
learning the position of features too specifically (overfitting), which is obviously a 
critical requirement in image processing and recognition settings. With pooling, the 
network no longer fixates on the precise location of features in the input and gains a 
greater ability to generalize. This is called translation-invariance.

Max-pooling is the most commonly applied pooling operation. This is because it 
focuses on the most responsive features in question that should, in theory, make it the 
best candidate for image recognition and classification purposes. By a similar logic, 
min-pooling tends to be applied in cases where it is necessary to take additional steps 
to prevent an overly sensitive classification or overfitting from occurring.

For obvious reasons, it's prudent to begin modeling using a quickly applied and 
straightforward pooling method such as max-pooling. However, when seeking 
additional gains in network performance during later iterations, it's important to 
look at whether your pooling operations can be improved on. There isn't any real 
restriction in terms of defining your own pooling operation. Indeed, finding a more 
effective subsampling method or alternative aggregation can substantially improve 
the performance of your model.
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In terms of theano code, a max-pooling implementation is pretty straightforward 
and may look like this:

from theano.tensor.signal import downsample

input = T.dtensor4('input')
maxpool_shape = (2, 2)
pool_out = downsample.max_pool_2d(input, maxpool_shape, ignore_
border=True)
f = theano.function([input],pool_out)

The max_pool_2d function takes an n-dimensional tensor and downscaling  
factor, in this case, input and maxpool_shape, with the latter being a tuple of  
length 2, containing width and height downscaling factors for the input image.  
The max_pool_2d operation then performs max-pooling over the two trailing 
dimensions of the vector:

invals = numpy.random.RandomState(1).rand(3, 2, 5, 5)

pool_out = downsample.max_pool_2d(input, maxpool_shape, ignore_
border=False)
f = theano.function([input],pool_out)

The ignore_border determines whether the border values are considered  
or discarded. This max-pooling operation produces the following, given that 
ignore_border = True:

[[ 0.72032449  0.39676747]

[ 0.6852195   0.87811744]]

As you can see, pooling is a straightforward operation that can provide dramatic 
results (in this case, the input was a 5 x 5 matrix, reduced to 2 x 2). However, pooling 
is not without critics. In particular, Geoffrey Hinton offered this pretty delightful 
soundbite:

"The pooling operation used in convolutional neural networks is a big mistake and 
the fact that it works so well is a disaster.

If the pools do not overlap, pooling loses valuable information about where things 
are. We need this information to detect precise relationships between the parts 
of an object. Its true that if the pools overlap enough, the positions of features 
will be accurately preserved by "coarse coding" (see my paper on "distributed 
representations" in 1986 for an explanation of this effect). But I no longer believe 
that coarse coding is the best way to represent the poses of objects relative to the 
viewer (by pose I mean position, orientation, and scale)."
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This is a bold statement, but it makes sense. Hinton's telling us that the pooling 
operation, as an aggregation, does what any aggregation necessarily does—it 
reduces the data to a simpler and less informationally-rich format. This wouldn't  
be too damaging, except that Hinton goes further.

Even if we'd reduced the data down to single values for each pool, we could still 
hope that the fact that multiple pools overlap spatially would still present feature 
encodings. (This is the coarse coding referred to by Hinton.) This is also quite 
an intuitive concept. Imagine that you're listening in to a signal on a noisy radio 
frequency. Even if you only caught one word in three, it's probable that you'd be able 
to distinguish a distress signal from the shipping forecast!

However, Hinton follows up by observing that coarse coding is not as effective in 
learning pose (position, orientation, and scale). There are so many permutations in 
viewpoint relative to an object that it's unlikely two images would be alike and the 
sheer variety of possible poses becomes a challenge for a convolutional network 
using pooling. This suggests that an architecture that does not overcome this 
challenge may not be able to break past an upper limit for image classification.

However, the general consensus, at least for now, is that even after acknowledging 
all of this, it is still highly advantageous in terms of efficiency and translation-
invariance to continue using pooling operations in convnets. Right now, the 
argument goes that it's the best we have!

Meanwhile, Hinton proposed an alternative to convnets in the form of the 
transforming autoencoder. The transforming autoencoder offers accuracy 
improvements on learning tasks that require a high level of precision (such as facial 
recognition), where pooling operations would cause a reduction in precision. The 
Further reading section of this chapter contains recommendations if you are interested 
in learning more about the transforming autoencoder.

So, we've spent quite a bit of time digging into the convolutional neural network—its 
components, how they work, and their hyperparameters. Before we move on to put 
the theory into action, it's worth discussing how all of these theoretical components 
fit together into a working architecture. To do this, let's discuss what training a 
convnet looks like.
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Training a convnet
The means of training a convolutional network will be familiar to readers of the 
preceding chapters. The convolutional architecture itself is used to pretrain a simpler 
network structure (for example, an MLP). The backpropagation algorithm is the 
standard method to compute the gradient when pretraining. During this process, 
every layer undertakes three tasks:

•	 Forward pass: Each feature map is computed as a sum of all feature maps 
convolved with the corresponding weight kernel

•	 Backward pass: The gradients respective to inputs are calculated by 
convolving the transposed weight kernel with the gradients, with respect to 
the outputs

•	 The loss for each kernel is calculated, enabling the individual weight 
adjustment of every kernel as needed

Repetition of this process allows us to achieve increasing kernel performance until 
we reach a point of convergence. At this point, we will hope to have developed a  
set of features sufficient that the capping network is able to effectively classify over 
these features.

This process can execute slowly, even on a fairly advanced GPU. Some recent 
developments have helped accelerate the training process, including the use of the 
Fast Fourier Transform to accelerate the convolution process (for cases where the 
convolution kernel is of roughly equal size to the input image).

Putting it all together
So far, we've discussed some of the elements required to create a CNN. The next 
subject of discussion should be how we go about combining these components to 
create capable convolutional nets as well as which combinations of components 
can work well. We'll draw guidance from a number of forerunning convnet 
implementations as we build an understanding of what is commonly done  
as well as what is possible.
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Probably the best-known convolutional network implementation is Yann LeCun's 
LeNet. LeNet has gone through several iterations since LeNet-1 in late 1980, but 
has been increasingly effective at performing tasks including handwritten digit and 
image classification. LeNet is structured using alternating convolution and pooling 
layers capped by an MLP, as follows:

Each layer is partially-connected, as we discussed earlier, with the MLP being a fully 
connected layer. At each layer, multiple feature maps (channels) are employed; this 
gives us the advantage of being able to create more complex sets of filters. As we'll 
see, using multiple channels within a layer is a powerful technique employed in 
advanced use cases.

It's common to use max-pooling layers to reduce the dimensionality of the output 
to match the input as well as generally manage output volumes. How pooling is 
implemented, particularly in regard to the relative position of convolutional and 
pooling layers, is an element that tends to vary between implementations. It's 
generally common to develop a layer as a set of operations that feed into, and are fed 
into, a single Fully Connected layer, as shown in the following example:

Fully Connected

Previous Layer

1x1 Convolutions

3x3 Convolutions 5x5 Convolutions 3x3 Max Pooling
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While this network structure wouldn't work in practice, it's a helpful illustration of 
the fact that a network can be constructed from the components you've learned about 
in a number of ways. How this network is structured and how complex it becomes 
should be motivated by the challenge the network is intended to solve. Different 
problems can call for very different solutions.

In the case of the LeNet implementation that we'll be working with later in  
this chapter, each layer contains multiple convolutional layers in parallel with a 
max-pooling layer following each. Diagrammatically, a LeNet layer looks like the 
following image:

Fully Connected

Previous Layer

4x4 Convolutions

2x2 Max Pooling 2x2 Max Pooling 2x2 Max Pooling

4x4 Convolutions 4x4 Convolutions

This architecture will enable us to start looking at some initial use cases quickly and 
easily, but in general won't perform well for some of the state-of-the-art applications 
we'll run into later in this book. Given this fact, there are some more extensive deep 
learning architectures designed to tackle the most challenging problems, whose 
topologies are worth discussing. One of the best-known convnet architectures is 
Google's Inception network, now more commonly known as GoogLeNet.

GoogLeNet was designed to tackle computer vision challenges involving  
Internet-quality image data, that is, images that have been captured in real  
contexts where the pose, lighting, occlusion, and clutter of images vary significantly. 
GoogLeNet was applied to the 2014 ImageNet challenge with noteworthy success, 
achieving only 6.7% error rate on the test dataset. ImageNet images are small,  
high-granularity images taken from many, varied classes. Multiple classes may 
appear very similar (such as varieties of tree) and the network architecture must  
be able to find increasingly challenging class distinctions to succeed. For a concrete 
example, consider the following ImageNet image:
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Given the demands of this problem, the GoogLeNet architecture used to win ImageNet 
14 departs from the LeNet model in several key ways. GoogLeNet's basic layer design 
is known as the Inception module and is made up of the following components:

Depth Concat

1x1 Convolutions1x1 Convolutions 1x1 Convolutions

1x1 Convolutions5x5 Convolutions3x3 Convolutions

3x3 Max Pooling

Previous Layer

The 1 x 1 convolutional layers used here are followed by Rectified Linear Units 
(ReLU). This approach is heavily used in speech and audio modeling contexts as 
ReLU can be used to effectively train deep models without pretraining and without 
facing some of the gradient vanishing problems that challenge other activation types. 
More information on ReLU is provided in the Further reading section of this chapter. 
The DepthConcat element provides a concatenation function, which consolidates the 
outputs of multiple units and substantially improves training time.

GoogLeNet chains layers of this type to create a full network. Indeed, the repetition 
of inception modules through GoogLeNet (nine times!) suggests that Network 
In Network (NIN) (deep architectures created from chained network modules) 
approaches are going to continue to be a serious contender in deep learning circles. 
The paper describing GoogLeNet and demonstrating how inception models were 
integrated into the network is provided in the Further reading section of this chapter.
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Beyond the regularity of Inception module stacking, GoogLeNet has a few further 
surprises to throw at us. The first few layers are typically more straightforward with 
single-channel convolutional and max-pooling layers used at first. Additionally, 
at several points, GoogLeNet introduced a branch off the main structure using an 
average-pool layer, feeding into auxiliary softmax classifiers. The purpose of these 
classifiers was to improve the gradient signal that gets propagated back in lower 
layers of the network, enabling stronger performance at the early and middle 
network layers. Instead of one huge and potentially vague backpropagation process 
stemming from the final layer of the network, GoogLeNet instead has several 
intermediary update sources.

What's really important to take from this implementation is that GoogLeNet and 
other top convnet architectures are mainly successful because they are able to 
find effective configurations using the highly available components that we've 
discussed in this chapter. Now that we've had a chance to discuss the architecture 
and components of a convolutional net and the opportunity to discuss how these 
components are used to construct some highly advanced networks, it's time to apply 
the techniques to solve a problem of our own!

Applying a CNN
We'll be working with image data to try out our convnet. The image data that we 
worked with in earlier chapters, including the MNIST digit dataset, was a useful 
training dataset (with many valuable real-world applications such as automated 
check reading!). However, it differs from almost all photographic or video data in an 
important way; most visual data is highly noisy.

Problem variables can include pose, lighting, occlusion, and clutter, which may 
be expressed independently or in conjunction in huge variety. This means that the 
task of creating a function that is invariant to all properties of noise in the dataset 
is challenging; the function is typically very complex and nonlinear. In Chapter 
7, Feature Engineering Part II, we'll discuss how techniques such as whitening can 
help mitigate some of these challenges, but as we'll see, even such techniques by 
themselves are insufficient to yield good classification (at least, without a very large 
investment of time!). By far, the most efficient solution to the problem of noise in 
image data, as we've already seen in multiple contexts, is to use a deep architecture 
rather than a broad one (that is, a neural network with few, high-dimensional layers, 
which is vulnerable to problematic overfitting and generalizability problems).
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From discussions in previous chapters, the reasons for a deep architecture may 
already be clear; successive layers of a deep architecture reuse the reasoning and 
computation performed in preceding layers. Deep architectures can thus build a 
representation that is sequentially improved by successive layers of the network 
without performing extensive recalculation on any individual layer. This makes the 
challenging task of classifying large datasets of noisy photograph data achievable 
to a high level of accuracy in a relatively short time, without extensive feature 
engineering.

Now that we've discussed the challenges of modeling image data and advantages 
of a deep architecture in such contexts, let's apply a convnet to a real-world 
classification problem.

As in preceding chapters, we're going to start out with a toy example, which we'll 
use to familiarize ourselves with the architecture of our deep network. This time, 
we're going to take on a classic image processing challenge, CIFAR-10. CIFAR-10 is 
a dataset of 60,000 32 x 32 color images in 10 classes, with each class containing 6,000 
images. The data is already split into five training batches, with one test batch. The 
classes and some images from each dataset are as follows:
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While the industry has—to an extent—moved on to tackle other datasets such 
as ImageNet, CIFAR-10 was long regarded as the bar to reach in terms of image 
classification, with a great many data scientists attempting to create architectures that 
classify the dataset to human levels of accuracy, where human error rate is estimated 
at around 6%.

In November 2014, Kaggle ran a contest whose objective was to classify CIFAR-10 
as accurately as possible. This contest's highest-scoring entry produced 95.55% 
classification accuracy, with the result using convolutional networks and a  
Network-in-Network approach. We'll discuss the challenge of classifying this 
dataset, as well as some of the more advanced techniques we can bring to bear,  
in Chapter 8, Ensemble Methods; for now, let's begin by having a go at classification 
with a convolutional network.

For our first attempt, we'll apply a fairly simple convolutional network with the 
following objectives:

•	 Applying a filter to the image and view the output
•	 Seeing the weights that our convnet created
•	 Understanding the difference between the outputs of effective and  

ineffective networks

In this chapter, we're going to take an approach that we haven't taken before, which 
will be of huge importance to you when you come to use these techniques in the 
wild. We saw earlier in this chapter how the deep architectures developed to solve 
different problems may differ structurally in many ways.

It's important to be able to create problem-specific network architectures so that 
we can adapt our implementation to fit a range of real-world problems. To do this, 
we'll be constructing our network using components that are modular and can be 
recombined in almost any way necessary, without too much additional effort. We 
saw the impact of modularity earlier in this chapter, and it's worth exploring how to 
apply this effect to our own networks.

As we discussed earlier in the chapter, convnets become particularly powerful 
when tasked to classify very large and varied datasets of up to tens or hundreds 
of thousands of images. As such, let's be a little ambitious and see whether we can 
apply a convnet to classify CIFAR-10.
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In setting up our convolutional network, we'll begin by defining a useable class and 
initializing the relevant network parameters, particularly weights and biases. This 
approach will be familiar to readers of the preceding chapters.

class LeNetConvPoolLayer(object):

    def __init__(self, rng, input, filter_shape, image_shape,   
    poolsize=(2, 2)):

        assert image_shape[1] == filter_shape[1]
        self.input = input

        fan_in = numpy.prod(filter_shape[1:])
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:])                               
                  numpy.prod(poolsize))
    
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(
            numpy.asarray(
                rng.uniform(low=-W_bound, high=W_bound, 
                size=filter_shape),
                dtype=theano.config.floatX
            ),
            borrow=True
        )

Before moving on to create the biases, it's worth reviewing what we have thus far. 
The LeNetConvPoolLayer class is intended to implement one full convolutional 
and pooling layer as per the LeNet layer structure. This class contains several useful 
initial parameters.

From previous chapters, we're familiar with the rng parameter used to initialize 
weights to random values. We can also recognize the input parameter. As in most 
cases, image input tends to take the form of a symbolic image tensor. This image 
input is shaped by the image_shape parameter; this is a tuple or list of length 4 
describing the dimensions of the input. As we move through successive layers, 
image_shape will reduce increasingly. As a tuple, the dimensions of image_shape 
simply specify the height and width of the input. As a list of length 4, the parameters, 
in order, are as follows:

•	 The batch size
•	 The number of input feature maps
•	 The height of the input image
•	 The width of the input image
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While image_shape specifies the size of the input, filter_shape specifies the 
dimensions of the filter. As a list of length 4, the parameters, in order, are as follows:

•	 The number of filters (channels) to be applied
•	 The number of input feature maps
•	 The height of the filter
•	 The width of the filter

However, the height and width may be entered without any additional parameters. 
The final parameter here, poolsize, describes the downsizing factor. This is 
expressed as a list of length 2, the first element being the number of rows and the 
second—the number of columns.

Having defined these values, we immediately apply them to define the 
LeNetConvPoolLayer class better. In defining fan_in, we set the inputs to each 
hidden unit to be a multiple of the number of input feature maps—the filter height 
and width. Simply enough, we also define fan_out, a gradient that's calculated as 
a multiple of the number of output feature maps—the feature height and width—
divided by the pooling size.

Next, we move on to defining the bias as a set of one-dimensional tensors, one for 
each output feature map:

        b_values = numpy.zeros((filter_shape[0],),  
        dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape
        )

With this single function call, we've defined a convolution operation that uses the 
filters we previously defined. At times, it can be a little staggering to see how much 
theory needs to be known to effectively apply a single function! The next step is to 
create a similar pooling operation using max_pool_2d:

        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
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            ignore_border=True
        )

        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 
                      0, 'x', 'x'))

        self.params = [self.W, self.b]

        self.input = input

Finally, we add the bias term, first reshaping it to be a tensor of shape (1, n_filters, 
1, 1). This has the simple effect of causing the bias to affect every feature map and 
minibatch. At this point, we have all of the components we need to build a basic 
convnet. Let's move on to create our own network:

    x = T.matrix('x')   
    y = T.ivector('y') 

This process is fairly simple. We build the layers in order, passing parameters to the 
class that we previously specified. Let's start by building our first layer:

    layer0_input = x.reshape((batch_size, 1, 32, 32))

    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, 32, 32),
        filter_shape=(nkerns[0], 1, 5, 5),
        poolsize=(2, 2)
    )

We begin by reshaping the input to spread it across all of the intended minibatches. 
As the CIFAR-10 images are of a 32 x 32 dimension, we've used this input size for the 
height and width dimensions. The filtering process reduces the size of this input to 
32- 5+1 in each dimension, or 28. Pooling reduces this by half in each dimension to 
create an output layer of shape (batch_size, nkerns[0], 14, 14).
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This is a completed first layer. Next, we can attach a second layer to this using the 
same code:

    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], 14, 14),
        filter_shape=(nkerns[1], nkerns[0], 5, 5),
        poolsize=(2, 2)
    )

As per the previous layer, the output shape for this layer is (batch_size, 
nkerns[1], 5, 5). So far, so good! Let's feed this output to the next, fully-connected 
sigmoid layer. To begin with, we need to flatten the input shape to two dimensions. 
With the values that we've fed to the network so far, the input will be a matrix of 
shape (500, 1250). As such, we'll set up an appropriate layer2:

    layer2_input = layer1.output.flatten(2)

    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * 5 * 5
        n_out=500,
        activation=T.tanh
    )

This leaves us in a good place to finish this network's architecture, by adding a final, 
logistic regression layer that calculates the values of the fully-connected sigmoid 
layer.

Let's try out this code:

    x = T.matrix(CIFAR-10_train)   
    y = T.ivector(CIFAR-10_test)

Chapter_4/convolutional_mlp.py

The results that we obtained were as follows:

Optimization complete.

Best validation score of 0.885725 % obtained at iteration 17400, with 
test performance 0.902508 %

The code for file convolutional_mlp.py ran for 26.50m
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This accuracy score, at validation, is reasonably good. It's not at a human level of 
accuracy, which, as we established, is roughly 94%. Equally, it is not the best score 
that we could achieve with a convnet.

For instance, the Further Reading section of this chapter refers to a convnet 
implemented in Torch using a combination of dropout (which we studied in  
Chapter 3, Stacked Denoising Autoencoders) and Batch Normalization (a normalization 
technique intended to reduce covariate drift during the training process; refer to the 
Further Reading section for further technical notes and papers on this technique), 
which scored 92.45% validation accuracy.

A score of 88.57% is, however, in the same ballpark and can give us confidence that 
we're within striking distance of an effective network architecture for the CIFAR-10 
problem. More importantly, you've learned a lot about how to configure and train a 
convolutional neural network effectively.

Further Reading
The glut of recent interest in Convolutional Networks means that we're spoiled for 
choice for further reading. One good option for an unfamiliar reader is the course 
notes from Andrej Karpathy's course: http://cs231n.github.io/convolutional-
networks/.

For readers with an interest in the deeper details of specific best-in-class 
implementations, some of the networks referenced in this chapter were the 
following:

Google's GoogLeNet (http://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf)

Google Deepmind's Go-playing program AlphaGo (https://gogameguru.
com/i/2016/03/deepmind-mastering-go.pdf)

Facebook's DeepFace architecture for facial recognition (https://www.cs.toronto.
edu/~ranzato/publications/taigman_cvpr14.pdf) 

The ImageNet LSVRC-2010 contest winning network, described here by Krizhevsky, 
Sutskever and Hinton (http://www.cs.toronto.edu/~fritz/absps/imagenet.
pdf) 

Finally, Sergey Zagoruyko's Torch implementation of a ConvNet with Batch 
normalization is available here: http://torch.ch/blog/2015/07/30/cifar.html.

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf
https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf
https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://torch.ch/blog/2015/07/30/cifar.html
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Summary
In this chapter, we covered a lot of ground. We began by introducing a new kind of 
neural network, the convnet. We explored the theory and architecture of a convnet 
in the most ubiquitous form and also by discussing some state-of the-art network 
design principles that have been developing as recently as mid-2015 in organizations 
such as Google and Baidu. We built an understanding of the topology and also of 
how the network operates.

Following this, we began to work with the convnet itself, applying it to the CIFAR-10 
dataset. We used modular convnet code to create a functional architecture that 
reached a reasonable level of accuracy in classifying 10-class image data. While we're 
definitely still at some distance from human levels of accuracy, we're gradually 
closing the gap! Chapter 8, Ensemble Methods will pick up from what you learned here, 
taking these techniques and their application to the next level.
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Semi-Supervised Learning

Introduction
In previous chapters, we've tackled a range of data challenges using advanced 
techniques. In each case, we've applied our techniques to datasets with reasonable 
success.

In many regards, though, we've had it pretty easy. Our data has been largely derived 
from canonical and well-prepared sources so we haven't had to do a great deal 
of preparation. In the real world, though, there are few datasets like this (except, 
perhaps, the ones that we're able to specify ourselves!). In particular, it is rare and 
improbable to come across a dataset in the wild, which has class labels available. 
Without labels on a sufficient portion of the dataset, we find ourselves unable to 
build a classifier that can accurately predict labels on validation or test data. So, what 
do we do?

The common solution is attempt to tag our data manually; not only is this  
time-consuming, but it also suffers from certain types of human error (which are 
especially common with high-dimensional datasets, where a human observer is 
unable to identify class boundaries as well as a computational approach might).

A fairly new and quite exciting alternative approach is to use semi-supervised 
learning to apply labels to unlabeled data via capturing the shape of underlying 
distributions. Semi-supervised learning has been growing in popularity over the last 
decade for its ability to save large amounts of annotation time, where annotation, if 
possible, may potentially require human expertise or specialist equipment. Contexts 
where this has proven to be particularly valuable have been natural language 
parsing and speech signal analysis; in both areas, manual annotation has proven to 
be complex and time-consuming.
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In this chapter, you're going to learn how to apply several semi-supervised learning 
techniques, including, Contrastive Pessimistic Likelihood Estimation (CPLE), 
self learning, and S3VM. These techniques will enable us to label training data in 
a range of otherwise problematic contexts. You'll learn to identify the capabilities 
and limitations of semi-supervised techniques. We'll use a number of recent Python 
libraries developed on top of scikit-learn to apply semi-supervised techniques to 
several use cases, including audio signal data.

Let's get started!

Understanding semi-supervised learning
The most persistent cost in performing machine learning is the creation of tagged 
data for training purposes. Datasets tend not to come with class labels provided 
due to the circularity of the situation; one needs a trained classification technique 
to generate class labels, but cannot train the technique without labeled training and 
test data. As mentioned, tagging data manually or via test processes is one option, 
but this can be prohibitively time-consuming, costly (particularly for medical tests), 
challenging to organize, and prone to error (with large or complex datasets). Semi-
supervised techniques suggest a better way to break this deadlock.

Semi-supervised learning techniques use both unlabeled and labeled data to create 
better learning techniques than can be created with either unlabeled or labeled 
data individually. There is a family of techniques that exists in a space between 
supervised (with labeled data) and unsupervised (with unlabeled data) learning.

The main types of technique that exist in this group are semi-supervised techniques, 
transductive techniques, and active learning techniques, as well as a broad set of 
other methods.

Semi-supervised techniques leave a set of test data out of the training process so as 
to perform testing at a later stage. Transductive techniques, meanwhile, are purely 
intended to develop labels for unlabeled data. There may not be a test process 
embedded in a transductive technique and there may not be labeled data available 
for use.
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In this chapter, we'll focus on a set of semi-supervised techniques that deliver powerful 
dataset labeling capability in very familiar formats. A lot of the techniques that we'll be 
discussing are useable as wrappers around familiar, pre-existing classifiers, from linear 
regression classifiers to SVMs. As such, many of them can be run using estimators 
from Scikit-learn. We'll begin by applying a linear regression classifier to test cases 
before moving on to apply an SVM with semi-supervised extensions.

Semi-supervised algorithms in action
We've discussed what semi-supervised learning is, why we want to engage in it, 
and what some of the general realities of employing semi-supervised algorithms 
are. We've gone about as far as we can with general descriptions. Over the next few 
pages, we'll move from this general understanding to develop an ability to use a 
semi-supervised application effectively.

Self-training
Self-training is the simplest semi-supervised learning method and can also be the 
fastest. Self-training algorithms see an application in multiple contexts, including 
NLP and computer vision; as we'll see, they can present both substantial value and 
significant risks.

The objective of self-training is to combine information from unlabeled cases  
with that of labeled cases to iteratively identify labels for the dataset's unlabeled 
examples. On each iteration, the labeled training set is enlarged until the entire 
dataset is labeled.

The self-training algorithm is typically applied as a wrapper to a base model. In  
this chapter, we'll be using an SVM as the base for our self-training model. The  
self-training algorithm is quite simple and contains very few steps, as follows:

1.	 A set of labeled data is used to predict labels for a set of unlabeled data.  
(This may be all unlabeled data or part of it.)

2.	 Confidence is calculated for all newly labeled cases.
3.	 Cases are selected from the newly labeled data to be kept for the next iteration.
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4.	 The model trains on all labeled cases, including cases selected in  
previous iterations.

5.	 The model iterates through steps 1 to 4 until it successfully converges.

Presented graphically, this process looks as follows:
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Upon completing training, the self-trained model would be tested and validated. 
This may be done via cross-validation or even using held-out, labeled data, should 
this exist.

Self-training provides real power and time saving, but is also a risky process. In 
order to understand what to look out for and how to apply self-training to your own 
classification algorithms, let's look in more detail at how the algorithm works.

To support this discussion, we're going to work with code from the semisup-learn 
GitHub repository. In order to use this code, we'll need to clone the relevant GitHub 
repository. Instructions for this are located in Appendix A.

Implementing self-training
The first step in each iteration of self-training is one in which class labels 
are generated for unlabeled cases. This is achieved by first creating a 
SelfLearningModel class, which takes a base supervised model (basemodel) and 
an iteration limit as arguments. As we'll see later in this chapter, an iteration limit 
can be explicitly specified or provided as a function of classification accuracy (that 
is, convergence). The prob_threshold parameter provides a minimum quality bar 
for label acceptance; any projected label that scores at less than this level will be 
rejected. Again, we'll see in later examples that there are alternatives to providing a 
hardcoded threshold value.

class SelfLearningModel(BaseEstimator): 
 

       

def __init__(self, basemodel, max_iter = 200, prob_threshold = 0.8): 
   self.model = basemodel 
   self.max_iter = max_iter 
   self.prob_threshold = prob_threshold  

Having defined the shell of the SelfLearningModel class, the next step is to define 
functions for the process of semi-supervised model fitting:

def fit(self, X, y): 
   unlabeledX = X[y==-1, :] 
   labeledX = X[y!=-1, :] 
   labeledy = y[y!=-1] 
   
   self.model.fit(labeledX, labeledy) 
   unlabeledy = self.predict(unlabeledX) 
   unlabeledprob = self.predict_proba(unlabeledX)
   unlabeledy_old = [] 

   i = 0
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The X parameter is a matrix of input data, whose shape is equivalent to [n_samples, 
n_features]. X is used to create a matrix of [n_samples, n_samples] size. The y 
parameter, meanwhile, is an array of labels. Unlabeled points are marked as -1 in 
y. From X, the unlabeledX and labeledX parameters are created quite simply by 
operations over X that select elements in X whose position corresponds to a -1 label 
in y. The labeledy parameter performs a similar selection over y. (Naturally, we're 
not that interested in the unlabeled samples of y as a variable, but we need the labels 
that do exist for classification attempts!)

The actual process of label prediction is achieved, first, using sklearn's predict 
operation. The unlabeledy parameter is generated using sklearn's predict method, 
while the predict_proba method is used to calculate probabilities for each projected 
label. These probabilities are stored in unlabeledprob.

Scikit-learn's predict and predict_proba methods work to 
predict class labels and the probability of class labeling being 
correct, respectively. As we'll be applying both of these methods 
within several of our semi-supervised algorithms, it's informative to 
understand how they actually work.
The predict method produces class predictions for input data. It 
does so via a set of binary classifiers (that is, classifiers that attempt 
to differentiate only two classes). A full model with n-many classes 
contains a set of binary classifiers as follows:

( )1
2

n n∗ −
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In order to make a prediction for a given case, all classifiers whose scores 
exceed zero, vote for a class label to apply to that case. The class with the 
most votes (and not, say, the highest sum classifier score) is identified. 
This is referred to as a one-versus-one prediction method and is a fairly 
common approach.
Meanwhile, predict_proba works by invoking Platt calibration, 
a technique that allows the outputs of a classification model to be 
transformed into a probability distribution over the classes. This involves 
first training the base model in question, fitting a regression model to the 
classifier's scores:

( )
( )( )( )

1|
1 exp
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This model can then be optimized (through scalar parameters A and 
B) using a maximum likelihood method. In the case of our self-training 
model, predict_proba allows us to fit a regression model to the 
classifier's scores and thus calculate probabilities for each class label. This 
is extremely helpful!

Next, we need a loop for iteration. The following code describes a while loop that 
executes until there are no cases left in unlabeledy_old (a copy of unlabeledy) or 
until the max iteration count is reached. On each iteration, a labeling attempt is made 
for each case that does not have a label whose probability exceeds the probability 
threshold (prob_threshold):

   while (len(unlabeledy_old) == 0 or       
      numpy.any(unlabeledy!=unlabeledy_old)) and i < self.max_iter: 
      unlabeledy_old = numpy.copy(unlabeledy) 
      uidx = numpy.where((unlabeledprob[:, 0] > self.prob_threshold)    
      | (unlabeledprob[:, 1] > self.prob_threshold))[0] 

The self.model.fit method then attempts to fit a model to the unlabeled data. 
This unlabeled data is presented in a matrix of size [n_samples, n_samples] (as 
referred to earlier in this chapter). This matrix is created by appending (with vstack 
and hstack) the unlabeled cases:

      self.model.fit(numpy.vstack((labeledX, unlabeledX[uidx, :])),     
      numpy.hstack((labeledy, unlabeledy_old[uidx])))
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Finally, the iteration performs label predictions, followed by probability predictions 
for those labels.

      unlabeledy = self.predict(unlabeledX) 
      unlabeledprob = self.predict_proba(unlabeledX) 
      i += 1 

On the next iteration, the model will perform the same process, this time taking the 
newly labeled data whose probability predictions exceeded the threshold as part of 
the dataset used in the model.fit step.

If one's model does not already include a classification method that can generate 
label predictions (like the predict_proba method available in sklearn's SVM 
implementation), it is possible to introduce one. The following code checks for the 
predict_proba method and introduces Platt scaling of generated labels if this 
method is not found:

if not getattr(self.model, "predict_proba", None): 
   self.plattlr = LR() 
   preds = self.model.predict(labeledX) 
   self.plattlr.fit( preds.reshape( -1, 1 ), labeledy ) 

return self

def predict_proba(self, X): 
         if getattr(self.model, "predict_proba", None): 
         return self.model.predict_proba(X) 
         else: 
            preds = self.model.predict(X) 
            return self.plattlr.predict_proba(preds.reshape( -1, 1 ))

Once we have this much in place, we can begin applying our self-training 
architecture. To do so, let's grab a dataset and start working!

For this example, we'll use a simple linear regression classifier, with Stochastic 
Gradient Descent (SGD) as our learning component as our base model (basemodel). 
The input dataset will be the statlog heart dataset, obtained from www.mldata.org. 
This dataset is provided in the GitHub repository accompanying this chapter.

www.mldata.org
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The heart dataset is a two-class dataset, where the classes are the absence or 
presence of a heart disease. There are no missing values across the 270 cases for 
any of its 13 features. This data is unlabeled and many of the variables needed are 
usually captured via expensive and sometimes inconvenient tests. The variables are 
as follows:

•	 age

•	 sex

•	 chest pain type (4 values)

•	 resting blood pressure

•	 serum cholestoral in mg/dl

•	 fasting blood sugar > 120 mg/dl

•	 resting electrocardiographic results (values 0,1,2)

•	 maximum heart rate achieved

•	 exercise induced angina

•	 10. oldpeak = ST depression induced by exercise relative to 
rest

•	 the slope of the peak exercise ST segment

•	 number of major vessels (0-3) colored by flourosopy

•	 thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

Lets get started with the Heart dataset by loading in the data, then fitting a model  
to it:

heart = fetch_mldata("heart")
X = heart.data
ytrue = np.copy(heart.target)
ytrue[ytrue==-1]=0

labeled_N = 2
ys = np.array([-1]*len(ytrue)) # -1 denotes unlabeled point
random_labeled_points = random.sample(np.where(ytrue == 0)[0], 
labeled_N/2)+\random.sample(np.where(ytrue == 1)[0], labeled_N/2)
ys[random_labeled_points] = ytrue[random_labeled_points]

basemodel = SGDClassifier(loss='log', penalty='l1') 

basemodel.fit(X[random_labeled_points, :], ys[random_labeled_points])
print "supervised log.reg. score", basemodel.score(X, ytrue)

ssmodel = SelfLearningModel(basemodel)
ssmodel.fit(X, ys)
print "self-learning log.reg. score", ssmodel.score(X, ytrue)
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Attempting this yields moderate, but not excellent, results:

self-learning log.reg. score 0.470347

However, over 1,000 trials, we find that the quality of our outputs is quite variant:

Given that we're looking at classification accuracy scores for sets of real-world and 
unlabeled data, this isn't a terrible result, but I don't think we should be satisfied 
with it. We're still labeling more than half of our cases incorrectly!

We need to understand the problem a little better; right now, it isn't clear what's 
going wrong or how we can improve on our results. Let's figure this out by returning 
to the theory around self-training to understand how we can diagnose and improve 
our implementation.

Finessing your self-training implementation
In the previous section, we discussed the creation of self-training algorithms and 
tried out an implementation. However, what we saw during our first trial was that 
our results, while demonstrating the potential of self-training, left room for growth. 
Both the accuracy and variance of our results were questionable.

Self-training can be a fragile process. If an element of the algorithm is ill-configured 
or the input data contains peculiarities, it is very likely that the iterative process will 
fail once and continue to compound that error by reintroducing incorrectly labeled 
data to future labeling steps. As the self-training algorithm iteratively feeds itself, 
garbage in, garbage out is a very real concern.
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There are several quite common flavors of risk that should be called out. In some 
cases, labeled data may not add more useful information. This is particularly 
common in the first few iterations, and understandably so! In general, unlabeled 
cases that are most easily labeled are the ones that are most similar to existing 
labeled cases. However, while it's easy to generate high-probability labels for these 
cases, there's no guarantee that their addition to the labeled set will make it easier to 
label during subsequent iterations.

Unfortunately, this can sometimes lead to a situation in which cases are being added 
that have no real effect on classification while classification accuracy in general 
deteriorates. Even worse, adding cases that are similar to pre-existing cases in 
enough respects to make them easy to label, but that actually misguide the classifier's 
decision boundary, can introduce misclassification increases.

Diagnosing what went wrong with a self-training model can sometimes be difficult, 
but as always, a few well-chosen plots add a lot of clarity to the situation. As this 
type of error occurs particularly often within the first few iterations, simply adding 
an element to the label prediction loop that writes the current classification accuracy 
allows us to understand how accuracy trended during early iterations.

Once the issue has been identified, there are a few possible solutions. If enough 
labeled data exists, a simple solution is to attempt to use a more diverse set of labeled 
data to kick-start the process.

While the impulse might be to use all of the labeled data, we'll see later in this 
chapter that self-training models are vulnerable to overfitting—a risk that forces 
us to hold on to some data for validation purposes. A promising option is to use 
multiple subsets of our dataset to train multiple self-training model instances. Doing 
so, particularly over several trials, can help us understand the impact of our input 
data on our self-training models performance.

In Chapter 8, Ensemble Methods, we'll explore some options around ensembles that 
will enable us to use multiple self-training models together to yield predictions. 
When ensembling is accessible to us, we can even consider applying multiple 
sampling techniques in parallel.

If we don't want to solve this problem with quantity, though, perhaps we can 
solve it by improving quality. One solution is to create an appropriately diverse 
subset of the labeled data through selection. There isn't a hard limit on the number 
of labeled cases that works well as a minimum amount to start up a self-training 
implementation. While you could hypothetically start working with even one labeled 
case per class (as we did in our preceding training example), it'll quickly become 
obvious that training against a more diverse and overlapping set of classes benefits 
from more labeled data.
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Another class of error that a self-training model is particularly vulnerable to is 
biased selection. Our naïve assumption is that the selection of data during each 
iteration is, at worst, only slightly biased (favoring one class only slightly more than 
others). The reality is that this is not a safe assumption. There are several factors that 
can influence the likelihood of biased selection, with the most likely culprit being 
disproportionate sampling from one class.

If the dataset as a whole, or the labeled subsets used, are biased toward one class, 
then the risk increases that your self-training classifier will overfit. This only 
compounds the problem as the cases provided for the next iteration are liable to be 
insufficiently diverse to solve the problem; whatever incorrect decision boundary 
was set up by the self-training algorithm will be set where it is—overfit to a subset 
of the data. Numerical disparity between each class' count of cases is the main 
symptom here, but the more usual methods to spot overfitting can also be helpful in 
diagnosing problems around selection bias.

This reference to the usual methods of spotting overfitting is worth 
expanding on because techniques to identify overfitting are highly 
valuable! These techniques are typically referred to as validation 
techniques. The fundamental concept underpinning validation techniques 
is that one has two sets of data—one that is used to build a model, and the 
other is used to test it.
The most effective validation technique is independent validation, the 
simplest form of which involves waiting to determine whether predictions 
are accurate. This obviously isn't always (or even, often) possible!
Given that it may not be possible to perform independent validation, the 
best bet is to hold out a subset of your sample. This is referred to as sample 
splitting and is the foundation of modern validation techniques. Most 
machine learning implementations refer to training, test, and validation 
datasets; this is a case of multilayered validation in action.
A third and critical validation tool is resampling, where subsets of the 
data are iteratively used to repeatedly validate the dataset. In Chapter 1, 
Unsupervised Machine Learning, we saw the use of v-fold cross-validation; 
cross-validation techniques are perhaps the best examples of resampling in 
action.
Beyond applicable techniques, it's a good idea to be mindful of the needed 
sample size required for the effective modeling of your data. There are no 
universal principles here, but I always rather liked the following rule of 
thumb:
If m points are required to determine a univariate regression line with 
sufficient precision, then it will take at least mn observations and perhaps 
n!mn observations to appropriately characterize and evaluate a regression 
model with n variables.
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Note that there is some tension between the suggested solutions to this problem 
(resampling, sample splitting, and validation techniques including cross-validation) 
and the preceding one. Namely, overfitting requires a more restrained use of subsets 
of the labeled training data, while bad starts are less likely to occur using more 
training data. For each specific problem, depending on the complexity of the data 
under analysis, there will be an appropriate balance to strike. By monitoring for 
signs of either type of problem, the appropriate action (whether that is an increase or 
decrease in the amount of labeled data used simultaneously in an iteration) can be 
taken at the right time.

A further class of risk introduced by self-training is that the introduction of 
unlabeled data almost always introduces noise. If dealing with datasets where part 
or all of the unlabeled cases are highly noisy, the amount of noise introduced may be 
sufficient to degrade classification accuracy.

The idea of using data complexity and noise measures to understand the 
degree of noise in one's dataset is not new. Fortunately for us, quite a lot 
of good estimators already exist that we can take advantage of.
There are two main groups of relative complexity measures. Some 
attempt to measure the overlap of values of different classes, or 
separability; measures in this group attempt to describe the degree of 
ambiguity of each class relative to the other classes. One good measure for 
such cases is the maximum Fisher's discriminant ratio, though maximum 
individual feature efficiency is also effective.
Alternatively (and sometimes more simply), one can use the error 
function of a linear classifier to understand how separable the dataset's 
classes are from one another. By attempting to train a simple linear 
classifier on your dataset and observing the training error, one can 
immediately get a good understanding as to how linearly separable the 
classes are. Furthermore, measures related to this classifier (such as the 
fraction of points in the class boundary or the ratio of average intra/inter 
class nearest neighbor distance) can also be extremely helpful.
There are other data complexity measures that specifically measure the 
density or geometry of the dataset. One good example is the fraction of 
maximum covering spheres. Again, helpful measures can be accessed by 
applying a linear classifier and including the nonlinearity of that classifier.
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Improving the selection process
The key to the self-training algorithm working correctly is the accurate calculation of 
confidence for each label projection. Confidence calculation is the key to successful 
self-training.

During our first explanation of self-training, we used some simplistic values for 
certain parameters, including a parameter closely tied to confidence calculation.  
In selecting our labeled cases, we used a fixed confidence level for comparison 
against predicted probabilities, where we could've adopted any one of several 
different strategies:

•	 Adding all of the projected labels to the set of labeled data
•	 Using a confidence threshold to select only the few most confident labels to 

the set
•	 Adding all the projected labels to the labeled dataset and weighing each label 

by confidence

All in all, we've seen that self-training implementations present quite a lot of risk. 
They're prone to a number of training failures and are also subject to overfitting. To 
make matters worse, as the amount of unlabeled data increases, the accuracy of a 
self-training classifier becomes increasingly at risk.

Our next step will be to look at a very different self-training implementation. While 
conceptually similar to the algorithm that we worked with earlier in this chapter, the 
next technique we'll be looking at operates under different assumptions to yield very 
different results.

Contrastive Pessimistic Likelihood Estimation
In our preceding discovery and application of self-training techniques, we found 
self-training to be a powerful technique with significant risks. Particularly, we found 
a need for multiple diagnostic tools and some quite restrictive dataset conditions. 
While we can work around these problems by subsetting, identifying optimal 
labeled data, and attentively tracking performance for some datasets, some of these 
actions continue to be impossible for the very data that self-training would bring the 
most benefit to—data where labeling requires expensive tests, be those medical or 
scientific, with specialist knowledge and equipment.
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In some cases, we end up with some self-training classifiers that are outperformed by 
their supervised counterparts, which is a pretty terrible state of affairs. Even worse, 
while a supervised classifier with labeled data will tend to improve in accuracy with 
additional cases, semi-supervised classifier performance can degrade as the dataset 
size increases. What we need, then, is a less naïve approach to semi-supervised 
learning. Our goal should be to find an approach that harnesses the benefits of semi-
supervised learning while maintaining performance at least comparable with that of 
the same classifier under a supervised approach.

A very recent (May 2015) approach to self-supervised learning, CPLE, provides 
a more general way to perform semi-supervised parameter estimation. CPLE 
provides a rather remarkable advantage: it produces label predictions that have 
been demonstrated to consistently outperform those created by equivalent semi-
supervised classifiers or by supervised classifiers working from the labeled data! 
In other words, when performing a linear discriminant analysis, for instance, it 
is advised that you perform a CPLE-based, semi-supervised analysis instead of a 
supervised one, as you will always obtain at least equivalent performance.

This is a pretty big claim and it needs substantiating. Let's start by building an 
understanding of how CPLE works before moving on to demonstrate its superior 
performance in real cases.

CPLE uses the familiar measure of maximized log-likelihood for parameter 
optimization. This can be thought of as the success condition; the model we'll 
develop is intended to optimize the  maximized log-likelihood of our model's 
parameters. It is the specific guarantees and assumptions that CPLE incorporates that 
make the technique effective.



Semi-Supervised Learning

[ 746 ]

In order to create a better semi-supervised learner—one that improves on it's 
supervised alternative—CPLE takes the supervised estimates into account explicitly, 
using the loss incurred between the semi-supervised and supervised models as a 
training performance measure:

CPLE calculates the relative improvement of any semi-supervised estimate  
over the supervised solution. Where the supervised solution outperforms the  
semi-supervised estimate, the loss function shows this and the model can train to 
adjust the semi-supervised model to reduce this loss. Where the semi-supervised 
solution outperforms the supervised solution, the model can learn from the  
semi-supervised model by adjusting model parameters.
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However, while this sounds excellent so far, there is a flaw in the theory that has 
to be addressed. The fact that data labels don't exist for a semi-supervised solution 
means that the posterior distribution (that CPLE would use to calculate loss) is 
inaccessible. CPLE's solution to this is to be pessimistic. The CPLE algorithm takes 
the Cartesian product of all label/prediction combinations and then selects the 
posterior distribution that minimizes the gain in likelihood.

In real-world machine learning contexts, this is a very safe approach. It delivers the 
classification accuracy of a supervised approach with semi-supervised performance 
improvement derived via conservative assumptions. In real applications, these 
conservative assumptions enable high performance under testing. Even better, CPLE 
can deliver particular performance improvements on some of the most challenging 
unsupervised learning cases, where the labeled data is a poor representation of the 
unlabeled data (by virtue of poor sampling from one or more classes or just because 
of a shortage of unlabeled cases).

In order to understand how much more effective CPLE can be than semi-supervised 
or supervised approaches, let's apply the technique to a practical problem. We'll 
once again work with the semisup-learn library, a specialist Python library, focused 
on semi-supervised learning, which extends scikit-learn to provide CPLE across any 
scikit-learn-provided classifier. We begin with a CPLE class:

class CPLELearningModel(BaseEstimator):
    
    def __init__(self, basemodel, pessimistic=True, predict_from_
probabilities = False, use_sample_weighting = True, max_iter=3000, 
verbose = 1):
        self.model = basemodel
        self.pessimistic = pessimistic
        self.predict_from_probabilities = predict_from_probabilities
        self.use_sample_weighting = use_sample_weighting
        self.max_iter = max_iter
        self.verbose = verbose

We're already familiar with the concept of basemodel. Earlier in this chapter, we 
employed S3VMs and semi-supervised LDE's. In this situation, we'll again use an 
LDE; the goal of this first assay will be to try and exceed the results obtained by the 
semi-supervised LDE from earlier in this chapter. In fact, we're going to blow those 
results out of the water!
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Before we do so, however, let's review the other parameter options. The 
pessimistic argument gives us an opportunity to use a non-pessimistic (optimistic) 
model. Instead of following the pessimistic method of minimizing the loss 
between unlabeled and labeled discriminative likelihood, an optimistic model aims 
to maximize likelihood. This can yield better results (mostly during training), but is 
significantly more risky. Here, we'll be working with pessimistic models.

The predict_from_probabilities parameter enables optimization by allowing 
a prediction to be generated from the probabilities of multiple data points at once. 
If we set this as true, our CPLE will set the prediction as 1 if the probability we're 
using for prediction is greater than the mean, or 0 otherwise. The alternative is to use 
the base model probabilities, which is generally preferable for performance reasons, 
unless we'll be calling predict across a number of cases.

We also have the option to use_sample_weighting, otherwise known as soft labels 
(but most familiar to us as posterior probabilities). We would normally take this 
opportunity, as soft labels enable greater flexibility than hard labels and are generally 
preferred (unless the model only supports hard class labels).

The first few parameters provide a means of stopping CPLE training, either at 
maximum iterations or after log-likelihood stops improving (typically because of 
convergence). The bestdl provides the best discriminative likelihood value and 
corresponding soft labels; these values are updated on each training iteration:

        self.it = 0 
        self.noimprovementsince = 0 
        self.maxnoimprovementsince = 3 
        
        self.buffersize = 200
        self.lastdls = [0]*self.buffersize

        self.bestdl = numpy.infty
        self.bestlbls = []
        
        
        self.id = str(unichr(numpy.random.randint(26)+97))+str(unichr(
numpy.random.randint(26)+97))

The discriminative_likelihood function calculates the likelihood (for 
discriminative models—that is, models that aim to maximize the probability of a 
target—y = 1, conditional on the input, X) of an input.
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In this case, it's worth drawing your attention to the distinction 
between generative and discriminative models. While this isn't a basic 
concept, it can be fundamental in understanding why many classifiers 
have the goals that they do.
A classification model takes input data and attempts to classify cases, 
assigning each case a label. There is more than one way to do this.
One approach is to take the cases and attempt to draw a decision 
boundary between them. Then we can take each new case as it 
appears and identify which side of the boundary it falls on. This is a 
discriminative learning approach.
Another approach is to attempt to model the distribution of each class 
individually. Once a model has been generated, the algorithm can 
use Bayes' rule to calculate the posterior distribution on the labels 
given input data. This approach is generative and is a very powerful 
approach with significant weaknesses (most of which tie into the 
question of how well we can model our classes). Generative approaches 
include Gaussian discriminant models (yes, that is a slightly confusing 
name) and a broad range of Bayesian models. More information, 
including some excellent recommended reading, is provided in the 
Further reading section of this chapter.

In this case, the function will be used on each iteration to calculate the likelihood of 
the predicted labels:

    def discriminative_likelihood(self, model, labeledData, labeledy = 
None, unlabeledData = None, unlabeledWeights = None, unlabeledlambda = 
1, gradient=[], alpha = 0.01):
        unlabeledy = (unlabeledWeights[:, 0]<0.5)*1
        uweights = numpy.copy(unlabeledWeights[:, 0]) 

        uweights[unlabeledy==1] = 1-uweights[unlabeledy==1] 

        weights = numpy.hstack((numpy.ones(len(labeledy)), uweights))
        labels = numpy.hstack((labeledy, unlabeledy))

Having defined this much of our CPLE, we also need to define the fitting process 
for our supervised model. This uses familiar components, namely, model.fit and 
model.predict_proba, for probability prediction:

        if self.use_sample_weighting:
            model.fit(numpy.vstack((labeledData, unlabeledData)), 
labels, sample_weight=weights)
        else:
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            model.fit(numpy.vstack((labeledData, unlabeledData)), 
labels)
        

        P = model.predict_proba(labeledData)

In order to perform pessimistic CPLE, we need to derive both the labeled and 
unlabeled discriminative log likelihood. In order, we then perform predict_proba 
on both the labeled and unlabeled data:

        try:
            
            labeledDL = -sklearn.metrics.log_loss(labeledy, P)
        except Exception, e:
            print e
            P = model.predict_proba(labeledData)

        
        unlabeledP = model.predict_proba(unlabeledData)  
           

        try: 
            eps = 1e-15
            unlabeledP = numpy.clip(unlabeledP, eps, 1 - eps)
            unlabeledDL = numpy.average((unlabeledWeights*numpy.
vstack((1-unlabeledy, unlabeledy)).T*numpy.log(unlabeledP)).
sum(axis=1))
        except Exception, e:
            print e
            unlabeledP = model.predict_proba(unlabeledData)

Once we're able to calculate the discriminative log likelihood for both the labeled and 
unlabeled classification attempts, we can set an objective via the discriminative_
likelihood_objective function. The goal here is to use the pessimistic (or 
optimistic, by choice) methodology to calculate dl on each iteration until the model 
converges or the maximum iteration count is hit.
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On each iteration, a t-test is performed to determine whether the likelihoods have 
changed. Likelihoods should continue to change on each iteration preconvergence. 
Sharp-eyed readers may have noticed earlier in the chapter that three consecutive 
t-tests showing no change will cause the iteration to stop (this is configurable via the 
maxnoimprovementsince parameter):

        if self.pessimistic:
            dl = unlabeledlambda * unlabeledDL - labeledDL
        else: 
            dl = - unlabeledlambda * unlabeledDL - labeledDL
        
        return dl

    def discriminative_likelihood_objective(self, model, labeledData, 
labeledy = None, unlabeledData = None, unlabeledWeights = None, 
unlabeledlambda = 1, gradient=[], alpha = 0.01):
        if self.it == 0:
            self.lastdls = [0]*self.buffersize
        
        dl = self.discriminative_likelihood(model, labeledData, 
labeledy, unlabeledData, unlabeledWeights, unlabeledlambda, gradient, 
alpha)
        
        self.it += 1
        self.lastdls[numpy.mod(self.it, len(self.lastdls))] = dl
        
        if numpy.mod(self.it, self.buffersize) == 0: # or True:
            improvement = numpy.mean((self.lastdls[(len(self.
lastdls)/2):])) - numpy.mean((self.lastdls[:(len(self.lastdls)/2)]))

            _, prob = scipy.stats.ttest_ind(self.lastdls[(len(self.
lastdls)/2):], self.lastdls[:(len(self.lastdls)/2)])
            
            noimprovement = prob > 0.1 and numpy.mean(self.
lastdls[(len(self.lastdls)/2):]) < numpy.mean(self.lastdls[:(len(self.
lastdls)/2)])
            if noimprovement:
                self.noimprovementsince += 1
                if self.noimprovementsince >= self.
maxnoimprovementsince:
                    
                    self.noimprovementsince = 0
                    raise Exception(" converged.") 
            else:
                self.noimprovementsince = 0
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On each iteration, the algorithm saves the best discriminative likelihood and the best 
weight set for use in the next iteration:

        if dl < self.bestdl:
            self.bestdl = dl
            self.bestlbls = numpy.copy(unlabeledWeights[:, 0])
                        
        return dl

One more element worth discussing is how the soft labels are created. We've 
discussed these earlier in the chapter. This is how they look in code:

f = lambda softlabels, grad=[]: self.discriminative_
likelihood_objective(self.model, labeledX, labeledy=labeledy, 
unlabeledData=unlabeledX, unlabeledWeights=numpy.vstack((softlabels, 
1-softlabels)).T, gradient=grad) 

lblinit = numpy.random.random(len(unlabeledy))

In a nutshell, softlabels provide a probabilistic version of the discriminative 
likelihood calculation. In other words, they act as weights rather than hard, binary 
class labels. Soft labels are calculable using the optimize method:

        try:
            self.it = 0
            opt = nlopt.opt(nlopt.GN_DIRECT_L_RAND, M)
            opt.set_lower_bounds(numpy.zeros(M))
            opt.set_upper_bounds(numpy.ones(M))
            opt.set_min_objective(f)
            opt.set_maxeval(self.max_iter)
            self.bestsoftlbl = opt.optimize(lblinit)
            print " max_iter exceeded."
        except Exception, e:
            print e
            self.bestsoftlbl = self.bestlbls
            
        if numpy.any(self.bestsoftlbl != self.bestlbls):
            self.bestsoftlbl = self.bestlbls
        ll = f(self.bestsoftlbl)

        unlabeledy = (self.bestsoftlbl<0.5)*1
        uweights = numpy.copy(self.bestsoftlbl)
 
        uweights[unlabeledy==1] = 1-uweights[unlabeledy==1] 

        weights = numpy.hstack((numpy.ones(len(labeledy)), uweights))
        labels = numpy.hstack((labeledy, unlabeledy))
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For interested readers, optimize uses the Newton conjugate gradient 
method of calculating gradient descent to find optimal weight values. 
A reference to Newton conjugate gradient is provided in the Further 
reading section at the end of this chapter.

Once we understand how this works, the rest of the calculation is a straightforward 
comparison of the best supervised labels and soft labels, setting the bestsoftlabel 
parameter as the best label set. Following this, the discriminative likelihood is 
computed against the best label set and a fit function is calculated:

        if self.use_sample_weighting:
            self.model.fit(numpy.vstack((labeledX, unlabeledX)), 
labels, sample_weight=weights)
        else:
            self.model.fit(numpy.vstack((labeledX, unlabeledX)), 
labels)
        
        if self.verbose > 1:
            print "number of non-one soft labels: ", numpy.sum(self.
bestsoftlbl != 1), ", balance:", numpy.sum(self.bestsoftlbl<0.5), " / 
", len(self.bestsoftlbl)
            print "current likelihood: ", ll

Now that we've had a chance to understand the implementation of CPLE, let's get 
hands-on with an interesting dataset of our own! This time, we'll change things up 
by working with the University of Columbia's Million Song Dataset.

The central feature of this algorithm is feature analysis and metadata for one million 
songs. The data is preprepared and made up of natural and derived features. 
Available features include things such as the artist's name and ID, duration, 
loudness, time signature, and tempo of each song, as well as other measures 
including a crowd-rated danceability score and tags associated with the audio.

This dataset is generally labeled (via tags), but our objective in this case will be to 
generate genre labels for different songs based on the data provided. As the full 
million song dataset is a rather forbidding 300 GB, let's work with a 1% (1.8 GB) 
subset of 10,000 records. Furthermore, we don't particularly need this data as it 
currently exists; it's in an unhelpful format and a lot of the fields are going to be of 
little use to us.
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The 10000_songs dataset residing in the Chapter 6, Text Feature Engineering folder 
of our Mastering Python Machine Learning repository is a cleaned, prepared (and 
also rather large) subset of music data from multiple genres. In this analysis, we'll 
be attempting to predict genre from the genre tags provided as targets. We'll take a 
subset of tags as the labeled data used to kick-start our learning and will attempt  
to generate tags for unlabelled data.

In this iteration, we're going to raise our game as follows:

•	 Using more labeled data. This time, we'll use 1% of the total dataset size (100 
songs), taken at random, as labeled data.

•	 Using an SVM with a linear kernel as our classifier, rather than the 
simple linear discriminant analysis we used with our naïve self-training 
implementation earlier in this chapter.

So, let's get started:

import sklearn.svm
import numpy as np
import random

from frameworks.CPLELearning import CPLELearningModel
from methods import scikitTSVM
from examples.plotutils import evaluate_and_plot

kernel = "linear"

songs = fetch_mldata("10000_songs")
X = songs.data
ytrue = np.copy(songs.target)
ytrue[ytrue==-1]=0

labeled_N = 20
ys = np.array([-1]*len(ytrue))
random_labeled_points = random.sample(np.where(ytrue == 0)[0], 
labeled_N/2)+\
                        random.sample(np.where(ytrue == 1)[0], 
labeled_N/2)
ys[random_labeled_points] = ytrue[random_labeled_points]
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For comparison, we'll run a supervised SVM alongside our CPLE implementation. 
We'll also run the naïve self-supervised implementation, which we saw earlier in this 
chapter, for comparison:

basemodel = SGDClassifier(loss='log', penalty='l1') # scikit logistic 
regression
basemodel.fit(X[random_labeled_points, :], ys[random_labeled_points])
print "supervised log.reg. score", basemodel.score(X, ytrue)

ssmodel = SelfLearningModel(basemodel)
ssmodel.fit(X, ys)
print "self-learning log.reg. score", ssmodel.score(X, ytrue)

ssmodel = CPLELearningModel(basemodel)
ssmodel.fit(X, ys)
print "CPLE semi-supervised log.reg. score", ssmodel.score(X, ytrue)

The results that we obtain on this iteration are very strong:

# supervised log.reg. score 0.698

# self-learning log.reg. score 0.825

# CPLE semi-supervised log.reg. score 0.833
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The CPLE semi-supervised model succeeds in classifying with 84% accuracy,  
a score comparable to human estimation and over 10% higher than the naïve  
semi-supervised implementation. Notably, it also outperforms the supervised SVM.

Further reading
A solid place to start understanding Semi-supervised learning methods is Xiaojin 
Zhu's very thorough literature survey, available at http://pages.cs.wisc.
edu/~jerryzhu/pub/ssl_survey.pdf. 

I also recommend a tutorial by the same author, available in the slide format at 
http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf.

The key paper on Contastive Pessimistic Likelihood Estimation is Loog's 2015 paper 
http://arxiv.org/abs/1503.00269.

This chapter made a reference to the distinction between generative and 
discriminative models. A couple of relatively clear explanations of the distinction 
between generative and discriminative algorithms are provided by Andrew 
Ng (http://cs229.stanford.edu/notes/cs229-notes2.pdf) and Michael 
Jordan (http://www.ics.uci.edu/~smyth/courses/cs274/readings/jordan_
logistic.pdf). 

For readers interested in Bayesian statistics, Allen Downey's book, Think Bayes,  
is a marvelous introduction (and one of my all-time favorite statistics books): 
https://www.google.co.uk/#q=think+bayes.

For readers interested in learning more about gradient descent, I recommend 
Sebastian Ruder's blog at http://sebastianruder.com/optimizing-gradient-
descent/. 

For readers interested in going a little deeper into the internals of conjugate descent, 
Jonathan Shewchuk's introduction provides clear and enjoyable definitions for a 
number of key concepts at https://www.cs.cmu.edu/~quake-papers/painless-
conjugate-gradient.pdf.

http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf
http://arxiv.org/abs/1503.00269
http://cs229.stanford.edu/notes/cs229-notes2.pdf
http://www.ics.uci.edu/~smyth/courses/cs274/readings/jordan_logistic.pdf
http://www.ics.uci.edu/~smyth/courses/cs274/readings/jordan_logistic.pdf
https://www.google.co.uk/#q=think+bayes
http://sebastianruder.com/optimizing-gradient-descent/.
http://sebastianruder.com/optimizing-gradient-descent/.
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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Summary
In this chapter, we tapped into a very powerful but lesser known paradigm in 
machine learning—semi-supervised learning. We began by exploring the underlying 
concepts of transductive learning and self-training, and improved our understanding 
of the latter class of techniques by working with a naïve self-training implementation.

We quickly began to see weaknesses in self-training and looked for an effective 
solution, which we found in the form of CPLE. CPLE is a very elegant and highly 
applicable framework for semi-supervised learning that makes no assumptions 
beyond those of the classifier that it uses as a base model. In return, we found  
CPLE to consistently offer performance in excess of naïve semi-supervised and 
supervised implementations, at minimal risk. We've gained a significant amount  
of understanding regarding one of the most useful recent developments in  
machine learning.

In the next chapter, we'll begin discussing data preparation skills that significantly 
increase the effectiveness of all of the models that we've previously discussed.
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Text Feature Engineering

Introduction
In preceding chapters, we've spent time assessing powerful techniques that enable 
the analysis of complex or challenging data. However, for the most difficult 
problems, the right technique will only get you so far.

The persistent challenge that deep learning and supervised learning try to solve for 
is that finding solutions often requires multiple big investments from the team in 
question. Under the old paradigm, one often has to perform specific preparation 
tasks, requiring time, specialist skills, and knowledge. Often, even the techniques 
used were domain-specific and/or data type-specific. This process, via which 
features are derived, is referred to as feature engineering.

Most of the deep learning algorithms which we've studied so far are intended to 
help find ways around needing to perform extensive feature engineering. However, 
at the same time, feature engineering continues to be seen as a hugely important 
skill for top-level ML practitioners. The following quotes come from leading Kaggle 
competitors, via David Kofoed Wind's contribution to the Kaggle blog:

"The features you use influence more than everything else the result. No algorithm 
alone, to my knowledge, can supplement the information gain given by correct 
feature engineering."

                                                                                                 – (Luca Massaron)
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"Feature engineering is certainly one of the most important aspects in Kaggle 
competitions and it is the part where one should spend the most time on. There are 
often some hidden features in the data which can improve your performance by a 
lot and if you want to get a good place on the leaderboard you have to find them. 
If you screw up here you mostly can't win anymore; there is always one guy who 
finds all the secrets. However, there are also other important parts, like how you 
formulate the problem. Will you use a regression model or classification model or 
even combine both or is some kind of ranking needed. This, and feature engineering, 
are crucial to achieve a good result in those competitions. There are also some 
competitions where (manual) feature engineering is not needed anymore; like in 
image processing competitions. Current state of the art deep learning algorithms 
can do that for you."

                                                                                                        – (Josef Feigl)

There are a few key themes here; feature engineering is powerful and even a very 
small amount of feature engineering can have a big impact on one's classifiers. It is 
also frequently necessary to employ feature engineering techniques if one wishes 
to deliver the best possible results. Maximising the effectiveness of your machine 
learning algorithms requires a certain amount of both domain-specific and data  
type-specific knowledge (secrets).

One more quote:

"For most Kaggle competitions the most important part is feature engineering, 
which is pretty easy to learn how to do."

                                                                                                    – (Tim Salimans)

Tim's not wrong; most of what you'll learn in this chapter is intuitive, effective tricks, 
and transformations. This chapter will introduce you to a few of the most effective 
and commonly-used preparation techniques applied to text and time series data, 
drawing from NLP and financial time series applications. We'll walk through how 
the techniques work, what one should expect to see, and how one can diagnose 
whether they're working as desired.

Text feature engineering
In preceding sections, we've discussed some of the methods by which we might 
take a dataset and extract a subset of valuable features. These methods have broad 
applicability but are less helpful when dealing with non-numerical/non-categorical 
data, or data that cannot be easily translated into numerical or categorical data. In 
particular, we need to apply different techniques when working with text data.
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The techniques that we'll study in this section fall into two main categories—cleaning 
techniques and feature preparation techniques. These are typically implemented in 
roughly that order and we'll study them accordingly.

Cleaning text data
When we work with natural text data, a different set of approaches apply. This is 
because in real-world contexts, the idea of a naturally clean text dataset is pretty 
unsafe; text data is rife with misspellings, non-dictionary constructs like emoticons, 
and in some cases, HTML tagging. As such, we need to be very thorough with  
our cleaning.

In this section, we'll work with a number of effective text-cleaning techniques, using 
a pretty gnarly real-world dataset. Specifically, we'll be using the Impermium dataset 
from a 2012 Kaggle competition, where the competition's goal was to create a model 
which accurately detects insults in social commentary.

Yes, I do mean Internet troll detection.

Let's get started!

Text cleaning with BeautifulSoup
Our first step should be manually checking the input data. This is pretty critical; with 
text data, one needs to try and understand what issues exist in the data initially so as 
to identify the cleaning needed.

It's kind of painful to read through a dataset full of hateful Internet commentary, so 
here's an example entry:

ID Date Comment
132 20120531031917Z """\xa0@Flip\xa0how are you not ded"""

We have an ID field and date field which don't seem to need much work. The 
text fields, however, are quite challenging. From this one case, we can already see 
misspelling and HTML inclusion. Furthermore, many entries in the dataset contain 
attempts to bypass swear filtering, usually by including a space or punctuation 
element mid-word. Other data quality issues include multiple vowels (to extend a 
word), non-ascii characters, hyperlinks... the list goes on.
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One option for cleaning this dataset is to use regular expressions, which run over  
the input data to scrub out data quality issues. However, the quantity and variety  
of problem formats make it impractical to use a regex-based approach, at least to 
begin with. We're likely both to miss a lot of cases and also to misjudge the amount 
of preparation needed, leading us to clean too aggressively, or not aggressively 
enough; in specific terms we risk cutting into real text content or leaving parts of tags 
in place. What we need is a solution that will wash out the majority of common data 
quality problems to begin with so that we can focus on the remaining issues with a 
script-based approach.

Enter BeautifulSoup. BeautifulSoup is a very powerful text cleaning library which 
can, among other things, remove HTML markup. Let's take a look at this library in 
action on our troll data:

from bs4 import BeautifulSoup
import csv

trolls = []
with open('trolls.csv',  'rt') as f:
    reader = csv.DictReader(f)
    for line in reader:
        trolls.append(BeautifulSoup(str(line["Comment"]), "html.
parser"))

print(trolls[0])

eg = BeautifulSoup(str(trolls), "html.parser")

print(eg.get_text())

ID Date Comments
132 20120531031917Z @Flip how are you not ded

As we can see, we've already made headway on improving the quality of our text 
data. Yet, it's also clear from these examples that there's a lot of work left to do! 
As discussed, let's move on to using regular expressions to help further clean and 
tokenize our data.

Managing punctuation and tokenizing
Tokenisation is the process of creating a set of tokens from a stream of text. Many 
tokens are words, while others might be character sets (such as smilies or other 
punctuation strings, for example, ????????).
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Now that we've removed a lot of the HTML ugliness from our initial dataset, we 
can take steps to further improve the cleanliness of our text data. To do this, we'll 
leverage the re module, which allows us to use operations over regular expressions, 
such as substring replacement. We'll perform a series of operations over our input 
text on this pass, which mostly focus on replacing variable or problematic text 
elements with tokens. Let's begin with a simple example, replacing e-mail addresses 
with an _EM token:

text = re.sub(r'[\w\-][\w\-\.]+@[\w\-][\w\-\.]+[a-zA-Z]{1,4}', '_EM', 
text)

Similarly, we can remove URLs, replacing them with the _U token:

text = re.sub(r'\w+:\/\/\S+', r'_U', text)

We can automatically remove extra or problematic whitespace and newline 
characters, hyphens, and underscores. In addition, we'll begin managing the 
problem of multiple characters, often used for emphasis in informal conversation. 
Extended series of punctuation characters are encoded here using codes such as 
_BQ and BX; these longer tags are used as a means of differentiating from the more 
straightforward _Q and _X tags (which refer to the use of a question mark and 
exclamation mark, respectively).

We can also use regular expressions to manage extra letters; by cutting down such 
strings to two characters at most, we're able to reduce the number of combinations to 
a manageable amount and tokenize that reduced group using the _EL token:

# Format whitespaces
text = text.replace('"', ' ')
text = text.replace('\'', ' ')
text = text.replace('_', ' ')
text = text.replace('-', ' ')
text = text.replace('\n', ' ')
text = text.replace('\\n', ' ')
text = text.replace('\'', ' ')
text = re.sub(' +',' ', text) 
text = text.replace('\'', ' ')
        

#manage punctuation
text = re.sub(r'([^!\?])(\?{2,})(\Z|[^!\?])', r'\1 _BQ\n\3', text)
text = re.sub(r'([^\.])(\.{2,})', r'\1 _SS\n', text) 
text = re.sub(r'([^!\?])(\?|!){2,}(\Z|[^!\?])', r'\1 _BX\n\3', text) 
text = re.sub(r'([^!\?])\?(\Z|[^!\?])', r'\1 _Q\n\2', text) 
text = re.sub(r'([^!\?])!(\Z|[^!\?])', r'\1 _X\n\2', text) 
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text = re.sub(r'([a-zA-Z])\1\1+(\w*)', r'\1\1\2 _EL', text) 
text = re.sub(r'([a-zA-Z])\1\1+(\w*)', r'\1\1\2 _EL', text)
text = re.sub(r'(\w+)\.(\w+)', r'\1\2', text)
text = re.sub(r'[^a-zA-Z]','', text)

Next, we want to begin creating other tokens of interest. One of the more helpful 
indicators available is the _SW token for swearing. We'll also use regular expressions 
to help identify and tokenize smileys into one of four buckets; big and happy smileys 
(_BS), small and happy ones (_S), big and sad ones (_BF), and small and sad ones (_F):

text = re.sub(r'([#%&\*\$]{2,})(\w*)', r'\1\2 _SW', text)

        
text = re.sub(r' [8x;:=]-?(?:\)|\}|\]|>){2,}', r' _BS', text) 
text = re.sub(r' (?:[;:=]-?[\)\}\]d>])|(?:<3)', r' _S', text) 
text = re.sub(r' [x:=]-?(?:\(|\[|\||\\|/|\{|<){2,}', r' _BF', text) 
text = re.sub(r' [x:=]-?[\(\[\|\\/\{<]', r' _F', text)

Smileys are complicated by the fact that their uses change frequently; 
while this series of characters is reasonably current, it's by no means 
complete; for example, see emojis for a range of non-ascii representations. 
For several reasons, we'll be removing non-ascii text from this example 
(a similar approach is to use a dictionary to force compliance), but both 
approaches have the obvious drawback that they remove cases from the 
dataset, meaning that any solution will be imperfect. In some cases, this 
approach may lead to the removal of a substantial amount of data. In 
general, then, it's prudent to be aware of the general challenge around 
character-based images in text content.

Following this, we want to begin splitting text into phrases. This is a simple 
application of str.split, which enables the input to be treated as a vector of words 
(words) rather than as long strings (re):

phrases = re.split(r'[;:\.()\n]', text) 
phrases = [re.findall(r'[\w%\*&#]+', ph) for ph in phrases] 
phrases = [ph for ph in phrases if ph] 
        
words = []
        
for ph in phrases:
      words.extend(ph)
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This gives us the following:

ID Date Comments
132 20120531031917Z [['Flip', 'how', 'are', 'you', 'not', 

'ded']]

Next, we perform a search for single-letter sequences. Sometimes, for emphasis, 
Internet communication involves the use of spaced single-letter chains. This may be 
attempted as a method of avoiding curse word detection:

tmp = words
words = []
new_word = ''
for word in tmp:
   if len(word) == 1:
      new_word = new_word + word
   else:
      if new_word:
         words.append(new_word)
         new_word = ''
      words.append(word)

So far, then, we've gone a long way toward cleaning and improving the quality 
of our input data. There are still outstanding issues, however. Let's reconsider the 
example we began with, which now looks like the following:

ID Date Words
132 20120531031917Z ['_F', 'how', 'are', 'you', 'not', 

'ded']



Text Feature Engineering

[ 766 ]

Much of our early cleaning has passed this example by, but we can see the effect of 
vectorising the sentence content as well as the now-cleaned HTML tags. We can also 
see that the emote used has been captured via the _F tag. When we look at a more 
complex test case, we see even more substantial change results:

Raw Cleaned and split
GALLUP DAILY\nMay 24-26, 2012 \
u2013 Updates daily at 1 p.m. 
ET; reflects one-day change\
nNo updates Monday, May 28; 
next update will be Tuesday, May 
29.\nObama Approval48%-\nObama 
Disapproval45%-1\nPRESIDENTIAL 
ELECTION\nObama47%-\nRomney45%-\
n7-day rolling average\n\n It 
seems the bump Romney got is 
over and the president is on his 
game.

['GALLUP', 'DAILY', 'May', 
'u', 'Updates', 'daily', 'pm', 
'ET', 'reflects', 'one', 'day', 
'change', 'No', 'updates', 
'Monday', 'May', 'next', 
'update', 'Tuesday', 'May', 
'Obama', 'Approval', 'Obama', 
'Disapproval', 'PRESIDENTIAL', 
'ELECTION', 'Obama', 'Romney', 
'day', 'rolling', 'average', 
'It', 'seems', 'bump', 'Romney', 
'got', 'president', 'game']

However, there are two significant problems still obvious in both examples. In 
the first case, we have a misspelled word; we need to find a way to eliminate this. 
Secondly, a lot of the words in both examples (for example. are, pm) aren't terribly 
informative in and of themselves. The problem we find, particularly for shorter text 
samples, is that what's left after cleaning may contain only one or two meaningful 
terms. If these terms are not terribly common in the corpus as a whole, it can prove 
to be very difficult to train a classifier to recognise these terms' significance.

Tagging and categorising words
I expect that we all know that English language words come in several types—nouns, 
verbs, adverbs, and so on. These are commonly referred to as parts of speech. If we 
know that a certain word is an adjective, as opposed to a verb or stop word (such as 
a, the, or of), we can treat it differently or more importantly, our algorithm can!

If we can perform part of speech tagging by identifying and encoding word classes 
as categorical variables, we're able to improve the quality of our data by retaining 
only the valuable content. The full range of text tagging options and techniques is too 
broad to be effectively covered in one section of this chapter, so we'll look at a subset 
of the applicable tagging techniques. Specifically, we'll focus on n-gram tagging and 
backoff taggers, a pair of complimentary techniques that allow us to create powerful 
recursive tagging algorithms.
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We'll be using a Python library called the Natural Language Toolkit (NLTK). NLTK 
offers a wide array of functionality and we'll be relying on it at several points in this 
chapter. For now, we'll be using NLTK to perform tagging and removal of certain 
word types. Specifically, we'll be filtering out stop words.

To answer the obvious first question (why eliminate stop words?), it tends to be true 
that stop words add little to nothing to most text analysis and can be responsible for 
a degree of noise and training variance. Fortunately, filtering stop words is pretty 
straightforward. We'll simply import NLTK, download and import the dictionaries, 
then perform a scan over all words in our pre-existing word vector, removing any 
stop words found:

import nltk
nltk.download()
from nltk.corpus import stopwords 

words = [w for w in words if not w in stopwords.words("english")]

I'm sure you'll agree that this was pretty straightforward! Let's move on to discuss 
more NLTK functionality, specifically, tagging.

Tagging with NLTK
Tagging is the process of identifying parts of speech, as we described previously, and 
applying tags to each term.

In its simplest form, tagging can be as straightforward as applying a dictionary over 
our input data, just as we did previously with stopwords:

tagged = ntlk.word_tokenize(words)

However, even brief consideration will make it obvious that our use of language is a 
lot more complicated than this allows. We may use a word (such as ferry) as one of 
several parts of speech and it may not be straightforward to decide how to treat each 
word in every utterance. A lot of the time, the correct tag can only be understood 
contextually given the other words and their positioning within the phrase.

Thankfully, we have a number of useful techniques available to help us solve 
linguistic challenges.
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Sequential tagging
A sequential tagging algorithm is one that works by running through the input 
dataset, left-to-right and token-by-token (hence sequential!), tagging each token in 
succession. The decision over which token to assign is made based on that token, the 
tokens that preceded it, and the predicted tags for those preceding tokens.

In this section, we'll be using an n-gram tagger. An n-gram tagger is a type of 
sequential tagger, which is pretrained to identify appropriate tags. The n-gram 
tagger takes (n-1)-many preceding POS tags and the current token into consideration 
in producing a tag.

For clarity, an n-gram is the term used for a contiguous sequence 
of n-many elements from a given set of elements. This may be a 
contiguous sequence of letters, words, numerical codes (for example, 
for state changes), or other elements. N-grams are widely used as a 
means of capturing the conjunct meaning of sets of elements—be those 
phrases or encoded state transitions—using n-many elements.

The simplest form of n-gram tagger is one where n = 1, referred to as a unigram 
tagger. A unigram tagger operates quite simply, by maintaining a conditional 
frequency distribution for each token. This conditional frequency distribution is built 
up from a training corpus of terms; we can implement training using a helpful train 
method belonging to the NgramTagger class in NLTK. The tagger assumes that the 
tag which occurs most frequently for a given token in a given sequence is likely to be 
the correct tag for that token. If the term carp is in the training corpus as a noun four 
times and as a verb twice, a unigram tagger will assign the noun tag to any token 
whose type is carp.

This might suffice for a first-pass tagging attempt but clearly, a solution that only 
ever serves up one tag for each set of homonyms isn't always going to be ideal. 
The solution we can tap into is using n-grams with a larger value of n. With n = 
3 (a trigram tagger), for instance, we can see how the tagger might more easily 
distinguish the input He tends to carp on a lot from He caught a magnificent carp!

However, once again there is a trade-off here between accuracy of tagging and ability 
to tag. As we increase n, we're creating increasingly long n-grams which become 
increasingly rare. In a very short time, we end up in a situation where our n-grams 
are not occurring in the training data, causing our tagger to be unable to find any 
appropriate tag for the current token!
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In practice, we find that what we need is a set of taggers. We want our most reliably 
accurate tagger to have the first shot at trying to tag a given dataset and, for any case 
that fails, we're comfortable with having a more reliable but potentially less accurate 
tagger have a try.

Happily, what we want already exists in the form of backoff tagging. Let's find  
out more!

Backoff tagging
Sometimes, a given tagger may not perform reliably. This is particularly common 
when the tagger has high accuracy demands and limited training data. At such 
times, we usually want to build an ensemble structure that lets us use several taggers 
simultaneously.

To do this, we create a distinction between two types of taggers: subtaggers and 
backoff taggers. Subtaggers are taggers like the ones we saw previously, sequential 
and Brill taggers. Tagging structures may contain one or multiple of each kind of 
tagger.

If a subtagger is unable to determine a tag for a given token, then a backoff tagger 
may be referred to instead. A backoff tagger is specifically used to combine the 
results of an ensemble of (one or more) subtaggers, as shown in the following 
example diagram:
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In simple implementations, the backoff tagger will simply poll the subtaggers in 
order, accepting the first none-null tag provided. If all subtaggers return null for a 
given token, the backoff tagger will assign a none tag to that token. The order can be 
determined.

Backoffs are typically used with multiple subtaggers of different types; this enables 
a data scientist to harness the benefits of multiple types of tagger simultaneously. 
Backoffs may refer to other backoffs as needed, potentially creating highly redundant 
or sophisticated tagging structures:

In general terms, backoff taggers provide redundancy and enable you to use multiple 
taggers in a composite solution. To solve our immediate problem, let's implement 
a nested series of n-gram taggers. We'll start with a trigram tagger, which will use 
a bigram tagger as its backoff tagger. If neither of these taggers has a solution, we'll 
have a unigram tagger as an additional backoff. This can be done very simply,  
as follows:

brown_a = nltk.corpus.brown.tagged_sents(categories= 'a')

tagger = None
for n in range(1,4):
  tagger = NgramTagger(n, brown_a, backoff = tagger)

words  = tagger.tag(words)
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Creating features from text data
Once we've engaged in well-thought-out text cleaning practices, we need to take 
additional steps to ensure that our text becomes useful features. In order to do this, 
we'll look at another set of staple techniques in NLP:

•	 Stemming
•	 Lemmatising
•	 Bagging using random forests

Stemming
Another challenge when working with linguistic datasets is that multiple word 
forms exist for many word stems. For example, the root dance is the stem of multiple 
other words—dancing, dancer, dances, and so on. By finding a way to reduce this 
plurality of forms into stems, we find ourselves able to improve our n-gram tagging 
and apply new techniques such as lemmatisation.

The techniques that enable us to reduce words to their stems are called stemmers. 
Stemmers work by parsing words as consonant/vowel strings and applying a 
series of rules. The most popular stemmer is the porter stemmer, which works by 
performing the following steps;

1.	 Simplifying the range of suffixes by reducing (for example, ies becomes i) to a 
smaller set.

2.	 Removing suffixes in several passes, with each pass removing a set of suffix 
types (for example, past particple or plural suffixes such as ousness or alism).

3.	 Once all suffixes are removed, cleaning up word endings by adding 'e's 
where needed (for example, ceas becomes cease).

4.	 Removing double 'l's.

The porter stemmer works very effectively. In order to understand exactly how well 
it works, let's see it in action!

from nltk.stem import PorterStemmer
 
stemmer = PorterStemmer()
 
stemmer.stem(words)

The output of this stemmer, as demonstrated on our pre-existing example, is the 
root form of the word. This may be a real word, or it may not; dancing, for instance, 
becomes danci. This is okay, but it's not really ideal. We can do better than this!
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To consistently reach a real word form, let's apply a slightly different technique, 
lemmatisation. Lemmatisation is a more complex process to determine word stems; 
unlike porter stemming, it uses a different normalisation process for different parts 
of speech. Unlike Porter Stemming it also seeks to find actual roots for words. Where 
a stem does not have to be a real word, a lemma does. Lemmatization also takes 
on the challenge of reducing synonyms down to their roots. For example, where a 
stemmer might turn the term books into the term book, it isn't equipped to handle 
the term tome. A lemmatizer can process both books and tome, reducing both terms 
to book.

As a necessary prerequisite, we need the POS for each input token. Thankfully, we've 
already applied a POS tagger and can work straight from the results of  
that process!

from nltk.stem import PorterStemmer, WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

words = lemmatizer.lemmatize(words, pos = 'pos')

The output is now what we'd expect to see:

Source Text Post-lemmatisation
The laughs you two heard were 
triggered by memories of his own 
high-flying exits off moving 
beasts

['The', 'laugh', 'two', 'hear', 
'trigger', 'memory', 'high', 
'fly', 'exit', 'move', 'beast']

We've now successfully stemmed our input text data, massively improving the 
effectiveness of lookup algorithms (such as many dictionary-based approaches) in 
handling this data. We've removed stop words and tokenized a range of other noise 
elements with regex methods. We've also removed any HTML tagging. Our text data 
has reached a reasonably processed state. There's one more linchpin technique that 
we need to learn, which will let us generate features from our text data. Specifically, 
we can use bagging to help quantify the use of terms.

Let's find out more!
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Bagging and random forests
Bagging is part of a family of techniques that may collectively be referred to as 
subspace methods. There are several forms of method, with each having a separate 
name. If we draw random subsets from the sample cases, then we're performing 
pasting. If we're sampling from cases with replacement, it's referred to as bagging. 
If instead of drawing from cases, we work with a subset of features, then we're 
performing attribute bagging. Finally, if we choose to draw from both sample cases 
and features, we're employing what's known as a random patches technique.

The feature-based techniques, attribute bagging, and Random Patch methods are 
very valuable in certain contexts, particularly very high-dimensional ones. Medical 
and genetics contexts both tend to see a lot of extremely high-dimensional data, so 
feature-based methods are highly effective within those contexts.

In NLP contexts, it's common to work with bagging specifically. In the context of 
linguistic data, what we'll be dealing with is properly called a bag of words. A bag 
of words is an approach to text data preparation that works by identifying all of the 
distinct words (or tokens) in a dataset and then counting their occurrence in each 
sample. Let's begin with a demonstration, performed over a couple of example cases 
from our dataset:

ID Date Words
132 20120531031917Z ['_F', 'how', 'are', 'you', 'not', 

'ded']

69 20120531173030Z ['you', 'are', 'living', 'proof', 
'that', 'bath', 'salts', 'effect', 
'thinking']

This gives us the following 12-part list of terms:

[

  "_F"

  "how"

  "are"

  "you"

  "not"

  "ded"

  "living"

  "proof"

  "that"

  "bath"
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  "salts"

  "effect"

  "thinking"

]

Using the indices of this list, we can create a 12-part vector for each of the preceding 
sentences. This vector's values are filled by traversing the preceding list and counting 
the number of times each term occurs for each sentence in the dataset. Given our  
pre-existing example sentences and the list we created from them, we end up 
creating the following bags:

ID Date Comment Bag of words

132 20120531031917Z _F how are you not 
ded

[1, 1, 1, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 0]

69 20120531173030Z you are living proof 
that bath salts 
effect thinking

[0, 0, 1, 1, 0, 0, 1, 
1, 1, 1, 1, 1, 1]

This is the core of a bag of words implementation. Naturally, once we've translated 
the linguistic content of text into numerical vectors, we're able to start using 
techniques that add sophistication to how we use this text in classification.

One option is to use weighted terms. We can use a term weighting scheme to 
modify the values within each vector so that terms that are indicative or helpful for 
classification are emphasized. Weighting schemes may be straightforward masks, 
such as a binary mask that indicates presence versus absence.

Binary masking can be useful if certain terms are used much more frequently than 
normal; in such cases, specific scaling (for example, log-scaling) may be needed if 
a binary mask is not used. At the same time, though, frequency of term use can be 
informative (it may indicate emphasis, for instance) and the decision over whether to 
apply a binary mask is not always made simply.

Another weighting option is term frequency-inverse document frequency, or tf-idf. 
This scheme compares frequency of usage within a specific sentence and the dataset 
as a whole and uses values that increase if a term is used more frequently within a 
given sample than within the whole corpus.

Variations on tf-idf are frequently used in text mining contexts, including search 
engines. Scikit-learn provides a tf-idf implementation, TfidfVectoriser, which 
we'll shortly use to employ tf-idf for ourselves.
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Now that we have an understanding of the theory behind bag of words and can 
see the range of technical options available to us once we develop vectors of word 
use, we should discuss how a bag of words implementation can be undertaken. 
Bag of words can be easily applied as a wrapper to a familiar model. While in 
general, subspace methods may use any of a range of base models (SVMs and linear 
regression models are common), it is very common to use random forests in a bag of 
words implementation, wrapping up preparation and learning into a concise script. 
In this case, we'll employ bag of words independently for now, saving classification 
via a random forest implementation for the next section!

While we'll discuss random forests in greater detail in Chapter 8, 
Ensemble Methods, (which describes the various types of ensemble 
that we can create), it is helpful for now to note that a random 
forest is a set of decision trees. They are powerful ensemble 
models that are created either to run in parallel (yielding a vote or 
other net outcome) or boost one another (by iteratively adding a 
new tree to model the parts of the solution that the pre-existing set 
of trees couldn't model well).
Due to the power and ease of use of random forests, they are 
commonly used as benchmarking algorithms.

The process of implementing bag of words is, again, fairly straightforward. We 
initialize our bagging tool (matter-of-factly referred to as a vectorizer). Note that for 
this example, we're putting a limit on the size of the feature vector. This is largely to 
save ourselves some time; each document must be compared against each item in the 
feature list, so when we get to running our classifier this could take a little while!

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(analyzer = "word",   \
                             tokenizer = None,    \
                             preprocessor = None, \
                             stop_words = None,   \
                             max_features = 5000) 

Our next step is to fit the vectorizer on our word data via fit_transform; as part of 
the fitting process, our data is transformed into feature vectors:

train_data_features = vectorizer.fit_transform(words)

train_data_features = train_data_features.toarray()
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This completes the pre-processing of our text data. We've taken this dataset through 
a full battery of text mining techniques, walking through the theory and reasoning 
behind each technique as well as employing some powerful Python scripts to process 
our test dataset.We're in a good position now to take a crack at Kaggle's insult 
detection challenge!

Testing our prepared data
So, now that we've done some initial preparation of the dataset, let's give the real 
problem a shot and see how we do. To help set the scene, let's consider Impermium's 
guidance and data description:

This is a single-class classification problem. The label is either 0 meaning a neutral comment, 
or 1 meaning an insulting comment (neutral can be considered as not belonging to the insult 
class.  Your predictions must be a real number in the range [0,1] where 1 indicates 100% 
confident prediction that comment is an insult.

•	 We are looking for comments that are intended to be insulting to a person who is a 
part of the larger blog/forum conversation.

•	 We are NOT looking for insults directed to non-participants (such as celebrities, 
public figures etc.).

•	 Insults could contain profanity, racial slurs, or other offensive language. But often 
times, they do not.

•	 Comments which contain profanity or racial slurs, but are not necessarily insulting 
to another person are considered not insulting.

•	 The insulting nature of the comment should be obvious, and not subtle.
•	 There may be a small amount of noise in the labels as they have not been 

meticulously cleaned. However, contestants can be confident the error in the training 
and testing data is < 1%.

Contestants should also be warned that this problem tends to strongly overfit. The provided 
data is generally representative of the full test set, but not exhaustive by any measure. 
Impermium will be conducting final evaluations based on an unpublished set of data drawn 
from a wide sample.

This is pretty nice guidance, in that it raises two particular points of caution. The 
desired score is the area under the curve (AUC), which is a measure that is very 
sensitive both to false positives and to incorrect negative results (specificity and 
sensitivity).
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The guidance clearly states that continuous predictions are desired rather 
than binary 0/1 outputs. This becomes critically important when using AUC; 
even a small amount of incorrect predictions given will radically decrease 
one's score if you only use categorical values. This suggests that rather 
than using the RandomForestClassifier algorithm, we'll want to use the 
RandomForestRegressor, a regression-focused alternative, and then rescale the 
results between zero and one.

Real Kaggle contests are run in a much more challenging and realistic environment—
one where the correct solution is not available. In Chapter 8, Ensemble Methods, we'll 
explore how top data scientists react and thrive in such environments. For now, we'll 
take advantage of having the ability to confirm whether we're doing well on the test 
dataset. Note that this advantage also presents a risk; if the problem overfits strongly, 
we'll need to be disciplined to ensure that we're not overtraining on the test data!

In addition, we also have the benefit of being able to see how well real contestants 
did. While we'll save the real discussion for Chapter 8, Ensemble Methods, it's 
reasonable to expect each highly-ranking contestant to have submitted quite a large 
number of failed attempts; having a benchmark will help us tell whether we're 
heading in the right direction.

Specifically, the top 14 participants on the private (test) leaderboard managed to 
reach an AUC score of over 0.8. The top scorer managed a pretty impressive 0.84, 
while over half of the 50 teams who entered scored above 0.77.

As we discussed earlier, let's begin with a random forest regression model.

A random forest is an ensemble of decision trees.
While a single decision tree is likely to suffer from variance- or 
bias-related issues, random forests are able to use a weighted 
average over multiple parallel trials to balance the results of 
modeling.
Random forests are very straightforward to apply and are a good 
first-pass technique for a new data challenge; applying a random 
forest classifier to the data early on enables you to develop a good 
understanding as to what initial, baseline classification accuracy 
will look like as well as giving valuable insight into how the 
classification boundaries were formed; during the initial stages of 
working with a dataset, this kind of insight is invaluable.
Scikit-learn provides RandomForestClassifier to enable the 
easy application of a random forest algorithm.
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For this first pass, we'll use 100 trees; increasing the number of trees can improve 
classification accuracy but will take additional time. Generally speaking, it's sensible 
to attempt fast iteration in the early stages of model creation; the faster you can 
repeatedly run your model, the faster you can learn what your results are looking 
like and how to improve them!

We begin by initializing and training our model:

trollspotter = RandomForestRegressor(n_estimators = 100, max_depth = 
10, max_features = 1000)

y = trolls["y"]

trollspotted = trollspotter.fit(train_data_features, y)

We then grab the test data and apply our model to predict a score for each test case. 
We rescale these scores using a simple stretching technique:

moretrolls = pd.read_csv('moretrolls.csv', header=True, names=['y', 
'date', 'Comment', 'Usage'])
moretrolls["Words"] = moretrolls["Comment"].apply(cleaner)

y = moretrolls["y"]

test_data_features = vectorizer.fit_transform(moretrolls["Words"])
test_data_features = test_data_features.toarray()

pred = pred.predict(test_data_features)
pred = (pred - pred.min())/(pred.max() - pred.min())

Finally, we apply the roc_auc function to calculate an AUC score for the model:

fpr, tpr, _ = roc_curve(y, pred)
roc_auc = auc(fpr, tpr)
print("Random Forest benchmark AUC score, 100 estimators")
print(roc_auc)

As we can see, the results are definitely not at the level that we want them to be at:

Random Forest benchmark AUC score, 100 estimators

0.537894912105
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Thankfully, we have a number of options that we can try to configure here:

•	 Our approach to how we work with the input (preprocessing steps and 
normalisation)

•	 The number of estimators in our random forest
•	 The classifier we choose to employ
•	 The properties of our bag of words implementation (particularly the 

maximum number of terms)
•	 The structure of our n-gram tagger

On our next pass, let's adjust the size of our bag of words implementation, increasing 
the term cap from a slightly arbitrary 5,000 to anywhere up to 8,000 terms; rather 
than picking just one value, we'll run over a range and see what we can learn. We'll 
also increase the number of trees to a more reasonable number (in this case, we 
stepped up to 1000):

Random Forest benchmark AUC score, 1000 estimators

0.546439310772

These results are slightly better than the previous set, but not dramatically so. 
They're definitely a fair distance from where we want to be! Let's go further and set 
up a different classifier. Let's try a fairly familiar option—the SVM. We'll set up our 
own SVM object to work with:

class SVM(object):
    
    def __init__(self, texts, classes, nlpdict=None):

        self.svm = svm.LinearSVC(C=1000, class_weight='auto')
        if nlpdict:
            self.dictionary = nlpdict
        else:
            self.dictionary = NLPDict(texts=texts)
        self._train(texts, classes)
        
    def _train(self, texts, classes):
        vectors = self.dictionary.feature_vectors(texts)
        self.svm.fit(vectors, classes)
        
    def classify(self, texts):
        vectors = self.dictionary.feature_vectors(texts)
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        predictions = self.svm.decision_function(vectors)
        predictions = p.transpose(predictions)[0:len(predictions)]
        predictions = predictions / 2 + 0.5
        predictions[predictions > 1] = 1
        predictions[predictions < 0] = 0
        return predictions

While the workings of SVM are almost impenetrable to human assessment, as an 
algorithm it operates effectively, iteratively translating the dataset into multiple 
additional dimensions in order to create complex hyperplanes at optimal class 
boundaries. It isn't a huge surprise, then, to see that the quality of our classification 
has increased:

SVM AUC score

0.625245653817

Perhaps we're not getting enough visibility into what's happening with our results. 
Let's try shaking things up with a different take on performance measurement. 
Specifically, let's look at the difference between the model's label predictions and 
actual targets to see whether the model is failing more frequently with certain types 
of input.

So we've taken our prediction quite far. While we still have a number of options on 
the table, it's worth considering the use of a more sophisticated ensemble of models 
as being a solid option. In this case, leveraging multiple models instead of just one 
can enable us to obtain the relative advantages of each. To try out an ensemble 
against this example, run the score_trolls_blendedensemble.py script.

This ensemble is a blended/stacked ensemble. We'll be spending more 
time discussing how this ensemble works in Chapter 8, Ensemble Methods!
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Plotting our results, we can see that performance has improved, but by significantly 
less than we'd hoped:

We're clearly having some issues with building a model against this data, but at this 
point, there isn't a lot of value in throwing a more developed model at the problem. 
We need to go back to our features and aim to extend the feature set.

At this point, it's worth taking some pointers from one of the most successful 
entrants of this particular Kaggle contest. In general, top-scoring entries tend to 
be developed by finding all of the tricks around the input data. The second-place 
contestant in the official Kaggle contest that this dataset was drawn from was  
a user named tuzzeg. This contestant provided a usable code repository at  
https://github.com/tuzzeg/detect_insults.

Tuzzeg's implementation differs from ours by virtue of much greater thoroughness. 
In addition to the basic features that we built using POS tagging, he employed POS-
based bigrams and trigrams as well as subsequences (created from sliding windows 
of N-many terms). He worked with n-grams up to 7-grams and created character 
n-grams of lengths 2, 3, and 4.

Furthermore, tuzzeg took the time to create two types of composite model, both 
of which were incorporated into his solution—sentence level and ranking models. 
Ranking took our rationalization around the nature of the problem a step further  
by turning the cases in our data into ranked continuous values.

https://github.com/tuzzeg/detect_insults
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Meanwhile, the innovative sentence-level model that he developed was trained 
specifically on single-sentence cases in the training data. For prediction on test data, 
he split the cases into sentences, evaluated each separately, and took only the highest 
score for sentences within the case. This was to accommodate the expectation that 
in natural language, speakers will frequently confine insulting comments to a single 
part of their speech.

Tuzzeg's model created over 100 feature groups (where a stem-based bigram is an 
example feature group—a group in the sense that the bigram process creates a vector 
of features), with the most important ones (ranked by impact) being the following:

stem subsequence based         0.66
stem based (unigrams, bigrams) 0.18
char ngrams based (sentence)   0.07
char ngrams based              0.04
all syntax                     0.006
all language models            0.004
all mixed                      0.002

This is interesting, in that it suggests that a set of feature translations that we  
aren't currently using is important in generating a usable solution. Particularly,  
the subsequence-based features are only a short step from our initial feature set, 
making it straightforward to add the extra feature:

def subseq2(n, xs):
  l = len(xs)
  return ['%s %s' % (xs[i], xs[j]) for i in xrange(l-1) for j in 
xrange(i+1, i+n+1) if j < l]

def getSubseq2(seqF, n):
  def f(row):
    seq = seqF(row)
    return set(seq + subseq2(n, seq))
  return f

Subseq2test = getSubseq2(line, 2)

This approach yields excellent results. While I'd encourage you to export Tuzzeg's 
own solution and apply it, you can also look at the score_trolls_withsubseq.
py script provided in this project's repository to get a feeling for how powerful 
additional features can be incorporated.



Chapter 6

[ 783 ]

With these additional features added, we see a dramatic improvement in our  
AUC score:

Running this code provides a very healthy 0.834 AUC score. This simply goes to 
show the power of thoughtful and innovative feature engineering; while the specific 
features generated in this chapter will serve you well in other contexts, specific 
hypotheses (such as hostile comments being isolated to specific sentences within a 
multi-sentence comment) can lead to very effective features.

As we've had the luxury of checking our reasoning against test data throughout this 
chapter, we can't reasonably say that we've worked under life-like conditions. We 
didn't take advantage of having access to the test data by reviewing it ourselves, but 
it's fair to say that knowing what the private leaderboard scored for this challenge 
made it easier for us to target the right fixes. In Chapter 8, Ensemble Methods, we'll 
be working on another tricky Kaggle problem in a more rigorous and realistic way. 
We'll also be discussing ensembles in depth!

Further reading
The quotes at the start of this chapter were sourced from the highly-readable Kaggle 
blog, No Free Hunch. Refer to http://blog.kaggle.com/2014/08/01/learning-
from-the-best/.

There are many good resources for understanding NLP tasks. One fairly thorough, 
eight-part piece, is available online at http://textminingonline.com/dive-into-
nltk-part-i-getting-started-with-nltk.

http://blog.kaggle.com/2014/08/01/learning-from-the-best/
http://blog.kaggle.com/2014/08/01/learning-from-the-best/
http://textminingonline.com/dive-into-nltk-part-i-getting-started-with-nltk
http://textminingonline.com/dive-into-nltk-part-i-getting-started-with-nltk
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If you're keen to get started, one great option is to try Kaggle's for Knowledge 
NLP task, which is perfectly suited as a testbed for the techniques described in this 
chapter: https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-
for-beginners-bag-of-words.

The Kaggle contest cited in this chapter is available at https://www.kaggle.com/c/
detecting-insults-in-social-commentary. 

For readers interested in further description of the ROC curve and the AUC measure, 
consider Tom Fawcett's excellent introduction, available at https://ccrma.
stanford.edu/workshops/mir2009/references/ROCintro.pdf. 

Summary
We've been introduced to a lot of useful and highly applicable skills in this chapter. 
In this chapter, we took a set of messy, complication-strewn text data and, through 
a series of rigorous steps, turned it into a large set of effective features. We began 
by picking up a set of data cleaning skills which stripped out a lot of the noise and 
problem elements, then we followed up by turning text into features using POS 
tagging and bag of words. In the process, you learned to apply a set of techniques 
that are widely applicable and very empowering, enabling us to solve difficult 
problems in many natural language processing contexts.

Through experimentation with multiple individual models and ensembles,  
we discovered that where a smarter algorithm might not yield a strong result, 
thorough and creative feature engineering can yield massive improvements in  
model performance.

https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words
https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words
https://www.kaggle.com/c/detecting-insults-in-social-commentary
https://www.kaggle.com/c/detecting-insults-in-social-commentary
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
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Feature Engineering Part II

Introduction
We have recognized the importance of feature engineering. In the previous chapter, 
we discussed techniques that enable us to select from a range of features and work 
effectively to transform our original data into features, which can be effectively 
processed by the advanced ML algorithms that we have discussed thus far.

The adage garbage in, garbage out is relevant in this context. In earlier chapters, we 
have seen how image recognition and NLP tasks require carefully-prepared data. 
In this chapter, we will be looking at a more ubiquitous type of data: quantitative or 
categorical data that is collected from real-world applications.

Data of the type that we will be working with in this chapter is common to many 
contexts. We could be discussing telemetry data captured from sensors in a forest, 
game consoles, or financial transactions. We could be working with geological 
survey information or bioassay data collected through research. Regardless,  
the core principles and techniques remain the same.

In this chapter, you will be learning how to interrogate this data to weed out  
or mitigate quality issues, how to transform it into forms that are conducive to 
machine learning, and how to creatively enhance that data.
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In general terms, the concepts that we'll be discussing in this chapter are as follows:

•	 The different approaches to feature set creation and the limits of  
feature engineering

•	 How to use a large set of techniques to enhance and improve an initial dataset
•	 How to tie in and use domain knowledge to understand valid options to 

transform and improve the clarity of existing data
•	 How we can test the value of individual features and feature combinations so 

that we only keep what we need

While we will begin with a detailed discussion of the underlying concepts, by the 
end of this chapter we will be working with multiple, iterative trials and using 
specialized tests to understand how helpful the features that we are creating will  
be to us.

Creating a feature set
The most important factor involved in successful machine learning is the quality 
of your input data. A good model with misleading, inappropriately normalized, or 
uninformative data will not see the same level of success anywhere near a model run 
over appropriately prepared data.

In some cases, you have the ability to specify data collection or have access to a 
useful, sizeable, and varied set of source data. With the right knowledge and skillset, 
you can use this data to create highly useful feature sets.

In general, having a strong knowledge as to how to construct good feature sets 
is very helpful as it enables you to audit and assess any new dataset for missed 
opportunities. In this chapter, we will introduce a design process and technique set 
that make it easier to create effective feature sets.

As such, we'll begin by discussing some techniques that we can use to extend or 
reinterpret existing features, potentially creating a large number of useful parameters 
to include in our models.

However, as we will see, there are limitations on the effective use of feature 
engineering techniques and we need to be mindful of the risks around  
engineered datasets.
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Engineering features for ML applications
We have discussed what you can do about patching up data quality issues in your 
data and we have talked about how you can creatively use dimensions in what you 
have to join to external data.

Once you have a reasonably well-understood and quality-checked set of data in 
front of you, there is usually still a significant amount of work needed before you can 
produce effective models from that data.

Using rescaling techniques to improve the 
learnability of features
The main challenge with directly feeding unprepared data to many machine learning 
models is that the algorithm is sensitive to the relative size of different variables. If 
your dataset has multiple parameters whose ranges differ, some algorithms will treat 
the variables whose variance is greater as indicative of more significant change than 
algorithms with smaller values and less variance.

The key to resolving this potential problem is rescaling, a process by which 
parameter values' relative size is adjusted while retaining the initial ordering of 
values within each parameter (a monotonic translation).

Gradient descent algorithms (which include most deep learning algorithms—
http://sebastianruder.com/optimizing-gradient-descent/) are significantly 
more efficient if the input data is scaled prior to training. To understand why,  
we'll resort to drawing some pictures. A given series of training steps may  
appear as follows:

When applied to unscaled data, these training steps may not converge effectively (as 
per the left-hand example in the following diagram).

http://sebastianruder.com/optimizing-gradient-descent/
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With each parameter having a differing scale, the parameter space in which models 
are attempting to train can be highly distorted and complex. The more complex 
this space, the harder it becomes to train a model within it. This is an involved 
subject that can be effectively described, in general terms, through a metaphor, but 
for readers looking for a fuller explanation there is an excellent reference in this 
chapter's Further reading section. For now, it is not unreasonable to think in terms 
of gradient descent models during training as behaving like marbles rolling down 
a slope. These marbles are prone to getting stuck in saddle points or other complex 
geometries on the slope (which, in this context, is the surface created by our model's 
objective function—the learning function whose output our models typically train to 
minimize). With scaled data, however, the surface becomes more regularly-shaped 
and training can become much more effective:

The classic example is a linear rescaling between 0 and 1; with this method, the 
largest parameter value is rescaled to 1, the smallest to 0, with intermediate values 
falling in the 0-1 interval, proportionate to their original size relative to the largest 
and smallest values. Under such a transformation, the vector [0,10,25,20,18], for 
instance, would become [0,0.4, 1, 0.8, 0.72].

The particular value of this transformation is that, for multiple data points that  
may vary in magnitude in its raw form, the rescaled features will sit within the  
same range, enabling your machine learning algorithm to train on meaningful 
information content.
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This is the most straightforward rescaling option, but there are some nonlinear 
scaling alternatives that can be much more helpful in the right circumstances; these 
include square scaling, square root scaling, and perhaps most commonly, log-scaling.

Log-scaling of parameter values is very common in physics and in contexts 
where the underlying data is frequently affected by a power law (for example, an 
exponential growth in y given a linear increase in x).

Unlike linear rescaling, log-scaling adjusts the relative spacing between data cases. 
This can be a double-edged sword. On the one hand, log-scaling handles outlying 
cases very well. Let's take an example dataset describing individual net wealth for 
members of a fictional population, described by the following summary statistics:

Statistic Wealth

Min

First Quartile

Mean

Median

Third Quartile

Max

1

42.5

3205433.343

600

1358

10000000000

Prior to rescaling, this population is hugely skewed toward that single individual 
with absurd net worth. The distribution of cases per decile is as follows:

Range Count of Cases

0 > 0.1

0.1 > 0.2

0.2 > 0.3

0.6 > 0.7

0.3 > 0.4

0.7 > 0.8

0.4 > 0.5

0.8 > 0.9

0.5 > 0.6

0.9 > 1

3060

0

0

0

0

0

0

0

0

1
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After log-scaling, this distribution is far friendlier:

Range Count of Cases

0 > 0.1

0.1 > 0.2

0.2 > 0.3

0.6 > 0.7

0.3 > 0.4

0.7 > 0.8

0.4 > 0.5

0.8 > 0.9

0.5 > 0.6

0.9 > 1

740

1633

544

0

141

1

0

0

1

1

We could've chosen to take scaling further and drawn out the first half of this 
distribution more by doing that. In this case, log-10 normalization significantly 
reduces the impact of these outlying values, enabling us to retain outliers in the 
dataset without losing detail at the lower end.

With this said, it's important to note that in some contexts, that same enhancement  
of clustered cases can enhance noise in variant parameter values and create the  
false impression of greater spacing between values. This tends not to negatively 
affect how log-scaling handles outliers; the impact is usually seen for groups of 
smaller-valued cases whose original values are very similar.

The challenges created by introducing nonlinearities through log-scaling are 
significant and in general, nonlinear scaling is only recommended for variables  
that you understand and have a nonlinear relationship or trend underlying them.

Creating effective derived variables
Rescaling is a standard part of preprocessing in many machine learning applications 
(for instance, almost all neural networks). In addition to rescaling, there are other 
preparatory techniques, which can improve model performance by strategically 
reducing the number of parameters input to the model. The most common example 
is of a derived measure that takes multiple existing data points and represents them 
within a single measure.
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These are extremely prevalent; examples include acceleration (as a function of 
velocity values from two points in time), body mass index (as a function of height, 
weight, and age), and price-earnings (P/E) ratio for stock scoring. Essentially, any 
derived score, ratio, or complex measure that you ever encounter is a combination 
score formed from multiple components.

For datasets in familiar contexts, many of these pre-existing measures will be  
well-known. Even in relatively well-known areas, however, looking for new 
supporting measures or transformations using a mix of domain knowledge and 
existing data can be very effective. When thinking through derived measure options, 
some useful concepts are as follows:

•	 Two variable combinations: Multiplication, division, or normalization of the 
n parameter as a function of the m parameter.

•	 Measures of change over time: A classic example here is acceleration or 7D 
change in a measure. In more complex contexts, the slope of an underlying 
time series function can be a helpful parameter to work with instead of 
working directly with the current and past values.

•	 Subtraction of a baseline: Using a base expectation (a flat expectation such 
as the baseline churn rate) to recast a parameter in terms of that baseline can be 
a more immediately informative way of looking at the same variable. For the 
churn example, we could generate a parameter that describes churn in terms 
of deviation from an expectation. Similarly, in stock trading cases, we might 
look at closing price in terms of the opening price.

•	 Normalization: Following on from the previous case, normalization of 
parameter values based on the values of another parameter or baseline that  
is dynamically calculated given properties of other variables. One example 
here is failed transaction rate; in addition to looking at this value as a raw  
(or rescaled) count, it often makes sense to normalize this in terms of 
attempted transactions.

Creative recombination of these different elements lets us build very effective scores. 
Sometimes, for instance, a parameter that tells us the slope of customer engagement 
(declining or increasing) over time needs to be conditioned on whether that customer 
was previously highly engaged or hardly engaged, as a slight decline in engagement 
might mean very different things in each context. It is the data scientist's job to 
effectively and creatively feature sets that capture these subtleties for a given domain.

So far, this discussion has focused on numerical data. Often, however, useful data 
is locked up inside non-numeric parameters such as codes or categorical data. 
Accordingly, we will next discuss a set of effective techniques to turn non-numeric 
features into usable parameters.
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Reinterpreting non-numeric features
A common challenge, which can be problematic and problem-specific, is how  
non-numeric features are treated. Frequently, valuable information is encoded within 
non-numerical shorthand values. In the case of stock trades, for instance, the identity 
of the stock itself (for example, AAPL) as well as that of the buyer and seller is 
interesting information that we expect to relate meaningfully to our problem. Taking 
this example further, we might also expect some stocks to trade differently from 
others even within the industry, and organizational differences within companies, 
which may occur at some or all points of time, also provide important context.

One simple option that works in some cases is building an aggregation or series 
of aggregations. The most obvious example is a count of occurrences with the 
possibility of creating extended measures (changes in count between two time 
windows) as described in the preceding section.

Building summary statistics and reducing the number of rows in the dataset 
introduces the risk of reducing the amount of information that your model has 
available to learn from (increasing the risk of model fragility and overfitting). As 
such, it's generally a bad idea to extensively aggregate and reduce input data. This 
is doubly true with deep learning techniques, such as the algorithms discussed and 
used in Chapters 2-4.

Rather than extensively using aggregation-based approaches, let's look at an 
alternative way of translating string-encoded values into numerical data. Another 
very popular class of techniques is encoding, with the most common encoding 
tactic being one-hot encoding. One-hot encoding is the process of turning a series of 
categorical responses (for example, age groups) into a set of binary variables, with 
each response option (for example, 18-30) represented by its own binary variable. 
This is a little more intuitive when presented visually:

Case Age Gender

1

2

3

4

5

6

22 M

25 M

34 F

23 M

25 F

41 F
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After encoding, this dataset of categorical and continuous variables becomes a tensor 
of binary variables:

Case Age_22 Age_25 Age_41 Gender_MAge_23 Age_34 Gender_F

1

2

3

4

5

6

1 0 00 0 0

0 1 00 0 0

0 0 00 1 1

0 0 01 0 0

0 0 00 0 1

0 0 10 0 1

1

1

0

1

0

0

The advantage that this presents is significant; it enables us to tap into the very 
valuable tag information contained within a lot of datasets without aggregation or 
risk of reducing the information content of the data. Furthermore, one-hot allows 
us to separate specific response codes for encoded variables into separate features, 
meaning that we can identify more or less meaningful codes for a specific variable 
and only retain the important values.

Another very effective technique, used primarily for text codes, is known as the 
hash trick. A hash, in simple terms, is a function that translates data into a numeric 
representation. Hashes will be a familiar concept to many, as they're frequently used 
to encode sensitive parameters and summarize otherwise bulky data. In order to get 
the most out of the hash trick, however, it's important to understand how the trick 
works and what can be done with it.

We can use hashing to turn a text phrase into a numeric value that we can use as 
an identifier for that phrase. While there are many applications of different hashing 
algorithms, in this context even a simple hash makes it straightforward to turn string 
keys and codes into numerical parameters that we can model effectively.

A very simple hash might turn each alphabet character into a corresponding number. 
a would become 1, b would be 2, and so on. Hashes could be generated for words 
and phrases by summing those values. The phrase cat gifs would translate under this 
scheme as follows:

Cat: 3 + 1 + 20

Gifs: 7 + 9 + 6 + 19

Total: 65
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This is a terrible hash for two reasons (quite disregarding the fact that the input 
contains junk words!). Firstly, there's no real limit on how many outputs it can 
present. When one remembers that the whole point of the hash trick is to provide 
dimensionality reduction, it stands to reason that the number of possible outputs 
from a hash must be bounded! Most hashes limit the range of numbers that they 
output, so part of the decision in terms of selecting a hash is related to the number of 
features you'd prefer your model to have.

One common behavior is to choose a power of two as the hash range; 
this tends to speed things up by allowing bitwise operations during 
the hashing process.

The other reason that this hash kind of sucks is that changes to the word have a 
small impact rather than a large one. If cat became bat, we'd want our hash output 
to change substantially. Instead, it changes by one (becoming 64). In general, a good 
hash function is one where a small change in the input text will cause a large change 
in the output. This is partly because language structures tend to be very uniform 
(thus scoring similarly), but slightly different sets of nouns and verbs within a given 
structure tend to confer very different meanings to one another (the cat sat on the mat 
versus the car sat on the cat).

So we've described hashing. The hash trick takes things a little further. 
Hypothetically, turning every word into a hashed numerical code is going to lead to 
a large number of hash collisions—cases where two words have the same hash value. 
Naturally, these are rather bad.

Handily, there's a distribution underlying how frequently different terms are used 
that work in our favor. Called the Zipf distribution, it entails that the probability 
of encountering the nth most common term is approximated by P(n) = 0.1/n up 
to around 1,000 (Zipf's law). This entails that each term is much less likely to be 
encountered than the preceding term. After n = 1000, terms tend to be sufficiently 
obscure that it's unlikely to encounter two that have the same hash in one dataset.

At the same time, a good hashing function has a limited range and is significantly 
affected by small changes in input. These properties make the hash collision chance 
largely independent of term usage frequency.

These two concepts—Zipf's law and a good hash's independence of hash collision 
chance and term usage frequency—mean that there is very little chance of a hash 
collision, and where one occurs it is overwhelmingly likely to be between two 
infrequently-used words.
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This gives the hash trick a peculiar property. Namely, it is possible to reduce 
the dimensionality of a set of text input data massively (from tens of thousands 
of naturally occurring words to a few hundred or fewer) without reducing the 
performance of a model trained on hashed data, compared to training on unhashed 
bag-of-words features.

Proper use of the hash trick enables a lot of possibilities, including augmentations  
to the techniques that we discussed (specifically, bag-of-words). References to 
different hashing implementations are included in the Further reading section  
at the end of this chapter.

Using feature selection techniques
Now that we have a good selection of options for feature creation, as well as an 
understanding of the creative feature engineering possibilities, we can begin building 
our existing features into more effective variants. Given this new-found feature 
engineering skillset, we run the risk of creating extensive and hard-to-manage datasets.

Adding features without limit increases the risk of model fragility and overfitting 
for certain types of models. This is tied to the complexity of the trends that you're 
attempting to model. In the simplest case, if you're attempting to identify a 
significant distinction between two large groups, your model is likely to support 
a large number of features. However, as the model you need to fit to make this 
distinction becomes more complex and as the group sizes that you have to work 
with become smaller, adding more and more features can harm the model's ability to 
classify consistently and effectively.

This challenge is compounded by the fact that it isn't always obvious which 
parameter or variation is best-suited for the task. Suitability can vary by the 
underlying model; decision forests, for instance, don't perform any better with 
monotonic transformations (that is, transformations that retain the initial ordering of 
data cases; one example is log-scaling) than with the unscaled base data; however, 
for other algorithms, the choice to rescale and the rescaling method used are both 
very impactful choices.

Traditionally, the quantity of features and limits on the parameter amount were tied 
to the desire to develop a mathematical function that relates key inputs to the desired 
outcome scores. In this context, additional parameters needed to be incorporated as 
moving or nuisance variables.
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Each new parameter introduces another dimension that makes the modeled 
relationship more complex and the resultant model more likely to be overfitting the 
data that exists. A trivial example is if you introduce a parameter that is just a unique 
label for each case; at this point, your algorithm will just learn those labels, making it 
very likely that your model fails entirely when introduced to a new dataset.

Less trivial examples are no less problematic; the proportion of cases to features 
becomes very important when your features are separating cases down to very small 
groups. In short, increasing the complexity of the modeled function causes your 
model to be more liable to overfit and adding features can exacerbate this effect. 
According to this principle, we should be beginning with very small datasets and 
adding parameters only after justifying that they improve the model.

However, in recent times, an opposing methodology—now generally seen as being 
part of a common way of doing data science—has gained ground. This methodology 
suggests that it's a good idea to add very large feature sets to incorporate every 
potentially valuable feature and work down to a smaller feature set that does the job.

This methodology is supported by techniques that enable decisions to be made 
over huge feature sets (potentially hundreds or thousands of features) and that 
tend to operate in a brute force manner. These techniques will exhaustively test 
feature combinations, running models in series or in parallel until the most effective 
parameter subsets are identified.

These techniques work, which is why this methodology has become popular. It is 
definitely worth knowing about these techniques, if not using them, so you'll be 
learning how to apply them later in this chapter.

The main disadvantage around using brute force techniques for feature selection 
is that it becomes very easy to trust the outcomes of the algorithm, irrespective of 
what the features it selects actually mean. It is sensible to balance the use of highly 
effective, black-box algorithms against domain knowledge and an understanding of 
what's being undertaken. Therefore, this chapter will enable you to use techniques 
from both paradigms (build up and build down) so that you can adapt to different 
contexts. We'll begin by learning how to narrow down the feature set that you have 
to work with, from many features to the most valuable subset.
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Performing feature selection
Having built a large dataset, often the next challenge one faces is how to narrow 
down the options to retain only the most effective data. In this section, we'll discuss 
a variety of techniques that support feature selection, working by themselves or as 
wrappers to familiar algorithms.

These techniques include correlation analysis, regularization techniques, and 
Recursive Feature Elimination (RFE). When we're done, you'll be able to confidently 
use these techniques to support your selection of feature sets, potentially saving 
yourself a significant amount of work every time you work with a new dataset!

Correlation
We'll begin our discussion of feature selection by looking for a simple source of 
major problems for regression models: multicollinearity. Multicollinearity is the 
fancy name for moderate or high degrees of correlation between features in a dataset. 
An obvious example is how pizza slice count is collinear with pizza price.

There are two types of multicollinearity: structural and data-based. Structural 
multicollinearity occurs when the creation of new features, such as feature f1 from 
feature f, creates multiple features that may be highly correlated with one another. 
Data-based multicollinearity tends to occur when two variables are affected by the 
same causative factor.

Both kinds of multicollinearity can cause some unfortunate effects. In particular, our 
models' performance tends to become affected by which feature combinations are 
used; when collinear features are used, the performance of our model will tend  
to degrade.

In either case, our approach is simple: we can test for multicollinearity and remove 
underperforming features. Naturally, underperforming features are ones that add 
very little to model performance. They might be underperforming because they 
replicate information available in other features, or they may simply not provide 
data that is meaningful to the problem at hand. There are multiple ways to test for 
weak features as many feature selection techniques will sift out multicollinear feature 
combinations and recommend their removal if they're underperformant.
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In addition, there is a specific multicollinearity test that's worth considering; namely, 
inspecting the eigenvalues of our data's correlation matrix. Eigenvectors and 
eigenvalues are fundamental concepts in the matrix theory with many prominent 
applications. More details are given at the end of this chapter. For now, suffice it 
to say that eigenvalues in the correlation matrix generated by our dataset provide 
us with a quantified measure of multicollinearity. Consider a set of eigenvalues as 
indicative of how much "new information content" our features bring to the dataset; 
a low eigenvalue suggests that the data may be correlated with other features. For an 
example of this at work, consider the following code, which creates a feature set and 
then adds collinearity to features 0, 2, and 4:

import numpy as np

x = np.random.randn(100, 5) 
noise = np.random.randn(100)
x[:,4] = 2 * x[:,0] + 3 * x[:,2] + .5 * noise 

When we generate the correlation matrix and compute eigenvalues, we find the 
following:

corr = np.corrcoef(x, rowvar=0)
w, v = np.linalg.eig(corr)

print('eigenvalues of features in the dataset x')
print(w)

eigenvalues of features in the dataset x
[ 0.00716428  1.94474029  1.30385565  0.74699492  0.99724486]

Clearly, our 0th feature is suspect! We can then inspect the eigenvalues of this feature 
via calling v:

print('eigenvalues of eigenvector 0')
print(v[:,0])

eigenvalues of eigenvector 0
[-0.35663659 -0.00853105 -0.62463305  0.00959048  0.69460718]

From the small values of features in position one and three, we can tell that features 
2 and 4 are highly multicollinear with feature 0. We ought to remove two of these 
three features before proceeding!
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LASSO
Regularized methods are among the most helpful feature selection techniques as 
they provide sparse solutions: ones where weaker features return zero, leaving only 
a subset of features with real coefficient values.

The two most used regularization models are L1 and L2 regularization, referred to as 
LASSO and ridge regression respectively in linear regression contexts.

Regularized methods function by adding a penalty to the loss function. Instead 
of minimizing a loss function E(X,Y), the penalty leads to E(X,Y) + a||w||. The 
hyperparameter a relates to the amount of regularization (enabling us to tune the 
strength of our regularization and thus the proportion of the original feature set that 
is selected).

In LASSO regularization, the specific penalty function used is α∑ni=1|wi|. Each 
non-zero coefficient adds to the size of the penalty term, forcing weaker features to 
return coefficients of 0. Selecting an appropriate penalty term can be achieved using 
scikit-learn's parameter optimization support for hyperparameters. In this case, 
we'll be using estimator.get_params() to perform a grid search for appropriate 
hyperparameter values. For more information on how grid searches operate, see the 
Further reading section at the end of this chapter.

In scikit-learn, logistic regression is provided with an L1 penalty for classification. 
Meanwhile, the LASSO module is provided for linear regression. For now, let's  
begin by applying LASSO to an example dataset. In this case, we'll use the Boston 
housing dataset:

fromsklearn.linear_model import Lasso
fromsklearn.preprocessing import StandardScaler
fromsklearn.datasets import load_boston

boston = load_boston()
scaler = StandardScaler()
X = scaler.fit_transform(boston["data"])
Y = boston["target"]
names = boston["feature_names"]

lasso = Lasso(alpha=.3)
lasso.fit(X, Y)

print "Lasso model: ", pretty_print_linear(lasso.coef_, names, sort = 
True)

Lasso model: -3.707 * LSTAT + 2.992 * RM + -1.757 * PTRATIO + -1.081 
* DIS + -0.7 * NOX + 0.631 * B + 0.54 * CHAS + -0.236 * CRIM + 0.081 * 
ZN + -0.0 * INDUS + -0.0 * AGE + 0.0 * RAD + -0.0 * TAX
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Several of the features in the original set returned a correlation of 0.0. Increasing the 
correlation makes the solution increasingly sparse. For instance, we see the following 
results when alpha = 0.4:

Lasso model: -3.707 * LSTAT + 2.992 * RM + -1.757 * PTRATIO + -1.081 
* DIS + -0.7 * NOX + 0.631 * B + 0.54 * CHAS + -0.236 * CRIM + 0.081 * 
ZN + -0.0 * INDUS + -0.0 * AGE + 0.0 * RAD + -0.0 * TAX

We can immediately see the value of L1 regularization as a feature selection 
technique. However, it is important to note that L1 regularized regression is 
unstable. Coefficients can vary significantly, even with small data changes, when 
features in the data are correlated.

This problem is effectively addressed with L2 regularization, or ridge regression, 
which develops a feature coefficient with different applications. L2 normalization 
adds an additional penalty, the L2 norm penalty, to the loss function. This penalty 
takes the form (a∑ni=1w2i). A sharp-eyed reader will notice that, unlike the L1 
penalty (α∑ni=1|wi|), the L2 penalty uses squared coefficients. This causes the 
coefficient values to be spread out more evenly and has the added effect that 
correlated features tend to receive similar coefficient values. This significantly 
improves stability as the coefficients no longer fluctuate on small data changes.

However, L2 normalization isn't as directly useful for feature selection as L1. Rather, 
as interesting features (with predictive power) tend to have non-zero coefficients, L2 
is more useful as an exploratory tool allowing inference about the quality of features 
in the classification. It has the added merit of being more stable and reliable than L1 
regularization.

Recursive Feature Elimination
RFE is a greedy, iterative process that functions as a wrapper over another model, 
such as an SVM (SVM-RFE), which it repeatedly runs over different subsets of the 
input data.

As with LASSO and ridge regression, our goal is to find the best-performing feature 
subset. As the name suggests, on each iteration a feature is set aside allowing the 
process to be repeated with the rest of the feature set until all features in the dataset 
have been eliminated. The ordering with which features are eliminated becomes 
their rank. After multiple iterations with incrementally smaller subsets, each feature 
is accurately scored and relevant subsets can be selected for use.
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To get a better understanding of how this works, let's look at a simple example. We'll 
use the (by now familiar) digits dataset to understand how this approach works in 
practice:

print(__doc__)

from sklearn.svm import SVC
fromsklearn.datasets import load_digits
fromsklearn.feature_selection import RFE
importmatplotlib.pyplot as plt

digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target

We'll use an SVM as our base estimator via the SVC operator for Support Vector 
Classification (SVC). We then apply the RFE wrapper over this model. RFE takes 
several arguments, with the first being a reference to the estimator of choice. The 
second argument is n_features_to_select, which is fairly self-explanatory. In 
cases where the feature set contains many interrelated features whose subsets 
possess multivariate distributions that are highly effective classification features, it's 
possible to opt for feature combinations of two or more.

Stepping enables the removal of multiple features on each iteration. When given 
a value between 0.0 and 1.0, each step enables the removal of a percentage of the 
feature set, corresponding to the proportion given in the step argument:

svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)

plt.matshow(ranking)
plt.colorbar()
plt.title("Ranking of pixels with RFE")
plt.show()
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Given that we're familiar with the digits dataset, we know that each instance is an 
8 x 8 image of a handwritten digit, as shown in the following image. Each image is 
located in the center of the 8 x 8 grid:

When we apply RFE over the digits dataset, we can see that it broadly captures this 
information in applying a ranking:
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The first pixels to be cut were in and around the (typically empty) vertical edges of 
the image. Next, the algorithm began culling normally whitespace areas around the 
vertical edges or near the top of the image. The pixels that were retained longest 
were those that enabled the most differentiation between the different characters—
pixels that would be present for some numbers and not for others.

This example gives us great visual confirmation that RFE works. What it doesn't 
give us is evidence for how consistently the technique works. The stability of RFE 
is dependent on the stability of the base model and, in some cases, ridge regression 
will provide a more stable solution. (For more information on which cases and the 
conditions involved, consult the Further reading section at the end of this chapter.)

Genetic models
Earlier in this chapter, we discussed the existence of algorithms that enable feature 
selection with very large parameter sets. Some of the most prominent techniques 
of this type are genetic algorithms, which emulate natural selection to generate 
increasingly effective models.

A genetic solution for feature selection works roughly as follows:

•	 An initial set of variables (predictors is the term typically used in this 
context) are combined into multiple subsets (candidates) and a performance 
measure is calculated for each candidate

•	 The predictors from candidates with the best performance are randomly 
recombined into a new iteration (generation) of models

•	 During this recombination step, for each subset there is the  probability of a 
mutation, whereby a predictor may be added or removed from a subset

This algorithm typically iterates for multiple generations. The appropriate iteration 
amount is dependent on the complexity of the dataset and the model required. As 
with gradient descent techniques, the typical relationship between the performance 
and iteration count is present for genetic algorithms, where performance 
improvement declines nonlinearly as the count of iterations increases, eventually 
hitting a minimum before the overfitting risk increases.

To find an effective iteration count, we can perform testing using training data; by 
running the model for a large number of iterations and plotting the Root Mean 
Squared Error (RMSE), we're able to find an appropriate amount of iterations given 
our input data and model configuration.

Let's talk in a little more detail about what happens within each generation. 
Specifically, let's talk about how candidates are created, how performance is scored, 
and how recombination is performed.
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The candidates are initially configured to use a random sample of the available 
predictors. There is no hard and fast rule concerning how many predictors to use in 
the first generation; it depends on how many features are available, but it's common 
to see first generation candidates using 50% to 80% of the available features (with a 
smaller percentage used in cases with more features).

The fitness measure can be difficult to define, but a common practice is to use two 
forms of cross-validation. Internal cross-validation (testing each model solely in the 
context of its own parameters without comparing models) is typically used to track 
performance at a given iteration; the fitness measures from internal cross-validation 
are used to select models to recombine in the next generation. External cross-
validation (testing against a dataset that was not used in validation at any iteration) 
is also needed in order to confirm that the search process produced a model that has 
not overfitted to the internal training data.

Recombination is controlled by three key parameters: mutation, cross-over 
probabilities, and elitism. The latter is an optional parameter that one may use to 
reserve n-many of the top-performing models from the current generation; by doing 
so, one may preserve particularly effective candidates from being lost entirely during 
recombination. This can be done while also using that candidate in mutated variants 
and/or using them as parents to next-generation candidates.

The mutation probability defines the chance of a next-generation model being 
randomly readjusted (via some predictors, typically one, being added or removed). 
Mutation tends to help the genetic algorithm maintain a broad coverage of the 
candidate variables, reducing the risk of falling into a parameter-local solution.

Cross-over probability defines the likelihood that a pair of candidates will  
be selected for recombination into a next-generation model. There are several  
cross-over algorithms: parts of each parent's feature set might be spliced (for 
example, first half/second half) into the child or a random selection of each parent's 
features might be used. Common features to both parents might also be used by 
default. Random sampling from the set of both parent's unique predictors is a 
common default approach.

These are the main parts of a general genetic algorithm, which can be used as a 
wrapper to existing models (logistic regression, SVM, and others). The technique 
described here can be varied in many different ways and is related to feature selection 
techniques used slightly differently across multiple quantitative fields. Let's take the 
theory that we've covered thus far and start applying it to a practical example.
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Feature engineering in practice
Depending on the modeling technique that you're using, some of this work may be 
more valuable than other parts. Deep learning algorithms tend to perform better on 
less-engineered data than shallower models and it might be that less work is needed 
to improve results.

The key to understanding what is needed is to iterate quickly through the whole 
process from dataset acquisition to modeling. On a first pass with a clear target for 
model accuracy, find the acceptable minimum amount of processing and perform 
that. Learn whatever you can about the results and make a plan for the next iteration.

To show how this looks in practice, we'll work with an unfamiliar, high-dimensional 
dataset, using an iterative process to generate increasingly effective modeling.

I was recently living in Vancouver. While it has many positive qualities, one of the 
worst things about living in the city was the somewhat unpredictable commute. 
Whether I was traveling by car or taking Translink's Skytrain system (a monorail-
meets-rollercoaster high-speed line), I found myself subject to hard-to-predict delays 
and congestion issues.

In the spirit of putting our new feature engineering skillset into practice, let's take a 
look at whether we can improve this experience by taking the following steps:

•	 Writing code to harvest data from multiple APIs, including text and  
climate streams

•	 Using our feature engineering techniques to derive variables from this  
initial data

•	 Testing our feature set by generating commute delay risk scores

Unusually, in this example, we'll focus less on building and scoring a highly 
performant model. Instead, our focus is on creating a self-sufficient solution that you 
can adjust and apply for your own local area. While it suits the goals of the current 
chapter to take this approach, there are two additional and important motivations.
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Firstly, there are some challenges around sharing and making use of Twitter data. 
Part of the terms of use of Twitter's API is an obligation on the developer to ensure 
that any adjustments to the state of a timeline or dataset (including, for instance, the 
deletion of a tweet) are reproduced in datasets that are extracted from Twitter and 
publicly shared. This makes the inclusion of real Twitter data in this chapter's GitHub 
repository impractical. Ultimately, this makes it difficult to provide reproducible 
results from any downstream model based on streamed data because users will need 
to build their own stream and accumulate data points and because variations in 
context (such as seasonal variations) are likely to affect model performance.

The second element here is simple enough: not everybody lives in Vancouver! In 
order to generate something of value to an end user, we should think in terms of an 
adjustable, general solution rather than a geographically-specific one.

The code presented in the next section is therefore intended to be something to build 
from and develop. It offers potential as the basis of a successful commercial app 
or simply a useful, data-driven life hack. With this in mind, review this chapter's 
content (and leverage the code in the associated code directory) with an eye to 
finding and creating new applications that fit your own situation, locally available 
data, and personal needs.

Acquiring data via RESTful APIs
In order to begin, we're going to need to collect some data! We're going to need to 
look for rich, timestamped data that is captured at sufficient frequency (preferably at 
least one record per commute period) to enable model training.

A natural place to begin with is the Twitter API, which allows us to harvest recent 
tweet data. We can put this API to two uses.

Firstly, we can harvest tweets from official transit authorities (specifically, bus and 
train companies). These companies provide transit service information on delays 
and service disruptions that, helpfully for us, takes a consistent format conducive to 
tagging efforts.

Secondly, we can tap into commuter sentiment by listening for tweets from the 
geographical area of interest, using a customized dictionary to listen for terms 
related to cases of disruption or the causes thereof.

In addition to mining the Twitter API for data to support our model, we can 
leverage other APIs to extract a wealth of information. One particularly valuable 
source of data is the Bing Traffic API. This API can be easily called to provide traffic 
congestion or disruption incidents across a user-specified geographical area.
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In addition, we can leverage weather data from the Yahoo Weather API. This API 
provides the current weather for a given location, taking zip codes or location 
input. It provides a wealth of local climate information including, but not limited 
to, temperature, wind speed, humidity, atmospheric pressure, and visibility. 
Additionally, it provides a text string description of current conditions as well as 
forecast information.

While there are other data sources that we can consider tying into our analysis, we'll 
begin with this data and see how we do.

Testing the performance of our model
In order to meaningfully assess our commute disruption prediction attempt, we 
should try to define test criteria and an appropriate performance score.

What we're attempting to do is identify the risk of commute disruption on the 
current day, each day. Preferably, we'd like to know the commute risk with  
sufficient advance notice that we can take action to mitigate it (for example,  
by leaving home earlier).

In order to do this, we're going to need three things:

•	 An understanding of what our model is going to output
•	 A measure we can use to quantify model performance
•	 Some target data we can use to score model performance according to  

our measure

We can have an interesting discussion about why this matters. It can be argued, 
effectively, that some models are information in purpose. Our commute risk score,  
it might be said, is useful insofar as it generates information that we didn't 
previously have.

The reality of the situation, however, is that there is inalienably going to be a 
performance criterion. In this case, it might simply be my satisfaction with the 
results output by my model, but it's important to be aware that there is always some 
performance criterion at play. Quantifying performance is therefore valuable, even in 
contexts where a model appears to be informational (or even better, unsupervised). 
This makes it prudent to resist the temptation to waive performance testing; at least 
this way, you have a quantified performance measure to iteratively improve on.
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A sensible starting point is to assert that our model is intended to output a numerical 
score in a 0-1 range for outbound (home to work) commutes on a given day. We  
have a few options with regard to how we present this score; perhaps the most 
obvious option would be to apply a log rescaling to the data. There are good reasons 
to log-scale and in this situation it might not be a bad idea. (It's not unlikely that the 
distribution of commute delay time obeys a power law.) For now, we won't reshape 
this set of scores. Instead, we'll wait to review the output of our model.

In terms of delivering practical guidance, a 0-1 score isn't necessarily very helpful. 
We might find ourselves wanting to use a bucketed system (such as high risk, mid 
risk, or low risk) with bucket boundaries at specific boundaries in the 0-1 range. 
In short, we would transition to treating the problem as a multiclass classification 
problem with categorical output (class labels), rather than as a regression problem 
with a continuous output.

This might improve model performance. (More specifically, because it'll increase 
the margin of free error to the full breadth of the relevant bucket, which is a very 
generous performance measure.) Equally though, it probably isn't a great idea to 
introduce this change on the first iteration. Until we've reviewed the distribution of 
real commute delays, we won't know where to draw the boundaries between classes!

Next, we need to consider how we measure the performance of our model. The 
selection of an appropriate scoring measure generally depends on the characteristics 
of the problem. We're presented with a lot of options around classifier performance 
scoring. (For more information around performance measures for machine learning 
algorithms, see the Further reading section at the end of this chapter.)

One way of deciding which performance measure is suitable for the task at hand is 
to consider the confusion matrix. A confusion matrix is a table of contingencies; in 
the context of statistical modeling, they typically describe the label prediction versus 
actual labels. It is common to output a confusion matrix (particularly for multiclass 
problems with more classes) for a trained model as it can yield valuable information 
about classification failures by failure type and class.

In this context, the reference to a confusion matrix is more illustrative. We can 
consider the following simplified matrix to assess whether there is any contingency 
that we don't care about:

Prediction

Actual Result

True Positive

True Negative

False Positive

False Negative

FALSE

TRUE

FALSE

TRUE
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In this case, we care about all four contingency types. False negatives will cause us 
to be caught in unexpected delays, while false positives will cause us to leave for our 
commute earlier than necessary. This implies that we want a performance measure 
that values both high sensitivity (true positive rate) and high specificity (false 
positive rate). The ideal measure, given this, is area under the curve (AUC).

The second challenge is how to measure this score; we need some target against 
which to predict. Thankfully, this is quite easy to obtain. I do, after all, have a daily 
commute to do! I simply began self-recording my commute time using a stopwatch, 
a consistent start time, and a consistent route.

It's important to recognize the limitations of this approach. As a data source, I am 
subject to my own internal trends. I am, for instance, somewhat sluggish before my 
morning coffee. Similarly, my own consistent commute route may possess local 
trends that other routes do not. It would be far better to collect commute data from a 
number of people and a number of routes.

However, in some ways, I was happy with the use of this target data. Not least 
because I am attempting to classify disruption to my own commute route and 
would not want natural variance in my commute time to be misinterpreted through 
training, say, against targets set by some other group of commuters or routes. In 
addition, given the anticipated slight natural variability from day-to-day, should be 
disregarded by a functional model.

It's rather hard to tell what's good enough in terms of model performance. More 
precisely, it's not easy to know when this model is outperforming my own 
expectations. Unfortunately, not only do I not have any very reliable with regard to 
the accuracy of my own commute delay predictions, it also seems unlikely that one 
person's predictions are generalizable to other commutes in other locations. It seems 
ill-advised to train a model to exceed a fairly subjective target.

Let's instead attempt to outperform a fairly simple threshold—a model that naively 
suggests that every single day will not contain commute delays. This target has the 
rather pleasing property of mirroring our actual behavior (in that we tend to get up 
each day and act as though there will not be transit disruption).

Of the 85 target data cases, 14 commute delays were observed. Based on this target 
data and the score measure we created, our target to beat is therefore 0.5.
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Twitter
Given that we're focusing this example analysis on the city of Vancouver, we have an 
opportunity to tap into a second Twitter data source. Specifically, we can use service 
announcements from Vancouver's public transit authority, Translink.

Translink Twitter
As noted, this data is already well-structured and conducive both to text mining and 
subsequent analysis; by processing this data using the techniques we reviewed in the 
last two chapters, we can clean the text and then encode it into useful features.

We're going to apply the Twitter API to harvest Translink's tweets over an extended 
period. The Twitter API is a pretty friendly piece of kit that is easy enough to work 
with from Python. (For extended guidance around how to work with the Twitter 
API, see the Further reading section at the end of this chapter!) In this case, we want 
to extract the date and body text from the tweet. The body text contains almost 
everything we need to know, including the following:

•	 The nature of the tweet (delay or non-delay)
•	 The station affected
•	 Some information as to the nature of the delay

One element that adds a little complexity is that the same Translink account tweets 
service disruption information for Skytrain lines and bus routes. Fortunately, the 
account is generally very uniform in the terms that it uses to describe service issues 
for each service type and subject. In particular, the Twitter account uses specific 
hashtags (#RiderAlert for bus route information, #SkyTrain for train-related 
information, and #TransitAlert for general alerts across both services, such as 
statutory holidays) to differentiate the subjects of service disruption.

Similarly, we can expect a delay to always be described using the word delay, a 
detour by the term detour, and a diversion, using the word diversion. This means 
that we can filter out unwanted tweets using specific key terms. Nice job, Translink!

The data used in this chapter is provided within the GitHub solution 
accompanying this chapter in the translink_tweet_data.json file. 
The scraper script is also provided within the chapter code; in order to 
leverage it, you'll need to set up a developer account with Twitter. This 
is easy to achieve; the process is documented here and you can sign up 
here.
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Once we've obtained our tweet data, we know what to do next—we need to clean 
and regularize the body text! As per Chapter 6, Text Feature Engineering, let's run 
BeautifulSoup and NLTK over the input data:

from bs4 import BeautifulSoup

tweets = BeautifulSoup(train["TranslinkTweets.text"])  

tweettext = tweets.get_text()

brown_a = nltk.corpus.brown.tagged_sents(categories= 'a')

tagger = None
for n in range(1,4):
   tagger = NgramTagger(n, brown_a, backoff = tagger)

taggedtweettext = tagger.tag(tweettext)

We probably will not need to be as intensive in our cleaning as we were with the troll 
dataset in the previous chapter. Translink's tweets are highly formulaic and do not 
include non-ascii characters or emoticons, so the specific "deep cleaning" regex script 
that we needed to use in Chapter 6, Text Feature Engineering, won't be needed here.

This gives us a dataset with lower-case, regularized, and dictionary-checked terms. 
We are ready to start thinking seriously about what features we ought to build out of 
this data.

We know that the base method of detecting a service disruption issue within our 
data is the use of a delay term in a tweet. Delays happen in the following ways:

•	 At a given location
•	 At a given time
•	 For a given reason
•	 For a given duration

Each of the first three factors is consistently tracked within Translink tweets, but 
there are some data quality concerns that are worth recognizing.

Location is given in terms of an affected street or station at 22nd Street. This isn't a 
perfect description for our purpose as we're unlikely to be able to turn a street name 
and route start/end points into a general affected area without doing substantial 
additional work (as no convenient reference exists that allows us to draw a bounding 
box based on this information).
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Time is imperfectly given by the tweet datetime. While we don't have visibility 
on whether tweets are made within a consistent time from service disruption, it's 
likely that Translink has targets around service notification. For now, it's sensible 
to proceed under the assumption that the tweet times are likely to be sufficiently 
accurate.

The exception is likely to be for long-running issues or problems that change severity 
(delays that are expected to be minor but which become significant). In these cases, 
tweets may be delayed until the Translink team recognizes that the issue has become 
tweet-worthy. The other possible cause of data quality issues is inconsistency in 
Translink's internal communications; it's possible that engineering or platform teams 
don't always inform the customer service notifications team at the same speed.

We're going to have to take a certain amount on faith though, as there isn't a huge 
amount we can do to measure these delay effects without a dataset of real-time, 
accurate Translink service delays. (If we had that, we'd be using it instead!)

Reasons for Skytrain service delays are consistently described by Translink and can 
fall into one of the following categories:

•	 Rail
•	 Train
•	 Switch
•	 Control
•	 Unknown
•	 Intrusion
•	 Medical
•	 Police
•	 Power

With each category described within the tweet body using the specific proper term 
given in the preceding list. Obviously, some of these categories (Police, Power, 
Medical) are less likely to be relevant as they wouldn't tell us anything useful 
about road conditions. The rate of train, track, and switch failure may be correlated 
with detour likelihood; this suggests that we may want to keep those cases for 
classification purposes.
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Meanwhile, bus route service delays contain a similar set of codes, many of which 
are very relevant to our purposes. These codes are as follows:

•	 Motor Vehicle Accident (MVA)
•	 Construction
•	 Fire
•	 Watermain
•	 Traffic

Encoding these incident types is likely to prove useful! In particular, it's possible 
that certain service delay types are more impactful than others, increasing the risk 
of a longer service delay. We'll want to encode service delay types and use them as 
parameters in our subsequent modeling.

To do this, let's apply a variant of one-hot encoding, which does the following:

•	 It creates a conditional variable for each of the service risk types and sets all 
values to zero

•	 It checks tweet content for each of the service risk type terms
•	 It sets the relevant conditional variable to 1 for each tweet that contains a 

specific risk term

This effectively performs one-hot encoding without taking the bothersome 
intermediary step of creating the factorial variable that we'd normally be processing:

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder(categorical_features='all', dtype= 
'float', handle_unknown='error', n_values='auto', sparse=True)

tweets.delayencode = enc.transform(tweets.delaytype).toarray()

Beyond what we have available to use as a feature on a per-incident basis, we can 
definitely look at the relationship between service disruption risk and disruption 
frequency. If we see two disruptions in a week, is a third more likely or less likely?

While these questions are interesting and potentially fruitful, it's usually more 
prudent to work up a limited feature set and simple model on a first pass than to 
overengineer a sprawling feature set. As such, we'll run with the initial incidence rate 
features and see where we end up.
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Consumer comments
A major cultural development in 2010 was the widespread use of public online 
domains for self-expression. One of the happier products of this is the availability of 
a wide array of self-reported information on any number of subjects, provided we 
know how to tap into this.

Commute disruptions are frequently occurring events that inspire a personal 
response, which means that they tend to be quite broadly reported on social media. If 
we write an appropriate dictionary for key-term search, we can begin using Twitter 
particularly as a source of timestamped information on traffic and transit issues 
around the city.

In order to collect this data, we'll make use of a dictionary-based search approach. 
We're not interested in the majority of tweets from the period in question (and as we're 
using the RESTful API, there are return limits to consider). Instead, we're interested in 
identifying tweet data containing key terms related to congestion or delay.

Unfortunately, tweets harvested from a broad range of users tend not to conform 
to consistent styles that aid analysis. We're going to have to apply some of the 
techniques we developed in the preceding chapter to break down this data into a 
more easily analyzed format.

In addition to using a dictionary-based search, we could do some work to narrow the 
search area down. The most authoritative way to achieve this is to use a bounding 
box of coordinates as an argument to the Twitter API, such that any related query 
exclusively returns results gathered from within this area.

As always, on our first pass, we'll keep things simple. In this case, we'll count up the 
number of traffic disruption tweets in the current period. There is some additional 
work that we could benefit from doing with this data on subsequent iterations. Just 
as the Translink data contained clearly-defined delay cause categories, we could try 
to use specialized dictionaries to isolate delay types based on key terms (for example, 
a dictionary of construction-related terms and synonyms).

We could also look at defining a more nuanced quantification of disruption tweet 
rate than a simple count of recent. We could, for instance, look at creating a weighted 
count feature that increases the impact of multiple simultaneous tweets (potentially 
indicative of severe disruption) via a nonlinear weighting.
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The Bing Traffic API
The next API we're going to tap into is the Bing Traffic API. This API has the 
advantage of being easily accessed; it's freely available (whereas some competitor 
APIs sit behind paywalls), returns data, and provides a good level of detail. Among 
other things, the API returns an incident location code, a general description of the 
incident, together with congestion information, an incident type code, and start/end 
timestamps.

Helpfully, the incident type codes provided by this API describe a broad set of 
incident types, as follows:

1.	 Accident.
2.	 Congestion.
3.	 DisabledVehicle.
4.	 MassTransit.
5.	 Miscellaneous.
6.	 OtherNews.
7.	 PlannedEvent.
8.	 RoadHazard.
9.	 Construction.
10.	 Alert.
11.	 Weather.

Additionally, a severity code is provided with the severity values translated  
as follows:

1.	 LowImpact.
2.	 Minor.
3.	 Moderate.
4.	 Serious.

One downside, however, is that this API doesn't receive consistent information 
between regions. Querying in France, for instance, returns codes from multiple other 
incident types, (I observed 1, 3, 5, 8 for a town in northern France over a period of 
one month.) but doesn't seem to show every code. In other locations, even less data is 
available. Sadly, Vancouver tends to show data for codes 9 or 5 exclusively, but even 
the miscellaneous-coded incidents appear to be construction-related:

Closed between Victoria Dr and Commercial Dr - Closed. Construction 
work. 5
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This is a somewhat bothersome limitation. Unfortunately, it's not something that we 
can easily fix; Bing's API is simply not sourcing all of the data that we want! Unless 
we pay for a more complete dataset (or an API with fuller data capture is available in 
your area!), we're going to need to keep working with what we have.

An example of querying this API is as follows:

importurllib.request, urllib.error, urllib.parse
import json

latN = str(49.310911)
latS = str(49.201444)
lonW = str(-123.225544)
lonE = str(-122.903931)

url = 'http://dev.virtualearth.net/REST/v1/Traffic/Incidents/' 
+latS+','+lonW+','+latN+','+lonE+'? 
key='GETYOUROWNKEYPLEASE'

response = urllib.request.urlopen(url).read()
data = json.loads(response.decode('utf8'))
resources = data['resourceSets'][0]['resources']

print('----------------------------------------------------')
print('PRETTIFIED RESULTS')
print('----------------------------------------------------')
for resourceItem in resources:
    description = resourceItem['description']
typeof = resourceItem['type']
    start = resourceItem['start']
    end = resourceItem['end']
print('description:', description);
print('type:', typeof);
print('starttime:', start);
print('endtime:', end);
print('----------------------------------------------------')

This example yields the following data;

----------------------------------------------------
PRETTIFIED RESULTS
----------------------------------------------------
description: Closed between Boundary Rd and PierviewCres - Closed due 
to roadwork.
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type: 9
severity 4
starttime: /Date(1458331200000)/
endtime: /Date(1466283600000)/
----------------------------------------------------
description: Closed between Commercial Dr and Victoria Dr - Closed due 
to roadwork.
type: 9
severity 4
starttime: /Date(1458327600000)/
endtime: /Date(1483218000000)/
----------------------------------------------------
description: Closed between Victoria Dr and Commercial Dr - Closed. 
Construction work.
type: 5
severity 4
starttime: /Date(1461780543000)/
endtime: /Date(1481875140000)/
----------------------------------------------------
description: At Thurlow St - Roadwork.
type: 9
severity 3
starttime: /Date(1461780537000)/
endtime: /Date(1504112400000)/
----------------------------------------------------

Even after recognizing the shortcomings of uneven code availability across different 
geographical areas, the data from this API should provide us with some value. 
Having a partial picture of traffic disruption incidents still gives us data for a 
reasonable period of dates. The ability to localize traffic incidents within an area of 
our own definition and returning data relevant to the current date is likely to help 
the performance of our model.

Deriving and selecting variables using feature 
engineering techniques
On our first pass over the input data, we repeatedly made the choice to keep 
our initial feature set small. Though we saw lots of opportunities in the data, we 
prioritized viewing an initial result above following up on those opportunities.

It is likely, however, that our first dataset won't help us solve the problem very 
effectively or hit our targets. In this event, we'll need to iterate over our feature set, 
both by creating new features and winnowing our feature set to reduce down to the 
valuable outputs of that feature creation process.
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One helpful example involves one-hot encoding and RFE. In this chapter, we'll 
use one-hot to turn weather data and tweet dictionaries into tensors of m*n size. 
Having produced m-many new columns of data, we'll want to reduce the liability of 
our model to be misled by some of these new features (for instance, in cases where 
multiple features reinforce the same signal or where misleading but commonly-used 
terms are not cleaned out by the data cleaning processes we described in Chapter 6, 
Text Feature Engineering). This can be done very effectively by RFE, the technique for 
feature selection that we discussed earlier in this chapter.

In general, it can be helpful to work using a methodology that applies the techniques 
seen in the last two chapters using an expand-contract process. First, use techniques 
that can generate potentially valuable new features, such as transformations and 
encodings, to expand the feature set. Then, use techniques that can identify the 
most performant subset of those features to remove the features that do not perform 
well. Throughout this process, test different target feature counts to identify the best 
available feature set at different numbers of features.

Some data scientists interpret how this is done differently from others. Some 
will build all of their features using repeated iterations over the feature creation 
techniques we've discussed, then reduce that feature set—the motivation being that 
this workflow minimizes the risk of losing data. Others will perform the full process 
iteratively. How you choose to do this is entirely up to you!

On our initial pass over the input data, then, we have a feature set that looks  
as follows:

{
  'DisruptionInformation': {
    'Date': '15-05-2015',
    'TranslinkTwitter': [{
      'Service': '0',
      'DisruptionIncidentCount': '4'
  }, {
      'Service': '1',
      'DisruptionIncidentCount': '0'
    }]
  },
  'BingTrafficAPI': {
    'NewIncidentCount': '1',
    'SevereIncidentCount': '1',
    'IncidentCount': '3'
  },
  'ConsumerTwitter': {
    'DisruptionTweetCount': '4'
  }
}
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It's unlikely that this dataset is going to perform well. All the same, let's run it 
through a basic initial algorithm and get a general idea as to how near our target  
we are; this way, we can learn quickly with minimal overhead!

In the interest of expedience, let's begin by running a first pass using a very simple 
regression algorithm. The simpler the technique, the faster we can run it (and 
often, the more transparent it is to us what went wrong and why). For this reason 
(and because we're dealing with a regression problem with a continuous output 
rather than a classification problem), on a first pass we'll work with a simple linear 
regression model:

from sklearn import linear_model

tweets_X_train = tweets_X[:-20]
tweets_X_test = tweets_X[-20:]

tweets_y_train = tweets.target[:-20]
tweets_y_test = tweets.target[-20:]

regr = linear_model.LinearRegression()

regr.fit(tweets_X_train, tweets_y_train)

print('Coefficients: \n', regr.coef_)
print("Residual sum of squares: %.2f" % np.mean((regr.
predict(tweets_X_test) - tweets_y_test) ** 2))

print('Variance score: %.2f' % regr.score(tweets_X_test, tweets_y_
test))

plt.scatter(tweets_X_test, tweets_y_test,  color='black')
plt.plot(tweets_X_test, regr.predict(tweets_X_test), 
color='blue',linewidth=3)

plt.xticks(())
plt.yticks(())
plt.show()
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At this point, our AUC is pretty lousy; we're looking at a model with an AUC of 
0.495. We're actually doing worse than our target! Let's print out a confusion matrix 
to see what this model's doing wrong:

Prediction

Actual

Result
1

13618

9
FALSE

TRUE

FALSE

TRUE

According to this matrix, it's doing everything not very well. In fact, it's claiming 
that almost all of the records show no incidents, to the extent of missing 90% of real 
disruptions!

This actually isn't too bad at all, given the early stage that we're at with our model 
and our features, as well as the uncertain utility of some of our input data. At the 
same time, we should expect an incidence rate of 6% (as our training data suggests 
that incidents have been seen to occur roughly once every 16 commutes). We'd still 
be doing a little better by guessing that every day will involve a disrupted commute 
(if we ignore the penalty to our lifestyle entailed by leaving home early each day).

Let's consider what changes we could make in a next pass.

1.	 First off, we could stand to improve our input data further. We identified a 
number of new features that we could create from existing sources using a 
range of transformation techniques.

2.	 Secondly, we could look at extending our dataset using additional 
information. In particular, a weather dataset describing both temperature 
and humidity may help us improve our model.

3.	 Finally, we could upgrade our algorithm to something with a little more grunt, 
random forests or SVM being obvious examples. There are good reasons not 
to do this just yet. The main reason is that we can continue to learn a lot from 
linear regression; we can compare against earlier results to understand how 
much value our changes are adding, while retaining a fast iteration loop and 
simple scoring methods. Once we begin to get minimal returns on our feature 
preparation, we should consider upgrading our model.

For now, we'll continue to upgrade our dataset. We have a number of options 
here. We can encode location into both traffic incident data from the Bing API's 
"description" field and into Translink's tweets. In the case of Translink, this is likely 
to be more usefully done for bus routes than Skytrain routes (given that we restricted 
the scope of this analysis to focus solely on traffic commutes).
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We can achieve this goal in one of two ways;

•	 Using a corpus of street names/locations, we can parse the input data and 
build a one-hot matrix

•	 We can simply run one-hot encoding over the entire body of tweets and 
entire set of API data

Interestingly, if we intend to use dimensionality reduction techniques after 
performing one-hot encoding, we can encode the entire body of both pieces of text 
information without any significant problems. If features relating to the other words 
used in tweets and text are not relevant, they'll simply be scrubbed out during RFE.

This is a slightly laissez-faire approach, but there is a subtle advantage. Namely, if 
there is some other potentially useful content to either data source that we've so far 
overlooked as a potential feature, this process will yield the added benefit of creating 
features based on that information.

Let's encode locations in the same way we encoded delay types:

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder(categorical_features='all', dtype= 
'float', handle_unknown='error', n_values='auto', sparse=True)

tweets.delayencode = enc.transform(tweets.location).toarray()

Additionally, we should follow up on our intention to create recent count variables 
from Translink and Bing maps incident logging. The code for this aggregation is 
available in the GitHub repository accompanying this chapter!

Rerunning our model with this updated data produced results with a very slight 
improvement; the predicted variance score rose to 0.56. While not dramatic, this is 
definitely a step in the right direction.

Next, let's follow up on our second option—adding a new data source that provides 
weather data.

The weather API
We've previously grabbed data that will help us tell whether commute disruption 
is happening—reactive data sources that identify existing delays. We're going to 
change things up a little now, by trying to find data that relates to the causes of 
delays and congestion. Roadworks and construction information definitely falls into 
this category (along with some of the other Bing Traffic API codes).
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One factor that is often (anecdotally!) tied to increased commute time is bad weather. 
Sometimes this is pretty obvious; heavy frost or high winds have a clear impact on 
commute time. In many other cases, though, it's not clear what the strength and 
nature of the relationship between climatic factors and disruption likelihood is for a 
given commute.

By extracting pertinent weather data from a source with sufficient granularity and 
geo coverage, we can hopefully use strong weather signals to help improve our 
correct prediction of disruption.

For our purposes, we'll use the Yahoo Weather API, which provides a range of 
temperature, atmospheric, pressure-related, and other climate data, both current and 
forecasted. We can query the Yahoo Weather API without needing a key or login 
process, as follows:

import urllib2, urllib, json

baseurl = https://query.yahooapis.com/v1/public/yql?

yql_query = "select item.condition from weather.forecast where 
woeid=9807"
yql_url = baseurl + urllib.urlencode({'q':yql_query}) + "&format=json"
result = urllib2.urlopen(yql_url).read()
data = json.loads(result)
print data['query']['results']

To get an understanding for what the API can provide, replace item.condition (in 
what is fundamentally an embedded SQL query) with *. This query outputs a lot 
of information, but digging through it reveals valuable information, including the 
current conditions:

{
   'channel': {
     'item': {
      'condition': {
         'date': 'Thu, 14 May 2015 03:00 AM PDT', 'text': 'Cloudy', 
'code': '26', 'temp': '46'
      }
    }
  }
}
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7-day forecasts containing the following information:

{
    'item': {
      'forecast': {
        'code': '39', 'text': 'Scattered Showers', 'high': '60', 
'low': '44', 'date': '16 May 2015', 'day': 'Sat'
      }
    }
}

And other current weather information:

'astronomy': {
     'sunset': '8:30 pm', 'sunrise': '5:36 am'
  
   'wind': {
     'direction':  '270', 'speed': '4', 'chill': '46'

For the purpose of building a training dataset, we extracted data on a daily basis via 
an automated script that ran from May 2015 to January 2016. The forecasts may not 
be terribly useful to us as it's likely that our model will rerun over current data on 
a daily basis rather than being dependent on forecasts. However, we will definitely 
make use of the wind.direction, wind.speed, and wind.chill variables, as well as 
the condition.temperature and condition.text variables.

In terms of how to further process this information, one option jumps to mind.  
One-hot encoding of weather tags would enable us to use weather condition 
information as categorical variables, just as we did in the preceding chapter. This 
seems like a necessary step to take. This significantly inflates our feature set, leaving 
us with the following data:

{
  'DisruptionInformation': {
    'Date': '15-05-2015',
    'TranslinkTwitter': [{
      'Service': '0',
      'DisruptionIncidentCount': '4'
    }, {
      'Service': '1',
      'DisruptionIncidentCount': '0'
    }]
  },
  'BingTrafficAPI': {
    'NewIncidentCount': '1',
    'SevereIncidentCount': '1',
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    'IncidentCount': '3'
  },
  'ConsumerTwitter': {
    'DisruptionTweetCount': '4'
  },
  'YahooWeather':{
    'temp: '45'
    'tornado': '0',
    'tropical storm': '0',
    'hurricane': '0',
    'severe thunderstorms': '0',
    'thunderstorms': '0',
    'mixed rain and snow': '0',
    'mixed rain and sleet': '0',
    'mixed snow and sleet': '0',
'freezing drizzle': '0',
'drizzle': '0',
'freezing rain': '0',
'showers': '0',
'snow flurries': '0',
'light snow showers': '0',
'blowing snow': '0',
'snow': '0',
'hail': '0',
'sleet': '0',
'dust': '0',
'foggy': '0',
'haze': '0',
'smoky': '0',
'blustery': '0',
'windy': '0',
'cold': '0',
'cloudy': '1',
'mostly cloudy (night)': '0',
'mostly cloudy (day)': '0',
'partly cloudy (night)': '0',
'partly cloudy (day)': '0',
'clear (night)': '0',
'sunny': '0',
'fair (night)': '0',
'fair (day)': '0',
'mixed rain and hail': '0',
'hot': '0',
'isolated thunderstorms': '0',
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'scattered thunderstorms': '0',
'scattered showers': '0',
'heavy snow': '0',
'scattered snow showers': '0',
'partly cloudy': '0',
'thundershowers': '0',
'snow showers': '0',
'isolated thundershowers': '0',
'not available': '0',
}

It's very likely that a lot of time could be valuably sunk into further enriching the 
weather data provided by the Yahoo Weather API. For the first pass, as always, 
we'll remain focused on building a model that takes the features that we described 
previously.

It's definitely worth considering how we would do further work with this 
data. In this case, it's important to distinguish between cross-column data 
transformations and cross-row transformations.
A cross-column transformation is one where variables from different 
features in the same input case were transformed based on one another. 
For instance, we might take the start date and end date of a case and use 
it to calculate the duration. Interestingly, the majority of the techniques 
that we've studied in this book won't gain a lot from many such 
transformations. Most machine learning techniques capable of drawing 
nonlinear decision boundaries tend to encode relationships between 
variables in their modeling of a dataset. Deep learning techniques often 
take this capability a step further. This is part of the reason that some 
feature engineering techniques (particularly basic transformations) add 
less value for deep learning applications.
Meanwhile, a cross-row transformation is typically an aggregation. The 
central tendency of the last n-many duration values, for instance, is a 
feature that can be derived by an operation over multiple rows. Naturally, 
some features can be derived by a combination of column-wise and row-
wise operations. The interesting thing about cross-row transformations is 
that it's usually quite unlikely that a model will train to recognize them, 
meaning that they tend to continue to add value in very particular contexts.
The reason that this information is relevant, of course, is that recent 
weather is a context in which features derived from cross-row operations 
might add new information to our model. Change in barometric pressure 
or temperature over the last n hours, for instance, might be a more useful 
variable than the current pressure or temperature. (Particularly, when that 
our model is intended to predict commutes to take place later in the same 
day!)
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The next step is to rerun our model. This time, our AUC is a little higher; we're 
scoring 0.534. Looking at our confusion matrix, we're also seeing improvements:

Prediction

Actual
Result 3

13222

7

FALSE

TRUE

FALSE

TRUE

If the issues are linked to weather factors, continuing to pull weather data is a good 
idea; setting this solution up to run over an extended period will gradually gather 
longitudinal inputs from each source, gradually giving us much more reliable 
predictions.

At this point, we're only a short distance away from our MVP target. We can 
continue to extend our input dataset, but the smart solution is to find another  
way to approach the problem. There are two actions that we can meaningfully take.

Being human, data scientists tend to think in terms of simplifying 
assumptions. One of these that crops up quite frequently is basically an 
application of the Pareto principle to cost/benefit analysis decisions. 
Fundamentally, the Pareto principle states that for many events, 
roughly 80% of the value or effect comes from roughly 20% of the input 
effort, or cause, obeying what's referred to as a Pareto distribution. This 
concept is very popular in software engineering contexts among others, 
as it can guide efficiency improvements.

The Pareto principle of Time

versus Result

The "Trivial

Many"

The "Vital

Few"

80% of time

expended

20% of

results

80% of

results

20% of

time
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To apply this theory to the current case, we know that we could 
spend more time finessing our feature engineering. There are 
techniques that we haven't applied and other features that we could 
create. However, at the same time, we know that there are entire 
areas that we haven't touched: external data searches and model 
changes, particularly, which we could quickly try. It makes sense to 
explore these cheap but potentially impactful options on our next 
pass before digging into additional dataset preparation.

During our exploratory analysis, we noticed that some of our variables are quite 
sparse. It wasn't immediately clear how helpful they all were (particularly for 
stations where fewer incidents of a given type occurred).

Let's test out our variable set using some of the techniques that we worked with 
earlier in the chapter. In particular, let's apply Lasso to the problem of reducing our 
feature set to a performant subset:

fromsklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X = scaler.fit_transform(DisruptionInformation["data"])
Y = DisruptionInformation["target"]
names = DisruptionInformation["feature_names"]

lasso = Lasso(alpha=.3)
lasso.fit(X, Y)

print "Lasso model: ", pretty_print_linear(lasso.coef_, names, sort = 
True)

This output is immediately valuable. It's obvious that many of the weather features 
(either through not showing up sufficiently often or not telling us anything useful 
when they do) are adding nothing to our model and should be removed. In addition, 
we're not getting a lot of value from our traffic aggregates. While these can remain in 
for the moment (in the hope that gathering more data will improve their usefulness), 
for our next pass we'll rerun our model without the poorly-scoring features that our 
use of LASSO has revealed.
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There is one fairly cheap additional change, which we ought to make: we should 
upgrade our model to one that can fit nonlinearly and thus can fit to approximate 
any function. This is worth doing because, as we observed, some of our features 
showed a range of skewed distributions indicative of a nonlinear underlying trend. 
Let's apply a random forest to this dataset:

fromsklearn.ensemble import RandomForestClassifier, 
ExtraTreesClassifier
rf = RandomForestRegressor(n_jobs = 3, verbose = 3, n_estimators=20)
rf.fit(DisruptionInformation_train.targets,DisruptionInformation_
train.data)

r2 = r2_score(DisruptionInformation.data, rf.predict(DisruptionInforma
tion.targets))
mse = np.mean((DisruptionInformation.data - rf.predict(DisruptionInfor
mation.targets))**2)

pl.scatter(DisruptionInformation.data, rf.predict(DisruptionInformati
on.targets))
pl.plot(np.arange(8, 15), np.arange(8, 15), label="r^2=" + str(r2), 
c="r")
pl.legend(loc="lower right")
pl.title("RandomForest Regression with scikit-learn")
pl.show()

Let's return again to our confusion matrix:

Prediction

Actual
Result 4

13415

6
FALSE

TRUE

FALSE

TRUE

At this point, we're doing fairly well. A simple upgrade to our model has yielded 
significant improvements, with our model correctly identifying almost 40% of 
commute delay incidents (enough to start to be useful to us!), while misclassifying a 
small amount of cases.

Frustratingly, this model would still be getting us out of bed early incorrectly more 
times than it would correctly. The gold standard, of course, would be if it were 
predicting more commute delays than it was causing false (early) starts! We could 
reasonably hope to achieve this target if we continue to gather feature data over a 
sustained period; the main weakness of this model is that it has very few cases to 
sample from, given the rarity of commute disruption events.
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We have, however, succeeded in gathering and marshaling a range of data from 
different sources in order to create a model from freely-available data that yields 
a recognizable, real-world benefit (reducing the amount of late arrivals at work by 
40%). This is definitely an achievement to be happy with!

Further reading
My suggested go-to introduction to feature selection is Ando Sabaas' four-part 
exploration of a broad range of feature selection techniques. It's full of Python code 
snippets and informed commentary. Get started at http://blog.datadive.net/
selecting-good-features-part-i-univariate-selection/.

For a discussion on feature selection and engineering that ranges across  
materials in chapters 6 and 7, consider Alexandre Bourhard-Côté's slides at 
http://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/
feature/slides.pdf. Also consider reviewing Jeff Howbert's slides at http://
courses.washington.edu/css490/2012.Winter/lecture_slides/05a_feature_
creation_selection.pdf. 

There is a shortage of thorough discussion of feature creation, with a lot of 
available material discussing either dimensionality reduction techniques or very 
specific feature creation as required in specific domains. One way to get a more 
general understanding of the range of possible transformations is to read code 
documentation. A decent place to build on your existing knowledge is Spark ML's 
feature-transformation algorithm documentation at https://spark.apache.org/
docs/1.5.1/ml-features.html#feature-transformers, which describes a broad 
set of possible transformations on numerical and text features. Remember, though, 
that feature creation is often problem-specific, domain-specific, and a highly creative 
process. Once you've learned a range of technical options, the trick is in figuring out 
how to apply these techniques to the problem at hand!

For readers with an interest in hyperparameter optimization, I recommend that you 
read Alice Zheng's posts on Turi's blog as a great place to start: http://blog.turi.
com/how-to-evaluate-machine-learning-models-part-4-hyperparameter-
tuning.

I also find the scikit-learn documentation to be a useful reference for grid search 
specifically: http://scikit-learn.org/stable/modules/grid_search.html.

http://blog.datadive.net/selecting-good-features-part-i-univariate-selection/
http://blog.datadive.net/selecting-good-features-part-i-univariate-selection/
http://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/feature/slides.pdf
http://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/feature/slides.pdf
http://courses.washington.edu/css490/2012.Winter/lecture_slides/05a_feature_creation_selection.pdf
http://courses.washington.edu/css490/2012.Winter/lecture_slides/05a_feature_creation_selection.pdf
http://courses.washington.edu/css490/2012.Winter/lecture_slides/05a_feature_creation_selection.pdf
https://spark.apache.org/docs/1.5.1/ml-features.html#feature-transformers
https://spark.apache.org/docs/1.5.1/ml-features.html#feature-transformers
http://blog.turi.com/how-to-evaluate-machine-learning-models-part-4-hyperparameter-tuning
http://blog.turi.com/how-to-evaluate-machine-learning-models-part-4-hyperparameter-tuning
http://blog.turi.com/how-to-evaluate-machine-learning-models-part-4-hyperparameter-tuning
http://scikit-learn.org/stable/modules/grid_search.html
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Summary
In this chapter, you learned and applied a set of techniques that enable us to 
effectively build and finesse datasets for machine learning, starting from very little 
initial data. These powerful techniques enable a data scientist to turn seemingly 
shallow datasets into opportunities. We demonstrated this power using a set of 
customer service tweets to create a travel disruption predictor.

In order to take that solution into production, though, we'd need to add some 
functionality. Removing some locations in the penultimate step was a questionable 
decision; if this solution is intended to identify journey disruption risk, then 
removing locations seems like a non-starter! This is particularly true given that we do 
not have year-round data and so cannot identify the effect of seasonal or longitudinal 
trends (like extended maintenance works or a scheduled station closure). We were a 
little hasty in removing these elements and a better solution would be to retain them 
for a longer period.

Following on from these concerns, we should recognize the need to start building 
some dynamism into our solution. When spring rolls around and our dataset starts 
to contain new climate conditions, it is entirely likely that our model will fail to  
adapt as effectively. In the next chapter, we will be looking at building more 
sophisticated model ensembles and discuss methods of building robustness  
into your model solutions.
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Ensemble Methods
As we progressed through the earlier chapters of this book, you learned how to 
apply a number of new techniques. We developed our use of several advanced 
machine learning algorithms and acquired a broad range of companion techniques 
used to enhance your use of learning techniques via more effective feature selection 
and preparation. This chapter seeks to enhance your existing technique set using 
ensemble methods: techniques that bind multiple different models together to solve 
a real-world problem.

Ensemble techniques have become a fundamental part of the data scientist's toolset. 
The use of ensembles has become common practice in competitive machine learning 
contexts, and ensembles are now considered an indispensable tool in many contexts. 
The techniques that we'll develop in this chapter give our models an edge in 
performance, while increasing their robustness to underlying data change.

We'll examine a series of ensembling options, discussing both the code and 
application of these techniques. We'll color this explanation with guidance  
and reference to real-world applications, including the models created by  
successful Kagglers.

The development of any of the models that we reviewed in this title allows us 
to solve a wide range of data problems, but applying our models to production 
contexts raises an additional set of problems. Our solutions are still vulnerable to 
changes in the underlying observations. Whether this is expressed in a different 
population of individuals, in temporal variations (for example, seasonal changes in 
the phenomenon being captured) or by other changes to the underlying conditions, 
the end result is often the same—the models that worked well in the conditions they 
were trained against are frequently unable to generalize and continue to perform 
well as time passes.
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The final section of this chapter describes methodologies to transfer the techniques 
from this book to operational environments and the kinds of additional monitoring 
and support you should consider if your intended applications have to be resilient  
to change.

Introducing ensembles
"This is how you win ML competitions: you take other peoples' work and ensemble 
them together."

                                                                               – Vitaly Kuznetsov NIPS2014

In the context of machine learning, an ensemble is a set of models that is used to 
solve a shared problem. An ensemble is made up of two components: a set of models 
and a set of decision rules that govern how the results of those models are combined 
into a single output.

Ensembles offer a data scientist the ability to construct multiple solutions for a given 
problem and then combine these into a single final result that draws from the best 
elements of each input solution. This provides robustness against noise, which is 
reflected in more effective training against an initial dataset (leading to lower levels 
of overfitting and reductions in training error) and against data change of the kinds 
discussed in the preceding section.

It is no exaggeration to say that ensembles are the most important recent 
development in machine learning.

In addition, ensembles enable greater flexibility in how one solves for a given 
problem, in that they enable the data scientist to test different parts of a solution 
and resolve issues specific to subsets of the input data or parts of the models in use, 
without completely retuning the whole model. As we'll see, this can make life easier!

Ensembles are typically considered as falling into one of several classes, based on the 
nature of the decision rules used. The key ensemble types are as follows:

•	 Averaging methods: They develop models in parallel and then use averaging 
or voting techniques to develop a combined estimator

•	 Stacking (or Blending) methods: They use the weighted output of multiple 
classifiers as inputs to a next-layer model

•	 Boosting methods: They involve building models in sequence where each 
added model aims to improve the score of the combined estimator
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Given the importance and utility of both of these classes of the ensemble method, 
we'll treat each one in turn: discussing theory, algorithm options, and real-world 
examples.

Understanding averaging ensembles
Averaging ensembles have a long and rich history in the physical sciences and 
statistical modeling, seeing a common application in many contexts including 
molecular dynamics and audio signal processing. Such ensembles are typically seen 
as almost exactly replicated cases of a given system. The average (mean) values of 
and variance between cases in this system are key values for the system as a whole.

In a machine learning context, an averaging ensemble is a collection of models that 
train on the same dataset, whose results are aggregated in a range of ways. Depending 
on implementation goals, an averaging ensemble can bring several benefits.

Averaging ensembles can be used to reduce the variability of a model's performance. 
One common method involves creating multiple model configurations that take 
different parameter subsets as input. Techniques that take this approach are referred 
to collectively as bagging algorithms.

Using bagging algorithms
Different bagging implementations will operate differently but share the common 
property of taking random subsets of the feature space. There are four main types 
of the bagging approach. Pasting draws random subsets of the samples without 
replacement. When this is done with replacement, then the approach is simply called 
bagging. Pasting is typically computationally cheaper than bagging and can yield 
similar results in simpler applications.

When samples are taken feature-wise, the method is known as random subspaces. 
Random subspace methods provide a slightly different capability; they essentially 
reduce the need for extensive, highly optimized feature selection. Where such 
activities typically lead to a single model with optimized input, random subspaces 
allow the use of multiple configurations in parallel, with a flattening of the variance 
of any one solution.
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While the use of an ensemble to reduce the variability in model 
performance may sound like a performance hit (the natural response 
might be but why not just pick the single best performing model in the 
ensemble?), there are big advantages to this approach.
Firstly, as discussed, averaging improves the ability of your model set 
to adapt to unfamiliar noise (that is, it reduces overfitting). Secondly, an 
ensemble can be used to target different elements of the input dataset to 
model effectively. This is a common approach in competitive machine 
learning contexts, where a data scientist will iteratively adjust the 
ensemble based on the results of classification and particular types of 
failure cases. In some cases, this is an exhaustive process involving the 
inspection of model results (commonly as part of a normal, iterative 
model development process) but many data scientists prefer techniques 
or a solution that they will implement first.

Random subspaces can be a very powerful approach, particularly if it's possible to 
use multiple subspace sizes and exhaustively check feature combinations. The cost 
of random subspace methods increases nonlinearly with the size of your dataset and, 
beyond a certain point, it will become costly to test every configuration of parameters 
for multiple subspace sizes.

Finally, an ensemble's estimators may be created from subsets drawn from both 
samples and features, in a method known as random patches. On a like-for-like 
case, the performance of random patches is usually around the same level as that of 
random subspace techniques with significantly reduced memory consumption.

As we've discussed the theory behind bagging ensembles, let's look at how we go 
about implementing one. The following code describes a random patches classifier 
implemented using sklearn's BaggingClassifier class:

from sklearn.cross_validation import cross_val_score
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_digits
from sklearn.preprocessing import scale

digits = load_digits()
data = scale(digits.data)
X = data
y = digits.target

bagging = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, 
max_features=0.5)
scores = cross_val_score(bagging, X, y)
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mean = scores.mean() 
print(scores)
print(mean)

As with many sklearn classifiers, the core code needed is very straightforward; the 
classifier is initialized and used to score the dataset. Cross-validation (via cross_
val_score) adds no meaningful complexity.

This bagging classifier used a K-Nearest Neighbors (KNN) classifier 
(KNeighboursClassifier) as a base, with feature-wise and case-wise sampling rates 
each set to 50%. This outputs very strong results against the digits dataset, correctly 
classifying a mean of 93% of cases after cross-validation:

[ 0.94019934  0.92320534  0.9295302 ]

0.930978293043

Using random forests
An alternative set of averaging ensemble techniques is referred to collectively as 
random forests. Perhaps the most successful ensemble technique used by competitive 
data scientists, random forests develop parallel sets of decision tree classifiers. By 
introducing two main sources of randomness to the classifier construction, the forest 
ends up containing diverse trees. The data that is used to build each tree is sampled 
with replacement from the training set, while the tree creation process no longer uses 
the best split from all features, instead choosing the best split from a random subset 
of the features.

Random forests can be easily called using the RandomForestClassifier class in 
sklearn. For a simple example, consider the following:

import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_digits
from sklearn.preprocessing import scale

digits = load_digits()
data = scale(digits.data)

n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

clf = RandomForestClassifier(n_estimators=10)
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clf = clf.fit(data, labels)
scores = clf.score(data,labels)
print(scores)

The scores output by this ensemble, 0.999, are difficult to beat. Indeed, we haven't 
seen performance at this level from any of the individual models we employed in 
preceding chapters.

A variant of random forests, called extremely randomized trees (ExtraTrees), uses 
the same random subset of features method in selecting the best split at each branch 
in the tree. However, it also randomizes the discrimination threshold; where a 
decision tree normally chooses the most effective split between classes, ExtraTrees 
split at a random value.

Due to the relatively efficient training of decision trees, a random forest algorithm 
can potentially support a large number of varied trees with the effectiveness of the 
classifier improving as the number of nodes increases. The randomness introduced 
provides a degree of robustness to noise or data change; like the bagging algorithms 
we reviewed earlier, however, this gain typically comes at the cost of a slight drop in 
performance. In the case of ExtraTrees, the robustness may increase further while the 
performance measure improves (typically a bias value reduces).

The following code describes how ExtraTrees work in practice. As with our random 
subspace implementation, the code is very straightforward. In this case, we'll 
develop a set of models to compare how ExtraTrees shape up against tree and 
random forest approaches:

from sklearn.cross_validation import cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_digits
from sklearn.preprocessing import scale

digits = load_digits()
data = scale(digits.data)
X = data
y = digits.target

clf = DecisionTreeClassifier(max_depth=None, min_samples_split=1,
    random_state=0)
scores = cross_val_score(clf, X, y)                      
print(scores)

clf = RandomForestClassifier(n_estimators=10, max_depth=None,
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    min_samples_split=1, random_state=0)
scores = cross_val_score(clf, X, y)       
print(scores)

clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
    min_samples_split=1, random_state=0)
scores = cross_val_score(clf, X, y)
print(scores)

The scores, respectively, are as follows:

[ 0.74252492  0.82136895  0.75671141]

[ 0.88372093  0.9015025   0.8909396 ]

[ 0.91694352  0.93489149  0.91778523]

Given that we're working with entirely tree-based methods here, the score is simply 
the proportion of correctly-labeled cases. We can see here that there isn't much in it 
between the two forest methods, which both perform strongly with mean scores of 
0.9. In this example, random forest actually wins out marginally (on the order of an 
0.002 increase) over ExtraTrees, while both techniques substantially outperform the 
basic decision tree, whose mean score sits at 0.77.

One drawback when working with random forests (especially as the size of the 
forest increases) is that it can be hard to review the effectiveness of, or tune, a given 
implementation. While individual trees are extremely easy to work with, the sheer 
number of trees in a developed ensemble and the obfuscation created by random 
splitting can make it challenging to refine a random forest implementation. One 
option is to begin looking at the decision boundaries that individual models draw. 
By contrasting the models within one's ensemble, it becomes easier to identify where 
one model performs better at dividing classes than others.
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In this example, for instance, we can easily see how our models perform at a high 
level without digging into specific details:

While it can be challenging to understand beyond a simple level (using high-level 
plots and summary scores) how a random forest implementation is performing, the 
hardship is worthwhile. Random forests perform very strongly with only a minimal 
cost in additional computation. They are very often a good technique to throw at a 
problem during the early stages, while one is still determining an angle of attack, 
because their ability to yield strong results fast can provide a useful benchmark. 
Once you know how a random forest implementation performs, you can begin to 
optimize and extend your ensemble.

To this end, we should continue exploring the different ensemble techniques so as to 
further build out our toolkit of ensembling options.
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Applying boosting methods
Another approach to ensemble creation is to build boosting models. These models 
are characterized by their use of multiple models in sequence to iteratively "boost" or 
improve the performance of the ensemble.

Boosting models frequently use a series of weak learners, models that provide only 
marginal gain compared to random guessing. At each iteration, a new weak learner 
is trained on an adjusted dataset. Over multiple iterations, the ensemble is extended 
with one new tree (whichever tree optimized the ensemble performance score) at 
each iteration.

Perhaps the most well-known boosting method is AdaBoost, which adjusts the 
dataset at each iteration by performing the following actions:

•	 Selecting a decision stump (a shallow, often one-level decision tree, 
effectively the most significant decision boundary for the dataset in question)

•	 Increasing the weighting of cases that the decision stump labeled incorrectly, 
while reducing the weighting of correctly labeled cases

This iterative weight adjustment causes each new classifier in the ensemble to 
prioritize training the incorrectly labeled cases; the model adjusts by targeting 
highly-weighted data points. Eventually, the stumps are combined to form a  
final classifier.

AdaBoost can be used both in classification and regression contexts and achieves 
impressive results. The following example shows an AdaBoost implementation in 
action on the heart dataset:

import numpy as np

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets.mldata import fetch_mldata
from sklearn.cross_validation import cross_val_score

n_estimators = 400
# A learning rate of 1. may not be optimal for both SAMME and SAMME.R
learning_rate = 1.

heart = fetch_mldata("heart")
X = heart.data
y = np.copy(heart.target)
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y[y==-1]=0

X_test, y_test = X[189:], y[189:]
X_train, y_train = X[:189], y[:189]

dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(X_train, y_train)
dt_stump_err = 1.0 - dt_stump.score(X_test, y_test)

dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1)
dt.fit(X_train, y_train)
dt_err = 1.0 - dt.score(X_test, y_test)

ada_discrete = AdaBoostClassifier(
    base_estimator=dt_stump,
    learning_rate=learning_rate,
    n_estimators=n_estimators,
    algorithm="SAMME")
ada_discrete.fit(X_train, y_train)

scores = cross_val_score(ada_discrete, X_test, y_test)
print(scores)                  
means = scores.mean()
print(means)

In this case, the n_estimators parameter dictates the number of weak learners used; 
in the case of averaging methods, adding estimators will always reduce the bias of 
your model, but will increase the probability that your model has overfit its training 
data. The base_estimator parameter can be used to define different weak learners; 
the default is decision trees (as training a weak tree is straightforward, one can use 
stumps, very shallow trees). When applied to the heart dataset, as in this example, 
AdaBoost achieved correct labeling in just over 79% of cases, a reasonably solid 
performance for a first pass:

[ 0.77777778  0.81481481  0.77777778]

0.79012345679

Boosting models provide a significant advantage over averaging models; they 
make it much easier to create an ensemble that identifies problem cases or types of 
problem cases and address them. A boosting model will usually target the easiest to 
predict cases first, with each added model fitting against a subset of the remaining 
incorrectly predicted cases.
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One resulting risk is that a boosting model begins to overfit (in the most extreme 
case, you can imagine ensemble components that have fit to specific cases!) the 
training data. Managing the correct amount of ensemble components is a tricky 
problem but thankfully we can resort to a familiar technique to resolve it. In  
Chapter 1, Unsupervised Machine Learning, we discussed a visual heuristic called 
the elbow method. In that case, the plot was of K (the number of means), against a 
performance measure for the clustering implementation. In this case, we can employ 
an analogous process using the number of estimators (n) and the bias or error rate for 
the ensemble (which we'll call e). For a range of different boosting estimators, we can 
plot their outputs as follows:

By identifying a point at which the curve has begun to level off, we can reduce the 
risk that our model has overfit, which becomes increasingly likely as the curve begins 
to level off. This is true for the simple reason that as the curve levels, it necessarily 
means that the added gains from each new estimator are the correct classification of 
fewer and fewer cases!

Part of the appeal of a visual aid of this kind is that it enables us to get a feel for how 
likely our solution is to be overfitting. We can (and should!) be applying validation 
techniques wherever we can, but in some cases (for example, when aiming to hit 
a particular MVP target for a model implementation, whether that be informed by 
use cases or the distribution of scores on the Kaggle public leaderboard), we may be 
tempted to press forward with a performant implementation. Understanding exactly 
how attenuated the gains we're receiving are as we add each new estimator is critical 
to understanding the risk of overfitting.
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Using XGBoost
In mid-2015, a new algorithm to solve structured machine learning problems, 
XGboost, has taken the competitive data science world by storm. Extreme Gradient 
Boosting (XGBoost) is a well-written, performant library that provides a generalized 
boosting algorithm (Gradient Boosting).

XGBoost works much like AdaBoost with one key difference—the means by which 
the model is improved is different.

At each iteration, XGBoost is seeking to improve the performance of the existing 
model set by reducing the residuals (the differences between targets and label 
predictions) of that ensemble. Every iteration, the model added is selected based on 
whether it is most able to reduce the existing ensemble's residuals. This is analogous 
to gradient descent (where a function is iteratively minimized by moving against a 
loss gradient); hence, the name Gradient Boosting.

Gradient Boosting has proven to be highly successful in recent Kaggle contests, 
where it has supported the winners of the CrowdFlower Competition and 
Microsoft Malware Classification Challenge, along with many other structured data 
competitions in the final half of 2015.

To apply XGBoost, let's grab the XGBoost library. The best way to get this is via 
pip, with the pip install xgboost command on the command line. For Windows 
users, pip installation is currently (late 2015) disabled on Windows. For your benefit, 
a cold copy of XGBoost is available in the Chapter 8 folder of this book's GitHub 
repository.

Applying XGBoost is fairly straightforward. In this case, we'll apply the library to 
a multiclass classification task, using the UCI Dermatology dataset. This dataset 
contains an age variable and a large number of categorical variables. An example 
row of data looks like this:

3,2,0,2,0,0,0,0,0,0,0,0,1,2,0,2,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,10,2

A small number of age values (penultimate feature) are missing, encoded by ?. The 
objective in working with this dataset is to correctly classify one of six different skin 
conditions, per the following class distribution:

       Database:  Dermatology

       Class code:   Class:                  Number of instances:

       1             psoriasis      112

       2             seboreic dermatitis             61

       3             lichen planus                   72
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       4             pityriasis rosea                49

       5             cronic dermatitis               52    

       6             pityriasis rubra pilaris        20

We'll begin applying XGBoost to this problem by loading up the data and dividing it 
into test and train cases via a 70/30 split:

import numpy as np
import xgboost as xgb

data = np.loadtxt('./dermatology.data', delimiter=',',converters={33: 
lambda x:int(x == '?'), 34: lambda x:int(x)-1 } )
sz = data.shape

train = data[:int(sz[0] * 0.7), :]
test = data[int(sz[0] * 0.7):, :]

train_X = train[:,0:33]
train_Y = train[:, 34]

test_X = test[:,0:33]
test_Y = test[:, 34]

At this point, we initialize and parameterize our model. The eta parameter defines 
the step size shrinkage. In gradient descent algorithms, it's very common to use a 
shrinkage parameter to reduce the size of an update. Gradient descent algorithms 
have a tendency (especially close to convergence) to zigzag back and forth over the 
optimum; using a shrinkage parameter to downscale the size of a change makes the 
effect of gradient descent more precise. A common (and default) scaling value is 0.3. 
In this example, eta has been set to 0.1 for even greater precision (at the possible 
cost of more iterations).

The max_depth parameter is intuitive; it defines the maximum depth of any tree in 
the example. Given six output classes, six is a reasonable value to begin with. The 
num_round parameter defines how many rounds of Gradient Boosting the algorithm 
will perform. Again, you typically require more rounds for a multiclass problem 
with more classes. The nthread parameter, meanwhile, defines how many CPU 
threads the code will run over.
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The DMatrix structure used here is purely for the training speed and memory 
optimization. It's generally a good idea to use these while using XGBoost; they can 
be built from numpy.arrays. Using DMatrix enables the watchlist functionality, 
which unlocks some advanced features. In particular, watchlist allows us to 
monitor the evaluation results on all the data in the list provided:

xg_train = xgb.DMatrix( train_X, label=train_Y)
xg_test = xgb.DMatrix(test_X, label=test_Y)

param = {}

param['objective'] = 'multi:softmax'

param['eta'] = 0.1
param['max_depth'] = 6
param['nthread'] = 4
param['num_class'] = 6

watchlist = [ (xg_train,'train'), (xg_test, 'test') ]
num_round = 5
bst = xgb.train(param, xg_train, num_round, watchlist );

We train our model, bst, to generate an initial prediction. We then repeat 
the training process to generate a prediction with softmax enabled (via 
multi:softprob):

pred = bst.predict( xg_test );

print ('predicting, classification error=%f' % (sum( int(pred[i]) != 
test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))

param['objective'] = 'multi:softprob'
bst = xgb.train(param, xg_train, num_round, watchlist );

yprob = bst.predict( xg_test ).reshape( test_Y.shape[0], 6 )
ylabel = np.argmax(yprob, axis=1)

print ('predicting, classification error=%f' % (sum( int(ylabel[i]) != 
test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
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Using stacking ensembles
The traditional ensembles that we saw earlier in this chapter all shared a common 
design philosophy: they involve multiple classifiers trained to fit a set of target labels 
and involve the models themselves being applied to generate some meta-function 
through strategies including model voting and boosting.

There is an alternative design philosophy as regards ensemble creation, known as 
stacking or, alternatively, as blending. Stacking involves multiple layers of models 
in a configuration where the output of one layer of models is used as training data 
for a model at the next layer. It's possible to blend hundreds of different models 
successfully.

Stacking ensembles can also make up the blended set of features at a layer's output 
from multiple sub-blends (sometimes called blend-of-blends). To add to the fun, 
it's also possible to also extract particularly effective parameters from the models of 
a stacking ensemble and use them as meta-features, within blends or sub-blends at 
different levels.

All of this combines to make stacking ensembles a very powerful and extensible 
technique. The winners of the Kaggle Netflix prize (and associated $1 million award) 
used stacking ensembles over hundreds of features to great effect. They used several 
additional tricks to improve the effectiveness of their prediction:

•	 They trained and optimized their ensemble while holding out some data. 
They then retrained using the held-out data and again optimized before 
applying their model to the test dataset. This isn't an uncommon practice, but 
it yields good results and is worth keeping in mind.

•	 They trained using gradient descent and RMSE as the performance function. 
Crucially, they used the RMSE of the ensemble, rather than that of any of 
the models, as the relevant performance indicator (the measure of residuals). 
This should be considered a healthy practice whenever working with 
ensembles.

•	 They used model combinations that are known to improve on the residuals 
of other models. Neighborhood-based approaches, for instance, improve on 
the residuals of the RBM, which we examined earlier in this book. By getting 
to know the relative strengths and weaknesses of your machine learning 
algorithms, you can find ideal ensemble configurations.

•	 They calculated the residuals of their blend using k-fold cross-validation, 
another technique that we explored and applied earlier in this book. This 
helped overcome the fact that they'd trained their blend's constituent models 
using the same dataset as the resulting blend.
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The main point to take away from the highly customized nature of the Pragmatic 
Chaos model used to win the Netflix prize is that a first-class model is usually the 
product of intensive iteration and some creative network configuration changes.  
The other key takeaway is that the basic architectural pattern of a stacking ensemble 
is as follows:

Concept Diagram of Stacking

training data

training data

training data

classifier

classifier classifier

classifier

output value output value

output value

output value

Level 0 Level 1

Now that you've learned the fundamentals of how the stacking ensemble work, let's 
try applying them to solve data problems. To get us started, we'll use the blend.py 
code provided in the GitHub repository accompanying Chapter 8, . Versions of this 
blending code have been used by highly-scoring Kagglers across multiple contests.

To begin with, we'll examine how stacking ensembles can be applied to attack a 
real data science problem: the Kaggle contest Predicting a Biological Response aimed 
to build as effective a model as possible in order to predict the biological response 
of molecules given their chemical properties. We'll be looking at one particularly 
successful entry in this competition to understand how stacking ensembles can work 
in practice.

In this dataset, each row represents a molecule, while each of the 1,776 features 
describe characteristics of the molecule in question. The goal was to predict a binary 
response from the molecule in question, given these properties.

The code that we'll be applying comes from a competitor in that tournament who 
used a stacking ensemble to combine five classifiers: two differently configured 
random forest classifiers, two extra trees classifiers, and a gradient boosting  
classifier, which helps to yield slightly differentiated predictions from the other  
four components.
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The duplicated classifiers were provided with different split criteria. One used the 
Gini Impurity (gini), a measure of how often a random record would be incorrectly 
labeled if it were randomly labeled according to the distribution of labels in the 
potential branch in question. The other tree used information gain (entropy), a 
measure of information content. The information content of a potential branch 
can be measured by the number of bits that would be required to encode it. Using 
entropy as a measure to determine the appropriate split leads branches to become 
increasingly less diverse, but it's important to recognize that the entropy and gini 
criteria can yield quite different results:

if __name__ == '__main__':

    np.random.seed(0)

    n_folds = 10
    verbose = True
    shuffle = False

    X, y, X_submission = load_data.load()

    if shuffle:
        idx = np.random.permutation(y.size)
        X = X[idx]
        y = y[idx]

    skf = list(StratifiedKFold(y, n_folds))

    clfs = [RandomForestClassifier(n_estimators=100, n_jobs=-1, 
criterion='gini'),
            RandomForestClassifier(n_estimators=100, n_jobs=-1, 
criterion='entropy'),
            ExtraTreesClassifier(n_estimators=100, n_jobs=-1, 
criterion='gini'),
            ExtraTreesClassifier(n_estimators=100, n_jobs=-1, 
criterion='entropy'),
            GradientBoostingClassifier(learning_rate=0.05, 
subsample=0.5, max_depth=6, n_estimators=50)]

    print "Creating train and test sets for blending."

    dataset_blend_train = np.zeros((X.shape[0], len(clfs)))
    dataset_blend_test = np.zeros((X_submission.shape[0], len(clfs)))

    for j, clf in enumerate(clfs):
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        print j, clf
        dataset_blend_test_j = np.zeros((X_submission.shape[0], 
len(skf)))
        for i, (train, test) in enumerate(skf):
            print "Fold", i
            X_train = X[train]
            y_train = y[train]
            X_test = X[test]
            y_test = y[test]
            clf.fit(X_train, y_train)
            y_submission = clf.predict_proba(X_test)[:,1]
            dataset_blend_train[test, j] = y_submission
            dataset_blend_test_j[:, i] = 
clf.predict_proba(X_submission)[:,1]
        dataset_blend_test[:,j] = dataset_blend_test_j.mean(1)

    print
    print "Blending."
    clf = LogisticRegression()
    clf.fit(dataset_blend_train, y)
    y_submission = clf.predict_proba(dataset_blend_test)[:,1]

    print "Linear stretch of predictions to [0,1]"
    y_submission = (y_submission - y_submission.min()) / 
(y_submission.max() - y_submission.min())

    print "Saving Results."
    np.savetxt(fname='test.csv', X=y_submission, fmt='%0.9f')

When we try running this submission on the private leaderboard, we find ourselves 
in a rather impressive 12th place (out of 699 competitors)! Naturally, we can't draw 
too many conclusions from a competition that we entered after completion, but, 
given the simplicity of the code, this is still a rather impressive result!

Applying ensembles in practice
One particularly important quality to be mindful of while applying ensemble 
methods is that your goal is to tune the performance of the ensemble rather than 
of the models that comprise it. Your approach should therefore be largely focused 
on building a strong ensemble performance score, rather than the strongest set of 
individual model performances.
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The amount of attention that you pay to the models within your ensemble will vary. 
With an arrangement of differently configured or initialized models of a single 
type (for example, a random forest), it is sensible to focus almost entirely on the 
performance of the ensemble and metaparameters that shape it.

For more challenging problems, we frequently need to pay closer attention to the 
individual models within our ensemble. This is most obviously true when we're 
trying to create smaller ensembles for more challenging problems, but to build a 
truly excellent ensemble, it is often necessary to be considerate of the parameters and 
algorithms underlying the structure that you've built.

With this said, you'll always be looking at the performance of the ensemble as well 
as the performance of models within the set. You'll be inspecting the results of your 
models to try and work out what each model did well. You'll also be looking for the less 
obvious factors that affect ensemble performance, most notably the correlation of 
model predictions. It's generally recognized that a more effective ensemble will tend 
to contain performant but uncorrelated components.

To understand this claim, consider techniques such as correlation measures and PCA 
that we can use to measure the amount of information content present in dataset 
variables. In the same way, we can use Pearson's correlation coefficient against the 
predictions output by each of our models to understand the relationship between 
performance and correlation for each model.

Taking us back to stacking ensembles specifically, our ensemble's models are 
outputting metafeatures that are then used as inputs to a next-layer model. Just as 
we would vet the features used by a more conventional neural network, we want 
to ensure that the features output by our ensemble's components work well as a 
dataset. The calculation of the Pearson correlation coefficient across model outputs 
and use of the results in model selection is an excellent place to start in this regard.

When we deal with single-model problems, we almost always have to spend some 
time inspecting the problem and identifying an appropriate learning algorithm. 
If we're faced with a two-class classification problem with a moderate amount of 
features (10's) and labeled training cases, we might select a logistic regression, an 
SVM, or some other appropriate algorithm for the context. Different approaches 
will apply to different problems and through trial and error, parallel testing, and 
experience (both personal and posted online!), you will identify the appropriate 
approach for a specific objective given specific input data.
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A similar logic applies to ensemble creation. Rather than identifying a single 
appropriate model, the challenge is to identify combinations of models that 
effectively describe different elements of an input dataset in such a way that the 
dataset as a whole is adequately described. By understanding the strengths and 
weaknesses of your component models as well as by exploring and visualizing your 
dataset, you'll be able to draw conclusions about how to develop your ensemble 
effectively through multiple iterations.

Ultimately, at this level, data science is a field with a great many techniques at hand. 
The best practitioners are able to apply their knowledge of their own algorithms and 
options to develop very effective solutions over many iterations.

These solutions involve the knowledge of algorithms and interaction of model 
combinations, model parameter adjustments, dataset translations, and ensemble 
manipulation. Just as importantly, they require an uninhibited and creative mindset.

One good example of this is the work of prominent Kaggle competitor, Alexander 
Guschin. Focusing on one specific example—the Otto Product Classification 
contest—can give us an idea as to the range of options available to a confident and 
creative data scientist.

Most model development processes begin with a period in which you throw different 
solutions at the problem, attempting to find the tricks underlying the data and 
figuring out what works. Settling on a stacking model, Alexander set about building 
metafeatures. While we looked at XGBoost as an ensemble in its own right, in this case 
it was used as a component to the stacking ensemble in order to generate some of the 
metafeatures to be used by the final model. Neural networks were used in addition to 
the gradient boosted trees as both algorithms tend to produce good results.

To add some contrast to the mixture, Alexander added a KNN implementation, 
specifically because the results (and therefore the metaparameters) generated by a 
KNN tend to differ significantly from the models already included. This approach of 
picking up components whose outputs tend to differ is crucial in creating an effective 
stacking ensemble (and to most ensemble types).

To further develop this model, Alexander added some custom elements to the 
second layer of his model. While combining the XGBoost and neural network 
predictions, he also added bagging at this layer. At this point, most of the techniques 
that we've discussed in this chapter have shown up in some part of this model. In 
addition to the model development, some feature engineering (in particular, the use 
of TF-IDF on half of the training and test data) and the use of plotting techniques to 
identify class differentiation were used throughout.
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A truly mature model that can tackle the most significant data science challenges is 
one that combines the techniques we've seen throughout this book, created using a 
solid understanding of the underlying algorithms and the possibilities for how these 
techniques can interact with each other.

This book so far has taught many of the fundamentals—the base of practical 
knowledge—that a practitioner has to collect. It has used many examples and 
an increasing amount of real-world cases to demonstrate how a broad base of 
knowledge becomes increasingly powerful in letting you develop effective solutions 
to difficult problems.

What's required of you as a data scientist is to first apply this broad set of techniques 
to develop an experience of how they can perform and what they could do for 
you. Then it is up to you to develop that creativity and experimental mindset that 
distinguishes some of the best data scientists.

Using models in dynamic applications
We've spent this chapter discussing the use of techniques to manage model 
performance under conditions that might be seen as ideal; specifically, conditions in 
which all of the data is available ahead of time so that a model can be trained on all 
data. These assumptions are frequently valid in research contexts or when dealing 
with one-time problems, but in many contexts they are unsafe assumptions. The 
range of unsafe contexts goes beyond the cases where the data is simply unavailable, 
such as data science contests where a held-out dataset is used to establish the final 
leaderboard.

Returning to a subject from earlier in this chapter, you'll recall the Pragmatic Chaos 
algorithm, which won the Netflix prize? By the time Netflix came to assessing the 
algorithm for implementation, both the business context and requirements had 
shifted so dramatically that the minimal accuracy gains provided by that algorithm 
didn't justify implementation costs. The $1M algorithm was redundant and was 
never implemented in production! The point to take from this example is that in 
commercial contexts, it is critical for our models to have as much adaptability  
as we can provide.

The really challenging applications of machine learning algorithms, in which our 
existing run once methodologies become less valuable, are ones where real data 
changes occur across time (or other dimensions). In these contexts, one knows that a 
substantial data change will occur and that existing models cannot be easily trained 
to adapt to this data change. At that point, new techniques are needed as well as  
new information.
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To adapt and gather this information, we need to become better able to predict 
the ways in which data change is liable to occur. With this information, our model 
building and the content of our ensembles can start to change in order to cover  
the most likely data change scenarios that we see ahead. This adaptation lets us 
pre-empt data change and reduce the adjustment time required. As we'll see later in 
this chapter, in real-world applications any reduction in the time it takes us to pivot 
based on data change is valuable.

In the next section, we'll be looking at tools that we can use to make our models more 
robust to changing data. We'll discuss the means by which we can maintain a broad 
set of model options, simultaneously accommodating one or multiple data change 
scenarios, without reducing the performance of our models.

Understanding model robustness
It's important to understand exactly what the problem is here and how and when it 
is presented. This involves defining two things; the first being robustness as it applies 
to machine learning algorithms. The second, of course, is data change. Some of the 
content in the first part of this section is at an introductory level, but experienced 
data scientists may still find value in reviewing the section!

In academic terms, the robustness of a machine learning algorithm is the property 
that characterizes how effective your algorithm is while being applied to a dataset 
other than the dataset on which it was trained.

Robustness testing is a core part of machine learning methodology in any context. 
The importance of validation techniques such as k-fold cross-validation and the use 
of tests when developing models for even the simplest contexts is a consequence of 
machine learning algorithm vulnerability to data change.

Most datasets contain both a signal and noise. Noise may be predictable (and thus 
more easily managed) or it may be stochastic and difficult to treat. A dataset may 
contain more or less noise. Typically, datasets with more or less predictable noise are 
harder to train and test against the same datasets with this noise removed (which can 
be easily tested).

When one has trained a model on a given dataset, it is almost inevitable that this 
model has learned based on both the signal and noise. The concept of overfitting is 
generally used to describe a model that has fit so well to a given dataset that it has 
learned to predict based on both the signal and noise, rendering it less powerful 
against other samples than a model with a less exact fit.
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Part of the goal of training a model is to reduce the impact of any local noise on 
learning as much as possible. The purpose of validation techniques that hold out 
a set of data to test is to ensure that any learning of noise during training happens 
only on noise that is local to the training set. The difference between training and 
test error can be used to understand the degree of overfitting between model 
implementations.

We've applied cross-validation in Chapter 1, Unsupervised Machine Learning. Another 
useful means of testing models for the overfitting is to directly add random noise in 
the form of jitter to the training dataset. This technique was introduced via a Kaggle 
notebook in October 2015 by Alexander Minushkin and offers a very interesting test. 
The concept is simple; by adding jitter and looking at the accuracy of prediction on 
the training data, we can distinguish an overfitted model (whose training error will 
increase more quickly as we add jitter) from a well- or poorly-fitted model:

In this case, we're able to plot the results of a jitter test to easily identify whether a 
model has overfit. From a very strong initial position, an overfit model will typically 
rapidly decline in performance as small amounts of jitter are added. For better-fitting 
models, the loss in performance with added jitter is much reduced, with the degree 
of overfitting in a model being particularly obvious at low levels of added jitter 
(where a well-fit model will tend to outperform an overfit counterpart).
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Let's look at how we implement a jitter test for overfitting. We use a familiar score, 
accuracy_score, defined as the proportion of class labels predicted correctly, as 
the basis for test scoring. Jitter is defined by simply adding random noise to the data 
(using np.random.normal) with the amount of noise defined by the configurable 
scale parameter:

from sklearn.metrics import accuracy_score

def jitter(X, scale):
    if scale > 0:        
        return X + np.random.normal(0, scale, X.shape)
    return X

def jitter_test(classifier, X, y, metric_FUNC = accuracy_score, sigmas 
= np.linspace(0, 0.5, 30), averaging_N = 5):
    out = []

    for s in sigmas:
        averageAccuracy = 0.0
        for x in range(averaging_N):
            averageAccuracy += metric_FUNC( y, classifier.
predict(jitter(X, s)))

        out.append( averageAccuracy/averaging_N)

    return (out, sigmas, np.trapz(out, sigmas))

allJT = {}

The jitter_test itself is defined as a wrapper to normal sklearn classification, 
given a classifier, training data, and a set of target labels. The classifier is then called 
to predict against a version of the data that first has the jitter operation called 
against it.

At this point, we'll begin creating a number of datasets to run our jitter test over. 
We'll use sklearn's make_moons dataset, commonly used as a dataset to visualize 
clustering and classification algorithm performance. This dataset is comprised of two 
classes whose data points create interleaving half-circles. By adding varying amounts 
of noise to make_moons and using differing amounts of samples, we can create a 
range of example cases to run our jitter test against:

import sklearn
import sklearn.datasets

import warnings
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warnings.filterwarnings("ignore", category=DeprecationWarning)

Xs = []
ys = []

#low noise, plenty of samples, should be easy
X0, y0 = sklearn.datasets.make_moons(n_samples=1000, noise=.05)
Xs.append(X0)
ys.append(y0)

#more noise, plenty of samples
X1, y1 = sklearn.datasets.make_moons(n_samples=1000, noise=.3)
Xs.append(X1)
ys.append(y1)

#less noise, few samples
X2, y2 = sklearn.datasets.make_moons(n_samples=200, noise=.05)
Xs.append(X2)
ys.append(y2)

#more noise, less samples, should be hard
X3, y3 = sklearn.datasets.make_moons(n_samples=200, noise=.3)
Xs.append(X3)
ys.append(y3)

This done, we then create a plotter object that we'll use to show our models' 
performance directly against the input data:

def plotter(model, X, Y, ax, npts=5000):

    xs = []
    ys = []
    cs = []
    for _ in range(npts):
        x0spr = max(X[:,0])-min(X[:,0])
        x1spr = max(X[:,1])-min(X[:,1])
        x = np.random.rand()*x0spr + min(X[:,0])
        y = np.random.rand()*x1spr + min(X[:,1])
        xs.append(x)
        ys.append(y)
        cs.append(model.predict([x,y]))
    ax.scatter(xs,ys,c=list(map(lambda x:'lightgrey' if x==0 else 
'black', cs)), alpha=.35)
    ax.hold(True)
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    ax.scatter(X[:,0],X[:,1],
                 c=list(map(lambda x:'r' if x else 'lime',Y)), 
                 linewidth=0,s=25,alpha=1)
    ax.set_xlim([min(X[:,0]), max(X[:,0])])
    ax.set_ylim([min(X[:,1]), max(X[:,1])])
    return

We'll use an SVM classifier as the base model for our jitter tests:

import sklearn.svm
classifier = sklearn.svm.SVC()

allJT[str(classifier)] = list()

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(11,13))
i=0
for X,y in zip(Xs,ys): 
    classifier.fit(X,y)
    plotter(classifier,X,y,ax=axes[i//2,i%2])
    allJT[str(classifier)].append (jitter_test(classifier, X, y))
    i += 1
plt.show()

The jitter test provides an effective means of assessing model overfitting and 
performs comparably to cross-validation; indeed, Minushkin provides evidence that 
it can outperform cross-validation as a tool to measure model fit quality.

Both of these tools to mitigate the overfitting work well in contexts where your 
algorithm is either run over data on a one-off basis or where underlying trends don't 
vary substantially. This is true for the majority of single-dataset problems (such as 
most academic or web repository datasets) or data problems where the underlying 
trends change slowly.

However, there are many contexts where the data involved in modeling might 
change over time in one or several dimensions. This can occur because of change 
in the methods by which data is captured, usually because new instruments or 
techniques come into use. For instance, video data captured by commonly-available 
devices has improved substantially in resolution over the decade since 2005 and the 
quality (and size!) of such data has increased. Whether you're using the video frames 
themselves or instead the file size as a parameter, you'll observe noticeable shifts in 
the nature, quality, and distributions of features.
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Alternatively, changes in dataset variables might be caused by differences in 
underlying trends. The classic data schema concept of measures and dimensions 
comes back into play here, as we can better understand how data change is affected 
by considering what dimensions influence our measurement.

The key example is time. Depending on context, many variables are subject to  
day-of-week, month-of-year, or seasonal variations. In many cases, a helpful option 
might be to parameterize these variables, (as we discussed in the preceding chapter, 
techniques such as one-hot encoding can help our algorithms learn to parse such 
trends) particularly if we're dealing with periodic trends that are easily predicted  
(for example, the impact of month-of-year on scarf sales in a given location) and 
easily modeled.

A more problematic type of time series trend is non-periodic change. As in 
the preceding video camera example, some types of time series trends change 
irrevocably and in ways that might not be trivial to predict. Telemetry from software 
tends to be influenced by the quality and functionality of the software build live at 
the time the telemetry was emitted. As builds change over time, the values sent in 
telemetry and the variables created from those values can change radically overnight 
in hard-to-predict ways.

Human behavior, a hugely important factor in many datasets, helpfully changes 
both periodically and non-periodically. People shop more around seasonal holidays, 
but also change their shopping habits permanently based on new societal or 
technological developments.

Some of the added complexity here comes not just from the fact that single variables 
and their distributions are affected by time series trends, but also from how 
relationships between relevant factors and their associated variables will change. 
The relationships between variables may change in quantifiable terms. One example 
is how, for humans, height and weight are two variables whose relationship varies 
between times and locations. The BMI feature, which we might use to track this 
relationship, shows differing distributions when sampled across periods of time or 
between locations.

Furthermore, variables can change in another serious way; namely, their importance 
to a performant modeling algorithm may vary over time! Some variables whose 
values are highly relevant in some periods of time will be less relevant in others. As 
an example, consider how climate and weather variables affect agriculture markets. 
For some crops and the companies dealing in them, these variables are fairly 
unimportant for much of the year. At the time of crop growth and harvest, however, 
they become fundamentally important. To make this more complex, the strength of 
these factors' importance is also tied to location (and local climate).
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The challenge for modeling is clear. For models that are trained once and run again 
on new data, managing data change can present serious challenges. For models that 
are dynamically recomputed based on new input data, data change can still create 
problems as variable distributions and relationships change and available variables 
become more or less valuable in generating an effective solution.

Part of the key to successfully managing data change in your application of ML is to 
recognize the dimensions (and there are common culprits) where change is probable 
and liable to affect the distributions of your features, relationships, and feature 
importance, which a model will attempt to pick up on.

Once you have an understanding as to what the factors in your data are that are 
likely to influence overfitting, you're better positioned to develop a solution that 
manages these factors effectively.

This said, it will still seem hugely challenging to build a single model that can resolve 
any potential issues. The simple response to this is that if one faces serious data change 
issues, the solution probably isn't to try to solve for them with a single model! In the 
next section, we'll be looking at ensemble methods to provide a better answer.

Identifying modeling risk factors
While it is in many cases quite straightforward to identify which elements present 
a risk to your model over time, it can help to employ a structured process for 
identification. This section briefly describes some of the heuristics and techniques 
you can employ to screen your models for the risk of data change.

Most data scientists keep a data dictionary for datasets that are intended for general 
use or automated applications. This is especially likely to happen if the data or 
applications are complex, but keeping a data dictionary is generally good practice. 
Some of the most effective work you can do in identifying risk factors is to run 
through these features and tag them based on different risk types.

Some of the tags that I tend to use include the following:

•	 Longitudinally variant: Is this parameter liable to change over a long time 
due to longitudinal trends that many not be fully visible in the span of the 
training data that you have available? The most obvious example is the 
ecological seasons, which affect many areas of human behavior as well as 
the many things that depend on some more fundamental climatic variables. 
Other longitudinal trends include the financial year and the working month, 
but extend to include many other longitudinal trends relevant to your area of 
investigation. The life cycle of new iPhone models or the population flux of 
voles might be an important longitudinal factor depending on the nature of 
your work.
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•	 Slowly changing: Is this categorical parameter likely to gain new values 
over time? This concept is borrowed from data warehousing best practices. 
A slowly changing dimension in the classical sense will gain new parameter 
codes (for example, as a new store opens or a new case is identified). These 
can throw your model entirely if not managed properly or if they appear in 
sufficient number. Another impact of slowly changing data, which can be 
more problematic to handle, is that it can begin to affect the distribution  
of your features. This can have a substantial impact on the effectiveness  
of your model.

•	 Key parameter: A combination of data value monitoring and recalculation of 
decision boundaries/regression equations will often handle a certain amount 
of slowly changing data and seasonal variance well, but consider taking 
action should you see an unexpectedly large amount of new cases or case 
types, especially when they affect variables depended on heavily by your 
model. For this reason, also make sure that you know which variables are 
most relied upon by your solution!

The process of tagging in this way is helpful (not least as an export of your own 
memory) mostly because it helps you to do the following:

•	 Organize your expectations and develop a kind of checklist for your 
development of monitoring readiness. If you aren't able to keep track of at 
least your longitudinally variant and slowly changing parameter change, you 
are effectively blind to any output from your model besides changes in the 
parameters that it favors when recomputed and its (likely slowly declining) 
performance measure.

•	 Investigate mitigation (for example, improved normalization or extra 
parameters that codify those dimensions in which your data is variant). In 
many ways, mitigation and the addition of parameters is the best solution 
you can tap to handle data change.

•	 Set up robustness testing using constructed datasets, where your risk features 
are deliberately varied to simulate data change. Stress-test your model under 
these conditions and find out exactly how much variance it'll tolerate. With 
this information, you can easily set yourself up to use your monitoring values 
as an early alert system; once data change exceeds a certain safe threshold, 
you know how much degradation to expect in the model performance.
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Strategies to managing model robustness
We've discussed a number of effective ensemble techniques that allow us to balance 
the twin needs for performant and robust models. However, throughout our 
exposition and use of these techniques, we had to decide how and when we would 
reduce our model's performance to improve robustness.

Indeed, a common theme in this chapter has been how to balance the conflicting 
objectives of creating an effective, performant model, without making this model  
too inflexible to respond to data change. Many of the solutions that we've seen so  
far have required that we trade-off one outcome against the other, which is less  
than ideal.

At this point, it's worth our taking a slightly wider view of our options and drawing 
from complimentary techniques. The need for robust, performant statistical models 
within evolving business landscapes is neither new nor untreated; fields such as 
credit risk modeling have a long history of applied statistical modeling in changing 
domains and have developed effective decision management methodologies in order 
to succeed. Data scientists can turn some of these established techniques to our own 
benefit via using them to help organize our own models.

One effective methodology is Champion/Challenger, a test-centric approach 
that involves running multiple, parallel model configurations. In addition to 
the model whose outputs are applied (to direct business activities or inform 
reporting), champion/challenger approaches training one or more alternative model 
configurations.

By maintaining and monitoring multiple models, one can arrange to substitute the 
current model as and when an alternative outperforms it. This is usually done by 
maintaining a performance scoring process for all models and observing the results 
so that a manual decision call can be made about whether and when to switch to  
a challenger.

While the simplest implementation may involve switching to a challenger as soon as 
it outperforms the main model, this is rarely done as there are risks around specific 
challenger models being exposed to local minima (for example, the day-of-week or 
month-of-year local trends). It is normal to spend a significant period assessing a 
challenger model, particularly ahead of sensitive applications. In complex real cases, 
one may even want to do additional testing by providing a sample of treatment cases 
to a promising challenger to determine whether it generates significant lift over  
the champion.
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There is scope for some creativity beyond simple, "replace the challenger" succession 
rules. Voting-based approaches are quite common, where a top subset of the trained 
ensembles provides scores on a case-by-case basis and those scores treated as 
(weighted or unweighted) votes. Another approach involves using a Borda count, a 
voting system where each voter ranks the candidate solutions in order of preference. 
In the context of ensembling, one would typically assign each individual model's 
prediction a point value equal to its inverse rank (keeping each model separate!). 
Then one can combine these votes (usually experimenting with a range of different 
weightings) to generate a result.

Voting can perform fairly well with a larger number of models but is dependent on the 
specific modeling context and factors like the similarity of the different voters. As we 
discussed earlier in this chapter, it's critical to use tests such as Pearson's correlation 
coefficient to ensure that your model set is both performant and uncorrelated.

One may find that particular classes of input data (users, say, with specific 
segmentation tags) are more effectively treated by a given challenger and may 
implement a case routing system where multiple champions deal with different user 
subgroups. This approach overlaps somewhat with the benefits of boosting ensembles, 
but can help in production circumstances by separating concerns. However, 
maintaining multiple champions will increase the monitoring and oversight burden for 
your data team, so this option is best avoided if not entirely necessary.

A major concern to address is how we go about scoring our models, not least because 
there are immediate practical challenges. In particular, it is hard to compare multiple 
models in real contexts, given that class labels (to guide correctness) typically 
aren't available. In predictive contexts, this problem is compounded by the fact 
that the champion model's predictions are typically used to take actions that alter 
predicted events. This activity makes it very difficult to make assertions about how 
a challenger model's predictions would've performed; by taking action based on our 
champion's predictions, we're unable to confirm the results of our models!

The most common implementation process is to provide each challenger model with 
a statistically viable sample of the input data and then compare the lift from each 
approach. This approach inherently limits the number of challengers that one can 
support for some modeling problems. Another option is to leave just one statistically 
viable sample out of any treatment activity and use it to create a single regression 
test. This test is applied to the entire set of champion and challenger models, 
providing a meaningful basis for comparison.
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The downside to this approach is that the change to a more effective model will 
always trail the data change by however long it takes to generate correct class labels 
for the test cases. While in many cases this isn't crippling (the champion model 
remains in place for the period it takes to generate accurate models), it can present 
problems in contexts where underlying conditions change rapidly compared to the 
training time for models.

It's worth making one brief comment on the relationship between model 
training time and data change frequency. It isn't always clearly stated 
as such, but the typical goal in applied machine learning contexts is 
to reduce the factor of training time to data change frequency to the 
smallest value possible. To take the worst case, if the length of time 
it takes to train a model is longer than the length of time that model 
will be accurate for (and the ratio is equal to or greater than one), your 
model will never generate current results that can directly drive current 
actions. In general, a high ratio should prompt review and adjustment 
activities (either an investigation into whether faster score delivery at 
lower confidence delivers more value or adjustment to the rate at which 
controllable environment variables change).
The smaller this ratio becomes, the more leeway your team has to apply 
your model's outputs to drive actions and generate value. Depending 
on how variant and quantifiable this ratio is for your modeling context, 
it can be a useful concept to promote within your organization as a 
health measure for your automated modeling solution.

These alternative models may simply be the next best-performing ensemble 
configurations; they may be older models, kept around for observation. In 
sophisticated operations, some challengers are configured to handle different what-if 
scenarios (for example, what if the temperature in this region is 2 C below expectations or 
what if sales are significantly below expectations). These models may have been trained 
on the same data as the main model or on deliberately skewed or prepared data that 
simulates the what-if scenario.

More challengers tend to be better (providing improved robustness and 
performance), provided that the challengers are not all minute variations on the 
same theme. Challenger models also provide a safe venue for innovation and testing, 
while observing effective challengers can provide useful insights into how robust 
your champion ensemble is likely to be to a range of possible environmental changes.
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The techniques that you've learned to apply in this section have provided us with 
the tools to apply our existing toolkit of models to real applications in evolving 
environments. This chapter also discussed complications that can arise when 
applying ML models to production; data change, between samples or across 
dimensions, will cause our models to become increasingly ineffective. By thoroughly 
unpacking the concept of data change, we became better able to characterize this risk 
and recognize where and how it might present itself.

The remainder of the chapter was dedicated to techniques that provide improved 
model robustness. We discussed how to identify model degradation risk by looking 
at the underlying data and discussed some helpful heuristics to this end. We drew 
from existing decision management methods to learn about and use Champion/
Challenger, a well-regarded process with a long history in contexts including applied 
machine learning. Champion/Challenger helps us organize and test multiple models 
in healthy competition. In conjunction with effective performance monitoring, 
a proactive tactical plan for model substitution will give you faster and more 
controllable management of the model life cycle and quality, all the while providing 
a wealth of valuable operational insights.

Further reading
Perhaps the most wide-ranging and informative tour of Ensembles and ensemble 
types is provided by the Kaggle competitor, Triskelion, at http://mlwave.com/
kaggle-ensembling-guide/. 

For discussion of the Netflix Prize-winning model, Pragmatic Chaos, refer to 
http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BellKor.pdf. For 
an explanation by Netflix on how changing business contexts rendered that 
$1M-model redundant, refer to the Netflix Tech blog at http://techblog.netflix.
com/2012/04/netflix-recommendations-beyond-5-stars.html. 

For a walkthrough on applying random forest ensembles to commercial contexts, 
with plenty of space given to all-important diagnostic charts and reasoning, consider 
Arshavir Blackwell's blog at https://citizennet.com/blog/2012/11/10/random-
forests-ensembles-and-performance-metrics/.

For further information on random forests specifically, I find the scikit-learn 
documentation helpful: http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html.

A great introduction to gradient-boosted trees is provided within the XGBoost 
documentation at http://xgboost.readthedocs.io/en/latest/model.html.

http://mlwave.com/kaggle-ensembling-guide/
http://mlwave.com/kaggle-ensembling-guide/
http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BellKor.pdf
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/
https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://xgboost.readthedocs.io/en/latest/model.html
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For a write-up of Alexander Guschin's entry to the Otto Product Classification 
challenge, refer to the No Free Hunch blog: http://blog.kaggle.com/2015/06/09/
otto-product-classification-winners-interview-2nd-place-alexander-
guschin/.

Alexander Minushkin's Jitter test for overfitting is described at https://www.
kaggle.com/miniushkin/introducing-kaggle-scripts/jitter-test-for-
overfitting-notebook.

Summary
In this chapter, we covered a lot of ground. We began by introducing ensembles, 
some of the most powerful and popular techniques in competitive machine  
learning contexts. We covered both the theory and code needed to apply ensembles 
to our machine learning projects, using a combination of expert knowledge and 
practical examples.

In addition, this chapter also dedicates a section to discussing the unique 
considerations that arise when you run models for weeks and months at a time. We 
discussed what data change can mean, how to identify it, and how to think about 
guarding against it. We gave specific consideration to the question of how to create 
sets of models running in parallel, which you can switch between based on seasonal 
change or performance drift in your model set.

During our review of these techniques, we spent significant time with real-world 
examples with the specific aim of learning more about the creative mindset and 
broad range of knowledge required of the best data scientists.

The techniques throughout this book have led up to a point that, armed with 
technical knowledge, code to reapply, and an understanding of the possibilities,  
you are truly able to take on any data modeling challenge.

http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/
http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/
http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/
https://www.kaggle.com/miniushkin/introducing-kaggle-scripts/jitter-test-for-overfitting-notebook
https://www.kaggle.com/miniushkin/introducing-kaggle-scripts/jitter-test-for-overfitting-notebook
https://www.kaggle.com/miniushkin/introducing-kaggle-scripts/jitter-test-for-overfitting-notebook
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Additional Python Machine 
Learning Tools

Over the course of the eight preceding chapters, we have examined and applied a 
range of techniques that help us enrich and model data for many applications.

We approached the content in these chapters using a combination of Python 
libraries, particularly NumPy and Theano, while the other libraries were drawn 
upon as and when we needed to access specific algorithms. We did not spend a great 
deal of time discussing what other options existed in terms of tools, what the unique 
differentiators of these tools were, or why we might be interested.

The primary goal of this final chapter is to highlight some other key libraries and 
frameworks that are available to you to use. These tools streamline and simplify 
the process of creating and applying models. This chapter presents these tools, 
demonstrates their application, and provides extensive advice regarding  
Further reading.

A major contributor to succeed in solving data science challenges and being 
successful as a data scientist is having a good understanding of the latest 
developments in algorithms and libraries. As professionals, data scientists tend to be 
highly dependent on the quality of the data they use, but it is also very important to 
have the best tools available.

In this chapter, we will review some of the best in the recent tools available to data 
scientists, identifying the benefits they offer, and discussing how to apply them 
alongside tools and techniques discussed earlier in this book within a consistent 
working process.
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Alternative development tools
Over the last couple of years, a number of new machine learning frameworks have 
emerged that offer advantages in terms of workflow. Usually these frameworks 
are highly focused on a specific use case or objective. This makes them very useful, 
perhaps even must-have tools, but it also means that you may need to use multiple 
workflow improvement libraries.

With an ever-growing set of new Python ML projects being lit up to address specific 
workflow challenges, it's worth discussing two libraries that add to our existing 
workflow and which accelerate or improve the work we've done in the preceding 
chapters. In this chapter, we'll be introducing Lasagne and TensorFlow, discussing 
the code and capabilities of each library and identifying why each framework is 
worth considering as a part of your toolset.

Introduction to Lasagne
Let's face it; sometimes creating models in Python takes longer than we'd like. 
However, they can be efficient for models that are more complex and offer big 
benefits (such as GPU acceleration and configurability) libraries similar to Theano 
can be relatively complex to use when working on simple cases. This is unfortunate 
because we often want to work with simple models, for instance, when we're setting 
up benchmarks.

Lasagne is a library developed by a team of deep learning and music data mining 
researchers to work as an interface to Theano. It is designed specifically to nail a 
particular goal—to allow for fast and efficient prototyping of new models.

This focus dictated how Lasagne was created, to call Theano functions and return 
Theano expressions or numpy data types, in a much less complex and more easily 
understood manner than the same operations written in native Theano code.

In this section, we'll take a look at the conceptual model underlying Lasagne, apply 
some Lasagne code, and understand what the library adds to our existing practices.

Getting to know Lasagne
Lasagne operates using the concept of layers, a familiar concept in machine learning. 
A layer is a set of neurons and operating rules that will take an input and generate 
a score, label, or other transformations. Neural networks generally function as a set 
of layers that feed input data in at one end and push output values out at the other 
(though the ways in which this gets done vary broadly).
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It has become very popular in deep learning contexts to start treating individual 
layers as first class citizens. Traditionally, in machine learning work, a network 
would be established from layers using only a few parameter specifications (such as 
node count, bias, and weight values).

In recent years, data scientists seeking that extra edge have begun to take increasing 
interest in the configuration of individual layers. Nowadays it is not unusual in 
advanced machine learning environments to see layers that contain sub-models and 
transformed inputs. Even features, nowadays, might skip layers as needed and new 
features may be added to layers partway through a model. As an example of some of 
this refinement, consider the convolutional neural network architectures employed 
by Google to solve image recognition challenges. These networks are extensively 
refined at a layer level to generate performance improvements.

It therefore makes sense that Lasagne treats layers as its basic model component. 
What Lasagne adds to the model creation process is the ability to stack different 
layers into a model quickly and intuitively. One may simply call a class within 
lasagne.layers to stack a class onto your model. The code for this is highly  
efficient and looks as follows:

l0 = lasagne.layers.InputLayer(shape=X.shape)

l1 = lasagne.layers.DenseLayer(
l0, num_units=10, nonlinearity=lasagne.nonlinearities.tanh)

l2 = lasagne.layers.DenseLayer(l1, num_units=N_CLASSES, 
nonlinearity=lasagne.nonlinearities.softmax)

In three simple statements, we have created the basic structure of a network using 
simple and configurable functions.

This code creates a model using three layers. The layer l0 calls the InputLayer class, 
acting as an input layer for our model. This layer translates our input dataset into a 
Theano tensor, based on the expected shape of the input (defined using the shape 
parameter).

The next layers, l1 and l2 are each fully connected (dense) layers. Layer l2 is 
defined as an output layer, with a number of units equal to the number of classes, 
while l1 uses the same DenseLayer class to create a hidden layer of 10 units.
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In addition to configuration of the standard parameters (weights, biases, unit count 
and nonlinearity type) available to the DenseLayer class, it is possible to employ 
entirely different network types using different classes. Lasagne provides classes 
for a broad set of familiar layers, including dense, convolutional and pooling 
layers, recurrent layers, normalisation and noise layers, amongst others. There is, 
furthermore, a special-purpose layer class, which provides a range of additional 
functionality.

If something more bespoke than what these classes provide is needed, of course, 
the user can resort to defining their own layer type easily and use it in conjunction 
with other Lasagne classes. However, for a majority of prototyping and fast, iterative 
development contexts, this is a great amount of pre-prepared capability.

Lasagne provides a similarly succinct interface to define the loss calculation for  
a network:

true_output = T.ivector('true_output')
objective = lasagne.objectives.Objective(l2, loss_function=lasagne.
objectives.categorical_crossentropy)

loss = objective.get_loss(target=true_output)

The loss function defined here is one of the many available functions, including 
squared error, hinge loss for binary and multi-class cases, and crossentropy 
functions. An accuracy scoring function for validation is also provided.

With these two components, a loss function and a network architecture, we again 
have everything we need to train a network. To do this, we need to write a little 
more code:

all_params = lasagne.layers.get_all_params(l2)
updates = lasagne.updates.sgd(loss, all_params, learning_rate=1)
train = theano.function([l0.input_var, true_output], loss, 
updates=updates)

get_output = theano.function([l0.input_var], net_output)

for n in xrange(100):
 train(X, y)

This code leverages the theano functionality to train our example network, using our 
loss function, to iteratively train to classify a given set of input data.
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Introduction to TensorFlow
When we reviewed Google's take on the convolutional neural network (CNN) 
in Chapter 4, Convolutional Neural Networks, we found a convoluted, many-layered 
beast. The question of how to create and monitor such networks only became more 
important as the network scales in layer count and complexity to attack challenges 
that are more complex.

To address this challenge, the Machine Intelligence research organisation at Google 
developed and distributed a library named TensorFlow, which exists to enable easier 
refinement and modeling of very involved machine learning models.

TensorFlow does this by providing two main benefits; a clear and simple 
programming interface (in this case, a Python API) onto familiar structures (such 
as NumPy objects), and powerful diagnostic and graph visualisation tools, such as 
TensorBoard, to enable informed tuning of a data architecture.

Getting to know TensorFlow
TensorFlow enables a data scientist to design data transformation operations as 
a flow across a computation graph. This graph can be extended and modified, 
while individual nodes can be tuned extensively, enabling detailed refinements 
of individual layers or model components. The TensorFlow workflow typically 
involves two phases. The first of these is referred to as the construction phase, during 
which a graph is assembled.

During the construction phase, we can write code using the Python API for 
Tensorflow. Like Lasagne, TensorFlow offers a relatively simple interface to writing 
network layers, requiring simply that we specify weights and bias before creating 
our layers. The following example shows initial setting of weight and bias variables, 
before creating (using one line of code each) a convolutional layer and a simple 
max-pooling layer. Additionally, we use tf.placeholder to generate placeholder 
variables for our input data.

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

W = tf.Variable(tf.zeros([5, 5, 1, 32]))
b = tf.Variable(tf.zeros([32]))

h_conv = tf.nn.relu(conv2d(x_image, W) + b)
h_pool = max_pool_2x2(h_conv)
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This structure can be extended to include a softmax output layer, just as we did  
with Lasagne.

W_out = tf.Variable(tf.zeros([1024,10]))
B_out = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(h_conv, W_out) + b_out)

Again, we can see significant improvements in the iteration time over writing 
directly in Theano and Python libraries. Being written in C++, TensorFlow also 
provides performance gains over Python, providing advantages in execution time.

Next up, we need to train and evaluate our model. Here, we'll need to write a 
little code to define our loss function for training (cross entropy, in this case), an 
accuracy function for validation and an optimisation method (in this case, steepest 
gradient descent).

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), 
reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_
entropy)

correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Following this, we can simply begin running our model iteratively. This is all 
succinct and very straightforward:

sess.run(tf.initialize_all_variables())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 
0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
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Using TensorFlow to iteratively improve our models
Even from the single example in the preceding section, we should be able to 
recognise what TensorFlow brings to the table. It offers a simple interface for the task 
of developing complex architectures and training methods, giving us easier access to 
the algorithms we've learnt about earlier in this book.

As we know, however, developing an initial model is only a small part of the model 
development process. We usually need to test and dissect our models repeatedly to 
improve their performance. However, this tends to be an area where our tools are 
less unified in a single library or technique, and the tests and monitoring solutions 
less consistent across models.

TensorFlow looks to solve the problem of how to get good insight into our models 
during iteration, in what it calls the execution phase of model development. During 
the execution phase, we can make use of tools provided by the TensorFlow team to 
explore and improve our models.

Perhaps the most important of these tools is TensorBoard, which provides an 
explorable, visual representation of the model we've built. TensorBoard provides 
several capabilities, including dashboards that show both basic model information 
(including performance measurements during each iteration for test and/or training).
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In addition, TensorBoard dashboards provide lower-level information including 
plots of the range of values for weights, biases and activation values at every model 
layer; tremendously useful diagnostic information during iteration. The process of 
accessing this data is hassle-free and it is immediately useful.

Further to this, TensorBoard provides a detailed graph of the tensor flow for a 
given model. The tensor is an n-dimensional array of data (in this case, of n-many 
features); it's what we tend to think of when we use the term the input dataset. The 
series of operations that is applied to a tensor is described as the tensor flow and 
in TensorFlow it's a fundamental concept, for a simple and compelling reason. 
When refining and debugging a machine learning model, what matters is having 
information about the model and its operations at even a low level.
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TensorBoard graphs show the structure of a model in variable detail. From this initial 
view, it is possible to dig into each component of the model and into successive 
sub-elements. In this case, we are able to view the specific operations that take place 
within the dropout function of our second network layer. We can see what happens 
and identify what to tweak for our next iteration.

This level of transparency is unusual and can be very helpful when we want 
to tweak model components, especially when a model element or layer is 
underperforming (as we might see, for instance, from TensorBoard graphs showing 
layer metaparameter values or from network performance as a whole).

TensorBoards can be created from event logs and generated when TensorFlow is 
run. This makes the benefits of TensorBoards easily obtained during the course of 
everyday development using TensorFlow.
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As of late April 2016, the DeepMind team joined the Google Brain team and a broad 
set of other researchers and developers in using TensorFlow. By making TensorFlow 
open source and freely available, Google is committing to continue supporting 
TensorFlow as a powerful tool for model development and refinement.

Knowing when to use these libraries
At one or two points in this chapter, we probably ran into the question of Okay, so, 
why didn't you just teach us about this library to begin with? It's fair to ask why we spent 
time digging around in Theano functions and other low-level information when this 
chapter presents perfectly good interfaces that make life easier.

Naturally, I advocate using the best tools available, especially for prototyping tasks 
where the value of the work is more in understanding the general ballpark you're in, 
or in identifying specific problem classes. It's worth recognising the three reasons for 
not presenting content earlier in this book using either of these libraries.

The first reason is that these tools will only get you so far. They can do a lot, agreed, 
so depending on the domain and the nature of that domain's problems, some data 
scientists may be able to rely on them for the majority of deep learning needs. 
Beyond a certain level of performance and problem complexity, of course, you need 
to understand what is needed to construct a model in Theano, create your own 
scoring function from scratch or leverage the other techniques described in this book.

Another part of the decision to focus on teaching lower-level implementation is 
about the developing maturity of the technologies involved. At this point, Lasagne 
and TensorFlow are definitely worth discussing and recommending to you. Prior 
to this, when the majority of the book was written, the risk around discussing the 
libraries in this chapter was greater. There are many projects based on Theano (some 
of the more prominent frameworks which weren't discussed in this chapter are 
Keras, Blocks and Pylearn2)

Even now, it's entirely possible that different libraries and tools will be the subject of 
discussion or the default working environment in a year or two years' time. This field 
moves extremely fast, largely due to the influence of key companies and research 
groups who have to keep building new tools as the old ones reach their useful 
limits… or it just becomes clear how to do things better.

The other reason to dig in at a lower level, honestly, is that this is an involved book. 
It sets theory alongside code and uses the code to teach the theory. Abstracting 
away how the algorithms work and simply discussing how to apply them to crack 
a particular example can be tempting. The tools discussed in this chapter enable 
practitioners to get very good scores on some problems without ever understanding 
the functions that are being called. My opinion is that this is not a very good way to 
train a data scientist.
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If you're going to operate on subtle and difficult data problems, you need to be able 
to modify and define your own algorithm. You need to understand how to choose 
an appropriate solution. To do these things, you need the details provided in this 
book and even more very specific information that I haven't provided, due to the 
limitations of (page) space and time. At that point, you can apply deep learning 
algorithms flexibly and knowledgeably.

Similarly, it's important to recognise what these tools do well, or less well. At 
present, Lasagne fits very well within that use-case where a new model is being 
developed for benchmarking or early passes, where the priority should be on 
iteration speed and getting results.

TensorFlow, meanwhile, fits later into the development lifespan of a model. When 
the easy gains disappear and it's necessary to spend a lot of time debugging and 
improving a model, the relatively quick iterations of TensorFlow are a definite plus, 
but it's the diagnostic tools provided by TensorBoard that present an overwhelming 
value-add.

There is, therefore, a place for both libraries in your toolset. Depending on the nature 
of the problem at hand, these libraries and more will prove to be valuable assets.

Further reading
The Lasagne User Guide is thorough and worth reading. Find it at http://lasagne.
readthedocs.io/en/latest/index.html.

Similarly, find the TensorFlow tutorials at https://www.tensorflow.org/
versions/r0.9/get_started/index.html.

Summary
In this final chapter, we moved some distance from our previous discussions 
of algorithms, configuration and diagnosis to consider tools that improve our 
experience when implementing deep learning algorithms.

We discovered the advantages to using Lasagne, an interface to Theano designed 
to accelerate and simplify early prototyping of our models. Meanwhile, we 
examined TensorFlow, the library developed by Google to aid Deep Learning model 
adjustment and optimization. TensorFlow offers us a remarkable amount of visibility 
of model performance, at minimal effort, and makes the task of diagnosing and 
debugging a complex, deep model structure much less challenging.

http://lasagne.readthedocs.io/en/latest/index.html
http://lasagne.readthedocs.io/en/latest/index.html
https://www.tensorflow.org/versions/r0.9/get_started/index.html
https://www.tensorflow.org/versions/r0.9/get_started/index.html
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Both tools have their own place in our processes, with each being appropriate for a 
particular set of problems.

Over the course of this book as a whole, we have walked through and reviewed a 
broad set of advanced machine learning techniques. We went from a position where 
we understood some fundamental algorithms and concepts, to having confident use 
of a very current, powerful and sought-after toolset.

Beyond the techniques, though, this book attempts to teach one further concept, one 
that's much harder to teach and to learn, but which underpins the best performance 
in machine learning.

The field of machine learning is moving very fast. This pace is visible in new and 
improved scores that are posted almost every week in academic journals or industry 
white papers. It's visible in how training examples like MNIST have moved quickly 
from being seen as meaningful challenges to being toy problems, the deep learning 
version of the Iris dataset. Meanwhile, the field moves on to the next big challenge; 
CIFAR-10, CIFAR-100.

At the same time, the field moves cyclically. Concepts introduced by academics like 
Yann LeCun in the 80's are in resurgence as computing architectures and resource 
growth make their use more viable over real data at scale. To use many of the most 
current techniques at their best limits, it's necessary to understand concepts that were 
defined decades ago, themselves defined on the back of other concepts defined still 
longer ago.

This book tries to balance these concerns. Understanding the cutting edge and the 
techniques that exist there is critical; understanding the concepts that'll define the new 
techniques or adjustments made in two or three years' time is equally important.

Most important of all, however, is that this book gives you an appreciation of how 
malleable these architectures and approaches can be. A concept consistently seen at 
the top end of data science practice is that the best solution to a specific problem is a 
problem-specific solution.

This is why top Kaggle contest winners perform extensive feature preparation and 
tweak their architectures. It's why TensorFlow was written to allow clear vision of 
granular properties of ones' architectures. Having the knowledge and the skills to 
tweak implementations or combine algorithms fluently is what it takes to have true 
mastery of machine learning techniques.
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Through the many techniques and examples reviewed within this book, it is my hope 
that the ways of thinking about data problems and a confidence in manipulating and 
configuring these algorithms has been passed on to you as a practicing data scientist. 
The many recommended Further reading examples in this book are largely intended 
to further extend that knowledge and help you develop the skills taught in this book.

Beyond that, I wish you all the best of luck in your model building and 
configuration. I hope that you learn for yourself just how enjoyable and  
rewarding this field can be!
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Chapter Code Requirements
This book's content leverages openly available data and code, including open source 
Python libraries and frameworks. While each chapter's example code is accompanied 
by a README file documenting all the libraries required to run the code provided in 
that chapter's accompanying scripts, the content of these files is collated here for 
your convenience.

It is recommended that you already have some libraries that are required for the 
earlier chapters when working with code from any later chapter. These requirements 
are identified using keywords. It is particularly important to set up the libraries 
mentioned in Chapter 1, Unsupervised Machine Learning, for any content provided later 
in the book. The requirements for every chapter are given in the following table:

Chapter Number Requirements
1 •	 Python 3 (3.4 recommended)

•	 sklearn (NumPy, SciPy)
•	 matplotlib

2-4 •	 theano
5 •	 Semisup-learn
6 •	 Natural Language Toolkit (NLTK)

•	 BeautifulSoup
7 •	 Twitter API account
8 •	 XGBoost
9 •	 Lasagne

•	 TensorFlow
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