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Preface

Machine learning and predictive analytics are becoming one of the key strategies for
unlocking growth in a challenging contemporary marketplace .It is one of the fastest
growing trends in modern computing and everyone wants to get into the field of
machine learning. In order to obtain sufficient recognition in this field, one must be
able to understand and design a machine learning system that serves the needs of a
project. The idea is to prepare a Learning Path that will help you to tackle the real-
world complexities of modern machine learning with innovative and cutting-edge
techniques. Also, it will give you a solid foundation in the machine learning design
process, and enable you to build customized machine learning models to solve
unique problems

What this learning path covers

Module 1, Python Machine Learning, discusses the essential machine algorithms for
classification and provides practical examples using scikit-learn. It teaches you to
prepare variables of different types and also speaks about polynomial regression
and tree-based approaches. This module focuses on open source Python library that
allows us to utilize multiple cores of modern GPUs.

Module 2, Designing Machine Learning Systems with Python, acquaints you with large
library of packages for machine learning tasks. It introduces broad topics such

as big data, data properties, data sources, and data processing .You will further
explore models that form the foundation of many advanced nonlinear techniques.
This module will help you in understanding model selection and parameter tuning
techniques that could help in various case studies.
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Module 3, Advanced Machine Learning with Python, helps you to build your skill
with deep architectures by using stacked denoising autoencoders. This module is a
blend of semi-supervised learning techniques, RBM and DBN algorithms .Further
this focuses on tools and techniques which will help in making consistent working
process.

What you need for this learning path

Module 1, Python Machine Learning will require an installation of Python 3.4.3 or
newer on Mac OS X, Linux or Microsoft Windows. Use of Python essential libraries
like SciPy, NumPYy, scikit-Learn, matplotlib, and pandas. is essential.

Before you start, Please refer:

e The direct link to the Iris dataset would be: https://raw.
githubusercontent.com/rasbt/python-machine-learning-book/
master/code/datasets/iris/iris.data

*  We've added some additional notes to the code notebooks mentioning the
offline datasets in case there are server errors. https://www.dropbox.com/
sh/tg2qgdhOogfgsktq/AADIt7esnbiWLOQODn5g 7Dta?dl=0

*  Module 2, Designing Machine Learning Systems with Python, will need an
inclination to learn machine learning and the Python V3 software, which you
can download from https://www.python.org/downloads/.

* Module 3, Advanced Machine Learning with Python, leverages openly
available data and code, including open source Python libraries and
frameworks.

Who this learning path is for

This title is for Data scientist and researchers who are already into the field of

Data Science and want to see Machine learning in action and explore its real-world
application. Prior knowledge of Python programming and mathematics is must with
basic knowledge of machine learning concepts.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this course —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.
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To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the course in the Search box.

Select the course for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this course from.
Click on Code Download.

NSOk

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

[iii ]
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The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Deeper-Insights-into-Machine-Learning.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses —maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this course, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[iv]
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Giving Computers the Ability
to Learn from Data

In my opinion, machine learning, the application and science of algorithms that makes
sense of data, is the most exciting field of all the computer sciences! We are living in
an age where data comes in abundance; using the self-learning algorithms from the
field of machine learning, we can turn this data into knowledge. Thanks to the many
powerful open source libraries that have been developed in recent years, there has
probably never been a better time to break into the machine learning field and learn
how to utilize powerful algorithms to spot patterns in data and make predictions
about future events.

In this chapter, we will learn about the main concepts and different types of machine
learning. Together with a basic introduction to the relevant terminology, we will lay
the groundwork for successfully using machine learning techniques for practical
problem solving.

In this chapter, we will cover the following topics:

* The general concepts of machine learning
* The three types of learning and basic terminology
* The building blocks for successfully designing machine learning systems

* Installing and setting up Python for data analysis and machine learning

[31]



Giving Computers the Ability to Learn from Data

Building intelligent machines to
transform data into knowledge

In this age of modern technology, there is one resource that we have in abundance: a
large amount of structured and unstructured data. In the second half of the twentieth
century, machine learning evolved as a subfield of artificial intelligence that involved
the development of self-learning algorithms to gain knowledge from that data in
order to make predictions. Instead of requiring humans to manually derive rules
and build models from analyzing large amounts of data, machine learning offers a
more efficient alternative for capturing the knowledge in data to gradually improve
the performance of predictive models, and make data-driven decisions. Not only is
machine learning becoming increasingly important in computer science research but
it also plays an ever greater role in our everyday life. Thanks to machine learning,
we enjoy robust e-mail spam filters, convenient text and voice recognition software,
reliable Web search engines, challenging chess players, and, hopefully soon, safe and
efficient self-driving cars.

The three different types of
machine learning

In this section, we will take a look at the three types of machine learning: supervised
learning, unsupervised learning, and reinforcement learning. We will learn about the
fundamental differences between the three different learning types and, using
conceptual examples, we will develop an intuition for the practical problem
domains where these can be applied:

Unsupervised Supervised
Learning Learning

Learning

Reinforcement |

[4]



Chapter 1

Making predictions about the future with
supervised learning

The main goal in supervised learning is to learn a model from labeled training data
that allows us to make predictions about unseen or future data. Here, the term
supervised refers to a set of samples where the desired output signals (labels) are
already known.

Considering the example of e-mail spam filtering, we can train a model using a
supervised machine learning algorithm on a corpus of labeled e-mail, e-mail that are
correctly marked as spam or not-spam, to predict whether a new e-mail belongs to
either of the two categories. A supervised learning task with discrete class labels, such
as in the previous e-mail spam-filtering example, is also called a classification task.
Another subcategory of supervised learning is regression, where the outcome signal is
a continuous value:

Labels

Machine Learning
Algorithm

E>| Predictive Model ‘l::>‘ Prediction ‘

Classification for predicting class labels

Classification is a subcategory of supervised learning where the goal is to
predict the categorical class labels of new instances based on past observations.
Those class labels are discrete, unordered values that can be understood as the
group memberships of the instances. The previously mentioned example of
e-mail-spam detection represents a typical example of a binary classification
task, where the machine learning algorithm learns a set of rules in order to
distinguish between two possible classes: spam and non-spam e-mail.

[51]



Giving Computers the Ability to Learn from Data

However, the set of class labels does not have to be of a binary nature. The predictive
model learned by a supervised learning algorithm can assign any class label that was
presented in the training dataset to a new, unlabeled instance. A typical example of

a multi-class classification task is handwritten character recognition. Here, we could
collect a training dataset that consists of multiple handwritten examples of each letter
in the alphabet. Now, if a user provides a new handwritten character via an input
device, our predictive model will be able to predict the correct letter in the alphabet
with certain accuracy. However, our machine learning system would be unable to
correctly recognize any of the digits zero to nine, for example, if they were not part
of our training dataset.

The following figure illustrates the concept of a binary classification task given 30
training samples: 15 training samples are labeled as negative class (circles) and 15
training samples are labeled as positive class (plus signs). In this scenario, our dataset
is two-dimensional, which means that each sample has two values associated with
it: x, and x,. Now, we can use a supervised machine learning algorithm to learn a
rule —the decision boundary represented as a black dashed line —that can separate
those two classes and classify new data into each of those two categories given its x,
and x, values:

-
-4
-+

+

v

Regression for predicting continuous outcomes

We learned in the previous section that the task of classification is to assign
categorical, unordered labels to instances. A second type of supervised learning is
the prediction of continuous outcomes, which is also called regression analysis. In
regression analysis, we are given a number of predictor (explanatory) variables and a
continuous response variable (outcome), and we try to find a relationship between
those variables that allows us to predict an outcome.

[6]
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For example, let's assume that we are interested in predicting the Math SAT
scores of our students. If there is a relationship between the time spent studying
for the test and the final scores, we could use it as training data to learn a model
that uses the study time to predict the test scores of future students who are
planning to take this test.

The term regression was devised by Francis Galton in his article
. Regression Towards Mediocrity in Hereditary Stature in 1886. Galton
% described the biological phenomenon that the variance of height
L in a population does not increase over time. He observed that
the height of parents is not passed on to their children but the
children's height is regressing towards the population mean.

The following figure illustrates the concept of linear regression. Given a predictor
variable x and a response variable y, we fit a straight line to this data that minimizes
the distance —most commonly the average squared distance —between the sample
points and the fitted line. We can now use the intercept and slope learned from this
data to predict the outcome variable of new data:

v
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Solving interactive problems with
reinforcement learning

Another type of machine learning is reinforcement learning. In reinforcement
learning, the goal is to develop a system (agent) that improves its performance
based on interactions with the environment. Since the information about the current
state of the environment typically also includes a so-called reward signal, we can
think of reinforcement learning as a field related to supervised learning. However, in
reinforcement learning this feedback is not the correct ground truth label or value,
but a measure of how well the action was measured by a reward function. Through
the interaction with the environment, an agent can then use reinforcement learning
to learn a series of actions that maximizes this reward via an exploratory
trial-and-error approach or deliberative planning.

A popular example of reinforcement learning is a chess engine. Here, the agent decides
upon a series of moves depending on the state of the board (the environment), and the
reward can be defined as win or lose at the end of the game:

Environment

Reward State

Action
Agent

Discovering hidden structures with
unsupervised learning

In supervised learning, we know the right answer beforehand when we train

our model, and in reinforcement learning, we define a measure of reward for
particular actions by the agent. In unsupervised learning, however, we are dealing
with unlabeled data or data of unknown structure. Using unsupervised learning
techniques, we are able to explore the structure of our data to extract meaningful
information without the guidance of a known outcome variable or reward function.

[8]
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Finding subgroups with clustering

Clustering is an exploratory data analysis technique that allows us to organize a

pile of information into meaningful subgroups (clusters) without having any prior
knowledge of their group memberships. Each cluster that may arise during the
analysis defines a group of objects that share a certain degree of similarity but are
more dissimilar to objects in other clusters, which is why clustering is also sometimes
called "unsupervised classification." Clustering is a great technique for structuring
information and deriving meaningful relationships among data, For example, it
allows marketers to discover customer groups based on their interests in order to
develop distinct marketing programs.

The figure below illustrates how clustering can be applied to organizing unlabeled
data into three distinct groups based on the similarity of their features x, and x,:
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Dimensionality reduction for data compression

Another subfield of unsupervised learning is dimensionality reduction. Often we are
working with data of high dimensionality —each observation comes with a high
number of measurements — that can present a challenge for limited storage space
and the computational performance of machine learning algorithms. Unsupervised
dimensionality reduction is a commonly used approach in feature preprocessing
to remove noise from data, which can also degrade the predictive performance of
certain algorithms, and compress the data onto a smaller dimensional subspace
while retaining most of the relevant information.

[o]




Giving Computers the Ability to Learn from Data

Sometimes, dimensionality reduction can also be useful for visualizing data—for
example, a high-dimensional feature set can be projected onto one-, two-, or
three-dimensional feature spaces in order to visualize it via 3D- or 2D-scatterplots
or histograms. The figure below shows an example where non-linear dimensionality
reduction was applied to compress a 3D Swiss Roll onto a

new 2D feature subspace:

An introduction to the basic terminology
and notations

Now that we have discussed the three broad categories of machine

learning — supervised, unsupervised, and reinforcement learning —let us have

a look at the basic terminology that we will be using in the next chapters. The
following table depicts an excerpt of the Iris dataset, which is a classic example in
the field of machine learning. The Iris dataset contains the measurements of 150 iris
flowers from three different species: Setosa, Versicolor, and Virginica. Please check if
this is replaced. Here, each flower sample represents one row in our data set, and the
flower measurements in centimeters are stored as columns, which we also call the
features of the dataset:

[10]
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Samples
(instances, observations)

Sepal
width

Petal

length

Petal

(attributes, measurements, dimensions)

| 1 5.1 35 1.4 0.2 Setosa
2 4.9 30 14 0.2 Setosa
50 |64 35 45 1.2 Versicolor
150 | 5.9 30 5.0 1.8 Virginica
Features

To keep the notation and implementation simple yet efficient, we will make use of
some of the basics of linear algebra. In the following chapters, we will use a matrix
and vector notation to refer to our data. We will follow the common convention to
represent each sample as separate row in a feature matrix X, where each feature is
stored as a separate column.

The Iris dataset, consisting of 150 samples and 4 features, can then be written as a

150x4 matrix X e R*™*;

<0

[11]




Giving Computers the Ability to Learn from Data

For the rest of this book, we will use the superscript (i) to refer to the ith
training sample, and the subscript j to refer to the jth dimension of the
training dataset.

We use lower-case, bold-face letters to refer to vectors (x € R"XI) and
upper-case, bold-face letters to refer to matrices, respectively (X e R™™").

To refer to single elements in a vector or matrix, we write the letters in

italics (x(") or x((;)) , respectively).

For example, xllso refers to the first dimension of flower sample 150, the
sepal length. Thus, each row in this feature matrix represents one flower

instance and can be written as four-dimensional row vector x e R™ ,
x(i) _ I:xl(i) xgi) xgi) xgi) :I

. .. . . 150x1
%‘ Each feature dimension is a 150-dimensional column vector X, € R™™,
for example:

x '(150)

J

Similarly, we store the target variables (here: class labels) as a

y(l)

150-dimensional column vector y=| ... ( y € {Setosa, Versicolor, Virginica})_
(150)

y

A roadmap for building machine learning
systems

In the previous sections, we discussed the basic concepts of machine learning and the
three different types of learning. In this section, we will discuss other important parts
of a machine learning system accompanying the learning algorithm. The diagram
below shows a typical workflow diagram for using machine learning in predictive
modeling, which we will discuss in the following subsections:

[12]
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Feature Extraction and Scaling
Feature Selection
Dimensionality Reduction

Sampling
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Preprocessing — getting data into shape

Raw data rarely comes in the form and shape that is necessary for the optimal
performance of a learning algorithm. Thus, the preprocessing of the data is one of the
most crucial steps in any machine learning application. If we take the Iris flower
dataset from the previous section as an example, we could think of the raw data

as a series of flower images from which we want to extract meaningful features.
Useful features could be the color, the hue, the intensity of the flowers, the height,
and the flower lengths and widths. Many machine learning algorithms also require
that the selected features are on the same scale for optimal performance, which is
often achieved by transforming the features in the range [0, 1] or a standard normal
distribution with zero mean and unit variance, as we will see in the later chapters.

Some of the selected features may be highly correlated and therefore redundant
to a certain degree. In those cases, dimensionality reduction techniques are useful
for compressing the features onto a lower dimensional subspace. Reducing the
dimensionality of our feature space has the advantage that less storage space is
required, and the learning algorithm can run much faster.

[13]



Giving Computers the Ability to Learn from Data

To determine whether our machine learning algorithm not only performs well on the
training set but also generalizes well to new data, we also want to randomly divide
the dataset into a separate training and test set. We use the training set to train and
optimize our machine learning model, while we keep the test set until the very end
to evaluate the final model.

Training and selecting a predictive model

As we will see in later chapters, many different machine learning algorithms have
been developed to solve different problem tasks. An important point that can be
summarized from David Wolpert's famous No Free Lunch Theorems is that we can't
get learning "for free" (The Lack of A Priori Distinctions Between Learning Algorithms,
D.H. Wolpert 1996; No Free Lunch Theorems for Optimization, D.H. Wolpert and W.G.
Macready, 1997). Intuitively, we can relate this concept to the popular saying, "I
suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it
were a nail" (Abraham Maslow, 1966). For example, each classification algorithm
has its inherent biases, and no single classification model enjoys superiority if we
don't make any assumptions about the task. In practice, it is therefore essential to
compare at least a handful of different algorithms in order to train and select the
best performing model. But before we can compare different models, we first
have to decide upon a metric to measure performance. One commonly used
metric is classification accuracy, which is defined as the proportion of correctly
classified instances.

One legitimate question to ask is: how do we know which model performs well on the
final test dataset and real-world data if we don't use this test set for the model selection

but keep it for the final model evaluation? In order to address the issue embedded in
this question, different cross-validation techniques can be used where the training
dataset is further divided into training and validation subsets in order to estimate the
generalization performance of the model. Finally, we also cannot expect that the default
parameters of the different learning algorithms provided by software libraries are
optimal for our specific problem task. Therefore, we will make frequent use of
hyperparameter optimization techniques that help us to fine-tune the performance of
our model in later chapters. Intuitively, we can think of those hyperparameters as
parameters that are not learned from the data but represent the knobs of a model
that we can turn to improve its performance, which will become much clearer in
later chapters when we see actual examples.

[14]
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Evaluating models and predicting unseen
data instances

After we have selected a model that has been fitted on the training dataset, we can
use the test dataset to estimate how well it performs on this unseen data to estimate
the generalization error. If we are satisfied with its performance, we can now use

this model to predict new, future data. It is important to note that the parameters for
the previously mentioned procedures —such as feature scaling and dimensionality
reduction—are solely obtained from the training dataset, and the same parameters are
later re-applied to transform the test dataset, as well as any new data samples —the
performance measured on the test data may be overoptimistic otherwise.

Using Python for machine learning

Python is one of the most popular programming languages for data science
and therefore enjoys a large number of useful add-on libraries developed by
its great community.

Although the performance of interpreted languages, such as Python, for
computation-intensive tasks is inferior to lower-level programming languages,
extension libraries such as NumPy and SciPy have been developed that build upon
lower layer Fortran and C implementations for fast and vectorized operations on
multidimensional arrays.

For machine learning programming tasks, we will mostly refer to the scikit-learn
library, which is one of the most popular and accessible open source machine
learning libraries as of today.

Installing Python packages

Python is available for all three major operating systems —Microsoft Windows,
Mac OS X, and Linux —and the installer, as well as the documentation, can be
downloaded from the official Python website: https://www.python.org.

This book is written for Python version >= 3.4.3, and it is recommended

you use the most recent version of Python 3 that is currently available,

although most of the code examples may also be compatible with Python >=2.7.10.
If you decide to use Python 2.7 to execute the code examples, please make sure
that you know about the major differences between the two Python versions. A
good summary about the differences between Python 3.4 and 2.7 can be found at
https://wiki.python.org/moin/Python2orPython3.

[15]
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The additional packages that we will be using throughout this book can be
installed via the pip installer program, which has been part of the Python
standard library since Python 3.3. More information about pip can be found
at https://docs.python.org/3/installing/index.html.

After we have successfully installed Python, we can execute pip from the command
line terminal to install additional Python packages:

pip install SomePackage
Already installed packages can be updated via the - -upgrade flag:

pip install SomePackage --upgrade

A highly recommended alternative Python distribution for scientific computing

is Anaconda by Continuum Analytics. Anaconda is a free —including commercial
use —enterprise-ready Python distribution that bundles all the essential Python
packages for data science, math, and engineering in one user-friendly
cross-platform distribution. The Anaconda installer can be downloaded at
http://continuum.io/downloads#py34, and an Anaconda quick start-guide is
available at https://store.continuum.io/static/img/Anaconda-Quickstart.
pdf.

After successfully installing Anaconda, we can install new Python packages using
the following command:

conda install SomePackage

Existing packages can be updated using the following command:

conda update SomePackage

Throughout this book, we will mainly use NumPy's multi-dimensional arrays to store
and manipulate data. Occasionally, we will make use of pandas, which is a library
built on top of NumPy that provides additional higher level data manipulation

tools that make working with tabular data even more convenient. To augment our
learning experience and visualize quantitative data, which is often extremely useful
to intuitively make sense of it, we will use the very customizable matplotlib library.

[16]
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The version numbers of the major Python packages that were used for writing this
book are listed below. Please make sure that the version numbers of your installed
packages are equal to, or greater than, those version numbers to ensure the code
examples run correctly:

* NumPy1.9.1

e SciPy 0.14.0

* scikit-learn 0.15.2
* matplotlib 1.4.0

* pandas0.15.2

Summary

In this chapter, we explored machine learning on a very high level and familiarized
ourselves with the big picture and major concepts that we are going to explore in the
next chapters in more detail.

We learned that supervised learning is composed of two important subfields:
classification and regression. While classification models allow us to categorize
objects into known classes, we can use regression analysis to predict the continuous
outcomes of target variables. Unsupervised learning not only offers useful
techniques for discovering structures in unlabeled data, but it can also be

useful for data compression in feature preprocessing steps.

We briefly went over the typical roadmap for applying machine learning to
problem tasks, which we will use as a foundation for deeper discussions and
hands-on examples in the following chapters. Eventually, we set up our Python
environment and installed and updated the required packages to get ready to see
machine-learning in action.

[17]
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In the following chapter, we will implement one of the earliest machine learning
algorithms for classification that will prepare us for Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn, where we cover more advanced machine
learning algorithms using the scikit-learn open source machine learning library. Since
machine learning algorithms learn from data, it is critical that we feed them useful
information, and in Chapter 4, Building Good Training Sets — Data Preprocessing we will
take a look at important data preprocessing techniques. In Chapter 5, Compressing Data
via Dimensionality Reduction, we will learn about dimensionality reduction techniques
that can help us to compress our dataset onto a lower-dimensional feature subspace,
which can be beneficial for computational efficiency. An important aspect of building
machine learning models is to evaluate their performance and to estimate how well
they can make predictions on new, unseen data. In Chapter 6, Learning Best Practices for
Model Evaluation and Hyperparameter Tuning we will learn all about the best practices
for model tuning and evaluation. In certain scenarios, we still may not be satisfied with
the performance of our predictive model although we may have spent hours or days
extensively tuning and testing. In Chapter 7, Combining Different Models for Ensemble
Learning we will learn how to combine different machine learning models to build
even more powerful predictive systems.

After we covered all of the important concepts of a typical machine learning pipeline,
we will implement a model for predicting emotions in text in Chapter 8, Applying
Machine Learning to Sentiment Analysis, and in Chapter 9, Embedding a Machine Learning
Model into a Web Application, we will embed it into a Web application to share it with
the world. In Chapter 10, Predicting Continuous Target Variables with Regression Analysis
we will then use machine learning algorithms for regression analysis that allow us

to predict continuous output variables, and in Chapter 11, Working with Unlabelled
Data - Clustering Analysis we will apply clustering algorithms that will allow us to
find hidden structures in data. The last two chapters in this book will cover artificial
neural networks that will allow us to tackle complex problems, such as image and
speech recognition, which is currently one of the hottest topics in machine-learning
research.
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In this chapter, we will make use of one of the first algorithmically described
machine learning algorithms for classification, the perceptron and adaptive linear
neurons. We will start by implementing a perceptron step by step in Python and
training it to classify different flower species in the Iris dataset. This will help us to
understand the concept of machine learning algorithms for classification and how
they can be efficiently implemented in Python. Discussing the basics of optimization
using adaptive linear neurons will then lay the groundwork for using more powerful
classifiers via the scikit-learn machine-learning library in Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn.

The topics that we will cover in this chapter are as follows:

* Building an intuition for machine learning algorithms
* Using pandas, NumPy, and matplotlib to read in, process, and visualize data

* Implementing linear classification algorithms in Python

[19]



Training Machine Learning Algorithms for Classification

Artificial neurons — a brief glimpse into
the early history of machine learning

Before we discuss the perceptron and related algorithms in more detail, let us take
a brief tour through the early beginnings of machine learning. Trying to understand
how the biological brain works to design artificial intelligence, Warren McCullock
and Walter Pitts published the first concept of a simplified brain cell, the so-called

McCullock-Pitts (MCP) neuron, in 1943 (W. S. McCulloch and W. Pitts. A Logical
Calculus of the Ideas Immanent in Nervous Activity. The bulletin of mathematical

biophysics, 5(4):115-133, 1943). Neurons are interconnected nerve cells in the brain

that are involved in the processing and transmitting of chemical and electrical

signals, which is illustrated in the following figure:
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McCullock and Pitts described such a nerve cell as a simple logic gate with binary
outputs; multiple signals arrive at the dendrites, are then integrated into the cell

body, and, if the accumulated signal exceeds a certain threshold, an output signal
is generated that will be passed on by the axon.
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Only a few years later, Frank Rosenblatt published the first concept of the perceptron
learning rule based on the MCP neuron model (F. Rosenblatt, The Perceptron, a
Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory, 1957). With
his perceptron rule, Rosenblatt proposed an algorithm that would automatically
learn the optimal weight coefficients that are then multiplied with the input features
in order to make the decision of whether a neuron fires or not. In the context of
supervised learning and classification, such an algorithm could then be used to
predict if a sample belonged to one class or the other.

More formally, we can pose this problem as a binary classification task where we
refer to our two classes as 1 (positive class) and -1 (negative class) for simplicity. We

can then define an activation function ¢(Z) that takes a linear combination of certain
input values X and a corresponding weight vector w , where z is the so-called net

input (z=wWX, +...+W,X,):

W] xl
w= . , X =
Wm xm

Now, if the activation of a particular sample x('), that is, the output of ¢(Z ) ,1is
greater than a defined threshold 0, we predict class 1 and class -1, otherwise. In the

perceptron algorithm, the activation function () isa simple unit step function, which
is sometimes also called the Heaviside step function:

¢(Z):{ 1ifz>6

—1 otherwise
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For simplicity, we can bring the threshold € to the left side of the equation and

define a weight-zero as W, = —6 and x, =1, so that we write Z in a more compact

z
form z=w,x, + WX, +...+w,x, =w'x and ¢( )

{ 1ifz>0

—1 otherwise

In the following sections, we will often make use of basic notations from
linear algebra. For example, we will abbreviate the sum of the products
of the values in X and W using a vector dot product, whereas superscript
T stands for transpose, which is an operation that transforms a column
vector into a row vector and vice versa:

_ _3" T
Z=wWpxo +wx bt w,x, =00 xow = wlx

4
Forexample; [1 2 3])( 5 :1X4+2X5+3X6:32,
6

Furthermore, the transpose operation can also be applied to a matrix to
reflect it over its diagonal, for example:

T

1 2

1 35
3 4| =
2 4 6

56

In this book, we will only use the very basic concepts from linear algebra.
However, if you need a quick refresher, please take a look at Zico Kolter's
excellent Linear Algebra Review and Reference, which is freely available
athttp://www.cs.cmu.edu/~zkolter/course/linalg/linalg
notes.pdf.

The following figure illustrates how the net input Z = w'x is squashed into a binary
output (-1 or 1) by the activation function of the perceptron (left subfigure) and how it
can be used to discriminate between two linearly separable classes (right subfigure):
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The whole idea behind the MCP neuron and Rosenblatt's thresholded perceptron
model is to use a reductionist approach to mimic how a single neuron in the brain
works: it either fires or it doesn't. Thus, Rosenblatt's initial perceptron rule is fairly
simple and can be summarized by the following steps:

1. Initialize the weights to 0 or small random numbers.

(@)

2. For each training sample X : perform the following steps:

1. Compute the output value J.
2. Update the weights.

Here, the output value is the class label predicted by the unit step function that we
defined earlier, and the simultaneous update of each weight W, in the weight vector

W can be more formally written as:
wi=w, +Aw;

The value of Aw +» which is used to update the weight W;, is calculated by the
perceptron learning rule:
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Where 7 is the learning rate (a constant between 0.0 and 1.0), y(i) is the true class

label of the i th training sample, and f/(i) is the predicted class label. It is important to
note that all weights in the weight vector are being updated simultaneously, which

means that we don't recompute the f/(i) before all of the weights AW; were updated.
Concretely, for a 2D dataset, we would write the update as follows:

Aw, =1 (y(i) - output(i) )
Aw, =1 ( y(i) - output(i) ) xl(l)
Aw, =7 (y(i) — output(i) ) x;)

Before we implement the perceptron rule in Python, let us make a simple thought
experiment to illustrate how beautifully simple this learning rule really is. In the
two scenarios where the perceptron predicts the class label correctly, the weights
remain unchanged:

Aw, =n(-1-=1)x, =0
0
Aw, =n(1-1)x, =0
However, in the case of a wrong prediction, the weights are being pushed towards

the direction of the positive or negative target class, respectively:

(0

Aw; = ’7(1__1)":) =7(2)x,

Aw, =n(-1- l)x:) =7 (—Z)x(.i)

J

(0
To get a better intuition for the multiplicative factor X; , let us go through another
simple example, where:
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0] . . . .
Let's assume that x; =0.5, and we misclassify this sample as -1. In this case, we

0] (@)
would increase the corresponding weight by 1 so that the activation x; xw, will be
more positive the next time we encounter this sample and thus will be more likely to
be above the threshold of the unit step function to classify the sample as +1:

Aw, =(1--1)0.5=(2)0.5=1

U]
The weight update is proportional to the value of X; . For example, if we have

(@)
another sample x; =2 that is incorrectly classified as -1, we'd push the decision
boundary by an even larger extent to classify this sample correctly the next time:

Aw, =(1--1)2=(2)2=4

It is important to note that the convergence of the perceptron is only guaranteed if
the two classes are linearly separable and the learning rate is sufficiently small. If the
two classes can't be separated by a linear decision boundary, we can set a maximum
number of passes over the training dataset (epochs) and/or a threshold for the
number of tolerated misclassifications — the perceptron would never stop updating
the weights otherwise:

h . F 9
Linearly separable T Not linearly separable Not linearly separable
1 o
e (o]
o /& ©o o + %0
X, o 0 I 4 + X, 0 + + X, (o] +++++ *
Qo ! & * 0.90% 4, * + o
o ./ °
o! - * o ©
" +* o s
X X; i X;

Downloading the example code

You can download the example code files from your account at

~ http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you

can visit http: //www.packtpub.com/support and register to

have the files e-mailed directly to you.

[25]
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Now, before we jump into the implementation in the next section, let us summarize
what we just learned in a simple figure that illustrates the general concept of
the perceptron:

Error

@ » Output

Net input Activation
function function

The preceding figure illustrates how the perceptron receives the inputs of a sample
x and combines them with the weights W to compute the net input. The net input
is then passed on to the activation function (here: the unit step function), which
generates a binary output -1 or +1 —the predicted class label of the sample. During
the learning phase, this output is used to calculate the error of the prediction and
update the weights.

Implementing a perceptron learning
algorithm in Python

In the previous section, we learned how Rosenblatt's perceptron rule works; let us
now go ahead and implement it in Python and apply it to the Iris dataset that we
introduced in Chapter 1, Giving Computers the Ability to Learn from Data. We will take
an objected-oriented approach to define the perceptron interface as a Python class,
which allows us to initialize new perceptron objects that can learn from data via a
fit method, and make predictions via a separate predict method. As a convention,
we add an underscore to attributes that are not being created upon the initialization
of the object but by calling the object's other methods —for example, self.w_.
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If you are not yet familiar with Python's scientific libraries or need a
refresher, please see the following resources:
NumPy: http://wiki.scipy.org/Tentative NumPy Tutorial
. Pandas: http://pandas.pydata.org/pandas-docs/stable/
% tutorials.html
<> Matplotlib: http://matplotlib.org/users/beginner.html

Also, to better follow the code examples, I recommend you download
the IPython notebooks from the Packt website. For a general
introduction to IPython notebooks, please visit https://ipython.
org/ipython-doc/3/notebook/index.html.

import numpy as np
class Perceptron (object) :
""n"perceptron classifier.

Parameters
eta : float

Learning rate (between 0.0 and 1.0)
n iter : int

Passes over the training dataset.

Attributes
w_ : ld-array
Weights after fitting.
errors_ : list
Number of misclassifications in every epoch.

nmnn

def init (self, eta=0.01, n iter=10):
self.eta = eta
self.n iter = n iter

def fit(self, X, y):
""r"Fit training data.

Parameters

X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples
is the number of samples and
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n features is the number of features.
y : array-like, shape = [n_samples]
Target values.

self : object

self.w_ = np.zeros(l + X.shape[l])

self.errors = []

for in range(self.n iter):
errors = 0

for xi, target in zip(X, vy):
update = self.eta * (target - self.predict(xi))
self.w _[1:] += update * xi
self.w_[0] += update
errors += int (update != 0.0)
self.errors .append(errors)
return self

def net input(self, X):
""rCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def predict(self, X):
""r"Return class label after unit step"""
return np.where(self.net input(X) >= 0.0, 1, -1)

Using this perceptron implementation, we can now initialize new Perceptron
objects with a given learning rate eta and n_iter, which is the number of epochs
(passes over the training set). Via the £it method we initialize the weights in

self.w_to a zero-vector R"™" where m stands for the number of dimensions
(features) in the dataset where we add 1 for the zero-weight (that is, the threshold).

NumPy indexing for one-dimensional arrays works similarly to Python
+  lists using the square-bracket ( [1) notation. For two-dimensional arrays,
% the first indexer refers to the row number, and the second indexer to the
’ column number. For example, we would use X [2, 3] to select the third
row and fourth column of a 2D array X.
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After the weights have been initialized, the £it method loops over all individual
samples in the training set and updates the weights according to the perceptron
learning rule that we discussed in the previous section. The class labels are predicted
by the predict method, which is also called in the £it method to predict the class
label for the weight update, but predict can also be used to predict the class labels
of new data after we have fitted our model. Furthermore, we also collect the number
of misclassifications during each epoch in the list self.errors_ so that we can

later analyze how well our perceptron performed during the training. The np . dot
function that is used in the net_input method simply calculates the vector dot
product w' x.

B Instead of using NumPy to calculate the vector dot product N

between two arrays a and b via a.dot (b) ornp.dot (a, b),
we could also perform the calculation in pure Python via
sum([i*j for i,j in zip(a, b)].However, the advantage of
using NumPy over classic Python for-loop structures is that its arithmetic
operations are vectorized. Vectorization means that an elemental
. arithmetic operation is automatically applied to all elements in an array.
% By formulating our arithmetic operations as a sequence of instructions

s on an array rather than performing a set of operations for each element
one at a time, we can make better use of our modern CPU architectures
with Single Instruction, Multiple Data (SIMD) support. Furthermore,
NumPy uses highly optimized linear algebra libraries, such as Basic
Linear Algebra Subprograms (BLAS) and Linear Algebra Package
(LAPACK) that have been written in C or Fortran. Lastly, NumPy also
allows us to write our code in a more compact and intuitive way using
the basics of linear algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris
dataset

To test our perceptron implementation, we will load the two flower classes Setosa
and Versicolor from the Iris dataset. Although, the perceptron rule is not restricted to
two dimensions, we will only consider the two features sepal length and petal length
for visualization purposes. Also, we only chose the two flower classes Setosa and
Versicolor for practical reasons. However, the perceptron algorithm can be extended
to multi-class classification — for example, through the One-vs.-All technique.
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One-vs.-All (OvA), or sometimes also called One-vs.-Rest (OvR), is
a technique used to extend a binary classifier to multi-class problems.
Using OvA, we can train one classifier per class, where the particular
. class is treated as the positive class and the samples from all other
% classes are considered as the negative class. If we were to classify a new
L data sample, we would use our #n classifiers, where 7 is the number

of class labels, and assign the class label with the highest confidence to
the particular sample. In the case of the perceptron, we would use OvA
to choose the class label that is associated with the largest absolute net
input value.

First, we will use the pandas library to load the Iris dataset directly from the UCI

Machine Learning Repository into a DataFrame object and print the last five lines via

the tail method to check that the data was loaded correctly:

>>> import pandas as pd

>>> df = pd.read csv('https://archive.ics.uci.edu/ml/"
'machine-learning-databases/iris/iris.data', header=None)

>>> df.tail()

o 1 |2 (3 |4

145 (6.7 |3.0 (5.2 | 2.3 | Iris-virginica
146 6.3 |2.5|5.0 [ 1.9 | Iris-virginica

147 |6.5|3.0|5.2 | 2.0 | Iris-virginica

148 |6.2 | 3.4 |5.4 | 2.3 | Iris-virginica

149 |5.9|3.0(5.1|1.8 | Iris-virginica

Next, we extract the first 100 class labels that correspond to the 50 Iris-Setosa and 50
Iris-Versicolor flowers, respectively, and convert the class labels into the two integer
class labels 1 (Versicolor) and -1 (Setosa) that we assign to a vector y where the values
method of a pandas DataFrame yields the corresponding NumPy representation.
Similarly, we extract the first feature column (sepal length) and the third feature
column (petal length) of those 100 training samples and assign them to a feature
matrix X, which we can visualize via a two-dimensional scatter plot:

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> y = df.iloc[0:100, 4] .values
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>>> y = np.where(y == 'Iris-setosa', -1, 1)
>>> X = df.iloc[0:100, [0, 2]].values
>>> plt.scatter(X[:50, 0], X[:50, 11,
color='red', marker='o', label='setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 11,
color='blue', marker='x', label='versicolor')
>>> plt.xlabel('sepal length')
>>> plt.ylabel('petal length')
>>> plt.legend(loc="'upper left')
>>> plt.show()

After executing the preceding code example we should now see the
following scatterplot:
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Now it's time to train our perceptron algorithm on the Iris data subset that we just
extracted. Also, we will plot the misclassification error for each epoch to check
if the algorithm converged and found a decision boundary that separates the two Iris
flower classes:

>>> ppn = Perceptron(eta=0.1, n iter=10)
>>> ppn.fit(X, y)

>>> plt.plot(range(l, len(ppn.errors ) + 1), ppn.errors ,
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marker='o"')
>>> plt.xlabel ('Epochs')
>>> plt.ylabel ('Number of misclassifications')

>>> plt.show()

After executing the preceding code, we should see the plot of the misclassification
errors versus the number of epochs, as shown next:
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As we can see in the preceding plot, our perceptron already converged after the
sixth epoch and should now be able to classify the training samples perfectly. Let
us implement a small convenience function to visualize the decision boundaries
for 2D datasets:

from matplotlib.colors import ListedColormap
def plot_decision regions(X, y, classifier, resolution=0.02):
# setup marker generator and color map

markers = ('s', 'x', 'o', '*', 'v')

colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
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cmap = ListedColormap (colors[:len(np.unique(y))])

# plot the decision surface

x1 min, x1 max = X[:, 0] .min() - 1, X[:, O].max() + 1

x2 min, x2 max = X[:, 1]l.min() - 1, X[:, 1].max() + 1

xx1l, xx2 = np.meshgrid(np.arange(xl min, xl1 max, resolution),
np.arange (x2 min, x2 max, resolution))

Z = classifier.predict(np.array([xxl.ravel(), xx2.ravel()]).T)

Z = Z.reshape (xx1l.shape)

plt.contourf (xx1, xx2, Z, alpha=0.4, cmap=cmap)

plt.xlim(xxl.min(), xxl.max())

plt.ylim(xx2.min (), xx2.max())

# plot class samples
for idx, cl in enumerate (np.unique(y)):
plt.scatter (x=X[y == ¢cl, 0], y=X[y == cl, 1],
alpha=0.8, c=cmap(idx),

marker=markers[idx], label=cl)

First, we define a number of colors and markers and create a color map from

the list of colors via ListedColormap. Then, we determine the minimum and
maximum values for the two features and use those feature vectors to create a pair
of grid arrays xx1 and xx2 via the NumPy meshgrid function. Since we trained
our perceptron classifier on two feature dimensions, we need to flatten the grid
arrays and create a matrix that has the same number of columns as the Iris training
subset so that we can use the predict method to predict the class labels z of the
corresponding grid points. After reshaping the predicted class labels z into a grid
with the same dimensions as xx1 and xx2, we can now draw a contour plot via
matplotlib's contourf function that maps the different decision regions to different
colors for each predicted class in the grid array:

>>> plot decision regions(X, y, classifier=ppn)
>>> plt.xlabel ('sepal length [cm]')

>>> plt.ylabel('petal length [cm]')

>>> plt.legend(loc='upper left')

>>> plt.show()
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After executing the preceding code example, we should now see a plot of the
decision regions, as shown in the following figure:

petal length [cm]

4 5 6 7
sepal length [cm]

As we can see in the preceding plot, the perceptron learned a decision boundary that
was able to classify all flower samples in the Iris training subset perfectly.

Although the perceptron classified the two Iris flower classes
perfectly, convergence is one of the biggest problems of the
_ perceptron. Frank Rosenblatt proved mathematically that the
perceptron learning rule converges if the two classes can be
L separated by a linear hyperplane. However, if classes cannot
be separated perfectly by such a linear decision boundary, the
weights will never stop updating unless we set a maximum
number of epochs.
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Adaptive linear neurons and the
convergence of learning

In this section, we will take a look at another type of single-layer neural network:
ADAptive LInear NEuron (Adaline). Adaline was published, only a few years
after Frank Rosenblatt's perceptron algorithm, by Bernard Widrow and his doctoral
student Tedd Hoff, and can be considered as an improvement on the latter

(B. Widrow et al. Adaptive "Adaline" neuron using chemical "memistors". Number
Technical Report 1553-2. Stanford Electron. Labs. Stanford, CA, October 1960). The
Adaline algorithm is particularly interesting because it illustrates the key concept
of defining and minimizing cost functions, which will lay the groundwork for
understanding more advanced machine learning algorithms for classification, such
as logistic regression and support vector machines, as well as regression models that
we will discuss in future chapters.

The key difference between the Adaline rule (also known as the Widrow-Hoff rule)
and Rosenblatt's perceptron is that the weights are updated based on a linear
activation function rather than a unit step function like in the perceptron. In Adaline,

this linear activation function ¢(Z ) is simply the identity function of the net input so
that ¢(w'x)=w'x
While the linear activation function is used for learning the weights, a quantizer,

which is similar to the unit step function that we have seen before, can then be used
to predict the class labels, as illustrated in the following figure:

—@— Output

Net input Activation Quantizer
function function
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If we compare the preceding figure to the illustration of the perceptron algorithm
that we saw earlier, the difference is that we know to use the continuous valued
output from the linear activation function to compute the model error and update
the weights, rather than the binary class labels.

Minimizing cost functions with gradient
descent

One of the key ingredients of supervised machine learning algorithms is to define
an objective function that is to be optimized during the learning process. This
objective function is often a cost function that we want to minimize. In the case

of Adaline, we can define the cost function J to learn the weights as the Sum of
Squared Errors (SSE) between the calculated outcomes and the true class labels

s =3 2 (" =0(="))

The term % is just added for our convenience; it will make it easier to derive the
gradient, as we will see in the following paragraphs. The main advantage of this
continuous linear activation function is —in contrast to the unit step function — that
the cost function becomes differentiable. Another nice property of this cost function
is that it is convex; thus, we can use a simple, yet powerful, optimization algorithm
called gradient descent to find the weights that minimize our cost function to classify
the samples in the Iris dataset.

As illustrated in the following figure, we can describe the principle behind gradient
descent as climbing down a hill until a local or global cost minimum is reached. In each
iteration, we take a step away from the gradient where the step size is determined by
the value of the learning rate as well as the slope of the gradient:
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Gradient

Using gradient descent, we can now update the weights by taking a step away from
the gradient VJ (w) of our cost function J (w) :

w=w+Aw

Here, the weight change Aw is defined as the negative gradient multiplied by the
learning rate 7:

Aw =-nVI(w)

To compute the gradient of the cost function, we need to compute the partial

o _z( 0 - (0 )W

derivative of the cost function with respect to each weight ";, o,

. . oJ ; WG
so that we can write the update of weight *; as Aw, = B 772()/( ) —¢(Z( )))x(,-) .
J i

Since we update all weights simultaneously, our Adaline learning rule becomes
w=w+Aw,
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- -
For those who are familiar with calculus, the partial derivative of the SSE
cost function with respect to the jth weight in can be obtained as follows:

o/ _o1 (y(,)_¢(z(,~)))2

1 0 i i
a2 -0

=% Zz(ym _¢(Z<f)))%(y<f> —¢(z<">))

Although the Adaline learning rule looks identical to the perceptron rule, the ¢(Z ) )

with Z ) w’ x") is a real number and not an integer class label. Furthermore,

the weight update is calculated based on all samples in the training set (instead of
updating the weights incrementally after each sample), which is why this approach
is also referred to as "batch" gradient descent.

Implementing an Adaptive Linear Neuron in
Python

Since the perceptron rule and Adaline are very similar, we will take the perceptron
implementation that we defined earlier and change the £it method so that the
weights are updated by minimizing the cost function via gradient descent:

class AdalineGD (object) :
"""ADAptive LInear NEuron classifier.

Parameters
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eta : float

Learning rate (between 0.0 and 1.0)
n iter : int

Passes over the training dataset.

Attributes
w_ : ld-array

Weights after fitting.
errors_ : list

Number of misclassifications in every epoch.

nmnn

def init (self, eta=0.01, n iter=50):
self.eta = eta
self.n iter = n iter

def fit(self, X, y):
"rroFit training data.

Parameters

X : {array-like}, shape = [n_samples, n features]

Training vectors,

where n_samples is the number of samples and

n features is the number of features.
y : array-like, shape = [n_samples]
Target values.

self : object

self.w_ = np.zeros(l + X.shapel[l])
self.cost = []

for i in range(self.n iter):
output = self.net input (X)
errors = (y - output)

self.w [1:] += self.eta * X.T.dot (errors)

self.w_[0] += self.eta * errors.sum()
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cost = (errors**2).sum() / 2.0
self.cost .append(cost)
return self

def net input (self, X):
""rCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def activation (self, X):
""rCompute linear activation""™"
return self.net input (X)

def predict(self, X):
""r"Return class label after unit step"""
return np.where(self.activation(X) >= 0.0, 1, -1)

Instead of updating the weights after evaluating each individual training
sample, as in the perceptron, we calculate the gradient based on the whole
training dataset via self.eta * errors.sum() for the zero-weight and via

self.eta * X.T.dot (errors) for the weights 1 to m where X.T.dot (errors)

is a matrix-vector multiplication between our feature matrix and the error vector.
Similar to the previous perceptron implementation, we collect the cost values in
alist self.cost_ to check if the algorithm converged after training.
B Performing a matrix-vector multiplication is similar to calculating a
vector dot product where each row in the matrix is treated as a single
row vector. This vectorized approach represents a more compact
notation and results in a more efficient computation using NumPy.

For example:

7
1 2 3 g Ix74+2%x8+3%9 50
X = =
4 5 6 9 4x7T+5x8+6%9 122
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In practice, it often requires some experimentation to find a good learning rate 7 for
optimal convergence. So, let's choose two different learning rates #=0.1 and #=0.0001
to start with and plot the cost functions versus the number of epochs to see how well
the Adaline implementation learns from the training data.

The learning rate 7, as well as the number of epochsn_iter, are
. the so-called hyperparameters of the perceptron and Adaline learning
% algorithms. In Chapter 4, Building Good Training Sets — Data Preprocessing,
L we will take a look at different techniques to automatically find the
values of different hyperparameters that yield optimal performance of
the classification model.

Let us now plot the cost against the number of epochs for the two different
learning rates:

>>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

>>> adal = AdalineGD(n_ iter=10, eta=0.01).fit(X, y)

>>> ax[0] .plot(range(1l, len(adal.cost ) + 1),
np.logl0(adal.cost ), marker='o')

>>> ax[0] .set xlabel ('Epochs')

>>> ax[0] .set _ylabel('log(Sum-squared-error) ')

>>> ax[0] .set title('Adaline - Learning rate 0.01')

>>> ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)

>>> ax[1l] .plot(range(l, len(ada2.cost ) + 1),
ada2.cost , marker='o')

>>> ax[1l] .set xlabel ('Epochs')

>>> ax[1l] .set ylabel ('Sum-squared-error')

>>> ax[l] .set title('Adaline - Learning rate 0.0001"')

>>> plt.show()
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As we can see in the resulting cost function plots next, we encountered two different
types of problems. The left chart shows what could happen if we choose a learning
rate that is too large —instead of minimizing the cost function, the error becomes
larger in every epoch because we overshoot the global minimum:

30 Adaline - Learning rate 0.01 50 Adaline - Learning rate 0.0001
48| .
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]
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0 L L L 1 L 1 L 1 40 1 L L L 1 1 1 1
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Epochs Epochs

Although we can see that the cost decreases when we look at the right plot, the
chosen learning rate 7 =0.0001 is so small that the algorithm would require a very
large number of epochs to converge. The following figure illustrates how we
change the value of a particular weight parameter to minimize the cost function J
(left subfigure). The subfigure on the right illustrates what happens if we choose a
learning rate that is too large, we overshoot the global minimum:

Initial
A weight
3
J(w) \ /_— Gradient J(w)
!
' Global cost minimum
- Jmin(.w) o
w w
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Many machine learning algorithms that we will encounter throughout this book
require some sort of feature scaling for optimal performance, which we will discuss
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn.
Gradient descent is one of the many algorithms that benefit from feature scaling.
Here, we will use a feature scaling method called standardization, which gives our
data the property of a standard normal distribution. The mean of each feature

is centered at value 0 and the feature column has a standard deviation of 1. For
example, to standardize the J th feature, we simply need to subtract the sample
mean //, from every training sample and divide it by its standard deviation o;:

Here x; is a vector consisting of the J th feature values of all training samples 7 .

Standardization can easily be achieved using the NumPy methods mean and std:

>>> X std = np.copy (X)
>>> X stdl[:,0] (X[:,0] - X[:,0].mean()) / X[:,0].std()

(X[:,1]1 - XI[:,1] .mean()) / XI[:,1].std()

>>> X stdl[:,1]

After standardization, we will train the Adaline again and see that it now converges
using a learning rate » =0.01:

>>> ada = AdalineGD(n iter=15, eta=0.01)

>>> ada.fit (X std, y)

>>> plot decision regions(X std, y, classifier=ada)

>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel ('sepal length [standardized]')

>>> plt.ylabel('petal length [standardized]')

>>> plt.legend(loc='upper left')

>>> plt.show()

>>> plt.plot(range(l, len(ada.cost ) + 1), ada.cost , marker='o')
>>> plt.xlabel ('Epochs')

>>> plt.ylabel ('Sum-squared-error')

>>> plt.show()
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After executing the preceding code, we should see a figure of the decision regions as
well as a plot of the declining cost, as shown in the following figure:

Adaline - Gradient Descent

50

w B
=] =

Sum-squared-error
L
=]

petal length [standardized]

10

-2 -1 L] 1 2 3 o 2 4 B 8 10 12 14 16
sepal length [standardized] Epochs.

As we can see in the preceding plots, the Adaline now converges after training on
the standardized features using a learning rate » =0.01. However, note that the SSE
remains non-zero even though all samples were classified correctly.

Large scale machine learning and stochastic
gradient descent

In the previous section, we learned how to minimize a cost function by taking a step
into the opposite direction of a gradient that is calculated from the whole training
set; this is why this approach is sometimes also referred to as batch gradient descent.
Now imagine we have a very large dataset with millions of data points, which is not
uncommon in many machine learning applications. Running batch gradient descent
can be computationally quite costly in such scenarios since we need to reevaluate the
whole training dataset each time we take one step towards the global minimum.

A popular alternative to the batch gradient descent algorithm is stochastic gradient
descent, sometimes also called iterative or on-line gradient descent. Instead of updating

the weights based on the sum of the accumulated errors over all samples £
Aw = ﬂzi( ) ¢(z(") )) X,

We update the weights incrementally for each training sample:

,7( i) _ ¢(z("))) NG
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Although stochastic gradient descent can be considered as an approximation of
gradient descent, it typically reaches convergence much faster because of the more
frequent weight updates. Since each gradient is calculated based on a single training
example, the error surface is noisier than in gradient descent, which can also have
the advantage that stochastic gradient descent can escape shallow local minima more
readily. To obtain accurate results via stochastic gradient descent, it is important to
present it with data in a random order, which is why we want to shuffle the training
set for every epoch to prevent cycles.

In stochastic gradient descent implementations, the fixed learning rate 7

is often replaced by an adaptive learning rate that decreases over time,
G

%@‘ for example, [number of iterations] +c, where ¢, and C, are constants.
Note that stochastic gradient descent does not reach the global minimum
but an area very close to it. By using an adaptive learning rate, we can
achieve further annealing to a better global minimum

Another advantage of stochastic gradient descent is that we can use it for online
learning. In online learning, our model is trained on-the-fly as new training data
arrives. This is especially useful if we are accumulating large amounts of data—for
example, customer data in typical web applications. Using online learning, the
system can immediately adapt to changes and the training data can be discarded
after updating the model if storage space in an issue.

A compromise between batch gradient descent and stochastic gradient
descent is the so-called mini-batch learning. Mini-batch learning can be
understood as applying batch gradient descent to smaller subsets of

. the training data—for example, 50 samples at a time. The advantage

% over batch gradient descent is that convergence is reached faster
L via mini-batches because of the more frequent weight updates.

Furthermore, mini-batch learning allows us to replace the for-loop
over the training samples in Stochastic Gradient Descent (SGD) by
vectorized operations, which can further improve the computational
efficiency of our learning algorithm.

[45]




Training Machine Learning Algorithms for Classification

Since we already implemented the Adaline learning rule using gradient descent,

we only need to make a few adjustments to modify the learning algorithm to update
the weights via stochastic gradient descent. Inside the £it method, we will now
update the weights after each training sample. Furthermore, we will implement

an additional partial_fit method, which does not reinitialize the weights, for
on-line learning. In order to check if our algorithm converged after training, we

will calculate the cost as the average cost of the training samples in each epoch.
Furthermore, we will add an option to shuffle the training data before each epoch
to avoid cycles when we are optimizing the cost function; via the random_state
parameter, we allow the specification of a random seed for consistency:

from numpy.random import seed

class AdalineSGD (object) :
"""ADAptive LInear NEuron classifier.

Parameters
eta : float

Learning rate (between 0.0 and 1.0)
n iter : int

Passes over the training dataset.

Attributes
w_ : ld-array
Weights after fitting.
errors_ : list
Number of misclassifications in every epoch.
shuffle : bool (default: True)
Shuffles training data every epoch
if True to prevent cycles.
random_state : int (default: None)
Set random state for shuffling
and initializing the weights.

nun
def  init (self, eta=0.01, n iter=10,
shuffle=True, random state=None) :
self.eta = eta
self.n_iter = n_iter
self.w_initialized = False
self.shuffle = shuffle
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def

if random state:
seed (random_state)

fit(self, X, y):
"ne Fit training data.

Parameters
X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples
is the number of samples and
n features is the number of features.
y : array-like, shape = [n_samples]
Target values.

self : object

self. initialize weights (X.shape[1l])
self.cost = []
for i in range(self.n iter):
if self.shuffle:
X, y = self. shuffle(X, y)
cost = []
for xi, target in zip(X, vy):
cost.append (self. update weights(xi, target))
avg_cost = sum(cost)/len(y)
self.cost .append(avg cost)
return self

def partial fit(self, X, y):

""rEit training data without reinitializing the weights"""
if not self.w initialized:

self. initialize weights (X.shape[1l])
if y.ravel() .shape[0] > 1:

for xi, target in zip(X, vy):

self. update weights(xi, target)

else:

self. update weights(X, y)
return self

def shuffle(self, X, y):
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"mrshuffle training data""™"
r = np.random.permutation(len(y))
return X[r], ylrl]

def initialize weights(self, m):
"m"rTnitialize weights to zeros"""
self.w_ = np.zeros(l + m)
self.w initialized = True

def update weights(self, xi, target):
"""Apply Adaline learning rule to update the weights""™"
output = self.net input (xi)
error = (target - output)
self.w [1:] += self.eta * xi.dot (error)
self.w _[0] += self.eta * error
cost = 0.5 * error**2
return cost

def net input(self, X):
""rCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def activation (self, X):
"nrCompute linear activation""™"
return self.net input (X)

def predict(self, X):
""r"Return class label after unit step"""
return np.where(self.activation(X) >= 0.0, 1, -1)

The _shuffle method that we are now using in the AdalinesGD classifier works

as follows: via the permutation function in numpy . random, we generate a random
sequence of unique numbers in the range 0 to 100. Those numbers can then be used
as indices to shuffle our feature matrix and class label vector.

We can then use the fit method to train the AdalinescD classifier and use our
plot_decision_regions to plot our training results:

>>>

>>>

>>>

>>>

>>>

>>>

ada = AdalineSGD(n_iter=15, eta=0.01, random state=1)
ada.fit (X_std, y)

plot decision regions (X std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel ('sepal length [standardized]')

plt.ylabel ('petal length [standardized]')
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>>> plt.legend(loc="'upper left')

>>> plt.show()

>>> plt.plot(range(l, len(ada.cost ) + 1), ada.cost , marker='o')
>>> plt.xlabel ('Epochs')

>>> plt.ylabel ('Average Cost')

>>> plt.show()

The two plots that we obtain from executing the preceding code example are shown
in the following figure:
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As we can see, the average cost goes down pretty quickly, and the final decision
boundary after 15 epochs looks similar to the batch gradient descent with Adaline.
If we want to update our model —for example, in an on-line learning scenario with
streaming data—we could simply call the partial_fit method on individual
samples —for instance, ada.partial fit (X_std[0, :1, yl[0]l).

Summary

In this chapter, we gained a good understanding of the basic concepts of linear
classifiers for supervised learning. After we implemented a perceptron, we saw how
we can train adaptive linear neurons efficiently via a vectorized implementation

of gradient descent and on-line learning via stochastic gradient descent. Now that
we have seen how to implement simple classifiers in Python, we are ready to move
on to the next chapter where we will use the Python scikit-learn machine learning
library to get access to more advanced and powerful off-the-shelf machine learning
classifiers that are commonly used in academia as well as in industry.
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A Tour of Machine Learning
Classifiers Using Scikit-learn

In this chapter, we will take a tour through a selection of popular and powerful
machine learning algorithms that are commonly used in academia as well as in the
industry. While learning about the differences between several supervised learning
algorithms for classification, we will also develop an intuitive appreciation of their
individual strengths and weaknesses. Also, we will take our first steps with the
scikit-learn library, which offers a user-friendly interface for using those algorithms
efficiently and productively.

The topics that we will learn about throughout this chapter are as follows:

* Introduction to the concepts of popular classification algorithms
* Using the scikit-learn machine learning library

* Questions to ask when selecting a machine learning algorithm

Choosing a classification algorithm

Choosing an appropriate classification algorithm for a particular problem task
requires practice: each algorithm has its own quirks and is based on certain
assumptions. To restate the "No Free Lunch" theorem: no single classifier works best
across all possible scenarios. In practice, it is always recommended that you compare
the performance of at least a handful of different learning algorithms to select the
best model for the particular problem; these may differ in the number of features

or samples, the amount of noise in a dataset, and whether the classes are linearly
separable or not.
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Eventually, the performance of a classifier, computational power as well as
predictive power, depends heavily on the underlying data that are available for
learning. The five main steps that are involved in training a machine learning
algorithm can be summarized as follows:

Selection of features.

Choosing a performance metric.

Choosing a classifier and optimization algorithm.

Evaluating the performance of the model.

AN

Tuning the algorithm.

Since the approach of this book is to build machine learning knowledge step by step,
we will mainly focus on the principal concepts of the different algorithms in this
chapter and revisit topics such as feature selection and preprocessing, performance
metrics, and hyperparameter tuning for more detailed discussions later in this book.

First steps with scikit-learn

In Chapter 2, Training Machine Learning Algorithms for Classification, you learned about
two related learning algorithms for classification: the perceptron rule and Adaline,
which we implemented in Python by ourselves. Now we will take a look at the
scikit-learn API, which combines a user-friendly interface with a highly optimized
implementation of several classification algorithms. However, the scikit-learn library
offers not only a large variety of learning algorithms, but also many convenient
functions to preprocess data and to fine-tune and evaluate our models. We will
discuss this in more detail together with the underlying concepts in Chapter 4,
Building Good Training Sets — Data Preprocessing, and Chapter 5, Compressing

Data via Dimensionality Reduction.

Training a perceptron via scikit-learn

To get started with the scikit-learn library, we will train a perceptron model
similar to the one that we implemented in Chapter 2, Training Machine Learning
Algorithms for Classification. For simplicity, we will use the already familiar Iris
dataset throughout the following sections. Conveniently, the Iris dataset is already
available via scikit-learn, since it is a simple yet popular dataset that is frequently
used for testing and experimenting with algorithms. Also, we will only use two
features from the Iris flower dataset for visualization purposes.
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We will assign the petal length and petal width of the 150 flower samples to the feature
matrix X and the corresponding class labels of the flower species to the vector y:

>>> from sklearn import datasets
>>> import numpy as np

>>> iris = datasets.load iris()
>>> X = iris.datal:, [2, 3]]

>>> y = iris.target

If we executed np.unique (y) to return the different class labels stored in iris.
target, we would see that the Iris flower class names, Iris-Setosa, Iris-Versicolor,
and Iris-Virginica, are already stored as integers (0, 1, 2), which is recommended
for the optimal performance of many machine learning libraries.

To evaluate how well a trained model performs on unseen data, we will further split
the dataset into separate training and test datasets. Later in Chapter 5, Compressing
Data via Dimensionality Reduction, we will discuss the best practices around model
evaluation in more detail:

>>> from sklearn.cross validation import train test split
>>> X train, X test, y tra