


To my wife Katrina



xvii

Preface

VHDL is a language for describing digital electronic systems. It arose out of the United
States government’s Very High Speed Integrated Circuits (VHSIC) program. In the course
of this program, it became clear that there was a need for a standard language for describ-
ing the structure and function of integrated circuits (ICs). Hence the VHSIC Hardware De-
scription Language (VHDL) was developed. It was subsequently developed further under
the auspices of the Institute of Electrical and Electronic Engineers (IEEE) and adopted in
the form of the IEEE Standard 1076, Standard VHDL Language Reference Manual, in 1987.
This first standard version of the language is often referred to as VHDL-87.

Like all IEEE standards, the VHDL standard is subject to review from time to time.
Comments and suggestions from users of the 1987 standard were analyzed by the IEEE
working group responsible for VHDL, and in 1992 a revised version of the standard was
proposed. This was eventually adopted in 1993, giving us VHDL-93. A second round of
revision of the standard was started in 1998. That process was completed in 2001, giving
us VHDL-2002. After that, further development took place in the IEEE working group and
in a technical committee of an organization, Accellera, whose charter is to promote stan-
dards for electronics design. These efforts led to the current version of the language,
VHDL-2008, described in this book.

VHDL is designed to fill a number of needs in the design process. First, it allows de-
scription of the structure of a system, that is, how it is decomposed into subsystems and
how those subsystems are interconnected. Second, it allows the specification of the func-
tion of a system using familiar programming language forms. Third, as a result, it allows
the design of a system to be simulated before being manufactured, so that designers can
quickly compare alternatives and test for correctness without the delay and expense of
hardware prototyping. Fourth, it allows the detailed structure of a design to be synthesized
from a more abstract specification, allowing designers to concentrate on more strategic
design decisions and reducing time to market.

This book presents a structured guide to the modeling facilities offered by the VHDL
language, showing how they can be used for the design of digital systems. The book does
not purport to teach digital design, since that topic is large enough by itself to warrant
several textbooks covering its various aspects. Instead, the book assumes that the reader
has at least a basic grasp of digital design concepts, such as might be gained from a first
course in digital design in an engineering degree program. Some exposure to computer
programming and to concepts of computer organization will also be beneficial. This book
is suitable for use in a course in digital or computer design and will also serve practicing
engineers who need to acquire VHDL fluency as part of their changing job requirements.

One pervasive theme running through the presentation in this book is that modeling
a system using a hardware description language is essentially a software design exercise.
This implies that good software engineering practice should be applied. Hence the treat-
ment in this book draws directly from experience in software engineering. There are nu-



xviii Preface

merous hints and techniques from small-scale and large-scale software engineering
presented throughout the book, with the sincere intention that they might be of use to
readers.

I am particularly pleased to be able to include this book in the Morgan Kaufmann Se-
ries in Systems on Silicon. Modeling for simulation and synthesis is a vital part of a design
methodology for large-scale systems. VHDL allows models to be expressed at a range of
levels of abstraction, from gate-level up to algorithmic and architectural levels. It will con-
tinue to play an important role in the design of silicon-based systems for some time to
come.

Structure of the Book

The Designer’s Guide to VHDL is organized so that it can be read linearly from front to
back. This path offers a graduated development, with each chapter building on ideas in-
troduced in the preceding chapters. Each chapter introduces a number of related concepts
or language facilities and illustrates each one with examples. Scattered throughout the
book are three case studies, which bring together preceding material in the form of ex-
tended worked examples.

Chapter 1 introduces the idea of a hardware description language and outlines the
reasons for its use and the benefits that ensue. It then proceeds to introduce the basic con-
cepts underlying VHDL, so that they can serve as a basis for examples in subsequent chap-
ters. The next three chapters cover the aspects of VHDL that are most like conventional
programming languages. These may be used to describe the behavior of a system in algo-
rithmic terms. Chapter 2 explains the basic type system of the language and introduces
the scalar data types. Chapter 3 describes the sequential control structures, and Chapter 4
covers composite data structures used to represent collections of data elements. In Chapter
5, the main facilities of VHDL used for modeling hardware are covered in detail. These
include facilities for modeling the basic behavioral elements in a design, the signals that
interconnect them and the hierarchical structure of the design. 

The next group of chapters extends this basic set of facilities with language features
that make modeling of large systems more tractable. Chapter 6 introduces procedures and
functions, which can be used to encapsulate behavioral aspects of a design. Chapter 7 in-
troduces the package as a means of collecting together related parts of a design or of cre-
ating modules that can be reused in a number of designs. Chapter 8 deals with the
important topic of resolved signals, and Chapter 9 describes a number of predefined and
standard packages for use in VHDL designs. The combination of facilities described in
these early chapters is sufficient for many modeling tasks, so Chapter 10 brings them to-
gether in the first case study, in which a multiplier/accumulator circuit is designed.

The third group of chapters covers advanced modeling features in VHDL. Chapter 11
covers aliases as a way of managing the large number of names that arise in a large model.
Chapter 12 describes generics as a means of parameterizing the behavior and structure of
a design and enhancing the resusability of designs. This leads to a discussion of abstract
data types as a means of managing the complexity associated with large designs. Chapter
13 deals with the topics of component instantiation and configuration. These features are
important in large real-world models, but they can be difficult to understand. Hence this
book introduces structural modeling through the mechanism of direct instantiation in ear-



Preface xix

lier chapters and leaves the more general case of component instantiation and configura-
tion until this later chapter. In Chapter 14, generated regular structures are covered.

The fourth group of chapters covers language facilities generally used for system-level
modeling. Chapter 15 introduces the notion of access types (or pointers) and uses them
to develop linked data structures. The topic of abstract data types is revisited in the context
of container data types. Chapter 16 covers the language facilities for input and output us-
ing files, including binary files and text files. Chapter 17 is a case study in which a package
for designing memories is developed. The package draws upon features described in the
third and fourth groups of chapters.

In the fifth group of chapters, we introduce language features for advanced design
and verification. Chapter 18 deals with features for test bench support and verification. It
describes how specifications written in the IEEE standard Property Specification Language
(PSL) can be embedded in VHDL models. Chapter 19 covers protected types and their use
as a means of concurrency control. Chapter 20 describes how we can annotate items in a
design with attributes to specify information to be used by design automation tools. This
leads into Chapter 21, which covers guidelines for writing synthesizable models. This
group of chapters is drawn together in a further case study, Chapter 22, showing devel-
opment of a synthesizable processor core and its use in a small embedded system, a digital
alarm clock.

The final chapter, Chapter 23, is a miscellany of advanced topics not covered in the
previous chapters. It includes a discussion of blocks and guarded signals, which are not
as widely used in modern designs as previously. Nonetheless, we describe them here for
completeness. The chapter also covers use of features for encrypting the source text of
models as a means of protecting intellectual property (IP), and use of features of the VHDL
Procedureall Interface (VHPI) for incorporating models and applications written in non-
VHDL programming languages.

Each chapter in the book is followed by a set of exercises designed to help the reader
develop understanding of the material. Where an exercise relates to a particular topic de-
scribed in the chapter, the section number is included in square brackets. An approximate
“difficulty” rating is also provided, expressed using the following symbols:

➊ quiz-style exercise, testing basic understanding

➋ basic modeling exercise—10 minutes to half an hour effort

➌ advanced modeling exercise—one half to two hours effort

➍ modeling project—half a day or more effort

Answers for the first category of exercises are provided in Appendix C. The remaining
categories involve developing VHDL models. Readers are encouraged to test correctness
of their models by running them on a VHDL simulator. This is a much more effective learn-
ing exercise than comparing paper models with paper solutions.

Changes in the Second and Third Editions

The first edition of this book was published in 1995, just as VHDL-93 was gaining accep-
tance. The second edition was updated to reflect the changes in VHDL-2002. Many of the



xx Preface

changes in the language standard corrected ambiguities in the previous standard that
caused incompatibility between VHDL tools from different vendors. There were also
changes that enhanced the usability of the language. The text and examples in the second
edition were revised where necessary to reflect the changes in the language. Furthermore,
following publication of the first edition, a number of VHDL-related standards were pub-
lished and gained widespread acceptance. The second edition added descriptions of the
IEEE 1076.3 synthesis and IEEE 1076.2 math packages, and was revised to cover the IEEE
1076.6 Synthesis Interoperability Standard.

The latest revision of the language, VHDL-2008, adds a number of significant new lan-
guage features, making this edition of The Designer’s Guide to VHDL significantly bigger
than its predecessors. VHDL-2008 also specifies numerous minor new features and
changes to existing features to enhance the usability of the language. This edition inte-
grates descriptions of all of the new and revised features into the text. The differences
between the various versions are highlighted in call-outs within the text, headed with
“VHDL-2002,” “VHDL-93,” or “VHDL-87,” as appropriate. In addition, some of the material
has been removed or rearranged. The case study on a package for arithmetic on bit-vector
operands has been deleted because the standard numeric packages have now become
widespread. The first case study in this book is a revised version of the MAC case study
in previous editions, and shows how the standard packages can be used. The chapter on
blocks and guarded signals has been contracted and moved to a section in the last chapter,
since the features are now little used in practice. There is a greater emphasis on synthesis
in this edition. What was an appendix on the topic in previous editions has been substan-
tially revised and promoted to full chapter status. The large case study showing develop-
ment of a 32-bit processor model has been revised to show a smaller synthesizable model
of an 8-bit microcontroller core and its use in an embedded system. This is much more
relevant, both for educational purposes and professional practice. Finally, this edition in-
cludes a listing of all of the VHDL standard packages as an appendix for reference.

Resources for Help and Information

Although this book attempts to be comprehensive in its coverage of VHDL, there will no
doubt be questions that it does not answer. For these, the reader will need to seek other
resources. A valuable source of experience and advice, often overlooked, is one’s col-
leagues, either at the workplace or in user groups. User groups generally hold regular
meetings that either formally or informally include a time for questions and answers. Many
also run e-mail lists and on-line discussion groups for problem solving.

Accellera is one of a number of organizations that sponsors the EDA Industry Working
Groups Web server (www.eda.org). The server has links to Web pages and repositories of
several VHDL standards groups and user groups.

Readers who have access to the Usenet electronic news network will find the news
group comp.lang.vhdl a valuable resource. This discussion group is a source of announce-
ments, sample models, questions and answers and useful software. Participants include
VHDL users and people actively involved in the language standard working group and in
VHDL tool development. The “frequently asked questions” (FAQ) file for this group is a
mine of useful pointers to books, products and other information. It is archived at
www.eda.org.

www.eda.org
www.eda.org


Preface xxi

One resource that must be mentioned is IEEE Standard 1076, IEEE Standard VHDL
Language Reference Manual, sometimes referred to as the “VHDL Bible.” It is the author-
itative source of information about VHDL. However, since it is a definitional document,
not a tutorial, it is written in a complex legalistic style. This makes it very difficult to use
to answer the usual questions that arise when writing VHDL models. It should only be
used once you are somewhat familiar with VHDL. It can be ordered from the IEEE at
standards.ieee.org.

This book contains numerous examples of VHDL models that may also serve as a re-
source for resolving questions. The VHDL source code for these examples and the case
studies, as well as other related information, is available on the companion website for the
book at books.elsevier.com/companions/9780120887859.

Although I have been careful to avoid errors in the example code, there are no doubt
some that I have missed. I would be pleased to hear about them, so that I can correct them
in the on-line code and in future printings of this book. Errata and general comments can
be e-mailed to me at vhdl-book@ashenden.com.au.

Acknowledgments

The seeds for this book go back to 1990 when I developed a brief set of notes, The VHDL
Cookbook, for my computer architecture class at the University of Adelaide. At the time,
there were few books on VHDL available, so I made my booklet available for on-line ac-
cess. News of its availability spread quickly around the world, and within days, my e-mail
in-box was bursting. At the time of writing this, nearly 20 years later, I still regularly receive
messages about the Cookbook. Many of the respondents urged me to write a full textbook
version. With that encouragement, I embarked upon the exercise that led to the first edi-
tion of The Designer’s Guide to VHDL. Two years after publication of The Designer’s Guide,
the need for a book specifically for students became evident. That led to publication of
the first edition of The Student’s Guide to VHDL. I am grateful to the many engineers, stu-
dents and teachers around the world who gave me the impetus to write these books and
who made them such a success. I hope this new edition will continue to meet the need
for a comprehensive guide to VHDL.

In the previous editions of The Designer’s Guide and The Student’s Guide, I had the
opportunity to extend thanks to the many people who assisted in development of the
books. They included my colleagues at the University of Adelaide; my research collabo-
rators, Phil Wilsey at the University of Cincinnati and Perry Alexander at the University of
Kansas; the staff at Morgan Kaufmann Publishers, including, in particular, Denise Penrose;
the reviewers of the manuscript for the first edition, namely, Poras Balsara of the Univer-
sity of Texas, Paul Menchini of Menchini & Associates, David Pitts of GTE Labs and the
University of Lowell and Philip Wilsey of the University of Cincinnati; David Bishop for
his contribution to the material on synthesis in the first edition of The Designer’s Guide;
and Mentor Graphics Corporation, for use of their ModelSim simulator to check the exam-
ple models. I remain grateful to all of these people and organizations for their valuable
contributions to the earlier editions and to this edition.

For the current edition, I would also like to thank Jim Lewis, who collaborated on a
recent book, VHDL-2008: Just the New Stuff. Much of the material from that book has
found its way into this book in one form or another. Thanks also to Mentor Graphics Cor-

vhdl-book@ashenden.com.au


xxii Preface

poration for continued use of the ModelSim simulator to check the example code. I con-
tinue to enjoy an excellent working relationship with the staff at Morgan Kaufmann
Publishers and their parent company, Elsevier. Thanks to Chuck Glaser, Senior Acquisi-
tions Editor, for his support in the continued development of these VHDL books; to Dawn-
marie Simpson, Senior Project Manager in the Production Department, for her meticulous
attention to detail; and to Denise Penrose, Publisher, for her longstanding support of my
writing endeavors.

The previous editions of The Designer’s Guide to VHDL were dedicated to my wife
Katrina. As I said in the first edition preface, I used to think that authors dedicating their
books to their partners was somewhat contrived, but that Katrina’s understanding, encour-
agement and support taught me otherwise. I remain deeply grateful for her continued sup-
port and am honored to also dedicate this third edition to her.



1

Chapter 1 

Fundamental Concepts

In this introductory chapter, we describe what we mean by digital system modeling and
see why modeling and simulation are an important part of the design process. We see how
the hardware description language VHDL can be used to model digital systems and intro-
duce some of the basic concepts underlying the language. We complete this chapter with
a description of the basic lexical and syntactic elements of the language, to form a basis
for the detailed descriptions of language features that follow in later chapters.

1.1 Modeling Digital Systems 

If we are to discuss the topic of modeling digital systems, we first need to agree on what
a digital system is. Different engineers would come up with different definitions, depend-
ing on their background and the field in which they were working. Some may consider a
single VLSI circuit to be a self-contained digital system. Others might take a larger view
and think of a complete computer, packaged in a cabinet with peripheral controllers and
other interfaces.

For the purposes of this book, we include any digital circuit that processes or stores
information as a digital system. We thus consider both the system as a whole and the var-
ious parts from which it is constructed. Therefore, our discussions cover a range of systems
from the low-level gates that make up the components to the top-level functional units.

If we are to encompass this range of views of digital systems, we must recognize the
complexity with which we are dealing. It is not humanly possible to comprehend such
complex systems in their entirety. We need to find methods of dealing with the complex-
ity, so that we can, with some degree of confidence, design components and systems that
meet their requirements.

The most important way of meeting this challenge is to adopt a systematic methodol-
ogy of design. If we start with a requirements document for the system, we can design an
abstract structure that meets the requirements. We can then decompose this structure into
a collection of components that interact to perform the same function. Each of these com-
ponents can in turn be decomposed until we get to a level where we have some ready-
made, primitive components that perform a required function. The result of this process
is a hierarchically composed system, built from the primitive elements.



2 Chapter 1 — Fundamental Concepts

The advantage of this methodology is that each subsystem can be designed indepen-
dently of others. When we use a subsystem, we can think of it as an abstraction rather
than having to consider its detailed composition. So at any particular stage in the design
process, we only need to pay attention to the small amount of information relevant to the
current focus of design. We are saved from being overwhelmed by masses of detail.

We use the term model to mean our understanding of a system. The model represents
that information which is relevant and abstracts away from irrelevant detail. The implica-
tion of this is that there may be several models of the same system, since different infor-
mation is relevant in different contexts. One kind of model might concentrate on
representing the function of the system, whereas another kind might represent the way in
which the system is composed of subsystems. We will come back to this idea in more de-
tail in the next section.

There are a number of important motivations for formalizing this idea of a model.
First, when a digital system is needed, the requirements of the system must be specified.
The job of the engineers is to design a system that meets these requirements. To do that,
they must be given an understanding of the requirements, hopefully in a way that leaves
them free to explore alternative implementations and to choose the best according to
some criteria. One of the problems that often arises is that requirements are incompletely
and ambiguously spelled out, and the customer and the design engineers disagree on
what is meant by the requirements document. This problem can be avoided by using a
formal model to communicate requirements.

A second reason for using formal models is to communicate understanding of the
function of a system to a user. The designer cannot always predict every possible way in
which a system may be used, and so is not able to enumerate all possible behaviors. If
the designer provides a model, the user can check it against any given set of inputs and
determine how the system behaves in that context. Thus a formal model is an invaluable
tool for documenting a system.

A third motivation for modeling is to allow testing and verification of a design using
simulation. If we start with a requirements model that defines the behavior of a system,
we can simulate the behavior using test inputs and note the resultant outputs of the sys-
tem. According to our design methodology, we can then design a circuit from subsystems,
each with its own model of behavior. We can simulate this composite system with the
same test inputs and compare the outputs with those of the previous simulation. If they
are the same, we know that the composite system meets the requirements for the cases
tested. Otherwise we know that some revision of the design is needed. We can continue
this process until we reach the bottom level in our design hierarchy, where the compo-
nents are real devices whose behavior we know. Subsequently, when the design is man-
ufactured, the test inputs and outputs from simulation can be used to verify that the
physical circuit functions correctly. This approach to testing and verification of course as-
sumes that the test inputs cover all of the circumstances in which the final circuit will be
used. The issue of test coverage is a complex problem in itself and is an active area of
research.

A fourth motivation for modeling is to allow formal verification of the correctness of
a design. Formal verification requires a mathematical statement of the required function
of a system. This statement may be expressed in the notation of a formal logic system,
such as temporal logic. Formal verification also requires a mathematical definition of the
meaning of the modeling language or notation used to describe a design. The process of



1.2 Domains and Levels of Modeling 3

verification involves application of the rules of inference of the logic system to prove that
the design implies the required function. While formal verification is not yet in everyday
use, it is steadily becoming a more important part of the design process. There have al-
ready been significant demonstrations of formal verification techniques in real design
projects, and the promise for the future is bright.

One final, but equally important, motivation for modeling is to allow automatic syn-
thesis of circuits. If we can formally specify the function required of a system, it is in theory
possible to translate that specification into a circuit that performs the function. The advan-
tage of this approach is that the human cost of design is reduced, and engineers are free
to explore alternatives rather than being bogged down in design detail. Also, there is less
scope for errors being introduced into a design and not being detected. If we automate
the translation from specification to implementation, we can be more confident that the
resulting circuit is correct.

The unifying factor behind all of these arguments is that we want to achieve maximum
reliability in the design process for minimum cost and design time. We need to ensure that
requirements are clearly specified and understood, that subsystems are used correctly and
that designs meet the requirements. A major contributor to excessive cost is having to re-
vise a design after manufacture to correct errors. By avoiding errors, and by providing bet-
ter tools for the design process, costs and delays can be contained.

1.2 Domains and Levels of Modeling

In the previous section, we mentioned that there may be different models of a system,
each focusing on different aspects. We can classify these models into three domains: func-
tion, structure and geometry. The functional domain is concerned with the operations per-
formed by the system. In a sense, this is the most abstract domain of description, since it
does not indicate how the function is implemented. The structural domain deals with how
the system is composed of interconnected subsystems. The geometric domain deals with
how the system is laid out in physical space.

Each of these domains can also be divided into levels of abstraction. At the top level,
we consider an overview of function, structure or geometry, and at lower levels we intro-
duce successively finer detail. Figure 1.1 (devised by Gajski and Kuhn, see reference [8])
represents the domains for digital systems on three independent axes and represents the
levels of abstraction by the concentric circles crossing each of the axes.

Let us look at this classification in more detail, showing how at each level we can cre-
ate models in each domain. As an example, we consider a single-chip microcontroller sys-
tem used as the controller for some measurement instrument, with data input connections
and some form of display outputs.

1.2.1 Modeling Example

At the most abstract level, the function of the entire system may be described in terms of
an algorithm, much like an algorithm for a computer program. This level of functional
modeling is often called behavioral modeling, a term we shall adopt when presenting ab-
stract descriptions of a system’s function. A possible algorithm for our instrument control-



4 Chapter 1 — Fundamental Concepts

ler is shown below. This model describes how the controller repeatedly scans each data
input and writes a scaled display of the input value.

loop
  for each data input loop
    read the value on this input;
    scale the value using the current scale factor
      for this input;
    convert the scaled value to a decimal string;
    write the string to the display output corresponding
      to this input;
  end loop;
  wait for 10 ms;
end loop;

At this top level of abstraction, the structure of a system may be described as an in-
terconnection of such components as processors, memories and input/output devices.
This level is sometimes called the Processor Memory Switch (PMS) level, named after the
notation used by Bell and Newell (see reference [3]). Figure 1.2 shows a structural model
of the instrument controller drawn using this notation. It consists of a processor connected

FIGURE 1.1 

Domains and levels of abstraction. The radial axes show the three different domains of model-
ing. The concentric rings show the levels of abstraction, with the more abstract levels on the out-
side and more detailed levels toward the center.

Processor-Memory-Switch

FunctionalStructural

Geometric

Register-Transfer

Gate

Transistor

Polygons

Sticks

Standard Cells

Floor Plan

Algorithm

Register-Transfer Language

Boolean Equation

Differential Equation



1.2 Domains and Levels of Modeling 5

via a switch to a memory component and to controllers for the data inputs and display
outputs.

In the geometric domain at this top level of abstraction, a system to be implemented
as a VLSI circuit may be modeled using a floor plan. This shows how the components
described in the structural model are arranged on the silicon die. Figure 1.3 shows a pos-
sible floor plan for the instrument controller chip. There are analogous geometric descrip-
tions for systems integrated in other media. For example, a personal computer system
might be modeled at the top level in the geometric domain by an assembly diagram show-
ing the positions of the motherboard and plug-in expansion boards in the desktop cabinet.

The next level of abstraction in modeling, depicted by the second ring in Figure 1.1,
describes the system in terms of units of data storage and transformation. In the structural
domain, this is often called the register-transfer level (RTL), composed of a data path and
a control section. The data path contains data storage registers, and data is transferred be-
tween them through transformation units. The control section sequences operation of the
data path components. For example, a register-transfer-level structural model of the pro-
cessor in our controller is shown in Figure 1.4.

FIGURE 1.2 

A PMS model of the controller structure. It is constructed from a processor (P), a memory (M),
an interconnection switch (S) and two input/output controllers (Kio).

inputs

outputs

P M

Kio

Kio

S

FIGURE 1.3 

A floor plan model of the controller geometry.

Pad Frame

SP

Kio (in)

M

Kio (out)



6 Chapter 1 — Fundamental Concepts

In the functional domain, a register-transfer language is often used to specify the op-
eration of a system at this level. Storage of data is represented using register variables, and
transformations are represented by arithmetic and logical operators. For example, an RTL
model for the processor in our example controller might include the following description:

MAR ← PC,  memory_read ← 1
PC ← PC + 1
wait until ready = 1
IR ← memory_data
memory_read ← 0

This section of the model describes the operations involved in fetching an instruction
from memory. The contents of the PC register are transferred to the memory address reg-
ister, and the memory_read signal is asserted. Then the value from the PC register is trans-
formed (incremented in this case) and transferred back to the PC register. When the ready
input from the memory is asserted, the value on the memory data input is transferred to
the instruction register. Finally, the memory_read signal is negated.

In the geometric domain, the kind of model used depends on the physical medium.
In our example, standard library cells might be used to implement the registers and data
transformation units, and these must be placed in the areas allocated in the chip floor plan.

FIGURE 1.4 

A register-transfer-level structural model of the controller processor. It consists of a general-
purpose register (GPR) file; registers for the program counter (PC), memory address (MAR),
memory data (MDR), temporary values (Temp) and fetched instructions (IR); an arithmetic unit;
bus drivers and the control section.

Temp

GPR 
(0 to 31)

Control 
Section

PC

IR MAR

MDR

Bus Drivers



1.3 Modeling Languages 7

The third level of abstraction shown in Figure 1.1 is the conventional logic level. At
this level, structure is modeled using interconnections of gates, and function is modeled
by Boolean equations or truth tables. In the physical medium of a custom integrated cir-
cuit, geometry may be modeled using a virtual grid, or “sticks,” notation.

At the most detailed level of abstraction, we can model structure using individual tran-
sistors, function using the differential equations that relate voltage and current in the cir-
cuit, and geometry using polygons for each mask layer of an integrated circuit. Most
designers do not need to work at this detailed level, as design tools are available to auto-
mate translation from a higher level.

1.3 Modeling Languages

In the previous section, we saw that different kinds of models can be devised to represent
the various levels of function, structure and physical arrangement of a system. There are
also different ways of expressing these models, depending on the use made of the model.

As an example, consider the ways in which a structural model may be expressed. One
common form is a circuit schematic. Graphical symbols are used to represent subsystems,
and instances of these are connected using lines that represent wires. This graphical form
is generally the one preferred by designers. However, the same structural information can
be represented textually in the form of a net list.

When we move into the functional domain, we usually see textual notations used for
modeling. Some of these are intended for use as specification languages, to meet the need
for describing the operation of a system without indicating how it might be implemented.
These notations are usually based on formal mathematical methods, such as temporal
logic or abstract state machines. Other notations are intended for simulating the system
for test and verification purposes and are typically based on conventional programming
languages. Yet other notations are oriented toward hardware synthesis and usually have
a more restricted set of modeling facilities, since some programming language constructs
are difficult to translate into hardware.

The purpose of this book is to describe the modeling language VHDL. VHDL includes
facilities for describing structure and function at a number of levels, from the most abstract
down to the gate level. It also provides an attribute mechanism that can be used to anno-
tate a model with information in the geometric domain. VHDL is intended, among other
things, as a modeling language for specification and simulation. We can also use it for
hardware synthesis if we restrict ourselves to a subset that can be automatically translated
into hardware.

1.4 VHDL Modeling Concepts

In Section 1.2, we looked at the three domains of modeling: function, structure and ge-
ometry. In this section, we look at the basic modeling concepts in each of these domains
and introduce the corresponding VHDL elements for describing them. This will provide a
feel for VHDL and a basis from which to work in later chapters.



8 Chapter 1 — Fundamental Concepts

EXAMPLE 1.1 A four-bit register design

Figure 1.5 shows a schematic symbol for a four-bit register. Using VHDL terminology,
we call the module reg4 a design entity, and the inputs and outputs are ports.

FIGURE 1.5 

A four-bit register module. The register is named reg4 and has six inputs, d0, d1, d2, d3, en and
clk, and four outputs, q0, q1, q2 and q3.

We write a VHDL description of the interface to this entity as follows:

entity reg4 is
  port ( d0, d1, d2, d3, en, clk : in bit;
         q0, q1, q2, q3 : out  bit );
end entity reg4;

This is an example of an entity declaration. It introduces a name for the entity
and lists the input and output ports, specifying that they carry bit values (‘0’ or ‘1’) into
and out of the entity. From this we see that an entity declaration describes the external
view of the entity.

1.4.1 Elements of Behavior

In VHDL, a description of the internal implementation of an entity is called an architecture
body of the entity. There may be a number of different architecture bodies of the one in-
terface to an entity, corresponding to alternative implementations that perform the same
function. We can write a behavioral architecture body of an entity, which describes the
function in an abstract way. Such an architecture body includes only process statements,
which are collections of actions to be executed in sequence. These actions are called se-
quential statements and are much like the kinds of statements we see in a conventional
programming language. The types of actions that can be performed include evaluating ex-
pressions, assigning values to variables, conditional execution, repeated execution and
subprogram calls. In addition, there is a sequential statement that is unique to hardware

reg4

d0 q0
q1
q2
q3

d1
d2
d3

en
clk



1.4 VHDL Modeling Concepts 9

modeling languages, the signal assignment statement. This is similar to variable assign-
ment, except that it causes the value on a signal to be updated at some future time.

EXAMPLE 1.2 Behavioral architecture for the four-bit register

To illustrate these ideas, let us look at a behavioral architecture body for the reg4 en-
tity of Example 1.1:

architecture behav of reg4 is
begin

  storage : process is
    variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;
  begin
    wait until clk;
    if en then
      stored_d0 := d0;
      stored_d1 := d1;
      stored_d2 := d2;
      stored_d3 := d3;
    end if;
    q0 <= stored_d0 after 5 ns;
    q1 <= stored_d1 after 5 ns;
    q2 <= stored_d2 after 5 ns;
    q3 <= stored_d3 after 5 ns;
  end process storage;

end architecture behav;

In this architecture body, the part after the first begin keyword includes one process
statement, which describes how the register behaves. It starts with the process name,
storage, and finishes with the keywords end process.

The process statement defines a sequence of actions that are to take place when
the system is simulated. These actions control how the values on the entity’s ports
change over time; that is, they control the behavior of the entity. This process can
modify the values of the entity’s ports using signal assignment statements.

The way this process works is as follows. When the simulation is started, the sig-
nal values are set to ‘0’, and the process is activated. The process’s variables (listed
after the keyword variable) are initialized to ‘0’, then the statements are executed in
order. The first statement is a wait statement that causes the process to suspend, that
is, to become inactive. It stays suspended until one of the signals to which it is sensi-
tive changes value. In this case, the process is sensitive only to the signal clk, since
that is the only one named in the wait statement. When that signal changes value, the
process is resumed and continues executing statements. The next statement is a con-
dition that tests whether the value of the en signal is ‘1’. If it is, the statements between
the keywords then and end if are executed, updating the process’s variables using
the values on the input signals. After the conditional if statement, there are four signal
assignment statements that cause the output signals to be updated 5 ns later.



10 Chapter 1 — Fundamental Concepts

When all of these statements in the process have been executed, the process starts
again from the keyword begin, and the cycle repeats. Notice that while the process
is suspended, the values in the process’s variables are not lost. This is how the process
can represent the state of a system.

1.4.2 Elements of Structure

An alternative way of describing the implementation of an entity is to specify how it is
composed of subsystems. We can give a structural description of the entity’s implementa-
tion. An architecture body that is composed only of interconnected subsystems is called a
structural architecture body.

EXAMPLE 1.3 Structural architecture for the four-bit register

Figure 1.6 shows how the reg4 entity might be composed of flipflops and gates.

FIGURE 1.6 

A structural composition of the reg4 entity.

d_ff
d

bit0

q
clk

d_ff
d

bit1

q
clk

d_ff
d

bit2

q
clk

d_ff
d

bit3

q
clk

and2
a

gate

y
b

q0

q1

q2

q3

clk
en

d0

d1

d2

d3

int_clk



1.4 VHDL Modeling Concepts 11

If we are to describe this in VHDL, we will need entity declarations and architec-
ture bodies for the subsystems. For the flipflops, the entity and architecture are

entity d_ff is
  port ( d, clk : in bit;  q : out bit );
end d_ff;

architecture basic of d_ff is
begin

  ff_behavior : process is
  begin
    wait until clk;
    q <= d after 2 ns;
  end process ff_behavior;

end architecture basic;

For the two-input and gate, the entity and architecture are

entity and2 is
  port ( a, b : in bit;  y : out bit );
end and2;

architecture basic of and2 is
begin

  and2_behavior : process is
  begin
    y <= a and b after 2 ns;
    wait on a, b;
  end process and2_behavior;

end architecture basic;

We can now proceed to a VHDL architecture body declaration that describes the
reg4 structure shown in Figure 1.6:

architecture struct of reg4 is

  signal int_clk : bit;

begin

  bit0 : entity work.d_ff(basic)
    port map (d0, int_clk, q0);
  bit1 : entity work.d_ff(basic)
    port map (d1, int_clk, q1);
  bit2 : entity work.d_ff(basic)
    port map (d2, int_clk, q2);
  bit3 : entity work.d_ff(basic)
    port map (d3, int_clk, q3);



12 Chapter 1 — Fundamental Concepts

  gate : entity work.and2(basic)
    port map (en, clk, int_clk);

end architecture struct;

The signal declaration, before the keyword begin, defines the internal signals of
the architecture. In this example, the signal int_clk is declared to carry a bit value (‘0’
or ‘1’). In general, VHDL signals can be declared to carry arbitrarily complex values.
Within the architecture body the ports of the entity are also treated as signals.

In the second part of the architecture body, a number of component instances are
created, representing the subsystems from which the reg4 entity is composed. Each
component instance is a copy of the entity representing the subsystem, using the cor-
responding basic architecture body. (The name work refers to the current working
library, in which all of the entity and architecture body descriptions are assumed to
be held.)

The port map specifies the connection of the ports of each component instance
to signals within the enclosing architecture body. For example, bit0, an instance of
the d_ff entity, has its port d connected to the signal d0, its port clk connected to the
signal int_clk and its port q connected to the signal q0.

1.4.3 Mixed Structural and Behavioral Models

Models need not be purely structural or purely behavioral. Often it is useful to specify a
model with some parts composed of interconnected component instances, and other parts
described using processes. We use signals as the means of joining component instances
and processes. A signal can be associated with a port of a component instance and can
also be assigned to or read in a process.

We can write such a hybrid model by including both component instance and process
statements in the body of an architecture. These statements are collectively called concur-
rent statements, since the corresponding processes all execute concurrently when the
model is simulated.

EXAMPLE 1.4 A mixed structural and behavioral model for a multiplier

A sequential multiplier consists of a data path and a control section. An outline of a
mixed structural and behavioral model for the multiplier is:

entity multiplier is
  port ( clk, reset : in bit;
         multiplicand, multiplier : in integer;
         product : out integer );
end entity multiplier;

--------------------------------------------------

architecture mixed of multiplier is



1.4 VHDL Modeling Concepts 13

  signal partial_product, full_product : integer;
  signal arith_control, result_en, mult_bit, mult_load : bit;

begin -- mixed

  arith_unit : entity work.shift_adder(behavior)
    port map ( addend => multiplicand, augend => full_product,
               sum => partial_product,
               add_control => arith_control);

  result : entity work.reg(behavior)
    port map ( d => partial_product, q => full_product,
               en => result_en, reset => reset);

  multiplier_sr : entity work.shift_reg(behavior)
    port map ( d => multiplier, q => mult_bit,
               load => mult_load, clk => clk);

  product <= full_product;

  control_section : process is
    -- variable declarations for control_section
    -- ...
  begin -- control section
    -- sequential statements to assign values to control signals
    -- ...
    wait on clk, reset;
  end process control_section;

end architecture mixed;

The data path is described structurally, using a number of component instances.
The control section is described behaviorally, using a process that assigns to the con-
trol signals for the data path.

1.4.4 Test Benches

In our introductory discussion, we mentioned testing through simulation as an important
motivation for modeling. We often test a VHDL model using an enclosing model called a
test bench. The name comes from the analogy with a real hardware test bench, on which
a device under test is stimulated with signal generators and observed with signal probes.
A VHDL test bench consists of an architecture body containing an instance of the compo-
nent to be tested and processes that generate sequences of values on signals connected
to the component instance. The architecture body may also contain processes that test that
the component instance produces the expected values on its output signals. Alternatively,
we may use the monitoring facilities of a simulator to observe the outputs.



14 Chapter 1 — Fundamental Concepts

EXAMPLE 1.5 Test bench for the four-bit register

A test bench model for the behavioral implementation of the reg4 register is:

entity test_bench is
end entity test_bench;

architecture test_reg4 of test_bench is

  signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit;

begin

  dut : entity work.reg4(behav)
    port map ( d0, d1, d2, d3, en, clk, q0, q1, q2, q3 );

  stimulus : process is
  begin
    d0 <= '1';  d1 <= '1';  d2 <= '1';  d3 <= '1';
    en <= '0';  clk <= '0';
    wait for 20 ns;
    en <= '1';  wait for 20 ns;
    clk <= '1';  wait for 20 ns;
    d0 <= '0';  d1 <= '0';  d2 <= '0';  d3 <= '0';  wait for 20 ns;
    en <= '0';  wait for 20 ns;
    ...
    wait;
  end process stimulus;

end architecture test_reg4;

The entity declaration has no port list, since the test bench is entirely self-
contained. The architecture body contains signals that are connected to the input and
output ports of the component instance dut, the device under test. The process
labeled stimulus provides a sequence of test values on the input signals by perform-
ing signal assignment statements, interspersed with wait statements. Each wait state-
ment specifies a 20 ns pause during which the register device determines its output
values. We can use a simulator to observe the values on the signals q0 to q3 to verify
that the register operates correctly. When all of the stimulus values have been applied,
the stimulus process waits indefinitely, thus completing the simulation.

1.4.5 Analysis, Elaboration and Execution

One of the main reasons for writing a model of a system is to enable us to simulate it. This
involves three stages: analysis, elaboration and execution. Analysis and elaboration are
also required in preparation for other uses of the model, such as logic synthesis.

In the first stage, analysis, the VHDL description of a system is checked for various
kinds of errors. Like most programming languages, VHDL has rigidly defined syntax and
semantics. The syntax is the set of grammatical rules that govern how a model is written.



1.4 VHDL Modeling Concepts 15

The rules of semantics govern the meaning of a program. For example, it makes sense to
perform an addition operation on two numbers but not on two processes.

During the analysis phase, the VHDL description is examined, and syntactic and static
semantic errors are located. The whole model of a system need not be analyzed at once.
Instead, it is possible to analyze design units, such as entity and architecture body decla-
rations, separately. If the analyzer finds no errors in a design unit, it creates an intermedi-
ate representation of the unit and stores it in a library. The exact mechanism varies
between VHDL tools.

The second stage in simulating a model, elaboration, is the act of working through
the design hierarchy and creating all of the objects defined in declarations. The ultimate
product of design elaboration is a collection of signals and processes, with each process
possibly containing variables. A model must be reducible to a collection of signals and
processes in order to simulate it.

We can see how elaboration achieves this reduction by starting at the top level of a
model, namely, an entity, and choosing an architecture of the entity to simulate. The ar-
chitecture comprises signals, processes and component instances. Each component in-
stance is a copy of an entity and an architecture that also comprises signals, processes and
component instances. Instances of those signals and processes are created, corresponding
to the component instance, and then the elaboration operation is repeated for the sub-
component instances. Ultimately, a component instance is reached that is a copy of an
entity with a purely behavioral architecture, containing only processes. This corresponds
to a primitive component for the level of design being simulated. Figure 1.7 shows how
elaboration proceeds for the structural architecture body of the reg4 entity from Example
1.3. As each instance of a process is created, its variables are created and given initial val-
ues. We can think of each process instance as corresponding to one instance of a compo-
nent.

The third stage of simulation is the execution of the model. The passage of time is
simulated in discrete steps, depending on when events occur. Hence the term discrete
event simulation is used. At some simulation time, a process may be stimulated by chang-
ing the value on a signal to which it is sensitive. The process is resumed and may schedule
new values to be given to signals at some later simulated time. This is called scheduling
a transaction on that signal. If the new value is different from the previous value on the
signal, an event occurs, and other processes sensitive to the signal may be resumed.

The simulation starts with an initialization phase, followed by repetitive execution of
a simulation cycle. During the initialization phase, each signal is given an initial value, de-
pending on its type. The simulation time is set to zero, then each process instance is acti-
vated and its sequential statements executed. Usually, a process will include a signal
assignment statement to schedule a transaction on a signal at some later simulation time.
Execution of a process continues until it reaches a wait statement, which causes the pro-
cess to be suspended.

During the simulation cycle, the simulation time is first advanced to the next time at
which a transaction on a signal has been scheduled. Second, all the transactions scheduled
for that time are performed. This may cause some events to occur on some signals. Third,
all processes that are sensitive to those events are resumed and are allowed to continue
until they reach a wait statement and suspend. Again, the processes usually execute signal
assignments to schedule further transactions on signals. When all the processes have sus-
pended again, the simulation cycle is repeated. When the simulation gets to the stage



16 Chapter 1 — Fundamental Concepts

where there are no further transactions scheduled, it stops, since the simulation is then
complete.

1.5 Learning a New Language: Lexical Elements and Syntax

When we learn a new natural language, such as Greek, Chinese or English, we start by
learning the alphabet of symbols used in the language, then form these symbols into
words. Next, we learn the way to put the words together to form sentences and learn the

FIGURE 1.7 

The elaboration of the reg4 entity using the structural architecture body. Each instance of the
d_ff and and2 entities is replaced with the contents of the corresponding basic architecture.
These each consist of a process with its variables and statements.

q3

q2

clk

en

d0

d1

d2

d3

int_clk

reg4(struct)

d_ff(basic)

d

bit3

q
clk

and2(basic)

a

gate

y
b

d_ff(basic)

d

bit2

q
clk

q1

q0

d_ff(basic)

d

bit1

q
clk

d_ff(basic)

d

bit0

q
clk

process with variables
and statements



1.5 Learning a New Language: Lexical Elements and Syntax 17

meaning of these combinations of words. We reach fluency in a language when we can
easily express what we need to say using correctly formed sentences.

The same ideas apply when we need to learn a new special-purpose language, such
as VHDL for describing digital systems. We can borrow a few terms from language theory
to describe what we need to learn. First, we need to learn the alphabet with which the
language is written. The VHDL alphabet consists of all of the characters in the ISO 8859
Latin-1 8-bit character set. This includes uppercase and lowercase letters (including letters
with diacritical marks, such as “à”, “ä” and so forth), digits 0 to 9, punctuation and other
special characters. Second, we need to learn the lexical elements of the language. In
VHDL, these are the identifiers, reserved words, special symbols and literals. Third, we
need to learn the syntax of the language. This is the grammar that determines what com-
binations of lexical elements make up legal VHDL descriptions. Fourth, we need to learn
the semantics, or meaning, of VHDL descriptions. It is the semantics that allow a collection
of symbols to describe a digital design. Fifth, we need to learn how to develop our own
VHDL descriptions to describe a design we are working with. This is the creative part of
modeling, and fluency in this part will greatly enhance our design skills.

In the remainder of this chapter, we describe the lexical elements used in VHDL and
introduce the notation we use to describe the syntax rules. Then in subsequent chapters,
we introduce the different facilities available in the language. For each of these, we show
the syntax rules, describe the corresponding semantics and give examples of how they are
used to model particular parts of a digital system. We also include some exercises at the
end of each chapter to provide practice in the fifth stage of learning described above.

VHDL-87

VHDL-87 uses the ASCII character set, rather than the full ISO character set. ASCII is
a subset of the ISO character set, consisting of just the first 128 characters. This in-
cludes all of the unaccented letters, but excludes letters with diacritical marks.

1.5.1 Lexical Elements

In the following section, we discuss the lexical elements of VHDL: comments, identifiers,
reserved words, special symbols, numbers, characters, strings and bit strings.

Comments

When we are writing a hardware model in VHDL, it is important to annotate the code with
comments. The reason for doing this is to help readers understand the structure and logic
behind the model. It is important to realize that although we only write a model once, it
may subsequently be read and modified many times, both by its author and by other en-
gineers. Any assistance we can give to understanding the model is worth the effort. In this
book, we set comments in slanted text to make them visually distinct.

A VHDL model consists of a number of lines of text. One form of comment, called a
single-line comment, can be added to a line by writing two hypens together, followed by
the comment text. For example:



18 Chapter 1 — Fundamental Concepts

... a line of VHDL code ... -- a descriptive comment

The comment extends from the two hyphens to the end of the line and may include
any text we wish, since it is not formally part of the VHDL model. The code of a model
can include blank lines and lines that only contain comments, starting with two hyphens.
We can write long comments on successive lines, each line starting with two hyphens, for
example:

-- The following code models
-- the control section of the system
... some VHDL code ...

Another form of comment, called a delimited comment, starts with the characters “/*”
and extends to the closing characters “*/”. The opening and closing characters can be on
different lines, or can be on the same line. Moreover, there can be further VHDL code on
the line after the closing characters. Some examples are:

/* This is a comment header that describes
   the purpose of the design unit. It contains
   all you ever wanted to know, plus more.
*/

entity thingumy is
  port ( clk   : in bit; -- keeps it going
         reset : in bit /* start over */
         /* other ports to be added later */ );
end entity thingumy;

Since the text in comments is ignored, it may contain comment delimiters. Mixing
comment styles can be quite useful. For example, if we use delimited comments in a sec-
tion of code, and we want to “comment out” the section, we can use single-line comments:

-- This section commented out because it doesn't work
-- /* Process to do a complicated computation
-- involving lots of digital signal processing.
-- */
-- dsp_stuff : process is
-- begin
--   ...
-- end process dsp_stuff;

However, we should be aware that comments do not nest. For example, the following
is ill-formed:

-- Here is the start of the comment: /* A comment extending
                                        over two lines */



1.5 Learning a New Language: Lexical Elements and Syntax 19

The opening “/*” characters occur in a single-line comment, and so are ignored. Sim-
ilarly, we cannot reliably use delimited comments to comment out a section of code, since
the section might already contain a delimited comment:

/* Comment out the following code:
signal count_en : bit; /* counter enable */
*/

In this case, the occurrence of the characters “*/” on the second line closes the com-
ment started on the first line, making the orphaned delimiter “*/” on the third line illegal.
Provided we avoid pitfalls such as these, single-line and delimited comments are useful
language features.

VHDL-87, -93, and -2002

These versions of VHDL only allow single-line comments, not delimited comments.

Identifiers

Identifiers are used to name items in a VHDL model. It is good practice to use names that
indicate the purpose of the item, so VHDL allows names to be arbitrarily long. However,
there are some rules about how identifiers may be formed. A basic identifier

• may only contain alphabetic letters (‘A’ to ‘Z’ and ‘a’ to ‘z’), decimal digits (‘0’ to ‘9’)
and the underline character (‘_’);

• must start with an alphabetic letter;

• may not end with an underline character; and

• may not include two successive underline characters.

Some examples of valid basic identifiers are

A X0 counter Next_Value generate_read_cycle

Some examples of invalid basic identifiers are

last@value    -- contains an illegal character for an identifier
5bit_counter  -- starts with a non-alphabetic character
_A0           -- starts with an underline
A0_           -- ends with an underline
clock__pulse  -- two successive underlines

Note that the case of letters is not considered significant, so the identifiers cat and Cat
are the same. Underline characters in identifiers are significant, so This_Name and This-
Name are different identifiers.

In addition to the basic identifiers, VHDL allows extended identifiers, which can con-
tain any sequence of characters. Extended identifiers are included to allow communication



20 Chapter 1 — Fundamental Concepts

between computer-aided engineering tools for processing VHDL descriptions and other
tools that use different rules for identifiers. An extended identifier is written by enclosing
the characters of the identifier between ‘\’ characters. For example:

\data bus\ \global.clock\ \923\ \d#1\ \start__\

If we need to include a ‘\’ character in an extended identifier, we do so by doubling the
character, for example:

\A:\\name\ -- contains a '\' between the ':' and the 'n'

Note that the case of letters is significant in extended identifiers and that all extended iden-
tifiers are distinct from all basic identifiers. So the following are all distinct identifiers:

name \name\ \Name\ \NAME\

VHDL-87

VHDL-87 only allows basic identifiers, not extended identifiers. The rules for forming
basic identifiers are the same as those for VHDL-93 and VHDL-2002.

Reserved Words

Some identifiers, called reserved words or keywords, are reserved for special use in VHDL.
They are used to denote specific constructs that form a model, so we cannot use them as
identifiers for items we define. The full list of reserved words is shown in Table 1.1. Often,
when a VHDL program is typeset, reserved words are printed in boldface. This convention
is followed in this book.

VHDL-2002

The following identifiers are not used as reserved words in VHDL-2002. They may be
used as identifiers for other purposes, although it is not advisable to do so, as this may
cause difficulties in porting the models to VHDL-2008.

assert              fairness       restrict_guarantee
assume              force          sequence
assume_guarantee    parameter      strong
context             property       vmode
cover               release        vprop
default             restrict       vunit



1.5 Learning a New Language: Lexical Elements and Syntax 21

VHDL-93

In addition to those listed for VHDL-2002, the identifier protected is not used as a
reserved word in VHDL-93.

VHDL-87

In addition to those listed for VHDL-2002 and VHDL-93, the following identifiers are
not used as reserved words in VHDL-87:

group          protected     ror        sra
impure         pure          shared     srl
inertial       reject        sla        unaffected
literal        rol           sll        xnor
postponed

TABLE 1.1 VHDL reserved words

abs
access
after
alias
all
and
architecture
array
assert
assume
assume_guarantee
attribute

begin
block
body
buffer
bus

case
component
configuration
constant
context
cover

default
disconnect
downto

else
elsif
end
entity
exit

fairness
file
for
force
function

generate
generic
group
guarded

if
impure
in
inertial
inout
is

label
library
linkage
literal
loop

map
mod

nand
new
next
nor
not
null

of
on
open
or
others
out

package
parameter
port
postponed
procedure
process
property
protected
pure

range
record
register
reject
release
rem
report
restrict
restrict_guarantee
return
rol
ror

select
sequence
severity
shared
signal

sla
sll
sra
srl
strong
subtype

then
to
transport
type

unaffected
units
until
use

variable
vmode
vprop
vunit

wait
when
while
with

xnor
xor



22 Chapter 1 — Fundamental Concepts

Special Symbols

VHDL uses a number of special symbols to denote operators, to delimit parts of language
constructs and as punctuation. Some of these special symbols consist of just one character.
They are

" # & ' ( ) * + - , . / : ; < = > ? @ [ ] ` |

Other special symbols consist of pairs of characters. The two characters must be typed
next to each other, with no intervening space. These symbols are

=> ** := /= >= <= <> ?? ?= ?/= ?> ?< ?>= ?<= << >>

Numbers

There are two forms of numbers that can be written in VHDL code: integer literals and
real literals. An integer literal simply represents a whole number and consists of digits
without a decimal point. Real literals, on the other hand, can represent fractional numbers.
They always include a decimal point, which is preceded by at least one digit and followed
by at least one digit. Real literals represent an approximation to real numbers.

Some examples of decimal integer literals are

23 0 146

Note that –10, for example, is not an integer literal. It is actually a combination of a nega-
tion operator and the integer literal 10.

Some examples of real literals are

23.1 0.0 3.14159

Both integer and real literals can also use exponential notation, in which the number
is followed by the letter ‘E’ or ‘e’, and an exponent value. This indicates a power of 10 by
which the number is multiplied. For integer literals, the exponent must not be negative,
whereas for real literals, it may be either positive or negative. Some examples of integer
literals using exponential notation are

46E5 1E+12 19e00

Some examples of real literals using exponential notation are

1.234E09 98.6E+21 34.0e-08

Integer and real literals may also be expressed in a base other than base 10. In fact,
the base can be any integer between 2 and 16. To do this, we write the number
surrounded by sharp characters (‘#’), preceded by the base. For bases greater than 10, the
letters ‘A’ through ‘F’ (or ‘a’ through ‘f’) are used to represent the digits 10 through 15. For
example, several ways of writing the value 253 are as follows:

2#11111101# 16#FD# 16#0fd# 8#0375#



1.5 Learning a New Language: Lexical Elements and Syntax 23

Similarly, the value 0.5 can be represented as

2#0.100# 8#0.4# 12#0.6#

Note that in all these cases, the base itself is expressed in decimal.
Based literals can also use exponential notation. In this case, the exponent, expressed

in decimal, is appended to the based number after the closing sharp character. The expo-
nent represents the power of the base by which the number is multiplied. For example,
the number 1024 could be represented by the integer literals:

2#1#E10 16#4#E2 10#1024#E+00

Finally, as an aid to readability of long numbers, we can include underline characters
as separators between digits. The rules for including underline characters are similar to
those for identifiers; that is, they may not appear at the beginning or end of a number, nor
may two appear in succession. Some examples are

123_456 3.141_592_6 2#1111_1100_0000_0000#

Characters

A character literal can be written in VHDL code by enclosing it in single quotation marks.
Any of the printable characters in the standard character set (including a space character)
can be written in this way. Some examples are

'A'   -- uppercase letter
'z'   -- lowercase letter
','   -- the punctuation character comma
'''   -- the punctuation character single quote
' '   -- the separator character space

Strings

A string literal represents a sequence of characters and is written by enclosing the charac-
ters in double quotation marks. The string may include any number of characters (includ-
ing zero), but it must fit entirely on one line. Some examples are

"A string"
"A string can include any printing characters (e.g., &%@^*)."
"00001111ZZZZ"
""  -- empty string

If we need to include a double quotation mark character in a string, we write two
double quotation mark characters together. The pair is interpreted as just one character in
the string. For example:

"A string in a string: ""A string"". "



24 Chapter 1 — Fundamental Concepts

If we need to write a string that is longer than will fit on one line, we can use the
concatenation operator (“&”) to join two substrings together. (This operator is discussed
in Chapter 4.) For example:

"If a string will not fit on one line, "
& "then we can break it into parts on separate lines."

Bit Strings

VHDL includes values that represent bits (binary digits), which can be either ‘0’ or ‘1’. A
bit-string literal represents a string of these bit values. It is represented by a string of digits,
enclosed by double quotation marks and preceded by a character that specifies the base
of the digits. The base specifier can be one of the following:

• B for binary,

• O for octal (base 8) and

• X for hexadecimal (base 16).

• D for decimal (base 10).

For example, some bit-string literals specified in binary are

B"0100011" B"10" b"1111_0010_0001" B""

Notice that we can include underline characters in bit-string literals to separate adja-
cent digits. The underline characters do not affect the meaning of the literal; they simply
make the literal more readable. The base specifier can be in uppercase or lowercase. The
last of the examples above denotes an empty bit string.

If the base specifier is octal, the digits ‘0’ through ‘7’ can be used. Each digit represents
exactly three bits in the bit string. Some examples are

O"372"  -- equivalent to B"011_111_010"
o"00"   -- equivalent to B"000_000"

If the base specifier is hexadecimal, the digits ‘0’ through ‘9’ and ‘A’ through ‘F’ or ‘a’
through ‘f’ (representing 10 through 15) can be used. In hexadecimal, each digit represents
exactly four bits. Some examples are

X"FA"   -- equivalent to B"1111_1010"
x"0d"   -- equivalent to B"0000_1101"

Notice that O"372" is not the same as X"FA", since the former is a string of nine bits, where-
as the latter is a string of eight bits.

If the base specifier is decimal, the digits ‘0’ through ‘9’ can be used. The digits in the
literal are interpreted as a decimal number and are converted to the equivalent binary
value. The number of bits in the string is the minimal number needed to represent the
value. Some examples are



1.5 Learning a New Language: Lexical Elements and Syntax 25

D"23"     -- equivalent to B"10111"
D"64"     -- equivalent to B"1000000"
D"0003"   -- equivalent to B"11"

In some cases, it is convenient to include characters other than digits in bit string lit-
erals. As we will see later, many VHDL models use characters such as ‘Z’, ‘X’, and ‘–’ to
represent high-impedance states, unknown values, and don’t-care conditions. Models may
use other characters for similar purposes. We can include such non-binary characters in
bit-string literals. In an octal literal, any non-octal-digit character is expanded to three oc-
currences of that character in the bit string. Similarly, in a hexadecimal literal any non-
hexadecimal-digit character is expanded to four occurrences of the character. In a binary
literal, any non-bit character just represents itself in the vector. Some examples are:

O"3XZ4"   -- equivalent to B"011XXXZZZ100"
X"A3--"   -- equivalent to B"10100011--------"
X"0#?F"   -- equivalent to B"0000####????1111"
B"00UU"   -- equivalent to B"00UU"

While allowing this for binary literals might seem vacuous at first, the benefit will be-
come clear shortly. Note that expansion of non-digit characters does not extend to em-
bedded underscores, which we might add for readability. Thus, O"3_X" represents
"011XXX", not "011___XXX". Also, non-digit characters are not allowed in decimal literals,
since it would be unclear which bits of the resulting string correspond to the non-digit
characters. Thus, the literal D"23Z9" is illegal.

In all of the preceding cases, the number of bits in the string is determined from the
base specifier and the number of characters in the literal. We can, however, specify the
exact length of bit string that we require from a literal. This allows us to specify strings
whose length is not a multiple or three (for octal) or four (for hexadecimal). We do so by
writing the length immediately before the base specifier, with no intervening space. Some
examples are:

7X"3C"   -- equivalent to B"0111100"
8O"5"    -- equivalent to B"00000101"
10B"X"   -- equivalent to B"000000000X"

If the final length of the string is longer than that implied by the digits, the string is
padded on the left with ‘0’ bits. If the final length is less than that implied by the digits,
the left-most elements of the string are truncated, provided they are all ‘0’. An error occurs
if any non-‘0’ bits are truncated, as they would be in the literal 8X"90F".

A further feature of bit-string literals is provision for specifying whether the literal rep-
resents an unsigned or signed number. We represent an unsigned number using one of
the base specifiers UB, UO, or UX. These are the same as the ordinary base specifiers B,
O, and X. When a sized unsigned literal is extended, it is padded with ‘0’ bits, and when
bits are truncated, they must be all ‘0’. Decimal literals are always interpreted as unsigned,
so D is the only base specifier for decimal. We can extend a decimal literal by padding
with ‘0’ bits. However, we cannot truncate a decimal literal from its default size, since the
default size always gives a ‘1’ as the leftmost bit, which must not be truncated.



26 Chapter 1 — Fundamental Concepts

We represent a signed number using one of the base specifiers SB, SO, or SX. The
rules for extension and truncation are based on those for sign extension and truncation of
2s-complement binary numbers. When a sized signed literal is extended, each bit of pad-
ding on the left is a replication of the leftmost bit prior to padding. For example:

10SX"71"   -- equivalent to B"0001110001"
10SX"88"   -- equivalent to B"1110001000"
10SX"W0"   -- equivalent to B"WWWWWW0000"

When a sized signed literal is truncated, all of the bits removed at the left must be the
same as the leftmost remaining bit. For example:

6SX"16"   -- equivalent to B"010110"
6SX"E8"   -- equivalent to B"101000"
6SX"H3"   -- equivalent to B"HH0011"

However, 6SX"28" is invalid, since, prior to truncation, the bit string would be
"00101000". The two leftmost bits removed are each ‘0’, which differ from the leftmost
remaining ‘1’ bit. The literal would have to be written as 6SX"E8" for this reason. The ra-
tionale for this rule is that it prevents the signed numeric value represented by the literal
being inadvertently changed by the truncation.

VHDL-87, -93, and -2002

These versions of VHDL only allow the base specifiers B, O, and X. They do not allow
unsigned and signed specifiers UB, UO, UX, SB, SO, and SX; nor do they allow the
decimal specifier D. They do not allow the size to be specified; thus, octal literals are
always a multiple of three in length, and hexidecimal literals are always a multiple of
four in length. Finally, non-digit characters, other than underlines for readability, are
not allowed.

1.5.2 Syntax Descriptions

In the remainder of this book, we describe rules of syntax using a notation based on the
Extended Backus-Naur Form (EBNF). These rules govern how we may combine lexical
elements to form valid VHDL descriptions. It is useful to have a good working knowledge
of the syntax rules, since VHDL analyzers expect valid VHDL descriptions as input. The
error messages they otherwise produce may in some cases appear cryptic if we are un-
aware of the syntax rules.

The idea behind EBNF is to divide the language into syntactic categories. For each
syntactic category we write a rule that describes how to build a VHDL clause of that cat-
egory by combining lexical elements and clauses of other categories. These rules are anal-
ogous to the rules of English grammar. For example, there are rules that describe a
sentence in terms of a subject and a predicate, and that describe a predicate in terms of a
verb and an object phrase. In the rules for English grammar, “sentence”, “subject”, “pred-
icate”, and so on, are the syntactic categories.



1.5 Learning a New Language: Lexical Elements and Syntax 27

In EBNF, we write a rule with the syntactic category we are defining on the left of a
“⇐” sign (read as “is defined to be”), and a pattern on the right. The simplest kind of pat-
tern is a collection of items in sequence, for example:

variable_assignment ⇐ target := expression ;

This rule indicates that a VHDL clause in the category “variable_assignment” is defined
to be a clause in the category “target”, followed by the symbol “:=”, followed by a clause
in the category “expression”, followed by the symbol “;”. To find out whether the VHDL
clause

d0 := 25 + 6;

is syntactically valid, we would have to check the rules for “target” and “expression”. As
it happens, “d0” and “25+6” are valid subclauses, so the whole clause conforms to the
pattern in the rule and is thus a valid variable assignment. On the other hand, the clause

25 fred := x if := .

cannot possibly be a valid variable assignment, since it doesn’t match the pattern on the
right side of the rule.

The next kind of rule to consider is one that allows for an optional component in a
clause. We indicate the optional part by enclosing it between the symbols “[” and “]”. For
example:

function_call ⇐ name [ ( association_list ) ]

This indicates that a function call consists of a name that may be followed by an associa-
tion list in parentheses. Note the use of the outline symbols for writing the pattern in the
rule, as opposed to the normal solid symbols that are lexical elements of VHDL.

In many rules, we need to specify that a clause is optional, but if present, it may be
repeated as many times as needed. For example, in this simplified rule for a process state-
ment:

process_statement ⇐
 process is

{ process_declarative_item }
begin

{ sequential_statement }
end process ;

the curly braces specify that a process may include zero or more process declarative items
and zero or more sequential statements. A case that arises frequently in the rules of VHDL
is a pattern consisting of some category followed by zero or more repetitions of that cat-
egory. In this case, we use dots within the braces to represent the repeated category, rather
than writing it out again in full. For example, the rule

case_statement ⇐
case expression is



28 Chapter 1 — Fundamental Concepts

case_statement_alternative
{ … }

end case ;

indicates that a case statement must contain at least one case statement alternative, but
may contain an arbitrary number of additional case statement alternatives as required. If
there is a sequence of categories and symbols preceding the braces, the dots represent
only the last element of the sequence. Thus, in the example above, the dots represent only
the case statement alternative, not the sequence “case expression is
case_statement_alternative”.

We also use the dots notation where a list of one or more repetitions of a clause is
required, but some delimiter symbol is needed between repetitions. For example, the rule

identifier_list ⇐ identifier { , … }

specifies that an identifier list consists of one or more identifiers, and that if there is more
than one, they are separated by comma symbols. Note that the dots always represent a
repetition of the category immediately preceding the left brace symbol. Thus, in the above
rule, it is the identifier that is repeated with comma delimiters; it is not just the comma that
is repeated.

Many syntax rules allow a category to be composed of one of a number of alterna-
tives. One way to represent this is to have a number of separate rules for the category,
one for each alternative. However, it is often more convenient to combine alternatives us-
ing the “I” symbol. For example, the rule

mode ⇐ in I out I inout

specifies that the category “mode” can be formed from a clause consisting of one of the
reserved words chosen from the alternatives listed.

The final notation we use in our syntax rules is parenthetic grouping, using the sym-
bols “(“ and “)”. These simply serve to group part of a pattern, so that we can avoid any
ambiguity that might otherwise arise. For example, the inclusion of parentheses in the rule

term ⇐ factor { ( * I / I mod I rem ) factor }

makes it clear that a factor may be followed by one of the operator symbols, and then
another factor. Without the parentheses, the rule would be

term ⇐ factor { * I / I mod I rem factor }

indicating that a factor may be followed by one of the operators “*”, “/” or mod alone, or
by the operator rem and then another factor. This is certainly not what is intended. The
reason for this incorrect interpretation is that there is a precedence, or order of priority, in
the EBNF notation we are using. In the absence of parentheses, a sequence of pattern
components following one after the other is considered as a group with higher prece-
dence than components separated by “I” symbols.

This EBNF notation is sufficient to describe the complete grammar of VHDL. However,
there are often further constraints on a VHDL description that relate to the meaning of the
lexical elements used. For example, a description specifying connection of a signal to a



Exercises 29

named object that identifies a component instead of a port is incorrect, even though it may
conform to the syntax rules. To avoid such problems, many rules include additional infor-
mation relating to the meaning of a language feature. For example, the rule shown above
describing how a function call is formed is augmented thus:

function_call ⇐ function_name [ ( parameter_association_list ) ]

The italicized prefix on a syntactic category in the pattern simply provides semantic infor-
mation. This rule indicates that the name cannot be just any name, but must be the name
of a function. Similarly, the association list must describe the parameters supplied to the
function. (We will describe the meaning of functions and parameters in a later chapter.)
The semantic information is for our benefit as designers reading the rule, to help us un-
derstand the intended semantics. So far as the syntax is concerned, the rule is equivalent
to the original rule without the italicized parts.

In the following chapters, we will introduce each new feature of VHDL by describing
its syntax using EBNF rules, and then we will describe the meaning and use of the feature
through examples. In many cases, we will start with a simplified version of the syntax to
make the description easier to learn and come back to the full details in a later chapter.
For reference, Appendix B contains a complete listing of VHDL syntax in EBNF notation.

Exercises

1. [➊ 1.4] Briefly outline the purposes of the following VHDL modeling constructs: entity
declaration, behavioral architecture body, structural architecture body, process state-
ment, signal assignment statement and port map.

2. [➊ 1.5] Single-line comment symbols are often used to make lines of a model tempo-
rarily ineffective. The symbol is added at the front of the line, turning the line into a
comment. The comment symbol can be simply removed to reactivate the statement.
The following process statement includes a line to assign a value to a test signal, to
help debug the model. Modify the process to make the assignment ineffective.

apply_transform : process is
begin
  d_out <= transform(d_in) after 200 ps;
  debug_test <= transform(d_in);
  wait on enable, d_in;
end process apply_transform;

3. [➊ 1.5] Which of the following are valid VHDL basic identifiers? Which are reserved
words? Of the invalid identifiers, why are they invalid?

last_item   prev item   value-1   buffer

element#5   _control    93_999    entry_

4. [➊ 1.5] Rewrite the following decimal literals as hexadecimal literals.

1 34 256.0 0.5



30 Chapter 1 — Fundamental Concepts

5. [➊ 1.5] What decimal numbers are represented by the following literals?

8#14#   2#1000_0100#   16#2C#

2.5E5   2#1#E15        2#0.101#

6. [➊ 1.5] What is the difference between the literals 16#23DF# and X"23DF"?

7. [➊ 1.5] Express the following octal and hexadecimal bit strings as binary bit-string lit-
erals.

O"747"   O"377"    O"1_345"

X"F2"    X"0014"   X"0000_0001"

8. [➊ 1.5] Express the following octal and hexadecimal bit strings as binary bit-string lit-
erals, or, if they are illegal, say why.

10UO"747"   10UO"377"   10UO"1_345"

10SO"747"   10SO"377"   10SO"1_345"

12UX"F2"    12SX"F2"    10UX"F2"   10SX"F2"

9. [➊ 1.5] Express the following decimal bit strings as binary bit-string literals, or, if they
are illegal, say why.

D"24"   12D"24"   4D"24"

10. [➋ 1.4] Write an entity declaration and a behavioral architecture body for a two-input
multiplexer, with input ports a, b and sel and an output port z. If the sel input is ‘0’,
the value of a should be copied to z, otherwise the value of b should be copied to z.
Write a test bench for the multiplexer model, and test it using a VHDL simulator.

11. [➋ 1.4] Write an entity declaration and a structural architecture body for a 4-bit-wide
multiplexer, using instances of the 2-bit multiplexer from Exercise 10. The input ports
are a0, a1, a2, a3, b0, b1, b2, b3 and sel, and the output ports are z0, z1, z2 and z3.
When sel is ‘0’, the inputs a0 to a3 are copied to the outputs, otherwise the inputs b0
to b3 are copied to the outputs. Write a test bench for the multiplexer model, and test
it using a VHDL simulator.



31

Chapter 2 

Scalar Data Types
and Operations

The concept of type is very important when describing data in a VHDL model. The type
of a data object defines the set of values that the object can assume, as well as the set of
operations that can be performed on those values. A scalar type consists of single, indi-
visible values. In this chapter we look at the basic scalar types provided by VHDL and see
how they can be used to define data objects that model the internal state of a module.

2.1 Constants and Variables

An object is a named item in a VHDL model that has a value of a specified type. There
are four classes of objects: constants, variables, signals and files. In this chapter, we look
at constants and variables; signals are described fully in Chapter 5, and files in Chapter 16.
Constants and variables are objects in which data can be stored for use in a model. The
difference between them is that the value of a constant cannot be changed after it is cre-
ated, whereas a variable’s value can be changed as many times as necessary using variable
assignment statements.

2.1.1 Constant and Variable Declarations

Both constants and variables need to be declared before they can be used in a model. A
declaration simply introduces the name of the object, defines its type and may give it an
initial value. The syntax rule for a constant declaration is

constant_declaration ⇐
constant identifier { , … } : subtype_indication [ := expression ] ;

The identifiers listed are the names of the constants being defined (one per name),
and the subtype indication specifies the type of all of the constants. We look at ways of
specifying the type in detail in subsequent sections of this chapter. The optional part
shown in the syntax rule is an expression that specifies the value that each constant as-



32 Chapter 2 — Scalar Data Types and Operations

sumes. This part can only be omitted in certain cases that we discuss in Chapter 7. Until
then, we always include it in examples. Here are some examples of constant declarations:

constant number_of_bytes : integer := 4;
constant number_of_bits : integer := 8 * number_of_bytes;
constant e : real := 2.718281828;
constant prop_delay : time := 3 ns;
constant size_limit, count_limit : integer := 255;

The reason for using a constant is to have a name and an explicitly defined type for
a value, rather than just writing the value as a literal. This makes the model more intelli-
gible to the reader, since the name and type convey much more information about the
intended use of the object than the literal value alone. Furthermore, if we need to change
the value as the model evolves, we only need to update the declaration. This is much eas-
ier and more reliable than trying to find and update all instances of a literal value through-
out a model. It is good practice to use constants rather than writing literal values within a
model.

The form of a variable declaration is similar to a constant declaration. The syntax rule
is

variable_declaration ⇐
variable identifier { , … } : subtype_indication [ := expression ] ;

Here also the initialization expression is optional. If we omit it, the default initial value
assumed by the variable when it is created depends on the type. For scalar types, the de-
fault initial value is the leftmost value of the type. For example, for integers it is the small-
est representable integer. Some examples of variable declarations are

variable index : integer := 0;
variable sum, average, largest : real;
variable start, finish : time := 0 ns; 

If we include more than one identifier in a variable declaration, it is the same as hav-
ing separate declarations for each identifier. For example, the last declaration above is the
same as the two declarations

variable start : time := 0 ns; 
variable finish : time := 0 ns; 

This is not normally significant unless the initialization expression is such that it potentially
produces different values on two successive evaluations. The only time this may occur is
if the initialization expression contains a call to a function with side effects (see Chapter 6).

Constant and variable declarations can appear in a number of places in a VHDL
model, including in the declaration parts of processes. In this case, the declared object can
be used only within the process. One restriction on where a variable declaration may oc-
cur is that it may not be placed so that the variable would be accessible to more than one
process. This is to prevent the strange effects that might otherwise occur if the processes
were to modify the variable in indeterminate order. The exception to this rule is if a vari-



2.1 Constants and Variables 33

able is declared specially as a shared variable.  We will leave discussion of shared variables
until Chapter 19.

EXAMPLE 2.1 Constants and variables in an architecture

The following outline of an architecture body shows how constant and variable dec-
larations may be included in a VHDL model. It includes declarations of a constant pi
and a variable counter.

entity ent is

end entity ent;

architecture sample of ent is

  constant pi : real := 3.14159;

begin

  process is
    variable counter : integer;
  begin
    -- ...         --  statements using pi and counter
  end process;

end architecture sample;

2.1.2 Variable Assignment

Once a variable has been declared, its value can be modified by an assignment statement.
The syntax of a variable assignment statement is given by the rule

variable_assignment_statement ⇐ [ label : ] name := expression ;

The optional label provides a means of identifying the assignment statement. We will
discuss reasons for labeling statements in Chapter 20. Until then, we will simply omit the
label in our examples. The name in a variable assignment statement identifies the variable
to be changed, and the expression is evaluated to produce the new value. The type of this
value must match the type of the variable. The full details of how an expression is formed
are covered in the rest of this chapter. For now, just think of expressions as the usual com-
binations of identifiers and literals with operators. Here are some examples of assignment
statements:

program_counter := 0;
index := index + 1;

The first assignment sets the value of the variable program_counter to zero, overwriting
any previous value. The second example increments the value of index by one. 

It is important to note the difference between a variable assignment statement, shown
here, and a signal assignment statement, introduced in Chapter 1. A variable assignment



34 Chapter 2 — Scalar Data Types and Operations

immediately overwrites the variable with a new value. A signal assignment, on the other
hand, schedules a new value to be applied to a signal at some later time. We will return
to signal assignments in Chapter 5. Because of the significant difference between the two
kinds of assignment, VHDL uses distinct symbols: “:=” for variable assignment and “<=”
for signal assignment.

VHDL-87

Variable assignment statements may not be labeled in VHDL-87.

2.2 Scalar Types

The notion of type is very important in VHDL. We say that VHDL is a strongly typed lan-
guage, meaning that every object may only assume values of its nominated type. Further-
more, the definition of each operation includes the types of values to which the operation
may be applied. The aim of strong typing is to allow detection of errors at an early stage
of the design process, namely, when a model is analyzed.

In this section, we show how a new type is declared. We then show how to define
different scalar types. A scalar type is one whose values are indivisible. In Chapter 4 we
will show how to declare types whose values are composed of collections of element val-
ues.

2.2.1 Type Declarations

We introduce new types into a VHDL model by using type declarations. The declaration
names a type and specifies which values may be stored in objects of the type. The syntax
rule for a type declaration is

type_declaration ⇐ type identifier is type_definition ;

One important point to note is that if two types are declared separately with identical
type definitions, they are nevertheless distinct and incompatible types. For example, if we
have two type declarations:

type apples is range 0 to 100;
type oranges is range 0 to 100;

we may not assign a value of type apples to a variable of type oranges, since they are of
different types.

An important use of types is to specify the allowed values for ports of an entity. In the
examples in Chapter 1, we saw the type name bit used to specify that ports may take only
the values ‘0’ and ‘1’. If we define our own types for ports, the type names must be de-
clared in a package, so that they are visible in the entity declaration. We will describe pack-
ages in more detail in Chapter 7; we introduce them here to enable us to write entity
declarations using types of our own devising. For example, suppose we wish to define an



2.2 Scalar Types 35

adder entity that adds small integers in the range 0 to 255. We write a package containing
the type declaration, as follows:

package int_types is

  type small_int is range 0 to 255;

end package int_types;

This defines a package named int_types, which provides the type named small_int. The
package is a separate design unit and is analyzed before any entity declaration that needs
to use the type it provides. We can use the type by preceding an entity declaration with a
use clause, for example:

use work.int_types.all;

entity small_adder is
  port ( a, b : in small_int;  s : out small_int );
end entity small_adder;

When we discuss packages in Chapter 7, we will explain the precise meaning of use
clauses such as this. For now, we treat it as “magic” needed to declare types for use in
entity declarations.

2.2.2 Integer Types

In VHDL, integer types have values that are whole numbers. An example of an integer
type is the predefined type integer, which includes all the whole numbers representable
on a particular host computer. The language standard requires that the type integer in-
clude at least the numbers –2,147,483,647 to +2,147,483,647 (–231 + 1 to +231 – 1), but
VHDL implementations may extend the range.

We can define a new integer type using a range-constraint type definition. The sim-
plified syntax rule for an integer type definition is

integer_type_definition ⇐
range simple_expression ( to I downto ) simple_expression

which defines the set of integers between (and including) the values given by the two
expressions. The expressions must evaluate to integer values. If we use the keyword to,
we are defining an ascending range, in which values are ordered from the smallest on the
left to the largest on the right. On the other hand, using the keyword downto defines a
descending range, in which values are ordered left to right from largest to smallest. The
reasons for distinguishing between ascending and descending ranges will become clear
later.

An an example, here are two integer type declarations:

type day_of_month is range 0 to 31;
type year is range 0 to 2100;



36 Chapter 2 — Scalar Data Types and Operations

These two types are quite distinct, even though they include some values in common.
Thus if we declare variables of these types:

variable today : day_of_month := 9;
variable start_year : year := 1987;

it would be illegal to make the assignment

start_year := today;

Even though the number 9 is a member of the type year, in context it is treated as being
of type day_of_month, which is incompatible with type year. This type rule helps us to
avoid inadvertently mixing numbers that represent different kinds of things.

If we wish to use an arithmetic expression to specify the bounds of the range, the
values used in the expression must be locally static; that is, they must be known when the
model is analyzed. For example, we can use constant values in an expression as part of a
range definition:

constant number_of_bits : integer := 32;
type bit_index is range 0 to number_of_bits - 1;

The operations that can be performed on values of integer types include the familiar
arithmetic operations:

+ addition, or identity

– subtraction, or negation

* multiplication

/ division

mod modulo

rem remainder

abs absolute value

** exponentiation

The result of an operation is an integer of the same type as the operand or operands.
For the binary operators (those that take two operands), the operands must be of the same
type. The right operand of the exponentiation operator must be a non-negative integer.

The identity and negation operators are unary, meaning that they only take a single,
right operand. The result of the identity operator is its operand unchanged, while the ne-
gation operator produces zero minus the operand. So, for example, the following all pro-
duce the same result:

A + (-B)  A - (+B)  A - B

The division operator produces an integer that is the result of dividing, with any frac-
tional part truncated toward zero. The remainder operator is defined such that the relation



2.2 Scalar Types 37

A  =  (A / B) * B + (A rem B)

is satisfied. The result of A rem B is the remainder left over from division of A by B. It has
the same sign as A and has absolute value less than the absolute value of B. For example:

5 rem 3    = 2    (-5) rem 3    = -2
5 rem (-3) = 2    (-5) rem (-3) = -2

Note that in these expressions, the parentheses are required by the grammar of VHDL.
The two operators, rem and negation, may not be written side by side. The modulo op-
erator conforms to the mathematical definition satisfying the relation

A  =  B * N  +  (A mod B) -- for some integer N

The result of A mod B has the same sign as B and has absolute value less than the
absolute value of B. For example:

5 mod 3    = 2     (-5) mod 3    = 1
5 mod (-3) = -1    (-5) mod (-3) = -2

In addition to these operations, VHDL defines operations to find the larger (maxi-
mum) and the smaller (minimum) of two integers. For example

maximum(3, 20) = 20    minimum(3, 20) = 3

While we could use an if statement for this purpose, such as the following:

if A > B then
  greater := A;
else
  greater := B;
end if;

using the maximum or minimum operation is much more convenient:

greater := maximum(A, B);

When a variable is declared to be of an integer type, the default initial value is the
leftmost value in the range of the type. For ascending ranges, this will be the least value,
and for descending ranges, it will be the greatest value. If we have these declarations:

type set_index_range is range 21 downto 11;
type mode_pos_range is range 5 to 7;
variable set_index : set_index_range;
variable mode_pos : mode_pos_range;

the initial value of set_index is 21, and that of mode_pos is 5. The initial value of a variable
of type integer is –2,147,483,647 or less, since this type is predefined as an ascending
range that must include –2,147,483,647.



38 Chapter 2 — Scalar Data Types and Operations

VHDL-87, -93, and -2002

The maximum and minimum operations are not predefined in these versions of
VHDL.

2.2.3 Floating-Point Types

Floating-point types in VHDL are used to represent real numbers. Mathematically speak-
ing, there is an infinite number of real numbers within any interval, so it is not possible
to represent real numbers exactly on a computer. Hence floating-point types are only an
approximation to real numbers. The term “floating point” refers to the fact that they are
represented using a mantissa part and an exponent part. This is similar to the way in which
we represent numbers in scientific notation.

Floating-point types in VHDL conform to IEEE Standard 754 or 854 for floating-point
computation and are represented using at least 64 bits. This gives approximately 15 deci-
mal digits of precision, and a range of approximately –1.8E+308 to +1.8E+308. An imple-
mentation may choose to use a larger representation, providing correspondingly greater
precision or range. There is a predefined floating-point type called real, which includes
the greatest range allowed by the implementation’s floating-point representation. In most
implementations, this will be the range of the IEEE 64-bit double-precision representation.

We define a new floating-point type using a range-constraint type definition. The sim-
plified syntax rule for a floating-point type definition is

floating_type_definition ⇐
range simple_expression ( to I downto ) simple_expression

This is similar to the way in which an integer type is declared, except that the bounds must
evaluate to floating-point numbers. Some examples of floating-point type declarations are

type input_level is range -10.0 to +10.0;
type probability is range 0.0 to 1.0;

The operations that can be performed on floating-point values include the arithmetic
operations addition and identity (“+”), subtraction and negation (“–”), multiplication (“*”),
division (“/”), absolute value (abs), exponentiation (“**”), maximum, and minimum. The
result of an operation is of the same floating-point type as the operand or operands. For
the binary operators (those that take two operands), the operands must be of the same
type. The exception is that the right operand of the exponentiation operator must be an
integer. The identity and negation operators are unary (meaning that they only take a sin-
gle, right operand).

Variables that are declared to be of a floating-point type have a default initial value
that is the leftmost value in the range of the type. So if we declare a variable to be of the
type input_level shown above:

variable input_A : input_level;

its initial value is –10.0.



2.2 Scalar Types 39

VHDL-87, -93, and -2002

The maximum and minimum operations are not predefined in these versions of
VHDL.

VHDL-87 and VHDL-93

In VHDL-87 and VHDL-93, the precision of floating-point types is only guaranteed to
be at least six decimal digits, and the range at least –1.0E+38 to +1.0E+38. This corre-
sponds to IEEE 32-bit single-precision representation. Implementations are allowed to
use larger representations. The predefined type real is only guaranteed to have at least
six digits precision and a range of at least –1.0E+38 to +1.0E+38, regardless of the size
of the representation chosen by the implementation.

2.2.4 Physical Types

The remaining numeric types in VHDL are physical types. They are used to represent real-
world physical quantities, such as length, mass, time and current. The definition of a phys-
ical type includes the primary unit of measure and may also include some secondary
units, which are integral multiples of the primary unit. The simplified syntax rule for a
physical type definition is

physical_type_definition ⇐
range simple_expression ( to I downto ) simple_expression

units
identifier ;
{ identifier = physical_literal ; }

end units [ identifier ]

physical_literal ⇐ [ decimal_literal I based_literal ] unit_name

A physical type definition is like an integer type definition, but with the units defini-
tion part added. The primary unit (the first identifier after the units keyword) is the small-
est unit that is represented. We may then define a number of secondary units, as we shall
see in a moment. The range specifies the multiples of the primary unit that are included
in the type. If the identifier is included at the end of the units definition part, it must repeat
the name of the type being defined.

To illustrate, here is a declaration of a physical type representing electrical resistance:

type resistance is range 0 to 1E9
  units
    ohm;
  end units resistance;

Literal values of this type are written as a numeric literal followed by the unit name,
for example:



40 Chapter 2 — Scalar Data Types and Operations

5 ohm    22 ohm    471_000 ohm

Notice that we must include a space before the unit name. Also, if the number is the
literal 1, it can be omitted, leaving just the unit name. So the following two literals repre-
sent the same value:

ohm    1 ohm

Note that values such as –5 ohm and 1E16 ohm are not included in the type resis-
tance, since the values –5 and 1E16 lie outside of the range of the type.

Now that we have seen how to write physical literals, we can look at how to specify
secondary units in a physical type declaration. We do this by indicating how many primary
units comprise a secondary unit. Our declaration for the resistance type can now be ex-
tended:

type resistance is range 0 to 1E9
  units
    ohm;
    kohm = 1000 ohm;
    Mohm = 1000 kohm;
  end units resistance;

Notice that once one secondary unit is defined, it can be used to specify further sec-
ondary units. Of course, the secondary units do not have to be powers of 10 times the
primary unit; however, the multiplier must be an integer. For example, a physical type for
length might be declared as

type length is range 0 to 1E9
  units
    um;                 -- primary unit: micron
    mm = 1000 um;       -- metric units
    m = 1000 mm;
    inch = 25400 um;    -- imperial units
    foot = 12 inch;
  end units length;

We can write physical literals of this type using the secondary units, for example:

23 mm    2 foot    9 inch

When we write physical literals, we can write non-integral multiples of primary or sec-
ondary units. If the value we write is not an exact multiple of the primary unit, it is
rounded down to the nearest multiple. For example, we might write the following literals
of type length, each of which represents the same value:

0.1 inch    2.54 mm    2.540528 mm

The last of these is rounded down to 2540 um, since the primary unit for length is um. If
we write the physical literal 6.8 um, it is rounded down to the value 6 um.



2.2 Scalar Types 41

Many of the arithmetic operators can be applied to physical types, but with some re-
strictions. The addition, subtraction, identity, negation, abs, mod, rem, maximum, and
minimum operations can be applied to values of physical types, in which case they yield
results that are of the same type as the operand or operands. In the case of mod and rem,
the operations are based on the number of primary units in each of the operand values,
for example:

20 mm rem   6 mm  =    2 mm
 1 m  rem 300 mm  =  100 mm

A value of a physical type can be multiplied by a number of type integer or real to
yield a value of the same physical type, for example:

5 mm * 6  =  30 mm

A value of a physical type can be divided by a number of type integer or real to yield
a value of the same physical type. Furthermore, two values of the same physical type can
be divided to yield an integer, for example:

18 kohm / 2.0     =  9 kohm 
33 kohm / 22 ohm  =  1500

Also, the abs operator may be applied to a value of a physical type to yield a value
of the same type, for example:

abs 2 foot     =  2 foot
abs (-2 foot)  =  2 foot

The restrictions make sense when we consider that physical types represent actual
physical quantities, and arithmetic should be done so as to produce results of the correct
dimensions. It doesn’t make sense to multiply two lengths together to yield a length; the
result should logically be an area. So VHDL does not allow direct multiplication of two
physical types. Instead, we must convert the values to abstract integers to do the calcula-
tion, then convert the result back to the final physical type. (See the discussion of the 'pos
and 'val attributes in Section 2.4.)

A variable that is declared to be of a physical type has a default initial value that is the
leftmost value in the range of the type. For example, the default initial values for the types
declared above are 0 ohm for resistance and 0 um for length.

VHDL-87, -93, and -2002

The maximum and minimum operations are not predefined in these versions of
VHDL. Moreover, the mod and rem operations are not applicable to values of
physical types in these versions.



42 Chapter 2 — Scalar Data Types and Operations

VHDL-87

A physical type definition in VHDL-87 may not repeat the type name after the
keywords end units.

Time

The predefined physical type time is very important in VHDL, as it is used extensively to
specify delays. Its definition is

type time is range implementation defined
  units
    fs;
    ps = 1000 fs;
    ns = 1000 ps;
    us = 1000 ns;
    ms = 1000 us;
    sec = 1000 ms;
    min = 60 sec;
    hr = 60 min;
  end units;

EXAMPLE 2.2 Waveform generation

We can use the mod operator on values of type time to simplify generation of a pe-
riodic waveform. For example, the following process creates a triangle wave on the
real signal triangle_wave. The constant t_period_wave defines the period of the
output wave, t_offset defines the offset within the triangle wave, and t_period_sample
defines how many points are in the waveform. The value now defines the current time
as simulation progresses.

signal triangle_wave : real;
...

wave_proc : process is
  variable phase : time;
begin
  phase := (now + t_offset) mod t_period_wave;
  if phase <= t_period_wave/2 then
    triangle_wave <= 4.0 * real(phase/t_period_wave) - 1.0;
  else
    triangle_wave <= 3.0 - 4.0 * real(phase/t_period_wave);
  end if;
  wait for tperiod_sample;
end process wave_proc;



2.2 Scalar Types 43

By default, the primary unit fs is the resolution limit used when a model is simulated.
Time values smaller than the resolution limit are rounded down to zero units. A simulator
may allow us to select a secondary unit of time as the resolution limit. In this case, the
unit of all physical literals of type time in the model must not be less than the resolution
limit. When the model is executed, the resolution limit is used to determine the precision
with which time values are represented. The reason for allowing reduced precision in this
way is to allow a greater range of time values to be represented. This may allow a model
to be simulated for a longer period of simulation time.

2.2.5 Enumeration Types

Often when writing models of hardware at an abstract level, it is useful to use a set of
names for the encoded values of some signals, rather than committing to a bit-level en-
coding straightaway. VHDL enumeration types allow us to do this. For example, suppose
we are modeling a processor, and we want to define names for the function codes for the
arithmetic unit. A suitable type declaration is

type alu_function is
  (disable, pass, add, subtract, multiply, divide);

Such a type is called an enumeration, because the literal values used are enumerated in a
list. The syntax rule for enumeration type definitions in general is

enumeration_type_definition ⇐ ( ( identifier I character_literal ) { , … } )

There must be at least one value in the type, and each value may be either an iden-
tifier, as in the above example, or a character literal. An example of this latter case is

type octal_digit is ('0', '1', '2', '3', '4', '5', '6', '7');

Given the above two type declarations, we could declare variables:

variable alu_op : alu_function;
variable last_digit : octal_digit := '0';

and make assignments to them:

alu_op := subtract;
last_digit := '7';

Different enumeration types may include the same identifier as a literal (called over-
loading), so the context of use must make it clear which type is meant. To illustrate this,
consider the following declarations:

type logic_level is (unknown, low, undriven, high);
variable control : logic_level;
type water_level is (dangerously_low, low, ok);
variable water_sensor : water_level;



44 Chapter 2 — Scalar Data Types and Operations

Here, the literal low is overloaded, since it is a member of both types. However, the
assignments

control := low;
water_sensor := low;

are both acceptable, since the types of the variables are sufficient to determine which low
is being referred to.

When a variable of an enumeration type is declared, the default initial value is the
leftmost element in the enumeration list. So unknown is the default initial value for type
logic_level, and dangerously_low is that for type water_level.

There are three predefined enumeration types defined as

type severity_level is
  (note, warning, error, failure);
type file_open_status is
  (open_ok, status_error, name_error, mode_error);
type file_open_kind is
  (read_mode, write_mode, append_mode);

The type severity_level is used in assertion statements, which we will discuss in Chap-
ter 3, and the types file_open_status and file_open_kind are used for file operations,
which we will discuss in Chapter 16.  For the remainder of this section, we look at the
other predefined enumeration types and the operations applicable to them.

VHDL-87

The types file_open_status and file_open_kind are not predefined in VHDL-87.

Characters

In Chapter 1 we saw how to write literal character values. These values are members of
the predefined enumeration type character, which includes all of the characters in the ISO
8859 Latin-1 8-bit character set. The type definition is shown below. Note that this type is
an example of an enumeration type containing a mixture of identifiers and character lit-
erals as elements.

type character is (
  nul,   soh,   stx,   etx,   eot,   enq,   ack,   bel,
  bs,    ht,    lf,    vt,    ff,    cr,    so,    si,
  dle,   dc1,   dc2,   dc3,   dc4,   nak,   syn,   etb,
  can,   em,    sub,   esc,   fsp,   gsp,   rsp,   usp,
  ' ',   '!',   '"',   '#',   '$',   '%',   '&',   ''',
  '(',   ')',   '*',   '+',   ',',   '-',   '.',   '/',
  '0',   '1',   '2',   '3',   '4',   '5',   '6',   '7',
  '8',   '9',   ':',   ';',   '<',   '=',   '>',   '?',
  '@',   'A',   'B',   'C',   'D',   'E',   'F',   'G',



2.2 Scalar Types 45

  'H',   'I',   'J',   'K',   'L',   'M',   'N',   'O',
  'P',   'Q',   'R',   'S',   'T',   'U',   'V',   'W',
  'X',   'Y',   'Z',   '[',   '\',   ']',   '^',   '_', 
  '`',   'a',   'b',   'c',   'd',   'e',   'f',   'g',
  'h',   'i',   'j',   'k',   'l',   'm',   'n',   'o',
  'p',   'q',   'r',   's',   't',   'u',   'v',   'w',
  'x',   'y',   'z',   '{',   '|',   '}',   '~',   del,
  c128,  c129,  c130,  c131,  c132,  c133,  c134,  c135,
  c136,  c137,  c138,  c139,  c140,  c141,  c142,  c143,
  c144,  c145,  c146,  c147,  c148,  c149,  c150,  c151,
  c152,  c153,  c154,  c155,  c156,  c157,  c158,  c159,
  ' ',   '¡',   '¢',   '£',   '¤',   '¥',   '¦',   '§',
  '¨',   '©',   'ª',   '«',   '¬',   '-',   '®',   '¯',
  '°',   '±',   '2',   '3',   '´',   'μ',   '¶',   '·',
  '¸',   '1',   'º',   '»',   '¼',   '½',   '¾',   '¿',
  'À',   'Á',   'Â',   'Ã',   'Ä',   'Å',   'Æ',   'Ç',
  'È',   'É',   'Ê',   'Ë',   'Ì',   'Í',   'Î',   'Ï',
  'Ð',   'Ñ',   'Ò',   'Ó',   'Ô',   'Õ',   'Ö',   '×',
  'Ø',   'Ù',   'Ú',   'Û',   'Ü',   'Ý',   'Þ',   'ß',
  'à',   'á',   'â',   'ã',   'ä',   'å',   'æ',   'ç',
  'è',   'é',   'ê',   'ë',   'ì',   'í',   'î',   'ï',
  'ð',   'ñ',   'ò',   'ó',   'ô',   'õ',   'ö',   '÷',
  'ø',   'ù',   'ú',   'û',   'ü',   'ý',   'þ',   'ÿ');

The first 128 characters in this enumeration are the ASCII characters, which form a
subset of the Latin-1 character set. The identifiers from nul to usp and del are the non-
printable ASCII control characters. Characters c128 to c159 do not have any standard
names, so VHDL just gives them nondescript names based on their position in the char-
acter set. The character at position 160 is a non-breaking space character, distinct from the
ordinary space character, and the character at position 173 is a soft hyphen.

To illustrate the use of the character type, we declare variables as follows:

variable cmd_char, terminator : character;

and then make the assignments

cmd_char := 'P';
terminator := cr;

VHDL-87

Since VHDL-87 uses the ASCII character set, the predefined type character includes
only the first 128 characters shown above.



46 Chapter 2 — Scalar Data Types and Operations

Booleans

One of the most important predefined enumeration types in VHDL is the type boolean,
defined as

type boolean is (false, true);

This type is used to represent condition values, which can control execution of a behav-
ioral model. There are a number of operators that we can apply to values of different types
to yield Boolean values, namely, the relational and logical operators. The relational oper-
ators equality (“=”) and inequality (“/=”) can be applied to operands of any type (except
files), including the composite types that we will see later in this chapter. The operands
must both be of the same type, and the result is a Boolean value. For example, the ex-
pressions

123 = 123    'A' = 'A'    7 ns = 7 ns

all yield the value true, and the expressions

123 = 456    'A' = 'z'    7 ns = 2 us

yield the value false.
The relational operators that test ordering are the less-than (“<”), less-than-or-equal-

to (“<=”), greater-than (“>”) and greater-than-or-equal-to (“>=”) operators. These can only
be applied to values of types that are ordered, including all of the scalar types described
in this chapter. As with the equality and inequality operators, the operands must be of the
same type, and the result is a Boolean value. For example, the expressions

123 < 456    789 ps <= 789 ps    '1' > '0'

all result in true, and the expressions

96 >= 102    2 us < 4 ns    'X' < 'X'

all result in false.
The logical operators and, or, nand, nor, xor, xnor and not take operands that are

Boolean values and produce Boolean results. Table 2.1 shows the results produced by the
binary logical operators. The result of the unary not operator is true if the operand is false,
and false if the operand is true. The operators and, or, nand and nor are called “short-

TABLE 2.1 The truth table for binary logical operators

A B A and B A nand B A or B A nor B A xor B A xnor B

false false false true false true false true

false true false true true false true false

true false false true true false true false

true true true false true false false true



2.2 Scalar Types 47

circuit” operators, as they only evaluate the right operand if the left operand does not de-
termine the result. For example, if the left operand of the and operator is false, we know
that the result is false, so we do not need to consider the other operand. This is useful
where the left operand is a test that guards against the right operand causing an error.
Consider the expression

(b /= 0) and (a/b > 1)

If b were zero and we evaluated the right-hand operand, we would cause an error
due to dividing by zero. However, because and is a short-circuit operator, if b were zero,
the left-hand operand would evaluate to false, so the right-hand operand would not be
evaluated. For the nand operator, the right-hand operand is similarly not evaluated if the
left-hand is false. For or and nor, the right-hand operand is not evaluated if the left-hand
is true.

VHDL-87

The logical operator xnor is not provided in VHDL-87.

Bits

Since VHDL is used to model digital systems, it is useful to have a data type to represent
bit values. The predefined enumeration type bit serves this purpose. It is defined as

type bit is ('0', '1');

Notice that the characters ‘0’ and ‘1’ are overloaded, since they are members of both bit
and character. Where ‘0’ or ‘1’ occurs in a model, the context is used to determine which
type is being used.

The logical operators that we mentioned for Boolean values can also be applied to
values of type bit, and they produce results of type bit. The value ‘0’ corresponds to false,
and ‘1’ corresponds to true. So, for example:

'0' and '1' = '0', '1' xor '1' = '0'

The operands must still be of the same type as each other. Thus it is not legal to write

'0' and true

The difference between the types boolean and bit is that boolean values are used to
model abstract conditions, whereas bit values are used to model hardware logic levels.
Thus, ‘0’ represents a low logic level and ‘1’ represents a high logic level. The logical op-
erators, when applied to bit values, are defined in terms of positive logic, with ‘0’ repre-
senting the negated state and ‘1’ representing the asserted state. If we need to deal with
negative logic, we need to take care when writing logical expressions to get the correct
logic sense. For example, if write_enable_n, select_reg_n and write_reg_n are negative
logic bit variables, we perform the assignment



48 Chapter 2 — Scalar Data Types and Operations

write_reg_n := not ( not write_enable_n and not select_reg_n );

The variable write_reg_n is asserted (‘0’) only if write_enable_n is asserted and
select_reg_n is asserted. Otherwise it is negated (‘1’).

Standard Logic

Since VHDL is designed for modeling digital hardware, it is necessary to include types to
represent digitally encoded values. The predefined type bit shown above can be used for
this in more abstract models, where we are not concerned about the details of electrical
signals. However, as we refine our models to include more detail, we need to take account
of the electrical properties when representing signals. There are many ways we can define
data types to do this, but the IEEE has standardized one way in a package called
std_logic_1164. The full details of the package are included in Appendix A. One of the
types defined in this package is an enumeration type called std_ulogic, defined as

type std_ulogic is ( 'U',       -- Uninitialized
                     'X',       -- Forcing Unknown
                     '0',       -- Forcing zero
                     '1',       -- Forcing one
                     'Z',       -- High Impedance
                     'W',       -- Weak Unknown
                     'L',       -- Weak zero
                     'H',       -- Weak one
                     '-' );     -- Don't care

This type can be used to represent signals driven by active drivers (forcing strength),
resistive drivers such as pull-ups and pull-downs (weak strength) or three-state drivers in-
cluding a high-impedance state. Each kind of driver may drive a “zero,” “one” or “un-
known” value. An “unknown” value is driven by a model when it is unable to determine
whether the signal should be “zero” or “one.” For example, the output of an and gate is
unknown when its inputs are driven by high-impedance drivers. In addition to these val-
ues, the leftmost value in the type represents an “uninitialized” value. If we declare signals
of std_ulogic type, by default they take on ‘U’ as their initial value. If a model tries to op-
erate on this value instead of a real logic value, we have detected a design error in that
the system being modeled does not start up properly. The final value in std_ulogic is a
“don’t care” value. This is sometimes used by logic synthesis tools and may also be used
when defining test vectors, to denote that the value of a signal to be compared with a test
vector is not important.

Even though the type std_ulogic and the other types defined in the std_logic_1164
package are not actually built into the VHDL language, we can write models as though
they were, with a little bit of preparation. For now, we describe some “magic” to include
at the beginning of a model that uses the package; we explain the details in Chapter 7. If
we include the line

library ieee;  use ieee.std_logic_1164.all;



2.2 Scalar Types 49

preceding each entity or architecture body that uses the package, we can write models as
though the types were built into the language.

With this preparation in hand, we can now create constants, variables and signals of
type std_ulogic. As well as assigning values of the type, we can also use the logical oper-
ators and, or, not and so on. Each of these operates on std_ulogic values and returns a
std_ulogic result of ‘U’, ‘X’, ‘0’ or ‘1’. The operators are “optimistic,” in that if they can de-
termine a ‘0’ or ‘1’ result despite inputs being unknown, they do so. Otherwise they return
‘X’ or ‘U’. For example ‘0’ and ‘Z’ returns ‘0’, since one input to an and gate being ‘0’ al-
ways causes the output to be ‘0’, regardless of the other input.

One important point to note about comparing std_ulogic values using the “=” and
“/=” operations is that it is not the logic levels that are compared, but the enumeration
literals. Thus, the expression '0' = 'L' yields false, even though both values represent low
logic levels. If we want to compare logic levels without taking account of drive strength,
we should use the matching operators “?=” and “?/=”. These operators perform logical
equivalence and unequivalence comparisons, respectively. If both operands are ‘0’, ‘1’, ‘L’,
or ‘H’, the operations yield a ‘0’ or ‘1’ result. For example:

'1' ?= 'H'  =  '1'    '1' ?/= 'H'  =  '0'
'0' ?= 'H'  =  '0'    '0' ?/= 'H'  =  '1'

The “?=” and “?/=” operators yield ‘X’ when either operand is ‘X’, ‘Z’, or ‘W’. However,
if either operand is ‘U’, the result is ‘U’. The final exception is for don’t care (‘–’) operands.
For these, “?=” always yeilds ‘1’ and “?/=” always yields ‘0’. Some examples are:

'Z' ?= 'H'  =  'X'    'W' ?/= 'H'  =  'X'
'0' ?= 'U'  =  'U'    '0' ?/= 'U'  =  'U'
'1' ?= '-'  =  '1'    ‘-' ?/= '-'  =  '0'

We note briefly here, for completeness, that VHDL also defines the matching operators
“?<”, “?<=”, “?>” and “?=>” for comparing std_ulogic values. They treat a logic low level
(‘0’ or ‘L’) as being less than a logic high level (‘1’ or ‘H’), yield ‘X’ for comparison with a
non-logic-level value other than ‘U’, and yield ‘U’ for comparison with ‘U’. Comparison
with ‘–’ is not allowed. We also note that all of the matching operators are defined for op-
erands of type bit, yielding ‘0’ or ‘1’ where an ordinary comparison would yield false or
true, respectively. We will return to the way in which these operators are used in later
chapters.

Condition Conversion

We mentioned above that Boolean values are used as condition values to control execu-
tion in VHDL models. We have seen this in if statements in previous examples, where
Boolean conditions control whether groups of statements are executed or not. When we
are modeling digital systems, we often use signals and variables of type bit or std_ulogic
to represent logical conditions. It would seem reasonable to want to use such values in
conditions controlling execution. VHDL allows us to do this, as it implicitly converts bit
and std_ulogic values to boolean values when they occur as conditions. For example, if
we have control signals declared as



50 Chapter 2 — Scalar Data Types and Operations

signal cs1, ncs2, cs3 : std_ulogic;

then we can write an if statement as follows:

if cs1 and not cs2 and cs3 then
  ...
end if;

The logical and and not operators applied to the signals yield a result of type
std_ulogic. However, VHDL implicitly converts this to boolean, treating ‘1’ and ‘H’ as true,
and all other values as false. Had we declared the signals to be of type bit, the implicit
conversion would also occur, with ‘1’ treated as true and ‘0’ as false. Implicit conversion
occurs in this way in any place where a Boolean condition is required. Another example
of such a place that we have seen is a wait statement, for example:

wait until clk;

If clk is of type std_ulogic, the wait statement suspends until clk changes to ‘1’ or ‘H’.
The way in which VHDL does the conversion is by applying the predefined operator

“??” to the result of the condition. This operator takes a bit or std_ulogic value and yields
a boolean result. We could, if we wanted to, make the conversion explicit, for example:

if ?? (cs1 and not cs2 and cs3) then
  ...
end if;

Note that, if the condition is more involved than just a signal or variable name, we
must enclose it in parentheses, as shown here. Normally, we would not need to write the
conversion operation in a condition explicitly. However, we describe it here to show how
the conversion mechanism works. If we were to define our own data type representing
logic levels, we could also define a version of the condition operator that VHDL would
use to perform implicit conversion. We describe the way in which we define multiple ver-
sions of an operation in Section 6.5.

One final point to note is that implicit conversions don’t allow us to write a condition
that mixes bit or std_ulogic operands with boolean operands for logical operators. For
example, the following is illegal:

if cs1 and cs3 and alu_op = pass then ... -- illegal

The result of the “=” comparison is of type boolean, which cannot be mixed with the
std_ulogic operand for the and operator. The conversion is only applied to the overall
condition. We would have to write the condition as:

if cs1 = '1' and cs3 = '1' and alu_op = pass then ...



2.3 Type Classification 51

VHDL-87, -93, and -2002

These versions of VHDL do not perform implicit conversion of conditions to boolean.
Conditions must yield boolean results without conversion. Hence, we must write con-
ditions such as:

if cs1 = '1' and ncs2 = '0' and cs3 = '1' then
  ...
end if;

2.3 Type Classification

In the preceding sections we have looked at the scalar types provided in VHDL. Figure
2.1 illustrates the relationships between these types, the predefined scalar types and the
types we look at in later chapters. 

FIGURE 2.1 

A classification of VHDL types.

stringreal time

scalar
types

access
types

file
types

types

composite
types

protected
types

discrete
types

integer
types

enumeration
types

array
types

physical
types

floating-
point types

record
types

boolean_vector

bit_vector

integer_vectorboolean

integer

bit

std_ulogic

file_open_status

severity_level

file_open_kind

character

real_vector

time_vector



52 Chapter 2 — Scalar Data Types and Operations

The scalar types are all those composed of individual values that are ordered. Integer
and floating-point types are ordered on the number line. Physical types are ordered by
the number of primary units in each value. Enumeration types are ordered by their decla-
ration. The discrete types are those that represent discrete sets of values and comprise the
integer types and enumeration types. Floating-point and physical types are not discrete,
as they approximate a continuum of values.

2.3.1 Subtypes

In Section 2.2 we saw how to declare a type, which defines a set of values. Often a model
contains objects that should only take on a restricted range of the complete set of values.
We can represent such objects by declaring a subtype, which defines a restricted set of
values from a base type. The condition that determines which values are in the subtype is
called a constraint. Using a subtype declaration makes clear our intention about which
values are valid and makes it possible to check that invalid values are not used. The sim-
plified syntax rules for a subtype declaration are

subtype_declaration ⇐ subtype identifier is subtype_indication ;

subtype_indication ⇐
type_mark [ range simple_expression ( to I downto ) simple_expression ]

We will look at more advanced forms of subtype indications in later chapters. The sub-
type declaration defines the identifier as a subtype of the base type specified by the type
mark, with the range constraint restricting the values for the subtype. The constraint is op-
tional, which means that it is possible to have a subtype that includes all of the values of
the base type.

Here is an example of a declaration that defines a subtype of integer:

subtype small_int is integer range -128 to 127;

Values of small_int are constrained to be within the range –128 to 127. If we declare some
variables:

variable deviation : small_int;
variable adjustment : integer;

we can use them in calculations:

deviation := deviation + adjustment;

Note that in this case, we can mix the subtype and base type values in the addition
to produce a value of type integer, but the result must be within the range –128 to 127
for the assignment to succeed. If it is not, an error will be signaled when the variable is
assigned. All of the operations that are applicable to the base type can also be used on
values of a subtype. The operations produce values of the base type rather than the sub-
type. However, the assignment operation will not assign a value to a variable of a subtype
if the value does not meet the constraint.



2.3 Type Classification 53

Another point to note is that if a base type is a range of one direction (ascending or
descending), and a subtype is specified with a range constraint of the opposite direction,
it is the subtype specification that counts. For example, the predefined type integer is an
ascending range. If we declare a subtype as

subtype bit_index is integer range 31 downto 0;

this subtype is a descending range.
The VHDL standard includes two predefined integer subtypes, defined as

subtype natural is integer range 0 to highest_integer;
subtype positive is integer range 1 to highest_integer;

Where the logic of a design indicates that a number should not be negative, it is good style
to use one of these subtypes rather than the base type integer. In this way, we can detect
any design errors that incorrectly cause negative numbers to be produced. There is also a
predefined subtype of the physical type time, defined as

subtype delay_length is time range 0 fs to highest_time;

This subtype should be used wherever a non-negative time delay is required.

VHDL-87

The subtype delay_length is not predefined in VHDL-87.

2.3.2 Type Qualification

Sometimes it is not clear from the context what the type of a particular value is. In the case
of overloaded enumeration literals, it may be necessary to specify explicitly which type is
meant. We can do this using type qualification, which consists of writing the type name
followed by a single quote character, then an expression enclosed in parentheses. For ex-
ample, given the enumeration types

type logic_level is (unknown, low, undriven, high);
type system_state is (unknown, ready, busy);

we can distinguish between the common literal values by writing

logic_level'(unknown)    system_state'(unknown)

Type qualification can also be used to narrow a value down to a particular subtype
of a base type. For example, if we define a subtype of logic_level

subtype valid_level is logic_level range low to high;

we can explicitly specify a value of either the type or the subtype

logic_level'(high)    valid_level'(high)



54 Chapter 2 — Scalar Data Types and Operations

Of course, it is an error if the expression being qualified is not of the type specified.

VHDL-87, -93, and -2002

In these earlier versions of VHDL, if a type qualification specified a subtype, the value
qualified had to be of that specific subtype. It was not sufficient for it just to be of the
base type of the specified subtype. In VHDL-2008, the value is converted to be of the
subtype. While there is no distinction in the case of scalar types, when we come to
composite types, the distinction can be significant.

2.3.3 Type Conversion

When we introduced the arithmetic operators in previous sections, we stated that the op-
erands must be of the same type. This precludes mixing integer and floating-point values
in arithmetic expressions. Where we need to do mixed arithmetic, we can use type con-
versions to convert between integer and floating-point values. The form of a type conver-
sion is the name of the type we want to convert to, followed by a value in parentheses.
For example, to convert between the types integer and real, we could write

real(123)  integer(3.6)

Converting an integer to a floating-point value is simply a change in representation,
although some loss of precision may occur. Converting from a floating-point value to an
integer involves rounding to the nearest integer. Numeric type conversions are not the
only conversion allowed. In general, we can convert between any closely related types.
Other examples of closely related types are certain array types, discussed in Chapter 4.

One thing to watch out for is the distinction between type qualification and type con-
version. The former simply states the type of a value, whereas the latter changes the value,
possibly to a different type. One way to remember this distinction is to think of “quote for
qualification.”

2.4 Attributes of Scalar Types

A type defines a set of values and a set of applicable operations. There is also a predefined
set of attributes that are used to give information about the values included in the type.
Attributes are written by following the type name with a quote mark ( ') and the attribute
name. The value of an attribute can be used in calculations in a model. We now look at
some of the attributes defined for the types we have discussed in this chapter.

First, there are a number of attributes that are applicable to all scalar types and provide
information about the range of values in the type. If we let T stand for any scalar type or
subtype, x stand for a value of that type and s stand for a string value, the attributes are

T'left first (leftmost) value in T

T'right last (rightmost) value in T

T'low least value in T



2.4 Attributes of Scalar Types 55

T'high greatest value in T

T'ascending true if T is an ascending range, false otherwise

T'image(x) a string representing the value of x

T'value(s) the value in T that is represented by s

The string produced by the 'image attribute is a correctly formed literal according to
the rules shown in Chapter 1. The strings allowed in the 'value attribute must follow those
rules and may include leading or trailing spaces. These two attributes are useful for input
and output in a model, as we will see when we come to that topic.

To illustrate the attributes listed above, recall the following declarations from previous
examples:

type resistance is range 0 to 1E9
  units
    ohm;
    kohm = 1000 ohm;
    Mohm = 1000 kohm;
  end units resistance;

type set_index_range is range 21 downto 11;

type logic_level is (unknown, low, undriven, high);

For these types:

resistance'left = 0 ohm
resistance'right = 1E9 ohm
resistance'low = 0 ohm
resistance'high = 1E9 ohm
resistance'ascending = true
resistance'image(2 kohm) = "2000 ohm"
resistance'value("5 Mohm") = 5_000_000 ohm

set_index_range'left = 21
set_index_range'right = 11
set_index_range'low = 11
set_index_range'high = 21
set_index_range'ascending = false
set_index_range'image(14) = "14"
set_index_range'value("20") = 20

logic_level'left = unknown
logic_level'right = high
logic_level'low = unknown
logic_level'high = high
logic_level'ascending = true
logic_level'image(undriven) = "undriven"
logic_level'value("Low") = low



56 Chapter 2 — Scalar Data Types and Operations

Next, there are attributes that are applicable to just discrete and physical types. For
any such type T, a value x of that type and an integer n, the attributes are

T'pos(x) position number of x in T

T'val(n) value in T at position n

T'succ(x) value in T at position one greater than that of x

T'pred(x) value in T at position one less than that of x

T'leftof(x) value in T at position one to the left of x

T'rightof(x) value in T at position one to the right of x

For enumeration types, the position numbers start at zero for the first element listed
and increase by one for each element to the right. So, for the type logic_level shown
above, some attribute values are

logic_level'pos(unknown) = 0
logic_level'val(3) = high
logic_level'succ(unknown) = low
logic_level'pred(undriven) = low

For integer types, the position number is the same as the integer value, but the type
of the position number is a special anonymous type called universal integer. This is the
same type as that of integer literals and, where necessary, is implicitly converted to any
other declared integer type. For physical types, the position number is the integer number
of base units in the physical value. For example:

time'pos(4 ns) = 4_000_000

since the base unit is fs.
We can use the 'pos and 'val attributes in combination to perform mixed-dimensional

arithmetic with physical types, producing a result of the correct dimensionality. Suppose
we define physical types to represent length and area, as follows:

type length is range integer'low to integer'high
  units
    mm;
  end units length;

type area is range integer'low to integer'high
  units
    square_mm;
  end units area;

and variables of these types:

variable L1, L2 : length;
variable A : area;



2.5 Expressions and Predefined Operations 57

The restrictions on multiplying values of physical types prevents us from writing some-
thing like

A := L1 * L2; -- this is incorrect

To achieve the correct result, we can convert the length values to abstract integers
using the 'pos attribute, then convert the result of the multiplication to an area value using
'val, as follows:

A := area'val( length'pos(L1) * length'pos(L2) );

Note that in this example, we do not need to include a scale factor in the multiplication,
since the base unit of area is the square of the base unit of length.

For ascending ranges, T'succ(x) and T'rightof(x) produce the same value, and
T'pred(x) and T'leftof(x) produce the same value. For descending ranges, T'pred(x) and
T'rightof(x) produce the same value, and T'succ(x) and T'leftof(x) produce the same value.
For all ranges, T'succ(T'high), T'pred(T'low), T'rightof(T'right) and T'leftof(T'left) cause an
error to occur.

The last attribute we introduce here is T'base. For any subtype T, this attribute pro-
duces the base type of T. The only context in which this attribute may be used is as the
prefix of another attribute. For example, if we have the declarations

type opcode is
  (nop, load, store, add, subtract, negate, branch, halt);
subtype arith_op is opcode range add to negate;

then

arith_op'base'left = nop
arith_op'base'succ(negate) = branch

VHDL-87

The attributes 'ascending, 'image and 'value are not provided in VHDL-87.

2.5 Expressions and Predefined Operations

In Section 2.1 we showed how the value resulting from evaluation of an expression can
be assigned to a variable. In this section, we summarize the rules governing expressions.
We can think of an expression as being a formula that specifies how to compute a value.
As such, it consists of primary values combined with operators and other operations. The
precise syntax rules for writing expressions are shown in Appendix B. The primary values
that can be used in expressions include

• literal values,

• identifiers representing data objects (constants, variables and so on),



58 Chapter 2 — Scalar Data Types and Operations

• attributes that yield values,

• qualified expressions,

• type-converted expressions,

• operation functions, and

• expressions in parentheses.

We have seen examples of these in this chapter and in Chapter 1. For reference, all
of the predefined operators and the types they can be applied to are summarized in Table
2.2. We will discuss array operators in Chapter 4. The operators in this table are grouped
by precedence, with “**”, abs, and the unary logical reduction operators having highest
precedence and the binary logical operators lowest. In addition, the condition operator
“??” can only be applied to a primary value at the outermost level of an expression. The
precedence rules mean that if an expression contains a combination of operators, those
with highest precedence are applied first. Parentheses can be used to alter the order of
evaluation, or for clarity.

TABLE 2.2 VHDL operators in order of precedence, from most binding to least binding

Operator Operation Left operand type Right operand type Result type

** exponentiation integer or floating-point integer same as left operand

abs absolute value numeric same as operand

not logical negation boolean, bit, std_ulogic, 
1-D array of boolean or 
bit, std_ulogic_vector

same as operand

and

or

nand

nor

xor

xnor

logical and reduction

logical or reduction

negated logical and
reduction

negated logical or
reduction

exclusive or reduction

negated exclusive or
reduction

1-D array of boolean or 
bit, std_ulogic_vector

element type of operand



2.5 Expressions and Predefined Operations 59

* multiplication integer or floating-point

physical

integer or real

same as left operand

integer or real

physical

same as operands

same as left operand

same as right operand

/ division integer or floating-point

physical

physical

same as left operand

integer or real

same as left operand

same as operands

same as left operand

universal integer

mod

rem

modulo

remainder

integer or physical same as left operand same as operands

+

–

identity

negation

numeric same as operand

+

–

addition

subtraction

numeric same as left operand same as operands

& concatenation 1-D array

1-D array

element type of right 
operand

element type of result

same as left operand

element type of left 
operand

1-D array

element type of result

same as operands

same as left operand

same as right operand

1-D array

sll

srl

rol

ror

shift-left logical

shift-right logical

rotate left

rotate right

1-D array of boolean or 
bit, std_ulogic_vector

integer same as left operand

sla

sra

shift-left arithmetic

shift-right arithmetic

1-D array of boolean or 
bit

integer same as left operand

=

/=

equality

inequality

any except file or 
protected type

same as left operand boolean

<

<=

>

>=

less than

less than or equal to

greater than

greater than or
equal to

scalar or 1-D array of 
any discrete type

same as left operand boolean 

Operator Operation Left operand type Right operand type Result type



60 Chapter 2 — Scalar Data Types and Operations

In Section 2.2, we described the maximum and minimum operations for numeric
types. These are examples of function operations that can form primary values in expres-
sions. In fact, these operations are defined for all scalar types, as are the relational oper-
ators “<”, “<=”, “>”, and “>=”. For numeric types, the maximum and minimum operations
compare the numeric values to determine the result. For enumeration types, the opera-
tions compare the position numbers. Thus, enumeration values declared earlier in the list
of an enumeration type declaration are considered to be less than those declared later in
the list. For example, in the character type, 'A' < 'Z', and the minimum of 'c' and 'q' is 'c'.

Another function operation that can be applied to any scalar value is the to_string
operation. It yields a character-string representation of the value that can be used in any
place where we can use a string literal. For example:

to_string(123)     = "123"
to_string(456.78)  = "4.5678e+2"
to_string(warning) = "warning"

For floating-point types, to_string represents the value using exponential notation,
with the number of digits depending on the particular VHDL tool being used. There are,
however, two alternate forms of to_string for floating-point values that give us more con-
trol over the formatting. First, we can specify that the value be represented with a given
number of post-decimal digits rather than in exponential form. For example:

to_string(456.78, 4) = "456.7800"
to_string(456.78, 1) = "456.8"

?=

?/=

matching equality

matching inequality

bit, std_ulogic or 1-D 
array of bit or std_ulogic

same as left operand bit or std_ulogic 

?<

?<=

?>

?>=

matching less than

matching less than
or equal to

matching greater than

matching greater than
or equal to

bit or std_ulogic same as left operand bit or std_ulogic 

and

or

nand

nor

xor

xnor

logical and

logical or

negated logical and

negated logical or

exclusive or

negated exclusive or

boolean, bit, std_ulogic, 
1-D array of boolean or 
bit, std_ulogic_vector

same as left operand same as operands

?? condition conversion bit or std_ulogic boolean 

Operator Operation Left operand type Right operand type Result type



2.5 Expressions and Predefined Operations 61

Second, we can provide a format specification string of the same form as that used in the
C printf function. For example:

to_string(456.78, "%10.3f")  = "   456.780"
to_string(456.78, "%-12.3E") = "4.568E+02   "

For physical types, to_string represents the value using the primary unit of the type.
For example, given the declaration of type resistance on page 39:

to_string(2.2 kohm) = "2200 ohm"

The exception is the physical type time, for which to_string represents the value as a
multiple of the resolution limit. So, for example, if the resolution limit for a simulation is
set to ns:

to_string(29.5 us) = "29500 ns"

There is also an alternate form of to_string for time that allows us to control the unit used
to represent the value. For example, even if the resolution limit is set to ns, we can rep-
resent a time value in microseconds as follows:

to_string(29500 ns, us) = "29.5 us"

The final predefined function operations on scalar types are the rising_edge and
falling_edge operations, which can be applied to signals of type boolean, bit, or
std_ulogic. These allow us to describe edge-triggered behavior in a natural manner. For
example, we can write a process describing a D-flipflop as follows:

signal clk, d, q : bit;
...

dff : process is
begin
  if rising_edge(clk) then
    q <= d;
  end if;
  wait on clk;
end process dff;

For a boolean signal s, rising_edge(s) is true when s changes from false to true and
false at other times (including when s changes from true to false and when s is not chang-
ing). Similarly, falling_edge(s) is true when s changes from true to false and false at other
times. For a bit signal s, rising_edge(s) is true when s changes from ‘0’ to ‘1’ and false at
other times; and falling_edge(s) is true when s changes from ‘1’ to ‘0’, and false at other
times. Finally, for a std_ulogic signal s, rising_edge(s) is true when s changes from ‘0’ or
‘L’ to ‘1’ or ‘H’ and false at other times (including changes from or to ‘U’, ‘X’, ‘W’, ‘Z’, or
‘–’); and falling_edge(s) is  true when s changes from ‘1’ or ‘H’ to ‘0’ or ‘L’ and false at
other times.



62 Chapter 2 — Scalar Data Types and Operations

VHDL-87, -93, and -2002

The unary logical operators (and, or, nand, nor, xor and xnor), the matching rela-
tional operators (“?=”, “?/=”, “?<”,”?<=”, “?>”, and “?>=”), the condition conversion op-
erator (“??”), and the function operations maximum, minimum, to_string,
rising_edge, and falling_edge are not provided in earlier versions of VHDL. Also, the
mod and rem operators are not applicable to physical types in earlier versions.

VHDL-87

The shift operators (sll, srl, sla, sra, rol and ror) and the binary xnor operator are
not provided in VHDL-87.

Exercises

1. [➊ 2.1] Write constant declarations for the number of bits in a 32-bit word and for the
number π (3.14159).

2. [➊ 2.1] Write variable declarations for a counter, initialized to 0; a status flag used to
indicate whether a module is busy; and a standard-logic value used to store a tempo-
rary result.

3. [➊ 2.1] Given the declarations in Exercise 2, write variable assignment statements to
increment the counter, to set the status flag to indicate the module is busy and to in-
dicate a weak unknown temporary result.

4. [➊ 2.2] Write a package declaration containing type declarations for small non-nega-
tive integers representable in eight bits; fractional numbers between –1.0 and +1.0;
electrical currents, with units of nA, µA, mA and A; and traffic light colors.

5. [➊ 2.2] Given the following declarations:

signal a, b, c : std_ulogic;
type state_type is (idle, req, ack);
signal state : state_type;

indicate whether each of the following expressions is legal as a Boolean condition,
and if not, correct it:

a. a and not b and c

b. a and not b and state = idle

c. a = '0' and b and state = idle

d. a = '1' and b = '0' and state = idle

6. [➊ 2.4] Given the subtype declarations



Exercises 63

subtype pulse_range is time range 1 ms to 100 ms;
subtype word_index is integer range 31 downto 0;

what are the values of 'left, 'right, 'low, 'high and 'ascending attributes of each of
these subtypes?

7. [➊ 2.4] Given the type declaration

type state is (off, standby, active1, active2);

what are the values of

state'pos(standby)     state'val(2)
state'succ(active2)    state'pred(active1)
state'leftof(off)      state'rightof(off)

8. [➊ 2.5] For each of the following expressions, indicate whether they are syntactically
correct, and if so, determine the resulting value.

2 * 3 + 6 / 4              3 + -4
"cat" & character'('0')    true and x and not y or z
B"101110" sll 3            (B"100010" sra 2) & X"2C"

9. [➋ 2.1] Write a counter model with a clock input clk of type bit, and an output q of
type integer. The behavioral architecture body should contain a process that declares
a count variable initialized to zero. The process should wait for changes on clk. When
clk changes to ‘1’, the process should increment the count and assign its value to the
output port.

10. [➋ 2.2] Write a model that represents a simple ALU with integer inputs and output,
and a function select input of type bit. If the function select is ‘0’, the ALU output
should be the sum of the inputs; otherwise the output should be the difference of the
inputs.

11. [➋ 2.2] Write a model for a digital integrator that has a clock input of type bit and data
input and output each of type real. The integrator maintains the sum of successive
data input values. When the clock input changes from ‘0’ to ‘1’, the integrator should
add the current data input to the sum and provide the new sum on the output.

12. [➋ 2.2] Following is a process that generates a regular clock signal.

clock_gen : process is
begin
  clk <= ‘1’;  wait for 10 ns;
  clk <= ‘0’;  wait for 10 ns;
end process clock_gen;

Use this as the basis for experiments to determine how your simulator behaves with
different settings for the resolution limit. Try setting the resolution limit to 1 ns (the
default for many simulators), 1 ps and 1 µs.



64 Chapter 2 — Scalar Data Types and Operations

13. [➋ 2.2] Write a model for a tristate buffer using the standard-logic type for its data and
enable inputs and its data output. If the enable input is ‘0’ or ‘L’, the output should be
‘Z’. If the enable input is ‘1’ or ‘H’ and the data input is ‘0’ or ‘L’, the output should be
‘0’. If the enable input is ‘1’ or ‘H’ and the data input is ‘1’ or ‘H’, the output should
be ‘1’. In all other cases, the output should be ‘X’.



65

Chapter 3 

Sequential Statements

In the previous chapter we saw how to represent the internal state of models using VHDL
data types. In this chapter we look at how that data may be manipulated within processes.
This is done using sequential statements, so called because they are executed in sequence.
We have already seen one of the basic sequential statements, the variable assignment
statement, when we were looking at data types and objects. The statements we look at in
this chapter deal with controlling actions within a model; hence they are often called con-
trol structures. They allow selection between alternative courses of action as well as rep-
etition of actions.

3.1 If Statements

In many models, the behavior depends on a set of conditions that may or may not hold
true during the course of simulation. We can use an if statement to express this behavior.
The syntax rule for an if statement is

if_statement ⇐
[ if_label : ]
if condition then

{ sequential_statement }
{ elsif condition then

{ sequential_statement } }
[ else

{ sequential_statement } ]
end if [ if_label ] ;

At first sight, this may appear somewhat complicated, so we start with some simple
examples and work up to examples showing the general case. The label may be used to
identify the if statement. We will discuss labeled statements in Chapter 20. A simple exam-
ple of an if statement is



66 Chapter 3 — Sequential Statements

if en then
  stored_value := data_in;
end if;

The condition after the keyword if is used to control whether or not the statement
after the keyword then is executed. If the condition is true, the statement is executed. In
this example, if the value of the object en is ‘1’, the assignment is made; otherwise it is
skipped. We can also specify actions to be performed if the condition is false. For example:

if sel = 0 then
  result <= input_0;  -- executed if sel = 0
else
  result <= input_1;  -- executed if sel /= 0
end if;

Here, as the comments indicate, the first signal assignment statement is executed if the
condition is true, and the second signal assignment statement is executed if the condition
is false.

In many models, we may need to check a number of different conditions and execute
a different sequence of statements for each case. We can construct a more elaborate form
of if statement to do this, for example:

if mode = immediate then
  operand := immed_operand;
elsif opcode = load or opcode = add or opcode = subtract then
  operand := memory_operand;
else
  operand := address_operand;
end if;

In this example, the first condition is evaluated, and if true, the statement after the first
then keyword is executed. If the first condition is false, the second condition is evaluated,
and if it evaluates to true, the statement after the second then keyword is executed. If the
second condition is false, the statement after the else keyword is executed.

In general, we can construct an if statement with any number of elsif clauses (includ-
ing none), and we may include or omit the else clause. Execution of the if statement starts
by evaluating the first condition. If it is false, successive conditions are evaluated, in order,
until one is found to be true, in which case the corresponding statements are executed. If
none of the conditions is true, and we have included an else clause, the statements after
the else keyword are executed.

We are not restricted to just one statement in each part of the if statement. This is il-
lustrated by the following if statement:

if opcode = halt_opcode then
  PC := effective_address;
  executing := false;
  halt_indicator <= true;
end if;



3.1 If Statements 67

If the condition is true, all three statements are executed, one after another. On the other
hand, if the condition is false, none of the statements are executed. Furthermore, each
statement contained in an if statement can be any sequential statement. This means we
can nest if statements, for example:

if phase = wash then
  if cycle_select = delicate_cycle then
    agitator_speed <= slow;
  else
    agitator_speed <= fast;
  end if;
  agitator_on <= true;
end if;

In this example, the condition phase = wash is first evaluated, and if true, the nested
if statement and the following signal assignment statement are executed. Thus the assign-
ment agitator_speed <= slow is executed only if both conditions evaluate to true, and the
assignment agitator_speed <= fast is executed only if the first condition is true and the
second condition is false.

EXAMPLE 3.1 A heater thermostat

Let us develop a behavioral model for a simple heater thermostat. The device can be
modeled as an entity with two integer inputs, one that specifies the desired tempera-
ture and another that is connected to a thermometer, and one Boolean output that
turns a heater on and off. The thermostat turns the heater on if the measured temper-
ature falls below two degrees less than the desired temperature, and turns the heater
off if the measured temperature rises above two degrees greater than the desired tem-
perature. The entity and architecture body for the thermostat are:

entity thermostat is
  port ( desired_temp, actual_temp : in integer;
         heater_on : out boolean );
end entity thermostat;

--------------------------------------------------

architecture example of thermostat is
begin

  controller : process (desired_temp, actual_temp) is
  begin
    if actual_temp < desired_temp - 2 then
      heater_on <= true;
    elsif actual_temp > desired_temp + 2 then
      heater_on <= false;
    end if;
  end process controller;



68 Chapter 3 — Sequential Statements

end architecture example;

The entity declaration defines the input and output ports. Since it is a behavioral
model, the architecture body contains only a process statement that implements the
required behavior. The process statement includes a sensitivity list after the keyword
process. This is a list of signals to which the process is sensitive. When any of these
signals changes value, the process resumes and executes the sequential statements.
After it has executed the last statement, the process suspends again. In this example,
the process is sensitive to changes on either of the input ports. Thus, if we adjust the
desired temperature, or if the measured temperature from the thermometer varies, the
process is resumed. The body of the process contains an if statement that compares
the actual temperature with the desired temperature. If the actual temperature is too
low, the process executes the first signal assignment to turn the heater on. If the actual
temperature is too high, the process executes the second signal assignment to turn the
heater off. If the actual temperature is within the range, the state of the heater is not
changed, since there is no else clause in the if statement.

VHDL-87, -93, and -2002

These versions of VHDL do not perform implicit conversion of conditions to boolean.
Conditions in if statements must yield boolean results without conversion. Hence, we
must write the if statement on page 66 as:

if en = '1' then
  ...
end if;

VHDL-87

If statements may not be labeled in VHDL-87.

3.1.1 Conditional Variable Assignments

In many models, we want to assign different values to a variable depending on one or
more conditions. We could write this using an if statement, with each part containing a
different assignment to the variable. However, VHDL provides a shorthand notation, called
a conditional variable assignment, that we can use in these cases. The syntax rule is

conditional_variable_assignment ⇐
[ label : ]
name := expression when condition

{ else expression when condition }
[ else expression ] ;

For example, we could write:



3.2 Case Statements 69

result := a - b when mode = subtract else a + b;

instead of the longer equivalent if statement:

if mode = subtract then
  result := a - b;
else
  result := a + b;
end if;

Of course, if we need to perform more than one assignment for each condition, or if the
actions required are not assignments, we would still use an if statement.

VHDL-87, -93, and -2002

These versions of VHDL do not provide the conditional variable assignment shorthand
notation. We must write an if statement with a separate variable assignment for each
condition.

3.2 Case Statements

If we have a model in which the behavior is to depend on the value of a single expression,
we can use a case statement. The syntax rules are as follows:

case_statement ⇐
[ case_label : ]
case expression is

( when choices => { sequential_statement } )
{ … }

end case [ case_label ] ;

choices ⇐ ( simple_expression I discrete_range I others ) { | … }

The label may be used to identify the case statement. We will discuss labeled state-
ments in Chapter 20. We start with some simple examples of case statements and build up
from them. First, suppose we are modeling an arithmetic/logic unit, with a control input,
func, declared to be of the enumeration type:

type alu_func is (pass1, pass2, add, subtract);

We could describe the behavior using a case statement:

case func is
  when pass1 =>
    result := operand1;
  when pass2 =>
    result := operand2;
  when add =>



70 Chapter 3 — Sequential Statements

    result := operand1 + operand2;
  when subtract =>
    result := operand1 - operand2;
end case;

At the head of this case statement is the selector expression, between the keywords
case and is. In this example it is a simple expression consisting of just a primary value.
The value of this expression is used to select which statements to execute. The body of
the case statement consists of a series of alternatives. Each alternative starts with the key-
word when and is followed by one or more choices and a sequence of statements. The
choices are values that are compared with the value of the selector expression. There must
be exactly one choice for each possible value. The case statement finds the alternative
whose choice value is equal to the value of the selector expression and executes the state-
ments in that alternative. In this example, the choices are all simple expressions of type
alu_func. If the value of func is pass1, the statement result := operand1 is executed; if the
value is pass2, the statement result := operand2 is executed; and so on.

A case statement bears some similarity to an if statement in that they both select
among alternative groups of sequential statements. The difference lies in how the state-
ments to be executed are chosen. We saw in the previous section that an if statement eval-
uates successive Boolean expressions in turn until one is found to be true. The group of
statements corresponding to that condition is then executed. A case statement, on the
other hand, evaluates a single selector expression to derive a selector value. This value is
then compared with the choice values in the case statement alternatives to determine
which statement to execute. An if statement provides a more general mechanism for
selecting between alternatives, since the conditions can be arbitrarily complex Boolean
expressions. However, case statements are an important and useful modeling mechanism,
as the examples in this section show.

The selector expression of a case statement must result in a value of a discrete type,
or a one-dimensional array of character elements, such as a character string or bit string
(see Chapter 4). Thus, we can have a case statement that selects an alternative based on
an integer value. If we assume index_mode and instruction_register are declared as

subtype index_mode is integer range 0 to 3;

variable instruction_register : integer range 0 to 2**16 - 1;

then we can write a case statement that uses a value of this type:

case index_mode'((instruction_register / 2**12) rem 2**2) is
  when 0 =>
    index_value := 0;
  when 1 =>
    index_value := accumulator_A;
  when 2 =>
    index_value := accumulator_B;
  when 3 =>
    index_value := index_register;
end case;



3.2 Case Statements 71

Notice that in this example, we use a qualified expression in the selector expression.
If we had omitted this, the result of the expression would have been integer, and we
would have had to include alternatives to cover all possible integer values. The type qual-
ification avoids this need by limiting the possible values of the expression.

Another rule to remember is that the type of each choice must be the same as the type
resulting from the selector expression. Thus in the above example, it is illegal to include
an alternative such as

when 'a' => ... -- illegal!

since the choice listed cannot be an integer. Such a choice does not make sense, since it
can never match a value of type integer.

We can include more than one choice in each alternative by writing the choices sep-
arated by the “|” symbol. For example, if the type opcodes is declared as

type opcodes is
  (nop, add, subtract, load, store, jump, jumpsub, branch, halt);

we could write an alternative including three of these values as choices:

when load | add | subtract =>
  operand := memory_operand;

If we have a number of alternatives in a case statement and we want to include an
alternative to handle all possible values of the selector expression not mentioned in pre-
vious alternatives, we can use the special choice others. For example, if the variable op-
code is a variable of type opcodes, declared above, we can write

case opcode is
  when load | add | subtract =>
    operand := memory_operand;
  when store | jump | jumpsub | branch =>
    operand := address_operand;
  when others =>
    operand := 0;
end case;

In this example, if the value of opcode is anything other than the choices listed in the
first and second alternatives, the last alternative is selected. There may only be one alter-
native that uses the others choice, and if it is included, it must be the last alternative in
the case statement. An alternative that includes the others choice may not include any
other choices. Note that, if all of the possible values of the selector expression are covered
by previous choices, we may still include the others choice, but it can never be matched.

The remaining form of choice that we have not yet mentioned is a discrete range,
specified by these simplified syntax rules:

discrete_range ⇐
discrete_subtype_indication
I simple_expression ( to I downto ) simple_expression



72 Chapter 3 — Sequential Statements

subtype_indication ⇐
type_mark

[ range simple_expression ( to I downto ) simple_expression ]

These forms allow us to specify a range of values in a case statement alternative. If
the value of the selector expression matches any of the values in the range, the statements
in the alternative are executed. The simplest way to specify a discrete range is just to write
the left and right bounds of the range, separated by a direction keyword. For example,
the case statement above could be rewritten as

case opcode is
  when add to load =>
    operand := memory_operand;
  when branch downto store =>
    operand := address_operand;
  when others =>
    operand := 0;
end case;

Another way of specifying a discrete range is to use the name of a discrete type, and
possibly a range constraint to narrow down the values to a subset of the type. For exam-
ple, if we declare a subtype of opcodes as

subtype control_transfer_opcodes is opcodes range jump to branch;

we can rewrite the second alternative as

when control_transfer_opcodes | store =>
  operand := address_operand;

Note that we may only use a discrete range as a choice if the selector expression is of
a discrete type. We may not use a discrete range if the selector expression is of an array
type, such as a bit-vector type. If we specify a range by writing the bounds and a direction,
the direction has no significance except to identify the contents of the range.

An important point to note about the choices in a case statement is that they must all
be written using locally static values. This means that the values of the choices must be
determined during the analysis phase of design processing. All of the above examples sat-
isfy this requirement. To give an example of a case statement that fails this requirement,
suppose we have an integer variable N, declared as

variable N : integer := 1;

If we wrote the case statement

case expression is         -- example of an illegal case statement
  when N | N+1 => ...
  when N+2 to N+5 => ...
  when others => ...
end case;



3.2 Case Statements 73

the values of the choices depend on the value of the variable N. Since this might change
during the course of execution, these choices are not locally static. Hence the case state-
ment as written is illegal. On the other hand, if we had declared C to be a constant integer,
for example with the declaration

constant C : integer := 1;

then we could legally write the case statement

case expression is
  when C | C+1 => ...
  when C+2 to C+5 => ...
  when others => ...
end case;

This is legal, since we can determine, by analyzing the model, that the first alternative in-
cludes choices 1 and 2, the second includes numbers between 3 and 6 and the third covers
all other possible values of the expression.

The previous examples all show only one statement in each alternative. As with the
if statement, we can write an arbitrary number of sequential statements of any kind in each
alternative. This includes writing nested case statements, if statements or any other form
of sequential statements in the alternatives.

Although the preceding rules governing case statements may seem complex, in prac-
tice there are just a few things to remember, namely:

• all possible values of the selector expression must be covered by one and only one
choice,

• the values in the choices must be locally static and

• if the others choice is used it must be in the last alternative and must be the only
choice in that alternative.

EXAMPLE 3.2 A four-input multiplexer

We can write a behavioral model of a multiplexer with a select input sel; four data
inputs d0, d1, d2 and d3; and a data output z. The data inputs and outputs are of the
IEEE standard-logic type, and the select input is of type sel_range, which we assume
to be declared elsewhere as

type sel_range is range 0 to 3;

We described in Section 2.2 how we define a type in a package for use in an entity
declaration. The entity declaration defining the ports and a behavioral architecture
body are:

library ieee;  use ieee.std_logic_1164.all;

entity mux4 is
  port ( sel : in sel_range;



74 Chapter 3 — Sequential Statements

         d0, d1, d2, d3 : in std_ulogic;
         z : out std_ulogic );
end entity mux4;

--------------------------------------------------

architecture demo of mux4 is
begin

  out_select : process (sel, d0, d1, d2, d3) is
  begin
    case sel is
      when 0 => 
        z <= d0;
      when 1 => 
        z <= d1;
      when 2 => 
        z <= d2;
      when 3 => 
        z <= d3;
    end case;
  end process out_select;

end architecture demo;

The architecture body contains just a process declaration. Since the output of the
multiplexer must change if any of the data or select inputs change, the process must
be sensitive to all of the inputs. It makes use of a case statement to select which of
the data inputs is to be assigned to the data output.

VHDL-87

Case statements may not be labeled in VHDL-87.

3.2.1 Selected Variable Assignments

Just as there is a shorthand notation for an if statement containing variable assignments,
there is also a shorthand for a case statement containing variable assignments. It is called
a selected variable assignment, and the syntax rule is

selected_variable_assignment ⇐
[ label : ]
with expression select

name := { expression when choices , }
expression when choices ;

The first expression is the selector expression, and its value is compared with the choices
to determine which expression value to assign to the named variable.



3.3 Null Statements 75

As an example, we could rewrite the case statement on page 69 as:

with func select
  result := operand1            when pass1,
            operand2            when pass2,
            operand1 + operand2 when add,
            operand1 - operand2 when subtract;

As with the conditional shorthand, if we need to perform more than one assignment
for each alternative, or if the actions required are not assignments, we would still use a
case statement.

VHDL-87, -93, and -2002

These versions of VHDL do not provide the selected variable assignment shorthand
notation. We must write a case statement with a separate variable assignment for each
alternative.

3.3 Null Statements

Sometimes when writing models we need to state that when some condition arises, no
action is to be performed. This need often arises when we use case statements, since we
must include an alternative for every possible value of the selector expression. Rather than
just leaving the statement part of an alternative blank, we can use a null statement to state
explicitly that nothing is to be done. The syntax rule for the null statement is simply

null_statement ⇐ [ label : ] null ;

The optional label serves to identify the statement. We discuss labeled statements in Chap-
ter 20. A simple, unlabeled null statement is

null;

An example of its use in a case statement is

case opcode is
  when add =>
    Acc := Acc + operand;
  when subtract =>
    Acc := Acc - operand;
  when nop =>
    null;
end case;

We can use a null statement in any place where a sequential statement is required,
not just in a case statement alternative. A null statement may be used during the develop-
ment phase of model writing. If we know, for example, that we will need an entity as part



76 Chapter 3 — Sequential Statements

of a system, but we are not yet in a position to write a detailed model for it, we can write
a behavioral model that does nothing. Such a model just includes a process with a null
statement in its body:

control_section : process ( sensitivity_list ) is
begin
  null;
end process control_section;

Note that the process must include the sensitivity list, for reasons that are explained in
Chapter 5.

VHDL-87

Null statements may not be labeled in VHDL-87.

3.4 Loop Statements

Often we need to write a sequence of statements that is to be repeatedly executed. We
use a loop statement to express this behavior. There are several different forms of loop
statements in VHDL; the simplest is a loop that repeats a sequence of statements indefi-
nitely, often called an infinite loop. The syntax rule for this kind of loop is

loop_statement ⇐
[ loop_label : ]
loop

{ sequential_statement }
end loop [ loop_label ] ;

In most computer programming languages, an infinite loop is not desirable, since it
means that the program never terminates. However, when we are modeling digital sys-
tems, an infinite loop can be useful, since many hardware devices repeatedly perform the
same function until we turn off the power. Typically a model for such a system includes
a loop statement in a process body; the loop, in turn, contains a wait statement.

EXAMPLE 3.3 A modulo-16 counter

The following is a model for a counter that starts from zero and increments on each
clock transition from ‘0’ to ‘1’. When the counter reaches 15, it wraps back to zero on
the next clock transition. The architecture body for the counter contains a process that
first initializes the count output to zero, then repeatedly waits for a clock transition
before incrementing the count value.

entity counter is
  port ( clk : in bit;  count : out natural );
end entity counter;



3.4 Loop Statements 77

--------------------------------------------------

architecture behavior of counter is
begin

  incrementer : process is
    variable count_value : natural := 0;
  begin
    count <= count_value;
    loop
      wait until clk;
      count_value := (count_value + 1) mod 16;
      count <= count_value;
    end loop;
  end process incrementer;

end architecture behavior;

The wait statement in this example causes the process to suspend in the middle
of the loop. When the clk signal changes from ‘0’ to ‘1’, the process resumes and up-
dates the count value and the count output. The loop is then repeated starting with
the wait statement, so the process suspends again.

Another point to note in passing is that the process statement does not include a
sensitivity list. This is because it includes a wait statement. A process may contain ei-
ther a sensitivity list or wait statements, but not both. We will return to this in detail
in Chapter 5.

3.4.1 Exit Statements

In the previous example, the loop repeatedly executes the enclosed statements, with no
way of stopping. Usually we need to exit the loop when some condition arises. We can
use an exit statement to exit a loop. The syntax rule is

exit_statement ⇐
[ label : ] exit [ loop_label ] [ when condition ] ;

The optional label at the start of the exit statement serves to identify the statement. We
discuss labeled statements in Chapter 20. The simplest form of exit statement is just

exit;

When this statement is executed, any remaining statements in the loop are skipped,
and control is transferred to the statement after the end loop keywords. So in a loop we
can write

if condition then
  exit;
end if;



78 Chapter 3 — Sequential Statements

Since this is perhaps the most common use of the exit statement, VHDL provides a short-
hand way of writing it, using the when clause. We use an exit statement with the when
clause in a loop of the form

loop
  ...
  exit when condition;
  ...
end loop;
...        -- control transferred to here
           -- when condition becomes true within the loop

EXAMPLE 3.4 A modulo-16 counter with reset

We now revise the counter model from Example 3.3 to include a reset input that,
when ‘1’, causes the count output to be reset to zero. The output stays at zero as long
as the reset input is ‘1’ and resumes counting on the next clock transition after reset
changes to ‘0’. The revised entity declaration includes the new input port.

entity counter is
  port ( clk, reset : in bit;  count : out natural );
end entity counter;

--------------------------------------------------

architecture behavior of counter is
begin

  incrementer : process is
    variable count_value : natural := 0;
  begin
    count <= count_value;
    loop
      loop
        wait until clk or reset;
        exit when reset;
        count_value := (count_value + 1) mod 16;
        count <= count_value;
      end loop;
      -- at this point, reset = '1'
      count_value := 0;
      count <= count_value;
      wait until not reset;
    end loop;
  end process incrementer;

end architecture behavior;



3.4 Loop Statements 79

The architecture body is revised by nesting the loop inside another loop statement
and adding the reset signal to the original wait statement. The inner loop performs
the same function as before, except that when reset changes to ‘1’, the process is re-
sumed, and the exit statement causes the inner loop to be terminated. Control is trans-
ferred to the statement just after the end of the inner loop. As the comment indicates,
we know that this point can only be reached when reset is ‘1’. The count value and
count outputs are reset, and the process then waits for reset to return to ‘0’. While it
is suspended at this point, any changes on the clock input are ignored. When reset
changes to ‘0’, the process resumes, and the outer loop repeats.

This example also illustrates another important point. When we have nested loop
statements, with an exit statement inside the inner loop, the exit statement causes con-
trol to be transferred out of the inner loop only, not the outer loop. By default, an exit
statement transfers control out of the immediately enclosing loop.

In some cases, we may wish to transfer control out of an inner loop and also a con-
taining loop. We can do this by labeling the outer loop and using the label in the exit state-
ment. We can write

loop_name : loop
  ...
  exit loop_name;
  ...
end loop loop_name;

This labels the loop with the name loop_name, so that we can indicate which loop to exit
in the exit statement. The loop label can be any valid identifier. The exit statement refer-
ring to this label can be located within nested loop statements. 

To illustrate how loops can be nested, labeled and exited, let us consider the following
statements:

outer : loop
  ...
  inner : loop
    ...
    exit outer when condition_1;  -- exit 1
    ...
    exit when condition_2;        -- exit 2
    ...
  end loop inner;
  ...                             -- target A
  exit outer when condition_3;    -- exit 3
   ...
end loop outer;
...                               -- target B

This example contains two loop statements, one labeled inner nested inside another la-
beled outer. The first exit statement, tagged with the comment exit 1, transfers control to



80 Chapter 3 — Sequential Statements

the statement tagged target B if its condition is true. The second exit statement, tagged
exit 2, transfers control to target A. Since it does not refer to a label, it only exits the im-
mediately enclosing loop statement, namely, loop inner. Finally, the exit statement tagged
exit 3 transfers control to target B. 

VHDL-87, -93, and -2002

Since these versions of VHDL do not perform implicit conversion of conditions to
boolean, conditions in exit statements must yield boolean results without conversion.
Hence, we must write the exit statement in Example 3.4 as:

exit when reset = '1';

VHDL-87

Exit statements may not be labeled in VHDL-87.

3.4.2 Next Statements

Another kind of statement that we can use to control the execution of loops is the next
statement. When this statement is executed, the current iteration of the loop is completed
without executing any further statements, and the next iteration is begun. The syntax rule
is

next_statement ⇐
[ label : ] next [ loop_label ] [ when condition ] ;

The optional label at the start of the next statement serves to identify the statement.
We discuss labeled statements in Chapter 20. A next statement is very similar in form to
an exit statement, the difference being the keyword next instead of exit. The simplest
form of next statement is

next;

which starts the next iteration of the immediately enclosing loop. We can also include a
condition to test before completing the iteration:

next when condition;

and we can include a loop label to indicate for which loop to complete the iteration:

next loop-label;

or

next loop-label when condition;



3.4 Loop Statements 81

A next statement that exits the immediately enclosing loop can be easily rewritten as
an equivalent loop with an if statement replacing the next statement. For example, the
following two loops are equivalent:

loop                            loop
  statement-1;                    statement-1;
  next when condition;            if not condition then
  statement-2;                      statement-2;
end loop;                        end if;
                               end loop;

However, nested labeled loops that contain next statements referring to outer loops
cannot be so easily rewritten. As a matter of style, if we find ourselves about to write such
a collection of loops and next statements, it’s probably time to think more carefully about
what we are trying to express. If we check the logic of the model, we may be able to find
a simpler formulation of loop statements. Complicated loop/next structures can be con-
fusing, making the model hard to read and understand.

VHDL-87, -93, and -2002

Since these versions of VHDL do not perform implicit conversion of conditions to
boolean, conditions in next statements must yield boolean results without conversion.

VHDL-87

Next statements may not be labeled in VHDL-87.

3.4.3 While Loops

We can augment the basic loop statement introduced previously to form a while loop,
which tests a condition before each iteration. If the condition is true, iteration proceeds.
If it is false, the loop is terminated. The syntax rule for a while loop is

loop_statement ⇐
[ loop_label : ]
while condition loop

{ sequential_statement }
end loop [ loop_label ] ;

The only difference between this form and the basic loop statement is that we have
added the keyword while and the condition before the loop keyword. All of the things
we said about the basic loop statement also apply to a while loop. We can write any se-
quential statements in the body of the loop, including exit and next statements, and we
can label the loop by writing the label before the while keyword.



82 Chapter 3 — Sequential Statements

There are three important points to note about while loops. The first point is that the
condition is tested before each iteration of the loop, including the first iteration. This
means that if the condition is false before we start the loop, it is terminated immediately,
with no iterations being executed. For example, given the while loop

while index > 0 loop
  ...      -- statement A: do something with index
end loop;
...        -- statement B

if we can demonstrate that index is not greater than zero before the loop is started, then
we know that the statements inside the loop will not be executed, and control will be
transferred straight to statement B.

The second point is that in the absence of exit statements within a while loop, the
loop terminates only when the condition becomes false. Thus, we know that the negation
of the condition must hold when control reaches the statement after the loop. Similarly,
in the absence of next statements within a while loop, the loop performs an iteration only
when the condition is true. Thus, we know that the condition holds when we start the
statements in the loop body. In the above example, we know that index must be greater
then zero when we execute the statement tagged statement A, and also that index must
be less than or equal to zero when we reach statement B. This knowledge can help us
reason about the correctness of the model we are writing.

The third point is that when we write the statements inside the body of a while loop,
we must make sure that the condition will eventually become false, or that an exit state-
ment will eventually exit the loop. Otherwise the while loop will never terminate. Presum-
ably, if we had intended to write an infinite loop, we would have used a simple loop
statement.

EXAMPLE 3.5 A cosine module

We can develop a model for an entity cos that might be used as part of a specialized
signal processing system. The entity has one input, theta, which is a real number rep-
resenting an angle in radians, and one output, result, representing the cosine function
of the value of theta. We can use the relation

by adding successive terms of the series until the terms become smaller than one mil-
lionth of the result. The entity and architecture body declarations are:

entity cos is
  port ( theta : in real;  result : out real );
end entity cos;

--------------------------------------------------

θcos 1 θ
2

2!
-----– θ

4

4!
-----

θ
6

6!
-----– · · ·+ +=



3.4 Loop Statements 83

architecture series of cos is
begin

  summation : process (theta) is
    variable sum, term : real;
    variable n : natural;
  begin
    sum := 1.0;
    term := 1.0;
    n := 0;
    while abs term > abs (sum / 1.0E6) loop
      n := n + 2;
      term := (-term) * theta**2 / real(((n-1) * n));
      sum := sum + term;
    end loop;
    result <= sum;
  end process summation;

end architecture series;

The architecture body consists of a process that is sensitive to changes in the input
signal theta. Initially, the variables sum and term are set to 1.0, representing the first
term in the series. The variable n starts at 0 for the first term. The cosine function is
computed using a while loop that increments n by two and uses it to calculate the
next term based on the previous term. Iteration proceeds as long as the last term com-
puted is larger in magnitude than one millionth of the sum. When the last term falls
below this threshold, the while loop is terminated. We can determine that the loop
will terminate, since the values of successive terms in the series get progressively
smaller. This is because the factorial function grows at a greater rate than the expo-
nential function. 

VHDL-87, -93, and -2002

Since these versions of VHDL do not perform implicit conversion of conditions to
boolean, conditions in while loops must yield boolean results without conversion.

3.4.4 For Loops

Another way we can augment the basic loop statement is the for loop. A for loop includes
a specification of how many times the body of the loop is to be executed. The syntax rule
for a for loop is

loop_statement ⇐
[ loop_label : ]
for identifier in discrete_range loop



84 Chapter 3 — Sequential Statements

{ sequential_statement }
end loop [ loop_label ] ;

We saw on page 71 that a discrete range can be of the form

simple_expression ( to I downto ) simple_expression

representing all the values between the left and right bounds, inclusive. The identifier is
called the loop parameter, and for each iteration of the loop, it takes on successive values
of the discrete range, starting from the left element. For example, in this for loop:

for count_value in 0 to 127 loop
  count_out <= count_value;
  wait for 5 ns;
end loop;

the identifier count_value takes on the values 0, 1, 2 and so on, and for each value, the
assignment and wait statements are executed. Thus the signal count_out will be assigned
values 0, 1, 2 and so on, up to 127, at 5 ns intervals.

We also saw that a discrete range can be specified using a discrete type or subtype
name, possibly further constrained to a subset of values by a range constraint. For exam-
ple, if we have the enumeration type

type controller_state is (initial, idle, active, error);

we can write a for loop that iterates over each of the values in the type:

for state in controller_state loop
  ...
end loop;

Within the sequence of statements in the for loop body, the loop parameter is a con-
stant whose type is the base type of the discrete range. This means we can use its value
by including it in an expression, but we cannot make assignments to it. Unlike other con-
stants, we do not need to declare it. Instead, the loop parameter is implicitly declared over
the for loop. It only exists when the loop is executing, and not before or after it. For ex-
ample, the following process statement shows how not to use the loop parameter:

erroneous : process is
  variable i, j : integer;
begin
  i := loop_param;                -- error!
  for loop_param in 1 to 10 loop
    loop_param := 5;              -- error!
  end loop;
  j := loop_param;                -- error!
end process erroneous;



3.4 Loop Statements 85

The assignments to i and j are illegal since the loop parameter is defined neither be-
fore nor after the loop. The assignment within the loop body is illegal because loop_param
is a constant and thus may not be modified.

A consequence of the way the loop parameter is defined is that it hides any object of
the same name defined outside the loop. For example, in this process:

hiding_example : process is
  variable a, b : integer;
begin
  a := 10;
  for a in 0 to 7 loop
    b := a;
  end loop;
  -- a = 10, and b = 7
  ...
end process hiding_example;

the variable a is initially assigned the value 10, and then the for loop is executed, creating
a loop parameter also called a. Within the loop, the assignment to b uses the loop param-
eter, so the final value of b after the last iteration is 7. After the loop, the loop parameter
no longer exists, so if we use the name a, we are referring to the variable object, whose
value is still 10.

As we mentioned above, the for loop iterates with the loop parameter assuming suc-
cessive values from the discrete range starting from the leftmost value. An important point
to note is that if we specify a null range, the for loop body does not execute at all. A null
range can arise if we specify an ascending range with the left bound greater than the right
bound, or a descending range with the left bound less than the right bound. For example,
the for loop

for i in 10 to 1 loop
  ...
end loop;

completes immediately, without executing the enclosed statements. If we really want the
loop to iterate with i taking values 10, 9, 8 and so on, we should write

for i in 10 downto 1 loop
  ...
end loop;

One final thing to note about for loops is that, like basic loop statements, they can
enclose arbitrary sequential statements, including next and exit statements, and we can
label a for loop by writing the label before the for keyword.

EXAMPLE 3.6 A revised cosine module

We now rewrite the cosine model in Example 3.5 to calculate the result by summing
the first 10 terms of the series. The entity declaration is unchanged. The revised archi-



86 Chapter 3 — Sequential Statements

tecture body, shown below, consists of a process that uses a for loop instead of a
while loop. As before, the variables sum and term are set to 1.0, representing the first
term in the series. The variable n is replaced by the for loop parameter. The loop it-
erates nine times, calculating the remaining nine terms of the series.

architecture fixed_length_series of cos is
begin

  summation : process (theta) is
    variable sum, term : real;
  begin
    sum := 1.0;
    term := 1.0;
    for n in 1 to 9 loop
      term := (-term) * theta**2 / real(((2*n-1) * 2*n));
      sum := sum + term;
    end loop;
    result <= sum;
  end process summation;

end architecture fixed_length_series;

3.4.5 Summary of Loop Statements

The preceding sections describe the various forms of loop statements in detail. It is worth
summarizing this information in one place, to show the few basic points to remember.
First, the syntax rule for all loop statements is

loop_statement ⇐
[ loop_label : ]
[ while condition I for identifier in discrete_range ] loop

{ sequential_statement }
end loop [ loop_label ] ;

Second, in the absence of exit and next statements, the while loop iterates as long as
the condition is true, and the for loop iterates with the loop parameter assuming succes-
sive values from the discrete range. If the condition in a while loop is initially false, or if
the discrete range in a for loop is a null range, then no iterations occur.

Third, the loop parameter in a for loop cannot be explicitly declared, and it is a con-
stant within the loop body. It also shadows any other object of the same name declared
outside the loop.

Finally, an exit statement can be used to terminate any loop, and a next statement can
be used to complete the current iteration and commence the next iteration. These state-
ments can refer to loop labels to terminate or complete iteration for an outer level of a
nested set of loops.



3.5 Assertion and Report Statements 87

3.5 Assertion and Report Statements

One of the reasons for writing models of computer systems is to verify that a design func-
tions correctly. We can partially test a model by applying sample inputs and checking that
the outputs meet our expectations. If they do not, we are then faced with the task of de-
termining what went wrong inside the design. This task can be made easier using assertion
statements that check that expected conditions are met within the model. An assertion
statement is a sequential statement, so it can be included anywhere in a process body. The
full syntax rule for an assertion statement is

assertion_statement ⇐
[ label : ] assert condition

[ report expression ] [ severity expression ] ;

The optional label allows us to identify the assertion statement. We will discuss la-
beled statements in Chapter 20. The simplest form of assertion statement just includes the
keyword assert followed by a condition that we expect to be true when the assertion
statement is executed. If the condition is not met, we say that an assertion violation has
occurred. If an assertion violation arises during simulation of a model, the simulator re-
ports the fact. During synthesis, the condition in an assertion statement may be interpreted
as a condition that the synthesizer may assume to be true. During formal verification, the
condition may be interpreted as a condition to be proven by the verifier. For example, if
we write

assert initial_value <= max_value;

and initial_value is larger than max_value when the statement is executed during simula-
tion, the simulator will let us know. During synthesis, the synthesizer may assume that
initial_value <= max_value and optimize the circuit based on that information. During for-
mal verification, the verifier may attempt to prove initial_value <= max_value for all pos-
sible input stimuli and execution paths leading to the assertion statement.

If we have a number of assertion statements throughout a model, it is useful to know
which assertion is violated. We can get the simulator to provide extra information by in-
cluding a report clause in an assertion statement, for example:

assert initial_value <= max_value
  report "initial value too large";

The string that we provide is used to form part of the assertion violation message. We
can write any expression in the report clause provided it yields a string value, for exam-
ple:

assert current_character >= '0' and current_character <= '9'
  report "Input number " & input_string & " contains a non-digit";

Here the message is derived by concatenating three string values together. We can use the
to_string operation to get a string representation of a value to include in a message, for
example:



88 Chapter 3 — Sequential Statements

assert initial_value <= max_value
  report "initial value " & to_string(initial_value)
         & " too large";

In Section 2.2, we mentioned a predefined enumeration type severity_level, defined
as

type severity_level is (note, warning, error, failure);

We can include a value of this type in a severity clause of an assertion statement. This
value indicates the degree to which the violation of the assertion affects operation of the
model. The value note can be used to pass informative messages out from a simulation,
for example:

assert free_memory >= low_water_limit
  report "low on memory, about to start garbage collect"
  severity note;

The severity level warning can be used if an unusual situation arises in which the
model can continue to execute, but may produce unusual results, for example:

assert packet_length /= 0
  report "empty network packet received"
  severity warning;

We can use the severity level error to indicate that something has definitely gone
wrong and that corrective action should be taken, for example:

assert clock_pulse_width >= min_clock_width
  severity error;

Finally, the value failure can be used if we detect an inconsistency that should never
arise, for example:

assert (last_position - first_position + 1) = number_of_entries
  report "inconsistency in buffer model"
  severity failure;

We have seen that we can write an assertion statement with either a report clause or
a severity clause, or both. If both are present, the syntax rule shows us that the report
clause must come first. If we omit the report clause, the default string in the error message
is “Assertion violation.” If we omit the severity clause, the default value is error. The se-
verity value is usually used by a simulator to determine whether or not to continue exe-
cution after an assertion violation. Most simulators allow the user to specify a severity
threshold, beyond which execution is stopped. The VHDL standard recommends that, in
the absence of such a specification, simulation continue for assertion violations with se-
verity error or less.



3.5 Assertion and Report Statements 89

Usually, failure of an assertion means either that the entity is being used incorrectly
as part of a larger design or that the model for the entity has been incorrectly written. We
illustrate both cases.

EXAMPLE 3.7 A set/reset flipflop including a check for correct usage

A set/reset (SR) flipflop has two inputs, S and R, and an output Q. When S is ‘1’, the
output is set to ‘1’, and when R is ‘1’, the output is reset to ‘0’. However, S and R may
not both be ‘1’ at the same time. If they are, the output value is not specified. A be-
havioral model for an SR flipflop that includes a check for this illegal condition is:

entity SR_flipflop is
  port ( S, R : in bit;  Q : out bit );
end entity SR_flipflop;

--------------------------------------------------

architecture checking of SR_flipflop is
begin

    set_reset : process (S, R) is
    begin
      assert S nand R;
      if S then
        Q <= '1';
      end if;
      if R then
        Q <= '0';
      end if;
    end process set_reset;

end architecture checking;

The architecture body contains a process sensitive to the S and R inputs. Within
the process body we write an assertion statement that requires that S and R not both
be ‘1’. If both are ‘1’, the assertion is violated, so the simulator writes an “Assertion
violation” message with severity error. If execution continues after the violated asser-
tion, the value ‘1’ will first be assigned to Q, followed by the value ‘0’. The resulting
value is ‘0’. This is allowed, since the state of Q was not specified for this illegal con-
dition, so we are at liberty to choose any value. If the assertion is not violated, then
at most one of the following if statements is executed, correctly modeling the behavior
of the SR flipflop.

EXAMPLE 3.8 Sanity check on calculation of the maximum value

To illustrate the use of an assertion statement as a “sanity check,” let us look at a
model for an entity that has three integer inputs, a, b and c, and produces an integer
output z that is the largest of its inputs.



90 Chapter 3 — Sequential Statements

entity max3 is
  port ( a, b, c : in integer;  z : out integer );
end entity max3;

--------------------------------------------------

architecture check_error of max3 is
begin

    maximizer : process (a, b, c)
      variable result : integer;
    begin
      if a > b then
        if a > c then
          result := a;
        else
          result := a;  -- Oops!  Should be: result := c;
        end if;
      elsif  b > c then
        result := b;
      else
        result := c;
      end if;
      assert result >= a and result >= b and result >= c
        report "inconsistent result for maximum: "
               & to_string(result)
        severity failure;
      z <= result;
    end process maximizer;

end architecture check_error;

The architecture body is written using a process containing nested if statements.
For this example we have introduced an “accidental” error into the model. If we sim-
ulate this model and put the values a = 7, b = 3 and c = 9 on the ports of this entity,
we expect that the value of result, and hence the output port, is 9. The assertion states
that the value of result must be greater than or equal to all of the inputs. However,
our coding error causes the value 7 to be assigned to result, and so the assertion is
violated. This violation causes us to examine our model more closely, and correct the
error.

Another important use for assertion statements is in checking timing constraints that
apply to a model. For example, most clocked devices require that the clock pulse be long-
er than some minimum duration. We can use the predefined primary now in an expression
to calculate durations. We return to now in a later chapter. Suffice it to say that it yields
the current simulation time when it is evaluated.



3.5 Assertion and Report Statements 91

EXAMPLE 3.9 An edge-triggered register with timing check

An edge-triggered register has a data input and a data output of type real and a clock
input of type bit. When the clock changes from ‘0’ to ‘1’, the data input is sampled,
stored and transmitted through to the output. Let us suppose that the clock input must
remain at ‘1’ for at least 5 ns. The following is a model for this register, including a
check for legal clock pulse width.

entity edge_triggered_register is
  port ( clock : in bit; 
         d_in : in real;  d_out : out real );
end entity edge_triggered_register;

--------------------------------------------------

architecture check_timing of edge_triggered_register is
begin

  store_and_check : process (clock) is
    variable stored_value : real;
    variable pulse_start : time;
  begin
    if rising_edge(clock) then
      pulse_start := now;
      stored_value := d_in;
      d_out <= stored_value;
    else
      assert now = 0 ns or (now - pulse_start) >= 5 ns
        report "clock pulse too short: "
               & to_string(now - pulse_start); 
    end if;
  end process store_and_check;

end architecture check_timing;

The architecture body contains a process that is sensitive to changes on the clock
input. When the clock changes from ‘0’ to ‘1’, the input is stored, and the current sim-
ulation time is recorded in the variable pulse_start. Otherwise, when the clock
changes from ‘1’ to ‘0’, the difference between pulse_start and the current simulation
time is checked by the assertion statement.

VHDL-87

Assertion statements may not be labeled in VHDL-87.

VHDL also provides us with a report statement, which is similar to an assertion state-
ment. The syntax rule for the report statement shows this similarity:



92 Chapter 3 — Sequential Statements

report_statement ⇐
[ label : ] report expression [ severity expression ] ;

The differences are that there is no condition, and if the severity level is not specified, the
default is note. Indeed, the report statement can be thought of as an assertion statement
in which the condition is the value false and the severity is note, hence it always produces
the message. One way in which the report statement is useful is as a means of including
“trace writes” in a model as an aid to debugging.

EXAMPLE 3.10 Trace messages using a report statement

Suppose we are writing a complex model and we are not sure that we have got the
logic quite right. We can use report statements to get the processes in the model to
write out messages, so that we can see when they are activated and what they are
doing. An example process is

transmit_element : process (transmit_data) is
  ...      -- variable declarations
begin
  report "transmit_element: data = "
         & to_string(transmit_data);
  ...
end process transmit_element;

Both assertion statements and report statements allow inclusion of a message string
to provide useful information. In some cases, the information we wish to provide may be
extensive and not fit entirely on a single line when displayed. We can include the line-
feed character in the message string to break the message over multiple lines. A line-feed
is represented by the identifier LF of type character. For example:

assert data = expected_data
  report "%%%ERROR data value miscompare." & LF &
         " Actual value = " & to_string(data) & LF &
         " Expected value = " & to_string(expdata) & LF &
         " at time: " & to_string(now) );

The message produced when this assertion is violated consists of four lines of text. A
VHDL tool interprets the line feed characters using the appropriate convention for the host
operating system. For example, if a Unix-based system were to write the message to a file,
it would just include the line-feed characters. A Windows-based system, on the other
hand, would write a carriage-return/line-feed pair for every line-feed in the message.

VHDL-87, -93, and -2002

These versions of VHDL do not make any recommendation about continuing simula-
tion based on the severity of an assertion violation from an assertion statement or re-



Exercises 93

port statement. Different simulators take different approaches, which can make it
difficult to write portable models with consistent simulation behavior on different
tools.

These versions also do not necessarily interpret line-feed characters in message
strings as denoting line breaks. Interpretation of line feeds is implementation defined.

VHDL-87

Report statements are not provided in VHDL-87. We achieve the same effect by writing
an assertion statement with the condition false and a severity level of note. For exam-
ple, the VHDL-93 or VHDL-2002 report statement

report "Initialization complete";

can be written in VHDL-87 as

assert false
  report "Initialization complete" severity note;

Exercises

1. [➊ 3.1] Write an if statement that sets a variable odd to ‘1’ if an integer n is odd, or to
‘0’ if it is even. Rewrite your if statement as a conditional variable assignment.

2. [➊ 3.1] Write an if statement that, given the year of today’s date in the variable year,
sets the variable days_in_February to the number of days in February. A year is a leap
year if it is divisible by four, except for years that are divisible by 100. However, years
that are divisible by 400 are leap years. February has 29 days in a leap year and 28
days otherwise. Rewrite your if statement as a conditional variable assignment.

3. [➊ 3.2] Write a case statement that strips the strength information from a standard-logic
variable x. If x is ‘0’ or ‘L’, set it to ‘0’. If x is ‘1’ or ‘H’, set it to ‘1’. If x is ‘X’, ‘W’, ‘Z’,
‘U’ or ‘–’, set it to ‘X’. (This is the conversion performed by the standard-logic function
to_X01.) Rewrite your case statement as a selected variable assignment.

4. [➊ 3.2] Write a case statement that sets an integer variable character_class to 1 if the
character variable ch contains a letter, to 2 if it contains a digit, to 3 if it contains some
other printable character or to 4 if it contains a non-printable character. Note that the
VHDL character set contains accented letters, as shown in Section 2.2.5 on page 44.
Rewrite your case statement as a selected variable assignment.

5. [➊ 3.4] Write a loop statement that samples a bit input d when a clock input clk
changes to ‘1’. So long as d is ‘0’, the loop continues executing. When d is ‘1’, the loop
exits.

6. [➊ 3.4] Write a while loop that calculates the exponential function of x to an accuracy
of one part in 104 by summing terms of the following series:



94 Chapter 3 — Sequential Statements

7. [➊ 3.4] Write a for loop that calculates the exponential function of x by summing the
first eight terms of the series in Exercise 6.

8. [➊ 3.5] Write an assertion statement that expresses the requirement that a flipflop’s two
outputs, q and q_n, of type std_ulogic, are complementary.

9. [➊ 3.5] We can use report statements in VHDL to achieve the same effect as using
“trace writes” in software programming languages, to report a message when part of
the model is executed. Insert a report statement in the model of Example 3.4 to cause
a trace message when the counter is reset.

10. [➋ 3.1] Develop a behavioral model for a limiter with three integer inputs, data_in,
lower and upper; an integer output, data_out; and a bit output, out_of_limits. The
data_out output follows data_in so long as it is between lower and upper. If data_in
is less than lower, data_out is limited to lower. If data_in is greater than upper,
data_out is limited to upper. The out_of_limit output indicates when data_out is lim-
ited.

11. [➋ 3.2] Develop a model for a floating-point arithmetic unit with data inputs x and y,
data output z and function code inputs f1 and f0 of type bit. Function codes f1 = ‘0’
and f0 = ‘0’ produce addition; f1 = ‘0’ and f0 = ‘1’ produce subtraction of y from x; f1
= ‘1’ and f0 = ‘0’ produce multiplication; and f1 = ‘1’ and f0 = ‘1’ produce division of
x by y.

12. [➋ 3.4] Write a model for a counter with an output port of type natural, initially set to
15. When the clk input changes to ‘1’, the counter decrements by one. After counting
down to zero, the counter wraps back to 15 on the next clock edge.

13. [➋ 3.4] Modify the counter of Exercise 12 to include an asynchronous load input and
a data input. When the load input is ‘1’, the counter is preset to the data input value.
When the load input changes back to ‘0’, the counter continues counting down from
the preset value.

14. [➋ 3.4] Develop a model of an averaging module that calculates the average of batches
of 16 real numbers. The module has clock and data inputs and a data output. The
module accepts the next input number when the clock changes to ‘1’. After 16 num-
bers have been accepted, the module places their average on the output port, then
repeats the process for the next batch.

15. [➋ 3.5] Write a model that causes assertion violations with different severity levels. Ex-
periment with your simulator to determine its behavior when an assertion violation
occurs. See if you can specify a severity threshold above which it stops execution.

e
x

1 x
1
---

x
2

2!
-----

x
3

3!
-----

x
4

4!
----- · · ·+ + + + +=



95

Chapter 4 

Composite Data Types
and Operations

Now that we have seen the basic data types and sequential operations from which the
behavioral part of a VHDL model is formed, it is time to look at composite data types. We
first mentioned them in the classification of data types in Chapter 2. Composite data ob-
jects consist of related collections of data elements in the form of either an array or a
record. We can treat an object of a composite type as a single object or manipulate its
constituent elements individually. In this chapter, we see how to define composite types
and how to manipulate them using operators and sequential statements.

4.1 Arrays

An array consists of a collection of values, all of which are of the same type as each other.
The position of each element in an array is given by a scalar value called its index. To
create an array object in a model, we first define an array type in a type declaration. The
syntax rule for an array type definition is

array_type_definition ⇐
array ( discrete_range { , … } ) of element_subtype_indication

This defines an array type by specifying one or more index ranges (the list of discrete
ranges) and the element type or subtype.

Recall from previous chapters that a discrete range is a subset of values from a discrete
type (an integer or enumeration type), and that it can be specified as shown by the sim-
plified syntax rule

discrete_range ⇐
discrete_subtype_indication
I simple_expression ( to I downto ) simple_expression



96 Chapter 4 — Composite Data Types and Operations

Recall also that a subtype indication can be just the name of a previously declared
type (a type mark) and can include a range constraint to limit the set of values from that
type, as shown by the simplified rule

subtype_indication ⇐
type_mark [ range simple_expression ( to I downto ) simple_expression ]

We illustrate these rules for defining arrays with a series of examples. We start with
single-dimensional arrays, in which there is just one index range. Here is a simple example
to start off with, showing the declaration of an array type to represent words of data:

type word is array (0 to 31) of bit;

Each element is a bit, and the elements are indexed from 0 up to 31. An alternative
declaration of a word type, more appropriate for “little-endian” systems, is

type word is array (31 downto 0) of bit;

The difference here is that index values start at 31 for the leftmost element in values of
this type and continue down to 0 for the rightmost.

The index values of an array do not have to be numeric. For example, given this dec-
laration of an enumeration type:

type controller_state is (initial, idle, active, error);

we could then declare an array as follows:

type state_counts is array (idle to error) of natural;

This kind of array type declaration relies on the type of the index range being clear
from the context. If there were more than one enumeration type with values idle and er-
ror, it would not be clear which one to use for the index type. To make it clear, we can
use the alternative form for specifying the index range, in which we name the index type
and include a range constraint. The previous example could be rewritten as

type state_counts is
  array (controller_state range idle to error) of natural;

If we need an array element for every value in an index type, we need only name the
index type in the array declaration without specifying the range. For example:

subtype coeff_ram_address is integer range 0 to 63;
type coeff_array is array (coeff_ram_address) of real;

Once we have declared an array type, we can define objects of that type, including
constants, variables and signals. For example, using the types declared above, we can de-
clare variables as follows:

variable buffer_register, data_register : word;
variable counters : state_counts;
variable coeff : coeff_array;



4.1 Arrays 97

Each of these objects consists of the collection of elements described by the corresponding
type declaration. An individual element can be used in an expression or as the target of
an assignment by referring to the array object and supplying an index value, for example:

coeff(0) := 0.0;

If active is a variable of type controller_state, we can write

counters(active) := counters(active) + 1;

An array object can also be used as a single composite object. For example, the assignment

data_register := buffer_register;

copies all of the elements of the array buffer_register into the corresponding elements of
the array data_register.

EXAMPLE 4.1 A memory module for real-number coefficients

The following is a model for a memory that stores 64 real-number coefficients, initial-
ized to 0.0. We assume the type coeff_ram_address is previously declared as above.
The architecture body contains a process with an array variable representing the co-
efficient storage. When the process starts, it initializes the array using a for loop. It
then repetitively waits for any of the input ports to change. When rd is ‘1’, the array
is indexed using the address value to read a coefficient. When wr is ‘1’, the address
value is used to select which coefficient to change.

entity coeff_ram is
  port ( rd, wr : in bit;  addr : in coeff_ram_address;
         d_in : in real;  d_out : out real );
end entity coeff_ram;

--------------------------------------------------

architecture abstract of coeff_ram is
begin

  memory : process is
    type coeff_array is array (coeff_ram_address) of real;
    variable coeff : coeff_array;
  begin
    for index in coeff_ram_address loop
      coeff(index) := 0.0;
    end loop;
    loop
      wait on rd, wr, addr, d_in; 
      if rd then
        d_out <= coeff(addr);
      end if;
      if wr then



98 Chapter 4 — Composite Data Types and Operations

        coeff(addr) := d_in;
      end if;
    end loop;
  end process memory;

end architecture abstract;

4.1.1 Multidimensional Arrays

VHDL also allows us to create multidimensional arrays, for example, to represent matrices
or tables indexed by more than one value. A multidimensional array type is declared by
specifying a list of index ranges, as shown by the syntax rule on page 95. For example,
we might include the following type declarations in a model for a finite-state machine:

type symbol is ('a', 't', 'd', 'h', digit, cr, error);
type state is range 0 to 6;

type transition_matrix is array (state, symbol) of state;

Each index range can be specified as shown above for single-dimensional arrays. The
index ranges for each dimension need not all be from the same type, nor have the same
direction. An object of a multidimensional array type is indexed by writing a list of index
values to select an element. For example, if we have a variable declared as

variable transition_table : transition_matrix;

we can index it as follows:

transition_table(5, 'd');

EXAMPLE 4.2 Transformation matrices

In three-dimensional graphics, a point in space may be represented using a three-
element vector [x, y, z] of coordinates. Transformations, such as scaling, rotation and
reflection, may be done by multiplying a vector by a 3 × 3 transformation matrix to
get a new vector representing the transformed point. We can write VHDL type decla-
rations for points and transformation matrices:

type point is array (1 to 3) of real;
type matrix is array (1 to 3, 1 to 3) of real;

We can use these types to declare point variables p and q and a matrix variable trans-
form:

variable p, q : point;
variable transform : matrix;

The transformation can be applied to the point p to produce a result in q with the
following statements:



4.1 Arrays 99

for i in 1 to 3 loop
  q(i) := 0.0;
  for j in 1 to 3 loop
    q(i) := q(i) + transform(i, j) * p(j);
  end loop;
end loop;

4.1.2 Array Aggregates

We have seen how we can write literal values of scalar types. Often we also need to write
literal array values, for example, to initialize a variable or constant of an array type. We
can do this using a VHDL construct called an array aggregate, according to the syntax rule

aggregate ⇐ ( ( [ choices => ] expression ) { , … } )

Let us look first at the form of aggregate without the choices part. It simply consists
of a list of the elements enclosed in parentheses, for example:

type point is array (1 to 3) of real;
constant origin : point := (0.0, 0.0, 0.0);
variable view_point : point := (10.0, 20.0, 0.0);

This form of array aggregate uses positional association to determine which value in the
list corresponds to which element of the array. The first value is the element with the left-
most index, the second is the next index to the right, and so on, up to the last value, which
is the element with the rightmost index. There must be a one-to-one correspondence be-
tween values in the aggregate and elements in the array.

An alternative form of aggregate uses named association, in which the index value
for each element is written explicitly using the choices part shown in the syntax rule. The
choices may be specified in exactly the same way as those in alternatives of a case state-
ment, discussed in Chapter 3. As a reminder, here is the syntax rule for choices:

choices ⇐ ( simple_expression I discrete_range I others ) { | … }

For example, the variable declaration and initialization could be rewritten as

variable view_point : point := (1 => 10.0, 2 => 20.0, 3 => 0.0);

The main advantage of named association is that it gives us more flexibility in writing
aggregates for larger arrays. To illustrate this, let us return to the coefficient memory de-
scribed above. The type declaration was

type coeff_array is array (coeff_ram_address) of real;

Suppose we want to declare the coefficient variable, initialize the first few locations to
some non-zero value and initialize the remainder to zero. Following are a number of ways
of writing aggregates that all have the same effect:



100 Chapter 4 — Composite Data Types and Operations

variable coeff : coeff_array
           := (0 => 1.6, 1 => 2.3, 2 => 1.6, 3 to 63 => 0.0);

Here we are using a range specification to initialize the bulk of the array value to zero.

variable coeff : coeff_array
           := (0 => 1.6, 1 => 2.3, 2 => 1.6, others => 0.0);

The keyword others stands for any index value that has not been previously mentioned
in the aggregate. If the keyword others is used, it must be the last choice in the aggregate.

variable coeff : coeff_array
           := (0 | 2 => 1.6, 1 => 2.3, others => 0.0);

The “|” symbol can be used to separate a list of index values, for which all elements have
the same value.

Note that we may not mix positional and named association in an array aggregate,
except for the use of an others choice in the final postion. Thus, the following aggregate
is illegal:

variable coeff : coeff_array
           := (1.6, 2.3, 2 => 1.6, others => 0.0);  -- illegal

We can also use aggregates to write multidimensional array values. In this case, we
treat the array as though it were an array of arrays, writing an array aggregate for each of
the leftmost index values first.

EXAMPLE 4.3 Transition matrix for a modem finite-state machine

We can use a two-dimensional array to represent the transition matrix of a finite-state
machine (FSM) that interprets simple modem commands. A command must consist of
the string “atd” followed by a string of digits and a cr character, or the string “ath”
followed by cr. The state transition diagram is shown in Figure 4.1. The symbol “other”
represents a character other than ‘a’, ‘t’, ‘d’, ‘h’, a digit or cr.

An outline of a process that implements the FSM is:

modem_controller : process is

  type symbol is ('a', 't', 'd', 'h', digit, cr, other);
  type symbol_string is array (1 to 20) of symbol;
  type state is range 0 to 6;
  type transition_matrix is array (state, symbol) of state;

  constant next_state : transition_matrix :=
    ( 0 => ('a' => 1, others => 6),
      1 => ('t' => 2, others => 6),
      2 => ('d' => 3, 'h' => 5, others => 6),
      3 => (digit => 4, others => 6),
      4 => (digit => 4, cr => 0, others => 6),



4.1 Arrays 101

      5 => (cr => 0, others => 6),
      6 => (cr => 0, others => 6) );

  variable command : symbol_string;
  variable current_state : state := 0;

begin
  ...
  for index in 1 to 20 loop
    current_state := next_state( current_state, command(index) );
    case current_state is
      ...
    end case;
  end loop;
  ...
end process modem_controller;

The type declarations for symbol and state represent the command symbols and
the states for the FSM. The transition matrix, next_state, is a two-dimensional array
constant indexed by the state and symbol type. An element at position (i, j) in this
matrix indicates the next state the FSM should move to when it is in state i and the
next input symbol is j. The matrix is initialized according to the transition diagram.
The process uses the current_state variable and successive input symbols as indices
into the transition matrix to determine the next state. For each transition, it performs
some action based on the new state. The actions are implemented within the case
statement.

In the array aggregates we have seen so far, each value in the aggregate corresponds
to a single array element. VHDL also allows an alternate form of aggregate in which we
write a combination of individual element values and sub-array values. The element values

FIGURE 4.1 

The state transition diagram for a modem command finite-state machine. State 0 is the initial
state. The machine returns to this state after recognizing a correct command. State 6 is the error
state, to which the machine goes if it detects an illegal or unexpected character.

0 1 2

5
6

3 4
‘a’ ‘t’

cr

cr

cr ‘h’

‘d’ digit

digit

error other



102 Chapter 4 — Composite Data Types and Operations

and sub-array values are joined together to form a complete array value. For example,
given the declarations

type byte is array (7 downto 0) of bit;
variable d_reg : byte;
variable a, b : bit;

we could assign an aggregate value as follows:

d_reg := (a, "1001", b, "00");

The aggregate represents a value consisting of an element taken from the bit variable
a, followed by a sub-array of the four bits, an element taken from the bit variable b, and
a further sub-array of two bits. We could also write this using named association:

d_reg := (7 => a, 6 downto 3 => "1001",
          2 => b, 1 downto 0 => "00");

Note that when we write an aggregate containing a sub-array using named associa-
tion, the choice for the sub-array must take the form of a discrete range, the number of
choice values in the range must be the same as the number of elements in the sub-array,
and the direction of the range must match the context in which the aggregate appears.
Thus, in the preceding example, we used descending ranges for the choices, since the
aggregate is assigned to a variable with a descending range.

Another place in which we may use an aggregate is the target of a variable assignment
or a signal assignment. The full syntax rule for a variable assignment statement is

variable_assignment_statement ⇐
[ label : ] ( name I aggregate ) := expression ;

Aggregate target names can also be used in the conditional and selected forms of variable
assignments. If the target is an aggregate, it must contain a variable name at each position.
Furthermore, the expression on the right-hand side of the assignment must produce a
composite value of the same type as the target aggregate. Each element of the right-hand
side is assigned to the corresponding variable in the target aggregate. The variable names
in the target aggregate can represent a combination of array elements and sub-arrays. For
a sub-array variable, the corresponding elements of the right-hand side are assigned to the
variable elements.

The full syntax rule for a signal assignment also allows the target to be in the form of
an aggregate, with a signal name at each position in the aggregate. We can use assign-
ments of this form to split a composite value among a number of scalar signals. For ex-
ample, if we have a variable flag_reg, which is a four-element bit vector, we can perform
the following signal assignment to four signals of type bit:

( z_flag, n_flag, v_flag, c_flag ) <= flag_reg;

Since the right-hand side is a bit vector, the target is taken as a bit-vector aggregate. The
leftmost element of flag_reg is assigned to z_flag, the second element of flag_reg is as-



4.1 Arrays 103

signed to n_flag, and so on. This form of multiple assignment is much more compact to
write than four separate assignment statements.

As another example, suppose we have signals declared as follows:

signal status_reg : bit_vector(7 downto 0);
signal int_priority, cpu_priority : bit_vector(2 downto 0);
signal int_enable, cpu_mode : bit;

where the type bit_vector is declared to be an array of bit elements (see Section 4.2). We
can then write the assignment:

(2 downto 0 => int_priority,
 6 downto 4 => cpu_priority,
 3 => int_en, 7 => cpu_mode) <= status_reg;

This specifies that the bits of the status_reg value are assigned in left-to-right order to
cpu_mode, cpu_priority, int_en, and int_priority, respectively.

VHDL-87, -93, and -2002

These earlier versions to not allow aggregates with sub-arrays. Instead, each value in
an aggregate must be an individual element value. Similarly, where an aggregate of
names is used as the target of an assignment, each name must be an object of the
same type as the elements of the right-hand side expression.

4.1.3 Array Attributes

In Chapter 2 we saw that attributes could be used to refer to information about scalar
types. There are also attributes applicable to array types; they refer to information about
the index ranges. Array attributes can also be applied to array objects, such as constants,
variables and signals, to refer to information about the types of the objects. Given some
array type or object A, and an integer N between 1 and the number of dimensions of A,
VHDL defines the following attributes:

A'left(N) Left bound of index range of dimension N of A

A'right(N) Right bound of index range of dimension N of A

A'low(N) Lower bound of index range of dimension N of A

A'high(N) Upper bound of index range of dimension N of A

A'range(N) Index range of dimension N of A

A'reverse_range(N) Reverse of index range of dimension N of A

A'length(N) Length of index range of dimension N of A

A'ascending(N) true if index range of dimension N of A is an ascending
range, false otherwise



104 Chapter 4 — Composite Data Types and Operations

A'element The element subtype of A

For example, given the array declaration

type A is array (1 to 4, 31 downto 0) of boolean;

some attribute values are

A'left(1) = 1                A'low(1) = 1
A'right(2) = 0               A'high(2) = 31

A'range(1) is 1 to 4         A'reverse_range(2) is 0 to 31

A'length(1) = 4              A'length(2) = 32

A'ascending(1) = true        A'ascending(2) = false

A'element is boolean

For all of these attributes (except 'element), to refer to the first dimension (or if there
is only one dimension), we can omit the dimension number in parentheses, for example:

A'low = 1          A'length = 4

In the next section, we see how these array attributes may be used to deal with array
ports. We will also see, in Chapter 6, how they may be used with subprogram parameters
that are arrays. Another major use is in writing for loops to iterate over elements of an
array. For example, given an array variable free_map that is an array of bits, we can write
a for loop to count the number of ‘1’ bits without knowing the actual size of the array:

count := 0;
for index in free_map'range loop
  if free_map(index) then
    count := count + 1;
  end if;
end loop;

The 'range and 'reverse_range attributes can be used in any place in a VHDL model
where a range specification is required, as an alternative to specifying the left and right
bounds and the range direction. Thus, we may use the attributes in type and subtype def-
initions, in subtype constraints, in for loop parameter specifications, in case statement
choices and so on. The advantage of taking this approach is that we can specify the size
of the array in one place in the model and in all other places use array attributes. If we
need to change the array size later for some reason, we need only change the model in
one place.

The 'element attribute allows us to declare objects of the same type as the elements
of an array. We will see examples where that is useful in the next section.



4.2 Unconstrained Array Types 105

VHDL-87, -93, and -2002

The array attribute 'element is not provided in these earlier versions of VHDL.

VHDL-87

The array attribute 'ascending is not provided in VHDL-87.

4.2 Unconstrained Array Types

The array types we have seen so far in this chapter are called constrained arrays, since
the type definition constrains index values to be within a specific range. VHDL also allows
us to define unconstrained array types, in which we just indicate the type of the index
values, without specifying bounds. An unconstrained array type definition is described by
the alternate syntax rule

array_type_definition ⇐
array ( ( type_mark range <> ) { , … } ) of element_subtype_indication

The symbol “<>”, often called “box,” can be thought of as a placeholder for the index
range, to be filled in later when the type is used. An example of an unconstrained array
type declaration is

type sample is array (natural range <>) of integer;

An important point to understand about unconstrained array types is that when we
declare an object of such a type, we need to provide a constraint that specifies the index
bounds. We can do this in several ways. One way is to provide the constraint when an
object is created, for example:

variable short_sample_buf : sample(0 to 63);

This indicates that index values for the variable short_sample_buf are natural numbers
in the ascending range 0 to 63. Another way to specify the constraint is to declare a sub-
type of the unconstrained array type. Objects can then be created using this subtype, for
example:

subtype long_sample is sample(0 to 255);
variable new_sample_buf, old_sample_buf : long_sample;

These are both examples of a new form of subtype indication that we have not yet seen.
The syntax rule is

subtype_indication ⇐ type_mark [ ( discrete_range { , … } ) ]



106 Chapter 4 — Composite Data Types and Operations

The type mark is the name of the unconstrained array type, and the discrete range speci-
fications constrain the index type to a subset of values used to index array elements. Each
discrete range must be of the same type as the corresponding index type.

When we declare a constant of an unconstrained array type, there is a third way in
which we can provide a constraint. We can infer it from the expression used to initialize
the constant. If the initialization expression is an array aggregate written using named as-
sociation, the index values in the aggregate imply the index range of the constant. For
example, in the constant declaration

constant lookup_table : sample
           := ( 1 => 23, 3 => -16, 2 => 100, 4 => 11);

the index range is 1 to 4.
If the expression is an aggregate using positional association, the index value of the

first element is assumed to be the leftmost value in the array subtype. For example, in the
constant declaration

constant beep_sample : sample
           := ( 127, 63, 0, -63, -127, -63, 0, 63 );

the index range is 0 to 7, since the index subtype is natural. The index direction is ascend-
ing, since natural is defined to be an ascending range.

4.2.1 Predefined Array Types

VHDL predefines a number of unconstrained array types. In many models, these types are
sufficient to represent our data. We list the predefined array types in this section.

Strings

VHDL provides a predefined unconstrained array type called string, declared as

type string is array (positive range <>) of character;

In principle the index range for a constrained string may be either an ascending or de-
scending range, with any positive integers for the index bounds. However, most applica-
tions simply use an ascending range starting from 1. For example:

constant LCD_display_len : positive := 20;
subtype LCD_display_string is string(1 to LCD_display_len);
variable LCD_display : LCD_display_string := (others => ' ');

Boolean Vectors, Integer Vectors, Real Vectors, and Time Vectors

VHDL also provides predefined unconstrained types for arrays of boolean, integer, real,
and time elements, respectively. They are declared as:



4.2 Unconstrained Array Types 107

type boolean_vector is array (natural range <>) of boolean;
type integer_vector is array (natural range <>) of integer;
type real_vector is array (natural range <>) of real;
type time_vector is array (natural range <>) of time;

These types can be used to represent collections of data of the respective element types.
For example, a subtype representing a collection of comparator thresholds can be de-
clared as:

subtype thresholds is integer_vector(15 downto 0);

Alternatively, we can supply the constraint for a vector when an object is declared, for
example:

variable max_temperatures : real_vector(1 to 10);

The time_vector type, in particular, is useful for specifying collection of timing parameters.
For example, we can declare a constant representing individual propagation delays for
each of eight output bits as follows:

constant Tpd_result : time_vector
  := (0 to 3 => 100 ps, 4 to 7 => 150 ps);

VHDL-87, -93, and -2002

The types boolean_vector, integer_vector, real_vector, and time_vector are not
predefined in these earlier versions of VHDL. Instead, they (or similar types) must be
explicitly defined.

Bit Vectors

VHDL provides a further predefined unconstrained array type called bit_vector, declared
as

type bit_vector is array (natural range <>) of bit;

This type can be used to represent words of data at the architectural level of modeling.
For example, subtypes for representing bytes of data in a little-endian processor might be
declared as

subtype byte is bit_vector(7 downto 0);

Alternatively, we can supply the constraint when an object is declared, for example:

variable channel_busy_register : bit_vector(1 to 4);



108 Chapter 4 — Composite Data Types and Operations

Standard-Logic Arrays

The standard-logic package std_logic_1164 provides an unconstrained array type for vec-
tors of standard-logic values. It is declared as

type std_ulogic_vector is array ( natural range <> ) of std_ulogic;

This type can be used in a way similar to bit vectors, but provides more detail in repre-
senting the electrical levels used in a design. We can define subtypes of the standard-logic
vector type, for example:

subtype std_ulogic_word is std_ulogic_vector(0 to 31);

Or we can directly create an object of the standard-logic vector type:

signal csr_offset : std_ulogic_vector(2 downto 1);

String and Bit-String Literals

In Chapter 1, we saw that a string literal may be used to write a value representing a se-
quence of characters. We can use a string literal in place of an array aggregate for a value
of type string. For example, we can initialize a string constant as follows:

constant ready_message  : string := "Ready     ";

We can also use string literals for any other one-dimensional array type whose ele-
ments are of an enumeration type that includes characters. The IEEE standard-logic array
type std_ulogic_vector is an example. Thus we could declare and initialize a variable as
follows:

variable current_test : std_ulogic_vector(0 to 13)
           := "ZZZZZZZZZZ----";

In Chapter 1 we also saw bit-string literals as a way of writing a sequence of bit values.
Bit strings can be used in place of array aggregates to write values of bit-vector types. For
example, the variable channel_busy_register defined above may be initialized with an as-
signment:

channel_busy_register := b"0000";

We can also use bit-string literals for other one-dimensional array types whose ele-
ments are of an enumeration type that includes the characters ‘0’ and ‘1’. Each character
in the bit-string literal represents one, three or four successive elements of the array value,
depending on whether the base specified in the literal is binary, octal or hexadecimal.
Again, using std_ulogic_vector as an example type, we can write a constant declaration
using a bit-string literal:

constant all_ones : std_ulogic_vector(15 downto 0) := X"FFFF";



4.2 Unconstrained Array Types 109

VHDL-87

In VHDL-87, bit-string literals may only be used as literals for array types in which the
elements are of type bit. The predefined type bit_vector is such a type. However, the
standard-logic type std_ulogic_vector is not. We may use string literals for array types
such as std_ulogic_vector.

4.2.2 Unconstrained Array Element Types

In the preceding examples of unconstrained array types, the elements were all of scalar
subtypes. In general, arrays can have elements of almost any type, including other array
types. The array element types can themselves be constrained or unconstrained. Strictly,
we just use the term unconstrained to refer to an array type in which the top-level type
has its index range unspecified and the element type, if an array type, is also uncon-
strained. For example, the type sample that we declared as

type sample is array (natural range <>) of integer;

is unconstrained, since its index range is unspecified and the element type is scalar rather
than an array type. If we declare a type for a collection of samples:

type sample_set is array (positive range <>) of sample;

this type also is unconstrained. The top-level array type, sample_set, has an unspecified
index range, and the element type is unconstrained. There is no constraint information
specified at any level of the type’s hierarchy.

We use the term fully constrained for a type in which all index ranges are constrained
at all levels of the type’s hierarchy. For example, the type that we declared for points,

type point is array (1 to 3) of real;

is fully constrained, since there is only one index range, and it is constrained to be 1 to 3.
Similarly, if we declare a type for a line segment determined by two points:

type line_segment is array (1 to 2) of point;

that type is also fully constrained. It constrains the top-level index range to 1 to 2 and the
element index range to 1 to 3.

In between unconstrained and fully constrained types, we have what are called par-
tially constrained types. Such types have one or more index ranges unspecified and others
that are constrained. For example, we can declare a type for fixed-sized collections of sam-
ples:

type dozen_samples is array (1 to 12) of sample;

The top-level index range is constrained to 1 to 12, but the element index range is unspec-
ified. Similarly, we can declare a type for a path consisting of an unspecified number of
points:



110 Chapter 4 — Composite Data Types and Operations

type path is array (positive range <>) of point;

The top-level index range is unspecified, but the element index range is 1 to 3.
We mentioned that when we declare an object of an array type, we must provide con-

straints for index ranges. If the type used in the declaration is fully constrained, the con-
straints from the type provide sufficient information. On the other hand, if the type is
unconstrained or partially constrained, we need to provide the missing constraints. We
saw how to do that for the simple case of an unconstrained array of scalar elements. We
do something similar for an unconstrained array with array elements. For example, to de-
clare a variable of type sample_set to store 100 samples each of 20 values, we can write

variable main_sample_set : sample_set(1 to 100)(1 to 20);

The first index range, 1 to 100, is used for the top level of the type’s hierarchy, and the
second index range, 1 to 20, is used for the second level. We can use the same type for a
second object with a different size:

variable alt_sample_set : sample_set(1 to 50)(1 to 10);

This represents a collection of 50 samples, each with 10 values. Both variables are of the
same type, sample_set, but they are of different sizes and have different element array
sizes.

If we are to use a partially constrained type to declare an object, we specify constraints
only for the index ranges not specified by the type. We can use the preceding notation for
the case of the top-level index range being the one we have to specify. For example, we
can declare a variable for a path connecting five points:

variable short_path : path(5 downto 1);

The index range 5 down to 1 is used for the top level of the type’s hierarchy, and the
constraint 1 to 3 for the second level comes from the type itelf.

For the case in which we need to specify only a second-level index range, we need
to use the reserved word open in place of the top-level index range. An example is

variable bakers_samples : dozen_samples(open)(0 to 9);

In this example, we write open for the top-level index range, since the type itself specifies
1 to 12 for that index range. Using the word open allows us to advance to the second-
level index range, where we specify 0 to 9 as the constraint.

We can use this notation in subtype declarations as well as in declarations of objects.
For example, if we want to declare several objects with the same constraints, we could
write the subtype declaration

subtype dozen_short_samples is dozen_samples(open)(0 to 9);

Since this subtype is fully constrained, we can use it to declare objects without adding any
further constraint information.



4.2 Unconstrained Array Types 111

When we declare a subtype, we do not need to constrain all of the index ranges to
make a fully constrained subtype. We can add index constraints for some of the index
ranges to declare partially constrained subtypes. For example:

subtype short_sample_set is sample_set(open)(0 to 9);

In this case, we use the word open to skip over the unspecified index range at the top
level and add a constraint at the second level. The top-level index range remains unspec-
ified, and so the subtype is partially constrained. When using this subtype to declare an
object, we would have to specify the top-level index range for the object, for example:

variable unprocessed_samples : short_sample_set(1 to 20);

We mentioned earlier that, when declaring a constant of an unconstrained array type,
we can infer the index range of the constant from the value of the expression used to ini-
tialize the constant. That applies not only to unconstrained arrays of scalar elements, but
also to unconstrained arrays of array elements and to partially constrained arrays. For ex-
ample, if we write:

constant default_sample_pair : sample_set
           := ( 1 => (39, 25, 6, -4, 5),
                2 => (9, 52, 100, 0, -1),
                3 => (0, 0, 0, 0, 0) );

the top-level index range is inferred to be 1 to 3 (from the choices in the outer level of
the aggregate), and the second-level index range is inferred to be 0 to 4 (from the fact that
the index subtype of sample is natural). Similarly, if we write:

constant default_samples : short_sample_set
           := ( 1 to 20 => (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) );

the top-level index range is inferred to be 1 to 20 (from the choice in the outer level of
the aggregate), but the second-level index range is 0 to 9, specified in the subtype.

4.2.3 Unconstrained Array Ports

An important use of an unconstrained array type is to specify the type of an array port.
This use allows us to write an entity interface in a general way, so that it can connect to
array signals of any size or with any range of index values. When we instantiate the entity,
the index bounds of the array signal connected to the port are used as the bounds of the
port. If the port type is an unconstrained array of unconstrained array elements, the index
ranges at all levels of the type’s hierarchy come from the connected signal.

EXAMPLE 4.4 Multiple-input and gates

Suppose we wish to model a family of and gates, each with a different number of
inputs. We declare the entity interface as shown below. The input port is of the un-
constrained type bit_vector. The architecture body includes a process that is sensitive



112 Chapter 4 — Composite Data Types and Operations

to changes on the input port. When any element changes, the process performs a log-
ical and operation across the input array. It uses the 'range attribute to determine the
index range of the array, since the index range is not known until the entity is instan-
tiated.

entity and_multiple is
  port ( i : in bit_vector;  y : out bit );
end entity and_multiple;

--------------------------------------------------

architecture behavioral of and_multiple is
begin

  and_reducer : process ( i ) is
    variable result : bit;
  begin
    result := '1';
    for index in i'range loop
      result := result and i(index);
    end loop;
    y <= result;
  end process and_reducer;

end architecture behavioral;

To illustrate the use of the multiple-input gate entity, suppose we have the fol-
lowing signals:

signal count_value : bit_vector(7 downto 0);
signal terminal_count : bit;

We instantiate the entity, connecting its input port to the bit-vector signal:

tc_gate : entity work.and_multiple(behavioral)
  port map ( i => count_value, y => terminal_count);

For this instance, the input port is constrained by the index range of the signal. The
instance acts as an eight-input and gate.

EXAMPLE 4.5 Multiple-input and-or-invert gates

We can model a family of and-or-invert gates with varying numbers of groups of input
bits. Each group of input bits is and-ed, the results are or-ed, and the final result ne-
gated to derive the output. The inputs are represented using an array of arrays:

type bv_array is array (natural range <>) of bit_vector;

Each array element of type bit_vector is a group of bits that are to be and-ed together.
The entity and architecture are:



4.2 Unconstrained Array Types 113

entity and_or_invert is
  port ( a : in bv_array; z : out bit );
end entity and_or_invert;

architecture behavioral of and_or_invert is

  reducer : process ( a ) is
    variable and_result, result : bit;
  begin
    result := '0';
    for i in a'range loop
      and_result := '1';
      for j in a'element'range loop
        and_result := and_result and a(i)(j);
      end loop;
      result := result or and_result;
    end loop;
    z <= not result;
  end process reducer;

end architecture behavioral;

The reducer process contains an outer loop that iterates over the array of groups.
It uses the input array’s top-level index range to govern the loop parameter. The inner
loop iterates over the bits in a group represented by a particular element of a. This
loop uses the index range of the elements of a, given by the 'range attribute of the
'element attribute of a. Note that we could have used the reducing and operator, de-
scribed in Section 4.3.1, in place of the inner loop, as follows:

and_result := and a(i);

For this example, however, we have included the loop to illustrate use of the 'element
attribute in cases where the index ranges of array elements are determined by the sig-
nal connected to the port of an instance.

We can also use partially constrained types for ports of entities. In such cases, the in-
dex ranges of the signal connected to the port are used to determine the those bounds of
the port that are not specified in the port’s subtype. For example, if we declare an entity
using the subtype short_sample_set subtype from Section 4.2.2:

entity sample_processor is
  port ( samples : in short_sample_set; ... );
end entity sample_processor;

and instantiate it as follows:

signal sensor_samples : short_sample_set(1 to 3);
...



114 Chapter 4 — Composite Data Types and Operations

preprocessor : entity sample_processor
  port map ( samples => sensor_samples, ... );

then, for the preprocessor instance, the top-level index range of the samples port would
be 1 to 3, obtained from the samples signal. The second-level index range for the samples
port would be 0 to 9, obtained from the subtype short_sample_set, the declared subtype
of the port.

4.3 Array Operations and Referencing

Although an array is a collection of values, much of the time we operate on arrays one
element at a time, using the operators described in Chapter 2. However, if we are working
with one-dimensional arrays of scalar values, we can use some of the operators to operate
on whole arrays. In this section, we describe the operators that can be applied to arrays
and introduce a number of other ways in which arrays can be referenced.

4.3.1 Logical Operators

The logical operators (and, or, nand, nor, xor and xnor) can be applied to two one-
dimensional arrays of bit or Boolean elements. That includes the predefined types
bit_vector and boolean vector, as well as any array types with bit or boolean elements
that we might declare. The operators can also be applied to two arrays of type
std_ulogic_vector defined by the std_logic_1164 package. In each case, the operands
must be of the same length and type, and the result is computed by applying the operator
to matching elements from each array to produce an array of the same length. Elements
are matched starting from the leftmost position in each array. An element at a given posi-
tion from the left in one array is matched with the element at the same position from the
left in the other array. The operator not can also be applied to a single array of any of
these types, with the result being an array of the same length and type as the operand.
The following declarations and statements illustrate this use of logical operators when ap-
plied to bit vectors:

subtype pixel_row is bit_vector (0 to 15);
variable current_row, mask : pixel_row;

current_row := current_row and not mask;
current_row := current_row xor X"FFFF";

The logical operators and, or, nand, nor, xor and xnor can also be applied to a pair
of operands, one of which is a one-dimensional arrays of the types mentioned above, and
the other of which is a scalar of the same type as the array elements. The result is an array
of the same length and type as the array operand. Each element of the result is computed
by applying the operator to the scalar operand and the corresponding element of the array
operand. Some examples are

B"0011" and '1' = B"0011"    B"0011" and '0' = B"0000"

B"0011" xor '1' = B”1100"    B”0011" xor '0' = B"0011"



4.3 Array Operations and Referencing 115

EXAMPLE 4.6 Select signal for a data bus

Suppose the outputs of three registers are provided on std_ulogic_vector signals a, b,
and c. We can use three select signals, a_sel, b_sel and c_sel, to select among the reg-
ister outputs for assignment to a data bus signal. The declarations and statements are

signal a, b, c, data_bus : std_ulogic_vector(31 downto 0);
signal a_sel, b_sel, c_sel : std_ulogic;
...

data_bus <= (a and a_sel) or (b and b_sel) or (c and c_sel);

Further, these operators can be applied in unary form to a single one-dimensional ar-
ray of the types mentioned above, reducing the array to a single scalar result of the same
type as the array elements. The reduction and, or, and xor operators form the logical and,
or, and exclusive or, respectively of the array elements. Thus:

and "0110" = '0' and '1' and '1' and '0' = '0'

 or "0110" = '0'  or '1'  or '1'  or '0' = '1'

xor "0110" = '0' xor '1' xor '1' xor '0' = '0'

In each case, if the array has only one element, the result is the value of that element.
If the array is a null array (that is, it has no elements), the result of the and operator is ‘1’,
and the result of the or and xor operators is ‘0’.

The reduction nand, nor, and xnor operators are the negation of the reduction and,
or, and xor operators, respectively. Thus:

nand "0110" = not ('0' and '1' and '1' and '0') = not '0' = '1'

 nor "0110" = not ('0'  or '1'  or '1'  or '0') = not '1' = '0'

xnor "0110" = not ('0' xor '1' xor '1' xor '0') = not '0' = '1'

In each case, application to a single-element array produces the negation of the ele-
ment value. Application of nand to a null array produces ‘0’ and application of nor or
xnor to a null array produces ‘1’.

The logical reduction operators have the same precedence as the unary not and abs
operators. In the absence of parentheses, they are evaluated before binary operators. So
the expression:

and A or B

involves applying the reduction and operator to A, then applying the binary or operator
to the result and B. In some cases, we need to include parentheses to make an expression
legal. For example, the expression:

and not X



116 Chapter 4 — Composite Data Types and Operations

is not legal without parentheses, since we cannot chain unary operators. Instead, we must
write the expression as:

and (not X)

EXAMPLE 4.7 Parity reduction

Given a signal data of type bit_vector, we can calculate parity using the reduction xor
operator:

parity <= xor data;

Since reduction operators have higher precedence than binary logical operators,
the following two statements produce the same value:

parity_error1 <= (xor data) and received_parity;

parity_error2 <= xor data and received_parity;

However, the parentheses make the first form more readable.

VHDL-87

The logical operator xnor is not provided in VHDL-87.

4.3.2 Shift Operators

The shift operators introduced in Chapter 2 (sll, srl, sla, sra, rol and ror) can be used
with a one-dimensional array of bit or Boolean values as the left operand and an integer
value as the right operand. The sll, srl, rol and ror operators can be used with a left
operand of type std_ulogic_vector, defined in the std_logic_1164 package. A shift-left
logical operation shifts the elements in the array n places to the left (n being the right
operand), filling in the vacated positions with ‘0’ or false and discarding the leftmost n
elements. If n is negative, the elements are instead shifted to the right. Some examples are

B"10001010" sll 3 = B"01010000"    B"10001010" sll -2 = B"00100010"

The shift-right logical operation similarly shifts elements n positions to the right for posi-
tive n, or to the left for negative n, for example:

B"10010111" srl 2 = B"00100101"    B"10010111" srl -6 = B"11000000"

The next two shift operations, shift-left arithmetic and shift-right arithmetic, operate
similarly, but instead of filling vacated positions with ‘0’ or false, they fill them with a copy
of the element at the end being vacated, for example:

B"01001011" sra 3 = B"00001001"    B"10010111" sra 3 = B"11110010"
B"00001100" sla 2 = B"00110000"    B"00010001" sla 2 = B"01000111"



4.3 Array Operations and Referencing 117

As with the logical shifts, if n is negative, the shifts work in the opposite direction, for
example:

B"00010001" sra -2 = B"01000111"    B"00110000" sla -2 = B"00001100"

A rotate-left operation moves the elements of the array n places to the left, transferring
the n elements from the left end of the array around to the vacated positions at the right
end. A rotate-right operation does the same, but in the opposite direction. As with the shift
operations, a negative right argument reverses the direction of rotation. Some examples
are

B"10010011" rol 1 = B"00100111"    B"10010011" ror 1 = B"11001001"

VHDL-87

The shift operators sll, srl, sla, sra, rol and ror are not provided in VHDL-87.

4.3.3 Relational Operators

Relational operators can also be applied to one-dimensional arrays. For the ordinary rela-
tion operators (“=”, “/=”, “<”, “<=”, “>” and “=>”), the array elements can be of any discrete
type. The two operands need not be of the same length, so long as they have the same
element type. The “=” and “/=” operators are quite straightforward. If two arrays have the
same length and the corresponding elements are pairwise equal, then the arrays are equal.
The “/=” operator is simply the negation of the “=” operator. The way the remaining op-
erators work can be most easily seen when they are applied to strings of characters, in
which case they are compared according to case-sensitive dictionary ordering.

To see how dictionary comparison can be generalized to one-dimensional arrays of
other element types, let us consider the “<” operator applied to two arrays a and b. If both
a and b have length 0, a < b is false. If a has length 0, and b has non-zero length, then
a < b. Alternatively, if both a and b have non-zero length, then a < b if a(1) < b(1), or if
a(1) = b(1) and the rest of a < the rest of b. In the remaining case, where a has non-zero
length and b has length 0, a < b is false. Comparison using the other relational operators
is performed analogously.

An important point that follows from this definition of “<” ordering is that, if we apply
it to bit vectors representing binary-coded numbers, it does not correspond to numeric
ordering. For example, consider the comparison B"001000" < B"10". Since the first ele-
ment of the left operand is ‘0’ and the first element of the right operand is ‘1’, and since
‘0’ < ‘1’, the result of the comparison is true. However, if we interpret the vectors as un-
signed binary numbers, the left operand represents 8 and the right operand represents 2.
We would then expect the comparison to yield false. Clearly, the predefined relational op-
erators are inappropriate for this interpretation of bit vectors. We will see in Chapter 9 how
we can perform the right kind of comparisons on binary-coded numbers.

In Section 2.2.5, we introduced the matching equality (“?=”) and inequality (“?/=”) op-
erators for comparing bit or std_ulogic operands. These operators can also be applied to
operands that are one-dimensional arrays of bit or std_ulogic elements to yield a



118 Chapter 4 — Composite Data Types and Operations

std_ulogic result. The operands must be of the same type and length. For the “?=” opera-
tor, corresponding elements are compared using the scalar version of the operator, and
the results reduced using the logical and reduction operator. The “?/=” operator is com-
puted similarly, with the not operator applied to the reduced and result.

EXAMPLE 4.8 Chip-select and address decoding

We can write a Boolean equation for a std_ulogic select signal that includes chip-
select control signals and an address signal.  We can use the “?=” operator, which
returns a std_ulogic result. We can combine that result with the std_ulogic control
signals to produce a std_ulogic form of the Boolean equation:

dev_sel1 <= cs1 and not ncs2 and addr ?= X"A5";

We can also use this form of expression in a condition, since the value is implictly
converted to boolean (see Section 2.2.5):

if cs1 and not ncs2 and addr ?= X"A5" then
   ...

or similarly:

if cs1 and ncs2 ?= '0' and addr ?= X"A5" then
  ...

VHDL-87, -93, and -2002

The matching relational operators are not provided in these versions of VHDL. The
assignment in the above example would have to be written as:

dev_sel1 <= '1' when cs1 = '1' and
                     ncs2 = '0' and addr = X"A5" else '0';

Similarly, since condition values are not implicitly converted to boolean, the con-
ditions in the if statements would be written as:

if cs1 = '1' and ncs2 = '0' and addr = X"A5" then
  ...

or

if (cs1 and not ncs2) = '1' and addr = X"A5" then
  ...



4.3 Array Operations and Referencing 119

Maximum and Minimum Operations

In Chapter 2, we introduced the maximum and minimum operations for scalar types.
These operations can also be applied to arrays of discrete-type elements. The “<” operator
is defined for such arrays, and the maximum and minimum operations are defined in
terms of the “<” operator. Thus, for example:

minimum(B"0001", B"0110") = B"0001"
maximum(B"001000", B"10") = B"10"

Note that the same argument that we made above about comparing binary-coded numbers
using the “<” operator applies to use of the maximum and minimum operations. Again,
we will see in Chapter 9 how to perform the operation correctly for binary-coded num-
bers.

The maximum and minimum operations are further defined as reduction operations
on one-dimensional arrays of any scalar type. The maximum function of this form returns
the largest element in the array, and the minimum function returns the smallest element
in the array. Again, the comparisons are performed using the predefined “<” operator for
the element type. Thus,

maximum(string'("WXYZ")) = 'Z'

minimum(string'("WXYZ")) = 'W'

maximum(time_vector'(10 ns, 50 ns, 20 ns)) = 50 ns

minimum(time_vector'(10 ns, 50 ns, 20 ns)) = 10 ns

For a null array (one with no elements), the maximum function returns the smallest value
of the element type, and the minimum function returns the largest value of the element
type.

VHDL-87, -93, and -2002

The maximum and minimum operations are not provided in earlier versions of VHDL.

4.3.4 The Concatenation Operator

The one remaining operator that can be applied to one-dimensional arrays is the concat-
enation operator (“&”), which joins two array values end to end. For example, when ap-
plied to bit vectors, it produces a new bit vector with length equal to the sum of the
lengths of the two operands. Thus, b"0000" & b"1111" produces b"0000_1111".

The concatenation operator can be applied to two operands, one of which is an array
and the other of which is a single scalar element. It can also be applied to two scalar values
to produce an array of length 2. Some examples are

"abc" & 'd'    =  "abcd"
'w'   & "xyz"  =  "wxyz"
'a'   & 'b'    =  "ab"



120 Chapter 4 — Composite Data Types and Operations

4.3.5 To_String Operations

In Section 2.5, we described the predefined to_string operation on scalar types. To_string
can also be applied to values of one-dimensional array types that contain only character-
literal elements. Examples of such types include the predefined types bit_vector and
string and the type std_ulogic_vector defined in std_logic_1164. Applying to_string to a
string value is not of much use, since it just yields the operand unchanged. For other array
types, the operation yields a string value with the same characters as the operand. This
can be useful for including such array values in message strings. For example:

signal x : bit_vector(7 downto 0);
...

report "Trace: x = " & to_string(x);

The value of x is an array of bit elements, whereas the report statement expects a
string value, which is an array of character elements. The to_string operation deals with
the conversion. Thus, if x has the bit_vector value "00110101", the result of the to_string
operation would be the character string "00110101".

VHDL also provides operations, to_ostring and to_hstring, for converting bit_vector
operands to strings in octal and hexadecimal form, respectively. To_ostring takes each
group of three bits from the operand, starting from the right, and includes the correspond-
ing octal-digit character in the result. If the operand is not a multiple of three in length,
additional ‘0’ bits are assumed on the left of the operand. Some examples are:

to_ostring(B"101_011_000") = "530"
to_ostring( B"11_000_111") = "307"

The to_hstring operation similarly takes each group of four bits and includes the cor-
responding hexadecimal-digit character in the result. The digits A to F appear in upper-
case. Some examples are:

to_hstring(B"0110_1100") = "6C"
to_hstring(  B"11_0101") = "35"

Note that we don’t necessarily need a separate to_bstring operation, since the
to_string operation would serve that purpose. However, in the interest of completeness
and consistency, VHDL does provide a to_bstring operation with exactly the same behav-
ior. (In fact, to_bstring is an alias for to_string. We discuss aliases in detail in Chapter 11.)
In addition, VHDL provides alternate names for all of these operations: to_binary_string,
to_octal_string and to_hex_string. Some designers may consider these to be more read-
able than the shorter names. Their use is a matter of taste or organizational coding style.

4.3.6 Array Slices

Often we want to refer to a contiguous subset of elements of an array, but not the whole
array. We can do this using slice notation, in which we specify the left and right index
values of part of an array object. For example, given arrays a1 and a2 declared as follows:



4.3 Array Operations and Referencing 121

type array1 is array (1 to 100) of integer;
type array2 is array (100 downto 1) of integer;

variable a1 : array1;
variable a2 : array2;

we can refer to the array slice a1(11 to 20), which is an array of 10 elements having the
indices 11 to 20. Similarly, the slice a2(50 downto 41) is an array of 10 elements but with
a descending index range. Note that the slices a1(10 to 1) and a2(1 downto 10) are null
slices, since the index ranges specified are null. Furthermore, the ranges specified in the
slice must have the same direction as the original array. Thus we may not legally write
a1(10 downto 1) or a2(1 to 10).

EXAMPLE 4.9 A byte-swapper module

We can write a behavioral model for a byte-swapper that has one input port and one
output port, each of which is a bit vector of subtype halfword, declared as follows:

subtype halfword is bit_vector(0 to 15);

The entity and architecture are:

entity byte_swap is
  port (input : in halfword;  output : out halfword);
end entity byte_swap;

--------------------------------------------------

architecture behavior of byte_swap is

begin

  swap : process (input)
  begin
    output(8 to 15) <= input(0 to 7);
    output(0 to 7) <= input(8 to 15);
  end process swap;

end architecture behavior;

The process in the architecture body swaps the two bytes of input with each
other. It shows how the slice notation can be used for signal array objects in signal
assignment statements.

VHDL-87

In VHDL-87, the range specified in a slice may have the opposite direction to that of
the index range of the array. In this case, the slice is a null slice.



122 Chapter 4 — Composite Data Types and Operations

4.3.7 Array Type Conversions

In Chapter 2 we introduced the idea of type conversion of a numeric value of one type to
a value of a so-called  closely related type. A value of an array type can also be converted
to a value of another array type, provided the array types are closely related. Two array
types are closely related if they have the same number of dimensions and their element
types can be converted (that is, the element types are closely related). The type conversion
simply produces a new array value of the specified type containing the converted ele-
ments of the original array in the same order.

To illustrate the idea of type-converting array values, suppose we have the following
declarations in a model:

subtype name is string(1 to 20);
type display_string is array (integer range 0 to 19) of character;

variable item_name : name;
variable display : display_string;

We cannot directly assign the value of item_name to display, since the types are different.
However, we can write the assignment using a type conversion:

display := display_string(item_name);

This produces a new array, with the left element having index 0 and the right element
having index 19, which is compatible with the assignment target.

The rule that the element types of the converted expression and the target type must
be convertible allows us to perform the following conversions:

subtype integer_vector_10 is integer_vector(1 to 10);
subtype real_vector_10 is real_vector(1 to 10);

variable i_vec : integer_vector_10;
variable r_vec : real_vector_10;
...

i_vec := integer_vector_10(r_vec);
r_vec := real_vector_10(i_vec);

Since we can convert between values of type integer and real, we can also convert be-
tween arrays with integer and real elements, respectively. Each element of the converted
expression is converted to the element subtype of the target type.

The index ranges need not all be numeric for a type conversion to be performed. For
example, suppose we have array types and signals declared as follows:

type exception_type is (int, ovf, div0, undef, trap);
type exception_vector is array (exception_type) of bit;
signal d_in, d_out: bit_vector(31 downto 0);
signal exception_reg : exception_vector;

Then the type conversion:



4.3 Array Operations and Referencing 123

exception_vector( d_in(4 downto 0) )

yields a vector of bits indexed from int to trap, with each element being the matching
element of the slice of d_in, from left to right. Since the element types for the expression
and the target type are both bit, conversion of the elements is trivial.

The above examples illustrate the case of a type conversion in which the target type
is fully constrained, specifying the index range for the result. In general, we can convert
to a target type that is fully constrained, partially constrained, or unconstrained. (We de-
scribed array index constraints in Section 4.2.2.) If the target type of the conversion spec-
ifies an index range at any level of the type’s hierarchy, that index range is used, as in the
examples. On the other hand, if the target type leaves some index range or ranges un-
specified (that is, the target type is unconstrained or partially constrained), the correpond-
ing index range or ranges for the result depend on the index subtypes. If the index
subtypes of the original array and the target type are both numeric, the index range of the
result has the same numeric bounds and direction as the index range of the original array.
For example, in the type conversion

integer_vector(r_vec)

the index range of the result is 1 to 10, taken from the index range of r_vec. If, however,
one or both index ranges are enumeration types, the index range of the result is deter-
mined from the index subtype of the target type. The direction is the same as that of the
index subtype, the left bound is the leftmost value in the index subtype, and the right
bound depends on the number of elements. For example, in the type conversion

bit_vector( exception_reg )

the index range of the result comes from the index subtype defined for bit_vector, namely,
natural. The subtype natural is declared to be an ascending range with a left bound of 0.
This direction and left bound are used as the direction and left bound of the type-
conversion result. The right bound comes from the number of elements. Thus, the result
is a bit_vector value indexed from 0 to 4.

A common case in which we do not need a type conversion is the assignment of an
array value of one subtype to an array signal or variable of a different subtype of the same
base type. This occurs where the index ranges of the target and the operand have different
bounds or directions. VHDL automatically includes an implicit subtype conversion in the
assignment. For example, given the subtypes and variables declared thus:

subtype big_endian_upper_halfword is bit_vector(0 to 15);
subtype little_endian_upper_halfword is bit_vector(31 downto 16);

variable big : big_endian_upper_halfword;
variable little : little_endian_upper_halfword;

we could make the following assignments without including explicit type conversions:

big := little;
little := big;



124 Chapter 4 — Composite Data Types and Operations

A final point to make about conversions relates to type qualification, introduced in
Section 2.3.2. There, we mentioned that the operand of a type qualification has to be of
the specified type, but not necessarily of the specific subtype. In the case of type qualifi-
cation for arrays, we can qualify an array operand as being of some different subtype to
that of the operand. The operand is then converted to that subtype, as described above.

VHDL-87, -93, and -2002

The rules for array type conversions in these earlier versions of VHDL were more
strict. Array types were only closely related if they had the same element type, the
same number of dimensions and index types that could be type converted. The re-
striction on index subtypes effectively meant that both had to be numeric or both had
to be the same enumeration type. In addition, for type qualification, no subtype con-
version was performed. If the qualified type was a constrained array subtype, the op-
erand had to have exactly the index range or ranges specified in the subtype.

4.3.8 Arrays in Case Statements

In Section 3.2, we introduced case statements, and described a number of requirements
on the selector expression and choices. In our examples, we just used scalar types for the
selector expression. However, VHDL also allows us to write a selector expression of a one-
dimensional character array type, that is, an array type whose element type includes char-
acter literals. Examples of such types are bit_vector, std_ulogic_vector, and similar types.
The choices are typically string literals, bit-string literals, or, less commonly, aggregates,
and all must have the same length. When the case statement is executed, the value of the
selector expression is checked to ensure it has the same length as the choices, and then
compared with the choices to determine which alternative to execute. When the case
statement is executed, the value of the expression must have the same length as the
choices. For example, in the following:

variable s : bit_vector(3 downto 0);
variable c : bit;
...

case c & s is
  when "00000" => ...
  when "10000" => ...
  when others  => ...
end case;

all of the choices (except the others choice) are of length five, so that determines the
required length for the result of the concatenation.

We saw in Section 4.1.2 that we can include the word others in an array aggregate to
refer to all elements not identified in the preceding part of the aggregate. If we write an
aggregate containing others as a choice in a case statement, the index range of the case



4.3 Array Operations and Referencing 125

expression must be locally static, that is, determined during the analysis phase of design
processing. For example, we can write a case statement as follows:

variable s : bit_vector(3 downto 0);
...

case s is
  ('0', others => '1') => ...
  ('1', others => '0') => ...
  ...
end case;

In this example, the index range of the expression s can be determined at analysis time
as being 3 downto 0. That means the analyzer can use the index range for the choice
values. If the analyzer cannot work out the index range for the case expression, it cannot
determine the index values represented by others in the aggregates.

VHDL-87, -93, and -2002

In these versions of VHDL, if the selector expression in a case statement was of an
array type, the index range had to be locally static, regardless of whether the choices
used the word others or not. Thus, the expression c & s in the example above would
be illegal. Instead, we would have to write the example as:

variable s : bit_vector(3 downto 0);
variable c : bit;
subtype bv5 is bit_vector(0 to 4);
...

case bv5'(c & s) is
  ...
end case;

4.3.9 Matching Case Statements

In the previous subsection, we saw how we can write a case statement with a selector
expression of an array type. The choices are compared for exact equality with the expres-
sion value to select an alternative to execute. If the type of the case expression and choices
is a vector of std_ulogic values, exact comparison is not always what we want. In partic-
ular, we would like to be able to include don’t care elements (‘–’) in the choices to indicate
that we don’t care about some elements of the selector expression when selecting an al-
ternative. We can do this with a new form of case statement, called a matching case state-
ment, that uses the predefined “?=” operator described in Section 4.3.3 to compare choice
values with the expression value. We include a question mark symbol after the keyword
case, as follows:



126 Chapter 4 — Composite Data Types and Operations

case? expression is
  ...
end case?;

The most common use of a matching case statement is with an expression of a vector
type whose elements are std_ulogic values, such as the standard type std_ulogic_vector
defined in the std_logic_1164 package. It also includes vector types that we might define.
With a case expression of such a type, we can write choice values that include ‘–’ elements
to specify don’t care matching.

EXAMPLE 4.10 A priority arbiter

Suppose we have vectors of request and grant values, declared as follows:

variable request, grant : std_ulogic_vector(0 to 3);

We can use a matching case statement in a priority arbiter, with request 0 having
highest priority:

case? request is
  when "1---" => grant := "1000";
  when "01--" => grant := "0100";
  when "001-" => grant := "0010";
  when "0001" => grant := "0001";
  when others => grant := "0000";
end case?;

Each choice is compared with the case expression using the predefined “?=” op-
erator. Thus, the first choice matches values "1000", "1001", "100X", "H000", and so
on, and similarly for the remaining choices. This is a much more succinct way of de-
scribing the arbiter than using an ordinary case statement. Moreover, unlike a se-
quence of tests in an if statement, it does not imply chained decision logic.

When we use a matching case statement with a vector-type expression, the value of
the expression must not include any ‘–’ elements. (This is different from the choice values,
which can include ‘–’ elements.) The reason is that an expression value with a ‘–’ element
would match multiple choice values, making selection of an alternative ambiguous. Nor-
mally, this rule is not a problem, since we don’t usually assign ‘–’ values to signals or vari-
ables. They usually just occur in literal values for comparison and in test bench assertions.

In an ordinary case statement, we need to include choices for all possible values of
the case expression. A related rule applies in a matching case statement. Each possible
value of the case expression, except those that include any ‘–’ elements, must be repre-
sented by exactly one choice. By “represented,” we mean that comparison of the choice
and the expression value using the “?=” operator yields ‘1’. Hence, our choice values
would generally just include ‘0’, ‘1’, and ‘–’ elements, matching with ‘0’, ‘L’, ‘1’, ‘H’ elements
in the case expression value. We could also include ‘L’ and ‘H’ elements in a choice. How-
ever, we would not include ‘U’, ‘X’, ‘W’, or ‘Z’ choice elements, since they only ever pro-



4.3 Array Operations and Referencing 127

duce ‘U’ or ‘X’ results, and so never match. As with an ordinary case statement, we can
include an others choice to represent expression values not otherwise represented. Un-
like an ordinary case statement, a choice can represent multiple expression values if it con-
tains a ‘–’ element.

We mentioned that a vector type including std_ulogic values is the most common type
for a matching case statement. Less commonly, we can write a selector expression of type
std_ulogic, bit, or a vector of bit elements (such as bit_vector). These are the other types
for which the “?=” operator is predefined. For std_ulogic expressions, the choice values
would typically be either ‘0’ (matching an expression value of ‘0’ or ‘L’) or ‘1’ (matching
an expression value of ‘1’ or ‘H’). We would not write a choice of ‘–’, since that would
match all expression values, preventing us from selecting distinct alternatives. For case ex-
pressions of type bit or a vector of bit elements, a matching case statement has exactly
the same behavior as an ordinary case statement. VHDL allows matching case statements
of this form to allow synthesizable models to be written uniformly regardless of whether
bit or std_ulogic data types are used.

VHDL-87, -93, and -2002

These versions of VHDL do not provide matching case statements.

Matching Selected Variable Assignments

Selected variable assignments, introduced in Section 3.2.1, are a shorthand notation for
variable assignments within case statements. There is an analogous shorthand for variable
assignments within matching case statements. We simply include a “?” symbol after the
select keyword to indicate that the implied case statement is a matching case statement
instead of an ordinary case statement. The rules covering the type of the selector expres-
sion and the way in which choices are matched then apply to the selected assignment.

EXAMPLE 4.11 A revised model for the priority arbiter

We can rewrite the priority arbiter from Example 4.10 using a matching selected as-
signment as follows:

with request select?
  grant := "1000" when "1---",
           "0100" when "01--",
           "0010" when "001-",
           "0001" when "0001",
           "0000" when others;



128 Chapter 4 — Composite Data Types and Operations

VHDL-87, -93, and -2002

These versions of VHDL do not provide the matching selected variable assignment
notation.

4.4 Records

In this section, we discuss the second class of composite types, records. We start with
record types, and return to record natures subsequently, since there are some significant
differences between them. A record is a composite value comprising elements that may
be of different types from one another. Each element is identified by a name, which is
unique within the record. This name is used to select the element from the record value.
The syntax rule for a record type definition is

record_type_definition ⇐
record

( identifier { , … } : subtype_indication ; )
{ … }

end record [ identifier ]

Each of the names in the identifier lists declares an element of the indicated type or
subtype. Recall that the curly brackets in the syntax rule indicate that the enclosed part
may be repeated indefinitely. Thus, we can include several elements of different types
within the record. The identifier at the end of the record type definition, if included, must
repeat the name of the record type.

VHDL-87

The record type name may not be included at the end of a record type definition in
VHDL-87.

The following is an example record type declaration and variable declarations using
the record type:

type time_stamp is record
    seconds : integer range 0 to 59;
    minutes : integer range 0 to 59;
    hours : integer range 0 to 23;
  end record time_stamp;

variable sample_time, current_time : time_stamp;

Whole record values can be assigned using assignment statements, for example:

sample_time := current_time;



4.4 Records 129

We can also refer to an element in a record using a selected name, for example:

sample_hour := sample_time.hours;

In the expression on the right of the assignment symbol, the prefix before the dot names
the record value, and the suffix after the dot selects the element from the record. A
selected name can also be used on the left side of an assignment to identify a record
element to be modified, for example:

current_time.seconds := clock mod 60;

EXAMPLE 4.12 Representing CPU instructions and data using records

In the early stages of designing a new instruction set for a CPU, we don’t want to com-
mit to an encoding of opcodes and operands within an instruction word. Instead we
use a record type to represent the components of an instruction. We illustrate this in
an outline of a system-level behavioral model of a CPU and memory that uses record
types to represent instructions and data:

architecture system_level of computer is

  type opcodes is
         (add, sub, addu, subu, jmp, breq, brne, ld, st, ...);
  type reg_number is range 0 to 31;
  constant r0 : reg_number := 0;  constant r1 : reg_number := 1;
  ...

  type instruction is record
      opcode : opcodes;
      source_reg1, source_reg2, dest_reg : reg_number;
      displacement : integer;
    end record instruction;

  type word is record
      instr : instruction;
      data : bit_vector(31 downto 0);
    end record word;

  signal address : natural;
  signal read_word, write_word : word;
  signal mem_read, mem_write : bit := '0';
  signal mem_ready : bit := '0';

begin

  cpu : process is
    variable instr_reg : instruction;
    variable PC : natural;
    ...    -- other declarations for register file, etc.
  begin



130 Chapter 4 — Composite Data Types and Operations

    address <= PC;
    mem_read <= '1';
    wait until mem_ready;
    instr_reg := read_word.instr;
    mem_read <= '0';
    PC := PC + 4;
    case instr_reg.opcode is  -- execute the instruction
      ...
    end case;
  end process cpu;

  memory : process is
    subtype address_range is natural range 0 to 2**14 - 1;
    type memory_array is array (address_range) of word;
    variable store : memory_array :=
      (  0  =>    ( ( ld, r0, r0, r2, 40 ),  X"00000000" ),
         1  =>    ( ( breq, r2, r0, r0, 5 ), X"00000000" ),
        ...
        40  =>    ( ( nop, r0, r0, r0, 0 ),  X"FFFFFFFE"),
        others => ( ( nop, r0, r0, r0, 0 ),  X"00000000") );
  begin
    ...
  end process memory;

end architecture system_level;

The record type instruction represents the information to be included in each in-
struction of a program and includes the opcode, source and destination register num-
bers and a displacement. The record type word represents a word stored in memory.
Since a word might represent an instruction or data, elements are included in the
record for both possibilities. Unlike many conventional programming languages,
VHDL does not provide variant parts in record values. The record type word illustrates
how composite data values can include elements that are themselves composite val-
ues. The signals in the model are used for the address, data and control connections
between the CPU and the memory.

Within the CPU process the variable instr_reg represents the instruction register
containing the current instruction to be executed. The process fetches a word from
memory and copies the instruction element from the record into the instruction reg-
ister. It then uses the opcode field of the value to determine how to execute the in-
struction.

The memory process contains a variable that is an array of word records repre-
senting the memory storage. The array is initialized with a program and data. Words
representing instructions are initialized with a record aggregate containing an instruc-
tion record aggregate and a bit vector, which is ignored. Similarly, words representing
data are initialized with an aggregate containing an instruction aggregate, which is ig-
nored, and the bit vector of data.



4.4 Records 131

4.4.1 Record Aggregates

We can use a record aggregate to write a literal value of a record type, for example, to
initialize a record variable or constant. Using a record aggregate is analogous to using an
array aggregate for writing a literal value of an array type (see Section 4.1.2). A record
aggregate is formed by writing a list of the elements enclosed in parentheses. An aggregate
using positional association lists the elements in the same order as they appear in the
record type declaration. For example, given the record type time_stamp shown above, we
can initialize a constant as follows:

constant midday : time_stamp := (0, 0, 12);

We can also use named association, in which we identify each element in the aggre-
gate by its name. The order of elements identified using named association does not affect
the aggregate value. The example above could be rewritten as

constant midday : time_stamp
           := (hours => 12, minutes => 0, seconds => 0);

Unlike array aggregates, we can mix positional and named association in record ag-
gregates, provided all of the named elements follow any positional elements. We can also
use the symbols “|” and others when writing choices. Here are some more examples, us-
ing the types instruction and time_stamp declared above:

constant nop_instr : instruction :=
    ( opcode => addu,
      source_reg1 | source_reg2 | dest_reg => 0,
      displacement => 0 );

variable latest_event : time_stamp
           := (others => 0); -- initially midnight

Note that unlike array aggregates, we can’t use a range of values to identify elements
in a record aggregate, since the elements are identified by names, not indexed by a dis-
crete range.

4.4.2 Unconstrained Record Element Types

In Section 4.2.2, we showed how the element type of an array type can be unconstrained,
leading to unconstrained and partially constrained array types. In a similar way, an ele-
ment of a record type can be of an unconstrained or partially constrained composite type.
We use the terms unconstrained, partially constrained, and fully constrained to describe a
record type in an analogous way to the use of the terms for array types. Specifically, an
unconstrained record type is one that has one or more elements of composite types, all
of which are unconstrained. For example, the following type

type test_vector is record
    id : natural;
    stimulus : bit_vector;



132 Chapter 4 — Composite Data Types and Operations

    response : bit_vector;
  end record test_vector;

is unconstrained, since the elements stimulus and response are both of an unconstrained
array type.

A fully constrained record type is one in which all composite elements (if any) are
fully constrained. For example, the types instruction and word in Example 4.12 are both
fully constrained. The type instruction has no composite elements, so there is no place in
the type’s hierarchy where a constraint is needed. The type word has one element, data,
of a composite subtype, which is fully constrained.

As with array types, a partially constrained record type is one that is neither uncon-
strained nor fully constrained. It may have a mix of unconstrained, partially constrained,
and fully constrained elements, or it may just have one or more partially constrained ele-
ments. For example, if we declare a fully constrained record type

type test_times is record
    stimulus_time : time;
    response_delay : delay_length;
  end record test_times;

we can use this and the test_vector type as element types for a larger record type:

type test_application is record
    test_to_apply : test_vector;
    application_times : test_times;
  end record;

Since the test_to_apply element is unconstrained and the application_times element is
fully constrained, the test_application type is partially constrained.

As another example, recall the types sample and dozen_samples defined in Section
4.2.2 as 

type sample is array (natural range <>) of integer;
type dozen_samples is array (1 to 12) of sample;

If we declare a type as follows:

type analyzed_samples is record
    samples : dozen_samples;
    result : real;
  end record analyzed_samples;

this type is partially constrained, since it has just one composite element, samples, that is
itself partially constrained.

We have mentioned that, when we declare an object of an array type, we must pro-
vide constraints for any index ranges that remain unspecified by the type. This rule applies
to composite types in general, including record types. If any of the record elements are
arrays, their index ranges must be specified. For a fully constrained record type, the type
itself specifies the index ranges, if any. Thus, in Example 4.12, we were able to declare



4.4 Records 133

signals and variables of the fully constrained types instruction and word without supply-
ing any further information beyond the type names.

For an unconstrained or partially constrained record type, we need to fill in any un-
specified index ranges, and we need to specify which element of the type each index
range constrains. The way in which we do so is illustrated by the following declaration
using the unconstrained type test_vector:

variable next_test_vector : test_vector(stimulus(0 to 7),
                                        response(0 to 9));

For those elements of the type that we need to constrain, we write the element name
followed by the index constraint. If the index range to be constrained is nested more
deeply within the type’s hierarchy, we can nest the constraint notation. For example, to
declare a variable of type test_application, we could write:

variable scheduled_test :
           test_application(test_to_apply(stimulus(0 to 7),
                                          response(0 to 9)));

Since the application_times element of the test_application type is fully constrained, we
do not mention it in the record constraint. As a second example, the declaration

variable analysis : analyzed_samples(samples(open)(1 to 100));

constrains the samples element of the record type. The constraint uses the word open to
skip over the top-level index range of the element, since that index range is specified by
the element type dozen_samples. The nested index range is constrained to be 1 to 100.

Just as we did for array types, we can use this notation to declare subtypes of record
types. Some examples are:

subtype byte_test_vector is test_vector(stimulus(7 downto 0),
                                        response(7 downto 0));

subtype analyzed_short_samples is
          analyzed_samples(samples(open)(1 to 100));

We do not need to constrain every element. For example, if we write:

subtype test_application_word is
          test_application(test_to_apply(stimulus(0 to 31)));

only the stimulus element of the nested record element is constrained, and so the subtype
test_application_word remains partially constrained. This is equivalent to writing

subtype test_application_word is
          test_application(test_to_apply(stimulus(0 to 31),
                                         response(open)));

We could then further constrain it as follows:



134 Chapter 4 — Composite Data Types and Operations

subtype test_application_word_byte is
          test_application_word(test_to_apply(response(0 to 7)));

or equivalently:

subtype test_application_word_byte is
          test_application_word(test_to_apply(stimulus(open),
                                              response(0 to 7)));

Finally, the rule that index ranges for a constant can be inferred from the initial value
also applies to a constant of an unconstrained or partially constrained record type.  For
example, if we declare a constant as follows:

constant first_test_vector : test_vector
           := (id => 0,
               stimulus => B"100010",
               response => B"00000001");

the index ranges for the stimulus and response elements are inferred to be 0 to 5 and 0
to 7, respectively, since they are both of type bit_vector, which has natural as its index
subtype.

Exercises

1. [➊ 4.1] Write an array type declaration for an array of 30 integers, and a variable dec-
laration for a variable of the type. Write a for loop to calculate the average of the array
elements.

2. [➊ 4.1] Write an array type declaration for an array of bit values, indexed by standard-
logic values. Then write a declaration for a constant, std_ulogic_to_bit, of this type
that maps standard-logic values to the corresponding bit value. (Assume unknown
values map to ‘0’.) Given a standard-logic vector v1 and a bit-vector variable v2, both
indexed from 0 to 15, write a for loop that uses the constant std_ulogic_to_bit to map
the standard-logic vector to the bit vector.

3. [➊ 4.1] The data on a diskette is arranged in 18 sectors per track, 80 tracks per side
and two sides per diskette. A computer system maintains a map of free sectors. Write
a three-dimensional array type declaration to represent such a map, with a ‘1’ element
representing a free sector and a ‘0’ element representing an occupied sector. Write a
set of nested for loops to scan a variable of this type to find the location of the first
free sector.

4. [➊ 4.2] Write a declaration for a subtype of std_ulogic_vector, representing a byte. De-
clare a constant of this subtype, with each element having the value ‘Z’.

5. [➊ 4.2] Write a type declaration for an unconstrained array of time_vector elements,
indexed by positive values. Then write a subtype declaration representing an array
with 4 unconstrained elements. Last, write a variable declaration using the subtype
with each element having 10 subelements.



Exercises 135

6. [➊ 4.2] Write a for loop to count the number of ‘1’ elements in a bit-vector variable v.

7. [➊ 4.3] An 8-bit vector v1 representing a two’s-complement binary integer can be sign-
extended into a 32-bit vector v2 by copying it to the leftmost eight positions of v2,
then performing an arithmetic right shift to move the eight bits to the rightmost eight
positions. Write variable assignment statements that use slicing and shift operations to
express this procedure.

8. [➊ 4.4] Write a record type declaration for a test stimulus record containing a stimulus
bit vector of three bits, a delay value and an expected response bit vector of eight bits.

9. [➋ 4.1] Develop a model for a register file that stores 16 words of 32 bits each. The
register file has data input and output ports, each of which is a 32-bit word; read-
address and write-address ports, each of which is an integer in the range 0 to 15; and
a write-enable port of type bit. The data output port reflects the content of the location
whose address is given by the read-address port. When the write-enable port is ‘1’,
the input data is written to the register file at the location whose address is given by
the write-address port.

10. [➋ 4.1] Develop a model for a priority encoder with a 16-element bit-vector input port,
an output port of type natural that encodes the index of the leftmost ‘1’ value in the
input and an output of type bit that indicates whether any input elements are ‘1’.

11. [➋ 4.2] Write a package that declares an unconstrained array type whose elements are
integers. Use the type in an entity declaration for a module that finds the maximum
of a set of numbers. The entity has an input port of the unconstrained array type and
an integer output. Develop a behavioral architecture body for the entity. How should
the module behave if the actual array associated with the input port is empty (i.e., of
zero length)?

12. [➋ 4.2/4.3] Develop a model for a general and-or-invert gate, with two standard-logic
vector input ports a and b and a standard-logic output port y. The output of the gate is

13. [➋ 4.4] Develop a model of a 3-to-8 decoder and a test bench to exercise the decoder.
In the test bench, declare the record type that you wrote for Exercise 8 and a constant
array of test record values. Initialize the array to a set of test vectors for the decoder,
and use the vectors to perform the test.

a0 b0⋅ a1 b1⋅ · · · an 1– bn 1–⋅++ +



137

Chapter 5 

Basic Modeling Constructs

The description of a module in a digital system can be divided into two facets: the external
view and the internal view. The external view describes the interface to the module, in-
cluding the number and types of inputs and outputs. The internal view describes how the
module implements its function. In VHDL, we can separate the description of a module
into an entity declaration, which describes the external interface, and one or more archi-
tecture bodies, which describe alternative internal implementations. These were intro-
duced in Chapter 1 and are discussed in detail in this chapter. We also look at how a
design is processed in preparation for simulation or synthesis. 

5.1 Entity Declarations and Architecture Bodies

Let us first examine the syntax rules for an entity declaration and then show some exam-
ples. We start with a simplified description of entity declarations and move on to a full
description later in this chapter. The syntax rules for this simplified form of entity decla-
ration are

entity_declaration ⇐
entity identifier is

[ port ( port_interface_list ) ; ]
{ entity_declarative_item }

end [ entity ] [ identifier ] ;

interface_list ⇐
( identifier { , … } : [ mode ] subtype_indication [ := expression ] ) { ; … }

mode ⇐ in I out I buffer I inout

The identifier in an entity declaration names the module so that it can be referred to
later. If the identifier is included at the end of the declaration, it must repeat the name of
the entity. The port clause names each of the ports, which together form the interface to
the entity. We can think of ports as being analogous to the pins of a circuit; they are the
means by which information is fed into and out of the circuit. In VHDL, each port of an
entity has a type, which specifies the kind of information that can be communicated, and



138 Chapter 5 — Basic Modeling Constructs

a mode, which specifies how information flows into or out from the entity through the
port. These aspects of type and direction are in keeping with the strong typing philosophy
of VHDL, which helps us avoid erroneous circuit descriptions. A simple example of an
entity declaration is

entity adder is
  port ( a : in word;
         b : in word;
         sum : out word );
end entity adder;

This example describes an entity named adder, with two input ports and one output
port, all of type word, which we assume is defined elsewhere. We can list the ports in any
order; we do not have to put inputs before outputs. Also, we can include a list of ports of
the same mode and type instead of writing them out individually. Thus the above decla-
ration could equally well be written as follows:

entity adder is
  port ( a, b : in word;
         sum : out word );
end entity adder;

In this example we have seen input and output ports. An input port allows us to
model a device that senses data provided externally on a pin. An output port allows us to
model a device that drives a pin to provide data to external connections. VHDL also allows
us to specify the mode buffer for a port that not only provides data to external connec-
tions, but also provides that same data for use internally. We could achieve the same effect
with an out-mode port, since VHDL does allow us to read the driven value of an out-
mode port internally. However, we prefer to use an out-mode port when the value is read
internally just for verification purposes, for example, using assertion statements. The real
device we are modeling in this case does not have an internal connection to implement
its functionality. For a device that does have such an internal connection, we use a buffer
port to make our design intent clear.

As an example, suppose we want to model an SR-latch and allow for an implementa-
tion using cross-coupled gates. Since each output is also fed back internally to an input of
a gate, we use buffer-mode ports for the outputs. The entity declaration is:

entity SR_latch is
  port ( S, R : in bit; Q, Q_n : buffer bit );
end entity SR_latch;

The syntax rules for entities show that we can also have bidirectional ports, with mode
inout. These can be used to model devices that alternately sense and drive data through
a pin. Such models must deal with the possibility of more than one connected device driv-
ing a given signal at the same time. VHDL provides a mechanism for this, signal resolution,
which we will return to in Chapter 8.



5.1 Entity Declarations and Architecture Bodies 139

The similarity between the description of a port in an entity declaration and the dec-
laration of a variable may be apparent. This similarity is not coincidental, and we can ex-
tend the analogy by specifying a default value on a port description; for example:

entity and_or_inv is
  port ( a1, a2, b1, b2 : in bit := '1';
         y : out bit );
end entity and_or_inv;

The default value, in this case the ‘1’ on the input ports, indicates the value each port
should assume if it is left unconnected in an enclosing model. We can think of it as de-
scribing the value that the port “floats to.” On the other hand, if the port is used, the default
value is ignored. We say more about use of default values when we look at the execution
of a model.

Another point to note about entity declarations is that the port clause is optional. So
we can write an entity declaration such as

entity top_level is
end entity top_level;

which describes a completely self-contained module. As the name in this example implies,
this kind of module usually represents the top level of a design hierarchy.

Finally, if we return to the first syntax rule on page 137, we see that we can include
declarations of items within an entity declaration. These include declarations of constants,
types, signals and other kinds of items that we will see later in this chapter. The items can
be used in all architecture bodies corresponding to the entity. Thus, it makes sense to in-
clude declarations that are relevant to the entity and all possible implementations. Any-
thing that is part of only one particular implementation should instead be declared within
the corresponding architecture body.

EXAMPLE 5.1 A ROM entity including the ROM contents

Suppose we are designing an embedded controller using a microprocessor with a pro-
gram stored in a read-only memory (ROM). The program to be stored in the ROM is
fixed, but we still need to model the ROM at different levels of detail. We can include
declarations that describe the program in the entity declaration for the ROM:

entity program_ROM is
  port ( address : in std_ulogic_vector(14 downto 0);
         data : out std_ulogic_vector(7 downto 0);
         enable : in std_ulogic );

  subtype instruction_byte is bit_vector(7 downto 0);
  type program_array is
         array (0 to 2**14 - 1) of instruction_byte;
  constant program : program_array
    := ( X"32", X"3F", X"03",  -- LDA  $3F03
         X"71", X"23",         -- BLT    $23



140 Chapter 5 — Basic Modeling Constructs

         ...
       );

end entity program_ROM;

The declarations within the ROM entity are not directly accessible to a user of the
entity, but serve to document the contents of the ROM. Each architecture body corre-
sponding to the entity can use the constant program to initialize whatever structure it
uses internally to implement the ROM.

The internal operation of a module is described by an architecture body. An architec-
ture body generally applies some operations to values on input ports, generating values
to be assigned to output ports. The operations can be described either by processes, which
contain sequential statements operating on values, or by a collection of components rep-
resenting sub-circuits. Where the operation requires generation of intermediate values,
these can be described using signals, analogous to the internal wires of a module. The
syntax rule for architecture bodies shows the general outline:

architecture_body ⇐
architecture identifier of entity_name is

{ block_declarative_item }
begin

{ concurrent_statement }
end [ architecture ] [ identifier ] ;

The identifier names this particular architecture body, and the entity name specifies
which module has its operation described by this architecture body. If the identifier is in-
cluded at the end of the architecture body, it must repeat the name of the architecture
body. There may be several different architecture bodies corresponding to a single entity,
each describing an alternative way of implementing the module’s operation. The block
declarative items in an architecture body are declarations needed to implement the oper-
ations. The items may include type and constant declarations, signal declarations and
other kinds of declarations that we will look at in later chapters.

VHDL-87, -93, and -2002

These versions of VHDL do not allow reading of an out-mode port within an entity
or a corresponding architecture body. Instead, the model must declare an internal sig-
nal for the driven value and read that internally. The model can then assign the value
of the signal to the out-mode port using a concurrent signal assignment statement
(see Section 5.2.7).

In VHDL-2002, another alternative would be to use a buffer-mode port instead
of an out-mode port. However, if the port is only read for verification purposes, using
a buffer-mode port would be counter to the design intent.



5.1 Entity Declarations and Architecture Bodies 141

VHDL-87

In VHDL-87, the keyword entity may not be included at the end of an entity decla-
ration, and the keyword architecture may not be included at the end of an architec-
ture body.

5.1.1 Concurrent Statements

The concurrent statements in an architecture body describe the module’s operation. One
form of concurrent statement, which we have already seen, is a process statement. Putting
this together with the rule for writing architecture bodies, we can look at a simple example
of an architecture body corresponding to the adder entity on page 138:

architecture abstract of adder is
begin

  add_a_b : process (a, b) is
  begin
    sum <= a + b;
  end process add_a_b;

end architecture abstract;

The architecture body is named abstract, and it contains a process add_a_b, which
describes the operation of the entity. The process assumes that the operator “+” is defined
for the type word, the type of a and b. We will see in Chapter 6 how such a definition
may be written. We could also envisage additional architecture bodies describing the
adder in different ways, provided they all conform to the external interface laid down by
the entity declaration.

We have looked at processes first because they are the most fundamental form of con-
current statement. All other forms can ultimately be reduced to one or more processes.
Concurrent statements are so called because conceptually they can be activated and per-
form their actions together, that is, concurrently. Contrast this with the sequential state-
ments inside a process, which are executed one after another. Concurrency is useful for
modeling the way real circuits behave. If we have two gates whose inputs change, each
evaluates its new output independently of the other. There is no inherent sequencing gov-
erning the order in which they are evaluated. We look at process statements in more detail
in Section 5.2. Then, in Section 5.3, we look at another form of concurrent statement, the
component instantiation statement, used to describe how a module is composed of inter-
connected sub-modules.

5.1.2 Signal Declarations

When we need to provide internal signals in an architecture body, we must define them
using signal declarations. The syntax for a signal declaration is very similar to that for a
variable declaration:



142 Chapter 5 — Basic Modeling Constructs

signal_declaration ⇐
signal identifier { , … } : subtype_indication [ := expression ] ;

This declaration simply names each signal, specifies its type and optionally includes an
initial value for all signals declared by the declaration.

EXAMPLE 5.2 An and-or-invert architecture with internal signals

The following is an example of an architecture body for the entity and_or_inv, defined
on page 139. The architecture body includes declarations of some signals that are in-
ternal to the architecture body. They can be used by processes within the architecture
body but are not accessible outside, since a user of the module need not be concerned
with the internal details of its implementation. Values are assigned to signals using sig-
nal assignment statements within processes. Signals can be sensed by processes to
read their values.

architecture primitive of and_or_inv is

  signal and_a, and_b : bit;
  signal or_a_b : bit;

begin

  and_gate_a : process (a1, a2) is
  begin
    and_a <= a1 and a2;
  end process and_gate_a;

  and_gate_b : process (b1, b2) is
  begin
    and_b <= b1 and b2;
  end process and_gate_b;

  or_gate : process (and_a, and_b) is
  begin
    or_a_b <= and_a or and_b;
  end process or_gate;

  inv : process (or_a_b) is
  begin
    y <= not or_a_b;
  end process inv;

end architecture primitive;

An important point illustrated by this example is that the ports of the entity are also
visible to processes inside the architecture body and are used in the same way as signals.
This corresponds to our view of ports as external pins of a circuit: from the internal point



5.2 Behavioral Descriptions 143

of view, a pin is just a wire with an external connection. So it makes sense for VHDL to
treat ports like signals inside an architecture of the entity.

5.2 Behavioral Descriptions

At the most fundamental level, the behavior of a module is described by signal assignment
statements within processes. We can think of a process as the basic unit of behavioral de-
scription. A process is executed in response to changes of values of signals and uses the
present values of signals it reads to determine new values for other signals. A signal as-
signment is a sequential statement and thus can only appear within a process. In this sec-
tion, we look in detail at the interaction between signals and processes.

5.2.1 Signal Assignment

In all of the examples we have looked at so far, we have used a simple form of signal
assignment statement. Each assignment just provides a new value for a signal. The value
is determined by evaluating an expression, the result of which must match the type of the
signal. What we have not yet addressed is the issue of timing: when does the signal take
on the new value? This is fundamental to modeling hardware, in which events occur over
time. First, let us look at the syntax for a basic signal assignment statement in a process:

signal_assignment_statement ⇐
[ label : ] name <= [ delay_mechanism ] waveform ;

waveform ⇐ ( value_expression [ after time_expression ] ) { , … }
I unaffected

The optional label allows us to identify the statement. We will discuss labeled state-
ments in Chapter 20. The syntax rules tell us that we can specify a delay mechanism,
which we come to soon, and one or more waveform elements, each consisting of a new
value and an optional delay time. We will return to the use of the reserved word unaf-
fected as a waveform shortly. It is these delay times in a signal assignment that allow us
to specify when the new value should be applied. For example, consider the following
assignment:

y <= not or_a_b after 5 ns;

This specifies that the signal y is to take on the new value at a time 5 ns later than that at
which the statement executes. The delay can be read in one of two ways, depending on
whether the model is being used purely for its descriptive value or for simulation. In the
first case, the delay can be considered in an abstract sense as a specification of the mod-
ule’s propagation delay: whenever the input changes, the output is updated 5 ns later. In
the second case, it can be considered in an operational sense, with reference to a host
machine simulating operation of the module by executing the model. Thus if the above
assignment is executed at time 250 ns, and or_a_b has the value ‘1’ at that time, then the
signal y will take on the value ‘0’ at time 255 ns. Note that the statement itself executes in
zero modeled time.



144 Chapter 5 — Basic Modeling Constructs

The time dimension referred to when the model is executed is simulation time, that
is, the time in which the circuit being modeled is deemed to operate. This is distinct from
real execution time on the host machine running a simulation. We measure simulation
time starting from zero at the start of execution and increasing in discrete steps as events
occur in the model. Not surprisingly, this technique is called discrete event simulation. A
discrete event simulator must have a simulation time clock, and when a signal assignment
statement is executed, the delay specified is added to the current simulation time to de-
termine when the new value is to be applied to the signal. We say that the signal assign-
ment schedules a transaction for the signal, where the transaction consists of the new
value and the simulation time at which it is to be applied. When simulation time advances
to the time at which a transaction is scheduled, the signal is updated with the new value.
We say that the signal is active during that simulation cycle. If the new value is not equal
to the old value it replaces on a signal, we say an event occurs on the signal. The impor-
tance of this distinction is that processes respond to events on signals, not to transactions.

The syntax rules for signal assignments show that we can schedule a number of trans-
actions for a signal, to be applied after different delays. For example, a clock driver pro-
cess might execute the following assignment to generate the next two edges of a clock
signal (assuming T_pw is a constant that represents the clock pulse width):

clk <= '1' after T_pw, '0' after 2*T_pw;

If this statement is executed at simulation time 50 ns and T_pw has the value 10 ns,
one transaction is scheduled for time 60 ns to set clk to ‘1’, and a second transaction is
scheduled for time 70 ns to set clk to ‘0’. If we assume that clk has the value ‘0’ when the
assignment is executed, both transactions produce events on clk.

This signal assignment statement shows that when more than one transaction is in-
cluded, the delays are all measured from the current time, not the time in the previous
element. Furthermore, the transactions in the list must have strictly increasing delays, so
that the list reads in the order that the values will be applied to the signal.

EXAMPLE 5.3 A clock generator process

We can write a process declaration for a clock generator using the above signal as-
signment statement to generate a symmetrical clock signal with pulse width T_pw.
The difficulty is to get the process to execute regularly every clock cycle. One way to
do this is by making it resume whenever the clock changes and scheduling the next
two transitions when it changes to ‘0’. A process using this approach is

clock_gen : process (clk) is
begin
  if not clk then
    clk <= '1' after T_pw, '0' after 2*T_pw;
  end if;
end process clock_gen;



5.2 Behavioral Descriptions 145

Since a process is the basic unit of a behavioral description, it makes intuitive sense
to be allowed to include more than one signal assignment statement for a given signal
within a single process. We can think of this as describing the different ways in which a
signal’s value can be generated by the process at different times.

EXAMPLE 5.4 A process for a two-input multiplexer

We can write a process that models a two-input multiplexer as shown below. The val-
ue of the sel port is used to select which signal assignment to execute to determine
the output value.

mux : process (a, b, sel) is
begin
  case sel is
    when '0' =>
      z <= a after prop_delay;
    when '1' =>
      z <= b after prop_delay;
  end case;
end process mux;

We say that a process defines a driver for a signal if and only if it contains at least one
signal assignment statement for the signal. So this example defines a driver for the signal
z. If a process contains signal assignment statements for several signals, it defines drivers
for each of those signals. A driver is a source for a signal in that it provides values to be
applied to the signal. An important rule to remember is that for normal signals, there may
only be one source. This means that we cannot write two different processes, each con-
taining signal assignment statements for the one signal. If we want to model such things
as buses or wired-or signals, we must use a special kind of signal called a resolved signal,
which we will discuss in Chapter 8.

We now return to the use of the reserved word unaffected as a waveform in a signal
assignment statement, as shown in the syntax rule on page 143. This simply represents no
change to the value of the assigned signal. The assignment is equivalent to a null state-
ment, except that it allows us to explicitly document the intention of not changing the tar-
get signal. For example, in the following:

if device_busy then
  collision_count := collision_count + 1;
  device_req <= unaffected;
else
  accepted_count := accepted_count + 1;
  device_req <= '1';
end if;



146 Chapter 5 — Basic Modeling Constructs

the assignment with unaffected explicitly document that we are not changing device_req
in the alternative where device_busy is true. Had we omitted the assignment, on later ex-
amination of the model, the omission might appear inadvertent.

VHDL-87, -93, and -2002

These versions of VHDL do not allow the reserved word unaffected to appear as a
waveform in a sequential signal assignment. It can only be used in concurrent signal
assignments (see Section 5.2.7). If a target signal is to remain unchanged as a result
of executing sequential statements, a model in the earlier versions of VHDL must ei-
ther omit an assignment or use a null statement.

VHDL-87

Signal assignment statements may not be labeled in VHDL-87.

Conditional Signal Assignments

In Section 3.1.1, we introduced conditional variable assignments, which are a shorthand
notation for variable assignments within if statements. VHDL similarly provides conditional
signal assignments as a shorthand for signal assignment statements within if statements.
The syntax rule is similar:

conditional_signal_assignment ⇐
[ label : ]
name <= [ delay_mechanism ]

waveform when condition
{ else waveform when condition }
[ else waveform ] ;

We will return to the delay mechanism part in Section 5.2.5. As an example, we can
model a register with synchronous reset using a conditional assignment within a process
as follows:

reg : process (clk) is
begin
  if rising_edge(clk) then
    q <= (others => '0') when reset else d;
  end if;
end process reg;

The conditional assignment in the process is equivalent to the if statement:

if reset then
  q <= (others => '0')
else



5.2 Behavioral Descriptions 147

  q <= d;
end if;

The waveforms in a conditional signal assignment are the same as those described
earlier, consisting of one or more values to be assigned after successive delays, or the re-
served word unaffected if we want to leave the signal unchanged. For example, in a
stimulus-generator process, we could write the assignment:

req <= '1', '0' after T_fixed when fixed_delay_mode else
       '1', '0' after next_random_delay(ran_seed);

VHDL-87, -93, and -2002

These versions of VHDL do not provide the conditional signal assignment shorthand
notation. We must write an if statement with a separate signal assignment for each
condition.

Selected Signal Assignments

VHDL also provides a selected signal assignment statement that is short for a case state-
ment containing simple assignments to the target signal. This mirrors the selected variable
assignment that we introduced in Section 3.2.1. The syntax rule is:

selected_signal_assignment ⇐
[ label : ]
with expression select

name <= [ delay_mechanism ]
{ waveform when choices , }
waveform when choices ;

We will return to the delay mechanism part in Section 5.2.5. As an example, we can
write a process containing a selected signal assignment for a multiplexer as follows:

with d_sel select
  q <= source0 when "00",
       source1 when "01",
       source2 when "10",
       source3 when "11";

The assignment is equivalent to the following case statement and nested assignments:

case d_sel is
  when "00" =>
    q <= source0;
  when "01"
    q <= source1;
  when "10"



148 Chapter 5 — Basic Modeling Constructs

    q <= source2;
  when "11"
    q <= source3;
end case;

This form of signal assignment is particularly useful for describing the next-state logic
of a finite-state machine, as is shown by the following process outline:

next_state_logic : process (all) is
begin
  with current_state select
    idle => 
      next_state <= pending1 when request and busy     else
                    active1  when request and not busy else
                    idle;
    pending1 =>
      ...
    ...
  end case;
end process next_state_logic;

We can also include the reserved word unaffected as a waveform in an alternative
of a selected signal assignment, for example:

with dut_state select
  dut_req <= '1' when ready,
             '0' when ack,
             unaffected when others;

As a further variant of the selected signal assignment, we can write the “?” symbol after
the reserved word select to specify a matching case statement in the equivalent form. For
example, if we write

with request select?
  grant <= "1000" when "1---",
           "0100" when "01--",
           "0010" when "001-",
           "0001" when "0001",
           "0000" when others;

the equivalent statement is

case? request is
  when "1---" =>
    grant <= "1000";
  when "01--" =>
    grant <=  "0100";
  when "001-" =>
    grant <=  "0010";



5.2 Behavioral Descriptions 149

  when "0001" =>
    grant =>  "0001";
  when others =>
    grant =>  "0000";
end case?;

The rules for case statements covering the type of the selector expression and the way in
which choices are matched apply to the selected signal assignment.

VHDL-87, -93, and -2002

These versions of VHDL do not provide the selected signal assignment shorthand no-
tation. We must write a case statement with a separate signal assignment for each al-
ternative.

5.2.2 Signal Attributes

In Chapter 2 we introduced the idea of attributes of types, which give information about
allowed values for the types. Then, in Chapter 4, we saw how we could use attributes of
array objects to get information about their index ranges. We can also refer to attributes
of signals to find information about their history of transactions and events. Given a signal
S, and a value T of type time, VHDL defines the following attributes:

S'delayed(T) A signal that takes on the same values as S but is delayed by time T.

S'stable(T) A Boolean signal that is true if there has been no event on S in the
time interval T up to the current time, otherwise false.

S'quiet(T) A Boolean signal that is true if there has been no transaction on S in
the time interval T up to the current time, otherwise false.

S'transaction A signal of type bit that changes value from ‘0’ to ‘1’ or vice versa
each time there is a transaction on S.

S'event True if there is an event on S in the current simulation cycle, false
otherwise.

S'active True if there is a transaction on S in the current simulation cycle, false
otherwise.

S'last_event The time interval since the last event on S.

S'last_active The time interval since the last transaction on S.

S'last_value The value of S just before the last event on S.

The first three attributes take an optional time parameter. If we omit the parameter,
the value 0 fs is assumed. These attributes are often used in checking the timing behavior
within a model. For example, we can verify that a signal d meets a minimum setup time
requirement of Tsu before a rising edge on a clock clk of type std_ulogic as follows:



150 Chapter 5 — Basic Modeling Constructs

if clk'event and (clk = '1' or clk = 'H')
             and (clk'last_value = '0'
                  or clk'last_value = 'L') then
  assert d'last_event >= Tsu
    report "Timing error: d changed within setup time of clk";
end if;

The condition in the if statement performs the same test as the rising_edge operation on
std_ulogic signals. Similarly, we might check that the pulse width of a clock signal input
to a module doesn’t exceed a maximum frequency by testing its pulse width:

assert (not clk'event) or clk'delayed'last_event >= Tpw_clk
  report "Clock frequency too high";

Note that we test the time since the last event on a delayed version of the clock signal.
When there is currently an event on a signal, the 'last_event attribute returns the value
0 fs. In this case, we determine the time since the previous event by applying the
'last_event attribute to the signal delayed by 0 fs. We can think of this as being an infini-
tesimal delay. We will return to this idea later in this chapter, in our discussion of delta
delays.

EXAMPLE 5.5 An edge-triggered flipflop using the 'event attribute

We can use a similar test for the rising edge of a clock signal to model an edge-
triggered module, such as a flipflop. The flipflop should load the value of its D input
on a rising edge of clk, but asynchronously clear the outputs whenever clr is ‘1’. The
entity declaration and a behavioral architecture body are:

entity edge_triggered_Dff is
  port ( D : in bit;  clk : in bit;  clr : in bit;
         Q : out bit );
end entity edge_triggered_Dff;

--------------------------------------------------

architecture behavioral of edge_triggered_Dff is
begin

  state_change : process (clk, clr) is
  begin
    if clr then
      Q <= '0' after 2 ns;
    elsif clk'event and clk = '1' then
      Q <= D after 2 ns;
    end if;
  end process state_change;

end architecture behavioral;



5.2 Behavioral Descriptions 151

The condition in this if statement performs the same test as the predefined
rising_edge operation on bit signals. If the flipflop did not have the asynchronous
clear input, the model could have used a simple wait statement such as

wait until clk;

to trigger on a rising edge. However, with the clear input present, the process must
be sensitive to changes on both clk and clr at any time. Hence it uses the 'event at-
tribute to distinguish between clk changing to ‘1’ and clr going back to ‘0’ while clk
is stable at ‘1’. Note that we cannot write the condition as

clk'event and clk

since clk'event yields a boolean value, and clk is of type bit. The and operator is not
defined for this mixture of operand types. Instead, we compare the clk value with ‘1’
using the “=” operator, as shown in the if statement.

VHDL-87

In VHDL-87, the 'last_value attribute for a composite signal returns the aggregate of
last values for each of the scalar elements of the signal. For example, suppose a bit-
vector signal s initially has the value B"00" and changes to B"01" and then B"11" in
successive events. After the last event, the result of s'last_value is B"00" in VHDL-87.
In VHDL-93 and VHDL-2002 it is B"01", since that is the last value of the entire com-
posite signal.

5.2.3 Wait Statements

Now that we have seen how to change the values of signals over time, the next step in
behavioral modeling is to specify when processes respond to changes in signal values.
This is done using wait statements. A wait statement is a sequential statement with the
following syntax rule:

wait_statement ⇐
[ label : ] wait [ on signal_name { , … } ]

[ until condition ]
[ for time_expression ] ;

The optional label allows us to identify the statement. We will discuss labeled state-
ments in Chapter 20. The purpose of the wait statement is to cause the process that exe-
cutes the statement to suspend execution. The sensitivity clause, condition clause and
timeout clause specify when the process is subsequently to resume execution. We can in-
clude any combination of these clauses, or we may omit all three. Let us go through each
clause and describe what it specifies.

The sensitivity clause, starting with the word on, allows us to specify a list of signals
to which the process responds. If we just include a sensitivity clause in a wait statement,



152 Chapter 5 — Basic Modeling Constructs

the process will resume whenever any one of the listed signals changes value, that is,
whenever an event occurs on any of the signals. This style of wait statement is useful in
a process that models a block of combinatorial logic, since any change on the inputs may
result in new output values; for example:

half_add : process is
begin
  sum <= a xor b after T_pd;
  carry <= a and b after T_pd;
  wait on a, b;
end process half_add;

The process starts execution by generating values for sum and carry based on the ini-
tial values of a and b, then suspends on the wait statement until either a or b (or both)
change values. When that happens, the process resumes and starts execution from the top.

This form of process is so common in modeling digital systems that VHDL provides
the shorthand notation that we have seen in many examples in preceding chapters. A pro-
cess with a sensitivity list in its heading is exactly equivalent to a process with a wait state-
ment at the end, containing a sensitivity clause naming the signals in the sensitivity list. So
the half_add process above could be rewritten as

half_add : process (a, b) is
begin
  sum <= a xor b after T_pd;
  carry <= a and b after T_pd;
end process half_add;

EXAMPLE 5.6 A revised model of a two-input multiplexer

Let us return to the model of a two-input multiplexer in Example 5.4. The process in
that model is sensitive to all three input signals. This means that it will resume on
changes on either data input, even though only one of them is selected at any time.
If we are concerned about this slight lack of efficiency in simulation, we can write the
process differently, using wait statements to be more selective about the signals to
which the process is sensitive each time it suspends. The revised model is shown be-
low. In this model, when input a is selected, the process only waits for changes on
the select input and on a. Any changes on b are ignored. Similarly, if b is selected, the
process waits for changes on sel and on b, ignoring changes on a.

entity mux2 is
  port ( a, b, sel : in bit;
         z : out bit );
end entity mux2;

--------------------------------------------------

architecture behavioral of mux2 is

  constant prop_delay : time := 2 ns;



5.2 Behavioral Descriptions 153

begin

  slick_mux : process is
  begin
    case sel is
      when '0' =>
        z <= a after prop_delay;
        wait on sel, a;
      when '1' =>
        z <= b after prop_delay;
        wait on sel, b;
    end case;
  end process slick_mux;

end architecture behavioral;

The condition clause in a wait statement, starting with the word until, allows us to
specify a condition that must be true for the process to resume. For example, the wait
statement

wait until clk;

causes the executing process to suspend until the value of the signal clk changes to ‘1’.
The condition expression is tested while the process is suspended to determine whether
to resume the process. A consequence of this is that even if the condition is true when the
wait statement is executed, the process will still suspend until the appropriate signals
change and cause the condition to be true again. If the wait statement doesn’t include a
sensitivity clause, the condition is tested whenever an event occurs on any of the signals
mentioned in the condition.

EXAMPLE 5.7 A revised clock generator process

The clock generator process in Example 5.3 can be rewritten using a wait statement
with a condition clause, as shown below. Each time the process executes the wait
statement, clk has the value ‘0’. However, the process still suspends, and the condition
is tested each time there is an event on clk. When clk changes to ‘1’, nothing happens,
but when it changes to ‘0’ again, the process resumes and schedules transactions for
the next cycle.

clock_gen : process is
begin
  clk <= '1' after T_pw, '0' after 2*T_pw;
  wait until not clk;
end process clock_gen;



154 Chapter 5 — Basic Modeling Constructs

If a wait statement includes a sensitivity clause as well as a condition clause, the con-
dition is only tested when an event occurs on any of the signals in the sensitivity clause.
For example, if a process suspends on the following wait statement:

wait on clk until not reset;

the condition is tested on each change in the value of clk, regardless of any changes on
reset.

The timeout clause in a wait statement, starting with the word for, allows us to specify
a maximum interval of simulation time for which the process should be suspended. If we
also include a sensitivity or condition clause, these may cause the process to be resumed
earlier. For example, the wait statement

wait until trigger for 1 ms;

causes the executing process to suspend until trigger changes to ‘1’, or until 1 ms of sim-
ulation time has elapsed, whichever comes first. If we just include a timeout clause by itself
in a wait statement, the process will suspend for the time given.

EXAMPLE 5.8 The clock generator process further revised

We can rewrite the clock generator process in Example 5.3 yet again, this time using
a wait statement with a timeout clause, as shown in below. In this case we specify the
clock period as the timeout, after which the process is to be resumed.

clock_gen : process is
begin
  clk <= '1' after T_pw, '0' after 2*T_pw;
  wait for 2*T_pw;
end process clock_gen;

If we refer back to the syntax rule for a wait statement shown on page 151, we note
that it is legal to write

wait;

This form causes the executing process to suspend for the remainder of the simulation.
Although this may at first seem a strange thing to want to do, in practice it is quite useful.
One place it is used is in a process whose purpose is to generate stimuli for a simulation.
Such a process should generate a sequence of transactions on signals connected to other
parts of a model and then stop. For example, the process

test_gen : process is
begin
  test0 <= '0' after 10 ns, '1' after 20 ns,
           '0' after 30 ns, '1' after 40 ns;
  test1 <= '0' after 10 ns, '1' after 30 ns;



5.2 Behavioral Descriptions 155

  wait;
end process test_gen;

generates all four possible combinations of values on the signals test0 and test1. If the
final wait statement were omitted, the process would cycle forever, repeating the signal
assignment statements without suspending, and the simulation would make no progress.

VHDL-87, -93, and -2002

These versions of VHDL do not perform implicit conversion of conditions to boolean.
Conditions in the until clauses of wait statements must yield boolean results without
conversion.

VHDL-87

Wait statements may not be labeled in VHDL-87.

5.2.4 Delta Delays

Let us now return to the topic of delays in signal assignments. In many of the example
signal assignments in previous chapters, we omitted the delay part of waveform elements.
This is equivalent to specifying a delay of 0 fs. The value is to be applied to the signal at
the current simulation time. However, it is important to note that the signal value does not
change as soon as the signal assignment statement is executed. Rather, the assignment
schedules a transaction for the signal, which is applied after the process suspends. Thus
the process does not see the effect of the assignment until the next time it resumes, even
if this is at the same simulation time. For this reason, a delay of 0 fs in a signal assignment
is called a delta delay.

To understand why delta delays work in this way, it is necessary to review the simu-
lation cycle, introduced in Chapter 1 on page 15. Recall that the simulation cycle consists
of two phases: a signal update phase followed by a process execution phase. In the signal
update phase, simulation time is advanced to the time of the earliest scheduled transac-
tion, and the values in all transactions scheduled for this time are applied to their corre-
sponding signals. This may cause events to occur on some signals. In the process
execution phase, all processes that respond to these events are resumed and execute until
they suspend again on wait statements. The simulator then repeats the simulation cycle.

Let us now consider what happens when a process executes a signal assignment state-
ment with delta delay, for example:

data <= X"00";

Suppose this is executed at simulation time t during the process execution phase of the
current simulation cycle. The effect of the assignment is to schedule a transaction to put
the value X"00" on data at time t. The transaction is not applied immediately, since the
simulator is in the process execution phase. Hence the process continues executing, with



156 Chapter 5 — Basic Modeling Constructs

data unchanged. When all processes have suspended, the simulator starts the next simu-
lation cycle and updates the simulation time. Since the earliest transaction is now at time
t, simulation time remains unchanged. The simulator now applies the value X"00" in the
scheduled transaction to data, then resumes any processes that respond to the new value.

Writing a model with delta delays is useful when we are working at a high level of
abstraction and are not yet concerned with detailed timing. If all we are interested in is
describing the order in which operations take place, delta delays provide a means of ig-
noring the complications of timing. We have seen this in many of the examples in previous
chapters. However, we should note a common pitfall encountered by most beginner
VHDL designers when using delta delays: they forget that the process does not see the
effect of the assignment immediately. For example, we might write a process that includes
the following statements:

s <= '1';
...
if s then ...

and expect the process to execute the if statement assuming s has the value ‘1’. We would
then spend fruitless hours debugging our model until we remembered that s still has its
old value until the next simulation cycle, after the process has suspended.

EXAMPLE 5.9 Using delta delays to synchronize communication

The following is an outline of an abstract model of a computer system. The CPU and
memory are connected with address and data signals. They synchronize their opera-
tion with the mem_read and mem_write control signals and the mem_ready status sig-
nal. No delays are specified in the signal assignment statements, so synchronization
occurs over a number of delta delay cycles, as shown in Figure 5.1.

architecture abstract of computer_system is

  subtype word is bit_vector(31 downto 0);

  signal address : natural;
  signal read_data, write_data : word;
  signal mem_read, mem_write : bit := '0';
  signal mem_ready : bit := '0';

begin

  cpu : process is
    variable instr_reg : word;
    variable PC : natural;
    ...    -- other declarations
  begin
    loop
      address <= PC;
      mem_read <= '1';
      wait until mem_ready;



5.2 Behavioral Descriptions 157

      instr_reg := read_data;
      mem_read <= '0';
      wait until not mem_ready;
      PC := PC + 4;
      ...    -- execute the instruction
    end loop;
  end process cpu;

  memory : process is
    type memory_array is array (0 to 2**14 - 1) of word;
    variable store : memory_array := ( ... );
  begin
    wait until mem_read or mem_write;
    if mem_read then
      read_data <= store( address / 4 );
      mem_ready <= '1';
      wait until not mem_read;
      mem_ready <= '0';
    else
      ...    -- perform write access
    end if;
  end process memory;

end architecture abstract;

FIGURE 5.1 

Synchronization over successive delta cycles in a simulation of a read operation between the
CPU and memory.

CPU process
executing

memory process
executing

0 0
+ 1 delta

0
+ 2 delta

0
+ 3 delta

0
+ 4 delta

address

mem_read

read_data

mem_ready



158 Chapter 5 — Basic Modeling Constructs

When the simulation starts, the CPU process begins executing its statements and
the memory suspends. The CPU schedules transactions to assign the next instruction
address to the address signal and the value ‘1’ to the mem_read signal, then suspends.
In the next simulation cycle, these signals are updated and the memory process re-
sumes, since it is waiting for an event on mem_read. The memory process schedules
the data on the read_data signal and the value ‘1’ on mem_ready, then suspends. In
the third cycle, these signals are updated and the CPU process resumes. It schedules
the value ‘0’ on mem_read and suspends. Then, in the fourth cycle, mem_read is up-
dated and the memory process is resumed, scheduling the value ‘0’ on mem_ready to
complete the handshake. Finally, on the fifth cycle, mem_ready is updated and the
CPU process resumes and executes the fetched instruction.

5.2.5 Transport and Inertial Delay Mechanisms

So far in our discussion of signal assignments, we have implicitly assumed that there were
no pending transactions scheduled for a signal when a signal assignment statement was
executed. In many models, particularly at higher levels of abstraction, this will be the case.
If, on the other hand, there are pending transactions, the new transactions are merged with
them in a way that depends on the delay mechanism used in the signal assignment state-
ment. This is an optional part of the signal assignment syntax shown on page 143. The
syntax rule for the delay mechanism is

delay_mechanism ⇐ transport I [ reject time_expression ] inertial

A signal assignment with the delay mechanism part omitted is equivalent to specifying
inertial. We look at the transport delay mechanism first, since it is simpler, and then re-
turn to the inertial delay mechanism.

We use the transport delay mechanism when we are modeling an ideal device with
infinite frequency response, in which any input pulse, no matter how short, produces an
output pulse. An example of such a device is an ideal transmission line, which transmits
all input changes delayed by some amount. A process to model a transmission line with
delay 500 ps is

transmission_line : process (line_in) is
begin
  line_out <= transport line_in after 500 ps;
end process transmission_line;

In this model the output follows any changes in the input, but delayed by 500 ps. If
the input changes twice or more within a period shorter than 500 ps, the scheduled trans-
actions are simply queued by the driver until the simulation time at which they are to be
applied, as shown in Figure 5.2.

In this example, each new transaction that is generated by a signal assignment state-
ment is scheduled for a simulation time that is later than the pending transactions queued
by the driver. The situation gets a little more complex when variable delays are used, since
we can schedule a transaction for an earlier time than a pending transaction. The seman-
tics of the transport delay mechanism specify that if there are pending transactions on a



5.2 Behavioral Descriptions 159

driver that are scheduled for a time later than or equal to a new transaction, those later
transactions are deleted.

EXAMPLE 5.10 An asymmetric delay element using transport delay

The following is a process that describes the behavior of an asymmetric delay ele-
ment, with different delay times for rising and falling transitions. The delay for rising
transitions is 800 ps and for falling transitions, 500 ps.

asym_delay : process (a) is
  constant Tpd_01 : time := 800 ps;
  constant Tpd_10 : time := 500 ps;
begin
  if a then
    z <= transport a after Tpd_01;
  else  -- not a
    z <= transport a after Tpd_10;
  end if;
end process asym_delay;

If we apply an input pulse of only 200 ps duration, we would expect the output
not to change, since the delayed falling transition should “overtake” the delayed rising
transition. If we were simply to add each transition to the driver queue when a signal
assignment statement is executed, we would not get this behavior. However, the se-
mantics of the transport delay mechanism produce the desired behavior, as Figure 5.3
shows.

FIGURE 5.2 

Transactions queued by a driver using transport delay. At time 200 ps the input changes, and a
transaction is scheduled for 700 ps. At time 500 ps, the input changes again, and another trans-
action is scheduled for 1000 ps. This is queued by the driver behind the earlier transaction. When
simulation time reaches 700 ps, the first transaction is applied, and the second transaction re-
mains queued. Finally, simulation time reaches 1000 ps, and the final transaction is applied,
leaving the driver queue empty.

line_in

line_out
'0'
'1'

'0'
'1'

700 ps

'1'

1000 ps

'0'

1000 ps

'0'

700 ps

'1'

1000 ps600 800200 400



160 Chapter 5 — Basic Modeling Constructs

FIGURE 5.3 

Transactions in a driver using asymmetric transport delay. At time 200 ps the input changes,
and a transaction is scheduled for 1000 ps. At time 400 ps, the input changes again, and
another transaction is scheduled for 900 ps. Since this is earlier than the pending transaction at
1000 ps, the pending transaction is deleted. When simulation time reaches 900 ps, the remain-
ing transaction is applied, but since the value is ‘0’, no event occurs on the signal.

Most real electronic circuits don’t have infinite frequency response, so it is not appro-
priate to model them using transport delay. In real devices, changing the values of internal
nodes and outputs involves moving electronic charge around in the presence of capaci-
tance, inductance and resistance. This gives the device some inertia; it tends to stay in the
same state unless we force it by applying inputs for a sufficiently long duration. This is
why VHDL includes the inertial delay mechanism, to allow us to model devices that reject
input pulses too short to overcome their inertia. Inertial delay is the mechanism used by
default in a signal assignment, or we can specify it explicitly by including the word iner-
tial.

To explain how inertial delay works, let us first consider a model in which all the sig-
nal assignments for a given signal use the same delay value, say, 3 ns, as in the following
inverter model:

inv : process (a) is
begin
  y <= inertial not a after 3 ns;
end process inv;

So long as input events occur more than 3 ns apart, this model does not present any
problems. Each time a signal assignment is executed, there are no pending transactions,
so a new transaction is scheduled, and the output changes value 3 ns later. However, if
an input changes less than 3 ns after the previous change, this represents a pulse less than
the propagation delay of the device, so it should be rejected. This behavior is shown at
the top of Figure 5.4. In a simple model such as this, we can interpret inertial delay by
saying if a signal assignment produces an output pulse shorter than the propagation delay,
then the output pulse does not happen.

a

z
'0'
'1'

'0'
'1'

1000 ps600 800200 400

transaction applied,
but no event

900 ps

'0'

1000 ps

'1'

1000 ps

'1'



5.2 Behavioral Descriptions 161

FIGURE 5.4 

Results of signal assignments using the inertial delay mechanism. In the top waveform, an iner-
tial delay of 3 ns is specified. The input change at time 1 ns is reflected in the output at time 4
ns. The pulse from 6 to 8 ns is less than the propagation delay, so it doesn’t affect the output. In
the bottom waveform, an inertial delay of 3 ns and a pulse rejection limit of 2 ns are specified.
The input changes at 1, 6, 9 and 11.5 ns are all reflected in the output, since they occur greater
than 2 ns apart. However, the subsequent input pulses are less than or equal to the pulse rejection
limit in length, and so do not affect the output.

Next, let us extend this model by specifying a pulse rejection limit, after the word re-
ject in the signal assignment:

inv : process (a) is
begin
  y <= reject 2 ns inertial not a after 3 ns;
end process inv;

We can interpret this by saying if a signal assignment produces an output pulse shorter
than (or equal to) the pulse rejection limit, the output pulse does not happen. In this sim-
ple model, so long as input changes occur more than 2 ns apart, they produce output
changes 3 ns later, as shown at the bottom of Figure 5.4. Note that the pulse rejection limit
specified must be between 0 fs and the delay specified in the signal assignment. Omitting
a pulse rejection limit is the same as specifying a limit equal to the delay, and specifying
a limit of 0 fs is the same as specifying transport delay.

Now let us look at the full story of inertial delay, allowing for varying the delay time
and pulse rejection limit in different signal assignments applied to the same signal. As with
transport delay, the situation becomes more complex, and it is best to describe it in terms
of deleting transactions from the driver. Those who are unlikely to be writing models that
deal with timing at this level of detail may wish to move on to the next section.

An inertially delayed signal assignment involves examining the pending transactions
on a driver when adding a new transaction. Suppose a signal assignment schedules a new
transaction for time , with a pulse rejection limit of . First, any pending transactions
scheduled for a time later than or equal to  are deleted, just as they are when trans-

a

y
'0'
'1'
'0'
'1'

2 4 6 8 10 ns

a

y
'0'
'1'
'0'
'1'

2 4 6 8 10 12 14 16 18 20 22 ns

tnew tr
tnew



162 Chapter 5 — Basic Modeling Constructs

port delay is used. Then the new transaction is added to the driver. Second, any pending
transactions scheduled in the interval  to  are examined. If there is a run of
consecutive transactions immediately preceding the new transaction with the same value
as the new transaction, they are kept in the driver. All other transactions in the interval are
deleted.

An example will make this clearer. Suppose a driver for signal s contains pending
transactions as shown at the top of Figure 5.5, and the process containing the driver exe-
cutes the following signal assignment statement at time 10 ns:

s <= reject 5 ns inertial '1' after 8 ns;

The pending transactions after this assignment are shown at the bottom of Figure 5.5.
A further point to note about specifying the delay mechanism in a signal assignment

statement is that if a number of waveform elements are included, the specified mechanism
only applies to the first element. All the subsequent elements schedule transactions using
transport delay. Since the delays for multiple waveform elements must be in ascending
order, this means that all of the transactions after the first are just added to the driver trans-
action queue in the order written.

EXAMPLE 5.11 An and gate with detailed timing

A detailed model of a two-input and gate is shown below. The process gate imple-
ments the logical function of the entity, and the process delay implements its detailed
timing characteristics using inertially delayed signal assignments. A delay of 1.5 ns is
used for rising transitions, and 1.2 ns for falling transitions. When a change on either
of the input signals results in a change scheduled for the output, the delay process

tnew tr– tnew

FIGURE 5.5 

Transactions before (top) and after (bottom) an inertial delay signal assignment. The transac-
tions at 20 and 25 ns are deleted because they are scheduled for later than the new transaction.
Those at 11 and 12 ns are retained because they fall before the pulse rejection interval. The
transactions at 16 and 17 ns fall within the rejection interval, but they form a run leading up
to the new transaction, with the same value as the new transaction; hence they are also retained.
The other transactions in the rejection interval are deleted.

11 ns

'1'

12 ns

'X'

14 ns

'1'

15 ns

'0'

16 ns

'1'

17 ns

'1'

11 ns

'1'

12 ns

'X'

16 ns

'1'

17 ns

'1'

18 ns

'1'

20 ns

'1'

25 ns

'0'

retained

new transaction

⎧ ⎪ ⎨ ⎪ ⎩
deleted

⎧ ⎪ ⎨ ⎪ ⎩

retained

⎧ ⎪ ⎨ ⎪ ⎩

pulse rejection interval (13 ns to 18 ns)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩



5.2 Behavioral Descriptions 163

determines the propagation delay to be used. On a rising output transition, spikes of
less than 400 ps are rejected, and on a falling or unknown transition, spikes of less
than 300 ps are rejected.

library ieee;  use ieee.std_logic_1164.all;

entity and2 is
  port ( a, b : in std_ulogic;  y : out std_ulogic );
end entity and2;

--------------------------------------------------

architecture detailed_delay of and2 is

  signal result : std_ulogic;

begin

  gate : process (a, b) is
  begin
    result <= a and b;
  end process gate;

  delay : process (result) is
  begin
    if result then
      y <= reject 400 ps inertial '1' after 1.5 ns;
    elsif not result then
      y <= reject 300 ps inertial '0' after 1.2 ns;
    else
      y <= reject 300 ps inertial 'X' after 500 ps;
    end if;
  end process delay;

end architecture detailed_delay;

The final point to make about delay mechanisms is that they can be specified in the
conditional and selected forms of signal assignment, as shown by the syntax rules on
pages 146 and 147. For example, we can write a sequential conditional assignment using
transport delay as:

wire_out <= transport
  wire_in after T_wire_delay when delay_mode = fixed else
  wire_in after delay_lookup("wire_out");

Likewise, we can write a sequential conditional assignment using inertial delay as:

with speed_grade select
  z <= reject Tpr inertial
    result after Tpd_std when std_grade,



164 Chapter 5 — Basic Modeling Constructs

    result after Tpd_fast when fast_grade,
    result after Tpd_redhot when redhot_grade;

If we include a delay mechanism in a conditional or selected assignment containing
multiple waveform elements in the alternatives, the delay mechanism applies to the first
waveform element in each alternative, with any subsequent waveform elements using
transport delay.

VHDL-87

VHDL-87 does not allow specification of the pulse rejection limit in a delay mecha-
nism. The syntax rule in VHDL-87 is

delay_mechanism ⇐ transport

If the delay mechanism is omitted, inertial delay is used, with a pulse rejection limit
equal to the delay specified in the waveform element.

5.2.6 Process Statements

We have been using processes quite extensively in examples in this and previous chapters,
so we have seen most of the details of how they are written and used. To summarize, let
us now look at the formal syntax for a process statement and review the operation of pro-
cesses. The syntax rule is

process_statement ⇐
[ process_label : ]
process [ ( signal_name { , … } I all ) ] [ is ]

{ process_declarative_item }
begin

{ sequential_statement }
end process [ process_label ] ;

Recall that a process statement is a concurrent statement that can be included in an
architecture body to implement all or part of the behavior of a module. The process label
identifies the process. While it is optional, it is a good idea to include a label on each pro-
cess. A label makes it easier to debug a simulation of a system, since most simulators pro-
vide a way of identifying a process by its label. Most simulators also generate a default
name for a process if we omit the label in the process statement. Having identified a pro-
cess, we can examine the contents of its variables or set breakpoints at statements within
the process.

The declarative items in a process statement may include constant, type and variable
declarations, as well as other declarations that we will come to later. Note that ordinary
variables may only be declared within process statements, not outside of them. The vari-
ables are used to represent the state of the process, as we have seen in the examples. The
sequential statements that form the process body may include any of those that we intro-
duced in Chapter 3, plus signal assignment and wait statements. When a process is acti-



5.2 Behavioral Descriptions 165

vated during simulation, it starts executing from the first sequential statement and
continues until it reaches the last. It then starts again from the first. This would be an in-
finite loop, with no progress being made in the simulation, if it were not for the inclusion
of wait statements, which suspend process execution until some relevant event occurs.
Wait statements are the only statements that take more than zero simulation time to exe-
cute. It is only through the execution of wait statements that simulation time advances.

A process may include a sensitivity list in parentheses after the keyword process. The
sensitivity list identifies a set of signals that the process monitors for events. If the sensi-
tivity list is omitted, the process should include one or more wait statements. On the other
hand, if the sensitivity list is included, then the process body cannot include any wait state-
ments. Instead, there is an implicit wait statement, just before the end process keywords,
that includes the signals listed in the sensitivity list as signals in an on clause.

The sensitivity list can be just the reserved word all instead of a list of signals, in which
case the process is sensitive to all of the signals that it reads as inputs. This form of sen-
sitivity list allows us to write models for combinational logic much more simply. If we
change the model to include more inputs, we don’t need to remember to revise the sen-
sitivity list of the process.

EXAMPLE 5.12 A combinational process for a finite-state machine

One place where assembling the sensitivity list for a combinational process often
causes problems is the next-state and output logic for a finite-state machine. The logic
has, as inputs, the current state signal and signals whose values determine the next
state and the output values. An example is:

next_state_logic : process (all) is
begin
  out1 <= '0'; out2 <= '0'; ...
  case current_state is
    when idle =>
      out1 <= '1';
      if in1 and not in2 then
        out2 <= '1';
        next_state <= busy1;
      elsif in1 and in2 then
        next_state <= busy2;
      else
        next_state <= idle;
      end if;
    ...
  end case;
end process next_state;

As we revise the finite-state machine, we might include more signals as inputs.
Using the reserved word all instead of explicitly listing the input signals makes the
process easier to write and maintain.



166 Chapter 5 — Basic Modeling Constructs

VHDL-87, -93, and -2002

These versions of VHDL do not allow the reserved word all in a sensitivity list. In-
stead, the list of signals to which a process is sensitive must be written out explicitly.

VHDL-87

The keyword is may not be included in the header of a process statement in VHDL-
87.

5.2.7 Concurrent Signal Assignment Statements

The form of process statement that we have been using is the basis for all behavioral mod-
eling in VHDL, but for simple cases, it can be a little cumbersome and verbose. For this
reason, VHDL provides us with some useful shorthand notations for functional modeling,
that is, behavioral modeling in which the operation to be described is a simple combina-
torial transformation of inputs to an output. Concurrent signal assignment statements are
equivalent to sequential signal assignments contained in process statements. Unlike ordi-
nary signal assignments, concurrent signal assignment statements can be included in the
statement part of an architecture body. There are simple, conditional, and selected forms
of concurrent signal assignments. The syntax rules are essentially the same as those for
the corresponding sequential signal assignments.

Concurrent Simple Signal Assignments

A very common case in function modeling is to write a simple unconditional signal assign-
ment, as in the following example:

PC_incr : next_PC <= PC + 4 after 5 ns;

At first sight this appears to be an ordinary sequential signal assignment statement, which
by rights ought to be inside a process body. However, if it appears as a concurrent state-
ment in an architecture body, it is equivalent to the following process statement:

PC_incr : process is
begin
  next_PC <= PC + 4 after 5 ns;
  wait on PC;
end process PC_incr;

Looking at the equivalent process shows us something important about the concurrent
signal assignment statement, namely, that it is sensitive to the PC signal. In fact, a concur-
rent signal assignment is sensitive to all of the signals mentioned in the waveform. So
whenever any of those signals change value, the assignment is reevaluated and a new
transaction is scheduled on the driver for the target signal.



5.2 Behavioral Descriptions 167

EXAMPLE 5.13 A flipflop with complementary outputs

We can model a flipflop with a process that assigns to a data output port. If the flipflop
also has a complementary data output port, we can use a conditional signal assign-
ment with no condition to drive that output. The entity and architecture body are

entity Dff is
  port ( clk, d : in bit; q, q_n : out bit );
end entity Dff;

--------------------------------------------------

architecture rtl of Dff is
begin
  ff : process (clk) is
  begin
    if clk then
      q <= d;
    end if;
  end process ff;
  q_n <= not q;
end architecture rtl;

Concurrent Conditional Signal Assignment

The concurrent conditional signal assignment statement is a shorthand for a collection of
simple signal assignments contained in an if statement, which is in turn contained in a
process statement. Let us look at some examples and show how each conditional signal
assignment can be transformed into an equivalent process statement.

EXAMPLE 5.14 A multiplexer using a concurrent conditional assignment

First, here is a functional description of a multiplexer, with four data inputs (d0, d1,
d2 and d3), two select inputs (sel0 and sel1) and a data output (z). All of these signals
are of type bit.

zmux : z <= d0 when not sel1 and not sel0 else
            d1 when not sel1 and     sel0 else
            d2 when     sel1 and not sel0 else
            d3 when     sel1 and     sel0;

This statement has exactly the same meaning as the following process statement:

zmux : process is
begin
  if not sel1 and not sel0 then
    z <= d0;



168 Chapter 5 — Basic Modeling Constructs

  elsif not sel1 and sel0 then
    z <= d1;
  elsif sel1 and not sel0 then
    z <= d2;
  elsif sel1 and sel0 then
    z <= d3;
  end if;
  wait on d0, d1, d2, d3, sel0, sel1;
end process zmux;

If we look at the equivalent process, we see that the concurrent conditional signal
assignment statement is sensitive to all of the signals mentioned in the waveforms and
in the conditions. So whenever any of these change value, the assignment is reevalu-
ated and a new transaction is scheduled on the driver for the target signal.

On closer inspection, we note that the last condition is redundant, since the sig-
nals sel0 and sel1 are of type bit. If none of the previous conditions are true, the sig-
nal should always be assigned the last waveform. So we can rewrite the example as
follows:

zmux : z <= d0 when not sel1 and not sel0 else
            d1 when not sel1 and     sel0 else
            d2 when     sel1 and not sel0 else
            d3;

The equivalent process is

zmux : process is
begin
  if not sel1 and not sel0 then
    z <= d0;
  elsif not sel1 and sel0 then
    z <= d1;
  elsif sel1 and not sel0 then
    z <= d2;
  else
    z <= d3;
  end if;
  wait on d0, d1, d2, d3, sel0, sel1;
end process zmux;

Another case that sometimes arises when writing functional models is the need for a
process that schedules an initial set of transactions and then does nothing more for the
remainder of the simulation.



5.2 Behavioral Descriptions 169

EXAMPLE 5.15 Reset signal generation

An example of “one-shot” activity is the generation of a reset signal. One way of doing
this is as follows:

reset_gen : reset <= '1', '0' after 200 ns when extended_reset else
                     '1', '0' after 50 ns;

The thing to note here is that there are no signals named in any of the waveforms
or the conditions (assuming that extended_reset is a constant). This means that the
statement is executed once when simulation starts, schedules two transactions on re-
set and remains quiescent thereafter. The equivalent process is

reset_gen : process is
begin
  if extended_reset then
    reset <= '1', '0' after 200 ns;
  else
    reset <= '1', '0' after 50 ns;
  end if;
  wait;
end process reset_gen;

Since there are no signals involved, the wait statement has no sensitivity clause. Thus,
after the if statement has executed, the process suspends forever.

If we include a delay mechanism specification in a conditional signal assignment state-
ment, it is used whichever waveform is chosen. So we might rewrite the model for the
asymmetric delay element shown in Example 5.10 as

asym_delay : z <= transport a after Tpd_01 when a else
                            a after Tpd_10;

In Section 5.2.1 we saw the use of the reserved word unaffected as a waveform to
specify that the target signal not be changed by an assignment. We can use unaffected
in a concurrent assignement also.

EXAMPLE 5.16 A scheduler for a server

A scheduler selects among requests for a server, but when the server is busy, no re-
quest is scheduled. We can use unaffected to indicate that there should be no change
on the signal representing the selected request, as follows:

scheduler :
  request <=
    first_priority_request after scheduling_delay
      when priority_waiting and server_status = ready else



170 Chapter 5 — Basic Modeling Constructs

    first_normal_request after scheduling_delay
      when not priority_waiting and server_status = ready else
    unaffected
      when server_status = busy else
    reset_request after scheduling_delay;

The equivalent process is

scheduler : process is
begin
  if priority_waiting and server_status = ready then
    request <= first_priority_request after scheduling_delay;
  elsif not priority_waiting and server_status = ready then
    request <= first_normal_request after scheduling_delay;
  elsif server_status = busy then
    null;
  else
    request <= reset_request after scheduling_delay;
  end if;
  wait on first_priority_request, priority_waiting,
          server_status, first_normal_request, reset_request;
end process scheduler;

The effect of the unaffected waveform is to include a null statement in the equiv-
alent process, causing it to bypass scheduling a transaction when the corresponding
condition is true. (Recall that the effect of the null sequential statement is to do noth-
ing.)

VHDL-87

In VHDL-87 the syntax rule for a conditional signal assignment statement is

conditional_signal_assignment ⇐
name <= [ transport ]

{ waveform when condition else }
waveform ;

The delay mechanism is restricted to the keyword transport, as discussed on
page 164. The final waveform may not be conditional. Furthermore, we may not use
the keyword unaffected. If the required behavior cannot be expressed with these
restrictions, we must write a full process statement instead of a conditional signal as-
signment statement.



5.2 Behavioral Descriptions 171

Concurrent Selected Signal Assignments

The concurrent selected signal assignment statement is shorthand for a number of simple
signal assignments embedded in a case statement, which is in turn contained in a process.
Let us look at some examples.

EXAMPLE 5.17 An ALU using a concurrent selected assignment

The following concurrent selected signal assignment models an ALU that performs ad-
dition, subtraction, logical and, logical or, and pass operations:

alu : with alu_function select
        result <= a + b after Tpd   when alu_add |
                                         alu_add_unsigned,
                  a - b after Tpd   when alu_sub |
                                         alu_sub_unsigned,
                  a and b after Tpd when alu_and,
                  a or b after Tpd  when alu_or,
                  a after Tpd       when alu_pass_a;

This has the same meaning as the following process statement containing a case state-
ment:

alu : process is
begin
  case alu_function is
    when alu_add |
         alu_add_unsigned =>  result <= a + b after Tpd;
    when alu_sub |
         alu_sub_unsigned =>  result <= a - b after Tpd;
    when alu_and          =>  result <= a and b after Tpd;
    when alu_or           =>  result <= a or b after Tpd;
    when alu_pass_a       =>  result <= a after Tpd;
  end case;
  wait on alu_function, a, b;
end process alu;

A concurrent selected signal assignment statement is sensitive to all of the signals
in the selector expression and in the waveforms. This means that the selected signal
assignment for the ALU is always sensitive to b and will resume if b changes value,
even if the value of alu_function is alu_pass_a and the value of b is not used.

Apart from the difference in the equivalent process, the concurrent selected signal as-
signment is similar to the concurrent conditional assignment. Thus the special waveform
unaffected can be used to specify that no assignment take place for some values of the
selector expression. Also, if a delay mechanism is specified in the statement, that mecha-
nism is used on each sequential signal assignment within the equivalent process.



172 Chapter 5 — Basic Modeling Constructs

EXAMPLE 5.18 A full adder in truth-table form

We can use a selected signal assignment to express a combinatorial logic function in
truth-table form. In the following entity declaration and an architecture body for a full
adder, the selected signal assignment statement has, as its selector expression, a bit
vector formed by aggregating the input signals. The choices list all possible values of
inputs, and for each, the values for the c_out and s outputs are given.

entity full_adder is
  port ( a, b, c_in : bit;  s, c_out : out bit );
end entity full_adder;

--------------------------------------------------

architecture truth_table of full_adder is
begin

  with bit_vector'(a, b, c_in) select
    (c_out, s) <= bit_vector'("00") when "000",
                  bit_vector'("01") when "001",
                  bit_vector'("01") when "010",
                  bit_vector'("10") when "011",
                  bit_vector'("01") when "100",
                  bit_vector'("10") when "101",
                  bit_vector'("10") when "110",
                  bit_vector'("11") when "111";

end architecture truth_table;

This example illustrates the most common use of aggregate targets in signal as-
signments. Note that the type qualification is required in the selector expression to
specify the type of the aggregate. The type qualification is needed in the output values
to distinguish the bit-vector string literals from character string literals.

We can include the symbol “?” after the reserved word select in a concurrent selected
signal assignment to specify matching case statement in the equivalent form, just as we
did in the sequential form of the statement. Thus, we could write the assignment

with request select?
  grant <= "1000" when "1---",
           "0100" when "01--",
           "0010" when "001-",
           "0001" when "0001",
           "0000" when others;

as a concurrent statement in an architecture body.



5.2 Behavioral Descriptions 173

VHDL-87, -93, and -2002

These versions of VHDL do not provide the matching concurrent selected signal as-
signment notation.

VHDL-87

In VHDL-87, the delay mechanism is restricted to the keyword transport, as dis-
cussed on page 164. Furthermore, the keyword unaffected may not be used. If the
required behavior cannot be expressed without using the keyword unaffected, we
must write a full process statement instead of a selected signal assignment statement.

5.2.8 Concurrent Assertion Statements

VHDL provides another shorthand process notation, the concurrent assertion statement,
which can be used in behavioral modeling. As its name implies, a concurrent assertion
statement represents a process whose body contains an ordinary sequential assertion
statement. The syntax rule is

concurrent_assertion_statement ⇐
[ label : ]
assert condition

[ report expression ] [ severity expression ] ;

This syntax appears to be exactly the same as that for a sequential assertion statement,
but the difference is that it may appear as a concurrent statement. The optional label on
the statement serves the same purpose as that on a process statement: to provide a way
of referring to the statement during simulation or synthesis. The process equivalent to a
concurrent assertion contains a sequential assertion with the same condition, report clause
and severity clause. The sequential assertion is then followed by a wait statement whose
sensitivity list includes the signals mentioned in the condition expression. Thus the effect
of the concurrent assertion statement is to check that the condition holds true each time
any of the signals mentioned in the condition change value. Concurrent assertions provide
a very compact and useful way of including timing and correctness checks in a model.

EXAMPLE 5.19 A set/reset flipflop with usage check

We can use concurrent assertion statements to check for correct use of a set/reset
flipflop, with two inputs s and r and two outputs q and q_n, all of type bit. The
requirement for use is that s and r are not both ‘1’ at the same time. The entity and
architecture body are

entity S_R_flipflop is
  port ( s, r : in bit;  q, q_n : out bit );
end entity S_R_flipflop;



174 Chapter 5 — Basic Modeling Constructs

--------------------------------------------------

architecture functional of S_R_flipflop is

begin

  q <= '1' when s else
       '0' when r;

  q_n <= '0' when s else
         '1' when r;

  check : assert not (s and r)
            report "Incorrect use of S_R_flip_flop: " &
                   "s and r both '1'";

end architecture functional;

The first and second concurrent statements implement the functionality of the
model. The third checks for correct use and is resumed when either s or r changes
value, since these are the signals mentioned in the Boolean condition. If both of the
signals are ‘1’, an assertion violation is reported. The equivalent process for the con-
current assertion is

check : process is
begin
  assert not (s  and r)
    report "Incorrect use of S_R_flip_flop: " &
           "s and r both '1'";
  wait on s, r;
end process check;

5.2.9 Entities and Passive Processes

We complete this section on behavioral modeling by returning to declarations of entities.
We can include certain kinds of concurrent statements in an entity declaration, to monitor
use and operation of the entity. The extended syntax rule for an entity declaration that
shows this is

entity_declaration ⇐
entity identifier is

[ port ( port_interface_list ) ; ]
{ entity_declarative_item }

[ begin
{ concurrent_assertion_statement
I passive_concurrent_procedure_call_statement
I passive_process_statement } ]

end [ entity ] [ identifier ] ;



5.2 Behavioral Descriptions 175

The concurrent statements included in an entity declaration must be passive; that is,
they may not affect the operation of the entity in any way. A concurrent assertion state-
ment meets this requirement, since it simply tests a condition whenever events occur on
signals to which it is sensitive. A process statement is passive if it contains no signal as-
signment statements or calls to procedures containing signal assignment statements. Such
a process can be used to trace events that occur on the entity’s inputs. We will describe
the remaining alternative, concurrent procedure call statements, when we discuss proce-
dures in Chapter 6. A concurrent procedure call is passive if the procedure called contains
no signal assignment statements or calls to procedures containing signal assignment state-
ments.

EXAMPLE 5.20 A revised set/reset flipflop with usage check

We can rewrite the entity declaration for the set/reset flipflop of Example 5.19 as
shown below, using a concurrent assertion statement for the usage check. If we do
this, the check is included for every possible implementation of the flipflop and does
not need to be included in the corresponding architecture bodies.

entity S_R_flipflop is
  port ( s, r : in bit;  q, q_n : out bit );

begin

  check : assert not (s and r)
            report "Incorrect use of S_R_flip_flop: "
                   "s and r both '1'";

end entity S_R_flipflop;

EXAMPLE 5.21 A ROM that traces read operations

The following entity declaration for a read-only memory (ROM) includes a passive
process, trace_reads, that is sensitive to changes on the enable port. When the value
of the port changes to ‘1’, the process reports a message tracing the time and address
of the read operation. The process does not affect the course of the simulation in any
way, since it does not include any signal assignments.

entity ROM is
  port ( address : in natural;
         data : out bit_vector(0 to 7);
         enable : in bit );

begin

  trace_reads : process (enable) is
  begin
    if enable then
      report "ROM read at time " & to_string(now)



176 Chapter 5 — Basic Modeling Constructs

             & " from address " & to_string(address);
    end if;
  end process trace_reads;

end entity ROM;

5.3 Structural Descriptions

A structural description of a system is expressed in terms of subsystems interconnected by
signals. Each subsystem may in turn be composed of an interconnection of sub-
subsystems, and so on, until we finally reach a level consisting of primitive components,
described purely in terms of their behavior. Thus the top-level system can be thought of
as having a hierarchical structure. In this section, we look at how to write structural archi-
tecture bodies to express this hierarchical organization.

We have seen earlier in this chapter that the concurrent statements in an architecture
body describe an implementation of an entity interface. In order to write a structural im-
plementation, we must use a concurrent statement called a component instantiation state-
ment, the simplest form of which is governed by the syntax rule

component_instantiation_statement ⇐
instantiation_label :

entity entity_name [ ( architecture_identifier ) ]
[ port map ( port_association_list ) ] ;

This form of component instantiation statement performs direct instantiation of an
entity. We can think of component instantiation as creating a copy of the named entity,
with the corresponding architecture body substituted for the component instance. The
port map specifies which ports of the entity are connected to which signals in the enclos-
ing architecture body. The simplified syntax rule for a port association list is

port_association_list ⇐
( [ port_name => ] ( signal_name I expression I open ) ) { , … }

Each element in the association list associates one port of the entity either with one
signal of the enclosing architecture body or with the value of an expression, or leaves the
port unassociated, as indicated by the keyword open.

Let us look at some examples to illustrate component instantiation statements and the
association of ports with signals. Suppose we have an entity declared as

entity DRAM_controller is
  port ( rd, wr, mem : in bit;
         ras, cas, we, ready : out bit  );
end entity DRAM_controller;

and a corresponding architecture called fpld. We might create an instance of this entity as
follows:



5.3 Structural Descriptions 177

main_mem_controller : entity work.DRAM_controller(fpld)
  port map ( cpu_rd, cpu_wr, cpu_mem,
             mem_ras, mem_cas, mem_we, cpu_rdy );

In this example, the name work refers to the current working library in which entities
and architecture bodies are stored. We return to the topic of libraries in the next section.
The port map of this example lists the signals in the enclosing architecture body to which
the ports of the copy of the entity are connected. Positional association is used: each sig-
nal listed in the port map is connected to the port at the same position in the entity dec-
laration. So the signal cpu_rd is connected to the port rd, the signal cpu_wr is connected
to the port wr and so on.

One of the problems with positional association is that it is not immediately clear
which signals are being connected to which ports. Someone reading the description must
refer to the entity declaration to check the order of the ports in the entity interface. A better
way of writing a component instantiation statement is to use named association, as shown
in the following example:

main_mem_controller : entity work.DRAM_controller(fpld)
  port map ( rd => cpu_rd, wr => cpu_wr,
             mem => cpu_mem, ready => cpu_rdy,
             ras => mem_ras, cas => mem_cas, we => mem_we );

Here, each port is explicitly named along with the signal to which it is connected. The
order in which the connections are listed is immaterial. The advantage of this approach is
that it is immediately obvious to the reader how the entity is connected into the structure
of the enclosing architecture body.

In the preceding example we have explicitly named the architecture body to be used
corresponding to the entity instantiated. However, the syntax rule for component instan-
tiation statements shows this to be optional. If we wish, we can omit the specification of
the architecture body, in which case the one to be used may be chosen when the overall
model is processed for simulation, synthesis or some other purpose. At that time, if no
other choice is specified, the most recently analyzed architecture body is selected. We re-
turn to the topic of analyzing models in the next section.

EXAMPLE 5.22 A structural model for a two-digit counter

In Example 5.5 we looked at a behavioral model of an edge-triggered flipflop. We can
use the flipflop as the basis of a 4-bit edge-triggered register, described by the
following entity declaration and structural architecture body.

entity reg4 is
  port ( clk, clr, d0, d1, d2, d3 : in bit;
         q0, q1, q2, q3 : out bit );
end entity reg4;

----------------------------------------------



178 Chapter 5 — Basic Modeling Constructs

architecture struct of reg4 is
begin

  bit0 : entity work.edge_triggered_Dff(behavioral)
    port map (d0, clk, clr, q0);
  bit1 : entity work.edge_triggered_Dff(behavioral)
    port map (d1, clk, clr, q1);
  bit2 : entity work.edge_triggered_Dff(behavioral)
    port map (d2, clk, clr, q2);
  bit3 : entity work.edge_triggered_Dff(behavioral)
    port map (d3, clk, clr, q3);

end architecture struct;

We can use the register entity, along with other entities, as part of a structural ar-
chitecture for the two-digit decimal counter represented by the schematic of Figure
5.6.

FIGURE 5.6 

A schematic for a two-digit counter using the reg4 entity.

add_1
d0

incr0

y0
y1
y2
y3

d1
d2
d3

buf4
a0

buf0

y0
y1
y2
y3

a1
a2
a3

reg4
d0

val0_reg

q0
q1
q2
q3

d1
d2
d3
clr
clk

clr
clk

add_1
d0

incr1

y0
y1
y2
y3

d1
d2
d3

buf4
a0

buf1

y0
y1
y2
y3

a1
a2
a3

reg4
d0

val1_reg

q0
q1
q2
q3

d1
d2
d3
clr
clk

q0(0)
q0(1)
q0(2)
q0(3)

q1(0)
q1(1)
q1(2)
q1(3)



5.3 Structural Descriptions 179

Suppose a digit is represented as a bit vector of length four, described by the
subtype declaration

subtype digit is bit_vector(3 downto 0);

An entity declaration for the counter, along with an outline of the structural architec-
ture body, are:

entity counter is
  port ( clk, clr : in bit;
         q0, q1 : out digit );
end entity counter;

--------------------------------------------------

architecture registered of counter is

  signal current_val0, current_val1, next_val0, next_val1 : digit;

begin

  val0_reg : entity work.reg4(struct)
    port map ( d0 => next_val0(0), d1 => next_val0(1),
               d2 => next_val0(2), d3 => next_val0(3),
               q0 => current_val0(0), q1 => current_val0(1),
               q2 => current_val0(2), q3 => current_val0(3),
               clk => clk, clr => clr );

  val1_reg : entity work.reg4(struct)
    port map ( d0 => next_val1(0), d1 => next_val1(1),
               d2 => next_val1(2), d3 => next_val1(3),
               q0 => current_val1(0), q1 => current_val1(1),
               q2 => current_val1(2), q3 => current_val1(3),
               clk => clk, clr => clr );

  incr0 : entity work.add_1(boolean_eqn) ...;

  incr1 : entity work.add_1(boolean_eqn) ...;

  buf0 : entity work.buf4(basic) ...;

  buf1 : entity work.buf4(basic) ...;

end architecture registered;

This example illustrates a number of important points about component instances
and port maps. First, the two component instances val0_reg and val1_reg are both
instances of the same entity/architecture pair. This means that two distinct copies of
the architecture struct of reg4 are created, one for each of the component instances.
We return to this point when we discuss the topic of elaboration in the next section.
Second, in each of the port maps, ports of the entity being instantiated are associated
with separate elements of array signals. This is allowed, since a signal that is of a com-
posite type, such as an array, can be treated as a collection of signals, one per element.



180 Chapter 5 — Basic Modeling Constructs

Third, some of the signals connected to the component instances are signals declared
within the enclosing architecture body, registered, whereas the clk signal is a port of
the entity counter. This again illustrates the point that within an architecture body, the
ports of the corresponding entity are treated as signals.

We saw in the above example that we can associate separate ports of an instance with
individual elements of an actual signal of a composite type, such as an array or record
type. If an instance has a composite port, we can write associations the other way around;
that is, we can associate separate actual signals with individual elements of the port. This
is sometimes called subelement association. For example, if the instance DMA_buffer has
a port status of type FIFO_status, declared as

type FIFO_status is record
    nearly_full, nearly_empty, full, empty : bit;
  end record FIFO_status;

we could associate a signal with each element of the port as follows:

DMA_buffer : entity work.FIFO
  port map ( ..., 
             status.nearly_full => start_flush,
             status.nearly_empty => end_flush,
             status.full => DMA_buffer_full,
             status.empty => DMA_buffer_empty, ... );

This illustrates two important points about subelement association. First, all elements
of the composite port must be associated with an actual signal. We cannot associate some
elements and leave the rest unassociated. Second, all of the associations for a particular
port must be grouped together in the association list, without any associations for other
ports among them.

We can use subelement association for ports of an array type by writing an indexed
element name on the left side of an association. Furthermore, we can associate a slice of
the port with an actual signal that is a one-dimensional array, as the following example
shows.

EXAMPLE 5.23 Using subelement association for bus connections

Suppose we have a register entity, declared as follows. The ports d and q are arrays
of bits.

entity reg is
  port ( d : in bit_vector(7 downto 0);
         q : out bit_vector(7 downto 0);
         clk : in bit );
end entity reg;



5.3 Structural Descriptions 181

The architecture body for a microprocessor, outlined below, instantiates this entity
as the program status register (PSR). Individual bits within the register represent con-
dition and interrupt flags, and the field from bit 6 down to bit 4 represents the current
interrupt priority level.

architecture RTL of microprocessor is

  signal interrupt_req : bit;
  signal interrupt_level : bit_vector(2 downto 0);
  signal carry_flag, negative_flag,
         overflow_flag, zero_flag : bit;
  signal program_status : bit_vector(7 downto 0);
  signal clk_PSR : bit;
  ...

begin

  PSR : entity work.reg
    port map ( d(7) => interrupt_req,
               d(6 downto 4) => interrupt_level,
               d(3) => carry_flag,     d(2) => negative_flag,
               d(1) => overflow_flag,  d(0) => zero_flag,
               q => program_status,
               clk => clk_PSR );
  ...

end architecture RTL;

In the port map of the instance, subelement association is used for the input port
d to connect individual elements of the port with separate actual signals of the archi-
tecture. A slice of the port is connected to the interrupt_level signal. The output port
q, on the other hand, is associated wholly with the bit-vector signal program_status.

We may also use subelement association for a port that is of an unconstrained or par-
tially constrained array type whose top-level index bounds are not defined. The index
bounds of the port are determined by the least and greatest index values used in the as-
sociation list, and the index range direction is determined by the port type. For example,
suppose we declare an and gate entity:

entity and_gate is
  port ( i : in bit_vector;  y : out bit );
end entity and_gate;

and a number of signals:

signal serial_select, write_en, bus_clk, serial_wr : bit;

We can instantiate the entity as a three-input and gate:



182 Chapter 5 — Basic Modeling Constructs

serial_write_gate : entity work.and_gate
  port map ( i(1) => serial_select,
             i(2) => write_en,
             i(3) => bus_clk,
             y => serial_wr );

Since the input port i is unconstrained, the index values in the subelement associations
determine the index bounds for this instance. The least value is one and the greatest value
is three. The port type is bit_vector, which has an ascending index range. Thus, the index
range for the port in the instance is an ascending range from one to three.

This method of determining index ranges also applies to subelements with undefined
index bounds. For example, given a type

type bv_pair is array (1 to 2) of bit_vector;

and a port declared in an entity as

entity ent3 is
  port ( p : in bv_pair );
end entity ent3;

we can write an instance of the entity:

signal s1, s2 : bit;
signal sv1, sv2 : bit_vector(4 to 7);
...

inst3 : entity work.ent3
  port map ( p(1)(0) => s1, p(1)(1 to 4) => sv1,
             p(2)(0) => s2, p(2)(1 to 4) => sv2 );

Here, the index range for the top level of p is 1 to 2, determined from the subtype
bv_pair. However, for the elements, the subtype index range is not defined, so the index
range for p comes from the formal element and slice names. Combining these effects, the
index ranges for p are 1 to 2 for the top level, and 0 to 4 for the elements. Note that the
index range determined for the two elements p(1) and p(2) must be the same. It would
be illegal to write the instance as:

signal s1, s2 : bit;
signal sv1, sv2 : bit_vector(4 to 7);
...

inst3 : entity work.ent3
  port map ( p(1)(0) => s1, p(1)(1 to 4) => sv1,
             p(2)(15) => s2, p(2)(11 to 14) => sv2 ); -- illegal

since that would imply two different index ranges: 0 to 4 for p(1) and 11 to 15 for p(2).
An array must have the same index ranges for all elements.

The syntax rule for a port association list shows that a port of a component instance
may be associated with an expression instead of a signal. There are two possibilities for



5.3 Structural Descriptions 183

this case. First, if the expression is globally static, the value of the expression is used as a
constant value for the port throughout the simulation. For an expression to be globally
static, we must be able to determine the value from constants defined when the model is
elaborated. So, for example, the expression must not include references to any signals. If
real hardware is synthesized from the model, the port of the component instance would
be tied to a fixed value determined by the expression. Association with an expression of
this form is useful when we have an entity provided as part of a library, but we do not
need to use all of the functionality provided by the entity.

EXAMPLE 5.24 Using a four-input multiplexer as a two-input multiplexer

Given a four-input multiplexer described by the entity declaration

entity mux4 is
  port ( i0, i1, i2, i3, sel0, sel1 : in bit;
         z : out bit );
end entity mux4;

we can use it as a two-input multiplexer by instantiating it as follows:

a_mux : entity work.mux4
  port map ( sel0 => select_line, i0 => line0, i1 => line1,
             z => result_line,
             sel1 => '0', i2 => '1', i3 => '1' );

For this component instance, the high-order select bit is fixed at ‘0’, ensuring that
only one of line0 or line1 is passed to the output. We have also followed the practice,
recommended for many logic families, of tying unused inputs to a fixed value, in this
case ‘1’.

In the second case of association with an expression, the expression is not static, but
instead involves the values of signals. This allows us to include a small amount of func-
tional logic in a port map, and avoids the need to express the logic with a separate assign-
ment statement and an intermediate signal. If the expression is not static, the port
association is defined to be equivalent to association with an anonymous signal that is the
target of a signal assignment with the expression on the right-hand side.

EXAMPLE 5.25 Including select logic in a port map

Suppose an I/O controller connected to a CPU bus is to be enabled when bus control
signals indicate a read from I/O address space and the bus address matches the con-
troller’s address. We can include the select logic in the port map for the controller in-
stance:



184 Chapter 5 — Basic Modeling Constructs

io_ctrl_1 : entity work.io_controller(rtl)
  port map ( en => rd_en and io_sel and addr ?= io_base,
             ... );

This is a much more succinct way of expressing the model than the equivalent:

signal en_tmp : std_ulogic;
...

en_tmp <= rd_en and io_sel and addr ?= io_base;

io_ctrl_1 : entity work.io_controller(rtl)
  port map ( en => en_tmp,
             ... );

Some entities may be designed to allow inputs to be left open by specifying a default
value for a port. When the entity is instantiated, we can specify that a port is to be left
open by using the keyword open in the port association list, as shown in the syntax rule
on page 176.

EXAMPLE 5.26 And-or-invert with an unconnected input

The and_or_inv entity declaration on page 139 includes a default value of ‘1’ for each
of its input ports, as again shown here:

entity and_or_inv is
  port ( a1, a2, b1, b2 : in bit := '1';
         y : out bit );
end entity and_or_inv;

We can write a component instantiation to perform the function not ((A and B)
or C) using this entity as follows:

f_cell : entity work.and_or_inv
  port map ( a1 => A, a2 => B, b1 => C, b2 => open, y => F );

The port b2 is left open, so it assumes the default value ‘1’ specified in the entity
declaration.

There is some similarity between specifying a default value for an input port and as-
sociating an input port with a globally static expression. In both cases we must be able to
determine the expression’s value when the model is elaborated. The difference is that a
default value is only used if the port is left open when the entity is instantiated, whereas
association with a globally static expression specifies that the expression value is to be
used to drive the port for the entire simulation or life of the component instance. If a port



5.3 Structural Descriptions 185

is declared with a default value and then associated with an expression, the expression
value is used, overriding the default value.

Output and bidirectional ports may also be left unassociated using the open keyword,
provided they are not of an unconstrained or partially constrained composite type. If a
port of mode out or buffer is left open, any value driven by the entity is ignored. If a
port of mode inout is left open, the value used internally by the entity (the effective value)
is the value that it drives on to the port.

A final point to make about unassociated ports is that we can simply omit a port from
a port association list to specify that it remain open. So, given an entity declared as follows:

entity and3 is
  port ( a, b, c : in bit := '1';
         z, not_z : out bit);
end entity and3;

the component instantiation

g1 : entity work.and3 port map ( a => s1, b => s2, not_z => ctrl1 );

has the same meaning as

g1 : entity work.and3 port map ( a => s1, b => s2, not_z => ctrl1,
                                 c => open, z => open );

The difference is that the second version makes it clear that the unused ports are deliber-
ately left open, rather than being accidentally overlooked in the design process. This is
useful information for someone reading the model.

VHDL-87, -93, and -2002

These earlier versions of VHDL do not allow a non-static expression in a port map.
Instead, we must write the equivalent intermediate signal declaration and assignment
explicitly.

VHDL-87 and VHDL-93

VHDL-87 and VHDL-93 impose a number of restrictions on how buffer-mode ports
may be interconnected with other ports in structural designs. First, if the actual object
associated with a buffer port of a component instance is a port of the enclosing entity,
it must also be a buffer port. Second, if we associate a buffer as an actual object
with some formal port of a component instance, the formal port must be of mode in
or buffer. It may not be a port of mode out. There are also restrictions on the number
of sources contributing to a buffer port or to a signal that is associated with a buffer
port. These restrictions severely limit the uses of buffer ports, so they are not com-
monly used in VHDL-87 or VHDL-93.



186 Chapter 5 — Basic Modeling Constructs

VHDL-87

VHDL-87 does not allow direct instantiation. Instead, we must declare a component
with a similar interface to the entity, instantiate the component and bind each com-
ponent instance to the entity and an associated architecture body. Component decla-
rations and binding are described in Chapter 13.

VHDL-87 does not allow association of an expression with a port in a port map.
However, we can achieve a similar effect by declaring a signal, initializing it to the
value of the expression and associating the signal with the port. For example, if we
declare two signals

signal tied_0 : bit := '0';
signal tied_1 : bit := '1';

we can rewrite the port map shown in Example 5.24 as

port map ( sel0 => select_line, i0 => line0, i1 => line1,
           z => result_line,
           sel1 => tied_0, i2 => tied_1, i3 => tied_1 );

5.4 Design Processing

Now that we have seen how a design may be described in terms of entities, architectures,
component instantiations, signals and processes, it is time to take a practical view. A VHDL
description of a design is usually used to simulate the design and perhaps to synthesize
the hardware. This involves processing the description using computer-based tools to cre-
ate a simulation program to run or a hardware net-list to build. Both simulation and syn-
thesis require two preparatory steps: analysis and elaboration. Simulation then involves
executing the elaborated model, whereas synthesis involves creating a net-list of primitive
circuit elements that perform the same function as the elaborated model. In this section,
we look at the analysis, elaboration and execution operations introduced in Chapter 1. We
will leave a discussion of synthesis to Chapter 21.

5.4.1 Analysis

The first step in processing a design is to analyze the VHDL descriptions. A correct de-
scription must conform to the rules of syntax and semantics that we have discussed at
length. An analyzer is a tool that verifies this. If a description fails to meet a rule, the an-
alyzer provides a message indicating the location of the problem and which rule was
broken. We can then correct the error and retry the analysis. Another task performed by
the analyzer in most VHDL systems is to translate the description into an internal form
more easily processed by the remaining tools. Whether such a translation is done or not,
the analyzer places each successfully analyzed description into a design library.

A complete VHDL description usually consists of a number of entity declarations and
their corresponding architecture bodies. Each of these is called a design unit. Organizing



5.4 Design Processing 187

a design as a hierarchy of modules, rather than as one large flat design, is good engineer-
ing practice. It makes the description much easier to understand and manage.

The analyzer analyzes each design unit separately and places the internal form into
the library as a library unit. If a unit being analyzed uses another unit, the analyzer extracts
information about the other unit from the library to check that the unit is used correctly.
For example, if an architecture body instantiates an entity, the analyzer needs to check the
number, type and mode of ports of the entity to make sure it is instantiated correctly. To
do this, it requires that the entity be previously analyzed and stored in the library. Thus,
we see that there are dependency relations between library units in a complete description
that enforce an order of analysis of the original design units.

To clarify this point, we divide design units into primary units, which include entity
declarations, and secondary units, which include architecture bodies. There are other
kinds of design units in each class, which we come to in later chapters. A primary unit
defines the external view or interface to a module, whereas a secondary unit describes an
implementation of the module. Thus the secondary unit depends on the corresponding
primary unit and must be analyzed after the primary unit has been analyzed. In addition,
a library unit may draw upon the facilities defined in some other primary unit, as in the
case of an architecture body instantiating some other entity. In this case, there is a further
dependency between the secondary unit and the referenced primary unit. Thus we may
build up a network of dependencies of units upon primary units. Analysis must be done
in such an order that a unit is analyzed before any of its dependents. Furthermore, when-
ever we change and reanalyze a primary unit, all of the dependent units must also be re-
analyzed. Note, however, that there is no way in which any unit can be dependent upon
a secondary unit; that is what makes a secondary unit “secondary.” This may seem rather
complicated, and indeed, in a large design, the dependency relations can form a complex
network. For this reason, most VHDL systems include tools to manage the dependencies,
automatically reanalyzing units where necessary to ensure that an outdated unit is never
used.

EXAMPLE 5.27 Dependencies in the counter model

The structural architecture of the counter module, described in Example 5.22, leads
to the network of dependencies shown in Figure 5.7. One possible order of compila-
tion for this set of design units is

entity edge_triggered_Dff
architecture behav of edge_triggered_Dff

entity reg4
architecture struct of reg4

entity add_1
architecture boolean_eqn of add_1

entity buf4
architecture basic of buf4



188 Chapter 5 — Basic Modeling Constructs

entity counter
architecture registered of counter

In this order, each primary unit is analyzed immediately before its corresponding
secondary unit, and each primary unit is analyzed before any secondary unit that in-
stantiates it. This is not the only possible order. Another alternative is to analyze all of
the entity declarations first, then analyze the architecture bodies in arbitrary order.

5.4.2 Design Libraries and Contexts

So far, we have not actually said what a design library is, other than that it is where library
units are stored. Indeed, this is all that is defined by the VHDL language specification,
since to go further is to enter into the domain of the host operating system under which
the VHDL tools are run. Some systems may use a database to store analyzed units, whereas
others may simply use a directory in the host file system as the design library. The docu-
mentation for each VHDL tool suite indicates what we need to know about how the suite
deals with design libraries.

A VHDL tool suite must also provide some means of using a number of separate de-
sign libraries. When a design is analyzed, we nominate one of the libraries as the working
library, and the analyzed design is stored in this library. We use the special library name
work in our VHDL models to refer to the current working library. We have seen examples
of this in this chapter’s component instantiation statements, in which a previously ana-
lyzed entity is instantiated in an architecture body.

If we need to access library units stored in other libraries, we refer to the libraries as
resource libraries. We do this by including a library clause immediately preceding a design
unit that accesses the resource libraries. The syntax rule for a library clause is

FIGURE 5.7 

The dependency network for the counter module. The arrows point from a primary unit to a de-
pendent secondary unit.

entity
edge_triggered_Dff

architecture behav
of edge_triggered_Dff

entity reg4 architecture struct of reg4

entity add_1 architecture boolean_eqn of add_1

entity buf4 architecture basic of buf4

entity counter architecture registered of counter



5.4 Design Processing 189

library_clause ⇐ library identifier { , … } ;

The identifiers are used by the analyzer and the host operating system to locate the
design libraries, so that the units contained in them can be used in the description being
analyzed. The exact way that the identifiers are used varies between different tool suites
and is not defined by the VHDL language specification. Note that we do not need to in-
clude the library name work in a library clause; the current working library is automatically
available.

EXAMPLE 5.28 Using library cells

Suppose we are working on part of a large design project code-named Wasp, and we
are using standard cell parts supplied by Widget Designs, Inc. Our system administra-
tor has loaded the design library for the Widget cells in a directory called /local/wid-
get/cells in our workstation file system, and our project leader has set up another
design library in /projects/wasp/lib for some in-house cells we need to use. We con-
sult the manual for our VHDL analyzer and use operating system commands to set up
the appropriate mapping from the identifiers widget_cells and wasp_lib to these li-
brary directories. We can then instantiate entities from these libraries, along with en-
tities we have previously analyzed, into our own working library, as follows:

library widget_cells, wasp_lib;

architecture cell_based of filter is

  -- declaration of signals, etc
  ...

begin

  clk_pad : entity wasp_lib.in_pad
    port map ( i => clk, z => filter_clk );

  accum : entity widget_cells.reg32
    port map ( en => accum_en, clk => filter_clk, d => sum,
               q => result );

  alu : entity work.adder
    port map ( a => alu_op1, b => alu_op2, y => sum, c => carry );

  -- other component instantiations
  ...

end architecture cell_based;

If we need to make frequent reference to library units from a design library, we can
include a use clause in our model to avoid having to write the library name each time.
The simplified syntax rules are

use_clause ⇐ use selected_name { , … } ;



190 Chapter 5 — Basic Modeling Constructs

selected_name ⇐ name . ( identifier I all )

If we include a use clause with a library name as the prefix of the selected name (pre-
ceding the dot), and a library unit name from the library as the suffix (after the dot), the
library unit is made directly visible. This means that subsequent references in the model
to the library unit need not prefix the library unit name with the library name. For exam-
ple, we might precede the architecture body in the previous example with the following
library and use clauses:

library widget_cells, wasp_lib;

use widget_cells.reg32;

This makes reg32 directly visible within the architecture body, so we can omit the
library name when referring to it in component instantiations; for example:

accum : entity reg32
  port map ( en => accum_en, clk => filter_clk, d => sum,
             q => result );

If we include the keyword all in a use clause, all of the library units within the named
library are made directly visible. For example, if we wanted to make all of the Wasp project
library units directly visible, we might precede a library unit with the use clause

use wasp_lib.all;

Care should be taken when using this form of use clause with several libraries at once.
If two libraries contain library units with the same name, VHDL avoids ambiguity by mak-
ing neither of them directly visible. The solution is either to use the full selected name to
refer to the particular library unit required, or to include in use clauses only those library
units really needed in a model.

Use clauses can also be included to make names from packages directly visible. We
will return to this idea when we discuss packages in detail in Chapter 7.

Context Declarations

Complex designs often call upon design units from several libraries and make use of sev-
eral packages. As a consequence, we would need to precede each design unit with a long
list of library and use clauses, many of which are common to all of the design units. VHDL
provides a further form of design unit, a context declaration, in which we can gather a
collection of library and use clauses. We can refer to a context declaration before a design
unit, rather than having to repeat the collection of library and use clauses. The syntax rule
for a context declaration is

context_declaration ⇐
context identifier is

{ library_clause I use_clause I context_reference }
end [ context ] [ identifier ] ;



5.4 Design Processing 191

Within a context declaration, we write library and use clauses in the same form as we
have seen earlier. We refer to a declared context with a context reference. The syntax is
similar to that of a use clause:

context_reference ⇐
context selected_name { , … } ;

We can write a context reference preceding a design unit, or nested within another
context declaration. In each case, the context reference is equivalent to replacement by
the list of library clauses and use clauses contained within the named context declaration.

EXAMPLE 5.29 Using contexts for library management

Suppose the methodology support team in Widgets, Inc., has assembled a library of
reusable entities in a library with logical name widget_lib. The entities refer to types
defined in the standard std_logic_1164 package in library ieee, so designs that instan-
tiate the entities will also need to refer to those types. The methodology team can pro-
vide a context declaration for use by projects in the organization:

context widget_context is
  library ieee;
  use ieee.std_logic_1164.all;
  use widget_lib.all;
end context widget_context;

This context declaration is analyzed into the widget_lib library. Given that a de-
sign needs to include a library clause for widget_lib in order to refer to the context
declaration, there is no need to include that library clause in the context declaration
itself. A design unit could reference the context declaration as follows:

library widget_lib;
context widget_lib.widget_context;
entity sample is
  ...
end entity sample;

Now suppose the Dongle project within Widgets, Inc., uses additional entities
provided by a third party, Gizmos Corp., in library gizmo_IP_lib. The project also
maintains a library dongle_lib for verified design units to be used in the project design
flow. The project’s EDA support person can provide a context declaration for these
libraries, as well as referring to the organization’s context declaration:

context dongle_context is
  library widget_lib;
  context widget_lib.widget_context;
  library gizmo_IP_lib;
  use gizmo_IP_lib.all;



192 Chapter 5 — Basic Modeling Constructs

  use dongle_lib.all;
end context dongle_context;

The EDA support person analyzes this context declaration into the dongle_lib li-
brary. A designer can then refer to the context in a design unit as follows:

library dongle_lib;
context dongle_lib.dongle_context;
entity frobber is
  ...
end entity frobber;

The reference to dongle_context expands to include the reference to the organi-
zation’s context and the library and use clauses for the third-party IP and the project
repository. The reference to the organization’s context in turn expands to include the
library and use clauses for the standard packages and the organization’s packages.
Thus, the context clause written is equivalent to the following expanded context
clause:

library dongle_lib;
library widget_lib;
library ieee;
use ieee.std_logic_1164.all;
use widget_lib.all;
library gizmo_IP_lib;
use gizmo_IP_lib.all;
use dongle_lib.all;
entity frobber is
  ...
end entity frobber;

As we have seen, VHDL uses library names to refer to physical design libraries. The
mapping from a library name to a physical library is implementation defined, and may
vary between analysis of different design units. In order to avoid confusion when using
context declarations, VHDL requires that a library name map to the same physical library
during analysis of a context declaration and analysis of a reference to that context decla-
ration. For example, if the library name gizmo_IP_lib in the preceding example refers to
/home/dongle/gizmo/gizmo_IP_lib when dongle_context is analyzed, the library name
must refer to the same physical library when entity frobber is analyzed.

As further reinforcement of this principle, we can’t include library clauses, use clauses,
or context references before a context declaration, as we can for other design units. Thus,
the following would be illegal:

library fizz_lib;  -- Illegal: precedes context declaration
context frazzle_ctx is
  use fizz_lib.fizz_pkg.all;
end context frazzle_ctx;



5.4 Design Processing 193

Instead, we should write the library clause inside the context declaration, so that it is
included for any design unit that references the context declaration. Another related rule
is that we cannot include a library clause referring to the working library, work, within a
context declaration. Nor can we refer to the library name work in a use clause. The reason
is that work is not defined for a context declaration, since context declarations don’t have
preceding context clauses.

VHDL-87, -93, and -2002

These versions of VHDL do not provide context declarations or context references.
Instead, each design unit must be preceded with all of the library and use clauses re-
quired.

5.4.3 Elaboration

Once all of the units in a design hierarchy have been analyzed, the design hierarchy can
be elaborated. The effect of elaboration is to “flesh out” the hierarchy, producing a collec-
tion of processes interconnected by nets. This is done by substituting the contents of an
architecture body for every instantiation of its corresponding entity. Each net in the elab-
orated design consists of a signal and the ports of the substituted architecture bodies to
which the signal is connected. (Recall that a port of an entity is treated as a signal within
a corresponding architecture body.) Let us outline how elaboration proceeds, illustrating
it step by step with an example.

Elaboration is a recursive operation, started at the topmost entity in a design hierarchy.
We use the counter design from Example 5.22 as our topmost entity. The first step is to
create the ports of the entity. Next, an architecture body corresponding to the entity is
chosen. If we do not explicitly specify which architecture body to choose, the most re-
cently analyzed architecture body is used. For this illustration, we use the architecture
registered. This architecture body is then elaborated, first by creating any signals that it
declares, then by elaborating each of the concurrent statements in its body. Figure 5.8
shows the counter design with the signals created.

The concurrent statements in this architecture are all component instantiation state-
ments. Each of them is elaborated by creating new instances of the ports specified by the
instantiated entity and joining them into the nets represented by the signals with which
they are associated. Then the internal structure of the specified architecture body of the
instantiated entity is copied in place of the component instance, as shown in Figure 5.9.
The architectures substituted for the instances of the add_1 and buf4 entities are both be-
havioral, consisting of processes that read the input ports and make assignments to the
output ports. Hence elaboration is complete for these architectures. However, the archi-
tecture struct, substituted for each of the instances of reg4, contains further signals and
component instances. Hence they are elaborated in turn, producing the structure shown
in Figure 5.10 for each instance. We have now reached a stage where we have a collection
of nets comprising signals and ports, and processes that sense and drive the nets.

Each process statement in the design is elaborated by creating new instances of the
variables it declares and by creating a driver for each of the signals for which it has signal



194 Chapter 5 — Basic Modeling Constructs

assignment statements. The drivers are joined to the nets containing the signals they drive.
For example, the storage process within bit0 of val0_reg has a driver for the port q, which
is part of the net based on the signal current_val0(0).

Once all of the component instances and all of the resulting processes have been elab-
orated, elaboration of the design hierarchy is complete. We now have a fully fleshed-out
version of the design, consisting of a number of process instances and a number of nets
connecting them. Note that there are several distinct instances of some of the processes,
one for each use of an entity containing the process, and each process instance has its
own distinct version of the process variables. Each net in the elaborated design consists
of a signal, a collection of ports associated with it and a driver within a process instance.

FIGURE 5.8 

The first stage of elaboration of the counter entity. The ports have been created, the architecture
registered selected and the signals of the architecture created.

incr0 buf0val0_reg

clr
clk

incr1 buf1val1_reg

q0(0)
q0(1)
q0(2)
q0(3)

q1(0)
q1(1)
q1(2)
q1(3)



5.4 Design Processing 195

5.4.4 Execution

Now that we have an elaborated design hierarchy, we can execute it to simulate operation
of the system it describes. Much of our previous discussion of VHDL statements was in
terms of what happens when they are executed, so we do not go over statement execution
again here. Instead, we concentrate on the simulation algorithm introduced in Chapter 1.

FIGURE 5.9 

The counter design further elaborated. Behavioral architectures, consisting of just processes,
have been substituted for instances of the add_1 and buf4 entities. A structural architecture has
been substituted for each instance of the reg4 entity.

clr
clk

q0(0)
q0(1)
q0(2)
q0(3)

q1(0)
q1(1)
q1(2)
q1(3)

incr0 buf0

buf1incr1

val0_reg

bit2

bit3

bit1

bit0

val1_reg

bit2

bit3

bit1

bit0



196 Chapter 5 — Basic Modeling Constructs

Recall that the simulation algorithm consists of an initialization phase followed by a
repeated simulation cycle. The simulator keeps a clock to measure out the passage of sim-
ulation time. In the initialization phase, the simulation time is set to zero. Each driver is
initialized to drive its signal with the initial value declared for the signal or the default val-
ue for the signal if no initial value was declared. Next, each of the process instances in the
design is started and executes the sequential statements in its body. We usually write a
model so that at least some of these initial statements schedule some transactions to get
the simulation under way, then suspend by executing a wait statement. When all of the
process instances have suspended, initialization is complete and the simulator can start
the first simulation cycle.

At the beginning of a simulation cycle, there may be a number of drivers with trans-
actions scheduled on them and a number of process instances that have scheduled
timeouts. The first step in the simulation cycle is to advance the simulation time clock to
the earliest time at which a transaction or process timeout has been scheduled. Second,
all of the transactions scheduled for this time are performed, updating the corresponding
signals and possibly causing events on those signals. Third, all process instances that are
sensitive to any of these events are resumed. In addition, process instances whose timeout
expires at the current simulation time are resumed during this step. All of these processes
execute their sequential statements, possibly scheduling more transactions or timeouts,
and eventually suspend again by executing wait statements. When they have all suspend-

FIGURE 5.10 

A register within the counter structure elaborated down to architectures that consist only of pro-
cesses and signals.

bit0

bit1

bit2

bit3



Exercises 197

ed, the simulation cycle is done and the next cycle can start. If there are no more transac-
tions or timeouts scheduled, or if simulation time reaches time'high (the largest
representable time value), the simulation is complete.

Describing the operation of a simulator in this way is a little like setting a play in a
theater without any seats—nobody is there to watch it, so what’s the point! In reality, a
simulator is part of a suite of VHDL tools and provides us with various means to control
and monitor the progress of the simulation. Typical simulators allow us to step through
the model one line at a time or to set breakpoints, causing the simulation to stop when a
line of the model is executed or a signal is assigned a particular value. They usually pro-
vide commands to display the value of signals or variables. Many simulators also provide
a graphical waveform display of the history of signal values similar to a logic analyzer dis-
play, and allow storage and subsequent redisplay of the history for later analysis. It is these
facilities that make the simulation useful. Unfortunately, since there is a great deal of vari-
ation between the facilities provided by different simulators, it is not practical to go into
any detail in this book. Simulator vendors usually provide training documentation and lab
courses that explain how to use the facilities provided by their products.

Exercises

1. [➊ 5.1] Write an entity declaration for a lookup table ROM modeled at an abstract level.
The ROM has an address input of type lookup_index, which is an integer range from
0 to 31, and a data output of type real. Include declarations within the declarative part
of the entity to define the ROM contents, initialized to numbers of your choice.

2. [➊ 5.2] Write an architecture body for the ROM described in Exercise 1. Include a sig-
nal assignment that uses the address input to index the ROM content and assigns the
resulting value to the data output with a delay of 200 ps.

3. [➊ 5.2] Trace the transactions applied to the signal s in the following process. At what
times is the signal active, and at what times does an event occur on it?

process is
begin
  s <= 'Z', '0' after 10 ns, '1' after 30 ns;
  wait for 50 ns;
  s <= '1' after 5 ns; 'H' after 15 ns;
  wait for 50 ns;
  s <= 'Z';
  wait;
end process;

4. [➊ 5.2] Given the assignments to the signal s made by the process in Exercise 3, trace
the values of the signals s'delayed(5 ns), s'stable(5 ns), s'quiet(5 ns) and s'transac-
tion. What are the values of s'last_event, s'last_active and s'last_value at time 60 ns?

5. [➊ 5.2] Write a wait statement that suspends a process until a signal s changes from
‘1’ to ‘0’ while an enable signal en is ‘1’.



198 Chapter 5 — Basic Modeling Constructs

6. [➊ 5.2] Write a wait statement that suspends a process until a signal ready changes to
‘1’ or until a maximum of 5 ms has elapsed.

7. [➊ 5.2] Suppose the signal s currently has the value ‘0’. What is the value of the Bool-
ean variables v1 and v2 after execution of the following statements within a process?

s <= '1';
v1 := s = '1';
wait on s;
v2 := s = '1';

8. [➊ 5.2] Trace the transactions scheduled on the driver for z by the following state-
ments, and show the values taken on by z during simulation.

z <= transport '1' after 6 ns;
wait for 3 ns;
z <= transport '0' after 4 ns;
wait for 5 ns;
z <= transport '1' after 6 ns;
wait for 1 ns;
z <= transport '0' after 4 ns;

9. [➊ 5.2] Trace the transactions scheduled on the driver for x by the following state-
ments, and show the values taken on by x during simulation. Assume x initially has
the value zero.

x <= reject 5 ns inertial  1 after 7 ns,
                          23 after 9 ns,
                           5 after 10 ns,
                          23 after 12 ns,
                          -5 after 15 ns;
wait for 6 ns;
x <= reject 5 ns inertial 23 after 7 ns;

10. [➊ 5.2] Identify the signals to which the following process is sensitive:

logic_block : process (all) is
begin
  out1 <= '0'; out2 <= '0';
  case current_state is
    when s0 => if in1 then
                 next_state <= s1;
                 out1 <= '1';
               else
                 next_state <= idle;
               end if;
    when s1 => next_state <= s2;
               out2 <= '1';
    when s2 => next_state <= idle;



Exercises 199

  end case;
end process logic_block;

11. [➊ 5.2] Write the equivalent process for the conditional signal assignment statement

mux_logic :
  z <= a and not b after 5 ns
         when enable and not sel else
       x or y after 6 ns
         when enable and sel else
      '0' after 4 ns;

12. [➊ 5.2] Write the equivalent process for the selected signal assignment statement

with bit_vector'(s, r) select
  q <= unaffected when "00",
       '0' when "01",
       '1' when "10" | "11";

13. [➊ 5.2] Write a concurrent assertion statement that verifies that the time between
changes of a clock signal, clk, is at least T_pw_clk.

14. [➊ 5.3] Write component instantiation statements to model the structure shown by the
schematic diagram in Figure 5.11. Assume that the entity ttl_74x74 and the corre-
sponding architecture basic have been analyzed into the library work.

FIGURE 5.11 

A schematic diagram of a 2-bit counter.

15. [➊ 5.3] Sketch a schematic diagram of the structure modeled by the following compo-
nent instantiation statements.

decode_1 : entity work.ttl_74x138(basic)
  port map ( c => a(2), b => a(1), a => a(0),
             g1 => a(3), g2a_n => sel_n, g2b_n => '0',
             y7_n => en_n(15), y6_n => en_n(14),

ttl_74x74

pr_n
d
clk
clr_n

q

q_n

bit_0

ttl_74x74

pr_n
d
clk
clr_n

q

q_n

bit_1

clk

reset_n

'1' '1'
q1

q0



200 Chapter 5 — Basic Modeling Constructs

             y5_n => en_n(13), y4_n => en_n(12),
             y3_n => en_n(11), y2_n => en_n(10),
             y1_n => en_n(9), y0_n => en_n(8) );

decode_0 : entity work.ttl_74x138(basic)
  port map ( c => a(2), b => a(1), a => a(0),
             g1 => '1', g2a_n => sel_n, g2b_n => a(3),
             y7_n => en_n(7), y6_n => en_n(6),
             y5_n => en_n(5), y4_n => en_n(4),
             y3_n => en_n(3), y2_n => en_n(2),
             y1_n => en_n(1), y0_n => en_n(0) );

16. [➊ 5.4] Example 5.27 shows one possible order of analysis of the design units in the
counter of Figure 5.7. Show two other possible orders of analysis.

17. [➊ 5.4] Write a context clause that makes the resource libraries company_lib and
project_lib accessible and that makes directly visible the entities in_pad and out_pad
from company_lib and all entities from project_lib.

18. [➊ 5.4] Write a context declaration that includes a library clause for libraries ieee,
IP_worx, and phantom_lib, and use clauses for the package std_logic_1164 from ieee
and for all library units from the other two libraries.

19. [➋ 5.2] Develop a behavioral model for a four-input multiplexer, with ports of type bit
and a propagation delay from data or select input to data output of 4.5 ns. You should
declare a constant for the propagation delay, rather than writing it as a literal in signal
assignments in the model.

20. [➋ 5.2] Develop a behavioral model for a negative-edge-triggered 4-bit counter with
asynchronous parallel load inputs. The entity declaration is

entity counter is
  port ( clk_n, load_en : in std_ulogic;
         d : in std_ulogic_vector(3 downto 0);
         q : out std_ulogic_vector(3 downto 0) );
end entity counter;

21. [➋ 5.2] Develop a behavioral model for a D-latch with a clock-to-output propagation
delay of 3 ns and a data-to-output propagation delay of 4 ns.

22. [➋ 5.2] Develop a behavioral model for an edge-triggered flipflop that includes tests
to verify the following timing constraints: data setup time of 3 ns, data hold time of
2 ns and minimum clock pulse width of 5 ns.

23. [➋ 5.2] Develop a model of an adder whose interface is specified by the following
entity declaration:

entity adder is
  port ( a, b : in integer;  s : out integer );
end entity adder;



Exercises 201

For each pair of integers that arrive on the inputs, the adder produces their sum on
the output. Note that successive integers on each input may have the same value, so
the adder must respond to transactions rather than to events. While integers in a pair
may arrive in the inputs at different times, you may assume that neither value of the
following pair will arrive until both values of the first pair have arrived. The adder
should produce the sum only when both input values of a pair have arrived.

24. [➋ 5.2] Develop a behavioral model for a two-input Muller-C element, with two input
ports and one output, all of type bit. The inputs and outputs are initially ‘0’. When
both inputs are ‘1’, the output changes to ‘1’. It stays ‘1’ until both inputs are ‘0’, at
which time it changes back to ‘0’. Your model should have a propagation delay for
rising output transitions of 3.5 ns, and for falling output transitions of 2.5 ns.

25. [➋ 5.2] The following process statement models a producer of data:

producer : process is
  variable next_data : natural := 0;
begin
  data <= next_data;  next_data := next_data + 1;
  data_ready <= '1';
  wait until data_ack;
  data_ready <= '0';
  wait until not data_ack;
end process producer;

The process uses a four-phase handshaking protocol to synchronize data transfer with
a consumer process. Develop a process statement to model the consumer. It, too,
should use delta delays in the handshaking protocol. Include the process statements
in a test-bench architecture body, and experiment with your simulator to see how it
deals with models that use delta delays.

26. [➋ 5.2] Develop a behavioral model for a multitap delay line, with the following in-
terface:

entity delay_line is
  port ( input : in std_ulogic;
         output : out std_ulogic_vector );
end entity delay_line;

Each element of the output port is a delayed version of the input. The delay to the
leftmost output element is 5 ns, to the next element is 10 ns and so on. The delay to
the rightmost element is 5 ns times the length of the output port. Assume the delay
line acts as an ideal transmission line.

27. [➋ 5.2] Develop a functional model using conditional signal assignment statements of
an address decoder for a microcomputer system. The decoder has an address input
port of type natural and a number of active-low select outputs, each activated when
the address is within a given range. The outputs and their corresponding ranges are

ROM_sel_n 16#0000# to 16#3FFF#



202 Chapter 5 — Basic Modeling Constructs

RAM_sel_n 16#4000# to 16#5FFF#

PIO_sel_n 16#8000# to 16#8FFF#

SIO_sel_n 16#9000# to 16#9FFF#

INT_sel_n 16#F000# to 16#FFFF#

28. [➋ 5.2] Develop a functional model of a BCD-to-seven-segment decoder for a light-
emitting diode (LED) display. The decoder has a 4-bit input that encodes a numeric
digit between 0 and 9. There are seven outputs indexed from ‘a’ to ‘g’, corresponding
to the seven segments of the LED display as shown in the margin. An output bit being
‘1’ causes the corresponding segment to illuminate. For each input digit, the decoder
activates the appropriate combination of segment outputs to form the displayed rep-
resentation of the digit. For example, for the input “0010”, which encodes the digit 2,
the output is “1101101”. Your model should use a selected signal assignment state-
ment to describe the decoder function in truth-table form.

29. [➋ 5.2] Write an entity declaration for a 4-bit counter with an asynchronous reset input.
Include a process in the entity declaration that measures the duration of each reset
pulse and reports the duration at the end of each pulse.

30. [➋ 5.3] Develop a structural model of an 8-bit odd-parity checker using instances of
an exclusive-or gate entity. The parity checker has eight inputs, i0 to i7, and an output,
p, all of type std_ulogic. The logic equation describing the parity checker is

31. [➌ 5.3] Develop a structural model of a 14-bit counter with parallel load inputs, using
instances of the 4-bit counter described in Exercise 20. Ensure that any unused inputs
are properly connected to a constant driving value.

32. [➌ 5.2] Develop a behavioral model for a D-latch with tristate output. The entity dec-
laration is

entity d_latch is
  port ( latch_en, out_en, d : in std_ulogic;
         q : out std_ulogic );
end entity d_latch;

When latch_en is asserted, data from the d input enters the latch. When latch_en is
negated, the latch maintains the stored value. When out_en is asserted, data passes
through to the output. When out_en is negated, the output has the value ‘Z’ (high-
impedance). The propagation delay from latch_en to q is 3 ns and from d to q is 4 ns.
The delay from out_en asserted to q active is 2 ns and from out_en negated to q high-
impedance is 5 ns.

33. [➌ 5.2] Develop a functional model of a 4-bit carry-look-ahead adder. The adder has
two 4-bit data inputs, a(3 downto 0) and b(3 downto 0); a 4-bit data output,
s(3 downto 0); a carry input, c_in; a carry output, c_out; a carry generate output, g;

a

g b

cde

f

P I0 I1⊕( ) I2 I3⊕( )⊕( ) I4 I5⊕( ) I6 I7⊕( )⊕( )⊕=



Exercises 203

and a carry propagate output, p. The adder is described by the logic equations and
associated propagation delays:

where the Gi are the intermediate carry generate signals, the Pi are the intermediate
carry propagate signals and the Ci are the intermediate carry signals. C–1 is c_in and
C3 is c_out. Your model should use the expanded equation to calculate the interme-
diate carries, which are then used to calculate the sums.

34. [➌ 5.2] Develop a behavioral model for a four-input arbiter with the following entity
interface:

entity arbiter is
  port ( request : in bit_vector(0 to 3);
         acknowledge : out bit_vector(0 to 3) );
end entity arbiter;

The arbiter should use a round-robin discipline for responding to requests. Include a
concurrent assertion statement that verifies that no more than one acknowledgment
is issued at once and that an acknowledgment is only issued to a requesting client.

35. [➌ 5.2] Write an entity declaration for a 7474 positive edge-triggered JK-flipflop with
asynchronous active-low preset and clear inputs, and Q and  outputs. Include con-
current assertion statements and passive processes as necessary in the entity declara-
tion to verify that

• the preset and clear inputs are not activated simultaneously,

• the setup time of 6 ns from the J and K inputs to the rising clock edge is observed,

• the hold time of 2 ns for the J and K inputs after the rising clock edge is observed
and

• the minimum pulse width of 5 ns on each of the clock, preset and clear inputs is
observed.

Write a behavioral architecture body for the flipflop and a test bench that exercises
the statements in the entity declaration.

36. [➌ 5.3] Define entity interfaces for a microprocessor, a ROM, a RAM, a parallel I/O
controller, a serial I/O controller, an interrupt controller and a clock generator. Use

Si Ai Bi Ci 1– (delay is 5 ns)⊕ ⊕=

Gi AiBi (delay is 2 ns)=

Pi Ai Bi (delay is 3 ns)+=

Ci Gi PiCi 1–+=

Gi PiGi 1– PiPi 1– Gi 2– · · · PiPi 1– …P0C 1– (delay is 5 ns)+ + + +=

G G3 P3G2 P3P2G1 P3P2P1G0 (delay is 5 ns)+ + +=

P P3P2P1P0 (delay is 3 ns)=

Q



204 Chapter 5 — Basic Modeling Constructs

instances of these entities and an instance of the address decoder described in Exer-
cise 27 to develop a structural model of a microcomputer system.

37. [➌ 5.3] Develop a structural model of a 16-bit carry-look-ahead adder, using instances
of the 4-bit adder described in Exercise 33. You will need to develop a carry-look-
ahead generator with the following interface:

entity carry_look_ahead_generator is
  port ( p0, p1, p2, p3, g0, g1, g2, g3 : in bit;
         c_in : in bit;  c1, c2, c3 : out bit );
end entity carry_look_ahead_generator;

The carry-look-ahead generator is connected to the 4-bit adders as shown in Figure
5.12. It calculates the carry output signals using the generate, propagate and carry
inputs in the same way that the 4-bit counters calculate their internal carry signals.

FIGURE 5.12 

Connections between a carry-look-ahead generator and adders.

38. [➍ 5.2] Develop a behavioral model for a household burglar alarm. The alarm has in-
puts for eight sensors, each of which is normally ‘0’. When an intruder is detected,
one of the sensors changes to ‘1’. There is an additional input from a key-switch and
an output to a siren. When the key-switch input is ‘0’, the alarm is disabled and the
siren output is ‘0’. When the key-switch input changes to ‘1’, there is a 30 s delay be-
fore the alarm is enabled. Once enabled, detection of an intruder starts another 30 s
delay, after which time the siren output is set to ‘1’. If the key-switch input changes
back to ‘0’, the alarm is immediately disabled.

39. [➍ 5.2] In his book Structured Computer Organization, Tanenbaum describes the use
of a Hamming code for error detection and correction of 16-bit data ([16], pages 44–
48). Develop behavioral models for a Hamming code generator and for an error de-
tector and corrector. Devise a test bench that allows you to introduce single-bit errors
into the encoded data, to verify that the error corrector works properly.

40. [➍ 5.2] Develop a behavioral model of a 4K × 8-bit serial-input/output RAM. The de-
vice has a chip-enable input ce, a serial clock clk, a data input d_in and a data output

adder

g p

c_in c_out

nibble_0

carry_look_ahead_generator

g0 c1p0

c_in

c2 c3g1 p1 g2 p2 g3 p3

adder

g p

c_in c_out

nibble_1
adder

g p

c_in c_out

nibble_2
adder

g p

c_in c_out

nibble_3

c_in c_out



Exercises 205

d_out. When ce is ‘1’, the data input is sampled on 23 successive rising clock edges
to form the 23 bits of a command string. A string of the form

1 A11 A10 … A0 0 1 D7 D6 … D0

is a write command, in which the bits Ai are the address and the bits Dj are the data
to be written. A string of the form

1 A11 A10 … A0 1 1 X X X X X X X X

is a read command, in which the bits denoted by X are ignored. The RAM produces
the successive bits of read data synchronously with the last eight rising clock edges
of the command.

41. [➍ 5.2/5.3] Develop a model of a device to count the number of cars in a parking lot.
The lot has a gate through which only one car at a time may enter or leave. There are
two pairs, labeled A and B, each comprising an LED and a photodetector, mounted
on the gate as shown in Figure 5.13. Each detector produces a ‘1’ output when a car
obscures the corresponding LED. When a car enters the yard, the front of the car ob-
scures LED A, then LED B. When the car has advanced sufficiently, LED A becomes
visible again, followed by LED B. The process is reversed for a car leaving the lot.
Note that a car may partially enter or leave the lot and then reverse.

FIGURE 5.13 

Arrangement of LEDs and photodetectors on a parking lot gate.

Your model should include a clocked finite-state machine (FSM) with two inputs,
one from each detector, and increment and decrement outputs that pulse to ‘1’ for one
clock cycle when a car has totally entered or left the lot. The FSM outputs should drive
a three-digit chain of BCD up/down counters, whose outputs are connected to seven-
segment decoders.

photo- 
detectorsLEDs

B

A

B

A



207

Chapter 6 

Subprograms

When we write complex behavioral models it is useful to divide the code into sections,
each dealing with a relatively self-contained part of the behavior. VHDL provides a sub-
program facility to let us do this. In this chapter, we look at the two kinds of subprograms:
procedures and functions. The difference between the two is that a procedure encapsu-
lates a collection of sequential statements that are executed for their effect, whereas a
function encapsulates a collection of statements that compute a result. Thus a procedure
is a generalization of a statement, whereas a function is a generalization of an expression. 

6.1 Procedures

We start our discussion of subprograms with procedures. There are two aspects to using
procedures in a model: first the procedure is declared, then elsewhere the procedure is
called. The syntax rule for a procedure declaration is

subprogram_body ⇐
procedure identifier [ ( parameter_interface_list ) ] is

{ subprogram_declarative_part }
begin

{ sequential_statement }
end [ procedure ] [ identifier ] ;

For now we will just look at procedures without the parameter list part; we will come back
to parameters in the next section.

The identifier in a procedure declaration names the procedure. The name may be re-
peated at the end of the procedure declaration. The sequential statements in the body of
a procedure implement the algorithm that the procedure is to perform and can include
any of the sequential statements that we have seen in previous chapters. A procedure can
declare items in its declarative part for use in the statements in the procedure body. The
declarations can include types, subtypes, constants, variables and nested subprogram dec-
larations. The items declared are not accessible outside of the procedure; we say they are
local to the procedure.



208 Chapter 6 — Subprograms

EXAMPLE 6.1 Averaging an array of data samples

The following procedure calculates the average of a collection of data values stored
in an array called samples and assigns the result to a variable called average. This
procedure has a local variable total for accumulating the sum of array elements. Un-
like variables in processes, procedure local variables are created anew and initialized
each time the procedure is called.

procedure average_samples is
  variable total : real := 0.0;
begin
  assert samples'length > 0 severity failure;
  for index in samples'range loop
    total := total + samples(index);
  end loop;
  average := total / real(samples'length);
end procedure average_samples;

The actions of a procedure are invoked by a procedure call statement, which is yet
another VHDL sequential statement. A procedure with no parameters is called simply by
writing its name, as shown by the syntax rule

procedure_call_statement ⇐ [ label : ] procedure_name ;

The optional label allows us to identify the procedure call statement. We will discuss la-
beled statements in Chapter 20. As an example, we might include the following statement
in a process:

average_samples;

The effect of this statement is to invoke the procedure average_samples. This involves
creating and initializing a new instance of the local variable total, then executing the state-
ments in the body of the procedure. When the last statement in the procedure is
completed, we say the procedure returns; that is, the thread of control of statement exe-
cution returns to the process from which the procedure was called, and the next statement
in the process after the call is executed.

We can write a procedure declaration in the declarative part of an architecture body
or a process. We can also declare procedures within other procedures, but we will leave
that until a later section. If a procedure is included in an architecture body’s declarative
part, it can be called from within any of the processes in the architecture body. On the
other hand, declaring a procedure within a process hides it away from use by other pro-
cesses.



6.1 Procedures 209

EXAMPLE 6.2 A procedure to implement behavior within a process

The outline below illustrates a procedure defined within a process. The procedure
do_arith_op encapsulates an algorithm for arithmetic operations on two values, pro-
ducing a result and a flag indicating whether the result is zero. It has a variable result,
which it uses within the sequential statements that implement the algorithm. The state-
ments also use the signals and other objects declared in the architecture body. The
process alu invokes do_arith_op with a procedure call statement. The advantage of
separating the statements for arithmetic operations into a procedure in this example
is that it simplifies the body of the alu process.

architecture rtl of control_processor is

  type func_code is (add, subtract);

  signal op1, op2, dest : integer;
  signal Z_flag : boolean;
  signal func : func_code;
  ...

begin

  alu : process is

    procedure do_arith_op is
      variable result : integer;
    begin
      case func is
        when add =>
          result := op1 + op2;
        when subtract =>
          result := op1 - op2;
      end case;
      dest  <=  result after Tpd;
      Z_flag  <=  result = 0 after Tpd;
    end procedure do_arith_op;

  begin
    ...
    do_arith_op;
    ...
  end process alu;

  ...

end architecture rtl;

Another important use of procedures arises when some action needs to be performed
several times at different places in a model. Instead of writing several copies of the state-



210 Chapter 6 — Subprograms

ments to perform the action, the statements can be encapsulated in a procedure, which is
then called from each place.

EXAMPLE 6.3 A memory read procedure invoked from several places in a model

The process outlined below is taken from a behavioral model of a CPU. The process
fetches instructions from memory and interprets them. Since the actions required to
fetch an instruction and to fetch a data word are identical, the process encapsulates
them in a procedure, read_memory. The procedure copies the address from the mem-
ory address register to the address bus, sets the read signal to ‘1’, then activates the
request signal. When the memory responds, the procedure copies the data from the
data bus signal to the memory data register and acknowledges to the memory by set-
ting the request signal back to ‘0’. When the memory has completed its operation, the
procedure returns.

instruction_interpreter : process is

  variable mem_address_reg, mem_data_reg,
           prog_counter, instr_reg, accumulator, index_reg : word;
  ...

  procedure read_memory is
  begin
    address_bus <= mem_address_reg;
    mem_read <= '1';
    mem_request <= '1';
    wait until mem_ready;
    mem_data_reg := data_bus_in;
    mem_request <= '0';
    wait until not mem_ready;
  end procedure read_memory;

begin
  ...  -- initialization
  loop
    -- fetch next instruction
    mem_address_reg := prog_counter;
    read_memory;      -- call procedure
    instr_reg := mem_data_reg;
    ...
    case opcode is
      ...
      when load_mem =>
        mem_address_reg := index_reg + displacement;
        read_memory;  -- call procedure
        accumulator := mem_data_reg;
      ...
    end case;



6.1 Procedures 211

  end loop;
end process instruction_interpreter;

The procedure is called in two places within the process. First, it is called to fetch
an instruction. The process copies the program counter into the memory address reg-
ister and calls the procedure. When the procedure returns, the process copies the data
from the memory data register, placed there by the procedure, to the instruction reg-
ister. The second call to the procedure takes place when a “load memory” instruction
is executed. The process sets the memory address register using the values of the in-
dex register and some displacement, then calls the memory read procedure to per-
form the read operation. When it returns, the process copies the data to the
accumulator.

Since a procedure call is a form of sequential statement and a procedure body imple-
ments an algorithm using sequential statements, there is no reason why one procedure
cannot call another procedure. In this case, control is passed from the calling procedure
to the called procedure to execute its statements. When the called procedure returns, the
calling procedure carries on executing statements until it returns to its caller.

EXAMPLE 6.4 Nested procedure calls in a control sequencer

The process outlined below is a control sequencer for a register-transfer-level model
of a CPU. It sequences the activation of control signals with a two-phase clock on sig-
nals phase1 and phase2. The process contains two procedures, control_write_back
and control_arith_op, that encapsulate parts of the control algorithm. The process
calls control_arith_op when an arithmetic operation must be performed. This proce-
dure sequences the control signals for the source and destination operand registers in
the data path. It then calls control_write_back, which sequences the control signals
for the register file in the data path, to write the value from the destination register.
When this procedure is completed, it returns to the first procedure, which then returns
to the process.

control_sequencer : process is

  procedure control_write_back is
  begin
    wait until phase1;
    reg_file_write_en <= '1';
    wait until not phase2;
    reg_file_write_en <= '0';
  end procedure control_write_back;

  procedure control_arith_op is
  begin
    wait until phase1;
    A_reg_out_en <= '1';
    B_reg_out_en <= '1';



212 Chapter 6 — Subprograms

    wait until not phase1;
    A_reg_out_en <= '0';
    B_reg_out_en <= '0';
    wait until phase2;
    C_reg_load_en <= '1';
    wait until not phase2;
    C_reg_load_en <= '0';
    control_write_back;  -- call procedure
  end procedure control_arith_op;

  ...

begin
  ...
  control_arith_op;  -- call procedure
  ...
end process control_sequencer;

VHDL-87

The keyword procedure may not be included at the end of a procedure declaration
in VHDL-87. Procedure call statements may not be labeled in VHDL-87.

6.1.1 Return Statement in a Procedure

In all of the examples above, the procedures completed execution of the statements in
their bodies before returning. Sometimes it is useful to be able to return from the middle
of a procedure, for example, as a way of handling an exceptional condition. We can do
this using a return statement, described by the simplified syntax rule

return_statement ⇐ [ label : ] return ;

The optional label allows us to identify the return statement. We will discuss labeled state-
ments in Chapter 20. The effect of the return statement, when executed in a procedure, is
that the procedure is immediately terminated and control is transferred back to the caller.

EXAMPLE 6.5 A revised memory read procedure

The following is a revised version of the instruction interpreter process from Example
6.3. The procedure to read from memory is revised to check for the reset signal be-
coming active during a read operation. If it does, the procedure returns immediately,
aborting the operation in progress. The process then exits the fetch/execute loop and
starts the process body again, reinitializing its state and output signals.

instruction_interpreter : process is

  ...



6.2 Procedure Parameters 213

  procedure read_memory is
  begin
    address_bus <= mem_address_reg;
    mem_read <= '1';
    mem_request <= '1';
    wait until mem_ready or reset;
    if reset then
      return;
    end if;
    mem_data_reg := data_bus_in;
    mem_request <= '0';
    wait until not mem_ready;
  end procedure read_memory;

begin
  ...    -- initialization
  loop
    ...
    read_memory;
    exit when reset;
      ...
  end loop;
end process instruction_interpreter;

VHDL-87

Return statements may not be labeled in VHDL-87.

6.2 Procedure Parameters

Now that we have looked at the basics of procedures, we will discuss procedures that in-
clude parameters. A parameterized procedure is much more general in that it can perform
its algorithm using different data objects or values each time it is called. The idea is that
the caller passes parameters to the procedure as part of the procedure call, and the pro-
cedure then executes its statements using the parameters.

When we write a parameterized procedure, we include information in the parameter
interface list (or parameter list, for short) about the parameters to be passed to the proce-
dure. The syntax rule for a procedure declaration on page 207 shows where the parameter
list fits in. Following is the syntax rule for a parameter list:

interface_list ⇐
( [ constant I variable I signal ]

identifier { , … } : [ mode ] subtype_indication
[ := static_expression ] ) { ; … }

mode ⇐ in I out I inout



214 Chapter 6 — Subprograms

As we can see, it is similar to the port interface list used in declaring entities. This similarity
is not coincidental, since they both specify information about objects upon which the user
and the implementation must agree. In the case of a procedure, the user is the caller of
the procedure, and the implementation is the body of statements within the procedure.
The objects defined in the parameter list are called the formal parameters of the proce-
dure. We can think of them as placeholders that stand for the actual parameters, which
are to be supplied by the caller when it calls the procedure. Since the syntax rule for a
parameter list is quite complex, let us start with some simple examples and work up from
them.

EXAMPLE 6.6 Using a parameter to select an arithmetic operation to perform

Let’s rewrite the procedure do_arith_op from Example 6.2 so that the function code is
passed as a parameter. The new version is

procedure do_arith_op ( op : in func_code ) is
  variable result : integer;
begin
  case op is
    when add =>
      result := op1 + op2;
    when subtract =>
      result := op1 - op2;
  end case;
  dest  <=  result after Tpd;
  Z_flag  <=  result = 0 after Tpd;
end procedure do_arith_op;

In the parameter interface list we have identified one formal parameter named op.
This name is used in the statements in the procedure to refer to the value that will be
passed as an actual parameter when the procedure is called. The mode of the formal
parameter is in, indicating that it is used to pass information into the procedure from
the caller. This means that the statements in the procedure can use the value but can-
not modify it. In the parameter list we have specified the type of the parameter as
func_code. This indicates that the operations performed on the value in the statements
must be appropriate for a value of this type, and that the caller may only pass a value
of this type as an actual parameter.

Now that we have parameterized the procedure, we can call it from different
places passing different function codes each time. For example, a call at one place
might be

do_arith_op ( add );

The procedure call simply includes the actual parameter value in parentheses. In this
case we pass the literal value add as the actual parameter. At another place in the
model we might pass the value of the signal func shown in the model in Example 6.2:

do_arith_op ( func );



6.2 Procedure Parameters 215

In this example, we have specified the mode of the formal parameter as in. Note
that the syntax rule for a parameter list indicates that the mode is an optional part. If
we leave it out, mode in is assumed, so we could have written the procedure as

procedure do_arith_op ( op : func_code ) is ...

While this is equally correct, it’s not a bad idea to include the mode specification
for in parameters, to make our intention explicitly clear.

The syntax rule for a parameter list also shows us that we can specify the class of a
formal parameter, namely, whether it is a constant, a variable or a signal within the pro-
cedure. If the mode of the parameter is in, the class is assumed to be constant, since a
constant is an object that cannot be updated by assignment. It is just a quirk of VHDL that
we can specify both constant and in, even though to do so is redundant. Usually we
simply leave out the keyword constant, relying on the mode to make our intentions clear.
(The exceptions are parameters of access types, discussed in Chapter 15, and file types,
discussed in Chapter 16.) For an in-mode constant-class parameter, we write an expres-
sion as the actual parameter. The value of this expression must be of the type specified in
the parameter list. The value is passed to the procedure for use in the statements in its
body.

Let us now turn to formal parameters of mode out. Such a parameter lets us transfer
information out from the procedure back to the caller. Here is an example, before we
delve into the details.

EXAMPLE 6.7 A procedure for addition with overflow output

The procedure below performs addition of two unsigned numbers represented as bit
vectors of type word32, which we assume is defined elsewhere. The procedure has
two in-mode parameters a and b, allowing the caller to pass two bit-vector values.
The procedure uses these values to calculate the sum and overflow flag. Within the
procedure, the two out-mode parameters, sum and overflow, appear as variables.
The procedure performs variable assignments to update their values, thus transferring
information back to the caller.

procedure addu ( a, b : in word32;
                 sum : out word32;
                 overflow : out bit ) is
  variable carry : bit := '0';
begin
  for index in sum'reverse_range loop
    sum(index) := a(index) xor b(index) xor carry;
    carry := ( a(index) and b(index) )
             or ( carry and ( a(index) xor b(index) ) );
  end loop;
  overflow := carry;
end procedure addu;



216 Chapter 6 — Subprograms

A call to this procedure may appear as follows:

variable PC, next_PC : word32;
variable overflow_flag : bit;
...

addu ( PC, X"0000_0004", next_PC, overflow_flag);

In this procedure call statement, the first two actual parameters are expressions
whose values are passed in through the formal parameters a and b. The third and
fourth actual parameters are the names of variables. When the procedure returns, the
values assigned by the procedure to the formal parameters sum and overflow are used
to update the variables next_PC and overflow_flag.

In the above example, the out-mode parameters are of the class variable. Since this
class is assumed for out parameters, we usually leave out the class specification variable,
although it may be included if we wish to state the class explicitly. We will come back to
signal-class parameters in a moment. The mode out indicates that the procedure may
update the formal parameters by variable assignment to transfer information back to the
caller. The procedure may also read the values of the parameters, just as it can with in-
mode parameters. The difference is that an out-mode parameter is not initialized with the
value of the actual parameter. Instead, it is initalized in the same way as a locally declared
variable, with the default initial value for the type of the parameter. When the procedure
reads the parameter, it reads the parameter’s current value, yielding the value most recent-
ly assigned within the procedure, or the initial value if no assignments have been made.
For an out mode, variable-class parameter, the caller must supply a variable as an actual
parameter. Both the actual parameter and the value returned must be of the type specified
in the parameter list. When the procedure returns, the value of the formal parameter is
copied back to the actual parameter variable.

The third mode we can specify for formal parameters is inout, which is a combination
of in and out modes. It is used for objects that are to be both read and updated by a
procedure. As with out parameters, they are assumed to be of class variable if the class is
not explicitly stated. For inout-mode variable parameters, the caller supplies a variable as
an actual parameter. The value of this variable is used to initialize the formal parameter,
which may then be used in the statements of the procedure. The procedure may also per-
form variable assignments to update the formal parameter. When the procedure returns,
the value of the formal parameter is copied back to the actual parameter variable, trans-
ferring information back to the caller.

EXAMPLE 6.8 A procedure to negate a binary-coded number

The following procedure negates a number represented as a bit vector, using the
“complement and add one” method:

procedure negate ( a : inout word32 ) is
  variable carry_in : bit := '1';
  variable carry_out : bit;



6.2 Procedure Parameters 217

begin
  a := not a;
  for index in a'reverse_range loop
    carry_out :=  a(index) and carry_in;
    a(index) := a(index) xor carry_in;
    carry_in := carry_out;
  end loop;
end procedure negate;

Since a is an inout-mode parameter, we can refer to its value in expressions in
the procedure body. (This differs from the parameter result in the addu procedure of
the previous example.) We might include the following call to this procedure in a
model:

variable op1 : word32;
...

negate ( op1 );

This uses the value of op1 to initialize the formal parameter a. The procedure
body is then executed, updating a, and when it returns, the final value of a is copied
back into op1.

VHDL-87, -93, and -2002

These versions of VHDL do not allow an out-mode parameter to be read. Instead, if
the value must be read within the procedure, the procedure must declare and read a
local variable. The final value of the local variable can then be assigned to the out-
mode parameter immediately before the procedure returns.

6.2.1 Signal Parameters

The third class of object that we can specify for formal parameters is signal, which indi-
cates that the algorithm performed by the procedure involves a signal passed by the caller.
A signal parameter can be of any of the modes in, out or inout. The way that signal pa-
rameters work is somewhat different from constant and variable parameters, so it is worth
spending a bit of time understanding them.

When a caller passes a signal as a parameter of mode in, instead of passing the value
of the signal, it passes the signal object itself. Any reference to the formal parameter within
the procedure is exactly like a reference to the actual signal itself. The statements within
the procedure can read the signal value, include it in sensitivity lists in wait statements,
and query its attributes. A consequence of passing a reference to the signal is that if the
procedure executes a wait statement, the signal value may be different after the wait state-
ment completes and the procedure resumes. This behavior differs from that of constant
parameters of mode in, which have the same value for the whole of the procedure.



218 Chapter 6 — Subprograms

EXAMPLE 6.9 A procedure to receive network packets

Suppose we wish to model the receiver part of a network interface. It receives fixed-
length packets of data on the signal rx_data. The data is synchronized with changes,
from ‘0’ to ‘1’, of the clock signal rx_clock. An outline of part of the model is

architecture behavioral of receiver is

  ...    -- type declarations, etc

  signal recovered_data : bit;
  signal recovered_clock : bit;
  ...

  procedure receive_packet ( signal rx_data : in bit;
                             signal rx_clock : in bit;
                             data_buffer : out packet_array ) is
  begin
    for index in packet_index_range loop
      wait until rx_clock;
      data_buffer(index) := rx_data;
    end loop;
  end procedure receive_packet;

begin

  packet_assembler : process is
    variable packet : packet_array;
  begin
    ...
    receive_packet ( recovered_data, recovered_clock, packet );
    ...
  end process packet_assembler;

  ...

end architecture behavioral;

The receive_packet procedure has signal parameters of mode in for the network-
data and clock signals. During execution of the model, the process packet_assembler
calls the procedure receive_packet, passing the signals recovered_data and
recovered_clock as actual parameters. We can think of the procedure as executing “on
behalf of” the process. When it reaches the wait statement, it is really the calling pro-
cess that suspends. The wait statement mentions rx_clock, and since this stands for
recovered_clock, the process is sensitive to changes on recovered_clock while it is
suspended. Each time it resumes, it reads the current value of rx_data (which repre-
sents the actual signal recovered_data) and stores it in an element of the array param-
eter data_buffer.



6.2 Procedure Parameters 219

Now let’s look at signal parameters of mode out. In this case, the caller must name a
signal as the actual parameter, and the procedure is passed a reference to the driver for
the signal. The procedure is not allowed to read the formal parameter. When the proce-
dure performs a signal assignment statement on the formal parameter, the transactions are
scheduled on the driver for the actual signal parameter. In Chapter 5, we said that a pro-
cess that contains a signal assignment statement contains a driver for the target signal, and
that an ordinary signal may only have one driver. When such a signal is passed as an actual
out-mode parameter, there is still only the one driver. We can think of the signal assign-
ments within the procedure as being performed on behalf of the process that calls the
procedure.

EXAMPLE 6.10 A procedure to generate pulses on a signal

The following is an outline of an architecture body for a signal generator. The proce-
dure generate_pulse_train has in-mode constant parameters that specify the charac-
teristics of a pulse train and an out-mode signal parameter on which it generates the
required pulse train. The process raw_signal_generator calls the procedure, supplying
raw_signal as the actual signal parameter for s. A reference to the driver for
raw_signal is passed to the procedure, and transactions are generated on it.

library ieee;  use ieee.std_logic_1164.all;

architecture top_level of signal_generator is

  signal raw_signal : std_ulogic;
  ...

  procedure generate_pulse_train
    ( width, separation : in delay_length;
      number : in natural;
      signal s : out std_ulogic ) is
  begin
    for count in 1 to number loop
      s <= '1', '0' after width;
      wait for width + separation;
    end loop;
  end procedure generate_pulse_train;

begin

  raw_signal_generator : process is
  begin
    ...
    generate_pulse_train ( width => period / 2,
                           separation => period - period / 2,
                           number => pulse_count,
                           s => raw_signal );
    ...
  end process raw_signal_generator;



220 Chapter 6 — Subprograms

  ...

end architecture top_level;

An incidental point to note is the way we have specified the actual value for the
separation parameter in the procedure call. This ensures that the sum of the width
and separation values is exactly equal to period, even if period is not an even multiple
of the time resolution limit. This illustrates an approach sometimes called “defensive
programming,” in which we try to ensure that the model works correctly in all possi-
ble circumstances.

As with variable-class parameters, we can also have a signal-class parameter of mode
inout. When the procedure is called, both the signal and a reference to its driver are
passed to the procedure. The statements within it can read the signal value, include it in
sensitivity lists in wait statements, query its attributes, and schedule transactions using sig-
nal assignment statements.

An important point to note about procedures with signal parameters relates to proce-
dure calls within processes with the reserved word all in their sensitivity lists. Such a pro-
cess is sensitive to all signals read within the process. That includes signals used as actual
in-mode and inout-mode parameters in procedure calls within the process. It also in-
cludes other signals that aren’t parameters but that are read within the procedure body.
(We will see in Section 6.6 how a procedure can reference such signals.) Since it could
become difficult to determine which signals are read by such a process when procedure
calls are involved, VHDL simplifies things somewhat by requiring that a procedure called
by the process only read signals that are formal parameters or that are declared in the same
design unit as the process. In most models this is not a problem.

A final point to note about signal parameters relates to procedures declared immedi-
ately within an architecture body. The target of any signal assignment statements within
such a procedure must be a signal parameter, rather than a direct reference to a signal
declared in the enclosing architecture body. The reason for this restriction is that the pro-
cedure may be called by more than one process within the architecture body. Each pro-
cess that performs assignments on a signal has a driver for the signal. Without the
restriction, we would not be able to tell easily by looking at the model where the drivers
for the signal were located. The restriction makes the model more comprehensible and,
hence, easier to maintain.

6.2.2 Default Values

The one remaining part of a procedure parameter list that we have yet to discuss is the
optional default value expression, shown in the syntax rule on page 213. Note that we can
only specify a default value for a formal parameter of mode in, and the parameter must
be of the class constant or variable. If we include a default value in a parameter specifi-
cation, we have the option of omitting an actual value when the procedure is called. We
can either use the keyword open in place of an actual parameter value or, if the actual
value would be at the end of the parameter list, simply leave it out. If we omit an actual
value, the default value is used instead.



6.2 Procedure Parameters 221

EXAMPLE 6.11 A procedure to increment an integer

The procedure below increments an unsigned integer represented as a bit vector. The
amount to increment by is specified by the second parameter, which has a default val-
ue of the bit-vector representation of 1.

procedure increment ( a : inout word32;
                      by : in word32 := X"0000_0001" ) is
  variable sum : word32;
  variable carry : bit := '0';
begin
  for index in a'reverse_range loop
    sum(index) := a(index) xor by(index) xor carry;
    carry := ( a(index) and by(index) )
             or ( carry and ( a(index) xor by(index) ) );
  end loop;
  a := sum;
end procedure increment;

If we have a variable count declared to be of type word32, we can call the pro-
cedure to increment it by 4, as follows:

increment(count, X"0000_0004");

If we want to increment the variable by 1, we can make use of the default value for
the second parameter and call the procedure without specifying an actual value to
increment by, as follows:

increment(count);

This call is equivalent to

increment(count, by => open);

6.2.3 Unconstrained Array Parameters

In Chapter 4 we described unconstrained and partially constrained types, in which index
ranges of arrays or array elements were left unspecified. For such types, we constrain the
index bounds when we create an object, such as a variable or a signal, or when we asso-
ciate an actual signal with a port. Another use of an unconstrained or partially constrained
type is as the type of a formal parameter to a procedure. This use allows us to write a
procedure in a general way, so that it can operate on composite values of any size or with
any ranges of index values. When we call the procedure and provide a constrained array
or record as the actual parameter, the index bounds of the actual parameter are used as
the bounds of the formal parameter. The same rules apply as those we described in Sec-
tion 4.2.3 for ports. Let us look at an example to show how unconstrained parameters
work.



222 Chapter 6 — Subprograms

EXAMPLE 6.12 A procedure to find the first set bit

Following is a procedure that finds the index of the first bit set to ‘1’ in a bit vector.
The formal parameter v is of type bit_vector, which is an unconstrained array type.
Note that in writing this procedure, we do not explicitly refer to the index bounds of
the formal parameter v, since they are not known. Instead, we use the 'range attribute.

procedure find_first_set ( v : in bit_vector;
                           found : out boolean;
                           first_set_index : out natural ) is
begin
  for index in v'range loop
    if v(index) then
      found := true;
      first_set_index := index;
      return;
    end if;
  end loop;
  found := false;
end procedure find_first_set;

When the procedure is executed, the formal parameters stand for the actual pa-
rameters provided by the caller. So if we call this procedure as follows:

variable int_req : bit_vector (7 downto 0);
variable top_priority : natural;
variable int_pending : boolean;
...

find_first_set ( int_req, int_pending, top_priority );

v'range returns the range 7 downto 0, which is used to ensure that the loop param-
eter index iterates over the correct index values for v. If we make a different call:

variable free_block_map : bit_vector(0 to block_count-1);
variable first_free_block : natural;
variable free_block_found : boolean;
...

find_first_set ( free_block_map,
                 free_block_found, first_free_block );

v'range returns the index range of the array free_block_map, since that is the actual
parameter corresponding to v.

When we have formal parameters that are of array types, whether fully constrained,
partially constrained, or unconstrained, we can use any of the array attributes mentioned
in Chapter 4 to refer to the index bounds and range of the actual parameters. We can use



6.2 Procedure Parameters 223

the attribute values to define new local constants or variables whose index bounds and
ranges depend on those of the parameters. The local objects are created anew each time
the procedure is called.

EXAMPLE 6.13 A procedure to compare binary-coded signed integers

The following procedure has two bit-vector parameters, which it assumes represent
signed integer values in two’s-complement form. It performs an arithmetic compari-
son of the numbers.

procedure bv_lt ( bv1, bv2 : in bit_vector;
                  result : out boolean ) is
  variable tmp1 : bit_vector(bv1'range) := bv1;
  variable tmp2 : bit_vector(bv2'range) := bv2;
begin
  tmp1(tmp1'left) := not tmp1(tmp1'left);
  tmp2(tmp2'left) := not tmp2(tmp2'left);
  result :=  tmp1 < tmp2;
end procedure bv_lt;

The procedure operates by taking temporary copies of each of the bit-vector pa-
rameters, inverting the sign bits and performing a lexical comparison using the built-
in “<” operator. This is equivalent to an arithmetic comparison of the original num-
bers. Note that the temporary variables are declared to be of the same size as the pa-
rameters by using the 'range attribute, and the sign bits (the leftmost bits) are indexed
using the 'left attribute.

EXAMPLE 6.14 A procedure to swap array values

Given an unconstrained type representing arrays of bit vectors declared as follows:

type bv_vector is array (natural range <>) of bit_vector;

we can declare a procedure to swap the values of two variables of the type:

procedure swap_bv_arrays ( a1, a2 : inout bv_array ) is
  variable temp : a1'subtype;
begin
  assert a1'length = a2'length and
         a1'element'length = a2'element'length;
  temp := a1; a1 := a2; a2 := temp;
end procedure swap;

Since the type bv_array is not fully constrained, we cannot use it as the type of
the variable temp. Instead, we use the 'subtype attribute to get a fully constrained
subtype with the same shape as a1. Once we’ve verified that a1 and a2 are the same
shape, we can then swap their values in the usual way using temp as the intermediate



224 Chapter 6 — Subprograms

variable. We use the 'length attribute to refer to the lengths of the top-level arrays, and
the 'length attribute applied to the 'subtype attribute to refer to the lengths of the
element arrays.

6.2.4 Summary of Procedure Parameters

Let us now summarize all that we have seen in specifying and using parameters for pro-
cedures. The syntax rule on page 213 shows that we can specify five aspects of each for-
mal parameter. First, we may specify the class of object, which determines how the formal
parameter appears within the procedure, namely, as a constant, a variable or a signal. Sec-
ond, we give a name to the formal parameter so that it can be referred to in the procedure
body. Third, we may specify the mode, in, out or inout, which determines the direction
in which information is passed between the caller and the procedure and whether the pro-
cedure can assign to the formal parameter. Fourth, we must specify the type or subtype
of the formal parameter, which restricts the type of actual parameters that can be provided
by the caller. This is important as a means of preventing inadvertent misuse of the proce-
dure. Fifth, we may include a default value, giving a value to be used if the caller does
not provide an actual parameter. These five aspects clearly define the interface between
the procedure and its callers, allowing us to partition a complex behavioral model into
sections and concentrate on each section without being distracted by other details.

Once we have encapsulated some operations in a procedure, we can then call that
procedure from different parts of a model, providing actual parameters to specialize the
operation at each call. The syntax rule for a procedure call is

procedure_call_statement ⇐
[ label : ] procedure_name [ ( parameter_association_list ) ] ;

This is a sequential statement, so it may be used in a process or inside another subprogram
body. If the procedure has formal parameters, the call can specify actual parameters to
associate with the formal parameters. The actual associated with a constant-class formal is
the value of an expression. The actual associated with a variable-class formal must be a
variable, and the actual associated with a signal-class formal must be a signal. The simpli-
fied syntax rule for the parameter association list is

parameter_association_list ⇐
( [ parameter_name => ]

expression I signal_name I variable_name I open ) { , … }

This is in fact the same syntax rule that applies to port maps in component instantia-
tions, seen in Chapter 5. Most of what we said there also applies to procedure parameter
association lists. For example, we can use positional association in the procedure call by
providing one actual parameter for each formal parameter in the order listed in the pro-
cedure declaration. Alternatively, we can use named association by identifying explicitly
which formal corresponds to which actual parameter in the call. In this case, the parame-
ters can be in any order. Also, we can use a mix of positional and named association, pro-
vided all of the positional parameters come first in the call.



6.3 Concurrent Procedure Call Statements 225

EXAMPLE 6.15 Positional and named association for parameters

Suppose we have a procedure declared as

procedure p ( f1 : in t1;  f2 : in t2;
              f3 : out t3; f4 : in t4 := v4 ) is
begin
  ...
end procedure p;

We could call this procedure, providing actual parameters in a number of ways, in-
cluding

p ( val1, val2, var3, val4 );
p ( f1 => val1, f2 => val2, f4 => val4, f3 => var3 );
p ( val1, val2, f4 => open, f3 => var3 );
p ( val1, val2, var3 );

6.3 Concurrent Procedure Call Statements

In Chapter 5 we saw that VHDL provides concurrent signal assignment statements and
concurrent assertions as shorthand notations for commonly used kinds of processes. Now
that we have looked at procedures and procedure call statements, we can introduce an-
other shorthand notation, the concurrent procedure call statement. As its name implies, it
is short for a process whose body contains a sequential procedure call statement. The syn-
tax rule is

concurrent_procedure_call_statement ⇐
[ label : ] procedure_name [ ( parameter_association_list ) ] ;

This looks identical to an ordinary sequential procedure call, but the difference is that
it appears as a concurrent statement, rather than as a sequential statement. A concurrent
procedure call is exactly equivalent to a process that contains a sequential procedure call
to the same procedure with the same actual parameters. For example, a concurrent pro-
cedure call of the form

call_proc : p ( s1, s2, val1 );

where s1 and s2 are signals and val1 is a constant, is equivalent to the process

call_proc : process is
begin
  p ( s1, s2, val1 );
  wait on s1, s2;
end process call_proc;

This also shows that the equivalent process contains a wait statement, whose sensi-
tivity clause includes the signals mentioned in the actual parameter list. This is useful, since



226 Chapter 6 — Subprograms

it results in the procedure being called again whenever the signal values change. Note that
only signals associated with in-mode or inout-mode parameters are included in the sen-
sitivity list.

EXAMPLE 6.16 A procedure to check setup time

We can write a procedure that checks setup timing of a data signal with respect to a
clock signal, as shown follows:

procedure check_setup ( signal data, clock : in bit;
                        constant Tsu : in time ) is
begin
  if rising_edge(clock) then
    assert data'last_event >= Tsu
      report "setup time violation" severity error;
  end if;
end procedure check_setup;

When the procedure is called, it tests to see if there is a rising edge on the clock
signal, and if so, checks that the data signal has not changed within the setup time
interval. We can invoke this procedure using a concurrent procedure call; for exam-
ple:

check_ready_setup : check_setup ( data => ready,
                                  clock => phi2,
                                  Tsu => Tsu_rdy_clk );

The procedure is called whenever either of the signals in the actual parameter list,
ready or phi2, changes value. When the procedure returns, the concurrent procedure
call statement suspends until the next event on either signal. The advantage of using
a concurrent procedure call like this is twofold. First, we can write a suite of com-
monly used checking procedures and reuse them whenever we need to include a
check in a model. This is potentially a great improvement in productivity. Second, the
statement that invokes the check is more compact and readily understandable than
the equivalent process written in-line.

Another point to note about concurrent procedure calls is that if there are no signals
associated with in-mode or inout-mode parameters, the wait statement in the equivalent
process does not have a sensitivity clause. If the procedure ever returns, the process sus-
pends indefinitely. This may be useful if we want the procedure to be called only once at
startup time. On the other hand, we may write the procedure so that it never returns. If
we include wait statements within a loop in the procedure, it behaves somewhat like a
process itself. The advantage of this is that we can declare a procedure that performs some
commonly needed behavior and then invoke one or more instances of it using concurrent
procedure call statements.



6.4 Functions 227

EXAMPLE 6.17 A procedure to generate a clock waveform

The following procedure generates a periodic clock waveform on a signal passed as
a parameter. The in-mode constant parameters specify the shape of a clock waveform.
The procedure waits for the initial phase delay, then loops indefinitely, scheduling a
new rising and falling transition on the clock signal parameter on each iteration. It
never returns to its caller.

procedure generate_clock ( signal clk : out std_ulogic;
                           constant Tperiod,
                                    Tpulse,
                                    Tphase : in time ) is
begin
  wait for Tphase;
  loop
    clk <= '1', '0' after Tpulse;
    wait for Tperiod;
  end loop;
end procedure generate_clock;

We can use this procedure to generate a two-phase non-overlapping pair of clock
signals, as follows:

signal phi1, phi2 : std_ulogic := '0';
...

gen_phi1 : generate_clock ( phi1, Tperiod => 50 ns,
                                  Tpulse => 20 ns,
                                  Tphase => 0 ns );

gen_phi2 : generate_clock ( phi2, Tperiod => 50 ns,
                                  Tpulse => 20 ns,
                                  Tphase => 25 ns );

Each of these calls represents a process that calls the procedure, which then ex-
ecutes the clock generation loop on behalf of its parent process. The advantage of this
approach is that we only had to write the loop once in a general-purpose procedure.
Also, we have made the model more compact and understandable.

6.4 Functions

Let us now turn our attention to the second kind of subprogram in VHDL: functions. We
can think of a function as a generalization of expressions. The expressions that we de-
scribed in Chapter 2 combined values with operators to produce new values. A function
is a way of defining a new operation that can be used in expressions. We define how the
new operation works by writing a collection of sequential statements that calculate the
result. The syntax rule for a function declaration is very similar to that for a procedure
declaration:



228 Chapter 6 — Subprograms

subprogram_body ⇐
[ pure I impure ]
function identifier [ ( parameter_interface_list ) ] return type_mark is

{ subprogram_declarative_item }
begin

{ sequential_statement }
end [ function ] [ identifier ] ;

The identifier in the declaration names the function. It may be repeated at the end of
the declaration. Unlike a procedure subprogram, a function calculates and returns a result
that can be used in an expression. The function declaration specifies the type of the result
after the keyword return. The parameter list of a function takes the same form as that for
a procedure, with two restrictions. First, the parameters of a function may not be of the
class variable. If the class is not explicitly mentioned, it is assumed to be constant. Second,
the mode of each parameter must be in. If the mode is not explicitly specified, it is as-
sumed to be in. We come to the reasons for these restrictions in a moment. Like a proce-
dure, a function can declare local items in its declarative part for use in the statements in
the function body.

A function passes the result of its computation back to its caller using a return state-
ment, given by the syntax rule

return_statement ⇐ [ label : ] return expression ;

The optional label allows us to identify the return statement. We will discuss labeled
statements in Chapter 20. The form described by this syntax rule differs from the return
statement in a procedure subprogram in that it includes an expression to provide the func-
tion result. Furthermore, a function must include at least one return statement of this form,
and possibly more. The first to be executed causes the function to complete and return its
result to the caller. A function cannot simply run into the end of the function body, since
to do so would not provide a way of specifying a result to pass back to the caller.

A function call looks exactly like a procedure call. The syntax rule is

function_call ⇐ function_name [ ( parameter_association_list ) ]

The difference is that a function call is part of an expression, rather than being a sequential
statement on its own, like a procedure call. Since a function is called as part of evaluation
of an expression, a function is not allowed to include a wait statement (nor call a proce-
dure that includes a wait statement). Expressions must always be evaluated within a single
simulation cycle.

EXAMPLE 6.18 A function to limit a value to be within bounds

The following function calculates whether a value is within given bounds and returns
a result limited to those bounds.

function limit ( value, min, max : integer ) return integer is
begin
  if value > max then



6.4 Functions 229

    return max;
  elsif value < min then
    return min;
  else
    return value;
  end if;
end function limit;

A call to this function might be included in a variable assignment statement, as
follows:

new_temperature := limit ( current_temperature
                           + increment, 10, 100 );

In this statement, the expression on the right-hand side of the assignment consists of
just the function call, and the result returned is assigned to the variable
new_temperature. However, we might also use the result of a function call in further
computation, for example:

new_motor_speed := old_motor_speed
                   + scale_factor * limit ( error, -10, +10 );

EXAMPLE 6.19 A bit-vector to numeric conversion function

The function below determines the number represented in binary by a bit-vector
value. The algorithm scans the bit vector from the most-significant end. For each bit,
it multiplies the previously accumulated value by two and then adds in the integer
value of the bit. The accumulated value is then used as the result of the function,
passed back to the caller by the return statement.

function bv_to_natural ( bv : in bit_vector ) return natural is
  variable result : natural := 0;
begin
  for index in bv'range loop
    result := result * 2 + bit'pos(bv(index));
  end loop;
  return result;
end function bv_to_natural;

As an example of using this function, consider a model for a read-only memory,
which represents the stored data as an array of bit vectors, as follows:

type rom_array is array (natural range 0 to rom_size-1)
                    of bit_vector(0 to word_size-1);
variable rom_data : rom_array;

If the model has an address port that is a bit vector, we can use the function to convert
the address to a natural value to index the ROM data array, as follows:



230 Chapter 6 — Subprograms

data <= rom_data ( bv_to_natural(address) ) after Taccess;

VHDL-87

The keyword function may not be included at the end of a function declaration in
VHDL-87. Return statements may not be labeled in VHDL-87.

6.4.1 Functional Modeling

In Chapter 5 we looked at concurrent signal assignment statements for functional model-
ing of designs. We can use functions in VHDL to help us write functional models more
expressively by defining a function that encapsulates the data transformation to be per-
formed and then calling the function in a concurrent signal assignment statement. For ex-
ample, given a declaration of a function to add two bit vectors:

function bv_add ( bv1, bv2 : in bit_vector ) return bit_vector is
begin
  ...
end function bv_add;

and signals declared in an architecture body:

signal source1, source2, sum : bit_vector(0 to 31);

we can write a concurrent signal assignment statement as follows:

adder : sum <= bv_add(source1, source2) after T_delay_adder;

6.4.2 Pure and Impure Functions

Let us now return to the reason for the restrictions on the class and mode of function for-
mal parameters stated above. These restrictions are in keeping with our idea that a func-
tion is a generalized form of operator. If we pass the same values to an operator, such as
the addition operator, in different expressions, we expect the operator to return the same
result each time. By restricting the formal parameters of a function in the way described
above, we go part of the way to ensuring the same property for function calls. One addi-
tional restriction we need to make is that the function may not refer to any variables or
signals declared by its parents, that is, by any process, subprogram or architecture body
in which the function declaration is nested. Otherwise the variables or signals might
change values between calls to the function, thus influencing the result of the function.
We call a function that makes no such reference a pure function. We can explicitly declare
a function to be pure by including the keyword pure in its definition, as shown by the
syntax rule on page 228. If we leave it out, the function is assumed to be pure. Both of
the above examples of function declarations are pure functions.

On the other hand, we may deliberately relax the restriction about a function refer-
encing its parents’ variables or signals by including the keyword impure in the function



6.4 Functions 231

declaration. This is a warning to any caller of the function that it might produce different
results on different calls, even when passed the same actual parameter values.

EXAMPLE 6.20 A function returning unique sequence numbers

Many network protocols require a sequence number in the packet header so that they
can handle packets getting out of order during transmission. We can use an impure
function to generate sequence numbers when creating packets in a behavioral model
of a network interface. The following is an outline of a process that represents the
output side of the network interface.

network_driver : process is

  constant seq_modulo : natural := 2**5;
  subtype seq_number is natural range 0 to seq_modulo-1;
  variable next_seq_number : seq_number := 0;
  ...

  impure function generate_seq_number return seq_number is
    variable number : seq_number;
  begin
    number := next_seq_number;
    next_seq_number := (next_seq_number + 1) mod seq_modulo;
    return number;
  end function generate_seq_number;

begin  -- network_driver
  ...
  new_header := pkt_header'( dest => target_host_id,
                             src => my_host_id,
                             pkt_type => control_pkt,
                             seq => generate_seq_number );
  ...
end process network_driver;

In this model, the process has a variable next_seq_number, used by the function
generate_seq_number to determine the return value each time it is called. The func-
tion has the side effect of incrementing this variable, thus changing the value to be
returned on the next call. Because of the reference to the variable in the function’s
parent, the function must be declared to be impure. The advantage of writing the
function this way lies in the expressive power of its call. The function call is simply
part of an expression, in this case yielding an element in a record aggregate of type
pkt_header. Writing it this way makes the process body more compact and easily un-
derstandable.



232 Chapter 6 — Subprograms

6.4.3 The Function now

VHDL provides a predefined function, now, that returns the current simulation time when
it is called. It is defined as

impure function now return delay_length;

Recall that the type delay_length is a predefined subtype of the physical type time,
constrained to non-negative time values. The function now is often used to check that the
inputs to a model obey the required timing constraints.

EXAMPLE 6.21 A process to check hold time

The process below checks the clock and data inputs of an edge-triggered flipflop for
adherence to the minimum hold time constraint, Thold_d_clk. When the clock signal
changes to ‘1’, the process saves the current simulation time in the variable
last_clk_edge_time. When the data input changes, the process tests whether the cur-
rent simulation time has advanced beyond the time of the last clock edge by at least
the minimum hold time, and reports an error if it has not.

hold_time_checker : process ( clk, d ) is
  variable last_clk_edge_time : time := 0 fs;
begin
  if rising_edge(clk) then
    last_clk_edge_time := now;
  end if;
  if d'event then
    assert now - last_clk_edge_time >= Thold_d_clk
      report "hold time violation";
  end if;
end process hold_time_checker;

VHDL-93 and -2002

The function now was originally defined to be impure in VHDL-93. As a consequence,
it could not be used in an expression that must be globally static. While the need to
do this is rare, it did lead to now being pure in VHDL-2002. However, that caused
more problems than it solved, so the change was reversed in VHDL-2002.

VHDL-87

The function now returns a value of type time in VHDL-87, since the subtype
delay_length is not predefined in VHDL-87.



6.5 Overloading 233

6.5 Overloading

When we are writing subprograms, it is a good idea to choose names for our subprograms
that indicate what operations they perform to make it easier for a reader to understand
our models. This raises the question of how to name two subprograms that perform the
same kind of operation but on parameters of different types. For example, we might wish
to write two procedures to increment variables holding numeric values, but in some cases
the values are represented as type integer, and in other cases they are represented using
type bit_vector. Ideally, since both procedures perform the same operation, we would like
to give them the same name, such as increment. But if we did that, would we be able to
tell them apart when we wanted to call them? Recall that VHDL strictly enforces the type
rules, so we have to refer to the right procedure depending on the type of the variable we
wish to increment.

Fortunately, VHDL allows us to define subprograms in this way, using a technique
called overloading of subprogram names. We can define two distinct subprograms with
the same name but with different numbers or types of formal parameters. When we call
one of them, the number and types of the actual parameters we supply in the call are used
to determine which subprogram to invoke. It is the context of the call that determines how
to resolve the apparent ambiguity. We have already seen overloading applied to identifiers
used as literals in enumeration types (see Chapter 2). We saw that if two enumeration
types included the same identifier, the context of use in a model is used to determine
which type is meant.

The precise rules used to disambiguate a subprogram call when the subprogram name
is overloaded are quite complex, so we will not enumerate them all here. Fortunately, they
are sufficiently complete to sort out most situations that arise in practice. Instead, we look
at some examples to show how overloading of procedures and functions works in
straightforward cases. First, here are some procedure outlines for the increment operation
described above:

procedure increment ( a : inout integer;
                      n : in integer := 1 ) is ...

procedure increment ( a : inout bit_vector;
                      n : in bit_vector := B"1" ) is ...

procedure increment ( a : inout bit_vector;
                      n : in integer := 1 ) is ...

Suppose we also have some variables declared as follows:

variable count_int : integer := 2;
variable count_bv : bit_vector (15 downto 0) := X"0002";

If we write a procedure call using count_int as the first actual parameter, it is clear that we
are referring to the first procedure, since it is the only one whose first formal parameter is
an integer. Both of the following calls can be disambiguated in this way:

increment ( count_int, 2 );
increment ( count_int );



234 Chapter 6 — Subprograms

Similarly, both of the next two calls can be sorted out:

increment ( count_bv, X"0002");
increment ( count_bv, 1 );

The first call refers to the second procedure, since the actual parameters are both bit vec-
tors. Similarly, the second call refers to the third procedure, since the actual parameters
are a bit vector and an integer. Problems arise, however, if we try to make a call as follows:

increment ( count_bv );

This could equally well be a call to either the second or the third procedure, both of which
have default values for the second formal parameter. Since it is not possible to determine
which procedure is meant, a VHDL analyzer rejects such a call as an error.

6.5.1 Overloading Operator Symbols

When we introduced function subprograms in Section 6.4, we described them as a gen-
eralization of operators used in expressions, such as “+”, “–”, and, or and so on. Looking
at this the other way around, we could say that the predefined operators are specialized
functions, with a convenient notation for calling them. In fact, this is exactly what they
are. Furthermore, since each of the operators can be applied to values of various types,
we see that the functions they represent are overloaded, so the operand types determine
the particular version of each operator used in an expression.

Given that we can define our own types in VHDL, it would be convenient if we could
extend the predefined operators to work with these types. For example, if we are using
bit vectors to model integers using two’s-complement notation, we would like to use the
addition operator to add two bit vectors in this form. Fortunately, VHDL provides a way
for us to define new functions using the operator symbols as names. The extended syntax
rules for subprogram declarations are shown in Appendix B. Our bit-vector addition func-
tion can be declared as

function "+" ( left, right : in bit_vector ) return bit_vector is
begin
  ...
end function "+";

We can then call this function using the infix “+” operator with bit-vector operands; for
example:

variable addr_reg : bit_vector(31 downto 0);
...

addr_reg := addr_reg + X"0000_0004";

Operators denoted by reserved words can be overloaded in the same way. For example,
we can declare a bit-vector absolute-value function as



6.5 Overloading 235

function "abs" ( right : in bit_vector ) return bit_vector is
begin
  ...
end function "abs";

We can use this operator with a bit-vector operand, for example:

variable accumulator : bit_vector(31 downto 0);
...

accumulator := abs accumulator;

We can overload any of the operator symbols shown in Table 2.2. One important
point to note, however, is that overloaded versions of the logical operators and, nand,
or and nor are not evaluated in the short-circuit manner described in Chapter 2. For any
type of operands other than bit and boolean, both operands are evaluated first, then
passed to the function.

EXAMPLE 6.22 Use of overloaded logical operations in control logic

The std_logic_1164 package defines functions for logical operators applied to values
of type std_ulogic and std_ulogic_vector. We can use them in functional models to
write Boolean equations that represent the behavior of a design. For example, the fol-
lowing model describes a block of logic that controls an input/output register in a mi-
crocontroller system. The architecture body describes the behavior in terms of
Boolean equations. Its concurrent signal assignment statements use the logical oper-
ators and and not, referring to the overloaded functions defined in the
std_logic_1164 package.

library ieee;  use ieee.std_logic_1164.all;

entity reg_ctrl is
  port ( reg_addr_decoded,
         rd, wr, io_en, cpu_clk : in std_ulogic;
         reg_rd, reg_wr : out std_ulogic );
end entity reg_ctrl;

--------------------------------------------------

architecture bool_eqn of reg_ctrl is
begin

  rd_ctrl : reg_rd <= reg_addr_decoded and rd and io_en;

  rw_ctrl : reg_wr <= reg_addr_decoded and wr and io_en
                      and not cpu_clk;

end architecture bool_eqn;



236 Chapter 6 — Subprograms

One particular operator that we can overload is the condition operator, “??”, intro-
duced in Section 2.2.5. This operator is predefined for bit and std_ulogic operands, and
we can overload it for operands of other types that we may define. If we overload it in a
form that produces a boolean result, VHDL can use the overloaded version to implicitly
convert a condition value to a boolean value. For example, suppose we overload the op-
erator as follows:

function "??" ( right : integer ) return boolean is
begin
  return right /= 0;
end function "??";

This version treats any non-zero integer as true and 0 as false. We could then write the
following:

variable m : integer;
...

if m then
  ...
end if;

Since there is now an overloaded version of the “??” operator converting the condition
type (integer) to boolean, it is implicitly applied to the condition of the if statement.

VHDL-87, -93, and -2002

These versions of VHDL do not provide the “??” operator and do not perform implicit
conversion of conditions.

VHDL-87

Since VHDL-87 does not provide the shift operators sll, srl, sla, sra, rol, and ror
and the logical operator xnor, they cannot be used as operator symbols.

6.6 Visibility of Declarations

The last topic we need to discuss in relation to subprograms is the use of names declared
within a model. We have seen that names of types, constants, variables and other items
defined in a subprogram can be used in that subprogram. Also, in the case of procedures
and impure functions, names declared in an enclosing process, subprogram or architec-
ture body can also be used. The question we must answer is: What are the limits of use
of each name?

To answer this question, we introduce the idea of the visibility of a declaration, which
is the region of the text of a model in which it is possible to refer to the declared name.
We have seen that architecture bodies, processes and subprograms are each divided into



6.6 Visibility of Declarations 237

two parts: a declarative part and a body of statements. A name declared in a declarative
part is visible from the end of the declaration itself down to the end of the corresponding
statement part. Within this area we can refer to the declared name. Before the declaration,
within it and beyond the end of the statement part, we cannot refer to the name because
it is not visible.

EXAMPLE 6.23 Visibility of declarations within an architecture body

Figure 6.1 shows an outline of an architecture body of a model. It contains a number
of declarations, including some procedure declarations. The visibility of each of the
declarations is indicated. The first item to be declared is the type t; its visibility extends

FIGURE 6.1 

An outline of an architecture body, showing the visibility of declared names within it.

architecture arch of ent is

  type t is ...;

  signal s : t;

  procedure p1 ( ... ) is
    variable v1 : t;
  begin
    v1 := s;
  end procedure p1;

begin  -- arch

  proc1 : process is

    variable v2 : t;

    procedure p2 ( ... ) is
      variable v3 : t;
    begin
      p1 ( v2, v3, ... );
    end procedure p2;

  begin  -- proc1
    p2 ( v2, ... );
  end process proc1;

  proc2 : process is
    ...
  begin  -- proc2
    p1 ( ... );
  end process proc2;

end architecture arch;

v3

p2

v2

p1

s

t

v1



238 Chapter 6 — Subprograms

to the end of the architecture body. Thus it can be referred in other declarations, such
as the variable declarations. The second declaration is the signal s; its visibility like-
wise extends to the end of the architecture body. So the assignment within procedure
p1 is valid. The third and final declaration in the declarative part of the architecture
body is that of the procedure p1, whose visibility extends to the end of the architec-
ture body, allowing it to be called in either of the processes. It includes a local vari-
able, v1, whose visibility extends only to the end of p1. This means it can be referred
to in p1, as shown in the signal assignment statement, but neither process can refer
to it.

In the statement part of the architecture body, we have two process statements,
proc1 and proc2. The first includes a local variable declaration, v2, whose visibility
extends to the end of the process body. Hence we can refer to v2 in the process body
and in the procedure p2 declared within the process. The visibility of p2 likewise ex-
tends to the end of the body of proc1, allowing us to call p2 within proc1. The pro-
cedure p2 includes a local variable declaration, v3, whose visibility extends to the end
of the statement part of p2. Hence we can refer to v3 in the statement part of p2.
However, we cannot refer to v3 in the statement part of proc1, since it is not visible
in that part of the model.

Finally, we come to the second process, proc2. The only items we can refer to
here are those declared in the architecture body declarative part, namely, t, s and p1.
We cannot call the procedure p2 within proc2, since it is local to proc1.

One point we mentioned earlier about subprograms but did not go into in detail was
that we can include nested subprogram declarations within the declarative part of a
subprogram. This means we can have local procedures and functions within a procedure
or a function. In such cases, the simple rule for the visibility of a declaration still applies,
so any items declared within an outer procedure before the declaration of a nested
procedure can be referred to inside the nested procedure.

EXAMPLE 6.24 Nested subprograms for memory read operations

The following is an outline of an architecture of a cache memory for a computer sys-
tem.

architecture behavioral of cache is
begin

  behavior : process is

    ...

    procedure read_block( start_address : natural;
                          entry : out cache_block ) is

      variable memory_address_reg : natural;
      variable memory_data_reg : word;



6.6 Visibility of Declarations 239

      procedure read_memory_word is
      begin
        mem_addr <= memory_address_reg;
        mem_read <= '1';
        wait until mem_ack;
        memory_data_reg := mem_data_in;
        mem_read <= '0';
        wait until not mem_ack;
      end procedure read_memory_word;

    begin  -- read_block
      for offset in 0 to block_size - 1 loop
        memory_address_reg := start_address + offset;
        read_memory_word;
        entry(offset) := memory_data_reg;
      end loop;
    end procedure read_block;

  begin  -- behavior
     ...
    read_block( miss_base_address, data_store(entry_index) );
     ...
  end process behavior;

end architecture behavioral;

The entity interface (not shown) includes ports named mem_addr, mem_ready,
mem_ack and mem_data_in. The process behavior contains a procedure, read_block,
which reads a block of data from main memory on a cache miss. It has the local vari-
ables memory_address_reg and memory_data_reg. Nested inside of this procedure is
another procedure, read_memory_word, which reads a single word of data from
memory. It uses the value placed in memory_address_reg by the outer procedure and
leaves the data read from memory in memory_data_reg.

Now let us consider a model in which we have one subprogram nested inside another,
and each declares an item with the same name as the other, as shown in Figure 6.2. Here,
the first variable v is visible within all of the procedure p2 and the statement body of p1.
However, because p2 declares its own local variable called v, the variable belonging to
p1 is not directly visible where p2’s v is visible. We say the inner variable declaration hides
the outer declaration, since it declares the same name. Hence the addition within p2 ap-
plies to the local variable v of p2 and does not affect the variable v of p1. If we need to
refer to an item that is visible but hidden, we can use a selected name. For example, within
p2 in Figure 6.2, we can use the name p1.v to refer to the variable v declared in p1. Al-
though the outer declaration is not directly visible, it is visible by selection. An important
point to note about using a selected name in this way is that it can only be used within
the construct containing the declaration. Thus, in Figure 6.2, we can only refer to p1.v
within p1. We cannot use the name p1.v to “peek inside” of p1 from places outside p1.



240 Chapter 6 — Subprograms

The idea of hiding is not restricted to variable declarations within nested procedures.
Indeed, it applies in any case where we have one declarative part nested within another,
and an item is declared with the same name in each declarative part in such a way that
the rules for resolving overloaded names are unable to distinguish between them. The ad-
vantage of having inner declarations hide outer declarations, as opposed to the alternative
of simply disallowing an inner declaration with the same name, is that it allows us to write
local procedures and processes without having to know the names of all items declared
at outer levels. This is certainly beneficial when writing large models. In practice, if we are
reading a model and need to check the use of a name in a statement against its declaration,
we only need to look at successively enclosing declarative parts until we find a declaration
of the name, and that is the declaration that applies.

Exercises

1. [➊ 6.2] Write parameter specifications for the following constant-class parameters:

• an integer, operand1,

• a bit vector, tag, indexed from 31 down to 16, and

• a Boolean, trace, with default value false.

2. [➊ 6.2] Write parameter specifications for the following variable-class parameters:

• a real number, average, used to pass data back from a procedure, and

• a string, identifier, modified by a procedure.

FIGURE 6.2 

Nested procedures showing hiding of names. The declaration of v in p2 hides the variable v de-
clared in p1.

procedure p1 is

  variable v : integer;

  procedure p2 is
    variable v : integer;
  begin  -- p2
    ...
    v := v + 1;
    ...
  end procedure p2;

begin  -- p1
  ...
  v := 2 * v;
  ...
end procedure p1;

v

v



Exercises 241

3. [➊ 6.2] Write parameter specifications for the following signal-class parameters:

• a bit signal, clk, to be assigned to by a procedure, and

• an unconstrained standard-logic vector signal, data_in, whose value is to be read
by a procedure.

4. [➊ 6.2] Given the following procedure declaration:

procedure stimulate ( signal target : out bit_vector;
                      delay : in delay_length := 1 ns;
                      cycles : in natural := 1 ) is ...

write procedure calls using a signal s as the actual parameter for target and using the
following values for the other parameters:

• delay = 5 ns, cycles = 3,

• delay = 10 ns, cycles = 1 and

• delay = 1 ns, cycles = 15.

5. [➊ 6.3] Suppose we have a procedure declared as

procedure shuffle_bytes
  ( signal d_in : in std_ulogic_vector(0 to 15);
    signal d_out : out std_ulogic_vector(0 to 15);
    signal shuffle_control : in std_ulogic;
    prop_delay : delay_length ) is ...

Write the equivalent process for the following concurrent procedure call:

swapper : shuffle_bytes ( ext_data, int_data, swap_control,
                          Tpd_swap );

6. [➊ 6.4] Suppose we have a function declared as

function approx_log_2 ( a : in bit_vector ) return positive is ...

that calculates the minimum number of bits needed to represent a binary-encoded
number. Write a variable assignment statement that calculates the minimum number
of bits needed to represent the product of two numbers in the variables multiplicand
and multiplier and assigns the result to the variable product_size.

7. [➊ 6.4] Write an assertion statement that verifies that the current simulation time has
not exceeded 20 ms.

8. [➊ 6.5] Given the declarations of the three procedures named increment and the vari-
ables count_int and count_bv shown on page 233, which of the three procedures, if
any, is referred to by each of the following procedure calls?

increment ( count_bv, -1 );
increment ( count_int );



242 Chapter 6 — Subprograms

increment ( count_int, B"1" );
increment ( count_bv, 16#10# );

9. [➊ 6.6] Show the parts of the following model in which each of the declared items is
visible:

architecture behavioral of computer_system is

  signal internal_data : bit_vector(31 downto 0);

  interpreter : process is

    variable opcode : bit_vector(5 downto 0);

    procedure do_write is
      variable aligned_address : natural;
    begin
      ...
    end procedure do_write;

  begin
    ...
  end process interpreter;

end architecture behavioral;

10. [➋ 6.1] Write a procedure that calculates the sum of squares of elements of an array
variable deviations. The elements are real numbers. Your procedure should store the
result in a real variable sum_of_squares.

11. [➋ 6.1] Write a procedure that generates a 1 µs pulse every 20 µs on a signal syn_clk.
When the signal reset changes to ‘1’, the procedure should immediately set syn_clk
to ‘0’ and return.

12. [➋ 6.2] Write a procedure called align_address that aligns a binary encoded address
in a bit-vector variable parameter. The procedure has a second parameter that indi-
cates the alignment size. If the size is 1, the address is unchanged. If the size is 2, the
address is rounded to a multiple of 2 by clearing the least-significant bit. If the size is
4, two bits are cleared, and if the size is 8, three bits are cleared. The default alignment
size is 4.

13. [➋ 6.2/6.3] Write a procedure that checks the hold time of a data signal with respect
to rising edges of a clock signal. Both signals are of the IEEE standard-logic type. The
signals and the hold time are parameters of the procedure. The procedure is invoked
by a concurrent procedure call.

14. [➋ 6.2/6.3] Write a procedure, to be invoked by a concurrent procedure call, that as-
signs successive natural numbers to a signal at regular intervals. The signal and the
interval between numbers are parameters of the procedure.

15. [➋ 6.4] Write a function, weaken, that maps a standard-logic value to the same value,
but with weak drive strength. Thus, ‘0’ and ‘L’ are mapped to ‘L’, ‘1’ and ‘H’ are
mapped to ‘H’, ‘X’ and ‘W’ are mapped to ‘W’ and all other values are unchanged.



Exercises 243

16. [➋ 6.4] Write a function, returning a Boolean result, that tests whether a standard-logic
signal currently has a valid edge. A valid edge is defined to be a transition from ‘0’ or
‘L’ to ‘1’ or ‘H’ or vice versa. Other transitions, such as ‘X’ to ‘1’, are not valid.

17. [➋ 6.4] Write two functions, one to find the maximum value in an array of integers and
the other to find the minimum value.

18. [➋ 6.5] Write overloaded versions of the logical operators to operate on integer oper-
ands. The operators should treat the value 0 as logical falsehood and any non-zero
value as logical truth.

19. [➌ 6.2] Write a procedure called scan_results with an in-mode bit-vector signal pa-
rameter results, and out-mode variable parameters majority_value of type bit,
majority_count of type natural and tie of type boolean. The procedure counts the oc-
currences of ‘0’ and ‘1’ values in results. It sets majority_value to the most frequently
occurring value, majority_count to the number of occurrences and tie to true if there
are an equal number of occurrences of ‘0’ and ‘1’.

20. [➌ 6.2/6.3] Write a procedure that stimulates a bit-vector signal passed as a parameter.
The procedure assigns to the signal a sequence of all possible bit-vector values. The
first value is assigned to the signal immediately, then subsequent values are assigned
at intervals specified by a second parameter. After the last value is assigned, the pro-
cedure returns.

21. [➌ 6.2/6.3] Write a passive procedure that checks that setup and hold times for a data
signal with respect to rising edges of a clock signal are observed. The signals and the
setup and hold times are parameters of the procedure. Include a concurrent proce-
dure call to the procedure in the statement part of a D-flipflop entity.

22. [➌ 6.4] Write a function that calculates the cosine of a real number, using the series

Next, write a second function that returns a cosine table of the following type:

type table is array (0 to 1023) of real;

Element i of the table has the value . Finally, develop a behavioral
model of a cosine lookup ROM. The architecture body should include a constant of
type table, initialized using a call to the second function.

θcos 1 θ2

2!
-----– θ4

4!
-----

θ6

6!
-----– · · ·+ +=

iπ 2048⁄( )cos



245

Chapter 7 

Packages and Use Clauses

Packages in VHDL provide an important way of organizing the data and subprograms de-
clared in a model. In this chapter, we describe the basics of packages and show how they
may be used. We will return to packages in Chapter 12, where we will see how they can
be extended to make them more reusable than the basic form we discuss here.

7.1 Package Declarations

A VHDL package is simply a way of grouping a collection of related declarations that serve
a common purpose. They might be a set of subprograms that provide operations on a par-
ticular type of data, or they might just be the set of declarations needed to model a par-
ticular design. The important thing is that they can be collected together into a separate
design unit that can be worked on independently and reused in different parts of a model.

Another important aspect of packages is that they separate the external view of the
items they declare from the implementation of those items. The external view is specified
in a package declaration, whereas the implementation is defined in a separate package
body. We will look at package declaration first and return to the package body shortly.

The syntax rule for writing a package declaration is

package_declaration ⇐
package identifier is

{ package_declarative_item }
end [ package ] [ identifier ] ;

The identifier provides a name for the package, which we can use elsewhere in a
model to refer to the package. Inside the package declaration we write a collection of dec-
larations, including type, subtype, constant, signal and subprogram declarations, as well
as several other kinds of declarations that we see in later chapters. These are the declara-
tions that are provided to the users of the package. The advantage of placing them in a
package is that they do not clutter up other parts of a model, and they can be shared with-
in and between models without having to rewrite them.



246 Chapter 7 — Packages and Use Clauses

EXAMPLE 7.1 A package as part of a CPU model

 The following package declares constants and types that we can use in a model of a
CPU:

package cpu_types is

  constant word_size : positive := 16;
  constant address_size : positive := 24;

  subtype word is bit_vector(word_size - 1 downto 0);
  subtype address is bit_vector(address_size - 1 downto 0);

  type status_value is ( halted, idle, fetch,
                         mem_read, mem_write,
                         io_read, io_write, int_ack );

end package cpu_types;

VHDL-87

The keyword package may not be included at the end of a package declaration in
VHDL-87.

Most of the time, we write a package as another form of design unit, along with entity
declarations and architecture bodies. It is separately analyzed and is placed into the work-
ing library as a library unit by the analyzer. From there, other library units can refer to an
item declared in the package using the selected name of the item. The selected name is
formed by writing the library name, then the package name and then the name of the item,
all separated by dots; for example:

work.cpu_types.status_value

EXAMPLE 7.2 An address decoder using the cpu_types package

Suppose the cpu_types package, shown in Example 7.1, has been analyzed and
placed into the work library. We might make use of the declared items when modeling
an address decoder to go with a CPU. The entity declaration and architecture body of
the decoder are:

entity address_decoder is
  port ( addr : in work.cpu_types.address;
         status : in work.cpu_types.status_value;
         mem_sel, int_sel, io_sel : out bit );
end entity address_decoder;

--------------------------------------------------



7.1 Package Declarations 247

architecture functional of address_decoder is

  constant mem_low : work.cpu_types.address := X"000000";
  constant mem_high : work.cpu_types.address := X"EFFFFF";
  constant io_low : work.cpu_types.address := X"F00000";
  constant io_high : work.cpu_types.address := X"FFFFFF";

begin

  mem_decoder :
    mem_sel <=
      '1' when ( work.cpu_types."="
                   (status, work.cpu_types.fetch)
                 or work.cpu_types."="(
                      status, work.cpu_types.mem_read)
                 or work.cpu_types."="
                      (status, work.cpu_types.mem_write) )
               and addr >= mem_low
               and addr <= mem_high else
      '0';

  int_decoder :
    int_sel <=
      '1' when work.cpu_types."="
                 (status, work.cpu_types.int_ack) else
      '0';

  io_decoder :
    io_sel <=
      '1' when ( work.cpu_types."="
                   (status, work.cpu_types.io_read)
                 or work.cpu_types."="
                      (status, work.cpu_types.io_write) )
               and addr >= io_low
               and addr <= io_high else
      '0';

end architecture functional;

Note that we have to use selected names to refer to the subtype address, the type
status_value, the enumeration literals of status_value and the implicitly declared “=”
operator, defined in the package cpu_types. This is because they are not directly vis-
ible within the entity declaration and architecture body. We will see later in this chap-
ter how a use clause can help us avoid long selected names. If we needed to type-
qualify the enumeration literals, we would use selected names for both the type name
and the literal name; for example:

work.cpu_types.status_value'(work.cpu_types.fetch)



248 Chapter 7 — Packages and Use Clauses

We have seen that a package, when analyzed, is placed into the working library. Items
in the package can be accessed by other library units using selected names starting with
work. However, if we are writing a package of generally useful declarations, we may wish
to place them into a different library, such as a project library, where they can be accessed
by other designers. Different VHDL tool suites provide different ways of specifying the
library into which a library unit is placed. We must consult the documentation for a par-
ticular product to find out what to do. However, once the package has been included in
a resource library, we can refer to items declared in it using selected names, starting with
the resource library name. As an example, we might consider the IEEE standard-logic
package, which must be placed in a resource library called ieee. We can refer to the types
declared in that package, for example:

variable stored_state : ieee.std_logic_1164.std_ulogic;

One kind of declaration we can include in a package declaration is a signal declara-
tion. This gives us a way of defining a signal, such as a master clock or reset signal, that
is global to a whole design, instead of being restricted to a single architecture body. Any
module that needs to refer to the global signal simply names it using the selected name
as described above. This avoids the clutter of having to specify the signal as a port in each
entity that uses it, making the model a little less complex. However, it does mean that a
module can affect the overall behavior of a system by means other than through its ports,
namely, by assigning to global signals. This effectively means that part of the module’s
interface is implicit, rather than being specified in the port map of the entity. As a matter
of style, global signals declared in packages should be used sparingly, and their use
should be clearly documented with comments in the model.

EXAMPLE 7.3 A package containing clock signal declarations

The following package declares two clock signals for use within an integrated circuit
design for an input/output interface controller.

library ieee;  use ieee.std_logic_1164.all;

package clock_pkg is

  constant Tpw : delay_length := 4 ns;

  signal clock_phase1, clock_phase2 : std_ulogic;

end package clock_pkg;

The top-level architecture of the controller circuit is outlined below. The instance
of the phase_locked_clock_gen entity uses the ref_clock port of the circuit to generate
the two-phase clock waveforms on the global clock signals. The architecture also in-
cludes an instance of an entity that sequences bus operations using the bus control
signals and generates internal register control signals.

library ieee;  use ieee.std_logic_1164.all;



7.1 Package Declarations 249

entity io_controller is
  port ( ref_clock : in std_ulogic;  ... );
end entity io_controller;

--------------------------------------------------

architecture top_level of io_controller is

  ...

begin

  internal_clock_gen :
    entity work.phase_locked_clock_gen(std_cell)
      port map ( reference => ref_clock,
                 phi1 => work.clock_pkg.clock_phase1,
                 phi2 => work.clock_pkg.clock_phase2 );

  the_bus_sequencer :
    entity work.bus_sequencer(fsm)
      port map ( rd, wr, sel, width, burst,
                 addr(1 downto 0), ready,
                 control_reg_wr, status_reg_rd,
                 data_fifo_wr, data_fifo_rd,
                 ... );

  ...

end architecture top_level;

The architecture body for the sequencer is outlined next. It creates an instance of
a register entity and connects the global clock signals to its clock input ports.

architecture fsm of bus_sequencer is

  -- This architecture implements the sequencer as
  -- a finite-state machine. NOTE: it uses the clock signals
  -- from clock_pkg to synchronize the fsm.

  signal next_state_vector : ...;

begin

  bus_sequencer_state_register :
    entity work.state_register(std_cell)
      port map ( phi1 => work.clock_pkg.clock_phase1,
                 phi2 => work.clock_pkg.clock_phase2,
                 next_state => next_state_vector,
                 ... );

  ...

end architecture fsm;



250 Chapter 7 — Packages and Use Clauses

7.1.1 Subprograms in Package Declarations

Another kind of declaration that may be included in a package declaration is a subprogram
declaration—either a procedure or a function declaration. This ability allows us to write
subprograms that implement useful operations and to call them from a number of different
modules. An important use of this feature is to declare subprograms that operate on values
of a type declared by the package. This gives us a way of conceptually extending VHDL
with new types and operations, so-called abstract data types, a topic we return to in Chap-
ter 12.

An important aspect of declaring a subprogram in a package declaration is that we
only write the header of the subprogram, that is, the part that includes the name and the
interface list defining the parameters (and result type for functions). We leave out the body
of the subprogram. The reason for this is that the package declaration, as we mentioned
earlier, provides only the external view of the items it declares, leaving the implementation
of the items to the package body. For items such as types and signals, the complete defi-
nition is needed in the external view. However, for subprograms, we need only know the
information contained in the header to be able to call the subprogram. As users of a sub-
program, we need not be concerned with how it achieves its effect or calculates its result.
This is an example of a general principle called information hiding: making an interface
visible but hiding the details of implementation. To illustrate this idea, suppose we have
a package declaration that defines a bit-vector subtype:

subtype word32 is bit_vector(31 downto 0);

We can include in the package a procedure to do addition on word32 values that repre-
sent signed integers. The procedure declaration in the package declaration is

procedure add ( a, b : in word32;
                result : out word32;  overflow : out boolean );

Note that we do not include the keyword is or any of the local declarations or state-
ments needed to perform the addition. These are deferred to the package body. All we
include is the description of the formal parameters of the procedure. Similarly, we might
include a function to perform an arithmetic comparison of two word32 values:

function "<" ( a, b : in word32 ) return boolean;

Again, we omit the local declarations and statements, simply specifying the formal param-
eters and the result type of the function.

7.1.2 Constants in Package Declarations

Just as we can apply the principle of information hiding to subprograms declared in a
package, we can also apply it to constants declared in a package. The external view of a
constant is just its name and type. We need to know these in order to use it, but we do
not actually need to know its value. This may seem strange at first, but if we recall that
the idea of introducing constant declarations in the first place was to avoid scattering literal



7.1 Package Declarations 251

values throughout a model, it makes more sense. We defer specifying the value of a con-
stant declared in a package by omitting the initialization expression; for example:

constant max_buffer_size : positive;

This defines the constant to be a positive integer value. However, since we cannot see the
actual value, we are not tempted to write the value as an integer literal in a model that
uses the package. The specification of the actual value is deferred to the package body,
where it is not visible to a model that uses the package. Given the above deferred constant
in a package declaration, the corresponding package body must include the full constant
declaration, for example:

constant max_buffer_size : positive := 4096;

Note that we do not have to defer the value in a constant declaration—it is optional.

EXAMPLE 7.4 The CPU package extended with operations

We can extend the package specification from Example 7.1, declaring useful types for
a CPU model, by including declarations related to opcode processing. The revised
package is shown below. It includes a subtype that represents an opcode value, a
function to extract an opcode from an instruction word and a number of constants
representing the opcodes for different instructions.

package cpu_types is

  constant word_size : positive := 16;
  constant address_size : positive := 24;

  subtype word is bit_vector(word_size - 1 downto 0);
  subtype address is bit_vector(address_size - 1 downto 0);

  type status_value is ( halted, idle, fetch,
                         mem_read, mem_write,
                         io_read, io_write, int_ack );

  subtype opcode is bit_vector(5 downto 0);

  function extract_opcode ( instr_word : word ) return opcode;

  constant op_nop : opcode := "000000";
  constant op_breq : opcode := "000001";
  constant op_brne : opcode := "000010";
  constant op_add : opcode := "000011";
  ...

end package cpu_types;

A behavioral model of a CPU that uses these declarations is

architecture behavioral of cpu is
begin



252 Chapter 7 — Packages and Use Clauses

  interpreter : process is

    variable instr_reg : work.cpu_types.word;
    variable instr_opcode : work.cpu_types.opcode;

  begin
    ...  -- initialize
    loop
      ...  -- fetch instruction
      instr_opcode := work.cpu_types.extract_opcode(instr_reg);
      case instr_opcode is
        when work.cpu_types.op_nop => null;
        when work.cpu_types.op_breq => ...
        ...
      end case;
    end loop;
  end process interpreter;

end architecture behavioral;

The instruction set interpreter process declares a variable of the opcode type and
uses the extract_opcode function to extract the bits representing the opcode from the
fetched instruction word. It then uses the constants from the package as choices in a
case statement to decode and execute the instruction specified by the opcode. Note
that since the constants are used as choices in the case statement, they must be locally
static. If we had deferred the values of the constants to the package body, their value
would not be known when the case statement was analyzed. This is why we included
the constant values in the package declaration. In general, the value of a deferred con-
stant is not locally static.

7.2 Package Bodies

Now that we have seen how to define the interface to a package, we can turn to the pack-
age body. Each package declaration that includes subprogram declarations or deferred
constant declarations must have a corresponding package body to fill in the missing de-
tails. However, if a package declaration only includes other kinds of declarations, such as
types, signals or fully specified constants, no package body is necessary. The syntax rule
for a package body is similar to that for the interface, but with the inclusion of the keyword
body:

package_body ⇐
package body identifier is

{ package_body_declarative_item }
end [ package body ] [ identifier ] ;

The items declared in a package body must include the full declarations of all subpro-
grams defined in the corresponding package declaration. These full declarations must in-
clude the subprogram headers exactly as they are written in the package declaration, to



7.2 Package Bodies 253

ensure that the implementation conforms with the interface. This means that the names,
types, modes and default values of each of the formal parameters must be repeated ex-
actly. There are only two variations allowed. First, a numeric literal may be written differ-
ently, for example, in a different base, provided it has the same value. Second, a simple
name consisting just of an identifier may be replaced by a selected name, provided it refers
to the same item. While this conformance requirement might seem an imposition at first,
in practice it is not. Any reasonable text editor used to create a VHDL model allows the
header to be copied from the package declaration with little difficulty. Similarly, a deferred
constant defined in a package declaration must have its value specified by repeating the
declaration in the package body, this time filling in the initialization expression as in a full
constant declaration.

In addition to the full declarations of items deferred from the package declaration, a
package body may include declarations of additional types, subtypes, constants and sub-
programs. These items are used to implement the subprograms defined in the package
declaration. Note that the items declared in the package declaration cannot be declared
again in the body (apart from subprograms and deferred constants, as described above),
since they are automatically visible in the body. Furthermore, the package body cannot
include declarations of additional signals. Signal declarations may only be included in the
interface declaration of a package.

EXAMPLE 7.5 A package of overloaded arithmetic operators

The package declaration outlined below declares overloaded versions of arithmetic
operators for bit-vector values. The functions treat bit vectors as representing signed
integers in binary form. Only the function headers are included in the package dec-
laration.

package bit_vector_signed_arithmetic is

  function "+" ( bv1, bv2 : bit_vector )
    return bit_vector;

  function "-" ( bv : bit_vector )
    return bit_vector;

  function "*" ( bv1, bv2 : bit_vector )
    return bit_vector;

  ...

end package bit_vector_signed_arithmetic;

The package body contains the full function bodies. It also includes a function,
mult_unsigned, not defined in the package declaration. It is used internally in the
package body to implement the signed multiplication operator.

package body bit_vector_signed_arithmetic is

  function "+" ( bv1, bv2 : bit_vector )
    return bit_vector is ...



254 Chapter 7 — Packages and Use Clauses

  function "-" ( bv : bit_vector )
    return bit_vector is ...

  function mult_unsigned ( bv1, bv2 : bit_vector )
    return bit_vector is
    ...
  begin
    ...
  end function mult_unsigned;

  function "*" ( bv1, bv2 : bit_vector )
    return bit_vector is
  begin
    if not bv1(bv1'left) and not bv2(bv2'left) then
      return mult_unsigned(bv1, bv2);
    elsif not bv1(bv1'left) and bv2(bv2'left) then
      return -mult_unsigned(bv1, -bv2);
    elsif bv1(bv1'left) and not bv2(bv2'left) then
      return -mult_unsigned(-bv1, bv2);
    else
      return mult_unsigned(-bv1, -bv2);
    end if;
  end function "*";

  ...

end package body bit_vector_signed_arithmetic;

One further point to mention on the topic of packages relates to the order of analysis.
We mentioned before that a package is usually a separate design unit that is analyzed sep-
arately from other design units, such as entity declarations and architecture bodies. (We
will return to the case of a package not being a design unit shortly.) In most cases, a pack-
age declaration and its corresponding package body are each separate design units; hence
they may be analyzed separately. A package declaration is a primary design unit, and a
package body is a secondary design unit. The package body depends on information de-
fined in the package declaration, so the declaration must be analyzed first. Furthermore,
the declaration must be analyzed before any other design unit that refers to an item de-
fined by the package. Once the declaration has been analyzed, it does not matter when
the body is analyzed in relation to units that use the package, provided it is analyzed be-
fore the model is elaborated. In a large suite of models, the dependency relationships can
get quite complex, and a correct order of analysis can be difficult to find. A good VHDL
tool suite will provide some degree of automating this process by working out the depen-
dency relationships and analyzing those units needed to build a particular target unit to
simulate or synthesize.



7.2 Package Bodies 255

VHDL-87

The keywords package body may not be included at the end of a package body in
VHDL-87.

7.2.1 Local Packages

We have mentioned that package declarations and package bodies are usually separate
design units, but that there are cases where that is not so. VHDL allows us to declare a
package locally within the declarative part of an entity, architecture body, process, or sub-
program. This allows the visibility of the package to be contained to just the enclosing
declarative part and the corresponding statement part. If the package declaration requires
a package body, we must write the package body in the same declarative part after the
package declaration. Since declarations written in a package body are not visible outside
the package, we can use a local package to provide controlled access to locally declared
items.

EXAMPLE 7.6 A package to manage unique identification numbers

Suppose we need to generate test cases in a design, with each test case having a
unique identification number. We can declare a package locally within a stimulus-
generator process. The package encapsulates a variable that tracks the next identifi-
cation number to be assigned, and provides an operation to yield the next number.
The process outline is:

stim_gen : process is

  package ID_manager is
    impure function get_ID return natural;
  end package ID_manager;

  package body ID_manager is
    variable next_ID : natural := 0;
    impure function get_ID return natural is
      variable result : natural;
    begin
      result := next_ID;
      next_ID := next_ID + 1;
      return result;
    end function get_ID;
  end package body ID_manager;
  ...

  type test_case is record
      ...
      ID : natural;



256 Chapter 7 — Packages and Use Clauses

    end record test_case;
  variable next_test_case : test_case;

begin
  ...
  next_test_case.ID := ID_manager.get_ID;
  ID_manager.next_ID := 0;  -- Illegal
  ...
end process stim_gen;

The variable next_ID is declared in the package body, and so is not visible outside
the package. The only way to access it is using the get_ID function provided by the
package declaration. This is shown in the first assignment statement within the pro-
cess body. The package name is used as a prefix in the selected name for the function.
The second assignment statement is illegal, since the variable is not visible at that
point. The package provides a measure of safety against inadvertent corruption of the
data state.

By writing the package locally within the process, it is only available in the pro-
cess. Thus, we have achieved greater separation of concerns than if we had written
the package as a design unit, making it globally visible. Moreover, since the package
is local to a process, there can be no concurrent access by multiple processes. Thus,
the encapsulated variable can be an ordinary non-shared variable. If the package were
declared as a global design unit, there could be concurrent calls to the get_ID func-
tion. As a consequence, the variable would have to be declared as a shared variable,
which would significantly complicate the design. (We describe shared variables in
Chapter 23.)

We can also declare a local package within an enclosing package declaration, whether
that enclosing package be a design unit or itself a local package. If the nested package is
to be accessible outside the enclosing package, the nested package declaration must occur
within the enclosing package declaration. The nested package body, if required, must then
occur within the body of the enclosing package. As an example, the following outline
shows an enclosing package outer with a nested package inner that declares a function f:

package outer is
  ...
  package inner is
    impure function f ( ... ) return natural;
  end package inner;
  ...
end package outer;

package body outer is
  ...
  package body inner is
    ...
    impure function f ( ... ) return natural is
      ...



7.3 Use Clauses 257

    end function f;
  end package body inner;
  ...
end package body outer;

Outside the packages, we can refer to the function f with the name outer.inner.f.
If the enclosing package only requires a local package for private use, we can write

both the nested package declaration and nested package body in the body of the enclos-
ing package. The outline is:

package outer is
  ...
end package outer;

package body outer is
  ...
  package inner is
    ...
  end package inner;

  package body inner is
    ...
  end package body inner;
  ...
end package body outer;

In this case, items in the nested package are only accessible within the enclosing package
body. While this scheme would not commonly arise in practice, it does serve to illustrate
the consistency and general applicability of the visibility rules we introduced in Section
6.6.

VHDL-87, -93, and -2002

These versions of VHDL do not allow declaration of local packages. A package can
only be declared as a design unit.

7.3 Use Clauses

We have seen how we can refer to an item provided by a package by writing its selected
name, for example, work.cpu_types.status_value. This name refers to the item
status_value in the package cpu_types stored in the library work. If we need to refer to
this object in many places in a model, having to write the library name and package name
becomes tedious and can obscure the intent of the model. We saw in Chapter 5 that we
can write a use clause to make a library unit directly visible in a model, allowing us to
omit the library name when referring to the library unit. Since an analyzed design-unit
package is a library unit, use clauses also apply to making such packages directly visible.



258 Chapter 7 — Packages and Use Clauses

So we could precede a model with a use clause referring to the package defined in the
example in Example 7.1:

use work.cpu_types;

This use clause allows us to write declarations in our model more simply; for example:

variable data_word : cpu_types.word;
variable next_address : cpu_types.address;

In fact, the use clause is more general than this usage indicates and allows us to make
any name from a library or package directly visible. Let us look at the full syntax rule for
a use clause, then discuss some of the possibilities.

use_clause ⇐ use selected_name { , … } ;

selected_name ⇐ name . ( identifier I character_literal I operator_symbol I all )

The syntax rule for names, shown in Appendix B, includes the possibility of a name
itself being either a selected name or a simple identifier. If we make these substitutions in
the above syntax rule, we see that a selected name can be of the form

identifier . identifier . ( identifier I character_literal I operator_symbol I all )

One possibility is that the first identifier is a library name, and the second is the name
of a package within the library. This form allows us to refer directly to items within a pack-
age without having to use the full selected name. For example, we can simplify the above
declarations even further by rewriting the use clause as

use work.cpu_types.word, work.cpu_types.address;

The declarations can then be written as

variable data_word : word;
variable next_address : address;

We can place a use clause in any declarative part in a model. One way to think of a
use clause is that it “imports” the names of the listed items into the part of the model con-
taining the use clause, so that they can be used without writing the library or package
name. The names become directly visible after the use clause, according to visibility rules
similar to those we discussed in Chapter 6.

The syntax rule for a use clause shows that we can write the keyword all instead of
the name of a particular item to import from a package. This form is very useful, as it is a
shorthand way of importing all of the names defined in the interface of a package. For
example, if we are using the IEEE standard-logic package as the basis for the data types
in a design, it is often convenient to import everything from the standard-logic package,
including all of the overloaded operator definitions. We can do this with a use clause as
follows:

use ieee.std_logic_1164.all;



7.3 Use Clauses 259

This use clause means that the model imports all of the names defined in the package
std_logic_1164 residing in the library ieee. This explains the “magic” that we have used
in previous chapters when we needed to model data using the standard-logic types. The
keyword all can be included for any package where we want to import all of the decla-
rations from the package into a model.

We can also write use clauses for locally declared packages. Thus, in Example 7.6, we
could follow the package declaration with the use clause

use ID_manager.all;

and then rewrite the assignment in the process as

next_test_case.ID := get_ID;

EXAMPLE 7.7 A use clause for the CPU types package

Following is a revised version of the CPU architecture body outlined in Example 7.4.
It includes a use clause referring to items declared in the cpu_types package. This
makes the rest of the model considerably less cluttered and easier to read. The use
clause is included within the declarative part of the instruction set interpreter process.
Thus the names “imported” from the package are directly visible in the rest of the de-
clarative part and in the body of the process.

architecture behavioral of cpu is
begin

  interpreter : process is

    use work.cpu_types.all;

    variable instr_reg : word;
    variable instr_opcode : opcode;

  begin
    ...  -- initialize
    loop
      ...  -- fetch instruction
      instr_opcode := extract_opcode ( instr_reg );
      case instr_opcode is
        when op_nop => null;
        when op_breq => ...
        ...
      end case;
    end loop;
  end process interpreter;

end architecture behavioral;



260 Chapter 7 — Packages and Use Clauses

While using all to import all declaration from a package is a common case, there are
occasions when we would prefer to use just a type declared in a package. This might oc-
cur if we need to draw upon several packages, each of which declares numerous other
items that could conflict with our own declarations and with items from other packages.
However, just importing a type is not particularly useful, since we typically need to operate
on values of the type. Fortunately, VHDL helps us by importing more than just the type
name when we refer to a type in a use clause. In addition, the following are imported:

• All of the predefined operations on the type, provided they are not hidden by over-
loaded versions also declared in the package.

• Overloaded versions of predefined operations on the type declared in the package.

• For an enumeration type or subtype, all of the enumeration literals. This includes any
character literals of the type.

• For a physical type or subtype, all of the unit names for the type.

For example, suppose we declare the following package:

package stuff_pkg is

  type color_type is (red, orange, yellow, green, blue, violet);
  subtype warm_color is color_type range red to yellow;

  function "<" ( c1, c2 : color_type ) return boolean;
  function pretty ( c : color_type ) return boolean;

  type resistance is range 0 to 1E9 units
    Ohm;
    kOhm = 1000 Ohm;
    MOhm = 1000 kOhm;
  end units;

  subtype weak_logic is
    IEEE.std_logic_1164.std_ulogic range 'W' to 'H';

end package stuff_pkg;

Then the use clause

use stuff_pkg.color_type;

makes not only the type color_type visible, but also the enumeration literals red through
violet, the predefined operations on color_type other than “<”, and the overloaded “<”
operator declared in the package. It does not make the function pretty visible, since it is
not an overloaded version of a predefined operation. If we write the use clause

use stuff_pkg.warm_color;

it makes the subtype warm_color visible, along with all of the enumeration literals for
color_type (not just those in the subtype) and the operations for color_type.

If we write the use clause 



7.3 Use Clauses 261

use stuff_pkg.resistance;

it makes the type resistance visible, along with the unit names Ohm, kOhm, and MOhm,
and the predefined operations on resistance.

Finally, if we write the use clause

use stuff_pkg.weak_logic;

all we get is the subtype name weak_logic made visible, since none of the enumeration
literals or operations are declared in the package stuff_pkg.

VHDL-87, -93, and -2002

According to a strict reading of the VHDL Language Reference Manual, these earlier
versions do not import additional operations and other items if a use clause refers to
a type name. Only the type name itself is imported. However, since that is not useful
in practice, many implementations import at least the predefined operations, enumer-
ation literals, and unit names. Implementations differ on whether they do this and
whether they import any additional overloaded operations.

7.3.1 Visibility of Used Declarations

In general, a use clause makes a name directly visible in the enclosing declarative part and
in the corresponding statement part. One of the most common places in which we write
a use clause is at the beginning of a design unit. We saw in Section 5.4 how we may in-
clude library clauses, use clauses, and context references at the head of a design unit, such
as an entity interface or architecture body. This area of a design unit is called its context
clause. The names imported here are made directly visible throughout the design unit. For
example, if we want to use the IEEE standard-logic type std_ulogic in the declaration of
an entity, we might write the design unit as follows:

library ieee;  use ieee.std_logic_1164.std_ulogic;

entity logic_block is
  port ( a, b : in std_ulogic;
         y, z : out std_ulogic );
end entity logic_block;

The library clause and the use clause together form the context clause for the entity
declaration in this example. The library clause makes the contents of the library accessible
to the model, and the use clause imports the type name std_ulogic declared in the pack-
age std_logic_1164 in the library ieee. By including the use clause in the context clause
of the entity declaration, the std_ulogic type name is available when declaring the ports
of the entity.

The names imported by a use clause in this way are made directly visible in the entire
design unit after the use clause. In addition, if the design unit is a primary unit (such as
an entity declaration or a package declaration), the visibility is extended to any corre-



262 Chapter 7 — Packages and Use Clauses

sponding secondary unit. Thus, if we include a use clause in the primary unit, we do not
need to repeat it in the secondary unit, as the names are automatically visible there.

When we write use clauses in a model, there is potential to introduce conflicting
names. The rules for dealing with such conflicts are related to those for dealing with over-
loading of subprograms and enumeration literals.

One form of conflict arises when we use an item declared in a package, and the de-
clarative part containing the use clause declares another item with the same name. For
example, our cpu_types package in earlier examples declares the subtype address. We
might use this package in an architecture body as follows:

use work.cpu_types.all;
architecture behavior of cpu is
  signal address : bit_vector(15 downto 0);
  ...
end architecture behavior;

The subtype name address identified by the use clause conflicts with the signal name
address declared within the architecture body. VHDL resolves this conflict by not making
the subtype name directly visible. Any reference to the simple name address in the archi-
tecture body refers to the signal. Of course, we can still use the selected name
work.cpu_types.address within the architecture body to refer to the subtype if necessary.
In general, this form of conflict arises when an item identified by a use clause has the same
name as a locally declared item and either or both are not overloadable (that is, not a sub-
program or an enumeration literal). The conflict is resolved by not making the item iden-
tified by the use clause directly visible. If both of the items are overloadable, then there is
no conflict, since the normal rules for disambiguating subprogram calls apply.

Another form of conflict arises when we use two items of the same name declared in
different packages. The rules for dealing with this form of conflict are more involved, and
depend on whether the items are overloadable and whether either is a predefined oper-
ation. We’ll consider the cases in turn.

First, if one item is a predefined operation and the other is explicitly declared, only
the explicitly declared item is made directly visible. Explicitly declared items in this case
include overloaded versions of predefined operations, as well as other non-overloadable
items. For example, suppose we declare two packages as follows:

package short_int_types is
  type short_int is range 0 to 255;
end package short_int_types

use work.short_int_types.all;
package short_int_ops is
  function "+" ( L, R : short_int ) return short_int;
  constant maximum : short_int := 255;
  ...
end package short_int_ops;

The package short_int_types declares the integer type short_int. The predefined op-
erations “+” and maximum are implicitly declared within this package also. The package



7.3 Use Clauses 263

short_int_ops explicitly declares an overloaded version of the “+” operation to perform
modulo addition. It also declares the constant maximum, which is a non-overloadable
item. Now suppose we include a use clause for both of these packages in an architecture
body:

use work.short_int_types.all, work.short_int_ops.all;
architecture behavior of alu is
  ...
end architecture behavior;

Within the architecture body, the explicitly declared “+” operation and maximum con-
stant from the short_int_ops package are made directly visible. If we wanted to refer to
the original predefined operations, we would have to write work.short_int_types."+" and
work.short_int.maximum.

The second case of conflict from two items of the same name used from different
packages arises if both items are explicitly declared and either or both are not overload-
able. In this case, neither item is made directly visible. For example, if we declare the fol-
lowing package:

package controller_types is
  subtype address is bit_vector(2 downto 0);
  constant int_ack : address := "100";
end package controller_types;

and use it together with the cpu_types package from earlier examples:

use work.cpu_types.all, work.controller_types.all;
architecture rtl of system is
  ...
end architecture rtl;

the names address and int_ack are not made directly visible in the architecture. Both pack-
ages explicitly declare address as a subtype, which is a non-overloadable item. The pack-
age cpu_types declares int_ack as an enumeration type, which is overloadable, but
controller_types declares int_ack as a constant which is not overloadable.

There is one case where what we might consider a conflict arises, but in fact a differ-
ent rule comes into play. Suppose we write two packages, each of which explicitly
declares overloaded subprograms, as follows:

package int_ops is
  function increment ( a : inout integer; n : in integer := 1 );
end package int_ops;

package counter_ops is
  function increment ( c : inout integer; n : in integer := 1 );
end package counter_ops;

If we use these two packages in a given design unit, as follows:

use work.int_ops.all, work.counter_ops.all;



264 Chapter 7 — Packages and Use Clauses

we might be tempted to say that, since the names and the types of the parameters are the
same, the declarations conflict, and so neither version of increment would be made di-
rectly visible. However, the rules for disambiguating calls to overloaded procedures allow
parameter names used in named association to be taken into account. Thus, the following
two calls are unambiguous:

increment ( a => count_value, n => -1 );
increment ( c => count_value, n => -1 );

The first call refers to the increment procedure from package int_ops, whereas the second
call refers to the increment procedure from package counter_ops. In order for this rule to
come into play, the two subprogram names must be directly visible. Rather than there be-
ing a conflict, there may be an ambiguity in the call if positional association is used.

VHDL-87, -93, and -2002

According to a strict reading of the VHDL Language Reference Manual, these earlier
versions did not resolve a conflict between an implicitly declared predefined opera-
tion in one package and an explicitly declared overloaded version in another package
in the same way as VHDL-2008. Instead, both are made directly visible, and the rules
for overload resolution are required to disambiguate calls.

Complicating this is the widely held, but incorrect, view that versions of a
subprogram with the same names and parameter types used from different packages
do conflict and are not made directly visible. Some tools implement this view, rather
than making both subprograms directly visible, as described for the increment proce-
dures above.

Exercises

1. [➊ 7.1] Write a package declaration for use in a model of an engine management sys-
tem. The package contains declarations of a physical type, engine_speed, expressed
in units of revolutions per minute (RPM); a constant, peak_rpm, with a value of
6000 RPM; and an enumeration type, gear, with values representing first, second,
third, fourth and reverse gears. Assuming the package is analyzed and stored in the
current working library, write selected names for each of the items declared in the
package.

2. [➊ 7.1] Write a declaration for a procedure that increments an integer, as the procedure
declaration would appear in a package declaration.

3. [➊ 7.1] Write a declaration for a function that tests whether an integer is odd, as the
function declaration would appear in a package declaration.

4. [➊ 7.1] Write a deferred constant declaration for the real constant e = 2.71828.

5. [➊ 7.2] Is a package body required for the package declaration described in Exercise 1?



Exercises 265

6. [➊ 7.3] Write a use clause that makes the engine_speed type from the package de-
scribed in Exercise 1 directly visible.

7. [➊ 7.3] Write a context clause that makes a library DSP_lib accessible and that makes
an entity systolic_FFT and all items declared in a package DSP_types in the library
directly visible.

8. [➌ 7.1/7.2] Develop a package declaration and body that provide operations for deal-
ing with time-of-day values. The package defines a time-of-day value as a record con-
taining hours, minutes and seconds since midnight and provides deferred constants
representing midnight and midday. The operations provided by the package are

• comparison (“<”, “>”, “<=” and “>=”),

• addition of a time-of-day value and a number of seconds to yield a time-of-day
result and

• subtraction of two time-of-day values to yield a number-of-seconds result.

9. [➌ 7.1/7.2] Develop a package declaration and body to provide operations on char-
acter strings representing identifiers. An outline of the package declaration is

package identifier_pkg is

  subtype identifier is string(1 to 15);

  constant max_table_size : integer := 50;
  subtype table_index is integer range 1 to max_table_size;
  type table is array (table_index) of identifier;

  ...

end package identifier_pkg;

The package also declares a procedure to convert alphabetic characters in a string to
lowercase and a procedure to search for an occurrence of a given identifier in a table.
The search procedure has two out-mode parameters: a Boolean value indicating
whether the sought string is in the table and a table_index value indicating its posi-
tion, if present.



267

Chapter 8 

Resolved Signals

Throughout the previous chapters we have studiously avoided considering the case of
multiple output ports connecting one signal. The problem that arises in such a case is de-
termining the final value of the signal when multiple sources drive it. In this chapter we
discuss resolved signals, the mechanism provided by VHDL for modeling such cases.

8.1 Basic Resolved Signals

If we consider a real digital system with two outputs driving one signal, we can fairly
readily determine the resulting value based on some analog circuit theory. The signal is
driven to some intermediate state, depending on the drive capacities of the conflicting
drivers. This intermediate state may or may not represent a valid logic state. Usually we
only connect outputs in a design if at most one is active at a time, and the rest are in some
high-impedance state. In this case, the resulting value should be the driving value of the
single active output. In addition, we include some form of “pull-up” that determines the
value of the signal when all outputs are inactive.

While this simple approach is satisfactory for some models, there are other cases
where we need to go further. One of the reasons for simulating a model of a design is to
detect errors such as multiple simultaneously active connected outputs. In this case, we
need to extend the simple approach to detect such errors. Another problem arises when
we are modeling at a higher level of abstraction and are using more complex types. We
need to specify what, if anything, it means to connect multiple outputs of an enumeration
type together.

The approach taken by VHDL is a very general one: the language requires the
designer to specify precisely what value results from connecting multiple outputs. It does
this through resolved signals, which are an extension of the basic signals we have used in
previous chapters. A resolved signal includes in its definition a function, called the reso-
lution function, that is used to calculate the final signal value from the values of all of its
sources.

Let us see how this works by developing an example. We can model the values driven
by a tristate output using a simple extension to the predefined type bit, for example:

type tri_state_logic is ('0', '1', 'Z');



268 Chapter 8 — Resolved Signals

The extra value, ‘Z’, is used by an output to indicate that it is in the high-impedance state.
Next, we need to write a function that takes a collection of values of this type, representing
the values driven by a number of outputs, and return the resulting value to be applied to
the connected signal. For this example, we assume that at most one driver is active (‘0’ or
‘1’) at a time and that the rest are all driving ‘Z’. The difficulty with writing the function is
that we should not restrict it to a fixed number of input values. We can avoid this by giving
it a single parameter that is an unconstrained array of tri_state_logic values, defined by
the type declaration

type tri_state_logic_array is
  array (integer range <>) of tri_state_logic;

The declaration of the resolution function is

function resolve_tri_state_logic
  ( values : in tri_state_logic_array )
  return tri_state_logic is
  variable result : tri_state_logic := 'Z';
begin
  for index in values'range loop
    if values(index) /= 'Z' then
      result := values(index);
    end if;
  end loop;
  return result;
end function resolve_tri_state_logic;

The final step to making a resolved signal is to declare the signal, as follows:

signal s1 : resolve_tri_state_logic tri_state_logic;

This declaration is almost identical to a normal signal declaration, but with the addition of
the resolution function name before the signal type. The signal still takes on values from
the type tri_state_logic, but inclusion of a function name indicates that the signal is a re-
solved signal, with the named function acting as the resolution function. The fact that s1
is resolved means that we are allowed to have more than one source for it in the design.
(Sources include drivers within processes and output ports of components associated with
the signal.) When a transaction is scheduled for the signal, the value is not applied to the
signal directly. Instead, the values of all sources connected to the signal, including the new
value from the transaction, are formed into an array and passed to the resolution function.
The result returned by the function is then applied to the signal as its new value.

Let us look at the syntax rule that describes the VHDL mechanism we have used in
the above example. It is an extension of the rules for the subtype indication, which we
first introduced in Chapters 2 and 4. The combined rule is

subtype_indication ⇐
[ resolution_function_name ]
type_mark [ range ( range_attribute_name



8.1 Basic Resolved Signals 269

I simple_expression ( to I downto ) simple_expression )
I ( discrete_range { , … } ) ]

This rule shows that a subtype indication can optionally include the name of a function
to be used as a resolution function. Given this new rule, we can include a resolution func-
tion name anywhere that we specify a type to be used for a signal. For example, we could
write a separate subtype declaration that includes a resolution function name, defining a
resolved subtype, then use this subtype to declare a number of resolved signals, as follows:

subtype resolved_logic is
  resolve_tri_state_logic tri_state_logic;

signal s2, s3 : resolved_logic;

The subtype resolved_logic is a resolved subtype of tri_state_logic, with
resolve_tri_state_logic acting as the resolution function. The signals s2 and s3 are re-
solved signals of this subtype. Where a design makes extensive use of resolved signals, it
is good practice to define resolved subtypes and use them to declare the signals and ports
in the design.

The resolution function for a resolved signal is also invoked to initialize the signal. At
the start of a simulation, the drivers for the signal are initialized to the expression included
in the signal declaration, or to the default initial value for the signal type if no initialization
expression is given. The resolution function is then invoked using these driver values to
determine the initial value for the signal. In this way, the signal always has a properly re-
solved value, right from the start of the simulation.

Let us now return to the tristate logic type we introduced earlier. In the previous ex-
ample, we assumed that at most one driver is ‘0’ or ‘1’ at a time. In a more realistic model,
we need to deal with the possibility of driver conflicts, in which one source drives a re-
solved signal with the value ‘0’ and another drives it with the value ‘1’. In some logic fam-
ilies, such driver conflicts cause an indeterminate signal value. We can represent this
indeterminate state with a fourth value of the logic type, ‘X’, often called an unknown
value. This gives us a complete and consistent multivalued logic type, which we can use
to describe signal values in a design in more detail than we can using just bit values.

EXAMPLE 8.1 A four-state multivalued logic type and its use

The following package declaration and body define a four-state multivalued logic
type.

package MVL4 is

  -- unresolved logic type
  type MVL4_ulogic is ('X', '0', '1', 'Z');

  type MVL4_ulogic_vector is
    array (natural range <>) of MVL4_ulogic;

  function resolve_MVL4
    ( contribution : MVL4_ulogic_vector ) return MVL4_ulogic;



270 Chapter 8 — Resolved Signals

  subtype MVL4_logic is resolve_MVL4 MVL4_ulogic;

  function "not" ( r : MVL4_ulogic ) return MVL4_ulogic;
  function "and" ( l, r : MVL4_ulogic ) return MVL4_ulogic;
  function "or"  ( l, r : MVL4_ulogic ) return MVL4_ulogic;
  ...

  function to_X01 ( a : MVL4_ulogic ) return MVL4_ulogic;

  function "??" ( r : MVL4_ulogic ) return boolean;

end package MVL4;

--------------------------------------------------

package body MVL4 is

  type table is
    array (MVL4_ulogic, MVL4_ulogic) of MVL4_ulogic;

  constant resolution_table : table :=
    --  'X'  '0'  '1'  'Z'
    --  ------------------
    ( ( 'X', 'X', 'X', 'X' ),    -- 'X'
      ( 'X', '0', 'X', '0' ),    -- '0'
      ( 'X', 'X', '1', '1' ),    -- '1'
      ( 'X', '0', '1', 'Z' ) );  -- 'Z'

  function resolve_MVL4 ( contribution : MVL4_ulogic_vector )
                        return MVL4_ulogic is
    variable result : MVL4_ulogic := 'Z';
  begin
    for index in contribution'range loop
      result := resolution_table(result, contribution(index));
    end loop;
    return result;
  end function resolve_MVL4;

  function "not" ( r : MVL4_ulogic ) return MVL4_ulogic is
  begin
    case r is
      when '1' => return '0';
      when '0' => return '1';
      when others => return 'X';
    end case;
  end function "not";

  function "and" ( l, r : MVL4_ulogic ) return MVL4_ulogic is ...

  function "or"  ( l, r : MVL4_ulogic ) return MVL4_ulogic is ...

  ...



8.1 Basic Resolved Signals 271

  function to_X01 ( a : MVL4_ulogic ) return MVL4_ulogic is
  begin
    case a is
      when '0' | '1' => return a;
      when 'X' | 'Z' => return 'X';
    end case;
  end function to_X01;

  function "??" ( r : MVL4_ulogic ) return boolean is
  begin
    return r = '1';
  end function "??";

end package body MVL4;

The constant resolution_table is a lookup table used to determine the value re-
sulting from two source contributions to a signal of the resolved logic type. The res-
olution function uses this table, indexing it with each element of the array passed to
the function. If any source contributes ‘X’, or if there are two sources with conflicting
‘0’ and ‘1’ contributions, the result is ‘X’. If one or more sources are ‘0’ and the remain-
der ‘Z’, the result is ‘0’. Similarly, if one or more sources are ‘1’ and the remainder ‘Z’,
the result is ‘1’. If all sources are ‘Z’, the result is ‘Z’. The lookup table is a compact
way of representing this set of rules. The package also declares overloaded versions
of the logical operators and other functions. The to_X01 function ensures that a value
is either a proper logic value (‘0’ or ‘1’) or an unknown value. The overloaded “??”
operator allows us to use values of the logic type in conditions with implicit conver-
sion to boolean.

We can use this package in a design for a tristate buffer. The entity declaration
and a behavioral architecture body are

use work.MVL4.all;

entity tri_state_buffer is
  port ( a, enable : in MVL4_ulogic;  y : out MVL4_ulogic );
end entity tri_state_buffer;

--------------------------------------------------

architecture behavioral of tri_state_buffer is
begin

  y <= to_X01(a) when enable else
       'Z'       when not enable else
       'X';

end architecture behavioral;

When the buffer is enabled, the buffer copies the input to the output, but with a
‘Z’ input value changed to ‘X’ by the to_X01 function. When the buffer is not enabled,
it drives the value ‘Z’ on its output. If the enable port is not a proper logic level, both
conditions are false, so the buffer drives the unknown value on its output.



272 Chapter 8 — Resolved Signals

An architecture body for a logic block that uses the tristate buffer is:

use work.MVL4.all;

architecture gate_level of misc_logic is

  signal src1, src1_enable : MVL4_ulogic;
  signal src2, src2_enable : MVL4_ulogic;
  signal selected_val : MVL4_logic;
  ...

begin

  src1_buffer : entity work.tri_state_buffer(behavioral)
    port map ( a => src1, enable => src1_enable,
               y => selected_val );

  src2_buffer : entity work.tri_state_buffer(behavioral)
    port map ( a => src2, enable => src2_enable,
               y => selected_val );

  ...

end architecture gate_level;

The signal selected_val is a resolved signal of the multivalued logic type. It is
driven by the two buffer output ports. The resolution function for the signal is used
to determine the final value of the signal whenever a new transaction is applied to
either of the buffer outputs.

8.1.1 Composite Resolved Subtypes

The above examples have all shown resolved subtypes of scalar enumeration types. In
fact, VHDL’s resolution mechanism is more general. We can use it to define a resolved
subtype of any type that we can legally use as the type of a signal. Thus, we can define
resolved integer subtypes, resolved composite subtypes and others. In the latter case, the
resolution function is passed an array of composite values and must determine the final
composite value to be applied to the signal.

EXAMPLE 8.2 A package for a resolved array subtype

The package declaration and body below define a resolved array subtype. Each ele-
ment of an array value of this subtype can be ‘X’, ‘0’, ‘1’ or ‘Z’. The unresolved type
uword is an unconstrained array of these values. The resolution function has an un-
constrained array parameter consisting of elements of type uword. The function uses
the lookup table to resolve corresponding elements from each of the contributing
sources and produces an array result. The subtype word is the final resolved array
subtype.

package words is



8.1 Basic Resolved Signals 273

  type X01Z is ('X', '0', '1', 'Z');
  type uword is array (natural range <>) of X01Z;

  type uword_vector is array (natural range <>) of uword;

  function resolve_word
    ( contribution : uword_vector ) return uword;

  subtype word is resolve_word uword;

end package words;

--------------------------------------------------

package body words is

  type table is array (X01Z, X01Z) of X01Z;

  constant resolution_table : table :=
    --  'X'  '0'  '1'  'Z'
    --  ------------------
    ( ( 'X', 'X', 'X', 'X' ),    -- 'X'
      ( 'X', '0', 'X', '0' ),    -- '0'
      ( 'X', 'X', '1', '1' ),    -- '1'
      ( 'X', '0', '1', 'Z' ) );  -- 'Z'

  function resolve_word
    ( contribution : uword_vector ) return uword is
    variable result : uword(contribution'element'range)
               := (others => 'Z');
  begin
    for index in contribution'range loop
      for element in result'range loop
        result(element) :=
          resolution_table( result(element),
                            contribution(index)(element) );
      end loop;
    end loop;
    return result;
  end function resolve_word;

end package body words;

We can use these types to declare array ports in entity declarations and resolved
array signals with multiple sources.  For example, the following CPU entity and mem-
ory entity have bidirectional data ports of the unresolved array type.

use work.words.all;

entity cpu is
  port ( address : out uword(23 downto 0);
         data : inout uword(31 downto 0);  ... );
end entity cpu;



274 Chapter 8 — Resolved Signals

--------------------------------------------------

use work.words.all;

entity memory is
  port ( address : in uword(23 downto 0);
         data : inout uword(31 downto 0); ... );
end entity memory;

The architecture body for a computer system declares a signal of the resolved
subtype and connects it to the data ports of the instances of the CPU and memory:

architecture top_level of computer_system is

  use work.words.all;

  signal address : uword(23 downto 0);
  signal data : word(31 downto 0);
  ...

begin

  the_cpu : entity work.cpu(behavioral)
    port map ( address, data, ... );

  the_memory : entity work.memory(behavioral)
    port map ( address, data, ... );

  ...

end architecture top_level;

A resolved composite subtype works well provided every source for a resolved signal
of the subtype is connected to every element of the signal. For the data signal shown in
the example, every source must be a 32-element array and must connect to all 32 elements
of the data signal. However, in a realistic computer system, sources are not always con-
nected in this way. For example, we may wish to connect an 8-bit-wide device to the low-
order eight bits of a 32-bit-wide data bus. We might attempt to express such a connection
in a component instantiation statement, as follows:

boot_rom : entity work.ROM(behavioral)
  port map ( a => address, d => data(24 to 31), ... );  -- illegal

If we add this statement to the architecture body in Example 8.2, we have two sources
for elements 0 to 23 of the data signal and three for elements 24 to 31. A problem arises
when resolving the signal, since we are unable to construct an array containing the con-
tributions from the sources. For this reason, VHDL does not allow us to write such a de-
scription; it is illegal.

The solution to this problem is to describe the data signal as an array of resolved el-
ements, rather than as a resolved array of elements. One way of doing this is to declare



8.1 Basic Resolved Signals 275

an array type whose elements are values of the MVL4_logic type, shown in Example 8.2.
The array type declaration is

type MVL4_logic_vector is array (natural range <>) of MVL4_logic;

This approach has the advantage that the array type is unconstrained, so we can use
it to create signals of different widths, each element of which is resolved. The problem,
however, is that the type MVL4_logic_vector is distinct from the type MVL4_ulogic_vector,
since they are defined by separate type declarations. Neither is a subtype of the other.
Hence we cannot legally associate a signal of type MVL4_logic_vector with a port of type
MVL4_ulogic_vector, or a signal of type MVL4_ulogic_vector with a port of type
MVL4_logic_vector. 

A better way to describe arrays of resolved elements is to declare an array subtype in
which we associate the resolution function with the elements. In our example, the array
base type is MVL4_ulogic_vector, which has unresolved elements. We declare the subtype
as:

subtype MVL4_logic_vector is (resolve_MVL4) std_ulogic_vector;

The parentheses around the resolution function name, resolve_MVL4, indicates that
the resolution function is associated with each element of the array type, rather than with
the array type as a whole. Since MVL4_logic_vector is now a subtype of
MVL4_ulogic_vector, not a distinct type, we can freely assign and associate signals and
ports of the two types.

This example illustrates a more general form of resolution indication to be included
in a subtype indication or signal declaration, rather than just naming a resolution function
by itself. The syntax rule is:

resolution_indication ⇐
resolution_function_name
I ( resolution_indication

I ( record_element_identifier resolution_indication ) { , … } )

If we want to associate a resolution function with an entire subtype, the resolution
indication just consists of the resolution function name, as in the declaration of
MVL4_logic:

subtype MVL4_logic is resolve_MVL4 MVL4_ulogic;

The resolution indication here is just the resolution function name, resolve_MVL4. In
the case of an array whose elements are to be resolved, we write the resolution function
name in parentheses, as in the declaration of MVL4_logic_vector. We can also resolve the
elements of an array type that is itself an array element type. For example, given the fol-
lowing declaration:

type unresolved_RAM_content_type is
  array (natural range <>) of MVL4_ulogic_vector;

we can declare a subtype with resolved nested elements:



276 Chapter 8 — Resolved Signals

subtype RAM_content_type is
  ((resolve_MVL4)) unresolved_RAM_content_type;

The degree of nesting of parentheses indicates how deeply nested in the type struc-
ture the resolution function is associated. Two levels indicate that the resolution function
is associated with the elements of the elements of the type.

If we have a record type, one of whose elements is to be resolved, we include the
element name in the resolution indication. For example, given the following record type
with no associated resolution information:

type unresolved_status_type is record
  valid : MVL4_ulogic;
  dirty : MVL4_ulogic;
  tag : MVL4_ulogic_vector;
end record unresolved_status_type;

we can declare a subtype with the valid element resolved by the function wired_and as
follows:

subtype status_resolved_valid is
  (valid wired_and) unresolved_status_type;

We can include resolution functions with multiple elements of the record type by list-
ing the element names and the resolution function associated with each, for example:

subtype status_resolved_flags is
  (valid wired_and, dirty wired_or) unresolved_status_type;

For a record element that is itself of a composite type, we can associate a resolution
function with subelements of the record element by writing a parenthesized resolution in-
dication for the element. Thus, to resolve the elements of the tag element of the above
record type, we would declare a subtype as follows:

subtype status_resolved_tag is
  (tag(resolve_MVL4)) unresolved_status_type;

We could combine all of these examples together, resolving all of the scalar
subelements, as follows:

subtype resolved_status_type is
  ( tag(resolve_MVL4),
    valid wired_and,
    dirty wired_or ) unresolved_status_type;

This declaration illustrates that we do not have to write the resolution indications for
the record elements in the same order as the declaration of elements in the record types.
The record element names in the resolution indication determine the element with which
the resolution function is associated.



8.1 Basic Resolved Signals 277

EXAMPLE 8.3 Connection to parts of a bus signal

Let us assume that the type MVL4_logic_vector described above has been added to
the package MVL4. Below are entity declarations for a ROM entity and a single in-line
memory module (SIMM), using the MVL4_ulogic_vector type for their data ports. The
data port of the SIMM is 32 bits wide, whereas the data port of the ROM is only 8 bits
wide.

use work.MVL4.all;

entity ROM is
  port ( a : in MVL4_ulogic_vector(15 downto 0);
         d : out MVL4_ulogic_vector(7 downto 0);
         rd : in MVL4_ulogic );
end entity ROM;

--------------------------------------------------

use work.MVL4.all;

entity SIMM is
  port ( a : in MVL4_ulogic_vector(9 downto 0);
         d : inout MVL4_ulogic_vector(31 downto 0);
         ras, cas, we, cs : in MVL4_ulogic );
end entity SIMM;

The following architecture body uses these two entities. It declares a signal,
internal_data, of the MVL4_logic_vector type, representing 32 individually resolved
elements. The SIMM entity is instantiated with its data port connected to all 32 internal
data elements. The ROM entity is instantiated with its data port connected to the
rightmost eight elements of the internal data signal. When any of these elements is
resolved, the resolution function is passed contributions from the corresponding ele-
ments of the SIMM and ROM data ports. When any of the remaining elements of the
internal data signal are resolved, they have one less contribution, since they are not
connected to any element of the ROM data port.

architecture detailed of memory_subsystem is

  signal internal_data : MVL4_logic_vector(31 downto 0);
  ...

begin

  boot_ROM : entity work.ROM(behavioral)
    port map ( a => internal_addr(15 downto 0),
               d => internal_data(7 downto 0),
               rd => ROM_select );

  main_mem : entity work.SIMM(behavioral)
    port map ( a => main_mem_addr, d => internal_data, ... );

  ...



278 Chapter 8 — Resolved Signals

end architecture detailed;

8.1.2 Summary of Resolved Subtypes

At this point, let us summarize the important points about resolved signals and their res-
olution functions. Resolved signals of resolved subtypes are the only means by which we
may connect a number of sources together, since we need a resolution function to deter-
mine the final value of the signal or port from the contributing values. The resolution func-
tion must take a single parameter that is a one-dimensional unconstrained array of values
of the signal type, and must return a value of the signal type. The index type of the array
does not matter, so long as it contains enough index values for the largest possible collec-
tion of sources connected together. For example, an array type declared as follows is in-
adequate if the resolved signal has five sources:

type small_int is range 1 to 4;
type small_array is array (small_int range <>) of ... ;

The resolution function must be a pure function; that is, it must not have any side
effects. This requirement is a safety measure to ensure that the function always returns a
predictable value for a given set of source values. Furthermore, since the source values
may be passed in any order within the array, the function should be commutative; that is,
its result should be independent of the order of the values. When the design is simulated,
the resolution function is called whenever any of the resolved signal’s sources is active.
The function is passed an array of all of the current source values, and the result it returns
is used to update the signal value. When the design is synthesized, the resolution function
specifies the way in which the synthesized hardware should combine values from multiple
sources for a resolved signal.

8.1.3 IEEE std_logic_1164 Resolved Subtypes

In previous chapters we have used the IEEE standard multivalued logic package,
std_logic_1164. We are now in a position to describe all of the types and subtypes pro-
vided by the package. We defer a full description of the operations provided by the pack-
age to Chapter 9, in which we also describe other standard packages based on the
standard logic types. First, recall that the package provides the basic type std_ulogic, de-
fined as

type std_ulogic is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-');

and an array type std_ulogic_vector, defined as

type std_ulogic_vector is array ( natural range <> ) of std_ulogic;

We have not mentioned it before, but the “u” in “ulogic” stands for unresolved. These
types serve as the basis for the declaration of the resolved subtype std_logic, defined as
follows:

function resolved ( s : std_ulogic_vector ) return std_ulogic;



8.1 Basic Resolved Signals 279

subtype std_logic is resolved std_ulogic;

The standard-logic package also declares an array subtype of standard-logic elements,
analogous to the bit_vector type, for use in declaring array signals:

subtype std_logic_vector (resolved) std_ulogic_vector;

The standard defines the resolution function resolved as follows:

type stdlogic_table is array (std_ulogic, std_ulogic) of std_ulogic;
constant resolution_table : stdlogic_table :=
  -- ---------------------------------------------
  --  'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-'
  -- ---------------------------------------------
  ( ( 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U' ),  --  'U'
    ( 'U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X' ),  --  'X'
    ( 'U', 'X', '0', 'X', '0', '0', '0', '0', 'X' ),  --  '0'
    ( 'U', 'X', 'X', '1', '1', '1', '1', '1', 'X' ),  --  '1'
    ( 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X' ),  --  'Z'
    ( 'U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X' ),  --  'W'
    ( 'U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X' ),  --  'L'
    ( 'U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X' ),  --  'H'
    ( 'U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X' )   --  '-'
  );

function resolved ( s : std_ulogic_vector ) return std_ulogic is
  variable result : std_ulogic := 'Z';  -- weakest state default
begin
  if s'length = 1 then
    return s(s'low);
  else
    for i in s'range loop
      result := resolution_table(result, s(i));
    end loop;
  end if;
  return result;
end function resolved;

VHDL tools are allowed to provide built-in implementations of this function to im-
prove performance. The function uses the constant resolution_table to resolve the driving
values. If there is only one driving value, the function returns that value unchanged. If the
function is passed an empty array, it returns the value ‘Z’. (The circumstances under which
a resolution function may be invoked with an empty array will be covered in Section 23.1.)
The value of resolution_table shows exactly what is meant by “forcing” driving values (‘X’,
‘0’ and ‘1’) and “weak” driving values (‘W’, ‘L’ and ‘H’). If one driver of a resolved signal
drives a forcing value and another drives a weak value, the forcing value dominates. On
the other hand, if both drivers drive different values with the same strength, the result is
the unknown value of that strength (‘X’ or ‘W’). The high-impedance value, ‘Z’, is domi-



280 Chapter 8 — Resolved Signals

nated by forcing and weak values. If a “don’t care” value (‘–’) is to be resolved with any
other value, the result is the unknown value ‘X’. The interpretation of the “don’t care” val-
ue is that the model has not made a choice about its output state. Finally, if an “uninitial-
ized” value (‘U’) is to be resolved with any other value, the result is ‘U’, indicating that the
model has not properly initialized all outputs.

In addition to this multivalued logic subtype, the package std_logic_1164 declares a
number of subtypes for more restricted multivalued logic modeling. The subtype declara-
tions are

subtype X01 is
  resolved std_ulogic range 'X' to '1'; -- ('X','0','1')
subtype X01Z is
  resolved std_ulogic range 'X' to 'Z'; -- ('X','0','1','Z')
subtype UX01 is
  resolved std_ulogic range 'U' to '1'; -- ('U','X','0','1')
subtype UX01Z is
  resolved std_ulogic range 'U' to 'Z'; -- ('U','X','0','1','Z')

Each of these is a closed subtype; that is, the result of resolving values in each case is
a value within the range of the subtype. The subtype X01Z corresponds to the type MVL4
we introduced in Example 8.1.

8.2 Resolved Signals, Ports, and Parameters

In the previous discussion of resolved signals, we have limited ourselves to the simple
case where a number of drivers or output ports of component instances drive a signal.
Any input port connected to the resolved signal gets the final resolved value as the port
value when a transaction is performed. We now look in more detail at the case of ports
of mode inout being connected to a resolved signal. The question to answer here is, What
value is seen by the input side of such a port? Is it the value driven by the component
instance or the final value of the resolved signal connected to the port? In fact, it is the
latter. An inout port models a connection in which the driver contributes to the associated
signal’s value, and the input side of the component senses the actual signal rather than
using the driving value.

EXAMPLE 8.4 Distributed synchronization using a wired-and signal

Some asynchronous bus protocols use a distributed synchronization mechanism
based on a wired-and control signal. This is a single signal driven by each module
using active-low open-collector or open-drain drivers and pulled up by the bus ter-
minator. If a number of modules on the bus need to wait until all are ready to proceed
with some operation, they use the control signal as follows. Initially, all modules drive
the signal to the ‘0’ state. When each is ready to proceed, it turns off its driver (‘Z’)
and monitors the control signal. So long as any module is not yet ready, the signal
remains at ‘0’. When all modules are ready, the bus terminator pulls the signal up to
the ‘1’ state. All modules sense this change and proceed with the operation.



8.2 Resolved Signals, Ports, and Parameters 281

Following is an entity declaration for a bus module that has a port of the unre-
solved type std_ulogic for connection to such a synchronization control signal.

library ieee;  use ieee.std_logic_1164.all;

entity bus_module is
  port ( synch : inout std_ulogic;  ... );
end entity bus_module;

The architecture body for a system comprising several such modules is outlined
below. The control signal is pulled up by a concurrent signal assignment statement,
which acts as a source with a constant driving value of ‘H’. This is a value having a
weak strength, which is overridden by any other source that drives ‘0’. It can pull the
signal high only when all other sources drive ‘Z’.

architecture top_level of bus_based_system is

  signal synch_control : std_logic;
  ...

begin

  synch_control_pull_up : synch_control <= 'H';

  bus_module_1 : entity work.bus_module(behavioral)
    port map ( synch => synch_control, ... );

  bus_module_2 : entity work.bus_module(behavioral)
    port map ( synch => synch_control, ... );

  ...

end architecture top_level;

An outline of a behavioral architecture body for the bus module is:

architecture behavioral of bus_module is
begin

  behavior : process is
    ...
  begin
    synch <= '0'  after Tdelay_synch;
    ...
    -- ready to start operation
    synch <= 'Z' after Tdelay_synch;
    wait until synch = 'H';
    -- proceed with operation
    ...
  end process behavior;

end architecture behavioral;



282 Chapter 8 — Resolved Signals

Each instance initially drives its synchronization port with ‘0’. This value is passed
up through the port and used as the contribution to the resolved signal from the entity
instance. When an instance is ready to proceed with its operation, it changes its driv-
ing value to ‘Z’, modeling an open-collector or open-drain driver being turned off.
The process then suspends until the value seen on the synchronization port changes
to ‘H’. If other instances are still driving ‘0’, their contributions dominate, and the value
of the signal stays ‘0’. When all other instances eventually change their contributions
to ‘Z’, the value ‘H’ contributed by the pull-up statement dominates, and the value of
the signal changes to ‘H’. This value is passed back down through the ports of each
instance, and the processes all resume.

8.2.1 Resolved Ports

Just as a signal declared with a signal declaration can be of a resolved subtype, so too can
a port declared in an interface list of an entity. This is consistent with all that we have said
about ports appearing just like signals to an architecture body. Thus if the architecture
body contains a number of processes that must drive a port or a number of component
instances that must connect outputs to a port, the port must be resolved. The final value
driven by the resolved port is determined by resolving all of the sources within the archi-
tecture body. For example, we might declare an entity with a resolved port as follows:

library ieee;  use ieee.std_logic_1164.all;

entity IO_section is
  port ( data_ack : inout std_logic;  ... );
end entity IO_section;

The architecture body corresponding to this entity might instantiate a number of I/O
controller components, each with their data acknowledge ports connected to the data_ack
port of the entity. Each time any of the controllers updates its data acknowledge port, the
standard-logic resolution function is invoked. It determines the driving value for the
data_ack port by resolving the driving values from all controllers.

EXAMPLE 8.5 A memory system with tristate buses

We can write a model for a memory system composed of multiple memory devices
with tristate data buses. The entity declaration for the memory devices is

library ieee; use ieee.std_logic_1164.all;
entity memory_256Kx8 is
  port ( ce_n, oe_n, we_n : in std_ulogic;
         a : in std_ulogic_vector(17 downto 0);
         d : inout std_ulogic_vector(7 downto 0) );
end entity memory_256Kx8;



8.2 Resolved Signals, Ports, and Parameters 283

The d port of the entity has unresolved elements because there is only one source
for each element within the memory device. The entity declaration for the memory
system is

library ieee; use ieee.std_logic_1164.all;
entity memory_1Mx8 is
  port ( ce_n, oe_n, we_n : in std_ulogic;
         a : in std_ulogic_vector(19 downto 0);
         d : inout std_logic_vector(7 downto 0) );
end entity memory_1Mx8;

In this case, the d port is of type std_logic_vector with resolved elements, since
internally there are multiple sources, one per memory device. The structural architec-
ture is

architecture struct of memory_1Mx8 is
  signal ce_decoded_n : std_ulogic_vector(3 downto 0);
begin

  with a(19 downto 18) select
    ce_decoded_n <= "1110" when "00",
                    "1101" when "01",
                    "1011" when "10",
                    "0111" when "11",
                    "XXXX" when others;

  chip0 : component memory_256Kx8
    port map ( ce_n => ce_decoded_n(0),
               oe_n => oe_n, we_n => we_n,
               a => a(17 downto 0), d => d );

  chip1 : component memory_256Kx8
    port map ( ce_n => ce_decoded_n(1),
               oe_n => oe_n, we_n => we_n,
               a => a(17 downto 0), d => d );
  ...

end architecture struct;

We can connect the d port of each memory-device instance directly to the d port
of the memory system. The contributions of all of the instances are resolved to form
the driving value of the memory system’s d port. Had we inadvertently declared the
d port of the memory system entity to be of type std_ulogic_vector, the analyzer
would detect the error arising from multiple sources connected to the unresolved el-
ements.

If it happens that the actual signal associated with a resolved port in an enclosing ar-
chitecture body is itself a resolved signal, then the signal’s resolution function will be
called separately after the port’s resolution function has determined the port’s driving



284 Chapter 8 — Resolved Signals

value. Note that the signal in the enclosing architecture body may use a different resolu-
tion function from the connected port, although in practice most designs use the one func-
tion for resolution of all signals of a given subtype.

An extension of the above scenario is a design in which there are several levels of
hierarchy, with a process nested at the deepest level generating a value to be passed out
through resolved ports to a signal at the top level. At each level, a resolution function is
called to determine the driving value of the port at that level. The value finally determined
for the signal at the top level is called the effective value of the signal. It is passed back
down the hierarchy of ports as the effective value of each in-mode or inout-mode port.
This value is used on the input side of each port.

EXAMPLE 8.6 Hierarchical resolution in a computer system model

Figure 8.1 shows the hierarchical organization for a single-board computer system,
consisting of a frame buffer for a video display, an input/output controller section, a
CPU/memory section and a bus expansion block. These are all sources for the re-
solved data bus signal. The CPU/memory section in turn comprises a memory block
and a CPU/cache block. Both of these act as sources for the data port, so it must be
a resolved port. The cache has two sections, both of which act as sources for the data
port of the CPU/cache block. Hence, this port must also be resolved.

Let us consider the case of one of the cache sections updating its data port. The
new driving value is resolved with the current driving value from the other cache sec-
tion to determine the driving value of the CPU/cache block data port. This result is
then resolved with the current driving value of the memory block to determine the
driving value of the CPU/memory section. Next, this driving value is resolved with the
current driving values of the other top-level sections to determine the effective value
of the data bus signal. The final step involves propagating this signal value back down
the hierarchy for use as the effective value of each of the data ports. Thus, a module

FIGURE 8.1 

 A hierarchical block diagram of a single-board computer system, showing the hierarchical con-
nections of the resolved data bus ports to the data bus signal.

Frame 
Buffer

Parallel DMA Mem

CPU

Serial

Expansion 
Bus 

Interface

I/O 
Section

CPU/Mem 
Section

Cache

Data Bus



8.2 Resolved Signals, Ports, and Parameters 285

that reads the value of its data port will see the final resolved value of the data bus
signal. This value is not necessarily the same as the driving value it contributes.

In Chapter 5, we indicated that we can read the value of a buffer-mode or out-mode
port within an architecture of an entity. There is an important distinction between this and
reading the value of an inout-mode port. As we mentioned above, the value seen inter-
nally for an inout-mode port is the effective value of the externally connected signal. In-
formation is passed from the external connection into the architecture, as suggested by
the “in” part of the inout port mode. In contrast, when we read a buffer-mode or out-
mode port, the value seen internally is the driving value of the port. There is no transmis-
sion of information into the architecture. We use a buffer-mode or out-mode port for
designs that have buffered internal connections or that read the value of the port for in-
ternal verification, for example, using assertions.

EXAMPLE 8.7 Verification of tristate disconnection timing

Suppose we wish to verify that the outputs of a device are all ‘Z’ within a required
interval of the device being disabled and remain all ‘Z’ until the device is enabled. The
output values are not required internally to implement any functionality for the de-
vice. Hence, we declare the output ports using out mode, as follows:

entity device is
  port ( en : in std_ulogic; 
         d_out : out std_ulogic_vector(7 downto 0); ... );
end entity device;

We can read the values driven onto the output ports in verification code in the
architecture:

architecture verifying of device is
  constant T_z : delay_length := 200 ps;
begin
  d_out <= ... when en else
           ... when not en else
           "XXXXXXXX";
  assert en or (not en'delayed(T_z) and d_out ?= "ZZZZZZZZ");
end architecture verifying;

8.2.2 Driving Value Attribute

Since the value seen on a signal or on an inout-mode port may be different from the value
driven by a process, VHDL provides an attribute, 'driving_value, that allows the process
to read the value it contributes to the prefix signal. For example, if a process has a driver
for a resolved signal s, it may be driving s with the value ‘Z’ from a previously executed
signal assignment statement, but the resolution function for s may have given it the value



286 Chapter 8 — Resolved Signals

‘0’. The process can refer to s'driving_value to retrieve the value ‘Z’. Note that a process
can only use this attribute to determine its own contribution to a signal; it cannot directly
find out another process’s contribution.

VHDL-87

The 'driving_value attribute is not provided in VHDL-87.

8.2.3 Resolved Signal Parameters

Let us now return to the topic of subprograms with signal parameters and see how they
behave in the presence of resolved signals. Recall that when a procedure with an out-
mode signal parameter is called, the procedure is passed a reference to the caller’s driver
for the actual signal. Any signal assignment statements performed within the procedure
body are actually performed on the caller’s driver. If the actual signal parameter is a re-
solved signal, the values assigned by the procedure are used to resolve the signal value.
No resolution takes place within the procedure. In fact, the procedure need not be aware
that the actual signal is resolved.

In the case of reading a signal parameter to a function or procedure, a reference to
the actual signal parameter is passed when the subprogram is called, and the subprogram
uses the actual value of the signal. If the signal is resolved, the subprogram sees the value
determined after resolution. In the case of an inout signal parameter, a procedure is
passed references to both the signal and its driver, and no resolution is performed inter-
nally to the procedure.

EXAMPLE 8.8 Procedures for distributed synchronization

We can encapsulate the distributed synchronization protocol described in Example 8.4
in a set of procedures, each with a single signal parameter, as follows:

procedure init_synchronize ( signal synch : out std_logic ) is
begin
  synch <= '0';
end procedure init_synchronize;

procedure begin_synchronize ( signal synch : inout std_logic;
                              Tdelay : in delay_length := 0 fs ) is
begin
  synch <= 'Z' after Tdelay;
  wait until synch;
end procedure begin_synchronize;

procedure end_synchronize ( signal synch : inout std_logic;
                            Tdelay : in delay_length := 0 fs ) is
begin
  synch <= '0' after Tdelay;



Exercises 287

  wait until not synch;
end procedure end_synchronize;

Suppose a process uses a resolved signal barrier of subtype std_logic to synchro-
nize with other processes. The process can use the procedures to implement the pro-
tocol as follows:

synchronized_module : process is
  ...
begin
  init_synchronize(barrier);
  ...
  loop
    ...
    begin_synchronize(barrier);
    ...    -- perform operation, synchronized with other processes
    end_synchronize(barrier);
    ...
  end loop;
end process synchronized_module;

The process has a driver for barrier, since the procedure calls associate the signal
as an actual parameter with formal parameters of mode out and inout. A reference
to this driver is passed to init_synchronize, which assigns the value ‘0’ on behalf of
the process. This value is used in the resolution of barrier. When the process is ready
to start its synchronized operation, it calls begin_synchronize, passing references to
its driver for barrier and to the actual signal itself. The procedure uses the driver to
assign the value ‘Z’ on behalf of the process and then waits until the actual signal
changes to ‘H’. When the transaction on the driver matures, its value is resolved with
other contributions from other processes and the result applied to the signal. This final
value is used by the wait statement in the procedure to determine whether to resume
the calling process. If the value is ‘H’, the process resumes, the procedure returns to
the caller and the operation goes ahead. When the process completes the operation,
it calls end_synchronize to reset barrier back to ‘0’.

Exercises

1. [➊ 8.1] Suppose there are four drivers connected to a resolved signal that uses the res-
olution function resolve_tri_state_logic shown on page 268. What is the resolved val-
ue of the signal if the four drivers contribute these values:

a. ‘Z’, ‘1’, ‘Z’, ‘Z’?

b. ‘0’, ‘Z’, ‘Z, ‘0’?

c. ‘Z’, ‘1’, ‘Z’, ‘0’?



288 Chapter 8 — Resolved Signals

2. [➊ 8.1] Rewrite the following resolved signal declaration as a subtype declaration fol-
lowed by a signal declaration using the subtype.

signal synch_control : wired_and tri_state_logic := '0';

3. [➊ 8.1] What is the initial value of the following signal of the type MVL4_logic defined
in Example 8.1? How is that value derived?

signal int_req : MVL4_logic;

4. [➊ 8.1] Does the result of the resolution function defined in Example 8.1 depend on
the order of contributions from drivers in the array passed to the function?

5. [➊ 8.1] Suppose we define a resolved array subtype byte that is a subtype of word,
defined in Example 8.2, with 8 elements. We then declare a signal of type byte with
three drivers. What is the resolved value of the signal if the three drivers contribute
these values:

a. “ZZZZZZZZ”, “ZZZZ0011”, “ZZZZZZZZ”?

b. “XXXXZZZZ”, “ZZZZZZZZ”, “00000011”?

c. “00110011”, “ZZZZZZZZ”, “ZZZZ1111”?

6. [➊ 8.1] Suppose a signal is declared as

signal data_bus : MVL4_logic_vector(0 to 15);

where MVL4_logic_vector is as described on page 275, and the following signal as-
signments are each executed in different processes:

data_bus <= "ZZZZZZZZZZZZZZZZ";

data_bus(0 to 7) <= "XXXXZZZZ";

data_bus(8 to 15) <= "00111100";

What is the resolved signal value after all of the transactions have been performed?

7. [➊ 8.1] Suppose there are four drivers connected to a signal of type std_logic. What
is the resolved value of the signal if the four drivers contribute these values:

a. ‘Z’, ‘0’, ‘Z’, ‘H’?

b. ‘H’, ‘Z’, ‘W’, ‘0’?

c. ‘Z’, ‘W’, ‘L’, ‘H’?

d. ‘U’, ‘0’, ‘Z’, ‘1’?

e. ‘Z’, ‘Z’, ‘Z’, ‘–’?

8. [➊ 8.2] Figure 8.2 is a timing diagram for the system with two bus modules using the
wired-and synchronization signal described in Example 8.4. The diagram shows the
driving values contributed by each of the bus modules to the synch_control signal.



Exercises 289

Complete the diagram by drawing the resolved waveform for synch_control. Indicate
the times at which each bus module proceeds with its internal operation.

FIGURE 8.2 

Timing diagram for wired-and synchronization

9. [➊ 8.2] Suppose all of the modules in the hierarchy of Figure 8.1 use resolved ports
for their data connections. If the Mem, Cache, Serial and DMA modules all update their
data drivers in the same simulation cycle, how many times is the resolution function
invoked to determine the final resolved values of the data signals?

10. [➊ 8.2] Suppose a process in a model drives a bidirectional port synch_T of type
std_logic. Write a signal assignment statement that inverts the process’s contribution
to the port.

11. [➋ 8.1] Develop a model that includes two processes, each of which drives a signal of
the type MVL4_logic described in Example 8.1. Experiment with your simulator to see
if it allows you to trace the invocation and execution of the resolution function.

12. [➋ 8.1] Develop a model of an inverter with an open-collector output of type
std_ulogic, and a model of a pull-up resistor that drives its single std_ulogic port with
the value ‘H’. Test the models in a test bench that connects the outputs of a number
of inverter instances to a signal of type std_logic, pulled up with a resistor instance.
Verify that the circuit implements the active-low wired-or operation.

13. [➋ 8.1] Develop a behavioral model of an 8-bit-wide bidirectional transceiver, such as
the 74245 family of components. The transceiver has two bidirectional data ports, a
and b; an active-low output-enable port, oe_n; and a direction port, dir. When oe_n
is low and dir is low, data is received from b to a. When oe_n is low and dir is high,
data is transmitted from a to b. When oe_n is high, both a and b are high impedance.
Assume a propagation delay of 5 ns for all output changes.

H

L
Z

1

0

H

L
Z

1

0

H

L
Z

1

0

driving value from
bus_module_1

driving value from
bus_module_2

synch_control



290 Chapter 8 — Resolved Signals

14. [➋ 8.1] Many combinatorial logic functions can be implemented in integrated circuits
using pass transistors acting as switches. While a pass transistor is, in principle, a
bidirectional device, for many circuits it is sufficient to model it as a unidirectional de-
vice. Develop a model of a unidirectional pass transistor switch, with an input port,
an output port and an enable port, all of type std_ulogic. When the enable input is
‘H’ or ‘1’, the input value is passed to the output, but with weak drive strength. When
the enable input is ‘L’ or ‘0’, the output is high impedance. If the enable input is at an
unknown level, the output is unknown, except that its drive strength is weak.

15. [➌ 8.1] Develop a behavioral model of a tristate buffer with data input, data output
and enable ports, all of type std_ulogic. The propagation time from data input to data
output when the buffer is enabled is 4 ns. The turn-on delay from the enable port is
3 ns, and the turn-off delay is 3.5 ns. Use the buffer and any other necessary gate
models in a structural model of the 8-bit transceiver described in Exercise 13.

16. [➌ 8.1] Use the unidirectional pass transistor model of Exercise 14 in a structural model
of a four-input multiplexer. The multiplexer has select inputs s0 and s1. Pass transis-
tors are used to construct the multiplexer as shown in Figure 8.3.

FIGURE 8.3 

A multiplexer constructed of pass transistors.

17. [➌ 8.1] Develop a model of a distributed priority arbiter for a shared bus in a
multiprocessor computer system. Each bus requester has a request priority, R,
between 0 and 31, with 0 indicating the most urgent request and 31 indicating no
request. Priorities are binary-encoded using 5-bit vectors, with bit 4 being the most-
significant bit and bit 0 being the least-significant bit. The standard-logic values ‘H’
and ‘1’ both represent the binary digit 1, and the standard-logic value ‘0’ represents
the binary digit 0. All requesters can drive and sense a 5-bit arbitration bus, A, which
is pulled up to ‘H’ by the bus terminator. The requesters each use A and their own
priority to compute the minimum of all priorities by comparing the binary digits of
priorities as follows. For each bit position i:

• if  and : drive Ai with ‘0’ after Tpd

z

in0

in1

in2

in3

s1 s1 s0 s0

R4…i 1+ A4…i 1+=( ) Ri 0=( )



Exercises 291

• if  or : drive Ai with ‘Z’ after Tpd

Tpd is the propagation delay between sensing a value on A and driving a resulting
value on A. When the value on A has stabilized, it is the minimum of all request pri-
orities. The requester with  wins the arbitration. If you are not convinced that
the distributed minimization scheme operates as required, trace its execution for var-
ious combinations of priority values.

18. [➍] Develop a behavioral model of a telephone keypad controller. The controller has
outputs c1 to c3 and inputs r1 to r4, connected to the 12 switches of a touch-tone
telephone as shown in Figure 8.4.

FIGURE 8.4 

Keypad switch connections for a touch-tone telephone.

Each key in the keypad is a single-pole switch that shorts the row signal to the
column signal when the key is pressed. Due to the mechanical construction of the
switch, “switch bounce” occurs when the key is pressed. Several intermittent contacts
are made between the signals over a period of up to 5 ms before a sustained contact
is made. Bounce also occurs when the key is released. Several intermittent contacts
may occur over the same period before sustained release is achieved.

The keypad controller scans the keypad by setting each of the column signals to
‘0’ in turn. While a given column signal is ‘0’, the controller examines each of the row
inputs. If a row input is ‘H’, the switch between the column and the row is open. If
the row input is ‘0’, the switch is closed. The entire keypad is scanned once every
millisecond.

The controller generates a set of column outputs c1_out to c3_out and a set of
row outputs r1_out to r4_out. A valid switch closure is indicated by exactly one col-
umn output and exactly one row output going to ‘1’ at the same time. The controller

R4…i 1+ A4…i 1+≠( ) Ri 1=( )

R A=

4 5 6

1 2 3

7 8 9

* 0 #

r1

r2

r3

r4

c1 c2 c3



292 Chapter 8 — Resolved Signals

filters out spurious switch closures due to switch bounce and ignores multiple con-
current switch closures.

19. [➍] The IEEE standard-logic type models two drive strengths: forcing and weak. This
is insufficient to model detailed operation of circuits at the switch level. For example,
in circuits that store a charge on the gate terminal of a MOS transistor, we need to
distinguish the weaker capacitive drive strength of the stored value from the resistive
strength of a value transmitted through a pass transistor. Develop a package that de-
fines a resolved type similar to std_logic, with forcing, resistive and capacitive
strengths for 0, 1 and unknown values.

20. [➍] Exercise 19 describes a logic type that incorporates three drive strengths. If we
need to model switch level circuits in finer detail, we can extend the type to deal with
an arbitrary number of drive strengths. Each time a signal is transmitted through a pass
transistor, its drive strength is diminished. We can model this by representing a logic
value as a record containing the bit value (‘0’, ‘1’ or unknown) and an integer repre-
senting the strength. We use 0 to represent power supply strength and a positive in-
teger n to represent the strength of a signal after being transmitted through n pass
transistors from the power supply. A normal driver has strength 1, to reflect the fact
that it derives the driving value by turning on a transistor connected to one or the
other power supply rail. (This scheme is described by Smith and Acosta in [14].)

Develop a package that defines a resolved type based on this scheme. Include
functions for separating the bit value and strength components of a combined value,
for constructing a combined value from separate bit value and strength components
and for weakening the strength component of a combined value. Use the package to
model a pass transistor component. Then use the pass transistor in a model of an
eight-input multiplexer similar to the four-input multiplexer of Exercise 16.

21. [➍] Self-timed asynchronous systems use handshaking to synchronize operation of in-
teracting modules. In such systems, it is sometimes necessary to synchronize a number
of modules at a rendezvous. Each module waits until all modules are ready to perform
an operation. When all are ready, the operation commences. A scheme for
rendezvous synchronization of a number of modules using three wired-and control
signals was first proposed by Sutherland et al. for the TRIMOSBUS [15] and was sub-
sequently adopted for use in the arbitration protocol of the IEEE Futurebus [11].

Develop a high-level model of a system that uses the three-wire synchronization
scheme. You should include a package to support your model. The package should
include a type definition for a record containing the three synchronization wires and
a pair of procedures, one to wait for a rendezvous and another to leave the
rendezvous after completion of the operation. The procedures should have a bidirec-
tional signal parameter for the three-wire record and should determine the state of the
synchronization protocol from the parameter value.



293

Chapter 9 

Predefined and Standard Packages

In this chapter, we look at several predefined and standard packages, which provide types
and operators for use in VHDL models. While we could define all of the data types and
operations we need for a given model, we can greatly increase our productivity by reusing
the standard packages. Moreover, simulation and synthesis tools often have optimized,
built-in implementations of the operations from these packages.

9.1 The Predefined Packages standard and env

In previous chapters, we have introduced numerous predefined types and operators. We
can use them in our VHDL models without having to write type declarations or subpro-
gram definitions for them. These predefined items all come from a special package called
standard, located in a special design library called std. A full listing of the standard pack-
age is included for reference in Appendix A.

Because nearly every model we write needs to make use of the contents of this library
and package, as well as the library work, VHDL includes an implicit context clause of the
form

library std, work;  use std.standard.all;

at the beginning of each design unit. Hence we can refer to the simple names of the
predefined items without having to resort to their selected names. In the occasional case
where we need to distinguish a reference to a predefined operator from an overloaded
version, we can use a selected name, for example:

result := std.standard."<" ( a, b );

EXAMPLE 9.1 A comparison operator for signed binary-coded integers

A package that provides signed arithmetic operations on integers represented as bit
vectors might include a relational operator, defined as follows:



294 Chapter 9 — Predefined and Standard Packages

function "<" ( a, b : bit_vector ) return boolean is
  variable tmp1 : bit_vector(a'range) := a;
  variable tmp2 : bit_vector(b'range) := b;
begin
  tmp1(tmp1'left) := not tmp1(tmp1'left);
  tmp2(tmp2'left) := not tmp2(tmp2'left);
  return std.standard."<" ( tmp1, tmp2 );
end function "<";

The function negates the sign bit of each operand, then compares the resultant
bit vectors using the predefined relational operator from the package standard. The
full selected name for the predefined operator is necessary to distinguish it from the
function being defined. If the return expression were written as “tmp1 < tmp2”, it
would refer to the function in which it occurs, creating a circular definition.

VHDL-87, -93, and -2002

A number of new operations were added to VHDL in the 2008 revision. They are not
available in earlier versions of the language. In summary, the changes are

• The types boolean_vector, integer_vector, real_vector, and time_vector are
predefined (see Section 4.2.1). The predefined operations on boolean_vector are
the same as those defined for bit_vector. The predefined operations on
integer_vector include the relational operators (“=”, “/=”, “<”, “>”, “<=”, and “>=”)
and the concatenation operator (“&”). The predefined operations on real_vector
and time_vector include the equality and inequality operators (“=” and  “/=”) and
the concatenation operator (“&”).

• The array/scalar logic operations and logical reduction operations are predefined
for bit_vector and boolean_vector, since they are arrays with bit and boolean el-
ements, respectively.

• The matching relational operators “?=”, “?/=”, “?>”, “?>=”, “?<”, and “?<=” are
predefined for bit. Further, the operators “?=” and “?/=” are predefined for
bit_vector.

• The condition operator “??” is predefined for bit.

• The operators mod and rem are predefined for time, since it is a physical type.

• The maximum and minimum operations are predefined for all of the predefined
types.

• The functions rising_edge and falling_edge are predefined for bit and boolean.
Prior to VHDL-2008, the bit versions of these functions were declared in the pack-
age numeric_bit (see Section 9.2.3). However, that was mainly to provide consis-
tency with the std_ulogic versions defined in the std_logic_1164 package. They
rightly belong with the definition of the type on which they operate; hence,
VHDL-2008 includes them in the package standard. The VHDL-2008 revision of



9.1 The Predefined Packages standard and env 295

the numeric_bit package redefines the operations there as aliases for the
predefined versions. (We discuss aliases in Chapter 11.)

• The to_string operations are predefined for all scalar types and for bit_vector.
Further, the to_bstring, to_ostring, and to_hstring operations and associated
aliases are predefined for bit_vector.

VHDL also provided a second special package, called env, in the std library. The env
package includes operations for accessing the simulation environment provided by a sim-
ulator. First, there are procedures for controlling the progress of a simulation:

procedure stop (status: integer);
procedure stop;

procedure finish (status: integer);
procedure finish;

When the procedure stop is called, the simulator stops and accepts further input from
the user interface (if interactive) or command file (if running in batch mode). When the
procedure finish is called, the simulator terminates; simulation cannot continue. The ver-
sions of the procedures that have the status parameter use the parameter value in an
implementation-defined way. They might, for example, provide the value to a control
script so that the script can determine what action to take next.

The env package also defines a function to access the resolution limit for the simula-
tion:

function resolution_limit return delay_length;

We described the resolution limit in Section 2.2.4 when we introduced the predefined type
time. One way in which we might use the resolution_limit function is to wait for simula-
tion time to advance by one time step, as follows:

wait for env.resolution_limit;

Since the resolution limit, and hence the minimum time by which simulation
advances, can vary from one simulation run to another, we cannot write a literal time value
in such a wait statement. The use of the resolution_limit function allows us to write mod-
els that adapt to the resolution limit used in each simulation. We need to take care in using
this function, however. It might be tempting to compare the return value with a given time
unit, for example:

if env.resolution_limit > ns then  -- potentially illegal!
  ...  -- do coarse-resolution actions
else
  ...  -- do fine-resolution actions
end if;

The problem is that we are not allowed to write a time unit smaller than the resolution
limit used in a simulation. If this code were simulated with a resolution limit greater than



296 Chapter 9 — Predefined and Standard Packages

ns, the use of the unit name ns would cause an error; so the code can only succeed if the
resolution limit is less than or equal to ns. We can avoid this problem by rewriting the
example as:

if env.resolution_limit > 1.0E–9 sec then
  ... -- do coarse-resolution actions
else
  ... -- do fine-resolution actions
end if;

For resolution limits less than or equal to ns, the test returns false, so the “else” alter-
native is taken. For resolution limits greater than ns, the time literal 1.0E-9 sec is truncated
to zero, and so the test returns true. Thus, even though the calculation is not quite what
appears, it produces the result we want.

VHDL-87, -93, and -2002

These versions do not provide the env package. Some tools might provide equivalent
functionality through implementation-defined mechanisms.

9.2 IEEE Standard Packages

When we design models, we can define types and operations using the built-in facilities
of VHDL. However, the IEEE has published standards for packages that define commonly
used data types and operations. Using these standards can save us development time. Fur-
thermore, many tool vendors provide optimized implementations of the standard
packages, so using them makes our simulations run faster. In this section, we outline the
types and operations defined in the IEEE standard packages. Complete details of the pack-
age declarations are included in Appendix A. Each of these packages is included in a li-
brary called ieee. Hence, to use one of the packages in a design, we name the library ieee
in a library clause, and name the required package in a use clause. We have seen examples
of how to do this for the IEEE standard package std_logic_1164; the same applies for the
other IEEE standard packages.

9.2.1 Standard VHDL Mathematical Packages

The IEEE standard packages math_real and math_complex define constants and mathe-
matical functions on real and complex numbers, respectively.

Real Number Mathematical Package

The constants defined in math_real are listed in Table 9.1. The functions, their operand
types and meanings are listed in Table 9.2. In the figure, the parameters x and y are of
type real, and the parameter n is of type integer.



9.2 IEEE Standard Packages 297

TABLE 9.1 Constants defined in the package math_real

TABLE 9.2 Functions defined in the package math_real

Constant Value Constant Value

math_e

math_1_over_e

math_pi

math_2_pi

math_1_over_pi

math_pi_over_2

math_pi_over_3

math_pi_over_4

math_3_pi_over_2

math_log_of_2

math_log_of_10

math_log2_of_e

math_log10_of_e

math_sqrt_2

math_1_over_sqrt_2

math_sqrt_pi

math_deg_to_rad

math_rad_to_deg

Function Meaning Function Meaning

ceil(x)

floor(x)

round(x)

trunc(x)

Ceiling of x (least integer ≥ x)

Floor of x (greatest integer ≤ x)

x rounded to nearest integer value
(ties rounded away from 0.0)

x truncated toward 0.0

sign(x)

"mod"(x, y)

realmax(x, y)

realmin(x, y)

Sign of x
(–1.0, 0.0 or +1.0)

Floating-point
modulus of x /y

Greater of x and y

Lesser of x and y

sqrt(x)

cbrt(x)

"**"(n, y)

"**"(x, y)

exp(x)

log(x)

log2(x)

log10(x)

log(x, y)

sin(x)

cos(x)

tan(x)

sin x (x in radians)

cos x (x in radians)

tan x (x in radians)

arcsin(x)

arccos(x)

arctan(x)

arctan(y, x)

arcsin x

arccos x

arctan x

arctan of point (x, y)

e

1 e⁄

π

2π

1 π⁄

π 2⁄

π 3⁄

π 4⁄

3π 2⁄

2ln

10ln

log2 e

log10 e

2

1 2⁄

π

2π 360⁄

360 2π⁄

x

x3

ny

xy

ex

xln

log2 x

log10 x

logy x



298 Chapter 9 — Predefined and Standard Packages

In addition to the functions listed in Table 9.2, the math_real package defines the pro-
cedure uniform as follows:

procedure uniform ( variable seed1, seed2 : inout positive;
                    variable x : out real);

This procedure generates successive values between 0.0 and 1.0 (exclusive) in a pseudo-
random number sequence. The variables seed1 and seed2 store the state of the generator
and are modified by each call to the procedure. Seed1 must be initialized to a value be-
tween 1 and 2,147,483,562, and seed2 to a value between 1 and 2,147,483,398, before the
first call to uniform.

EXAMPLE 9.2 A random-stimulus test bench for an ALU

Suppose we need to test a structural implementation of an ALU, whose entity is de-
clared as follows:

use ieee.numeric_bit.all;
subtype ALU_func is unsigned(3 downto 0);
subtype data_word is unsigned(15 downto 0);
...

entity ALU is
  port ( a, b : in data_word;  func : in ALU_func;
         result : out data_word;  carry : out bit );
end entity ALU;

We can devise a test bench that stimulates an instance of the ALU with randomly gen-
erated data and function-code inputs:

architecture random_test of test_ALU is

  use ieee.numeric_bit.all;
  use ieee.math_real.uniform;

  signal a, b, result : data_word;
  signal func : ALU_func;
  signal carry : bit;

begin

  dut : entity work.ALU(structural)
    port map ( a, b, func, result, carry );

sinh(x)

cosh(x)

tanh(x)

sinh x

cosh x

tanh x

arcsinh(x)

arccosh(x)

arctanh(x)

arcsinh x

arccosh x

arctanh x

Function Meaning Function Meaning



9.2 IEEE Standard Packages 299

  stimulus : process is
    variable seed1, seed2 : positive := 1;
    variable a_real, b_real, func_real : real;
  begin
    wait for 100 ns;
    uniform ( seed1, seed2, a_real );
    uniform ( seed1, seed2, b_real );
    uniform ( seed1, seed2, func_real );
    a <= to_unsigned(
           natural(a_real
                   * real(2**integer'(data_word'length)) - 0.5),
           data_word'length );
    b <= to_unsigned(
           natural(b_real
                   * real(2**integer'(data_word'length)) - 0.5),
           data_word'length );
    func <= to_unsigned(
           natural(func_real
                   * real(2**integer'(ALU_func'length)) - 0.5),
           ALU_func'length );
  end process stimulus;

  ...  --verification process to check result and carry

end architecture random_test;

The stimulus process generates new random stimuli for the ALU input signals ev-
ery 100 ns. The process generates three random numbers in the range (0.0, 1.0) in the
variables a_real, b_real and func_real. It then scales these values to get numbers in
the range (–0.5, 65,635.5) for the data values and (–0.5, 15.5) for the function code
value. These are rounded and converted to unsigned bit vectors for assignment to the
ALU input signals.

Complex Number Mathematical Package

The math_complex package deals with complex numbers represented in Cartesian and
polar form. The package defines types for these representations, as follows:

type complex is record
    re : real;    -- Real part
    im : real;    -- Imaginary part
  end record;

subtype positive_real is real range 0.0 to real'high;
subtype principal_value is real range -math_pi to math_pi;

type complex_polar is record
    mag : positive_real;    -- Magnitude



300 Chapter 9 — Predefined and Standard Packages

    arg : principal_value;  -- Angle in radians; -math_pi is illegal
  end record;

The constants defined in math_complex are

math_cbase_1 1.0 + j0.0

math_cbase_j 0.0 + j1.0

math_czero 0.0 + j0.0

The package defines a number of overloaded operators, listed in Table 9.3. The curly
braces indicate that for each operator to the left of the brace, there are overloaded versions
for all combinations of types to the right of the brace. Thus, there are six overloaded ver-
sions of each of the “+”, “–”, “*” and “/” operators.

TABLE 9.3 Overloaded operators defined in math_complex

Overloaded versions of “=” and “/=” are necessary for numbers in polar form, since
two complex numbers are equal if their magnitudes are both 0.0, even if their arguments
are different. The predefined equality and inequality operators do not have this behavior.
No overloaded versions of these operators are required for Cartesian form, since the
predefined operators behave correctly.

In addition to the operators, the math_complex package defines a number of mathe-
matical functions, listed in Table 9.4. In the table, the parameters x and y are real, the pa-
rameter c is complex, the parameter p is complex_polar, and the parameter z is either
complex or complex_polar.

Operator Operation Left operand Right operand Result

=

/=

equality

inequality

complex_polar

complex_polar

complex_polar

complex_polar

boolean

boolean

abs

–

magnitude

negation

complex

complex_polar

complex

complex_polar

positive_real

positive_real

complex

complex_polar

+

–

*

/

addition

subtraction

multiplication

division

complex

real

complex

complex_polar

real

complex_polar

complex

complex

real

complex_polar

complex_polar

real

complex

complex

complex

complex_polar

complex_polar

complex_polar

⎧ 
⎪ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ 
⎪ 
⎩



9.2 IEEE Standard Packages 301

TABLE 9.4 Functions defined in the package math_complex

9.2.2 The std_logic_1164 Multivalue Logic System

The IEEE standard package std_logic_1164 defines types and operations for models that
need to deal with strong, weak and high-impedance strengths, and with unknown values.
We have already described most of the types and operations in previous chapters and seen
their use in examples. For completeness, we draw the information together in this section.

The types declared in std_logic_1164 are

std_ulogic The basic multivalued enumeration type (see page 48)

std_ulogic_vector Array of std_ulogic elements (see page 108)

std_logic Resolved multivalued enumeration subtype (see Section
8.1.3 on page 278)

std_logic_vector Subtype of std_ulogic_vector with resolved elements (see
Section 8.1.3 on page 278)

Function Result type Meaning

cmplx(x, y)

get_principal_value(x)

complex_to_polar(c)

polar_to_complex(p)

complex

principal_value

complex_polar

complex

 for some k,
such that 

c in polar form

p in Cartesian form

arg(z)

conj(z)

principal_value

same as z

arg(z) in radians

complex conjugate of z

sqrt(z)

exp(z)

same as z

same as z

log(z)

log2(z)

log10(z)

log(z, y)

same as z

same as z

same as z

same as z

lnz

log2z

log10z

logyz

sin(z)

cos(z)

sinh(z)

cosh(z)

same as z

same as z

same as z

same as z

sinz

cosz

sinhz

coshz

x jy+

x 2πk+
π– result< π≤

z

ez



302 Chapter 9 — Predefined and Standard Packages

In addition, the package declares the subtypes X01, X01Z, UX01 and UX01Z for cases
where we do not need to distinguish between strong and weak driving strengths. Each of
these subtypes includes just the values listed in the subtype name.

Since the type std_ulogic and the subtype std_logic are scalar enumeration types, all
of the predefined operations for such types are available. This includes the relational op-
erators, maximum, minimum, and to_string. In addition, the matching relational operators
“?=”, “?/=”, “?>”, “?>=”, “?<”, and “?<=” are predefined for std_ulogic and std_logic. For
the array type std_ulogic_vector and the subtype std_logic_vector, the predefined opera-
tions on one-dimensional arrays of discrete-type elements are available. This includes “&”
and the relational operators. In addition, the matching equality (“?=”) and inequality
(“?/=”) operators are defined for these types.

The operations provided by the std_logic_1164 package include overloaded versions
of the logical operators and, nand, or, nor, xor, xnor and not, operating on values of
each of the scalar and vector types and subtypes listed above. It also includes overloaded
versions of the shift operators sll, srl, rol and ror operating on the vector types. It does
not overload the sla and sra operators on the premise that they assume a numeric inter-
pretation of vectors. Instead, those operators are overloaded in separate packages,
numeric_std and numeric_std_unsigned, that provide arithmetic operations assuming a
numeric interpretation (see Section 9.2.3). The std_logic_1164 package provides an over-
loaded version of the “??” operator, allowing std_ulogic and std_logic value to be used in
conditions with implicit conversion.

In Section 4.3.5 we described the to_ostring and to_hstring operations for converting
bit_vector operands to strings in octal and hexadecimal form. The std_logic_1164 pack-
age provides overloaded versions of these operations for std_ulogic_vector and
std_logic_vector operands. The operations group elements into threes (octal) or fours
(hexadecimal) for conversion into digits. However, if the vector needs to be extended on
the left to make a multiple of three or four, the assumed value for the extra elements de-
pends on the leftmost actual element. If the leftmost element is ‘Z’, then ‘Z’ elements are
assumed; if it is ‘X’, then ‘X’ elements are assumed; otherwise, ‘0’ elements are assumed.

Having grouped elements, they are converted to digits. If all of the elements in a
group are ‘0’, ‘L’, ‘1’, or ‘H’, the group is converted to a normal digit character, with ‘0’ and
‘L’ elements treated as ‘0’, and ‘1’ and ‘H’ elements treated as ‘1’. If all of the elements in
a group are ‘Z’, then ‘Z’ is used as the digit character for the group. In all other cases,
where a group contains one or more non-‘0’, -‘L’, -‘1’, -‘H’ or -‘Z’ elements, ‘X’ is used as
the digit character for the group. Some examples are

to_ostring(B"01L_1H1") = "27"
to_ostring(B"011_ZZZ") = "3Z"
to_ostring(B"01U_UZZ") = "XX"

to_ostring(B"HH_000") = to_ostring(B"0HH_000") = "30"
to_ostring(B"ZZ_ZZZ") = to_ostring(B"ZZZ_ZZZ") = "ZZ"
to_ostring(B"X1_000") = to_ostring(B"XX1_000") = "X0"
to_ostring(B"1X_000") = to_ostring(B"01X_000") = "X0"

As well as providing the overloaded to_ostring and to_hstring operations, the
std_logic_1164 package provides all of the alternative names: to_bstring,
to_binary_string, to_octal_string, and to_hex_string. Further, the package provides



9.2 IEEE Standard Packages 303

overloaded versions of the file read and write operations for text-based input/output. We
describe files and input/output in Chapter 16.

In addition to the overloaded operations, the package declares a number of functions
for conversion between values of different types. In the following lists, the parameter b
represents a bit value or bit vector, the parameter s represents a standard logic value or
standard logic vector, and the parameter x represents a value of any of these types.

To_Bit(s,xmap) Convert a standard logic value to a bit value

To_BitVector(s, xmap)
To_Bit_Vector(s, xmap)
To_BV(s, xmap) Convert a standard logic vector to a bit vector

In these functions, the parameter xmap is a bit value that is used in the result when
a bit to be converted is other than ‘0’, ‘1’, ‘L’ or ‘H’. There are multiple alternative names
for the second function, allowing us to choose based on consideration of coding style.

To_StdULogic(b) Convert a bit value to a standard logic value

To_StdLogicVector(x)
To_Std_Logic_Vector(x)
To_SLV(x) Convert to a std_logic_vector

To_StdULogicVector(x)
To_Std_ULogic_Vector(x)
To_SULV(x) Convert to a std_ulogic_vector

Note that the To_StdLogicVector and To_StdULogicVector function perform essentially
the same operation. The fact that std_logic_vector has resolved elements is not relevant
to the conversion. The two forms are provided for backward compatibility with previous
versions of VHDL, where the distinction was relevant.

To_01(x, xmap) Strip strength

To_X01(x) Strip strength

To_X01Z(x) Strip strength

To_UX01(x) Strip strength

These strength-stripping functions remove the driving strength information from the
parameter value. To_01 convert ‘L’ and ‘H’ digits in a vector to ‘0’ and ‘1’ digits. The op-
tional second parameter specifies the result value to produce if any digit in the first pa-
rameter is other than ‘0’, ‘1’, ‘L’ or ‘H’. In that case, all digits of the result are set to the
value specified in the second parameter. The default value of the second parameter is ‘0’.
Some examples are

to_01( "LLHH01" ) = "001101"
to_01( "00X11U" ) = "000110"

to_01( "100LLL", 'X' ) = "100000"
to_01( "00W000", 'X' ) = "XXXXXX"



304 Chapter 9 — Predefined and Standard Packages

To_X01 converts ‘U’, ‘X’, ‘Z’, ‘W’ and ‘–’ elements to ‘X’. To_X01Z is similar, but leaves ‘Z’
elements intact. To_UX01 is similar to To_X01, but leaves ‘U’ elements intact.

Finally, the std_logic_1164 package contains the following utility functions:

rising_edge(s) True when there is a rising edge on s, false otherwise

falling_edge(s) True when there is a falling edge on s, false otherwise

is_X(s) True if s contains an unknown value, false otherwise

The edge-detection functions detect changes between low and high values on a scalar
signal, irrespective of the driving strengths of the values. The functions are true only dur-
ing the simulation cycles on which such events occur. They serve the same purpose as the
predefined functions of the same name operating on bit and boolean signals. The
unknown-detection function determines whether there is a ‘U’, ‘X’, ‘Z’ or ‘W’ value in the
scalar or vector value s.

VHDL-87, -93, and -2002

In the version of std_logic_1164 for these versions of VHDL, std_ulogic_vector and
std_logic_vector were declared as distinct array types, rather than one being a
subtype of the other. This led to considerable inconvenience when both types were
used in a design. The std_logic_1164 package provided separate overloaded decla-
rations for operations on each of the two types, and additional conversion functions
between them were required.

Since VHDL-2008 adds numerous new predefined operations, the VHDL-2008
version of the package provides overloaded versions of them. They are not provided
in the version of the package for earlier versions of VHDL.

VHDL-87

The overloaded versions of the xnor operator are not included in the VHDL-87 ver-
sion of the standard-logic package.

9.2.3 Standard Integer Numeric Packages

The IEEE standard packages numeric_bit and numeric_std define arithmetic operations on
integers represented using vectors of bit and std_ulogic elements respectively. Most syn-
thesis tools accept models that use these types and operations for numeric computations.
We discuss the topic of synthesis of VHDL models in more detail in Chapter 21. In this
section, we outline the types and operations provided by the IEEE standard integer nu-
meric packages. Full listings of the package declarations are included in Appendix A.

Each of the packages defines two types, unsigned and signed, to represent unsigned
and signed integer values, respectively. In the case of the numeric_bit package, the types
are unconstrained arrays of bit elements:



9.2 IEEE Standard Packages 305

type unsigned is array ( natural range <> ) of bit;
type signed is array ( natural range <> ) of bit;

In the case of the numeric_std package, the types are defined similarly, but with resolved
std_ulogic as the element type. This package also defines the types unresolved_unsigned
and unresolved_signed (and the shorter aliases u_unsigned and u_signed) as arrays of un-
resolved std_ulogic elements. The declarations are

type unresolved_unsigned is array (natural range <>) of std_ulogic;
type unresolved_signed   is array (natural range <>) of std_ulogic;

alias u_unsigned is unresolved_unsigned;
alias u_signed   is unresolved_signed;

subtype unsigned is (resolved) unresolved_unsigned;
subtype signed   is (resolved) unresolved_signed;

Whichever package and type we use, the leftmost element is the most-significant digit,
and the rightmost element is the least-significant digit. Signed numbers are represented
using two’s-complement encoding.

We declare objects of these types either directly or using a subtype to define the index
range. For example:

signal head_position : signed ( 0 to 15 );

subtype address is unsigned ( 31 downto 0 );
signal next_PC : address;
constant PC_increment : unsigned := X"4";

The operations defined for unsigned and signed numbers are listed in Table 9.5. The
curly braces indicate that for each operator to the left of the brace, there are overloaded
versions for all combinations of types to the right of the brace. For example, there are six
overloaded versions of each of the “+”, “–”, “*”, “/”, rem and mod operators. The notation
“element type” refers to the element type (bit or std_ulogic) of the vector operand or op-
erands.

The operands of arithmetic and relational operators need not be of the same length.
The relational operators determine the result based on the numeric values represented by
the operands, rather than using left-to-right lexicographic comparison. For those operators
that produce a vector result, the length of the result depends on the length of the oper-
ands, as follows.

• abs and “–”: the length of the operand

• Addition and subtraction of two vectors: the larger of the two operand lengths

• Addition and subtraction of a vector and an integer, natural number or scalar element:
the length of the vector operand

• Multiplication of two vectors: the sum of the operand lengths

• Multiplication of a vector and an integer or natural number: twice the length of the
vector operand



306 Chapter 9 — Predefined and Standard Packages

TABLE 9.5 Operators defined in the IEEE standard synthesis packages

Operator Operation Left operand Right operand Result

abs

–

absolute value

negation

signed signed

+

–

*

/

rem

mod

addition

subtraction

multiplication

division

remainder

modulo

unsigned

unsigned

natural

signed

signed

integer

unsigned

natural

unsigned

signed

integer

signed

unsigned

unsigned

unsigned

signed

signed

signed

+

–

addition

subtraction

unsigned

element type

signed

element type

element type

unsigned

element type

signed

unsigned

unsigned

signed

signed

=

/=

<

<=

>

>=

equality

inequality

less than

less than or equal to

greater than

greater than or equal to

unsigned

unsigned

natural

signed

signed

integer

unsigned

natural

unsigned

signed

integer

signed

boolean

boolean

boolean

boolean

boolean

boolean

?=

?/=

?<

?<=

?>

?>=

matching equality

matching inequality

matching less than

matching less than or equal to

matching greater than

matching greater than or equal to

unsigned

unsigned

natural

signed

signed

integer

unsigned

natural

unsigned

signed

integer

signed

element type

element type

element type

element type

element type

element type

sll

srl

sla

sra

rol

ror

shift-left logical

shift-right logical

shift-left arithmetic

shift-right arithmetic

rotate left

rotate right

unsigned

signed

integer

integer

unsigned

signed

⎧ 
⎨ 
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧ 
⎨ 
⎩
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩



9.2 IEEE Standard Packages 307

• Division of two vectors: the length of the left operand

• Remainder and modulo of two vectors: the length of the right operand

• Division, remainder and modulo of a vector and an integer or natural number: the
length of the vector operand. If the result value is too large to fit in the result vector,
the value is truncated and a warning issued during simulation.

• Shift and rotate operators: the length of the vector operand

• not: the length of the operand

• Binary logical operators: the length of the operands, whose lengths must be the same

EXAMPLE 9.3 Addition with carry

The addition operator that has two vector operands can be used to produce both the
sum vector and a carry bit by extending the operands. For example, if we declare un-
signed operand signals and a carry signal as

signal a, b, sum : unsigned(15 downto 0);
signal c_out : std_ulogic;

we can write an assignment that produces both the sum and the carry value:

Operator Operation Left operand Right operand Result

not negation unsigned

signed

unsigned

signed

and

or

nand

nor

xor

xnor

logical and

logical or

negated logical and

negated logical or

exclusive or

negated exclusive or

unsigned

unsigned

element type

signed

signed

element type

unsigned

element type

unsigned

signed

element type

signed

unsigned

unsigned

unsigned

signed

signed

signed

and

or

nand

nor

xor

xnor

logical and reduction

logical or reduction

negated logical and reduction

negated logical or reduction

exclusive or reduction

negated exclusive or reduction

unsigned

signed

element type

element type

⎧ 
⎨ 
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩



308 Chapter 9 — Predefined and Standard Packages

(c_out, sum) <= ('0' & a) + ('0' & b);

The concatenations extend the operands by one bit, so the addition produces a 17-bit
result. This is assigned to the aggregate of the carry signal (the leftmost bit of the re-
sult) and the sum signal (the rightmost 16 bits of the result).

The addition and subtraction operators that have an operand of the scalar element
type allow us to describe an addition with carry in or a subtraction with borrow in. For
example:

signal a, b : unsigned(15 downto 0);
signal sum  : unsigned(16 downto 0);
signal c_in;
...

sum <= ('0' & a) + ('0' & b) + c_in;

This can be synthesized as a single 16-bit adder with a carry input and a 17-bit result.

EXAMPLE 9.4 A conditional incrementer

We can use the “+” operator to treat a scalar control signal as an operand in a condi-
tional incrementer. If the control signal is ‘0’, an unsigned operand value is not incre-
mented; if the control signal is ‘1’', the value is incremented. The declarations and
process are:

signal inc_en  : std_ulogic;
signal inc_reg : unsigned(7 downto 0);
...

inc_reg_proc : process (clk) is
begin
  if rising_edge(clk) then
    inc_reg <= inc_reg + inc_en;
  end if;
end process inc_reg_proc;

If we had written the if statement as follows:

if inc_en = '1' then
  inc_reg <= inc_reg + 1;
end if;

a synthesis tool might have generated an adder with the vector "00000001" as an in-
put, connected to a regsiter with clock enable. By using the control signal as an op-
erand, we more clearly imply an incrementer and a simple register without clock
enable. We discuss coding styles for synthesis in more detail in Chapter 21.



9.2 IEEE Standard Packages 309

For the division, remainder and modulo operators, if the right operand is zero, an as-
sertion violation with severity level error is issued during simulation.

The logical shift operators sll and srl fill the vacated elements with ‘0’. Their behavior
is the same as that of the predefined operators for bit_vector values. The behavior of the
sla and sra operators, on the other hand, is different from the predefined versions, in that
they assume a binary-coded numeric interpretation for a vector. The type of the left
operand determines the kind of shift performed. If the operand is unsigned, a logical shift
is performed, whereas if the parameter is signed, an arithmetic shift is performed. An arith-
metic shift right (sra with a positive right operand or sla with a negative right operand)
replicates the sign bit, giving the effect of division by a power of 2. An arithmetic shift left
(sra with a negative right operand or sla with a positive right operand) fills the vacated
bits on the right with ‘0’, giving the effect of multiplication by a power of 2.

In addition to the overloaded operators, the numeric_bit and numeric_std packages
define a number of functions, listed in Table 9.6. As in Table 9.5, the curly braces indicate
that for each function to the left of the brace, there are overloaded versions for all combi-
nations of types to the right of the brace.

TABLE 9.6 Functions defined in the IEEE standard synthesis packages

Function First parameter Second parameter Result

minimum

maximum

unsigned

unsigned

natural

signed

signed

integer

unsigned

natural

unsigned

signed

integer

signed

unsigned

unsigned

unsigned

signed

signed

signed

shift_left

shift_right

rotate_left

rotate_right

unsigned

signed

natural

natural

unsigned

signed

find_leftmost

find_rightmost

unsigned

signed

element type

element type

integer

integer

resize unsigned

unsigned

signed

signed

natural

unsigned

natural

signed

unsigned

unsigned

signed

signed

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧ 
⎨ 
⎩
⎧ 
⎨ 
⎩

⎧ 
⎨ 
⎩



310 Chapter 9 — Predefined and Standard Packages

The maximum and minimum functions are overloaded to compare their operands
based on a numeric interpretation in the same way as the relational operators. For the ver-
sions that take two vector operands, the operands do not need to be of the same length.

The shift, rotate and to_01 functions all produce a result that has the same length as
the vector parameter. The shift and rotate functions perform similar operations to the
overloaded shift and rotate operators. However, their second parameter is constrained to
be a non-negative integer. Hence each of these functions can only shift or rotate elements
in one direction. These functions were included in the package for earlier versions of
VHDL that did not include the shift operators. They are maintained in the package for
backward compatibility.

to_integer unsigned

signed

natural

integer

to_unsigned natural

natural

natural

unsigned

unsigned

unsigned

to_signed integer

integer

natural

signed

signed

signed

rising_edgea

falling_edgea

signal bit boolean

std_matchb unsigned

signed

std_ulogic

std_ulogic_vector

unsigned

signed

std_ulogic

std_ulogic_vector

boolean

boolean

boolean

boolean

to_01b

to_X01b

to_X01Zb

to_UX01b

unsigned

signed

[ std_ulogic ]

[ std_ulogic ]

unsigned

signed

to_string
to_bstring
to_binary_string

to_ostring
to_octal_string

to_hstring
to_hex_string

unsigned

signed

string

string

a. Provided in numeric_bit only.
b. Provided in numeric_std only.

Function First parameter Second parameter Result

⎧ 
⎨ 
⎩

⎧ 
⎨ 
⎩

⎧ 
⎨ 
⎩

⎧ 
⎨ 
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧ 
⎨ 
⎩

⎧ 
⎨ 
⎩



9.2 IEEE Standard Packages 311

The find_leftmost function returns the index of the leftmost occurrence of the right-
operand value in the left-operand vector. Similarly, the find_rightmost function returns the
index of the rightmost occurrence of the right-operand value in the left-operand vector. If
there is no such occurrence, the functions return –1. Since the index bound of an unsigned
or signed vector are natural numbers, –1 is a clear indication that the value was not found.
In both functions, search for the element value is performed using a matching equality
test. We can use find_leftmost to gauge the magnitude of a number, since the leftmost
occurrence of a 1 bit in an unsigned number is approximately log2 of the number. For a
signed number, the leftmost bit that differs from the sign bit is likewise approximately log2
of the number.

The resize functions produce a result whose length is specified by the second param-
eter. For a second parameter of type natural, the parameter value specifies the number of
bits in the result directly. For a second parameter of type unsigned or signed, the result
has the same number of bits as the parameter value. Increasing the size of an unsigned
number zero-extends to the left, whereas increasing the size of a signed number replicates
the sign bit to the left. Truncating an unsigned number to length L keeps the rightmost L
bits. Truncating a signed number to length L keeps the sign bit and the rightmost L – 1 bits.

The to_integer functions convert unsigned or signed values to natural or integer val-
ues, respectively. The to_unsigned and to_signed functions convert their first parameter
to a vector whose length is given by the second parameter, either as a natural number
directly, or as a vector whose length is used.

The edge-detection functions rising_edge and falling_edge are provided as aliases for
the predefined edge-detection functions on type bit. They are included here for backward
compatibility with earlier versions of VHDL, in which the edge-detection functions were
not predefined. The std_match functions perform the same operations as the “?=” opera-
tor. Again, they are included for backward compatibility with earlier versions of VHDL that
did not provide that operator.

The strength-stripping functions to_01, to_X01, to_X01Z, and to_UX01 are overloaded
for unsigned and signed operands, and perform the same operation as the corresponding
functions for vectors in the std_logic_1164 package.

Finally, the packages provide the string conversion operations. The to_string opera-
tion is actually predefined for unsigned and signed, since they are one-dimensional arrays
of character elements in both packages. The to_ostring and to_hstring operations work
in the same way as the corresponding operations in the std_logic_1164 package. The only
difference is that, when extending a signed value to form a complete group of three (for
octal) or four (for hexadecimal) bits, the sign bit is replicated rather than ‘0’ bits being
added. The same aliases for all of the operations are also defined. Further, the packages
provide overloaded versions of the file read and write operations for text-based input/
output. We describe files and input/output in Chapter 16.

VHDL-87, -93, and -2002

Since VHDL-2008 adds numerous new predefined operations, the VHDL-2008 version
of the package provides overloaded versions of them. They are not provided in the
version of the package for earlier versions of VHDL.



312 Chapter 9 — Predefined and Standard Packages

VHDL-87

Since VHDL-87 does not include the shift, rotate and xnor operators, they should be
commented out of the standard synthesis packages when used with VHDL-87 tools.
The shift and rotate functions can be used in VHDL-87 models. The xnor operator
can be expressed as the negation (not) of the xor operator in VHDL-87.

Since the standard numeric packages are widely used in many models, VHDL defines
two standard context declarations (see Section 5.4.2) within the standard library ieee:

context ieee_bit_context is
  library ieee;
  use ieee.numeric_bit.all;
end context ieee_bit_context;

context ieee_std_context is
  library ieee;
  use ieee.std_logic_1164.all;
  use ieee.numeric_std.all;
end context ieee_std_context;

A design based on bit values might refer to the first of these context declarations, ei-
ther in the context clause of a design unit or nested within a project context declaration.
Similarly, a design based on std_ulogic values might refer to the second of these context
declarations.

VHDL-87, -93, and -2002

Since context declarations are not provided in these versions of VHDL, the standard
context declaration cannot be used. If a tool does not support VHDL-2008, it would
not include the context declarations in its version of the ieee library.

As we have mentioned, the numeric_bit and numeric_std packages define new array
types, unsigned and signed, to represent numbers in binary-coded form. Many designers,
however, prefer to use the bit_vector and std_ulogic_vector types for numeric data. This
approach is particularly useful in designs that include components, such as multiplexers,
registers, and so on, that do not rely on numeric properties of data; they just store or ma-
nipulate arrays of bits. When such designs also include arithmetic elements, having to con-
vert between the types for numeric interpretation and the plain vector type is a distraction.
Historically, designers have adopted non-standard packages that provide arithmetic oper-
ations on bit_vector or std_ulogic_vector operands.

In the 2008 revision of VHDL, two new packages were added to library ieee for this
purpose: numeric_bit_unsigned and numeric_std_unsigned. They are largely compatible
with numeric_bit and numeric_std, respectively, and provide the corresponding unsigned
operations. In summary, the similarities and differences among the packages are



9.2 IEEE Standard Packages 313

• Numeric_bit_unsigned and numeric_std_unsigned provide the following operations
corresponding to operations on unsigned in numeric_bit and numeric_std: arithmetic
operators, shift operators, and relational operators; maximum, minimum, shift_left,
shift_right, find_leftmost, find_rightmost, resize, and to_integer functions.

• Numeric_bit_unsigned provides a to_bitvector function (plus aliases to_bit_vector
and to_bv) instead of to_unsigned.

• Numeric_std_unsigned provides to_stdulogicvector and to_stdlogicvector functions
(plus aliases to_std_ulogic_vector, to_sulv, to_std_logic_vector, and to_slv) instead
of to_unsigned.

• Numeric_bit_unsigned and numeric_std_unsigned do not provided other operations,
since the normal bit_vector and std_ulogic_vector versions can be used. This includes
overloaded logical operators; rising_edge, falling_edge, std_match and strength-
stripping functions; to_ostring and to_hstring functions and the corresponding alias-
es; and read and write operations.

VHDL-87, -93, and -2002

These versions of VHDL do not provide the numeric_bit_unsigned and
numeric_std_unsigned packages. Many tools for these versions provide a non-
standard package, std_logic_unsigned, developed by Syopsys, Inc. It provides many
of the same operations as numeric_std_unsigned.

9.2.4 Standard Fixed-Point Packages

Many digital-signal processing applications involve mathematical operations on non-
integral data. While we could use floating-point representation and hardware, that would
be excessively resource intensive in many cases. Instead, we can use a fixed-point repre-
sentation, in which the radix point (analogous to the base-10 decimal point) is assumed
to have a fixed position. VHDL defines a number of packages for fixed-point math that
we introduce in this section. Since the packages provide a large number of overloaded
operations and functions, we will not describe them in full detail here. We will simply pro-
vide an overview of the data types provided and some basic information on their usage.
More details are provided in Appendix A and on the author’s companion website for this
book. In addition, Section 9.2.6 summarizes the operations provided by these packages
and the other standard numeric packages.

For simple cases, fixed-point math amounts to integer math with scaling by a power
of 2. More generally, we need to take account of rounding and overflow. The main VHDL
fixed-point package, fixed_generic_pkg, is written in such a way that we can choose the
rounding and overflow behaviors that are most appropriate for our application. The pack-
age uses formal generic constants, a topic that we will cover in detail in Chapter 12. For
now, suffice it to say that the package defines four constants as follows:



314 Chapter 9 — Predefined and Standard Packages

fixed_round_style : fixed_round_style_type

This constant determines the rounding behavior for operations in the pack-
age. The type  fixed_round_style_type is an enumeration type defined in the
package fixed_float_types, also in library ieee. The values are fixed_round,
if results are to be rounded to the nearest representable value; and
fixed_truncate, if results are to be truncated toward zero to the next smallest
representable value. The default is fixed_round.

fixed_overflow_style : fixed_overflow_style_type

This constant determines the behavior on overflow. The type
fixed_overlow_style_type is defined in the package fixed_float_types. The
values are fixed_saturate, if an overflowing result is to remain at the largest
representable value; and fixed_wrap, if modulo-based behavior is required.
The default is fixed_saturate.

fixed_guard_bits : natural

This constant specifies the number of extra bits of precision to use for division
operations. The default is 3.

no_warning : boolean

This constant allows suppression of warning messages on conditions such as
non-matching operand lengths and occurrence of metalogical values (values
other than ‘0’, ‘L’, ‘1’ and ‘H’). The default is false.

If the default values are acceptable for our application, we can use a version of the
package named fixed_pkg, located in the ieee library. For other cases, the main package
must be instantiated, as described in Chapter 12, to supply alternative values for the con-
stants.

The package fixed_generic_pkg (and any instance of it, such as fixed_pkg) defines
types for unsigned and signed fixed-point representation in the form of vectors of
std_ulogic elements. The base type for unsigned representation is unresolved_ufixed, de-
clared as

type unresolved_ufixed is array (integer range <>) of std_ulogic;

The name u_ufixed is defined, for convenience, as an alias to unresolved_ufixed. The
package also defines a subtype ufixed with resolved elements. The declarations are

alias u_ufixed is unresolved_ufixed;

subtype ufixed is (resolved) unresolved_ufixed;

When declaring signals, we should choose between the base type or the subtype with re-
solved elements, depending on whether the signal has only one source or multiple
sources, respectively.

Objects of these types must have descending (downto) index ranges. The whole-
number part of the value is on the left of the vector, down to index 0, and the fractional



9.2 IEEE Standard Packages 315

part is on the right, starting at index –1. For example, given the following declaration of
a fixed-point signal A:

signal A : ufixed(3 downto -3) := "0110100";

the whole-number part is A(3 downto 0), and the fractional part is A(–1 downto –3). The
range of values represented is 0 to just less than 16 in steps of 0.125 (one-eighth). The
value represented by the default initial value is 0110.1002 = 6.510.

This example shows a number with both whole-number and fractional parts. In gen-
eral, we can declare number with just a whole-number part (the right index being 0) or
just a fraction part (the left index being –1). Indeed, we can declare numbers in which the
radix point is completely outside the index range of the vector. For example, in the fol-
lowing:

variable X : ufixed(9 downto 2);
variable Y : ufixed(-5 downto -14);

X is an 8-bit vector representing values in the range 0 to 1020 in steps of 4, and Y is a 10-
bit vector representing values in the range 0 to just less than 0.0625 (one-sixteenth) in
steps of 2–14.

The base type defined in the package for signed representation is unresolved_sfixed,
declared as:

type unresolved_sfixed is array (integer range <>) of std_ulogic;

As for the unsigned representation, there is an alias, u_sfixed, and a subtype with re-
solved elements, sfixed:

alias u_sfixed is unresolved_sfixed;

subtype sfixed is (resolved) unresolved_sfixed;

Likewise, the index range for a signed value must be descending (downto), with the radix
point being assumed between index 0 and index –1. The difference is that the signed type
and subtypes use 2s-complement binary representation, with the leftmost bit being the
sign bit. Thus, for example, the signal:

signal S : sfixed(3 downto -3);

represents values from –8 to just less than 8 in steps of 0.125.
The fixed-point math packages perform operations with full precision. This is

illustrated in the following example:

signal A4_2 : ufixed(3 downto -2);
signal B3_3 : ufixed(2 downto -3);
signal Y5_3 : ufixed(4 downto -3);
...

Y5_3 <= A4_2 + B3_3;



316 Chapter 9 — Predefined and Standard Packages

The whole-number part of the addition result is one bit larger than the larger of the
two operand whole-number parts. In this example, the operand whole-number parts are
4 bits and 3 bits, respectively, so the result’s whole-number part is 5 bits. The fractional
part of the result is the larger fractional part of the operands. In this example, the oper-
ands’ fractional parts are 2 bits and 3 bits, respectively, so the result has a 3-bit fractional
part.

If we want to assign a fixed-point value to an object, one way is to use a string literal,
for example:

signal A4 : ufixed(3 downto -3);
...

A4 <= "0110100";  -- string literal for 6.5

Alternatively, we can apply a conversion function, to_ufixed or to_sfixed, to an inte-
ger or real value. In this case, we need to specify the index range for the conversion result.
There are two forms of conversion function. For the first form, we specify the left and right
indices for the result, for example:

A4 <= to_ufixed(6.5, 3, -3);  -- pass indices

For the second form, we provide an object whose index range is used:

A4 <= to_ufixed(6.5, A4);  -- sized by A4

In this example, the only use of A4 by the to_ufixed function is to read its left and
right indices to determine the index range of the result.

The use of a string literal in an arithmetic expression is problematic, since the index
range of such a literal is ascending (to) and starts with integer'low. Fixed-point numbers
must have descending index ranges. Instead we can use integer literals, real literals, and
qualified string literals, as shown in the following examples:

subtype ufixed4_3 is ufixed(3 downto -3);
signal A4, B4 : ufixed4_3;
signal Y5     : ufixed (4 downto -3);
...

Y5 <= A4 + "0110100";              -- illegal
Y5 <= A4 + ufixed4_3'("0110100");
Y5 <= A4 + 6.5;                    -- overloading with real
Y5 <= A4 + 6;                      -- overloading with integer

In the assignment marked “illegal,” the index range of the string literal would be
integer'low to integer'low + 6. The type qualification in the next assignment avoids this
problem and results in a bit-string value with index bounds taken from the subtype
ufixed4_3. We can safely apply the addition operator to this value and the operand A4,
giving a result with index range 4 down to –3.

If we need to change the size of an expression result, we can use a resize function.
As for the conversion functions, there are two forms, one in which we specify the left and
right index values and the other in which we provide an object whose index range is used.



9.2 IEEE Standard Packages 317

For example, in the following accumulator assignment, since the addition result is one bit
larger than the accumulator, we need to resize the result:

signal A4_3 : ufixed(3 downto -3);
signal Y7_3 : ufixed(6 downto -3);
...

Y7_3 <= Y7_3 + A4_3;   -- illegal, result too big

Y7_3 <= resize(arg            => Y7_3 + A4_3,
               size_res       => Y7_3,
               overflow_style => fixed_wrap,
               round_style    => fixed_truncate);

The overflow_style and round_style parameters allow us to control the way the value
is processed if it cannot be represented exactly. The default values for these parameters
are taken from the package constants described on page 314. If those values are satisfac-
tory, we can omit them in the resize call. This is shown in the following example, which
uses the form of the function specifying left and right index values for the result:

Y7_3 <= resize (arg         => Y7_3 + A4_3,
                left_index  => 7,
                right_index => -3);

Full-precision arithmetic can lead to some unexpected results in expressions involving
multiple operators. Consider, as an example, the following declarations and assignment:

signal A4, B4, C4, D4 : ufixed(3 downto 0);
signal Y6             : ufixed(5 downto 0);
signal Y7A, Y7B       : ufixed(6 downto 0);
...

Y6 <= (A4 + B4) + (C4 + D4);

The expression in the assignment is built as a balanced tree. Each of the additions
A4 + B4 and C4 + D4 yields a 5-bit result, so the final result size is 6 bits. However, if we
build the expression in a cascaded fashion, the result size is 7 bits. We can see this most
clearly by explicitly parenthesizing the expression:

Y7A <= ((A4 + B4) + C4) + D4;

The addition A4 + B4 yields a 5-bit result. This added to C4 yields a 6-bit result, and
the 6-bit result added to D4 yields a 7-bit result. Since addition is associative, the following
unparenthesized expression yields the same 7-bit result:

Y7B <= A4 + B4 + C4 + D4;

Included in the set of operations provided by the fixed-point packages are overloaded
versions of the string conversion operations and file read and write operations for text-
based input/output. Since the ufixed and sfixed types are one-dimensional arrays of char-
acter elements, to_string is predefined for both types. However, the packages overload



318 Chapter 9 — Predefined and Standard Packages

the operation with a version that includes a radix point (a ‘.’ character) at the appropriate
position. For example, given the following declaration:

constant x : ufixed(3 downto -8) := "010000110101";

to_string(x) returns the string "0100.00110101".
The packages also define overloaded versions of to_ostring and to_hstring that be-

have similarly to the versions for the integer numeric packages (see Section 9.2.3). Ele-
ments are grouped into threes (for octal) or fours (for hexadecimal) starting either side of
the radix point. Extension on the left to make up a complete group is performed in the
same way as for unsigned and signed numeric values. If extension is required on the right,
‘0’ bits are added. For values in which the radix-point position lies outside the index range,
to_ostring and to_hstring extend the value to include the radix point in the result. For
example, a to_hstring operation for the value "10100" with index range 7 down to 3
would result in the string "A0.0", corresponding to the binary number 10100000.0. Simi-
larly, a to_hstring operation for the value "10100" with index range –3 down to –7 would
result in "0.28" (0.0010100 in binary).

9.2.5 Standard Floating-Point Packages

The fixed-point math packages described in the previous section allow us to represent
non-integral values with constant absolute precision over a given range. In some applica-
tions, however, we would prefer to use a floating-point representation, in which we can
represent a greater dynamic range with a given number of bits, and have constant relative
precision over the range. VHDL provides abstract floating-point types, including the type
real, built into the language. However, they are defined to use IEEE 64-bit double-
precision representation. That may not be the best choice for all applications. VHDL pro-
vides a set of packages for binary-coded floating-point representation and operations in
which we can control the range and precision and many aspects of the way arithmetic
operations are performed. Floating-point values are represented using the same principles
as IEEE-standard floating-point, specified in IEEE Std 754 [9] and IEEE Std 854 [10], with a
sign bit, an exponent field, and a fraction field. However, we can choose the field widths
that are appropriate for our application.

Since these packages, like the fixed-point packages, provide a large number of
overloaded operations and functions, we will not describe them in full detail here. Again,
we will simply provide an overview of the data types provided and some basic informa-
tion on their usage. More details are provided in Appendix A and on the author’s com-
panion website; and Section 9.2.6 summarizes the operations provided.

Like the main fixed-point package, the main VHDL fixed-point package,
float_generic_pkg, is written using formal generic constants so that we can choose the be-
haviors that are most appropriate for our application. The package defines seven constants
as follows:

float_exponent_width : natural

This constant determines the default width of the exponent field resulting
from the to_float conversion functions in the package. The default is 8, cor-
responding to IEEE single-precision representation.



9.2 IEEE Standard Packages 319

float_fraction_width : natural

This constant determines the default width of the fraction field resulting from
the to_float conversion functions in the package. The default is 23, corre-
sponding to IEEE single-precision representation.

float_round_style : round_type

This constant determines the rounding behavior for operations in the pack-
age. The type round_type is an enumeration type defined in the package
fixed_float_types, also in library ieee. The values are: round_nearest,
round_zero (truncation), round_inf (round up toward infinity) and
round_neginf (round down toward negative infinity). The default is
round_nearest.

float_denormalize : boolean

Denormalized numbers are a form of floating-point numbers that represent
very small values near zero. If the constant float_denormalized is true, oper-
ations in the package deal with denormalized values; otherwise, all numbers
are treated as normalized. The default is true.

float_check_error : boolean

This constant controls detection of invalid numbers and overflow. The default
is true.

float_guard_bits : natural

This constant specifies the number of extra bits of precision to use within op-
erations prior to rounding the result. The default is 3.

no_warning : boolean

This constant allows suppression of warning messages. The default is false.

The main package also makes use of the fixed-point package, both for conversions
between fixed-point and floating-point values and for internal implementation of floating-
point operations. Since we can choose the way the fixed-point package behaves by vary-
ing the values of its constants, we need to provide the floating-point package with a ref-
erence the appropriate version of the fixed-point package for our application. We can do
this, if we need to, using the mechanism of formal generic packages, described in Chapter
12. If the default values for the constants are acceptable for our application, we can use a
version of the package named float_pkg, located in the ieee library. For other cases, the
main package must be instantiated, as described in Chapter 12, to supply alternative values
for the constants.

The package float_generic_pkg (and each instance of it, such as float_pkg) defines
the base type for floating-point numbers, unresolved_float, declared as:

type unresolved_float is array (integer range <>) of std_ulogic;

The alias u_float is defined as a convenient shorthand for this type. There is also a
subtype, float, which has resolved elements. The declarations are:



320 Chapter 9 — Predefined and Standard Packages

alias u_float is unresolved_float;

subtype float is (resolved) unresolved_float;

When declaring signals, we should choose between the base type or the subtype with re-
solved elements, depending on whether the signal has only one source or multiple
sources, respectively.

Objects of these types must have descending (downto) index ranges; for example:

signal A : float(8 downto -23)
              := "01000000110100000000000000000000";

The sign bit is at index A'left (bit 8 in this example), the exponent is indexed from
A’left – 1 down to 0 (7 down to 0 in the example), and the fraction is indexed from –1
down to A'right (–1 down to –23 in the example). Unlike fixed-point numbers, floating-
point numbers must have the sign, exponent, and fraction all present. The smallest
floating-point representation supported by the package has a range of 3 down to –3. In
practice, we would expect representations to be 16 bits or more, with at least 6 bits for
the exponent and at least 10 bits for the fraction. For the sign bit, 0 is positive, and 1 is
negative. The exponent field is an unsigned binary value representing the actual exponent
biased by 2e – 1 – 1 (where e is the width of the exponent field). Thus, for the signal A
declared above, the bias is 127. The actual fraction is normalized to the range of 1.0 to just
less than 2.0. Since the bit to the left of the radix point would always be 1, it is not explic-
itly represented. Instead, the fraction field of a floating-point number just contains the bits
to the right of the radix point, with a 1 bit implied to the left of the radix point.

We can use these properties of the representation to analyze the bit string used as the
default initial value for the signal A above. The leftmost bit is 0, so the number is positive.
The next 8 bits, A(7 downto 0), are 10000001. As an unsigned number, this is 129. We sub-
tract the bias, 127, to give an actual exponent of 2. The fraction field is
101000000000000000000000. We include the implied 1 bit to give an actual fraction of
1.101. Thus, the value represented is +1.1012 × 22 = 1.625 × 4 = 6.5.

The packages declare a number of subtypes and aliases for IEEE standard floating-
point representations. The unresolved subtypes are

subtype unresolved_float32 is unresolved_float(8 downto -23);

subtype unresolved_float64 is unresolved_float(11 downto -52);

subtype unresolved_float128 is
          unresolved_float (15 downto -112);

The unresolved_float32 subtype correponds to IEEE Std 754 single-precision repre-
sentation. There are a shorthand alias u_float32 and a subtype with resolved elements,
float32. Similarly, unresolved_float64 corresponds to IEEE Std 754 double-precision rep-
resentation (like double float in C, float*8 in Fortran, and real in VHDL), with an alias
u_float64 and a subtype with resolve elements, float64; and unresolved_float128 corre-
sponds to IEEE Std 854 extended-precision representation (like long double in C and
float*16 in Fortran), with an alias u_float128 and a subtype with resolve elements,
float128.



9.2 IEEE Standard Packages 321

The IEEE floating-point number standards reserve a number of representations for
special purposes. In particular, numbers with all 0 or all 1 bits in the exponent field have
the following meanings:

• Positive zero: 0 00000000 00000000000000000000000

• Negative zero: 1 00000000 00000000000000000000000

• Positive infinity: 0 11111111 00000000000000000000000

• Negative infinity: 1 11111111 00000000000000000000000

Note that there are two representations of 0, one positive and the other negative. Op-
erations on floating-point values generally treat them as equivalent. In addition to these
representations, a number with all 1 bits in the exponent field and at least one 1 bit in the
fraction field (such as 1 11111111 00000000000000000000001) is called Not-a-Number, or
NaN. Such values can result from otherwise illegal operations, such as division of zero by
zero, or square root of –1.

Here are some further examples of floating-point numbers. First, the following is a
large float32 value (though not the largest, as that is just less than 2**128).

0 11111110 00000000000000000000000

= +1 × 2254–127 × (1.0 + 0.0)

= 2127 = 1.70141 × 1038

Next, the following is the smallest float32 value, without using denormals:

0 00000001 00000000000000000000000

= +1 × 21–127 × (1.0 + 0.0)

= 2–126 = 1.17549 × 10–38

Finally, the following is a small float32 value using denormals (though not the smallest):

0 00000000 10000000000000000000000

= +1 × 21–127 × (0.0 + 0.5)

= +1 × 2–126 × 0.5

= 2–127 = 5.87747 × 10–39

For floating-point math operations, the result always has the largest of the exponent
sizes and fraction sizes of the operands. Most often, the numbers are all of the same size,
as in the following example:

signal A32, B32, Y32 : float(8 downto -23);
...

Y32 <= A32 + B32;

Further details of overloaded operations and result sizes are provided in the tables in Sec-
tion 9.2.6.



322 Chapter 9 — Predefined and Standard Packages

If we want to assign a value to a floating-point object, we can either use a string literal
or we can apply a to_float conversion function to an integer or real number. This is similar
to the way in which we assign values to fixed-point objects (see Section 9.2.4). In the case
of conversion functions, we can specify the result size either by specifying the exponent
and fraction size, or by providing an object whose index range is used. These approaches
are shown in the following example:

signal A_fp32 : float32;
...

A_fp32 <= "01000000110100000000000000000000";
A_fp32 <= to_float(6.5, 8, -32);  -- pass sizes
A_fp32 <= to_float(6.5, A_fp32);  -- size using A_fp32

As with fixed-point math, use of string literals in an expression is problematic, since
their index ranges are ascending (to) and start with integer'low. The solution is the same,
namely, using type-qualified string literals or using overloaded operations that accept in-
teger or real operands. These are shown in the following example:

signal A, Y : float32;
...

Y <= A + "01000000110100000000000000000000";   -- illegal
Y <= A + float32'("01000000110100000000000000000000");
Y <= A + 6.5;        -- overloading with real
Y <= A + 6;          -- overloading with integer

The floating-point packages also include overloaded versions of the string conversion
operations and file read and write operations for text-based input/output. The overload
to_string operation includes colon characters to separate the sign, exponent, and fraction
fields. For example, given the following declaration:

constant x : float(6 downto -11) := "011101100010001110";

to_string(x) returns the string "0:111011:00010001110".
The floating-point packages also define overloaded versions of to_ostring and

to_hstring that behave similarly to the versions for standard logic vectors (see Section
9.2.2). They do not attempt to include the radix point in the way that the fixed-point ver-
sions do, since the radix point is not at a fixed position.

9.2.6 Package Summary

In this section, we summarize the operations defined in the standard packages:
std_logic_1164, numeric_std, numeric_bit, numeric_std_unsigned,
numeric_bit_unsigned, fixed_generic_pkg, and float_generic_pkg.



9.2 IEEE Standard Packages 323

Operator Overloading Summary

Table 9.7 summarizes the operand and result types for overloaded operations defined in
the standard packages. The table does not include the predefined operations on the var-
ious types.

TABLE 9.7 Operand and result types

 Operators Left Right Result

Binary and, or, nand, 
nor, xor, xnor

std_ulogic std_ulogic std_ulogic

LogicArrayType LogicArrayType LogicArrayType

LogicArrayType std_ulogic LogicArrayType

std_ulogic LogicArrayType LogicArrayType

not std_ulogic std_ulogic

LogicArrayType LogicArrayType

Unary reduction and, or, 
nand, nor, xor, xnor

LogicArrayType std_ulogic

=, /=, <, <=, >, >= NumericArrayType NumericArrayType boolean 

NumericArrayType integer boolean

integer NumericArrayType boolean

RealArrayType real boolean

real RealArrayType boolean

?=, ?/=, ?<, ?<=, ?>, ?>= NumericArrayType NumericArrayType ArrayElementType

NumericArrayType integer ArrayElementType

integer NumericArrayType ArrayElementType

RealArrayType real ArrayElementType

real RealArrayType ArrayElementType

rol, ror, sll, srl LogicArrayType integer LogicArrayType

sla, sra NumericArrayType integer NumericArrayType



324 Chapter 9 — Predefined and Standard Packages

Where overloaded operations are defined, the predefined operations are hidden. In
the table, the notation use is as follows:

• LogicArrayType: arrays of std_ulogic elements

• NumericArrayType: signed, unsigned, ufixed, sfixed, float, bit_vector with opera-
tions in numeric_bit_unsigned visible, or std_ulogic_vector with operations in
numeric_std_unsigned visible

• RealArrayType: ufixed, sfixed, or float

• ArrayElementType: the element type of the operand array or arrays

Table 9.8 summarizes the result size and/or index range for operations with array re-
sults. For arrays representing unsigned or signed integer values, only the size is relevant,
as the leftmost bit is the most-significant bit and the rightmost bit is the least-significant
bit. For fixed-point and floating-point values, the specific index bounds are relevant, as
described in Sections 9.2.4 and 9.2.5. The notation for types is the same as that used in
Table 9.7. In addition, L represents the left operand, R represents the right operand, A rep-
resents the array operand in the case where the other operand is scalar, and Result repre-
sents the result of the operation.

Binary +, –, *, /, mod, 
rem

NumericArrayType NumericArrayType NumericArrayType

NumericArrayType integer NumericArrayType

integer NumericArrayType NumericArrayType

RealArrayType real RealArrayType

real RealArrayType RealArrayType

Binary +, – NumericArrayType std_ulogic NumericArrayType

std_ulogic NumericArrayType NumericArrayType

Unary –, abs signed, sfixed, float signed, sfixed, float

maximum, minimum NumericArrayType NumericArrayType NumericArrayType

NumericArrayType integer NumericArrayType

integer NumericArrayType NumericArrayType

RealArrayType real RealArrayType

real RealArrayType RealArrayType

 Operators Left Right Result



9.2 IEEE Standard Packages 325

TABLE 9.8 Result sizes and index ranges

Operator Result type Result size and/or range

Array/array and, or, 
nand, nor, xor, 
xnor

ArrayOfBits Result'length = L'length = R 'length

Fixed, Float: Result 'range = L'range

Array/scalar and, or, 
nand, nor, xor, 
xnor

ArrayOfBits Result 'length = A'length 

Fixed, Float: Result 'range = A'range 

not ArrayOfBits Result 'length = R 'length

Fixed, Float: Result 'range = R 'range

rol, ror, sll, srl, 
sla, sra

ArrayOfBits Result 'length = A'length 

Fixed, Float: Result 'range = A'range 

+, –, *, /, rem, mod float maximum(L'left, R 'left) down to minimum(L'right, R 'right)

Binary +, – unsigned, signed maximum(L'length, R 'length) – 1 down to 0

ufixed, sfixed maximum(L'left, R 'left) + 1 down to minimum(L'right, R 'right)

* unsigned, signed L'length + R 'length – 1 down to 0

ufixed, sfixed L'left + R 'left + 1 down to L'right + R 'right

/ unsigned, signed L'length – 1 down to 0

ufixed L'left – R 'right down to L'right – R'left – 1

sfixed L'left – R 'right + 1 down to L'right – R 'left

rem unsigned, signed R 'length – 1 down to 0

ufixed, sfixed minimum(L'left, R 'left) down to minimum(L'right, R 'right)

mod unsigned, signed R 'length – 1 down to 0

ufixed minimum(L'left, R 'left) down to minimum(L'right, R 'right)

sfixed R 'left down to minimum(L'right, R 'right)

Unary –, abs signed R 'length – 1 down to 0

sfixed R 'left + 1 down to R 'right

minimum, maximum DiscreteArrayType Result 'length = A'length 

Fixed, Float: Result 'range = A'range 

unsigned, signed maximum(L'length, R 'length) – 1 down to 0

ufixed, sfixed, float minimum(L'left, R 'left) down to minimum(L'right, R 'right)



326 Chapter 9 — Predefined and Standard Packages

Conversion Function Summary

Next, we summarize the conversion functions defined in the standard packages. In order
to present the information in more compact form, we have used some abbreviations for
types and the packages in which the functions are defined: “bv” for bit_vector, “slv” for
std_logic_vector, “sulv” for std_ulogic_vector, “1164” for std_logic_1164, “nbu” for
numeric_bit_unsigned, “nsu” for numeric_std_unsigned, “ns/b” for numeric_std and
numeric_bit, “fixed” for fixed_generic_pkg, and “float” for float_generic_pkg.

Table 9.9 shows the functions that convert between bit and std_ulogic scalar types,
and between vectors of these types. We use the shorthand aliases for the functions here
for brevity. The first parameter is the value to be converted. The to_bit and to_bv functions
have a second parameter, xmap, as described in Section 9.2.2, to specify how metalogical
values should be mapped. Those functions that convert from an abstract numeric value to
a vector representation have a second parameter, either a natural value, size, specifying
the size of the result or a value of the result type, size_res, whose size is used for the result.

TABLE 9.9 Conversions between bit and standard-logic types

Function Result type Parameter 1 type Parameter 2 Package

to_bit bit std_ulogic xmap 1164

to_std_ulogic std_ulogic bit 1164

to_bv bit_vector sulv xmap 1164

natural size nbu

natural size_res nbu

to_sulv sulv bv 1164

slv 1164

natural size nsu

natural size_res nsu

ufixed fixed

sfixed fixed

float float



9.2 IEEE Standard Packages 327

Table 9.10 shows the functions that convert from the various numeric types to the un-
signed and signed types defined in numeric_std and numeric_bit. The first parameter is
the value to be converted, and the second parameter is either a natural value, size, spec-
ifying the size of the result or a value of the result type, size_res, whose size is used for
the result.

The conversions from fixed-point representation have a third parameter,
overflow_style (abbreviated to “overflow” in the table), of type
fixed_overflow_style_type. The default value is the value of the generic
fixed_overflow_style. The fourth parameter, round_style (abbreviated to “round”), is of
type fixed_round_style_type and defaults to the value of the generic fixed_round_style.

The conversions from float have a third parameter, round_style (abbreviated to
“round”), of type round_type, with the default being the value of the package generic
float_round_style. The fourth parameter is check_error (abbreviated to “chk_err”), of type
boolean, for controlling error checking during the conversion. The default is the value of
the package generic float_check_error.

TABLE 9.10 Conversion functions yielding unsigned and signed values

to_slv slv bv 1164

sulv 1164

natural natural nsu

natural size_res nsu

ufixed fixed

sfixed fixed

float float

Function Result type Param 1 type Param 2 Param 3 Param 4 Package

to_unsigned unsigned natural size ns/b

size_res

ufixed size overflow round fixed

size_res overflow round

float size round chk_err float

size_res round chk_err

Function Result type Parameter 1 type Parameter 2 Package



328 Chapter 9 — Predefined and Standard Packages

Table 9.11 shows the functions that convert from numeric types to the ufixed and
sfixed types defined in the fixed-point packages. In the case of conversion functions de-
fined in the floating-point packages, the definitions of ufixed and sfixed come from the
fixed-point package referenced as a generic package, as outlined in Section 9.2.5. The first
parameter of each function is the value to be converted. Following this are either two pa-
rameters, left_index and right_index (abbreviated to “L_index” and “R_index” in the ta-
ble), to specify the index bounds of the result, or a single parameter of the result type,
size_res, whose index range is used for the result. For the conversions from natural or
unsigned to ufixed, and for the conversions to integer or signed to sfixed, the default for
right_index is 0. Additional parameters specify overflow and rounding modes
(overflow_style and round_style), the number of guard bits to use (guard_bits), whether
error checking is required (check_error), and whether operands of type float use denor-
malized representation (denormalize). The default values for the overflow_style,
round_style, and guard_bits parameters come from the various generic constants of the
packages. Note that there are also versions of to_ufixed and to_sfixed with no parameters
beyond the first unsigned or signed parameter. (This is not an error in the table layout!)
These versions simply return the value of the parameter as a fixed-point value with no
fractional part (that is, indexed from one less than the length down to 0).

to_signed signed integer size ns/b

size_res

sfixed size overflow round fixed

size_res overflow round

float size round chk_err float

size_res round chk_err

Function Result type Param 1 type Param 2 Param 3 Param 4 Package



9
.2

IE
E
E
 Sta

n
d

a
rd

 P
a

cka
ges

329

TABLE 9.11 Conversion functions yielding ufixed and sfixed values

Function Result type Param 1 type Param 2 Param 3 Param 4 Param 5 Param 6 Param 7 Package

to_ufixed ufixed sulv L_index R_index fixed

size_res

unsigned

L_index R_index overflow round

size_res overflow round

natural L_index R_index overflow round

size_res overflow round

real L_index R_index overflow round guard 

size_res overflow round guard 

float L_index R_index overflow round chk_err denorm float

size_res overflow round chk_err denorm



330
C

h
a

pter 9
—

P
red

efin
ed

 a
n

d
 Sta

n
d

a
rd

 P
a

cka
ges

to_sfixed sfixed ufixed fixed

sulv L_index R_index

size_res

signed

L_index R_index overflow round

size_res overflow round

integer L_index R_index overflow round

size_res overflow round

real L_index R_index overflow round guard 

size_res overflow round guard 

float L_index R_index overflow round chk_err denorm float

size_res overflow round chk_err denorm

Function Result type Param 1 type Param 2 Param 3 Param 4 Param 5 Param 6 Param 7 Package



9.2 IEEE Standard Packages 331

Table 9.12 shows the functions that convert from numeric types to the float type de-
fined in the floating-point packages. Again, the definitions of ufixed and sfixed come from
the fixed-point package referenced as a generic package. The first parameter of each func-
tion is the value to be converted. Following this are either two parameters,
exponent_width and fraction_width (abbreviated to “exponent” and “fraction” in the ta-
ble), to specify the sizes of the corresponding fields in the result, or a single parameter of
the result type, size_res, whose index range is used for the result. Additional parameters
specify the rounding mode (round_style) and whether denormalized representation is
used (denormalize). The default values for the field size, round_style and denormalize
parameters come from the generic constants of the package.

TABLE 9.12 Conversion functions yielding float values

The final group of conversion functions is shown in Table 9.13. These functions con-
vert from binary-coded vectors to abstract integer or real types. As in the preceding tables,
the first parameter is the value to be converted, and subsequent parameters specify
overflow and rounding modes (overflow_style and round_style), whether error checking
is required (check_error), and whether operands of type float use denormalized represen-
tation (denormalize). The default values for these subsequent parameters come from the
generic constants of the packages.

Function Result type Param 1 type Param 2 Param 3 Param 4 Param 5 Package

to_float float sulv exponent fraction float

size_res

unsigned

exponent fraction round

size_res round

signed exponent fraction round

size_res round

ufixed exponent fraction round denorm

size_res round denorm

sfixed exponent fraction round denorm

size_res round denorm

integer exponent fraction round

size_res round

real exponent fraction round denorm

size_res round denorm



332 Chapter 9 — Predefined and Standard Packages

TABLE 9.13 Conversion functions yielding integer and real values

As we have mentioned, the packages provide aliases for the conversion functions for
convenience and enhanced readability: for conversion to bit_vector, the names we can
use are to_bv, to_bitvector and to_bit_vector; for conversion to std_ulogic_vector, the
names are to_sulv, to_stdulogicvector and to_std_ulogic_ vector; and for conversion to
std_logic_vector, the names are to_slv, to_stdlogicvector and to_std_logic_vector.

For each binary-coded numeric type, there is a resize function, shown in Table 9.14.
The versions yielding bit_vector, std_ulogic_vector, unsigned, and signed results have a
parameter new_size to specify the result size, or a parameter size_res for an object whose
index range is used for that of the result. The versions that yield fixed-point results have
either two parameters (left_index and right_index) to specify the index bounds of the re-
sult, or one parameter (size_res) for an object whose index range is used for that of the
result. They also have parameters to specify overflow and rounding modes
(overflow_style and round_style), with default values coming from the package generics.
Similarly, the versions that yield floating-point results have either two parameters to spec-
ify the field sizes for the result (exponent_width and fraction_width), or one parameter
(size_res) for an object whose index range is used for that of the result. Subsequent pa-
rameters specify rounding modes (round_style), whether error checking is required
(check_error), and whether the operand and result use denormalized representation
(denormalize_in and denormalize_out, respectively). The default values for these subse-
quent parameters come from the generic constants of the package.

Function Result type Param 1 type Param 2 Param 3 Param 4 Package

to_integer natural  bv nbu

natural sulv nsu

natural unsigned ns/b

integer signed

natural ufixed overflow round fixed

integer sfixed overflow round

integer float round chk_err float

to_real real ufixed fixed

sfixed

float round chk_err denorm float



9
.2

IE
E
E
 Sta

n
d

a
rd

 P
a

cka
ges

333

TABLE 9.14 Resizing functions 

Function Result type Param 1 type Param 2 Param 3 Param 4 Param 5 Param 6 Param 7 Package

resize bv bv new_size nbu

size_res

sulv sulv new_size nsu

size_res

unsigned unsigned new_size ns/b

size_res

signed signed new_size

size_res

ufixed ufixed L_index R_index overflow round fixed

size_res overflow round

sfixed sfixed L_index R_index overflow round

size_res overflow round

float float exponent fraction round chk_err den_in den_out float

size_res round chk_err den_in den_out



334 Chapter 9 — Predefined and Standard Packages

Resizing an unsigned vector of type bit_vector, std_ulogic_vector or unsigned to pro-
duce a larger vector involves filling leftmost bits with ‘0’. Resizing these types to produce
a smaller vector involves truncating the leftmost bits. For type signed, producing a larger
vector involves filling the leftmost bits with copies of the operand’s sign bit, and producing
a smaller vector involves truncating the leftmost bits while retaining the sign bit.

Resizing a fixed-point value is similar. A ufixed vector is extended on the left or right
by filling bits with ‘0’. An sfixed vector is extended on the left by replicating the sign bit
and extended on the right by filling bits with ‘0’. Reducing the size of a fixed-point vector
is more complicated, and depends on the overflow and rounding modes. If the vector is
to be truncated on the right, a rounding mode of fixed_truncate causes the truncated bits
to be discarded and the rightmost result bit to be unchanged, whereas a rounding mode
of fixed_round causes the result to be rounded based on the values of the discarded bits
and the rightmost result bit. If the vector is to be truncated to the left and the operand
value is out of the representable range for the result, the value returned depends on the
overflow style. For fixed_saturate, the largest representable value (for ufixed or for posi-
tive sfixed values) or the most negative representable value (for negative sfixed values)
is returned. For fixed_wrap, the leftmost bits are simply truncated, which, in the case of
sfixed values, may result in a change of sign.

Resizing a floating-point value is much more involved than resizing integral and fixed-
point values. It involves determining the class of value represented by the operand (nor-
mal, denormal, zero, infinity, or NaN), resizing the exponent and fractional parts, rounding
according to the round_style parameter, renormalizing or representing as a denormal if
required, checking for errors, and transforming overflow to infinity.

Strength Reduction Function Summary

The strength reduction functions are defined for the entire family of types based on
std_ulogic. Functions of the following form are defined:

function to_01   (s : Type; xmap : std_ulogic := '0') return Type;

function to_X01  (s : Type) return Type;

function to_X01Z (s : Type) return Type;

function to_UX01 (s : Type) return Type;

The type Type includes std_ulogic, std_ulogic_vector, unresolved_unsigned,
unresolved_signed, unresolved_ufixed, unresolved_sfixed, unresolved_float, and the
subtypes of the vector types with resolved elements. The value returned by each function
for each operand element value is shown in Table 9.15. The functions to_X01, to_X01Z,
and to_UX01, when applied to vector operands, convert each operand element according
to the table to yield the corresponding result element. The to_01 function, however, be-
haves differently. Provided all of the elements are ‘0’, ‘1’, ‘L’, or ‘H’, they are converted
according to the table. However, if any element is a metalogical value (a value other than
‘0’, ‘1’, ‘L’, or ‘H’), all elements of the result are set to the value of the xmap parameter.
Thus, we can test any element of the result to determine whether there were any meta-
logical elements in the operand.



Exercises 335

TABLE 9.15 Strength reduction mappings

The ‘X’ detection function is also defined for the entire family of types based on
std_ulogic. The function definitions are of the form:

function is_X (S : Type) return boolean;

The version for std_ulogic returns true if the operand is a metalogical value, or false
otherwise. The versions for vector types return true if any element of the operand is a met-
alogical value, or false otherwise.

EXAMPLE 9.5 Unknown detection for a state-machine input

We can use the to_X01 function in behavioral models of ASIC and FPGA input cells
to promote a resistive strength to a driving level as follows:

ncs_x01 <= to_X01(ncs);

We can use the is_X function to detect ‘X’ values in behavioral models and RTL
code, for example, in the input to a state machine:

assert not is_X(ncs) report "ncs is X" severity error;

Exercises

1. [➊ 9.1] Write an assertion statement that verifies that the resolution limit is at most 1 ns.

2. [➊ 9.2] What string values are produced by to_hstring for the following
std_ulogic_vector values: B"ZZZZ_0100", B"XX_L01H", B"01_00ZZ"?

3. [➊ 9.2] Write declarations for signals a, b, and s representing 24-bit unsigned numbers
with std_ulogic elements. Write an assignment that adds a, b, and a std_ulogic signal
carry_in, producing the sum in s and a std_ulogic signal carry_out.

4. [➊ 9.2] Write a process representing an edge-triggered D-flipflop with clock signal clk,
enable signal en, data input d, and output q, all of type std_ulogic. The flipflop should
store ‘0’, ‘1’, or ‘X’ values.

Function ‘U’ ‘X’ ‘0’ ‘1’ ‘Z’ ‘W’ ‘L’ ‘H’ ‘–’

to_01 xmap xmap ‘0’ ‘1’ xmap xmap ‘0’ ‘1’ xmap

to_X01 ‘X’ ‘X’ ‘0’ ‘1’ ‘X’ ‘X’ ‘0’ ‘1’ ‘X’

to_X01Z ‘X’ ‘X’ ‘0’ ‘1’ ‘Z’ ‘X’ ‘0’ ‘1’ ‘X’

to_UX01 ‘U’ ‘X’ ‘0’ ‘1’ ‘X’ ‘X’ ‘0’ ‘1’ ‘X’



336 Chapter 9 — Predefined and Standard Packages

5. [➊ 9.2] Write declarations for a signed fixed-point signal a with 4 pre-binary-point bits
and 6 post-binary-point bits. Write an assignment that assigns the square of a to a sig-
nal s that has 8 pre-binary-point bits and 6 post-binary-point bits.

6. [➊ 9.2] Write a declarations for float signals x and y with 7 exponent bits and 12 frac-
tion bits. Write a concurrent assignment that assigns the value of x to y, limited to the
range –1.0 to +1.0.

7. [➋ 9.1] Integers can be represented in signed magnitude form, in which the leftmost
bit represents the sign (‘0’ for non-negative, ‘1’ for negative), and the remaining bits
are the absolute value of the number, represented in binary. If we wish to compare
bit vectors containing numbers in signed magnitude form, we cannot use the
predefined relational operators directly. We must first transform each number as fol-
lows: if the number is negative, complement all bits; if the number is non-negative,
complement only the sign bit. Write a comparison function, overloading the operator
“<”, to compare signed-magnitude bit vectors using this method.

8. [➋ 9.2] Write a procedure that uses the uniform random number generator to generate
a random value of an enumeration type named controller_state.

9. [➋ 9.2] In telephone systems, a signal is compressed before transmission. The formula
for µ-law compression of a signal is

Develop a functional model of a compressor for values of type real.

10. [➋ 9.2] Develop a model of a decade counter with a 4-bit unsigned output.

11. [➋ 9.2] Develop a behavioral model of a pipelined multiplier for single-precision
(float32) operands. On each clock cycle, the multiplier starts a new multiplication,
and produces the product at the output of the pipeline five cycles later.

F x( ) xsgn 1 μ x+( )ln
1 μ+( )ln

------------------------------= 1– x 1≤ ≤ μ, 255=



337

Chapter 10 

Case Study: A Pipelined
Multiplier Accumulator

Now that we have covered the basic modeling facilities provided by VHDL, we will work
through our first case study, the design of a pipelined multiplier accumulator (MAC) for a
stream of complex numbers. Many digital signal processing algorithms, such as digital de-
modulation, filtering and equalization, make use of MACs. We use this design exercise to
bring together concepts and techniques introduced in previous chapters.

10.1 Algorithm Outline

A complex MAC operates on two sequences of complex numbers,  and . The
MAC multiplies corresponding elements of the sequences and accumulates the sum of the
products. The result is

where N is the length of the sequences. Each complex number is represented in Cartesian
form, consisting of a real and an imaginary part. If we are given two complex numbers x
and y, their product is a complex number p, calculated as follows:

The sum of x and y is a complex number s calculated as follows:

xi{ } yi{ }

xiyi

i 1=

N

∑

preal xreal yreal× ximag yimag×–=

pimag xreal yimag× ximag yreal×+=

sreal xreal yreal+=

simag ximag yimag+=



338 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

Our MAC calculates its result by taking successive pairs of complex numbers, one
each from the two input sequences, forming their complex product and adding it to an
accumulator register. The accumulator is initially cleared to zero and is reset after each
pair of sequences has been processed.

If we count the operations required for each pair of input numbers, we see that the
MAC must perform four multiplications to form partial products, then a subtraction and an
addition to form the full product and finally two additions to accumulate the result. This
is shown diagrammatically at the top of Figure 10.1. Since the operations must be per-
formed in this order, the time taken to complete processing one pair of inputs is the sum
of the delays for the three steps. In a high-performance digital signal processing applica-
tion, this delay may cause the bandwidth of the system to be reduced below a required
minimum.

We can avoid the delay by pipelining the MAC, that is, organizing it like an assembly
line, as shown at the bottom of Figure 10.1. The first pair of input numbers is stored in
the input register on the first clock edge. During the first clock cycle, the multipliers cal-
culate the partial products, while the system prepares the next pair of inputs. On the sec-
ond clock edge, the partial products are stored in the first pipeline register, and the next
pair of inputs is entered into the input register. During the second clock cycle, the sub-
tracter and adder produce the full product for the first input pair, the multipliers produce
the partial products for the second input pair and the system prepares the third input pair.
On the third clock edge, these are stored, respectively, in the second pipeline register, the
first pipeline register and the input register. Then in the third clock cycle, the adders ac-
cumulate the product of the first pair with the previous sum, and the preceding stages op-
erate on the second and third pairs, while the system prepares the fourth pair. The sum

FIGURE 10.1 

Dataflow diagrams showing order of operations performed by the MAC. Top: combinatorial or-
ganization. Bottom: pipelined organization.

×
×

×
×

–

+

x
p

y

+

+

accumulator

×
×

×
×

x
p

y

+

+

accumulatorinput
register

pipeline
register

pipeline
register

–

+



10.1 Algorithm Outline 339

in the accumulator is updated on the fourth clock edge. Thus, three clock cycles after the
first pair of numbers was entered into the input latch, the sum including this pair is avail-
able at the output of the MAC. Thereafter, successive sums are available each clock cycle.
The advantage of this approach is that the clock period can be reduced to the slowest of
the pipeline stages, rather than the total of their delays.

One detail we have yet to consider is initializing and restarting the pipeline. We need
to do this to accumulate sums of products of a number of input sequences, one after an-
other. The simplest approach is to include a “clear” input to the accumulator register that
forces its content to zero on the next clock edge. For each pair of sequences to be multi-
plied and accumulated, we start entering numbers into the input registers on successive
clock edges. Then, two clock cycles after we have entered the first pair of numbers, we
assert the clear input. This causes the accumulator to reset at the same time as the product
of the first pair of numbers reaches the second pipeline register. On the following cycle,
this product will be added to the zero value forced into the accumulator. After the last pair
in the input sequences has been entered, we must wait three clock cycles until the final
sum appears at the output of the MAC. We must separate successive input sequences by
at least one idle cycle and reset the accumulator between summations.

The final issue in this outline of the MAC algorithm is the representation of the data.
We use a 16-bit, two’s-complement, fixed-point binary representation. Each of the real and
imaginary parts of the two complex inputs and the complex output of the MAC uses the
format shown in Figure 10.2. Bit 0 is the sign bit, and the binary point is assumed to be
between bits 0 and –1. Using this format, we can represent numbers in the range –1 (in-
clusive) to +1 (exclusive), with a resolution of 2–15. This raises the possibility of overflow
occurring while summing a sequence of numbers, so we include an overflow status signal
in our design. Overflow can occur in two cases. First, intermediate partial sums may fall
outside of the range –1 to +1. We can reduce the likelihood of this happening by expand-
ing the range used to represent intermediate results to –16 to +16. However, if an inter-
mediate sum falls outside of the expanded range, the summation for the entire sequence
is in error, so the overflow signal must be set. It remains set until the accumulator is
cleared, indicating the end of the summation.

The second overflow case occurs if the final sum falls outside the range of values rep-
resentable by the MAC output. This may be a transient condition, since a subsequent prod-
uct, when added to the sum, may bring the sum back in range. We assert the overflow
signal only during a cycle in which the final sum is out of range, rather than latching the
overflow until the end of summation.

Now that we have described the requirements and the algorithm to be performed by
the MAC, we can specify its interface. This is defined by the entity declaration:

FIGURE 10.2 

The format of a 16-bit, two’s-complement, fixed-point binary number.

0

–20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

−1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15bit index

bit weight



340 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

library ieee;
use ieee.std_logic_1164.all, ieee.fixed_pkg.all;

entity mac is
  port ( clk, reset : in std_ulogic;
         x_real : in u_sfixed(0 downto -15);
         x_imag : in u_sfixed(0 downto -15);
         y_real : in u_sfixed(0 downto -15);
         y_imag : in u_sfixed(0 downto -15);
         s_real : out u_sfixed(0 downto -15);
         s_imag : out u_sfixed(0 downto -15);
         ovf : out std_ulogic );
end entity mac;

The clk port is used to synchronize operation of the MAC. All data transfers into reg-
isters in the pipeline are done on the rising edge (from ‘0’ to ‘1’) of this signal. The reset
port causes the accumulator registers to be cleared to zero and the overflow condition to
be reset. The data ports all use the signed data type from the standard fixed-point package
described in Section 9.2.4. The index ranges correspond to the format shown in Figure
10.2. The ports x_real, x_imag, y_real and y_imag are the real and imaginary parts of the
two input data sequences. These input ports, as well as the reset port, are sampled syn-
chronously on the rising edge of the clk signal. The ports s_real and s_imag are the real
and imaginary parts of the accumulated sum, and the ovf port is the overflow flag, set as
described above. These output ports become valid after each rising edge of the clk signal.

10.2 A Behavioral Model

Our first implementation of the MAC is a behavioral model. This model allows us to focus
on the algorithm without being distracted by other details at this early stage of the design.
When we have the behavioral model working, we will be able to use it to generate test
data for more detailed implementations. Our behavioral model is expressed as an archi-
tecture body, containing a single process that implements the MAC algorithm described in
Section 10.1:

use ieee.math_complex.all;

architecture behavioral of mac is

  signal x_complex, y_complex, s_complex : complex;

begin

  x_complex <= ( to_real(x_real), to_real(x_imag) );
  y_complex <= ( to_real(y_real), to_real(y_imag) );

  behavior : process (clk) is

    variable input_x, input_y : complex := (0.0, 0.0);
    variable real_part_product_1, real_part_product_2,
             imag_part_product_1, imag_part_product_2 := 0.0;



10.2 A Behavioral Model 341

    variable product, sum : complex := (0.0, 0.0);
    variable real_accumulator_ovf,
             imag_accumulator_ovf : boolean := false;

  begin
    if rising_edge(clk) then
      -- Work from the end of the pipeline back to the start,
      -- so as not to overwrite previous results in pipeline
      -- registers before they are used.

      -- Update accumulator and generate outputs.
      if reset then
        sum := (0.0, 0.0);
        real_accumulator_ovf := false;
        imag_accumulator_ovf := false;
      else
        sum := product + sum;
        real_accumulator_ovf := real_accumulator_ovf
                                or sum.re < -16.0
                                or sum.re >= +16.0;
        imag_accumulator_ovf := imag_accumulator_ovf 
                                or sum.im < -16.0
                                or sum.im >= +16.0;
      end if;
      s_complex <= sum;
      ovf <= '1' when real_accumulator_ovf or imag_accumulator_ovf
                      or sum.re < -1.0 or sum.re >= +1.0
                      or sum.im < -1.0 or sum.im >= +1.0 ) else '0';

      -- Update product registers.
      product.re := real_part_product_1 - real_part_product_2;
      product.im := imag_part_product_1 + imag_part_product_2;

      -- Update partial product registers
      -- (actually with the full product).
      real_part_product_1 := input_x.re * input_y.re;
      real_part_product_2 := input_x.im * input_y.im;
      imag_part_product_1 := input_x.re * input_y.im;
      imag_part_product_2 := input_x.im * input_y.re;

      -- Update input registers using MAC inputs
      input_x := x_complex;
      input_y := y_complex;
    end if;
  end process behavior;

  s_real <= to_sfixed(s_complex.re, s_real);
  s_imag <= to_sfixed(s_complex.im, s_imag);

end architecture behavioral;



342 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

Note that the algorithm as described involves performing arithmetic on binary vectors
representing fixed-point numbers. We can avoid this by converting the input data to the
complex data type defined by the standard math_complex package (see Section 9.2.1),
performing the calculations using the overloaded arithmetic operators from that package,
then converting the results back to binary vectors. Note that this approach may lead to
slightly different results from the ultimate implementation using binary fixed-point repre-
sentation, due to the difference in precision between the two representations. We should
bear this in mind when comparing the output of the behavioral model with the models
we develop later, and ignore any small discrepancies.

The signals declared in the architecture are the complex representations of the data
input and output ports. The inputs are converted using the to_real conversion function
from the fixed-point package and forming complex aggregates. The result calculated by
the model on s_complex is converted back to fixed point using the to_sfixed conversion
function.

The process behavior implements the MAC algorithm. The variables of type complex
declared in the process represent the pipeline registers described in Section 10.1. The two
Boolean variables represent the overflow conditions arising from the accumulators. The
process is sensitive to the clk signal and performs a new calculation on each rising edge.
It works from the output end of the pipeline back toward the input end to avoid overwrit-
ing intermediate results from the previous clock cycle before they have been used in the
current cycle.

The process first calculates the new sum and overflow status. If the reset input is ‘1’,
both the accumulator and overflow variables are reset. Otherwise the process accumulates
a new complex sum, based on the previous complex sum and the contents of the product
registers, and stores it in the accumulator register variable. It also determines whether the
real and imaginary parts are within the range –16.0 to +16.0 and sets the overflow register
variables accordingly. The output data signal is assigned the new content of the accumu-
lator, and the overflow signal is set if either of the overflow register variables is set, or if
either of the data output parts falls outside the range –1.0 to +1.0. Next, the process up-
dates the product register variables using the previously calculated partial products. It then
updates the partial products using the previously stored input values and finally stores the
new input data values in the input register variables.

10.2.1 Testing the Behavioral Model

We can test the behavioral model of the MAC by instantiating it in a test bench model that
generates stimulus values on signals connected to the MAC inputs. The entity for the test
bench has no ports, since it is completely self-contained:

entity mac_test is
end entity mac_test;

The architecture body is

library ieee;
use ieee.std_logic_1164.all, ieee.fixed_pkg.all,
    ieee.math_complex.all;



10.2 A Behavioral Model 343

architecture bench_behavioral of mac_test is

  signal clk, reset, ovf : std_ulogic := '0';
  signal x_real, x_imag,
         y_real, y_imag,
         s_real, s_imag : u_sfixed(0 downto -15);

  signal x, y, s : complex := (0.0, 0.0);

  constant Tpw_clk : time := 50 ns;

begin

  x_real <= x.re; x_imag <= x.im;
  y_real <= y.re; y_imag <= y.im;

  dut : entity work.mac(behavioral)
    port map ( clk, reset,
               x_real, x_imag, y_real, y_imag, s_real, s_imag,
               ovf );

  s <= (s_real, s_imag);

  clock_gen : process is
  begin
    clk <= '1' after Tpw_clk, '0' after 2 * Tpw_clk;
    wait for 2 * Tpw_clk;
  end process clock_gen;

  stimulus : process is
  begin
    -- first sequence
                                            reset <= '1';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.5, +0.5);  reset <= '1';
    wait until not clk;
    x <= (+0.2, +0.2);  y <= (+0.2, +0.2);  reset <= '1';
    wait until not clk;
    x <= (+0.1, -0.1);  y <= (+0.1, +0.1);  reset <= '1';
    wait until not clk;
    x <= (+0.1, -0.1);  y <= (+0.1, +0.1);  reset <= '0';
    wait until not clk;

    -- should be (0.04, 0.58) when it falls out the other end

                                            reset <= '0';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.5, +0.5);  reset <= '0';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.1, +0.1);  reset <= '0';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.5, +0.5);  reset <= '1';



344 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

    wait until not clk;
    x <= (-0.5, +0.5);  y <= (-0.5, +0.5);  reset <= '0';
    wait until not clk;
                                            reset <= '0';
    wait until not clk;
                                            reset <= '0';
    wait until not clk;
                                            reset <= '0';
    wait until not clk;
                                            reset <= '1';
    wait until not clk;

    wait;
  end process stimulus;

end architecture bench_behavioral;

The architecture body contains signals that are connected to the input and output ports of
the MAC “device under test.” In order to simplify the task of writing complex values in the
test bench, we use the complex type from the math_complex package, as we did within
the behavioral model. The constant Tpw_clk is used to determine the pulse width for the
high and low phases of the clock signal, generated by the process clock_gen.

Stimulus values for the MAC are provided by the process labeled stimulus. During the
first four clock cycles, the process keeps the clr input active. This clears the accumulator
registers while the MAC pipeline starts operation. The stimulus process sets up new com-
plex number data each clock cycle. These enter the pipeline in sequence, and, after a de-
lay due to the pipeline latency, the accumulated sums start appearing on the outputs.
Figure 10.3 shows the timing of calculations performed on this first sequence. The final
result we should expect is the complex number (0.04, 0.58). The result shown in Figure
10.3 (after the clock-edge at 750 ns) is slightly different due to the reduced precision of
the 16-bit fixed-point number representation.

After the result from the first sequence has progressed through to the MAC output, the
stimulus process clears the accumulator to prepare it to start accumulating results for the
second sequence. This sequence is designed to test the overflow output of the MAC. The
sum of the first three pairs produces a number that lies outside of the range –1.0 to +1.0,
so we would expect the ovf output to be ‘1’ when that sum reaches the output. However,
addition of the product of the next pair brings the accumulated sum back into range, so
we would expect ovf to revert to ‘0’. This behavior is also shown in Figure 10.3.

The stimulus values, or test vectors, used to test the MAC model in this example are
synthetically generated by the model designer. While such vectors are useful for small-
scale testing, they do not provide high test coverage. There may be errors in the model
that are not revealed by the small number of vectors. As the famous computer scientist
Nicklaus Wirth commented, “Testing can reveal the presence of bugs, not their absence.”
We can gain more confidence in the model by providing significantly larger sets of test
vectors. One approach is to use a pseudo-random number generator (for example, based
on the uniform procedure in the math_real package) to generate long streams of test vec-
tors. Another approach is to create files of test vectors. A test bench can read such files to
stimulate the model under test. We will discuss the use of files in VHDL in Chapter 16.



1
0

.2
A

 B
eh

a
viora

l M
od

el
345

F
IG

U
R

E
 1

0
.3

 

T
h

e tim
in

g of th
e M

A
C

 opera
tion

 on
 th

e sequ
en

ces in
 th

e test ben
ch

.

50 150 250 350 450 550 650 750 850ns

clk

clr

ovf

x.re

x.im

x_real

x_imag

y.re

y.im

s.re

s.im

y_real

y_imag

s_real

s_imag 4000 4A3E

028F 051F

4000 199A 0CCD

0CCD

0CCD

F333199A

199A

199A

0000

0000

0000

0000

0000

0000

0.0

0.0 0.5 0.580017

0.019989 0.0400085

0.0 0.5 0.1

0.1

0.1

0CCD

0CCD

0.1

0.1

–0.1

0.2

0.2

0.2

0.2

0.5

0.5

0.5

0.0

0.0

0.0

4000

4000

4000

4000

0.5

0.5

0.5

0.5

4000

4000

4000

950 1050 1150 1250 1350

4CCD0000 4000 4CCD 7FFF 0000

0000

0.0 0.5 0.600006 0.999969 0.600006 0.0

0.0

C000

–0.5

4000

0.5

0.5

C000

–0.5

4000



346 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

10.3 A Register-Transfer-Level Model

We now turn to a register-transfer-level implementation of the MAC, based on the pipeline
diagram shown in Section 10.1. A more detailed diagram of the MAC at the register-transfer
level is shown in Figure 10.4. We will use the overloaded arithmetic operators from
fixed_pkg to implement the multipliers, adders and the subtractor. Recall that the sizes and
index ranges of the results for these operators are shown in Table 9.8 on page 325.

The real and imaginary parts of the two complex inputs are stored in the first set of
pipeline registers. The multipliers use the stored values to produce the four partial prod-
ucts. Since the input values are 16-bit fixed-point numbers between –1.0 inclusive and
+1.0 exclusive (indexed from 0 down to –15), the partial products are 32-bit fixed-point
numbers between –1.0 and +1.0 inclusive (indexed from 1 down to –30), as shown in Fig-
ure 10.5. The partial products are stored in the second set of pipeline registers. The sub-
tracter and adder use these values to produce the full 33-bit products in the range –2.0 to
+2.0 inclusive (indexed from 2 down to –30). However, only 20 bits of the products are
stored in the next set of pipeline registers. The least-significant 13 bits are truncated. This
still leaves two extra bits beyond the final precision required for the MAC outputs, in order
to reduce the effect of rounding errors during accumulation of the sums. The accumulator
adders use an extended range, –16.0 inclusive to +16.0 exclusive, so the pipelined prod-
ucts must be sign-extended by two bits before being added into the previously accumu-
lated sums. The adders also produce overflow status outputs, which are used to set
flipflops that record the overflow condition for a sequence of inputs. Finally, the accumu-
lated sums are reduced to 16 bits at the MAC output. The least-significant two bits are trun-
cated and bits 1 to 4 are discarded. The overflow logic must check that these discarded
bits are all the same as the sign bit; otherwise the result is outside the range –1.0 to +1.0,
and overflow has occurred.

FIGURE 10.4 

The register-transfer-level organization of the MAC.

x_real

x_imag

y_real

y_imag

×

×

×

×

–

+

clr

clr

r
s

r
s

clr over-
flow
logic

+
ovf

+
ovf

s_real

s_imag

ovf



10.3 A Register-Transfer-Level Model 347

The register-transfer-level architecture body is

architecture rtl of mac is

  signal pipelined_x_real,
         pipelined_x_imag,
         pipelined_y_real, 
         pipelined_y_imag : u_sfixed(0 downto -15);
  signal real_part_product_1, 
         real_part_product_2,
         imag_part_product_1, 
         imag_part_product_2 : u_sfixed(1 downto -30);
  signal pipelined_real_part_product_1,
         pipelined_real_part_product_2,
         pipelined_imag_part_product_1,
         pipelined_imag_part_product_2 : u_sfixed(1 downto -30);
  signal real_product, 
         imag_product : u_sfixed(2 downto -30);
  signal pipelined_real_product,
         pipelined_imag_product : u_sfixed(2 downto -17);
  signal extended_real_product,
         extended_imag_product : u_sfixed(4 downto -17);
  signal real_sum,

FIGURE 10.5 

The format of fixed-point intermediate results within the MAC, showing the positions of the sign
bits (S) and the binary points.

0 −1 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

−15

0 −1 . . . . . . . . . . . . . −15

−301 0 −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . −301 0 −1

4 3

−17

2

. . . . . . . . . . . . . . .1 0 −12

−17. . . . . . . . . . . . . . .1 0 −12

S

S

S

S

S

S

.

.

.

.

.

.

inputs

partial
products

products

pipelined
products

accumu-
lated sums

outputs



348 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

         imag_sum : u_sfixed(4 downto -17);
  signal real_accumulator_ovf,
         imag_accumulator_ovf : std_ulogic;
  signal pipelined_real_sum,
         pipelined_imag_sum : u_sfixed(4 downto -17);
  signal pipelined_real_accumulator_ovf,
         pipelined_imag_accumulator_ovf : std_ulogic;

begin

  input_reg : process (clk) is
  begin
    if rising_edge(clk) then
      pipelined_x_real <= x_real;
      pipelined_x_imag <= x_imag;
      pipelined_y_real <= y_real;
      pipelined_y_imag <= y_imag;
    end if;
  end process input_reg;

  real_part_product_1 <= pipelined_x_real * pipelined_y_real;
  real_part_product_2 <= pipelined_x_imag * pipelined_y_imag;

  imag_part_product_1 <= pipelined_x_real * pipelined_y_imag;
  imag_part_product_2 <= pipelined_x_imag * pipelined_y_real;

  part_product_reg : process (clk) is
  begin
    if rising_edge(clk) then
      pipelined_real_part_product_1 <= real_part_product_1;
      pipelined_real_part_product_2 <= real_part_product_2;
      pipelined_imag_part_product_1 <= imag_part_product_1;
      pipelined_imag_part_product_2 <= imag_part_product_2;
    end if;
  end process part_product_reg;

  real_product <= pipelined_real_part_product_1
                  - pipelined_real_part_product_2;

  imag_product <= pipelined_imag_part_product_1
                  + pipelined_imag_part_product_2;

  product_reg : process (clk) is
  begin
    if rising_edge(clk) then
      pipelined_real_product
        <= resize(real_product, pipelined_real_product);
      pipelined_imag_product
        <= resize(imag_product, pipelined_imag_product);
    end if;
  end process product_reg;



10.3 A Register-Transfer-Level Model 349

  extended_real_product
    <= resize(pipelined_real_product, extended_real_product);

  extended_imag_product
    <= resize(pipelined_imag_product, extended_imag_product);

  real_sum <= extended_real_product + pipelined_real_sum;
  imag_sum <= extended_imag_product + pipelined_imag_sum;

  real_accumulator_ovf
    <= (     not extended_real_product(4)  -- non-negative
         and not pipelined_real_sum(4)     -- non-negative
         and     real_sum(4) )             -- appears negative
       or
       (      extended_real_product(4)     -- negative
         and     pipelined_real_sum(4)     -- negative
         and not real_sum(4) );            -- appears non-negative

  imag_accumulator_ovf
    <= (     not extended_imag_product(4)  -- non-negative
         and not pipelined_imag_sum(4)     -- non-negative
         and     imag_sum(4) )             -- appears negative
       or
       (      extended_imag_product(4)     -- negative
         and     pipelined_imag_sum(4)     -- negative
         and not imag_sum(4) );            -- appears non-negative

  accumulator_reg : process (clk) is
  begin
    if rising_edge(clk) then
      if reset then
        pipelined_real_sum <= (others => '0');
        pipelined_imag_sum <= (others => '0');
        pipelined_real_accumulator_ovf <= '0';
        pipelined_imag_accumulator_ovf <= '0';
      else
        pipelined_real_sum <= real_sum;
        pipelined_imag_sum <= imag_sum;
        pipelined_real_accumulator_ovf
          <= pipelined_real_accumulator_ovf or real_accumulator_ovf;
        pipelined_imag_accumulator_ovf
          <= pipelined_imag_accumulator_ovf or imag_accumulator_ovf;
      end if;
    end if;
  end process accumulator_reg;

  s_real <= resize(pipelined_real_sum, s_real);
  s_imag <= resize(pipelined_imag_sum, s_imag);



350 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

  ovf <= real_accumulator_ovf or imag_accumulator_ovf
         or pipelined_real_sum(4 downto 0) ?= "00000"
         or pipelined_real_sum(4 downto 0) ?= "11111"
         or pipelined_imag_sum(4 downto 0) ?= "00000"
         or pipelined_imag_sum(4 downto 0) ?= "11111";

end architecture rtl;

The signals declared in the architecture body represent the values calculated by each
pipeline stage and the outputs of the pipeline registers. The input_reg process represents
the four input pipeline registers connected to the real and imaginary data input ports. This
process is followed by four assignments for the partial products according to the formulas
given in Section 10.1. The partial products are then stored in the second set of pipeline
registers, represented by the part_product_reg process. Next, the model includes assign-
ments, one that subtracts partial products to form the real part of the product, and the
other that adds partial products to form the imaginary part. The real and imaginary parts
of the product are resized for storage in the third set of pipeline registers, represented by
the product_reg process. Following that are assignments that add the two parts of the
product, sign extended, to the previously accumulated sums. There are also assignments
that determine whether the additions overflow. Overflow occurs if the two operands are
non-negative and the result appears to be negative, or if the two operands are negative
and the result appears to be non-negative. The assignments use the sign bits of the oper-
ands and the results to check for overflow. The outputs from the adders and the overflow
signals are stored in the accumulator registers, represented by the accumulator_reg pro-
cess. These registers differ from the other pipeline registers in that they can be cleared to
zero by activating the reset input. Also, the stored overflow values, once set, remain set
until subsequently reset. The outputs of the accumulator registers, reduced in size to 16
bits each, are used to drive the real and imaginary data outputs of the MAC. The output
for the ovf port of the MAC is set if either accumulator has overflowed or if reduction of
either the real or imaginary output discards significant bits.

10.3.1 Testing the Register-Transfer-Level Model

We could test the register-transfer-level model of the MAC using the same test bench that
we used for the behavioral model. This would simply involve replacing the component
instance dut, as follows:

dut : entity work.mac(rtl)
  port map (clk, reset,
            x_real, x_imag, y_real, y_imag, s_real, s_imag, ovf );

We could then simulate the test bench and manually compare the results with those
produced by the behavioral model. However, a better approach is to modify the test bench
to include instances of each of the behavioral and register-transfer-level models, as fol-
lows:



10.3 A Register-Transfer-Level Model 351

library ieee;
use ieee.std_logic_1164.all, ieee.fixed_pkg.all,
    ieee.math_complex.all;

architecture bench_verify of mac_test is

  signal clk, reset, behavioral_ovf, rtl_ovf : std_ulogic := '0';
  signal x_real, x_imag,
         y_real, y_imag,
         behavioral_s_real, behavioral_s_imag,
         rtl_s_real, rtl_s_imag : u_sfixed(0 downto -15);

  signal x, y, behavioral_s, rtl_s : complex := (0.0, 0.0);

  constant Tpw_clk : time := 50 ns;

begin

  x_real <= x.re; x_imag <= x.im;
  y_real <= y.re; y_imag <= y.im;

  dut_behavioral : entity work.mac(behavioral)
    port map ( clk, reset,
               x_real, x_imag, y_real, y_imag,
               behavioral_s_real, behavioral_s_imag,
               behavioral_ovf );

  dut_rtl : entity work.mac(rtl)
    port map ( clk, reset,
               x_real, x_imag, y_real, y_imag,
               rtl_s_real, rtl_s_imag, rtl_ovf );

  behavioral_s <= (behavioral_s_real, behavioral_s_imag);
  rtl_s <= (rtl_s_real, rtl_s_imag);

  clock_gen : process is
  begin
    clk <= '1' after Tpw_clk, '0' after 2 * Tpw_clk;
    wait for 2 * Tpw_clk;
  end process clock_gen;

  stimulus : process is
  begin
    -- first sequence
                                            reset <= '1';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.5, +0.5);  reset <= '1';
    wait until not clk;
    x <= (+0.2, +0.2);  y <= (+0.2, +0.2);  reset <= '1';
    wait until not clk;
    x <= (+0.1, -0.1);  y <= (+0.1, +0.1);  reset <= '1';
    wait until not clk;



352 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

    x <= (+0.1, -0.1);  y <= (+0.1, +0.1);  reset <= '0';
    wait until not clk;

    -- should be (0.4, 0.58) when it falls out the other end

                                            reset <= '0';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.5, +0.5);  reset <= '0';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.1, +0.1);  reset <= '0';
    wait until not clk;
    x <= (+0.5, +0.5);  y <= (+0.5, +0.5);  reset <= '1';
    wait until not clk;
    x <= (-0.5, +0.5);  y <= (-0.5, +0.5);  reset <= '0';
    wait until not clk;
                                            reset <= '0';
    wait until not clk;
                                            reset <= '0';
    wait until not clk;
                                            reset <= '0';
    wait until not clk;
                                            reset <= '1';
    wait until not clk;

    wait;
  end process stimulus;

  verifier : process

    constant epsilon : real := 4.0E-5;  -- 1-bit error
                                        -- in 15-bit mantissa

  begin
    wait until not clk;
    assert behavioral_ovf = rtl_ovf
      report "Overflow flags differ" severity error;
    if not behavioral_ovf and not rtl_ovf then
      assert abs (behavioral_s.re - rtl_s.re) < epsilon
        report "Real sums differ" severity error;
      assert abs (behavioral_s.im - rtl_s.im) < epsilon
        report "Imag sums differ" severity error;
    end if;
  end process verifier;

end architecture bench_verify;

The revised test bench stimulates the two instances with the same input data and au-
tomatically compares the results they produce. The clock generator and stimulus
processes are the same as those in the previous test bench. The additional process, veri-
fier, is resumed midway through each clock cycle, after the outputs from each of the MAC



Exercises 353

devices has had time to stabilize. The process first verifies that the two devices produce
the same overflow status outputs. Then, if both device outputs have not overflowed, the
process compares the complex outputs of the two devices to verify that they are within a
single bit of being equal. Note that since we are comparing real numbers, we must com-
pare the values in this way. Since the behavioral model calculates its result using the com-
plex type, which is implemented using the predefined floating-point type real, and the
MAC calculates its result using fixed-point numbers with less precision than real, we
should expect the actual results to differ slightly. This difference comes about due to the
different round-off errors introduced by the different methods of calculation. If we were
to use the equality operator (“=”) to compare the results, the test would certainly fail.

Exercises

1. [➊ 10.2] In the behavioral model of the pipelined MAC, results for each stage are com-
puted starting with the last stage and working forward. Show why it would be incor-
rect to work from the first stage to the last stage.

2. [➊ 10.2] Devise a sequence of input values for the MAC that cause the sum in the ac-
cumulator to overflow.

3. [➊ 10.2] Trace the values of the variables in the process behavior in the behavioral
MAC model during each clock cycle for the first sequence generated by the test bench
of Section 10.2.1.

4. [➊ 10.3] For each of the fixed-point formats shown in Figure 10.5, show how the val-
ues +0.5 and –0.5 are represented.

5. [➌ 10.1/10.2] Develop a behavioral model of a non-pipelined MAC, based on the
dataflow diagram at the top of Figure 10.1. Adapt the test bench of Section 10.2.1 to
test your model.

6. [➍] A polynomial function of degree n is

where x is the input variable. We can rewrite the polynomial as

We can evaluate a polynomial in the order implied by this form using n pipeline
stages. The first stage evaluates  and passes the result and the value of x
to the second stage. The second stage multiplies the previous result by x, adds 
and passes this result and x to the third stage. The remaining stages continue in like
manner.

Develop a behavioral model of a pipelined polynomial evaluator that evaluates
polynomials of degree 3. The entity interface is

entity polynomial is
  port ( clk, mode, clr : in std_ulogic;

p x( ) a0 a1x a2x2 · · · anxn+ + + +=

p x( ) a0 x a1 x a2 x … an 1– xan+( )…( )+( )+( )+=

an 1– xan+
an 2–



354 Chapter 10 — Case Study: A Pipelined Multiplier Accumulator

         coeff_addr : in unsigned(1 downto 0);
         x : in u_sfixed(5 downto -11);
         p : out u_sfixed(5 downto -11);
         ovf : out bit );
end entity polynomial;

The mode input is used to load coefficient values into internal registers. When mode
is ‘1’, the value on the x input is loaded into the register selected by the coeff_addr
inputs. When mode is ‘0’, the x input is used as the next data value for which the
polynomial is to be calculated. The clr input is used to clear the internal pipeline reg-
isters. The x input and the p output both encode fixed-point values, with 5 pre-binary-
point bits and 11 post-binary-point bits. Thus, values in the range –16.0 inclusive to
+16.0 exclusive can be represented. The same range is used in the internal pipeline
registers. If a calculation in any stage overflows, an overflow flag is propagated
through the remainder of the pipeline and presented at the ovf output.

Test your model by using it to evaluate the following polynomial functions:

Refine your model to the register-transfer level, defining entities for the required mul-
tipliers, adders, registers and logic blocks.

7. [➍] Develop a behavioral model for a two-stage pipelined floating-point multiplier.
The two operands and the result are in IEEE single-precision format. The first stage of
the pipeline multiplies the mantissas, subtracts the biases from the exponents and
adds the unbiased exponents. The second stage normalizes the result, adds the bias
to the result exponent, and determines the sign based on the operand signs. Write a
test bench to test your model, comparing its results with those calculated using
VHDL’s predefined floating-point multiplication operation. Next, refine your pipelined
multiplier to the register-transfer level, defining entities for the required multipliers,
adders, registers and logic blocks. Do not worry about infinities, NaNs, denormals or
rounding according to the IEEE standard. You may wish to add provisions for these
aspects of IEEE floating-point arithmetic as an extension to the exercise.

ex 1 x x2

2
-----

x3

6
-----+ + +≈

xcos 1 x2

2
-----–≈



355

Chapter 11 

Aliases

Since the main purpose of a model written in VHDL is to describe a hardware design, it
should be made as easy as possible to read and understand. In this chapter, we introduce
aliases as a means of making a model clearer. As in everyday use, an alias is simply an
alternate name for something. We see how we can use aliases in VHDL for both data ob-
jects and other kinds of items that do not represent data in a model.

11.1 Aliases for Data Objects

If we have a model that includes a data object, such as a constant, a variable, a signal or,
as we see in a later chapter, a file, we can declare an alias for the object with an alias
declaration. A simplified syntax rule for this is

alias_declaration ⇐ alias identifier is name ;

An alias declaration in this form simply defines an alternate identifier to refer to the named
data object. We can refer to the object using the new identifier, treating it as being of the
type specified in the original object’s declaration. Operations we perform using the alias
are actually applied to the original object. (The only exceptions are reading the
'simple_name, 'path_name and 'instance_name attributes and the attributes that provide
information about the index ranges of an array. In these cases, the attributes refer to the
alias name rather than the original object’s name.)

EXAMPLE 11.1 Aliases for package items

One use of alias declarations is to define simple names for objects imported from
packages. Suppose, for example, that we need to use objects from two different pack-
ages, alu_types and io_types, and that each declares a constant named data_width,
possibly with different values. If we include use clauses for these packages in our
model, as follows:

use work.alu_types.all, work.io_types.all;



356 Chapter 11 — Aliases

neither of the versions of data_width becomes directly visible, since they have the
same name. Hence we would have to refer to them as work.alu_types.data_width and
work.io_types.data_width. However, we can avoid this long notation simply by intro-
ducing two alias declarations into our model, as shown in the following architecture
body:

library ieee;  use ieee.std_logic_1164.all;
use work.alu_types.all, work.io_types.all;

architecture structural of controller_system is

  alias alu_data_width is work.alu_types.data_width;
  alias io_data_width is work.io_types.data_width;

  signal alu_in1, alu_in2,
         alu_result :
           std_ulogic_vector(0 to alu_data_width - 1);
  signal io_data : std_ulogic_vector(0 to io_data_width - 1);
  ...

begin

  ...

end architecture structural;

As well as denoting a whole data object, an alias can denote a single element from a
composite data object, such as a record or an array. We write the element name, including
a record element selector or an array index, as the name to be aliased. For example, given
the following declarations of types and a variable:

type register_array is array (0 to 15) of bit_vector(31 downto 0);

type register_set is record
    general_purpose_registers : register_array;
    program_counter : bit_vector(31 downto 0);
    program_status : bit_vector(31 downto 0);
  end record;

variable CPU_registers : register_set;

we can declare aliases for the record elements:

alias PSW is CPU_registers.program_status;
alias PC is CPU_registers.program_counter;
alias GPR is CPU_registers.general_purpose_registers;

We can also declare aliases for individual registers in the register array, for example:

alias SP is CPU_registers.general_purpose_registers(15);



11.1 Aliases for Data Objects 357

The name that we are aliasing can itself be an alias. Hence the alias declaration for SP
can be written using the alias name GPR:

alias SP is GPR(15);

An alias can also be used to denote a slice of a one-dimensional array. For example,
given the above declaration for CPU_registers, we can declare an alias for part of the pro-
gram status register:

alias interrupt_level is PSW(30 downto 26);

This declares interrupt_level to denote a bit vector, with indices from 30 down to 26, being
part of the bit vector denoted by PSW. In general, if we declare an alias for an array slice
in this way, the alias denotes an array with index range and direction determined by the
slice.

In many cases, it would be convenient to use an alias to take a slightly different view
of the array being aliased. For example, we would like to view the interrupt_level alias as
a bit vector indexed from four down to zero. We can do this by using an extended form
of alias declaration, described by the following syntax rule:

alias_declaration ⇐
alias identifier [ : subtype_indication] is name ;

This shows that we can indicate the subtype for the alias. The subtype determines
how we view the original object that the alias denotes. We can include a subtype indica-
tion in aliases for scalar objects, but the bounds and direction specified must be the same
as those of the original object. Hence this only serves as a form of documentation to restate
the type information for the object. We can also include an unconstrained or partially con-
strained composite subtype as the alias subtype when aliasing an array or record object
or an array slice. In this case, any index ranges that are unspecified in the subtype come
from the corresponding index ranges of the original object. However, we can use the sub-
type indication to specify different index bounds and direction from the original object.
The base type of the subtype indication must be the same as the base type of the original
object. (This means that the subtype indication must refer to a composite type with the
same element and index types as the original object.) Furthermore, there must be the same
number of elements in the alias subtype and the original object. Elements in the alias de-
note the corresponding elements in the actual object, with array elements corresponding
in left-to-right order. For example, if we were to declare the alias interrupt_level as follows:

alias interrupt_level : bit_vector(4 downto 0) is PSW(30 downto 26);

then interrupt_level(4) would denote PSW(30), interrupt_level(3) would denote PSW(29),
and so on.

As another example, suppose we declare a register file as follows:

type register_array is array (natural range <>) of bit_vector;
signal register_file : register_array(0 to 15)(31 downto 0);

We can then declare an alias:



358 Chapter 11 — Aliases

alias bigendian_register_file : register_array(open)(0 to 31) is
        register_file;

This alias views the register file as an array with the same top-level index range as the
original, 0 to 15, since the subtype indication does not specify a top-level index range.
Each element, however, is viewed with the index range 0 to 31 specified in the subtype
indication.

EXAMPLE 11.2 Normalization of array index ranges using aliases

When we write subprograms that take parameters of unconstrained array types, the
index bounds and direction of the parameter are not known until actual array objects
are passed as arguments during a call. Without this knowledge, the body of the
subprogram is difficult to write. For example, suppose we need to implement a func-
tion to perform addition on two bit vectors that represent two’s-complement, signed
integers. The function specification is

function "+" ( bv1, bv2 : bit_vector ) return bit_vector;

When the function is called it is possible that the first argument is indexed from
0 to 15, while the other argument is indexed from 31 down to 8. We must check that
the arguments are of the same size and then index them in a loop running from the
rightmost bit to the leftmost. The different ranges, directions and sizes make this dif-
ficult.

We can use aliases to make the task easier by viewing the objects as arrays with
the same leftmost index and direction. The subprogram body is shown below. The
alias declarations create views of the bit-vector arguments, indexed from one up to
their length. The function, after checking that the arguments are of the same length,
can then use the same index values for corresponding elements of the two arguments
and the result.

function "+" ( bv1, bv2 : bit_vector ) return bit_vector is

  alias norm1 : bit_vector(1 to bv1'length) is bv1;
  alias norm2 : bit_vector(1 to bv2'length) is bv2;

  variable result : bit_vector(1 to bv1'length);
  variable carry : bit := '0';

begin
  if bv1'length /= bv2'length then
    report "arguments of different length" severity failure;
  else
    for index in norm1'reverse_range loop
      result(index) := norm1(index) xor norm2(index) xor carry;
      carry := ( norm1(index) and norm2(index) )
            or ( carry and ( norm1(index) or norm2(index) ) );
    end loop;
  end if;



11.1 Aliases for Data Objects 359

  return result;
end function "+";

EXAMPLE 11.3 Normalization of element array index ranges

For subprograms that deal with arrays of arrays, both the top-level and lower-level
index ranges may be undefined. Again, we can use aliases to view parameters with
consistent index bounds and directions. However, we need to use the 'element at-
tribute to refer to the actual index ranges of the parameter elements. For example, we
can write a function that locates the first bit difference between two arrays of bit vec-
tors as follows:

type bv_vector is array (natural range <>) of bit_vector;

function find_first_difference ( s1, s2 : in bv_vector)
                               return natural is
  alias s1_norm : bv_vector(0 to s1'length - 1)
                           (0 to s1'element'length - 1) is s1;
  alias s2_norm : bv_vector(0 to s2'length - 1)
                           (0 to s2'element'length - 1) is s2;
  variable count : natural := 0;
begin
  assert s1'length = s2'length and
         s1'element'length = s2'element'length;
  for i in s1_norm'range loop
    for j in s1_norm'element'range loop
      exit when s1_norm(i)(j) /= s2_norm(i)(j);
      count := count + 1;
    end loop;
  end loop;
  return count;
end function find_first_difference;

The two parameters are of an unconstrained type, allowing the function to oper-
ate on arrays of various lengths and on arrays with various bit-vector element lengths.
The function only requires that, on each call, the two actual parameters have the same
shape. In order to deal with the differences, the function declares aliases for the pa-
rameters. It views each parameter with an index range starting at 0 and ascending to
one less than the length. It views the elements similarly, with an index range starting
at 0 and ascending to one less than length of each bit-vector element. The alias dec-
laration uses the 'element attribute to get the constrained subtype for the actual pa-
rameter’s elements. Within the function body, the inner for loop also uses the 'element
attribute to get the index range for the elements of the aliases.



360 Chapter 11 — Aliases

VHDL-87, -93, and -2002

These earlier versions of VHDL did not allow aliases of multidimensional array objects.
For example, the following is illegal in earlier versions:

type bit_matrix is
  array (natural range <>, natural range <>) of bit;
signal s : bit_matrix(15 downto 0, 15 downto 0);
alias bigendian_s : bit_matrix(0 to 15, 0 to 15) is s;

VHDL-87

An alias declaration in VHDL-87 must include a subtype indication.

11.2 Aliases for Non-Data Items

We saw in the previous section that we can declare aliases for data objects such as con-
stants, variables and signals. We can also declare aliases for other named items that do not
represent stored data, such as types, subprograms, packages, entities and so on. In fact,
the only kinds of items for which we cannot declare aliases are labels, loop parameters
and generate parameters (see Chapter 14). The syntax rule for alias declarations for non-
data items is

alias_declaration ⇐
alias ( identifier I character_literal I operator_symbol )

is name [ signature ] ;

We can use character literals as aliases for enumeration literals, and operator symbols as
aliases for function subprograms. We will return to the optional signature part shortly.

If we define an alias for a type, we can use the alias in any context where the original
type name can be used. Furthermore, all of the predefined operations for values of the
original type can be used without being declared. For example, if we define an alias:

alias binary_string is bit_vector;

we can declare objects to be of type binary_string and perform bit-vector operations on
them; for example:

variable s1, s2 : binary_string(0 to 7);
...

s1 := s1 and not s2;

Declaring an alias for a type is different from declaring a new type. In the latter case,
new overloaded versions of the operators would have to be declared. The alias, on the
other hand, is simply another name for the existing type. 



11.2 Aliases for Non-Data Items 361

If we define an alias for an enumeration type, all of the enumeration literals of the
original type are available for use. We do not need to define aliases for the literals, nor
use fully selected names. For example, if a package system_types declares an enumera-
tion type as follows:

type system_status is (idle, active, overloaded);

and a model defines an alias for this type:

alias status_type is work.system_types.system_status;

the model can simply refer to the literals idle, active and overloaded, instead of
work.system_types.overloaded and so on. Similarly, if we declare an alias for a physical
type, all of the unit names are available for use without aliasing or selection.

The optional signature part in an alias declaration is only used in aliases for subpro-
grams and enumeration literals. These items can be overloaded, so it is possible that the
name alone is not sufficient to identify which item is being aliased. The signature serves
to identify one item uniquely. The syntax rule for a signature is

signature ⇐ [ [ type_mark { , … } ] [ return type_mark ] ]

Note that the outer square bracket symbols ([ … ]) are a required part of the signature,
whereas the hollow square brackets ([ … ]) are part of the EBNF syntax and indicate op-
tional parts of the signature.

When we declare an alias for a subprogram, the signature identifies which overloaded
version of the subprogram name is aliased. The signature lists the types of each of the
subprogram’s parameters, in the same order that they appear in the subprogram’s decla-
ration. For example, if a package arithmetic_ops declares two procedures as follows:

procedure increment ( bv : inout bit_vector;  by : in integer := 1 );

procedure increment ( int : inout integer;  by : in integer := 1 );

we can declare aliases for the procedures as follows:

alias bv_increment is
  work.arithmetic_ops.increment [ bit_vector, integer ];

alias int_increment is
  work.arithmetic_ops.increment [ integer, integer ];

If the subprogram is a function, the signature also includes the type of the return val-
ue, after the keyword return. For example, we might alias the operator symbols “*”, “+”
and “–” to the bit operators and, or and not, as follows:

alias "*" is "and" [ bit, bit return bit ];

alias "+" is "or" [ bit, bit return bit ];

alias "-" is "not" [ bit return bit ];



362 Chapter 11 — Aliases

We would then be able to express Boolean equations using these operators. For example,
given bit signals s, a, b and c, we could write

s <= a * b + (-a) * c;

Note that when we alias an operator symbol to a function, the function overloads the op-
erator symbol, so it must have the correct number of parameters for the operator. A binary
operator symbol must be aliased to a function with two parameters, and a unary operator
symbol must be aliased to a function with one parameter.

If we wish to alias an individual literal of an enumeration type, we must deal with the
possibility that the literal may belong to several different enumeration types. We can use
a signature to distinguish one particular meaning by noting that an enumeration literal is
equivalent to a function with no parameters that returns a value of the enumeration type.
For example, when we write the enumeration literal ‘1’, we can think of this as a call to a
function with no parameters, returning a value of type bit. We can write an alias for this
literal as follows:

alias high is std.standard.'1' [ return bit ];

The signature distinguishes the literal as being of type bit, rather than of any other
character type. Note that a selected name is required for a character literal, since a char-
acter literal by itself is not a syntactically valid name.

EXAMPLE 11.4 Aliases for composing packages

One useful application of aliases for non-data items is to compose a package by col-
lecting together a number of items declared in other packages. The following package
for use in a DMA controller design defines aliases for two types imported from the
cpu_types package and for a function imported from a package that provides bit-
vector arithmetic operations.

package DMA_controller_types_and_utilities is

  alias word is work.cpu_types.word;
  alias status_value is work.cpu_types.status_value;

  alias "+" is work.bit_vector_unsigned_arithmetic."+"
            [ bit_vector, bit_vector return bit_vector ];

  ...

end package DMA_controller_types_and_utilities;

The DMA controller architecture body outlined below imports the aliases from the
utility package. The reference to the name word denotes the type originally defined
in the package cpu_types, and the operator “+” denotes the bit-vector operator orig-
inally defined in the package bit_vector_unsigned_arithmetic.

architecture behavioral of DMA_controller is

  use work.DMA_controller_types_and_utilities.all;



Exercises 363

begin

  behavior : process is

    variable address_reg0, address_reg1 : word;
    variable count_reg0, count_reg1 : word;
    ...

  begin
    ...
    address_reg0 := address_reg0 + X"0000_0004";
    ...
  end process behavior;

end architecture behavioral;

VHDL-87

VHDL-87 does not allow aliases for non-data items. Aliases may only be declared for
data objects.

Exercises

1. [➊ 11.1] Given the following declarations:

subtype byte is bit_vector(0 to 7);
type data_array is array (0 to 31) of byte;
type network_packet is record
    source, dest, flags : byte;
    payload : data_array;
    checksum : byte;
  end record network_packet;
variable received_packet : network_packet;

write alias declarations for the individual elements of the variable.

2. [➊ 11.1] The layout of information within the flags element of a network packet de-
scribed in Exercise 1 is shown in Figure 11.1. Write alias declarations for the individual
fields of the flags element of the received_packet variable. The aliases for the ACKNO
and SEQNO fields should view the fields as bit vectors indexed from two down to
zero.



364 Chapter 11 — Aliases

FIGURE 11.1 

The layout of information within a network packet.

3. [➊ 11.2] Write an alias declaration that defines the name cons as an alias for the pre-
defined operation “&” with a character left argument, a string right argument and a
string result. Use the alias in a report statement that reports the string constructed from
the value of the variable grade_char concatenated to the string “–grade”.

4. [➋ 11.1] Develop a behavioral model of a bit-reversing module with the following en-
tity interface:

entity reverser is
  port ( d_in : in std_ulogic_vector;
         d_out : out std_ulogic_vector );
end entity reverser;

When the entity is instantiated, the actual signals must be of the same length, but may
differ in their index bounds and directions. The output is the input delayed by 500 ps
using transport delay, and with the bits in reverse order from left to right.

0 1 2 3 4 5 6 7

AK ACKNO SEQNO UD



365

Chapter 12 

Generics

The models that we have used as examples in preceding chapters all have fixed behavior
and structure. In many respects, this is a limitation, and we would like to be able to write
more general, or generic, models. VHDL provides us with a mechanism, called generics,
for writing parameterized models. We discuss generics in this chapter and show how they
may be used to write families of models with varying behavior and structure.

12.1 Generic Constants

The simplest form of generic model is parameterized by one or more generic constants.
These are constants that cannot be changed within a design unit, but whose values are set
when the design unit is initialized. We can write an entity with generic constants by in-
cluding a generic interface list in its declaration, defining the formal generic constants that
parameterize the entity. The extended syntax rule for entity declarations including gener-
ics is

entity_declaration ⇐
entity identifier is

[ generic ( generic_interface_list ) ; ]
[ port ( port_interface_list ) ; ]
{ entity_declarative_item }

[ begin
{ concurrent_assertion_statement
I passive_concurrent_procedure_call_statement
I passive_process_statement } ]

end [ entity ] [ identifier ] ;

interface_list ⇐ interface_declaration { ; … }

The difference between this and the simpler rule we saw before is the inclusion of
the optional generic interface list before the port interface list. The generic interface list is
like any other interface list, but with restrictions on the kinds of interface items that we
can include. For now, we will just consider constant-class objects, which must be of mode



366 Chapter 12 — Generics

in. Since these are the defaults for a generic interface list, we can use a simplified syntax
rule for the interface declarations:

interface_declaration ⇐
identifier { , … } : subtype_indication [ := expression ]

A simple example of an entity declaration including a generic interface list is

entity and2 is
  generic ( Tpd : time );
  port ( a, b : in bit;  y : out bit );
end entity and2;

This entity includes one generic constant, Tpd, of the predefined type time. The value of
this generic constant may be used within the entity statements and any architecture body
corresponding to the entity. In this example the intention is that the generic constant spec-
ify the propagation delay for the module, so the value should be used in a signal assign-
ment statement as the delay. An architecture body that does this is

architecture simple of and2 is
begin

  and2_function :
    y <= a and b after Tpd;

end architecture simple;

The visibility of a generic constant extends from the end of the generic interface list
to the end of the entity declaration and extends into any architecture body corresponding
to the entity declaration.

A generic constant is given an actual value when the entity is used in a component
instantiation statement. We do this by including a generic map, as shown by the extended
syntax rule for component instantiations:

component_instantiation_statement ⇐
instantiation_label :

entity entity_name [ ( architecture_identifier ) ]
[ generic map ( generic_association_list ) ]
[ port map ( port_association_list ) ] ;

association_list ⇐ assiciation_element { , … }

The generic association list is like other forms of association lists, but since generic
constants are always of class constant, the actual arguments we supply must be expres-
sions. Thus the simplified syntax rule for generic associations limited to just generic con-
stants is

association_element ⇐
[ generic_name => ] ( expression I open )



12.1 Generic Constants 367

To illustrate this, let us look at a component instantiation statement that uses the and2
entity shown above:

gate1 : entity work.and2(simple)
  generic map ( Tpd => 2 ns )
  port map ( a => sig1,  b => sig2,  y => sig_out );

The generic map specifies that this instance of the and2 module uses the value 2 ns for
the generic constant Tpd; that is, the instance has a propagation delay of 2 ns. We might
include another component instantiation statement using and2 in the same design but
with a different actual value for Tpd in its generic map, for example:

gate2 : entity work.and2(simple)
  generic map ( Tpd => 3 ns )
  port map ( a => a1,  b => b1,  y => sig1 );

When the design is elaborated we have two processes, one corresponding to the instance
gate1 of and2, which uses the value 2 ns for Tpd, and another corresponding to the in-
stance gate2 of and2, which uses the value 3 ns.

EXAMPLE 12.1 Generic constants in an entity for a control logic module

As the syntax rule for the generic interface list shows, we may define a number of
generic constants of different types and include default values for them. An entity dec-
laration for a control logic module illustrates the possibilities:

entity control_unit is

  generic ( Tpd_clk_out, Tpw_clk : delay_length;
            debug : boolean := false );

  port ( clk : in bit;
         ready : in bit;
         control1, control2 : out bit );

end entity control_unit;

In this example, the generic interface list includes a list of two generic constants
that parameterize the propagation delay of the module and a Boolean generic con-
stant, debug, with a default value of false. The intention of this last generic constant
is to allow a design that instantiates this entity to activate some debugging operation.
This operation might take the form of report statements within if statements that test
the value of debug.

We have the same flexibility in writing a generic map as we have in other association
lists. We can use positional association, named association or a combination of both. We
can omit actual values for generic constants that have default expressions, or we may ex-
plicitly use the default value by writing the keyword open in the generic map. To illustrate



368 Chapter 12 — Generics

these possibilities, here are three different ways of writing a generic map for the
control_unit entity:

generic map ( 200 ps, 1500 ps, false )

generic map ( Tpd_clk_out => 200 ps, Tpw_clk => 1500 ps )

generic map ( 200 ps, 1500 ps, debug => open )

EXAMPLE 12.2 Generic constants for specifying timing characteristics

The entity declaration below for a D-flipflop includes generic constants: Tpd_clk_q to
specify the propagation delay from clock rising edge to output, Tsu_d_clk to specify
the setup time of data before a clock edge and Th_d_clk to specify the hold time of
data after a clock edge.

entity D_flipflop is
  generic ( Tpd_clk_q, Tsu_d_clk, Th_d_clk : delay_length );
  port ( clk, d : in bit;  q : out bit );
end entity D_flipflop;

The values of these generic constants are used in the architecture body:

architecture basic of D_flipflop is
begin

  behavior : q <= d after Tpd_clk_q when rising_edge(clk);

  check_setup : process is
  begin
    wait until clk;
    assert d'last_event >= Tsu_d_clk
      report "setup violation";
  end process check_setup;

  check_hold : process is
  begin
    wait until clk'delayed(Th_d_clk);
    assert d'delayed'last_event >= Th_d_clk
      report "hold violation";
  end process check_hold;

end architecture basic;

The entity might be instantiated as follows, with actual values specified in the ge-
neric map for the generic constants:

request_flipflop : entity work.D_flipflop(basic)
  generic map ( Tpd_clk_q => 4 ns,
                Tsu_d_clk => 3 ns, Th_d_clk => 1 ns )



12.1 Generic Constants 369

  port map ( clk => system_clock,
             d => request, q => request_pending );

The second main use of generic constants in entities is to parameterize their structure.
We can use the value of a generic constant to specify the size of an array port. To see why
this is useful, let us look at an entity declaration for a register. A register entity that uses
an unconstrained array type for its input and output ports can be declared as

entity reg is
  port ( d : in bit_vector;  q : out bit_vector;  ... );
end entity reg;

While this is a perfectly legal entity declaration, it does not include the constraint that the
input and output ports d and q should be of the same size. Thus, we could write a com-
ponent instantiation as follows:

signal small_data : bit_vector(0 to 7);
signal large_data : bit_vector(0 to 15);
...

problem_reg : entity work.reg
  port map ( d => small_data,  q => large_data, ... );

The model is analyzed and elaborated without the error being detected. It is only
when the register tries to assign a small bit vector to a target bit vector of a larger size that
the error is detected. We can avoid this problem by including a generic constant in the
entity declaration to parameterize the size of the ports. We use the generic constant in con-
straints in the port declarations. To illustrate, here is the register entity declaration rewrit-
ten:

entity reg is
  generic ( width : positive );
  port ( d : in bit_vector(0 to width - 1);
         q : out bit_vector(0 to width - 1);
         ... );
end entity reg;

In this declaration we require that the user of the register specify the desired port
width for each instance. The entity then uses the width value as a constraint on both the
input and output ports, rather than allowing their size to be determined by the signals as-
sociated with the ports. A component instantiation using this entity might appear as fol-
lows:

signal in_data, out_data : bit_vector(0 to bus_size - 1);
...

ok_reg : entity work.reg
  generic map ( width => bus_size )
  port map ( d => in_data,  q => out_data, ... );



370 Chapter 12 — Generics

If the signals used as actual ports in the instantiation were of different sizes, the analyzer
would signal the error early in the design process, making it easier to correct. As a matter
of style, whenever the sizes of different array ports of an entity are related, generic con-
stants should be considered to enforce the constraint.

EXAMPLE 12.3 A register model with a generic constant for the port widths

A complete model for the register, including the entity declaration and an architecture
body, is

entity reg is
  generic ( width : positive );
  port ( d :  in  bit_vector(0 to width - 1);
         q :  out  bit_vector(0 to width - 1);
         clk, reset : in bit );
end entity reg;

--------------------------------------------------

architecture behavioral of reg is
begin

  behavior : process (clk, reset) is
    constant zero : bit_vector(0 to width - 1) := (others => '0');
  begin
    if reset then
      q <= zero;
    elsif rising_edge(clk) then
      q <= d;
    end if;
  end process behavior;

end architecture behavioral;

The generic constant is used to constrain the widths of the data input and output
ports in the entity declaration. It is also used in the architecture body to determine the
size of the constant bit vector zero. This bit vector is the value assigned to the register
output when it is reset, so it must be of the same size as the register port. We can
create instances of the register entity in a design, each possibly having different-sized
ports. For example:

word_reg : entity work.reg(behavioral)
  generic map ( width => 32 )
  port map ( ... );

creates an instance with 32-bit-wide ports. In the same design, we might include an-
other instance, as follows:

subtype state_vector is bit_vector(1 to 5);
...



12.1 Generic Constants 371

state_reg : entity work.reg(behavioral)
  generic map ( width => state_vector'length )
  port map ( ... );

This register instance has 5-bit-wide ports, wide enough to store values of the subtype
state_vector.

EXAMPLE 12.4 An adder with generic constants for propagation delays

Suppose we want to use generic constants to specify the propagation delays for an
adder. The entity is declared with input and output ports that are arrays whose sizes
are determined by a generic constant. We want to specify individual propagation de-
lays for corresponding input and output port elements. The entity declaration is:

entity adder is
  generic ( width    : positive;
            Tpd_ab_s : time_vector(width - 1 downto 0) );
  port    ( a, b  : in  bit_vector(width - 1 downto 0);
            c_in  : in  bit;
            s     : out bit_vector(width - 1 downto 0);
            c_out : out bit );
end entity adder;

The generic constant width is used in the declaration of the second generic con-
stant, Tpd_ab_s, to ensure that there is a matching propagation delay for each element
of the input and output ports. We can instantiate the entity in a design as follows:

subtype byte is bit_vector(7 downto 0);
signal op1, op2, result : byte;
signal c_out : bit;
...

byte_adder : entity work.adder
  generic map ( width    => byte'length,
                Tpd_ab_s => (7 downto 1 => 120 ps,
                             0          => 80 ps) )
  port map    ( a => op1, b => op2, c_in => '0',
                s => result, c_out => c_out );

In this instance, an actual value is given for width, and that is used to determine
the index range for Tpd_ab_s, as well as for the ports. Note that we don’t have to write
the actual generics in this order. The values are determined for generics in the order
of their occurrence in the generic list, not the generic map. Thus, we could have writ-
ten the generic map as:

  generic map ( Tpd_ab_s => (7 downto 1 => 120 ps,
                             0          => 80 ps),
                width    => byte'length )



372 Chapter 12 — Generics

though to do so might look a bit strange.

VHDL-87, -93, and -2002

These versions of VHDL do not allow the value of one generic constant to be used in
the declarations of other generic constants in the same generic list. In the preceding
example, we would have to declare the Tpd_ab_s generic as an unconstrained array
and include an assertion in the entity statement part that the length of Tpd_ab_s is
equal to width.

12.2 Generic Types

Generic types allow us to define a type that can be used for ports and internal declarations
of an entity, but without specifying the particular type. When we instantiate the entity, we
specify the actual type to be used for that instance. As we will see later, generic types can
also be specified for packages and subprograms, not just for entities and components.

The syntax rule for declaring a formal generic type in a generic list is

interface_declaration ⇐ type identifier

The identifier is the name of the formal generic type, and can be used within the rest of
the entity in the same way as a normally declared type. When we instantiate the entity,
we specify a subtype as the actual generic type. The syntax rule for this is

association_element ⇐
[ generic_name => ] subtype_indication

As we have seen before, a subtype indication can take the form of a type or subtype name,
a type or subtype name followed by a constraint, or a subtype attribute.

EXAMPLE 12.5 A generic multiplexer

A multiplexer selects between two data inputs and copies the value of the selected
input to the output. The behavior of the multiplexer is independent of the type of data
on the inputs and output. So we can use a formal generic type to represent the type
of the data. The entity declaration is

entity generic_mux2 is
  generic ( type data_type );
  port    ( sel : in bit; a, b : in data_type;
            z : out data_type );
end entity generic_mux2;

The name data_type is the formal generic type that stands for some type, as yet
unspecified, used for the data inputs a and b and for the data output z. An architecture
body for the multiplexer is:



12.2 Generic Types 373

architecture rtl of mux2 is
begin
  z <= a when not sel else b;
end architecture rtl;

The assignment statement simply copies the value of either a or b to the output
z. It is sensitive to all of the inputs. So whenever a, b, or sel change, the assignment
will be re-evaluated. In any instance of the multiplexer, changes on a and b are de-
termined using the predefined equality operator for the actual type in that instance.

We can instantiate the entity to get a multiplexer for bit signals as follows:

signal sel_bit, a_bit, b_bit, z_bit : bit;
...

bit_mux : entity work.generic_mux2(rtl)
  generic map ( data_type => bit )
  port map    ( sel => sel_bit, a => a_bit, b => b_bit,
                z => z_bit );

Similarly, we can instantiate the same entity to get a multiplexer for signals of other
types, including user-defined types.

type msg_packet is record
  src, dst : unsigned(7 downto 0);
  pkt_type : bit_vector(2 downto 0);
  length   : unsigned(4 downto 0);
  payload  : byte_vector(0 to 31);
  checksum : unsigned(7 downto 0);
end record msg_packet;
signal pkt_sel : bit;
signal pkt_in1, pkt_in2, pkt_out : msg_pkt;
...

pkt_mux : entity work.generic_mux2(rtl)
  generic map ( data_type => msg_packet )
  port map    ( sel => pkt_sel,
                a => pkt_in1, b => pkt_in2, z => pkt_out );

VHDL defines a number of rules covering formal generic types and the ways they can
be used. The formal generic type name can potentially represent any type, except a file
type or a protected type (both of which we describe in later chapters). The entity can only
assume that operations available for all such types are applicable. That includes assign-
ment, equality and inequality operations, type qualification, and type conversion. For sig-
nals declared to be of a formal generic type, the predefined equality operator of the actual
type is used for driver update and event detection.

If we have a formal generic type T, we can use it to declare signals, variables, and
constants within the entity and architecture, and we can write signal and variable assign-
ments for objects of the type. For example, the following shows signals declared using T:



374 Chapter 12 — Generics

signal s1, s2 : T;
...

s1 <= s2 after 10 ns;

and the following shows variables declared using T:

variable v1, v2, temp : T;
...

temp := v1;  v1 := v2;  v2 := temp;

Since signal and variable declarations require fully constrained subtypes, the actual
type provided in an instance must be a fully constrained type if the formal type is used in
this way. If the actual type is not fully constrained, an error occurs in the instantiation. If
the formal generic type is not used in any way requiring it to be fully constrained, then
the actual type in an instance need not be fully constrained.

For both variables and signals, the default initial value is determined using the actual
type in an instance, using the normal rules for the actual type. Thus, if the actual type is
a scalar type, the default initial value is the leftmost value of the type, and if the actual
type is a composite type, the default initial value is an aggregate of the default initial values
for the respective element types.

Declaring constants of a formal generic type might at first seem impossible, since we
can’t specify an initial value if we don’t know the actual type. However, we can use the
formal generic type to declare a formal generic constant, and then use that within the en-
tity, for example:

entity e is
  generic ( type T; constant init_val : T );
  port    ( ... );
end entity e;

architecture a of e is
begin
  p : process is
    variable v : T := init_val;
  begin
    ...
  end process p;
end architecture a;

The actual value for the generic constant is provided when the entity is instantiated,
and must be of the type specified as the actual generic type. For example, we might in-
stantiate the entity e within a larger design as follows:

my_e : entity work.e(a)
  generic map ( T => std_ulogic_vector(3 downto 0),
                init_val => "ZZZZ" );



12.2 Generic Types 375

We can also use this technique to provide values for initializing variables and signals de-
clared to be of the formal generic type.

One thing that we cannot do with formal generic types is apply operations that are
not defined for all types. For example, we cannot use the “+” operator to add to values of
a formal generic type, since the actual type in an instance may not be a numeric type.
Similarly, we cannot perform array indexing, or apply most attributes. This may at first
seem an onerous restriction, but it does mean that a VHDL analyzer can check the entity
and architecture for correctness in isolation, independently of any particular instantiation.
It also means we don’t get any surprises when we subsequently analyze an instance of the
entity. Fortunately, as we will see in Section 12.5, there are ways of providing operations
to an instance for use on values of the actual type.

EXAMPLE 12.6 Illegal use of formal generic types

Suppose we want to define a generic counter that can be used to count values of types
such as integer, unsigned, signed, and so on. We can declare the entity as follows:

entity generic_counter is
  generic ( type     count_type;
            constant reset_value : count_type );
  port    ( clk, reset : in  bit;
            data       : out count_type );
end entity generic_counter;

We might then try to define an architecture as:

architecture rtl of generic_counter is
begin
  count : process (clk) is
  begin
    if rising_edge(clk) then
      if reset then
        data <= reset_value;
      else
        data <= data + 1;  -- Illegal
      end if;
    end if;
  end process count;
end architecture rtl;

The problem is that the “+” operator for adding 1 to a value is not defined for all
types that might be supplied as actual types. Hence, the analyzer will indicate an error
in the expression where the operator is applied. To illustrate why this should be an
error, suppose some time after the entity and architecture have been written, we try
to instantiate them in a design as follows:

type traffic_light_color is (red, yellow, green);
...



376 Chapter 12 — Generics

cycle_lights : entity work.generic_counter(rtl)
  generic map ( count_type  => traffic_light_color,
                reset_value => red )
  port map    ( ... );

The process in the instance would have to apply the “+” operator to a value of
the actual generic type, in this case, traffic_light_color. That application would fail,
since there is no such operator defined. We will revise this example in Section 12.5 to
show how to supply such an operator to the instance.

When we declare a generic constant in a generic list, we can specify a default value
that is used if no actual value is provided in an instance. For generic types, there is no
means of specifying a default type. That means that we must always specify an actual type
in an instance. Since the type of objects in VHDL is considered to be a very important
property, the language designers decided to insist on the actual type being explicitly spec-
ified.

VHDL-87, -93, and -2002

These versions of VHDL do not allow generic types. Instead, we must declare separate
entities for each combination of types we require in a design.

12.3 Generic Lists in Packages

In Chapter 7, we introduced packages and showed how they can be used to declare types
and related operations for use throughout a design. In some cases, the type that we wish
to declare makes use of some other type in a general way, without relying on the details
of that other type. VHDL’s composite types exemplify this idea. They are container types,
containing elements of other independent types. VHDL provides a mechanism for us to
declare our own container type in a package; we can include a generic list in the package
and then instantiate the package with different actual generics. The revised syntax rule for
a package declaration with a generic list is:

package_declaration ⇐
package identifier is

[ generic ( generic_interface_list ) ; ]
{ package_declarative_item }

end [ package ] [ identifier ] ;

The package body corresponding to such a package is unchanged; we don’t repeat
the generic list there. Within the generic list, we can declare formal generic constants and
formal generic types, just as we can in a generic list of an entity or component. We can
then use those formal generics in the declarations within the package.

A package with a generic list is called an uninstantiated package. (We avoid calling
it a generic package, since we use that term for a different purpose; see Section 12.6.) Un-



12.3 Generic Lists in Packages 377

like a simple package with no generic list, we cannot refer to the declarations in an unin-
stantiated package with selected names or use clauses. Instead, the uninstantiated package
serves as a form of template that we must instantiate separately. We make an instance with
a package instantiation. The syntax rule is:

package_instantiation_declaration ⇐
package identifier is new uninstantiated_package_name

[ generic map ( generic_association_list ) ] ;

The identifier is the name for the package instance, and the generic map supplies ac-
tual generics for the formal generics defined by the uninstantiated package. If all of the
formal generics have defaults, we can omit the generic map to imply use of the defaults.
(As we mentioned in Section 12.2, if any of the formal generics is a generic type, it cannot
have a default. In that case, we could not omit the generic map in the package instance.)
Once we have instantiated the package, we can then refer to names declared within it
with selected names and use clauses with the instance name as the prefix.

For now, we focus on uninstantiated packages and package instances that are de-
clared as design units and stored in a design library. This suggests that a package instan-
tiation can be written as a further form of design unit, which is indeed the case. All that
we said in Section 5.4 about design units, preceding them with library and use clauses,
and their analysis into design libraries, applies to package instances written as design
units. We will return to locally declared packages and package instances in Section 12.3.1.

EXAMPLE 12.7 A package for stacks of data

We can write a package that defines a data type and operations for fixed-sized stacks
of data. A given stack has a specified capacity and stores data of a specified type. The
capacity and type are specified as formal generics of the package, as follows:

package generic_stacks is
  generic ( size : positive; type element_type );

  type stack_array is array (0 to size-1) of element_type;
  type stack_type is record
    SP    : integer range 0 to size-1;
    store : stack_array;
  end record stack_type;

  procedure push (s : inout stack_type; e : in  element_type);
  procedure pop  (s : inout stack_type; e : out element_type);

end package generic_stacks;

The corresponding package body is

package body generic_stacks is

  procedure push (s : inout stack_type; e : in  element_type) is
  begin
    s.store(s.SP) := e;



378 Chapter 12 — Generics

    s.SP := (s.SP + 1) mod size;
  end procedure push;

  procedure pop  (s : inout stack_type; e : out element_type) is
  begin
    s.SP := (s.SP - 1) mod size;
    e := s.store(s.SP);
  end procedure pop;

end package body generic_stacks;

The uninstantiated package defines types stack_array and stack_type for repre-
senting stacks, and operations to push and pop elements. The formal generic constant
size is used to determine the size of the array for storing elements, and the formal
generic type element_type is the type of elements to be stored, pushed and popped.

We cannot refer to items in this uninstantiated package directly, since there is no
specification of the actual size and element type. Thus, for example, we cannot write
the following:

use work.generic_stacks.all;  -- Illegal
...
variable my_stack : work.generic_stacks.stack_type;  -- Illegal

Instead, we must instantiate the package and provide actual generics for that instance.
For example, we might declare the following as a design unit for a CPU design:

library ieee; use ieee.numeric_std.all;
package address_stacks is new work.generic_stacks
  generic map ( size => 8,
                element_type => unsigned(23 downto 0) );

If we analyze this instantiation into our working library, we can refer to it in other
design units, for example:

architecture behavior of CPU is
  use work.address_stacks.all;
  ...
begin
  interpret_instructions : process is
    variable return_address_stack : stack_type;
    variable PC : unsigned(23 downto 0);
    ...
  begin
    ...
    case opcode is
      when jsb => push(return_address_stack, PC);
                  PC <= jump_target;
      when ret => pop(return_address_stack, PC);
      ...



12.3 Generic Lists in Packages 379

    end case;
    ...
  end process interpret_instructions;
end architecture behavior;

This architecture includes a use clause that makes names declared in the package
instance address_stacks visible. References to stack_type, push and pop in the archi-
tecture thus refer to the declarations in the address_stacks package instance.

We can declare multiple instances of a given uninstantiated package, each with differ-
ent actual generics. The packages instances are distinct, even though they declare similarly
named items internally. For example, we might declare two instances of the
generic_stacks package from the preceding example as follows:

package address_stacks is new work.generic_stacks
  generic map ( size => 8,
                element_type => unsigned(23 downto 0) );

package operand_stacks is new work.generic_stacks
  generic map ( size => 16, element_type => real );

If we then wrote a use clause in a design unit:

use work.address_stacks.all, work.operand_stacks.all;

the names from the two package instances would all be ambiguous. This is an application
of the rule in VHDL that, if two packages declare the same name and both are “used,” we
cannot refer to the simple name, since it is ambiguous. Instead, we need to use selected
names to distinguish between the versions declared in the two package instances. So, for
example, we could write:

use work.address_stacks, work.operand_stacks;

to make the package names visible without prefixing them with the library name work,
and then declare variables and use operations as follows:

variable return_address_stack : address_stacks.stack;
variable PC                   : unsigned(23 downto 0);
variable FP_operand_stack     : operand_stacks.stack;
variable TOS_operand          : real;
...
address_stacks.push(return_address_stack, PC);
operand_stacks.pop(FP_operand_stack, TOS_operand);

An important aspect of VHDL’s strong-typing philosophy is that two types introduced
by two separate type declarations are considered to be distinct, even if they are structurally
the same. Thus the two types declared as



380 Chapter 12 — Generics

type T1 is array (1 to 10) of integer;
type T2 is array (1 to 10) of integer;

are distinct, and we cannot assign a value of type T1 to an object of type T2. This same
principle applies to formal generic types. Within an entity or a package that declares a
formal generic type, that type is considered to be distinct from every other type, including
other formal generic types. So, for example, we cannot assign a value declared to be of
one formal generic type to an object declared to be of another formal generic type.

The fact that two formal generic types are distinct can lead to interesting situations
when the actual types provided are the same (or are subtypes of the same base type).
Ambiguity can arise between overloaded operations declared using the formal generic
types. This kind of situation is not likely to happen in common use cases, but it is worth
exploring to demonstrate the way overloading works in the presence of formal generic
types.

Suppose we declare a package with two formal generic types, as follows:

package generic_pkg is
  generic ( type T1; type T2 );

  procedure proc ( x : T1 );
  procedure proc ( x : T2 );
  procedure proc ( x : bit );

end package generic_pkg;

Within the package, T1 and T2 are distinct from each other and from the type bit, so
the procedure proc is overloaded three times. The uninstantiated package can be analyzed
without error. If we instantiate the package as follows:

package integer_boolean_pkg is new work.generic_pkg
  generic map ( T1 => integer, T2 => boolean );

we can successfully resolve the overloading for the following three calls to procedures in
the package instance:

work.integer_boolean_pkg.proc(3);
work.integer_boolean_pkg.proc(false);
work.integer_boolean_pkg.proc('1');

On the other hand, if we instantiate the package as

package integer_bit_pkg is new work.generic_pkg
  generic map ( T1 => integer, T2 => bit );

the following call is ambiguous:

work.integer_bit_pkg.proc('1');

It could be a call to the second or third of the three overloaded versions of proc in
the package instance. Similarly, if we instantiate the package as



12.3 Generic Lists in Packages 381

package integer_integer_pkg is new work.generic_pkg
  generic map ( T1 => integer, T2 => integer );

the following call is ambiguous:

work.integer_integer_pkg.proc(3);

This could be a call to the first or second of the three overloaded versions of proc.
The point to gain from these examples is that overload resolution depends on the actual
types denoted by the formal generic types in the instances. Depending on the actual types,
calls to overloaded subprograms may be resolvable for some instances and ambiguous for
others.

The final aspect of packages with generic lists is that we can also include a generic
map in a package, following the generic list. Such a package is called a generic-mapped
package, and has the form

package_declaration ⇐
package identifier is

[ generic ( generic_interface_list ) ;
[ generic map ( generic_association_list ) ; ] ]
{ package_declarative_item }

end [ package ] [ identifier ] ;

The generic list defines the generics, and the generic map aspect provides actual val-
ues and type for those generics. While VHDL allows us to write a generic-mapped package
explicitly, we would not normally do so. Rather, the feature is included in the language
as a definitional aid. An instantiation of an uninstantiated package is defined in terms of
an equivalent generic-mapped package that is a copy of the uninstantiated package, to-
gether with the generic map from the instantiation. Since generic-mapped packages are
not a feature intended for regular use, we won’t dwell on them further. We simply mention
them here to raise awareness, since the occasional error message from an analyzer might
hint at them.

12.3.1 Local Packages

In Section 7.2.1 on page 255, we showed how a package can be declared locally within
the declarative part of an entity, architecture body, process, or subprogram, allowing the
visibility of the package to be contained to just the enclosing declarative part and the cor-
responding statement part. We presented an example of a package, declared with a stim-
ulus-generator process, that provided a function for generating unique identification
numbers for test cases.

A locally declared package need not be just a simple package; it can be an uninstan-
tiated package with a generic list. In that case, we must instantiate the package so that we
can refer to items in the instance. The same rules apply to locally declared uninstantiated
packages and instances as apply to packages declared as design units.



382 Chapter 12 — Generics

EXAMPLE 12.8 A package for wrapping items with unique ID numbers

We can revise the ID_manager package from Section 7.2.1 to make it deal with test
cases of generic type, and to wrap each test case in a record together with a unique
ID number. The numbers are unique across test cases of all types. We achieve this by
keeping the ID_manager package as an outer package encapsulating the next_ID vari-
able. Within that package, we declare an uninstantiated package for wrapping test
cases. The process outline containing the packages is:

stim_gen : process is

  package ID_manager is

    package ID_wrappers is
      generic ( type test_case_type );
      type wrapped_test_case is record
        test_case : test_case_type;
        ID        : natural;
      end record wrapped_test_case;
      impure function wrap_test_case
                        ( test_case : test_case_type )
                        return wrapped_test_case;
    end package ID_wrappers;

  end package ID_manager;

  package body ID_manager is

    variable next_ID : natural := 0;

    package body ID_wrappers is
      impure function wrap_test_case
                        ( test_case : test_case_type )
                        return wrapped_test_case is
        variable result : wrapped_test_case;
      begin
        result.test_case := test_case;
        result.ID := next_ID;
        next_ID := next_ID + 1;
        return result;
      end function wrap_test_case;
    end package body ID_wrappers;

  end package body ID_manager;

  use ID_manager.ID_wrappers;

  package word_wrappers is new ID_wrappers
    generic map ( test_case_type => unsigned(32 downto 0) );
  package real_wrappers is new ID_wrappers
    generic map ( test_case_type => real );



12.3 Generic Lists in Packages 383

  variable next_word_test : word_wrappers.wrapped_test_case;
  variable next_real_test : real_wrappers.wrapped_test_case;

begin
  ...
  next_word_test := word_wrappers.wrap_test_case(X"0440CF00");
  next_real_test := real_wrappers.wrap_test_case(3.14159);
  ...
end process stim_gen;

The process declares two instances of the uninstantiated package ID_wrappers,
one for a test-case type of unsigned, and another for a test-case type of real. The pro-
cess then refers to the wrapped_test_case type and the wrap_test_case function de-
clared in each instance.

This example exposes a number of important points about packages. First, a package
declared within an enclosing region is just another declared item, and is subject to the
normal visibility rules. In the example, the ID_wrappers package is declared within an en-
closing package, and so can be referred to with a selected name and made visible by a
use clause.

Second, in the case of package instantiations, any name referenced within the unin-
stantiated package keeps its meaning in each instance. In the example, the name next_ID
referenced within the uninstantiated package ID_wrappers, refers to the variable declared
in the ID_manager package. So, within each of the package instances, word_wrappers and
real_wrappers, the same variable is referenced. Importantly, had the process also declared
an item called next_ID outside the packages but before the instances, that name would
not be “captured” by the instances. They still refer to the same variable nested within the
ID_manager package. The only exception to this rule for interpreting names is that the
name of the uninstantiated package itself, when referenced within the package, is inter-
preted in an instance as a reference to the instance. This allows us to use a selected name
within an uninstantiated package to refer to an item declared within the uninstantiated
package, and to have it interpreted appropriately in the instance. The rules for name in-
terpretation illustrate quite definitely that package instantiation is different in nature from
file inclusion, as is used for C header files. The benefit of the VHDL approach is that names
always retain the meaning they are given at the point of declaration, and so we avoid un-
wanted surprises.

The third point is that local instantiation of an uninstantiated package is a common
use case, whether the uninstantiated package be locally declared, as in the example, or
globally declared as a design unit. The advantage of local instantiation is that it allows use
of a locally declared type as the actual for a formal generic type. Were local instantiation
not possible, the actual type would have to be declared in a global package in order to
use it in a global package instantiation. Thus, local instantiation improves modularity and
information hiding in a design.



384 Chapter 12 — Generics

EXAMPLE 12.9 Local instantiation of the stacks package

In Example 12.7, we declared an uninstantiated package for stacks as a design unit.
We can instantiate the package to deal with stacks of a type declared locally within a
subprogram that performs a depth-first search of a directed acyclic graph (DAG) con-
sisting of vertices and edges, as follows:

subprogram analyze_network ( network : network_type ) is

  type vertex_type is ...;
  type edge_type   is ...;
  constant max_diameter : positive := 30;

  package vertex_stacks is new work.generic_stacks
    generic map ( size => max_diameter,
                  element_type => vertex_type );
  use vertext_stacks.all;

  variable current_vertex   : vertex_type;
  variable pending_vertices : stack_type;

begin
  ...
  push(pending_stacks, current_vertex);
  ...
end subprogram analyze_network;

The data types used to represent the DAG for analyzing a network are the local
concern of the subprogram. By instantiating the generic_stacks package locally, there
is no need to expose the data types outside the subprogram.

12.3.2 Abstract Data Types Using Packages

The generic stack package in Example 12.7 is an example of an abstract data type (ADT).
This is a term we borrow from the discipline of software engineering to refer to a high-
level view of a data structure.  An ADT is a data type, together with a collection of oper-
ations for creating and working with data objects of that type. In a strict implementation
of an ADT, the data structure underlying the data type is not visible to users of the ADT.
The operations provided are the only way of working with data objects, thus preventing
incorrect use of the objects. This is the means of enforcing the abstract view of the data
type. Unfortunately, VHDL does not provide a way of hiding the data structure, so we have
to rely on conventions and documentation.

The most convenient way to implement an ADT in VHDL is to use a package, as we
saw in the example. In the package declaration we write the VHDL type declarations that
represent the underlying data structure and declare functions and procedures that perform
the ADT operations. We, or other designers, can use these declarations to create data ob-
jects and perform operations on them without being concerned about the implementation
details of the data structure. Any designer has plenty of other concerns to think about, so



12.3 Generic Lists in Packages 385

the more we can do to ease the task of system modeling, the more productive the designer
will be. As implementers of the ADT, we write the details of the operations in the package
body. We should make the operations as general as possible, so that we can reuse the
ADT in several different designs.

One good application of ADTs is as “container” or “collection” types. As we saw in
the stack example, the ADT represents a type that contains values of some element type.
We used a formal generic type to represent the element type, allowing us to instantiate
the ADT in different places with different element types. We will now consider a more
extensive example of a collection ADT.

EXAMPLE 12.10 A bounded buffer ADT package

Many high-level designs involve components that operate autonomously of one an-
other, but that need to communicate streams of data. Instead of the sender and
receiver synchronizing to transfer each item of data, they can communicate asynchro-
nously using a buffer memory. Items are retrieved from this buffer by the receiver in
the same order that they are written by the sender. This is often called a “first in, first
out” (FIFO) buffer. Since memory in a real hardware system is not an infinite resource,
we specify a bound on the amount of data that can be stored at once.

We can write an ADT to provide types and operations for bounded buffers of
items of data. The package declaration is

package bounded_buffer_adt is
  generic ( size : positive;
            type element_type );

  type store_array is array (0 to size - 1) of element_type;

  type bounded_buffer is record
      count : natural;
      head, tail : natural;
      store : store_array;
    end record bounded_buffer;

  procedure reset ( b : inout bounded_buffer );
  -- resets a bounded buffer to be empty

  function is_empty ( b : bounded_buffer ) return boolean;
  -- tests whether the bounded buffer is empty
  -- (i.e., no data to read)

  function is_full ( b : bounded_buffer ) return boolean;
  -- tests whether the bounded buffer is full
  --(i.e., no data can be written)

  procedure write ( b : inout bounded_buffer;
                    data : in element_type );
  -- if the bounded buffer is not full, writes the data
  -- if it is full, assertion violation with severity failure



386 Chapter 12 — Generics

  procedure read ( b : inout bounded_buffer;
                   data : out element_type );
  -- if the bounded buffer is not empty, read the first item
  -- if it is empty, assertion violation with severity failure

end package bounded_buffer_adt;

The formal generic constant size specifies the maximum number of items that can
be stored in the buffer at any time, and the formal generic type element_type repre-
sents the type of the items to be stored. The declaration of the type store_array and
the structure of the type bounded_buffer are private details of the concrete implemen-
tation of the bounded buffer ADT. A user of the ADT does not need to know about
them. However, we need to include them in the package declaration in order to de-
clare the type bounded_buffer, which is the public type. Unfortunately, VHDL does
not provide a way of hiding the types that should be private. We will return to the
implementation details shortly.

The public information in the package declaration is all that is needed to write a
model using bounded buffers. For example, the following process is part of a network
receiver model, using the bounded buffer ADT. It instantiates the ADT package local-
ly, specifying a buffer size of 2048 items, each of the subtype byte. This process makes
no reference to the implementation details of the bounded buffer. It is written using
only the operations provided in the public interface of the package. The advantage of
separating out the bounded buffer part of the model into an ADT is that the model is
more compact, easier to write and easier to understand.

receiver : process is

  subtype byte is bit_vector(0 to 7);

  package byte_buffer_adt is new work.bounded_buffer_adt
    generic map ( size => 2048, element_type => byte );

  use work.byte_buffer_adt.all;

  variable receive_buffer : bounded_buffer;
  ...

begin
  reset(receive_buffer);
  ...

  if is_full(receive_buffer) then
    ...  -- buffer overrun
  else
    write(receive_buffer, received_byte);
  end if;
  ...

  if is_empty(receive_buffer) then
    ...  -- buffer underrun
  else



12.3 Generic Lists in Packages 387

    read(receive_buffer, check_byte);
  end if;
  ...

end process receiver;

We can now turn to the implementation details of the bounded buffer ADT. The
converse advantage of the separation is that as the implementer of the ADT, we can
concentrate on writing it as a compact, well-defined software module. We are not dis-
tracted by the code of the models that use bounded buffers. The private types in the
package declaration indicate that the concrete implementation of this bounded buffer
ADT is as a circular buffer, stored in an array of items, as shown in Figure 12.1. (We
can think of the end of the array as being wrapped around to meet the beginning,
forming a circle.) Data is stored in successive items in the array, starting from the first
element. The record element tail contains the index of the next free position in the
array, and the element head contains the index of the first available item. Each time
a new item is written to the buffer, tail is incremented, and each time an item is read,
head is incremented. They are incremented modulo the size of the buffer, so that the
space made available when items are read is reused for new items when the end of
the array is reached. The record element count keeps track of the number of items in
the buffer and is used to ensure that the write position does not overtake the read
position, and vice versa.

FIGURE 12.1 

The array used to store data as a circular buffer.

0

Free
space

Occupied
space

tail

head



388 Chapter 12 — Generics

The package body for the bounded buffer ADT implementation is

package body bounded_buffer_adt is

  procedure reset ( b : inout bounded_buffer ) is
  begin
    b.count := 0; b.head := 0; b.tail := 0;
  end procedure reset;

  function is_empty ( b : bounded_buffer ) return boolean is
  begin
    return b.count = 0;
  end function is_empty;

  function is_full ( b : bounded_buffer ) return boolean;
  begin
    return b.count = size;
  end function is_full;

  procedure write ( b : inout bounded_buffer;
                    data : in element_type ) is
  begin
    if is_full(b) then
      report "write to full bounded buffer" severity failure;
    else
      b.store(b.tail) := data;
      b.tail := (b.tail + 1) mod size;
      b.count := b.count + 1;
    end if;
  end procedure write;

  procedure read ( b : inout bounded_buffer;
                   data : out element_type ) is
  begin
    if is_empty(b) then
      report "read from empty bounded buffer" severity failure;
    else
      data := b.store(b.head);
      b.head := (b.head + 1) mod size;
      b.count := b.count - 1;
    end if;
  end procedure read;

end package body bounded_buffer_adt;

The function reset clears the count, head and tail elements to zero. The function
is_empty simply tests whether the count element of the record object is zero, and the
function is_full tests whether count is equal to the size of the array used to store data.

The write procedure uses an assertion statement to test whether the buffer is full,
using the ADT operation is_full. It then writes the data item into the buffer at the tail



12.4 Generic Lists in Subprograms 389

position and increments the tail element of the record. The read procedure similarly
uses an assertion statement to test whether the buffer is empty, using the ADT oper-
ation is_empty. It then reads the data item from the head position of the buffer and
increments the head element of the record.

The advantages of using ADTs in complex behavioral models are overwhelming, but
there is one risk that must be borne. As we mentioned before, VHDL provides no way of
hiding the concrete details of the data structure underlying an ADT, as the type declara-
tions must be written in the package declaration. This means that an ADT user can make
use of the information to modify the data structures without using the ADT procedures
and functions. For example, if an ADT operation simply updates a record element, a user
might be tempted to update the record directly and avoid the overhead of a procedure
call. However, modern compilers and computers make such “optimizations” unnecessary,
and the risk is that the user might inadvertently corrupt the data structure. ADTs in VHDL
require that users avoid such temptations and abide by the contract expressed in the ADT
interface. A small amount of self-discipline here will yield significant benefits in the mod-
eling process.

12.4 Generic Lists in Subprograms

Just as generic lists in packages allow us to describe container data types that are are re-
usable, generic lists in subprograms allow us to describe operations that can be reused for
operands of various types. The expanded syntax rule for a procedure with a generic list is

subprogram_body ⇐
procedure identifier

[ generic ( generic_interface_list ) ]
[ [ parameter ] ( parameter_interface_list ) ] is
{ subprogram_declarative_part }

begin
{ sequential_statement }

end [ procedure ] [ identifier ] ;

Similarly, the syntax rule for a function with a generic list is:

subprogram_body ⇐
[ pure I impure ]
function identifier

[ generic ( generic_interface_list ) ]
[ [ parameter ] ( parameter_interface_list ) ] return type_mark is
{ subprogram_declarative_item }

begin
{ sequential_statement }

end [ function ] [ identifier ] ;

We use terminology analogous to that for packages to refer to subprograms with ge-
nerics. Thus, a subprogram with a generic list is called an uninstantiated subprogram.



390 Chapter 12 — Generics

Note that the optional keyword parameter allows us to make the demarcation between
the generic list and the parameter list clear. We would normally omit it for subprograms
without generics and include it or not as a matter of taste for uninstantiated subprograms.

VHDL allows us to declare a subprogram in two parts, one consisting just of the
header, and the other consisting of the header together with the body. We can separate a
subprogram in this way within a given declarative part, for example, in order to declare
mutually recursive subprograms. In the case of subprograms declared in packages, we are
required to separate the subprogram header into the package declaration and to repeat
the header together with the subprogram body in the package body. In the case of unin-
stantiated subprograms, the generic list is part of the subprogram header. Thus, if we sep-
arate the declaration, we must write the generic list and parameter list in the header, and
then repeat both together with the body. Using a text editor to copy and paste the header
into the body makes this easy.

We cannot call an uninstantiated subprogram directly. We can think of it as a template
that we must instantiate with a subprogram instantiation to get a real subprogram that we
can call. The syntax rule for instantiating a procedure is:

subprogram_instantiation_declaration ⇐
procedure identifier is new uninstantiated_subprogram_name [ signature ]

[ generic map ( generic_association_list ) ] ;

and for instantiating a function:

subprogram_instantiation_declaration ⇐
function identifier is new uninstantiated_subprogram_name [ signature ]

[ generic map ( generic_association_list ) ] ;

In both cases, the identifier is the name for the subprogram instance, and the generic
map supplies actual generics for the formal generics defined by the uninstantiated subpro-
gram. If all of the formal generics have defaults, we can omit the generic map to imply
use of the defaults. Once we have instantiated the subprogram, we can then use the in-
stance name to call the instance. We will return to the optional signature in an instantiation
after a couple of examples.

EXAMPLE 12.11 A generic swap procedure

The way in which we swap the values of two variables does not depend on the types
of the variables. Hence, we can write a swap procedure with the type as a formal ge-
neric, as follows:

procedure swap
  generic   ( type T )
  parameter ( a, b : inout T ) is
  variable temp : T;
begin
  temp := a; a := b; b := temp;
end procedure swap;



12.4 Generic Lists in Subprograms 391

We can now instantiate the procedure to get versions for various types:

procedure int_swap is new swap
  generic map ( T => integer );
procedure vec_swap is new swap
  generic map ( T => bit_vector(0 to 7) );

and call them to swap values of variables:

variable a_int, b_int : integer;
variable a_vec, b_vec : bit_vector(0 to 7);
...

int_swap(a_int, b_int);
vec_swap(a_vec, b_vec);

We can’t just call the swap procedure directly, as follows:

swap(a_int, b_int);  -- Illegal

since it is an uninstantiated procedure. Note also that we can’t instantiate the swap
procedure with an unconstrained type as the actual generic type, since the procedure
uses the type internally to declare a variable. Thus, the following would produce an
error:

procedure string_swap is new swap generic map ( T => string );

since there is no specification of the index bounds for the variable temp declared
within swap.

EXAMPLE 12.12 A setup timing check procedure

Suppose we are developing a package of generic operations for timing checks on sig-
nals. We include a generic procedure that determines whether a signal meets a setup
time constraint. The package declaration is

package timing_pkg is

  procedure check_setup
    generic ( type signal_type;
              type clk_type; clk_active_value : clk_type;
              T_su : delay_length )
    ( signal s : signal_type; signal clk : clk_type );

  ...

end package timing_pkg;

The package body contains a body for the procedure:

package body timing_pkg is



392 Chapter 12 — Generics

  procedure check_setup
    generic ( type signal_type;
              type clk_type; clk_active_value : clk_type;
              T_su : delay_length )
    ( signal s : signal_type; signal clk : clk_type ) is
  begin
    if clk'event and clk = clk_active_value then
      assert s'last_event >= T_su
        report "Setup time violation" severity error;
    end if;
  end procedure check_setup;

  ...

end package body timing_pkg;

We can now instantiate the procedure to get versions that check the constraint for
signals of different types and for different setup time parameters:

use work.timing_pkg.all;

procedure check_normal_setup is new check_setup
  generic map ( signal_type => std_ulogic,
                clk_type => std_ulogic,
                clk_active_value => '1',
                T_su => 200ps );

procedure check_normal_setup is new check_setup
  generic map ( signal_type => std_ulogic_vector,
                clk_type => std_ulogic,
                clk_active_value => '1',
                T_su => 200ps );

procedure check_long_setup is new check_setup
  generic map ( signal_type => std_ulogic_vector,
                clk_type => std_ulogic,
                clk_active_value => '1',
                T_su => 300ps );

Note that the procedure check_normal_setup is now overloaded, once for a
std_ulogic parameter and once for a std_ulogic_vector parameter. We can apply these
functions to signals of std_ulogic and std_ulogic_vector types, as follows:

signal status : std_ulogic;
signal data_in, result : std_ulogic_vector(23 downto 0);
...

check_normal_setup(status, clk);
check_normal_setup(result, clk);
check_long_setup(data_in, clk);
...



12.4 Generic Lists in Subprograms 393

In each case, the active value for the clock signal and the setup time interval value
are bound into the definition of the procedure instance. We do not need to provide
the values as separate parameters.

VHDL allows us to overload subprograms, and uses the parameter and result type pro-
files to distinguish among them based on the types of parameters in a call. Where we need
to name a subprogram other than in a call, we can write a signature to indicate which
overloaded version we mean. An example of such a place is in an alias declaration. We
described the use of signatures in alias declarations in Section 11.2. The signature lists the
parameter types and, for functions, the return type, all enclosed in square brackets. This
information is sufficient to distinguish one version of an overloaded subprogram from
other versions. If an uninstantiated subprogram is overloaded, we can include a signature
in an instantiation to indicate which uninstantiated version we mean. In such cases, the
uninstantiated subprograms typically have one or more parameters of a formal generic
type. We use the formal generic type name in the signature. For example, if we have two
uninstantiated subprograms declared as

procedure combine
  generic   ( type T )
  parameter ( x : T; value : bit );

procedure combine
  generic   ( type T )
  parameter ( x : T; value : integer );

the procedure name combine is overloaded. We can use a signature in an instantiation as
follows:

procedure combine_vec_with_bit is new combine[T, bit]
  generic map ( T => bit_vector );

VHDL specifies that a formal generic type name of an uninstantiated subprogram is
made visible within a signature in an instantiation of the subprogram. Thus, in this exam-
ple, the signature distinguishes between the two uninstantiated subprograms, since only
one of them has a profile with T for the first parameter and bit for the second. The T in
the signature refers to the formal generic type for that version of the subprogram.

As with packages, we can also include a generic map in a subprogram, following the
generic list. Such a subprogram is called a generic-mapped subprogram. The syntax rule
for a generic-mapped procedure is

subprogram_body ⇐
procedure identifier

[ generic ( generic_interface_list )
[ generic map ( generic_association_list ) ] ]
[ [ parameter ] ( parameter_interface_list ) ] is
{ subprogram_declarative_part }

begin



394 Chapter 12 — Generics

{ sequential_statement }
end [ procedure ] [ identifier ] ;

and for a generic-mapped function:

subprogram_body ⇐
[ pure I impure ]
function identifier

[ generic ( generic_interface_list )
[ generic map ( generic_association_list ) ] ]
[ [ parameter ] ( parameter_interface_list ) ] return type_mark is
{ subprogram_declarative_item }

begin
{ sequential_statement }

end [ function ] [ identifier ] ;

In each case, the generic list defines the generics, and the generic map aspect provides
actual values and type for those generics. Like generic-mapped packages, we would not
normally write a generic-mapped subprogram explicitly, since the feature is included in
the language as a definitional aid. Hence, we won’t dwell on them further, but simply
mention them here to raise awareness in case an analyzer produces a seemingly cryptic
error message.

12.5 Generic Subprograms

In the preceding sections of this chapter, we have seen the use of generic constants and
generic types for making entities, packages and subprograms reusable. VHDL allows us
to declare generic subprograms as a way of providing an operation or action to be per-
formed by a unit. We declare a formal generic subprogram in a generic list, representing
some subprogram yet to be specified, and include calls to the formal generic subprogram
within the unit that has the generic list. When we instantiate the unit, we supply an actual
subprogram for that instance. Each call to the formal generic subprogram represents a call
to the actual subprogram in the instance. The way we declare a formal generic subpro-
gram is to write a subprogram specification (the header without the body) in the generic
list.

A simplified syntax rule for declaring a formal generic procedure in a generic list is

interface_declaration ⇐
procedure identifier

[ [ parameter ] ( parameter_interface_list ) ]

and for declaring a formal generic function:

interface_declaration ⇐
procedure identifier

[ [ parameter ] ( parameter_interface_list ) ] return type_mark



12.5 Generic Subprograms 395

These rules show that the formal generic subprogram must be a simple subprogram; that
is, it must not contain a generic list itself.

We will illustrate formal generic subprograms with a number of examples based on
typical use cases. One important use case is to supply an operation for use with a formal
generic type declared in the same generic list as the subprogram. Recall, from our discus-
sion in Section 12.2, that the only operations we can assume for a formal generic type are
those defined for all actual types, such as assignment, equality and inequality. We can use
a formal generic subprogram to explicitly provide further operations.

EXAMPLE 12.13 A generic counter with an increment function

In Example 12.6 on page 375, we attempted to define a counter that could count with
a variety of types. However, our attempt failed because we could not use the “+” op-
erator to increment the count value. We can rectify this by declaring a formal generic
function for incrementing the count value:

entity generic_counter is
  generic ( type     count_type;
            constant reset_value : count_type;
            function increment ( x : count_type )
                               return count_type );
  port ( clk, reset : in  bit;
         data       : out count_type );
end entity generic_counter;

We can then use the increment function in the architecture:

architecture rtl of generic_counter is
begin
  count : process (clk) is
  begin
    if rising_edge(clk) then
      if reset then
        data <= reset_value;
      else
        data <= increment(data);
      end if;
    end if;
  end process count;
end architecture rtl;

Having revised the counter in this way, we can instantiate it with various types.
For example, to create a counter for unsigned values, we define a function, add1, to
increment using the “+” operator on unsigned values and provide it as the actual for
the increment generic.

use ieee.numeric_std.all;
function add1 ( arg : unsigned ) return unsigned is



396 Chapter 12 — Generics

begin
  return arg + 1;
end function add1;

signal clk, reset : bit;
signal count_val  : unsigned(15 downto 0);
...

counter : entity work.generic_counter(rtl)
  generic map ( count_type  => unsigned(15 downto 0),
                reset_value => (others => '0'),
                increment   => add1 )  -- add1 is the
                                       -- actual function
  port map ( clk => clk, reset => reset, data => count_val );

In the instance, we specify a subtype of unsigned as the actual type for the formal
generic type count_type. That subtype is then used as the subtype of the formal ge-
neric constant reset_value in the instance, so the actual value is a vector of 16 ele-
ments. The subtype is also used for the parameters of the formal generic function
increment in the instance, so we must provide an actual function with a conforming
profile. The add1 function meets that requirement, since it has unsigned as its param-
eter and result type. Within the instance, whenever the process calls the increment
function, the actual function add1 is called.

We can instantiate the same entity to create a counter for the traffic_light_color
type defined in Example 12.6 on page 375. Again, we define a function, next_color,
to increment a value of the type, and provide the function as the actual for the incre-
ment generic.

type traffic_light_color is (red, yellow, green);

function next_color ( arg  : traffic_light_color )
                    return traffic_light_color is
begin
  if arg = traffic_light_color'high then
    return traffic_light_color'low;
  else
    return traffic_light_color'succ(arg);
  end if;
end function next_color;

signal east_light : traffic_light_color;
...

east_counter : work.generic_counter(rtl)
  generic map ( count_type  => traffic_light_color,
                reset_value => red,
                increment   => next_color ) -- next_color is the
                                            -- actual function
  port map ( clk => clk, reset => reset, data => east_light );



12.5 Generic Subprograms 397

When we declare a formal generic subprogram in a generic list, we can specify a de-
fault subprogram that is to be used in an instance if no actual generic subprogram is pro-
vided. The expanded syntax rule for declaring a formal generic procedure with a default is

interface_declaration ⇐
procedure identifier

[ [ parameter ] ( parameter_interface_list ) ]
is subprogram_name

and similarly for a formal generic function with a default:

interface_declaration ⇐
function identifier

[ [ parameter ] ( parameter_interface_list ) ] return type_mark
is subprogram_name

The subprogram that we name must be visible at that point. It might be declared be-
fore the uninstantiated unit, or it can be another formal generic subprogram declared ear-
lier in the same generic list. In the case of an uninstantiated package, we cannot name a
subprogram declared in the package as a default subprogram, since items declared within
the package are not visible before they are declared.

EXAMPLE 12.14 Generic error reporting in a package

Suppose we are developing a package defining operations to be used in a design and
need to report errors that arise while performing operations. We can declare a formal
generic procedure in the package to allow separate specification of the error-reporting
action. We can also declare a default procedure that simply issues a report message.
We need to declare the default action procedure separately from the package so that
we can name it in the generic list. We will declare it in a utility package:

package error_utility_pkg is
  procedure report_error ( report_string   : string;
                           report_severity : severity_level );
end package error_utility_pkg;

package body error_utility_pkg is
  procedure report_error ( report_string   : string;
                           report_severity : severity_level ) is
  begin
    report report_string severity report_severity;
  end procedure report_error;
end package body error_utility_pkg;

We can now declare the operations package:

package operations is
  generic ( procedure error_action
              ( report_string   : string;



398 Chapter 12 — Generics

                report_severity : severity_level )
              is work.error_utility_pkg.report_error );

  procedure step1 ( ... );

  ...

end package operations;

package body operations is

  procedure step1 ( ... ) is
  begin
    ...
    if something_is_wrong then
      error_action("Something is wrong in step1", error);
    end if;
    ...
  end procedure step1;

  ...

end package body operations;

If issuing a report message is sufficient for a given design, it can instantiate the
operations package without providing an actual generic subprogram:

package reporting_operations is new work.operations;
use reporting_operations.all;
...

step1 ( ... );

If something goes wrong during execution of step1 in this instance, the call to
error_action results in a call to the default generic subprogram report_error defined
in the utility package.

Another design might need stop simulation using the stop procedure from the en-
vironment package (see Section 9.2). The design can declare a procedure to deal with
error messages as follows:

constant stop_status : integer := -1;

procedure stop_on_error ( report_string   : string;
                          report_severity : severity_level ) is
begin
  report report_string severity report_severity;
  std.env.stop(stop_status);
end procedure stop_on_error;

The design can then instantiate the operations package with this procedure as the
actual generic procedure:



12.5 Generic Subprograms 399

package debugging_operations is new work.operations
  generic map ( error_action => stop_on_error );
use debugging_operations.all;
...

step1 ( ... );

In this instance, when something goes wrong in step1, the call to error_action
results in a call to the procedure stop_on_error, which reports the message and then
stops simulation. Since the actual procedure is declared in the context of the instanti-
ating design, it has access to items declared in that context, including the constant
stop_status. By providing this procedure as the actual generic procedure to the pack-
age instance, the instance is able to “import” that context via the actual procedure.

In many use cases where an operation is required for a formal generic type, there may
be an overloaded version of the operation defined for the actual generic type at the point
of instantiation. VHDL provides a way to indicate that the default for a generic subprogram
is a subprogram, directly visible at the point of instantiation, with the same name as the
formal generic subprogram and a conforming profile. We use the box symbol (“<>”) in
place of a default subprogram name in the generic declaration. For example, we might
write the following in a generic list of a package:

function minimum ( L, R : T ) return T is <>

If, when we instantiate the package, we omit an actual generic function, and there is
a visible function named minimum with the required profile, then that function is used.
Normally, the parameter type T used in the declaration of the formal generic subprogram
is itself a formal generic type declared earlier in the generic list. We provide an actual type
for T in the instance, and that determines the parameter type expected for the visible de-
fault subprogram. If we define the formal generic subprogram with the same name and
similar profile to a predefined operation, we can often rely on a predefined operation be-
ing visible and appropriate for use as the default subprogram. We will illustrate this with
an example.

EXAMPLE 12.15 A generic counter with a default for the increment function

We can further revise the counter from Example 12.6 on page 375 by using a formal
generic “+” operator to perform the increment operation and by specifying a default
for the generic:

entity generic_counter is
  generic ( type     count_type;
            constant reset_value : count_type;
            function "+" ( L : count_type; R : natural )
                         return count_type is <> );
  port ( clk, reset : in  bit;



400 Chapter 12 — Generics

         data       : out count_type );
end entity generic_counter;

We use the “+” operator in the architecture:

architecture rtl of generic_counter is
begin
  count : process (clk) is
  begin
    if rising_edge(clk) then
      if reset then
        data <= reset_value;
      else
        data <= data + 1;
      end if;
    end if;
  end process count;
end architecture rtl;

When we instantiate the counter, if there is a version of “+” visible for the actual
type and we don’t provide an actual function, the visible “+” operator is used. For ex-
ample, in the following:

use ieee.numeric_std.all;

signal clk, reset : bit;
signal count_val  : unsigned(15 downto 0);
...

counter : entity work.generic_counter(rtl)
  generic map ( count_type  => unsigned(15 downto 0),
                reset_value => (others => '0') )
  port map ( clk => clk, reset => reset, data => count_val );

the instance uses the “+” operator, defined in numeric_std, with an unsigned left op-
erand and a natural right operand.

EXAMPLE 12.16 A generic dictionary ADT implemented using arrays

The following package defines an abstract data type for ordered dictionaries imple-
mented as sorted arrays of elements. (There are more efficient ways to implement dic-
tionaries, but they rely on access types, a language feature that we introduce in
Chapter 15. We will illustrate an alternate implementation of ordered dictionaries in
that chapter.) A dictionary contains elements that are each identified by a key value.
The formal generic constant size specifies the maximum number of elements in the
dictionary. The formal generic function key_of determines the key for a given ele-
ment. No default function is provided, so we must supply an actual function on in-
stantiation of the package. The formal function “<” is used to compare key values. The



12.5 Generic Subprograms 401

default function is specified using the “<>” notation, so if an appropriate function
named “<” is directly visible at the point of instantiation, we don’t need to specify an
actual function.

package dictionaries is
  generic ( size : positive;
            type element_type;
            type key_type;
            function key_of ( E : element_type ) return key_type;
            function "<" ( L, R : key_type )
                         return boolean is <> );

  type element_array is array (1 to size) of element_type;

  type dictionary_type is record
      store : element_array;
      count : natural;
    end record dictionary_type;

  procedure initialize ( dictionary : inout dictionary_type );

  procedure lookup ( dictionary : in dictionary_type; 
                     lookup_key : in key_type;
                     element : out element_type;
                     found : out boolean );

  procedure search_and_insert
              ( dictionary : in dictionary_type;
                element : in element_type;
                already_present : out boolean );

end package dictionaries;

The package body is shown below, with the body of the search_and_insert pro-
cedure omitted for brevity.

package body dictionaries is

  procedure initialize ( dictionary : inout dictionary_type ) is
  begin
    dictionary.count := 0;
  end procedure initialize;

  procedure lookup ( dictionary : in dictionary_type;
                     lookup_key : in key_type;
                     element : out element_type;
                     found : out boolean ) is
    variable left, right, middle : natural;
  begin
    found := false;
    left := 1; right := dictionary.count;
    while left <= right loop



402 Chapter 12 — Generics

      middle := (left + right) / 2;
      if lookup_key < key_of( dictionary.store(middle) ) then
        right := middle - 1;
      elsif key_of( dictionary.store(middle) ) < lookup_key then
        left := middle + 1;
      else
        found := true;
        element := dictionary.store(middle);
        return;
      end if;
    end loop;
  end procedure lookup;

  procedure search_and_insert
              ( dictionary : inout dictionary_type;
                element : in element_type;
                already_present : out boolean ) is
    ...

end package body dictionaries;

The function lookup uses a binary search algorithm to locate the required element
in the array. We use the formal generic function key_of to get the key for a candidate
element in the dictionary. We compare the key with the value of the lookup_key pa-
rameter using the formal generic function “<”.

Now suppose we require a dictionary of test patterns that use time values as keys.
We can instantiate the dictionaries package using our test-pattern type as the actual
for element_type and time as the actual for key_type. We need to declare a function
to get the time key for a test pattern:

type test_pattern_type is ...;

function test_time_of ( test_pattern : in test_pattern_type )
                      return time is
begin
  return ...;
end function test_time_of;

We don’t need to define a function for use as the actual for the formal generic
function “<”. Since the predefined function “<” operating on time values is directly
visible at the point of instantiation, it can be used implicitly as the actual function. As
a result, the test patterns will be sorted into ascending order of time in the dictionary.
We can write the package instantiation as:

package test_pattern_dictionaries is new work.dictionaries
  generic map ( size => 1000,
                element_type => test_pattern_type,
                key_type => time,
                key_of => test_time_of );



12.5 Generic Subprograms 403

We can then call the operations defined in the instance:

use test_pattern_dictionaries.all;
variable test_set : dictionary_type;
variable generated_test, sought_test : test_pattern_type;
variable was_present : boolean;
...

initialize ( test_set );
...

search_and_insert ( test_set, generated_test, was_present );
assert not was_present
  report "Test at " & to_string(test_time_of(generated_test))
                    & " previously generated";
...
lookup ( test_set, 10 ns, sought_test, was_present );
assert was_present
  report "Test at 10 ns not found in test set";

EXAMPLE 12.17 Dictionary traversal with an action procedure

We can augment the ordered dictionary abstract data type with an operation for tra-
versing a dictionary to apply an action to each element. We define the traversal pro-
cedure as an uninstantiated procedure within the uninstantiated dictionaries package:

package dictionaries is
  generic ( ... );

  ...

  procedure traverse
    generic   ( procedure action ( element : in element_type ) )
    parameter ( dictionary : in dictionary_type );

end package dictionaries;

package body dictionaries is

  ...

  procedure traverse
    generic   ( procedure action ( element : in element_type ) )
    parameter ( dictionary : in dictionary_type ) is
  begin
    for i in 1 to dictionary.count loop
      action ( dictionary.store(i) );
    end loop;
  end procedure traverse;

end package body dictionaries;



404 Chapter 12 — Generics

Given this augmented package and the same instance as in the previous example,
we can use the traverse procedure to find the smallest time interval between succes-
sive test patterns in a dictionary. We first declare an action procedure and a number
of variables for it to use:

variable previous_time : time := time'low;
variable smallest_so_far : time := time'high;
procedure compare_test_pattern
            ( test_pattern : in test_pattern_type ) is
begin
  smallest_so_far
    := minimum(smallest_so_far,
               test_time_of(test_pattern) - previous_time );
  previous_time := test_time_of(test_pattern);
end procedure count_a_test_pattern;

We instantiate the traverse procedure in the declarative part of the design:

procedure find_smallest_interval is new traverse
  generic map ( action => compare_test_pattern );

and then call the instance:

find_smallest_interval(test_set);
report "The smallest interval between test patterns is "
       & to_string(smallest_so_far);

We can use a separate instantiation of the traverse procedure to perform a differ-
ent action. For example, if we need to debug a test bench by displaying a collection
of test patterns in order of their time, we would define an action procedure:

procedure display_test_pattern
            ( test_pattern : in test_pattern_type ) is
begin
  report “Test at “
         & to_string(test_time_of(test_pattern)) & LF
         & ...;
end procedure display_test_pattern;

Again, we instantiate the traverse procedure in the declarative part of the design:

procedure display_all_test_patterns is new traverse
  generic map ( action => display_test_pattern );

and then call the instance:

display_all_test_patterns(test_set);



12.5 Generic Subprograms 405

In each of the examples we have seen, the subprogram that we provide as an actual,
either explicitly or implicitly, for a formal generic subprogram has the same parameter and
result type profile as the formal. That means corresponding parameters have the same
base types and, in the case of functions, the result types have the same base types. In fact,
the rule for generic subprograms is stronger than that. The actual and formal subprograms
must have conforming profiles, which means both are procedures or both are functions;
the parameter and result type profiles of the two subprograms are the same; and corre-
sponding parameters have the same class (signal, variable, constant, or file) and
mode (in, out, or inout). The purpose of these rules is to ensure that a call to the formal
subprogram will be legal for whatever actual subprogram is provided. As a counterexam-
ple, suppose the formal subprogram had a signal parameter of a given type, and the actual
subprogram had a variable parameter of the same type. A call to the formal subprogram
would provide a signal as the actual parameter. However, the actual subprogram would
expect a variable, and would perform variable assignments on it. This is clearly an error,
even though the parameter and result type profiles of the two subprograms match. The
additional requirements for profile conformance avoid this kind of error.

There are two further rules relating to the parameters of generic subprograms. The
first is that, if a formal parameter of a formal generic subprogram has a default value, that
value is used when an actual parameter is omitted, regardless of whether the correspond-
ing formal parameter of the actual subprogram has a default value. An example will help
clarify this. Suppose we declare an entity with a formal generic subprogram, and a corre-
sponding architecture, as follows:

entity up_down_counter is
  generic ( type T;
            function add ( x : T; by : integer := 1 ) return T )
  port ( ... );
end entity up_down_counter;

architecture rtl of up_down_counter is
begin
  count : process (clk) is
  begin
    if rising_edge(clk) then
      if mode then
        count_value <= add(count_value);  -- use default value
      else
        count_value <= add(count_value, -1);
      end if;
    end if;
  end process count;
end architecture rtl;

The formal generic subprogram add has a parameter by with the default value 1. In
the first call to add within the architecture, we omit a value for by, so the default value 1
is used. This allows an analyzer to compile the call with the default value independently
of any instantiation of the enclosing entity that we might write subsequently. For example,
suppose we instantiate the entity with an actual generic subprogram declared as follows:



406 Chapter 12 — Generics

function add_int ( a : integer; incr : integer := 0 )
                 return integer is
begin
  return a + incr;
end function add_int;
...

int_counter : entity work.up_down_counter(rtl)
  generic map ( T => integer; add => add_int )
  port map ( ... );

In this instance, the actual generic subprogram associated with add has the default
value 0 for its second parameter. Despite this, the first call to the subprogram in the archi-
tecture still uses the default value 1 for the by parameter, since that is what is declared for
the formal generic subprogram.

The rule dealing with default values for parameters also applies to the case where the
parameter of the formal generic subprogram has no default value. In that case, a call must
supply a value, even if the actual generic subprogram in an instance has a default value
for the parameter. For example, in the up_down_counter entity, had we declared the for-
mal generic function add as follows:

function add ( x : T; by : integer ) return T

the first call within the architecture would have to specify an actual value for the by pa-
rameter. The fact that the function add_int supplied as the actual generic subprogram in
the instance has a default value for its second parameter cannot be used within the archi-
tecture.

The second rule relating to parameters of generic subprograms is that the parameter-
subtype constraints of the actual subprogram apply when the subprogram is called, not
the parameter-subtype constraints of the formal subprogram. To illustrate, suppose we in-
stantiate the up_down_counter entity with a different function, as follows:

function add_nat ( a : natural; incr : natural := 0 )
                 return natural is
begin
  return a + incr;
end function add_nat;
...

nat_counter : entity work.up_down_counter(rtl)
  generic map ( T => natural; add => add_nat )
  port map ( ... );

In this instance, the second parameter of the actual generic subprogram is of the base
type integer with a range constraint requiring the value to be non-negative. The second
call within the architecture provides the value –1 for the parameter. While this conforms
to the constraint on the by parameter of the formal generic subprogram, it does not con-
form to the constraint on the corresponding parameter of the actual generic subprogram



12.6 Generic Packages 407

in the instance. Hence, when the function is called with that value in the instance, an error
occurs.

12.6 Generic Packages

We have seen that we can include a generic list in a package declaration to make the pack-
age reusable for different actual types and operations. This is particularly useful for a pack-
age implementing an abstract data type (ADT), as we illustrated in Section 12.3.

Suppose we have an ADT specified in a package with generics, and we want to pro-
vide a further package extending the types and operations of the ADT. To make the ex-
tension package reusable, we would have to provide a generic type to specify an instance
of the ADT’s named type, along with generic subprograms for each of the ADT’s opera-
tions. If the ADT has many operations, specifying them as actual generic subprograms in
every instance of the extension package would be extremely onerous. To avoid this,
VHDL allows us to specify an instance of the ADT package as a formal generic package
of the extension package. Once we’ve instantiated the ADT package, we then provide that
instance as the actual generic package of the extension package.

There are three forms of formal generic package declaration that we can write in a
generic list. The first form has the syntax:

interface_declaration ⇐
package identifier is new uninstantiated_package_name

 generic map ( <> )

In this case, the formal package represents an instance of the named uninstantiated
package, for use within the enclosing unit containing the generic list. In most use cases,
the enclosing unit is itself an uninstantiated package. However, we can also specify formal
generic packages in the generic lists of entities and subprograms. When we instantiate the
enclosing unit, we provide an actual package corresponding to the formal generic pack-
age. The actual package must be an instance of the named uninstantiated packge. The box
notation “<>” written in the generic map of the formal generic package specifies that the
actual package is allowed to be any instance of the named uninstantiated package. We
use this form when the enclosing unit does not depend on the particular actual generics
defined for the actual generic package.

No doubt, all of this discussion of packages within packages and generics at different
levels can become confusing. The best way to motivate the need for formal generic pack-
ages and to sort out the relationships between the pieces is with an example.

EXAMPLE 12.18 A package for fixed-point complex numbers

The standard package fixed_generic_pkg (described in Section 9.2.4) defines an ADT
for fixed-point numbers represented as vectors of std_ulogic elements. The package
is an uninstantiated package, with generic constants specifying how to round results,
how to handle overflow, the number of guard bits for maintaining precision, and
whether to issue warnings. An outline of the package declaration is:

library ieee;  use ...;



408 Chapter 12 — Generics

package fixed_generic_pkg is
  generic (
    fixed_round_style    : fixed_round_style_type
                                   := fixed_round;
    fixed_overflow_style : fixed_overflow_style_type
                                   := fixed_saturate;
    fixed_guard_bits     : natural := 3;
    no_warning           : boolean := false
    );

  ...

end package fixed_generic_pkg;

The package defines subtypes ufixed and sfixed for unsigned and signed fixed-point
numbers and numerous arithmetic, conversion and input/output operations. The bod-
ies of the operations use the values of the formal generic constants to govern their
behavior. We can instantiate the package with values for the actual generic constants
to get a version with the appropriate behavior for our specific design needs.

Now suppose we wish to build upon the fixed-point package to define fixed-
point complex numbers, represented in Cartesian form with fixed-point real and imag-
inary parts. We want the two parts of a complex number to have the same left and
right index bounds, implying the same range and precision for the two parts. We can
achieve that constraint by defining the complex-number type and operations in a
package with formal generic constants for the index bounds. The complex-number
type is defined using the sfixed type from an instance of the fixed-point package, and
the complex-number operations need to use fixed-point operations from that in-
stance. Thus, we include a formal generic package in the generic list of the complex-
number package, as follows:

library ieee;
package complex_generic_pkg is
  generic ( left, right : integer;
            package fixed_pkg_for_complex is
              new ieee.fixed_generic_pkg
                generic map (<>) );

  use fixed_pkg_for_complex.all;

  type complex is record
    re, im : sfixed(left downto right);
  end record;

  function "-"  ( z : complex ) return complex;
  function conj ( z : complex ) return complex;
  function "+"  ( l : complex;  r : complex ) return complex;
  function "-"  ( l : complex;  r : complex ) return complex;
  function "*"  ( l : complex;  r : complex ) return complex;
  function "/"  ( l : complex;  r : complex ) return complex;



12.6 Generic Packages 409

end package complex_generic_pkg;

Within the complex_generic_pkg package, the formal generic package
fixed_pkg_for_complex represents an instance of the fixed_generic_pkg package.
The box notation in the generic map indicates that any instance of fixed_generic_pkg
will be appropriate as an actual package. The use clause makes items defined in the
fixed_pkg_for_complex instance visible, so that sfixed can be used in the declaration
of type complex. The generic constants left and right are used to specify the index
bounds of the two record elements. The operations defined for sfixed in the
fixed_pkg_for_complex instance are also used to implement the complex-number op-
erations in the package body for complex_generic_pkg, as follows:

package body fixed_complex_pkg is

  function "-" ( z : complex ) return complex is
  begin
    return ( -z.re, -z.im );
  end function "-";

  ...

end package body fixed_complex_pkg;

In the “–” operation for type complex, the “–” operation for type sfixed is applied
to each of the real and imaginary parts. The other operations use the sfixed operations
similarly.

In a design, we can instantiate both the fixed-point package and the complex-
number package according to our design needs, for example:

package dsp_fixed_pkg is new ieee.fixed_generic_pkg
  generic map ( fixed_rounding_style => fixed_round,
                fixed_overflow_style => fixed_saturate,
                fixed_guard_bits => 2,
                no_warning => false );

package dsp_complex_pkg is new work.complex_generic_pkg
  generic map ( left => 3, right => -12,
                fixed_pkg_for_complex => dsp_fixed_pkg );

The first instantiation defines an instance of the fixed-point package, which pro-
vides the type sfixed and operations with the required behavior.  The second instan-
tiation defines an instance of the complex-number package with left and right bounds
of 3 and –12 for both the real and imaginary parts. The type sfixed and the corre-
sponding operations used within this instance of the complex-number package are
provided by the actual generic package dsp_fixed_pkg. We can use the packages to
declare variables and apply operations as follows:

use dsp_fixed_pkg.all, dsp_complex_pkg.all;
variable a, b, z : complex



410 Chapter 12 — Generics

variable c : sfixed;
...

z := a + conj(b);
z := (c * z.re, c * z.im);

The second form of formal generic package that we can write in a generic list has the
syntax:

interface_declaration ⇐
package identifier is new uninstantiated_package_name

 generic map ( generic_association_list )

Again, the formal package represents an instance of the named uninstantiated pack-
age, for use within the enclosing unit containing the generic list. The actual generics pro-
vided in the generic map of the formal generic package specify that the actual package
must be an instance of the named uninstantiated package with those same actual generics.
We generally use this form when the enclosing unit also has another formal generic pack-
age defined earlier in its generic list. The latter generic is expected to have a generic pack-
age that is the same instance as the actual for the earlier generic package. No doubt that
statement is unfathomable due to the packages within packages within packages. We will
build on the previous example to help motivate the need for the language feature and to
show how it may be used.

EXAMPLE 12.19 Mathematical operations on fixed-point complex numbers

In the previous example, we defined a package for complex numbers that provided
a complex-number type and basic arithmetic operations. We can build upon this pack-
age to define a further package for more advanced mathematical operations on com-
plex values. We will also use a package of advanced mathematical operations defined
for fixed-point values:

package fixed_math_ops is
  generic ( package fixed_pkg_for_math is
              new ieee.fixed_generic_pkg
                generic map (<>) );

  use fixed_pkg_for_math.all;

  function sqrt ( x : sfixed ) return sfixed;
  function exp ( x : sfixed ) return sfixed;
  ...

end package fixed_math_ops;

This package has a formal generic package for an instance of the fixed_generic_
pkg package, since the operations it applies to the function parameters of type sfixed
must be performed using the behavior defined for the sfixed type in the package in-



12.6 Generic Packages 411

stance proving the type. This is a similar scenario to that described in the previous
example.

The advanced complex-number operations must be performed using the same
sfixed type and basic fixed-point operations used to define the complex-number type
and operations. It must also use the advanced fixed-point operations and the
complex-number type and operations, with those types and operations being based
on the same sfixed type and basic fixed-point operations. Thus, the advance complex-
number package must have formal generic packages for the fixed-point package, the
fixed-point mathematical operations package, and the complex-number package, as
follows:

package complex_math_ops is
  generic ( left, right : integer;
            package fixed_pkg_for_complex_math is
              new ieee.fixed_generic_pkg
                generic map (<>);
            package fixed_math_ops is
              new work.fixed_math_ops
                generic map ( fixed_pkg_for_math =>
                                fixed_pkg_for_complex_math );
            package complex_pkg is
              new work.complex_generic_pkg
                generic map ( left => left, right => right,
                              fixed_pkg_for_complex =>
                                fixed_pkg_for_complex_math ) );

  use fixed_pkg_for_complex_math.all,
      fixed_math_ops.all, complex_pkg.all;

  function "abs" ( z : complex ) return sfixed;
  function arg   ( z : complex ) return sfixed;
  function sqrt  ( z : complex ) return complex;
  ...

end package complex_math_ops;

The package body is

package body complex_math_ops is

  function "abs" ( z : complex ) return sfixed is
  begin
    return sqrt(z.re * z.re + z.im * z.im);
  end function "abs";

  ...

end package body complex_math_ops;

We can now instantiate the packages for a given design. For example, given the
instances dsp_fixed_pkg and dsp_complex_pkg declared in the previous example, we



412 Chapter 12 — Generics

can also declare instances of the advanced fixed-point operations package and the
advanced complex operations package:

package dsp_fixed_math_ops is new work.fixed_math_ops
  generic map ( fixed_pkg_for_math => dsp_fixed_pkg );

package dsp_complex_math_ops is new work.complex_math_ops
  generic map ( left => 3, right => -12,
                fixed_pkg_for_complex_math => dsp_fixed_pkg,
                fixed_math_ops => dsp_fixed_math_ops,
                complex_pkg    => dsp_complex_pkg );

The third form of formal generic package that we can write in a generic list has the
syntax:

interface_declaration ⇐
package identifier is new uninstantiated_package_name

 generic map ( default )

This form is similar in usage to the second form, but replaces the actual generics with
the reserved word default. We can use this third form when the named uninstantiated
package has defaults for all of its formal generics. The actual package must then be an
instance of the named uninstantiated package with all of the actual generics being the
same as the defaults. Those actual generics (for the actual generic package) can be either
explicitly specified when the actual package is instantiated, or they can be implied by leav-
ing the actual generics unassociated. Thus, this third form is really just a notational con-
venience, as it saves us writing out the defaults again as actual generics in the generic map
of the formal generic package.

While generic packages might seem to be rather complex to put into practice, we en-
visage that most of the time packages using generic packages will be developed by per-
sonnel in support of design teams. They would normally provide source code templates
for designers to instantiate the packages, including instantiating any dependent packages
as actual generics. Thus, the designers would be largely insulated from the complexity.

For the developers of such packages, however, there are a number of rules relating
to formal and actual generic packages. As we have mentioned, the actual package corre-
sponding to a formal generic package must be an instance of the named uninstantiated
package. To summarize the rules relating to the generic map in the formal generic
package:

• If the generic map of the formal generic package uses the box (“<>”) symbol, the ac-
tual generic package can be any instance of the named uninstantiated package.

• If the formal generic package declaration includes a generic map with actual generics,
then the actual generics in the actual package’s instantiation must match the actual
generics in the formal generic package declaration.



12.6 Generic Packages 413

• If the formal generic package declaration includes a generic map with the reserved
word default, then the actual generics in the actual package’s instantiation must
match the default generics in the generic list of the named uninstantiated package.

The meaning of the term “match” applied to actual generics depends on what kind of
generics are being matched. For generic constants, the actuals must be the same value. It
doesn’t matter whether that value is specified as a literal, a named constant, or any other
expression. For a generic type, the actuals must denote the same subtype; that is, they
must denote the same base type and the same constraints. Constraints on a subtype in-
clude range constraints, index ranges and directions, and element subtypes. For generic
subprograms, the actuals must refer to the same subprogram, and for generic packages,
the actuals must refer to the same instance of a specified uninstantiated package.

In the case of a default generic subprogram implied by a box symbol in the generic
list of the named uninstantiated package, the actual subprogram must be the subprogram
of the same name and conforming profile directly visible at the point where the formal
generic package is declared. For example, if an uninstantiated package is declared as

package pkg1 is
  generic ( function "<" ( L, R : integer )
                         return boolean is <> ) );
  ...
end package pkg1;

we can declare a second package as follows:

package pkg2 is
  generic ( package inst1 is new pkg1 generic map ( default ) );
  ...
end package pkg2;

In this case, any package provided as an actual for inst1 must be an instance of pkg1,
such as the following:

package ascending_pkg1 is new pkg1
  generic map ( T => integer );

Since the predefined “<” function for integer is visible at the point of declaring
ascending_pkg1, that function is used as the actual for the generic function “<” in the in-
stance of pkg1. At the place of declaring the formal generic package inst1 within the ge-
neric list of pkg2, the predefined “<” function for integer is also directly visible, so it is this
function that must be matched as the actual for “<” in any instance of pkg1 supplied as
an actual for inst1. Thus, the following instantiation of pgk2 is legal:

package integer_pkg2 is new pkg2
  generic map ( inst1 => ascending_pkg1 );



414 Chapter 12 — Generics

Exercises

1. [➊ 12.1] Add to the following entity interface a generic clause defining generic con-
stants Tpw_clk_h and Tpw_clk_l that specify the minimum clock pulse width timing.
Both generic constants have a default value of 3 ns.

entity flipflop is
  port ( clk, d : in bit;  q, q_n : out bit );
end entity flipflop;

2. [➊ 12.1] Write a component instantiation statement that instantiates the following en-
tity from the current working library. The actual value for the generic constant should
be 10 ns, and the clk signal should be associated with a signal called master_clk.

entity clock_generator is
  generic ( period : delay_length );
  port ( clk : out std_ulogic );
end entity clock_generator;

3. [➊ 12.1] Following is an incomplete entity interface that uses a generic constant to
specify the sizes of the standard-logic vector input and output ports. Complete the in-
terface by filling in the types of the ports.

entity adder is
  generic ( data_length : positive );
  port ( a, b : in ...;  sum : out ... );
end entity adder;

4. [➊ 12.1] A system has an 8-bit data bus declared as

signal data_out : bit_vector(7 downto 0);

Write a component instantiation statement that instantiates the reg entity defined in
Example 12.3 to implement a 4-bit control register. The register data input connects
to the rightmost four bits of data_out, the clk input to io_write, the reset input to
io_reset and the data output bits to control signals io_en, io_int_en, io_dir and
io_mode.

5. [➊ 12.2] Write an instantiation of the multiplexer of Example 12.5 connected to a select
signal sel of type bit, and to data inputs d_in1 and d_in2 and data output d_out, all
of type bit_vector(7 downto 0).

6. [➊ 12.2] For the entity e and architecture a described on page 374, why is the follow-
ing instantiation illegal?

my_e : entity work.e(a)
  generic map ( T => unsigned,
                init_val => unsigned'("00000000") )
  port map ( ... );



Exercises 415

7. [➊ 12.3] Write an instantiation of the stacks package of Example 12.7 for stacks of in-
tegers up to 100 elements deep. Declare a stack variable and push the number –1 onto
it.

8. [➊ 12.3] Given an instance of the package generic_pkg described on page 380:

package int_std_pkg is new generic_pkg
  generic map ( T1 => integer, T2 => std_ulogic );

are the following calls ambiguous? If so, why? If not, which procedure is called?

variable b : bit;
...

int_std_pkg(1);
int_std_pkg('1');
int_std_pkg(b);

9. [➊ 12.3] Suppose the variable test_buffer is an instance of the bounded buffer ADT
described in Section 12.3.2. Write statements that fill the buffer with zero bytes.

10. [➊ 12.4] Write an instantiation of the check_setup procedure of Example 12.12 and a
call of the instantiation to check that a bit_vector signal s meets a setup time of 100 ps
before a falling edge of a bit signal clk.

11. [➊ 12.5] Write an instantiation of the generic_counter entity of Example 12.13 to con-
nect to a a 10-element bit_vector output signal val_count. Include any additional dec-
larations you need for the instantiation.

12. [➊ 12.5] Write an instantiation of the dictionaries package of Example 12.16 that stores
up to 1000 elements, each being a 64-bit unsigned value. Use the string representation
returned by the to_hstring operation as the key type, and sort elements in descending
order by providing the “>” operation for comparison of keys.

13. [➊ 12.6] Write a package declaration for a package that provides the mathematical op-
erations exp and log on values of type float. The mathematical operations package
should have a formal generic package for the instance of ieee.float_generic_pkg pro-
viding the definition of float. Instantiate the package with ieee.float_pkg as the actual
generic package.

14. [➋ 12.1] Develop a behavioral model of a D-latch with separate generic constants for
specifying the following propagation delays:

• rising data input to rising data output,

• falling data input to falling data output,

• rising enable input to rising data output and

• rising enable input to falling data output.

15. [➋ 12.1] Develop a behavioral model of a counter with output of type natural and
clock and reset inputs of type bit. The counter has a Boolean generic constant,



416 Chapter 12 — Generics

trace_reset. When this is true, the counter reports a trace message each time the reset
input is activated.

16. [➋ 12.1] Develop a behavioral model of the adder described in Exercise 3.

17. [➋ 12.1] Develop a behavioral model of a multiplexer with n select inputs, 2n data
inputs and one data output.

18. [➋ 12.2] Develop a model of a generic tri-state buffer for use with various types. The
entity should have a generic constant for the value used to represent the disabled
state. Instantiate your buffer with std_ulogic as the data type and ‘H’ as the disabled-
state value, representing a buffer with a resistive pullup on the output.

19. [➋ 12.3] Augment the stacks package of Example 12.7 to include operations to test for
an empty stack, a full stack, and to return the number of elements in a stack.

20. [➋ 12.5] Write an instantiation of the operations package of Example 12.14 for which
the error-reporting procedure simply counts the number of errors with severity less
than failure. When an error with severity failure occurs, the procedure issues a report
message showing the number of accumulated errors, together with the failure mes-
sage, and then finishes simulation.

21. [➋ 12.5] Complete the body of the search_and_insert procedure in the dictionaries
package body in Example 12.16.

22. [➌ 12.1] Develop a behavioral model of a RAM with generic constants governing the
read access time, minimum write time, the address port width and the data port width.



417

Chapter 13 

Components and Configurations

In Chapter 5 we saw how to write entity declarations and architecture bodies that describe
the structure of a system. Within an architecture body, we can write component instanti-
ation statements that describe instances of an entity and connect signals to the ports of the
instances. This simple approach to building a hierarchical design works well if we know
in advance all the details of the entities we want to use. However, that is not always the
case, especially in a large design project. In this chapter we introduce an alternative way
of describing the hierarchical structure of a design that affords significantly more flexibility
at the cost of a little more effort in managing the design.

13.1 Components

The first thing we need to do to describe an interconnection of subsystems in a design is
to describe the different kinds of components used. We have seen how to do this by writ-
ing entity declarations for each of the subsystems. Each entity declaration is a separate de-
sign unit and has corresponding architecture bodies that describe implementations. An
alternative approach is to write component declarations in the declarative part of an ar-
chitecture body or package interface. We can then create instances of the components
within the statement part of the architecture body.

13.1.1 Component Declarations

A component declaration simply specifies the external interface to the component in terms
of generic constants and ports. We do not need to describe any corresponding implemen-
tation, since all we are interested in is how the component is connected in the current
level of the design hierarchy. This makes the architecture completely self-contained, since
it does not depend on any other library units except its corresponding entity interface. Let
us look at the syntax rule that governs how we write a component declaration.

component_declaration ⇐
component identifier [ is ]

[ generic ( generic_interface_list ) ; ]



418 Chapter 13 — Components and Configurations

[ port ( port_interface_list ) ; ]
end component [ identifier ] ;

A simple example of a component declaration that follows this syntax rule is

component flipflop is
  generic ( Tprop, Tsetup, Thold : delay_length );
  port ( clk : in bit;  clr : in bit;  d : in bit;
         q : out bit );
end component flipflop;

This declaration defines a component type that represents a flipflop with clock, clear and
data inputs, clk, clr and d, and a data output q. It also has generic constants for parame-
terizing the propagation delay, the data setup time and the data hold time.

Note the similarity between a component declaration and an entity declaration. This
similarity is not accidental, since they both serve to define the external interface to a mod-
ule. Although there is a very close relationship between components and entities, in fact,
they embody two different concepts. This may be a source of confusion to newcomers to
VHDL. Nevertheless, the flexibility afforded by having the two different constructs is a
powerful feature of VHDL, so we will work through it carefully in this section and try to
make the distinction clear.

One way of thinking about the difference between an entity declaration and a com-
ponent declaration is to think of the modules being defined as having different levels of
“reality.” An entity declaration defines a “real” module: something that ultimately will have
a physical manifestation. For example, it may represent a circuit board in a rack, a pack-
aged integrated circuit or a standard cell included in a piece of silicon. An entity declara-
tion is a separate design unit that may be separately analyzed and placed into a design
library. A component declaration, on the other hand, defines a “virtual,” or “idealized,”
module that is included within an architecture body. It is as though we are saying, “For
this architecture body, we assume there is a module as defined by this component decla-
ration, since such a module meets our needs exactly.” We specify the names, types and
modes of the ports on the virtual module (the component) and proceed to lay out the
structure of the design using this idealized view.

Of course, we do not make these assumptions about modules arbitrarily. One possi-
bility is that we know what real modules are available and customize the virtual reality
based on that knowledge. The advantage here is that the idealization cushions us from the
irrelevant details of the real module, making the design easier to manage. Another possi-
bility is that we are working “top down” and will later use the idealized module as the
specification for a real module. Either way, eventually a link has to be made between an
instance of a virtual component and a real entity so that the design can be constructed. In
the rest of this section, we look at how to use components in an architecture body, then
come back to the question of the binding between component instances and entities.



13.1 Components 419

VHDL-87

The keyword is may not be included in the header of a component declaration, and
the component name may not be repeated at the end of the declaration.

13.1.2 Component Instantiation

If a component declaration defines a kind of module, then a component instantiation
specifies a usage of the module in a design. We have seen how we can instantiate an entity
directly using a component instantiation statement within an architecture body. Let us now
look at an alternative syntax rule that shows how we can instantiate a declared compo-
nent:

component_instantiation_statement ⇐
instantiation_label :

[ component ] component_name
[ generic map ( generic_association_list ) ]
[ port map ( port_association_list ) ] ;

This syntax rule shows us that we may simply name a component declared in the archi-
tecture body and, if required, provide actual values for the generics and actual signals to
connect to the ports. The label is required to identify the component instance.

EXAMPLE 13.1 A four-bit register using flipflop components

We can construct a four-bit register using flipflops and an and gate, similar to the ex-
ample in Chapter 5. The entity declaration is

entity reg4 is
  port ( clk, clr : in bit;  d : in bit_vector(0 to 3);
         q : out bit_vector(0 to 3) );
end entity reg4;

The architecture body describing the structure of this register uses the flipflop
component shown on page 418.

architecture struct of reg4 is

  component flipflop is
    generic ( Tprop, Tsetup, Thold : delay_length );
    port ( clk : in bit;  clr : in bit;  d : in bit;
           q : out bit );
  end component flipflop;

begin



420 Chapter 13 — Components and Configurations

  bit0 : component flipflop
      generic map ( Tprop => 2 ns, Tsetup => 2 ns, Thold => 1 ns )
      port map ( clk => clk, clr => clr, d => d(0), q => q(0) );

  bit1 : component flipflop
      generic map ( Tprop => 2 ns, Tsetup => 2 ns, Thold => 1 ns )
      port map ( clk => clk, clr => clr, d => d(1), q => q(1) );

  bit2 : component flipflop
      generic map ( Tprop => 2 ns, Tsetup => 2 ns, Thold => 1 ns )
      port map ( clk => clk, clr => clr, d => d(2), q => q(2) );

  bit3 : component flipflop
      generic map ( Tprop => 2 ns, Tsetup => 2 ns, Thold => 1 ns )
      port map ( clk => clk, clr => clr, d => d(3), q => q(3) );

end architecture struct;

Note that all we have done here is specify the structure of this level of the design
hierarchy, without having indicated how the flipflop is implemented. We will see how
that may be done in the remainder of this chapter.

VHDL-87

The keyword component may not be included in a component instantiation state-
ment in VHDL-87. The keyword is allowed in VHDL-93 and VHDL-2002 to distinguish
between instantiation of a component and direct instantiation of an entity. In VHDL-
87, the only form of component instantiation statement provided is instantiation of a
declared component.

13.1.3 Packaging Components

Let us now turn to the issue of design management for large projects and see how we can
make management of large libraries of entities easier using packages and components.
Usually, work on a large design is partitioned among several designers, each responsible
for implementing one or more entities that are used in the complete system. Each entity
may need to have some associated types defined in a utility package, so that entity ports
can be declared using those types. When the entity is used, other designers will need com-
ponent declarations to instantiate components that will eventually be bound to the entity.
It makes good sense to include a component declaration in the utility package, along with
the types and other related items. This means that users of the entity do not need to rewrite
the declarations, thus avoiding a potential source of errors and misunderstanding.



13.1 Components 421

EXAMPLE 13.2 Packaged component for a serial interface cell

Suppose we are responsible for designing a serial interface cell for a microcontroller
circuit. We can write a package specification that defines the interface to be used in
the rest of the design:

library ieee;  use ieee.std_logic_1164.all;

package serial_interface_defs is

  subtype reg_address_vector is std_ulogic_vector(1 downto 0);

  constant status_reg_address : reg_address_vector := B"00";
  constant control_reg_address : reg_address_vector := B"01";
  constant rx_data_register : reg_address_vector := B"10";
  constant tx_data_register : reg_address_vector := B"11";

  subtype data_vector is std_ulogic_vector(7 downto 0);

  ...    -- other useful declarations

  component serial_interface is
    port ( clock_phi1, clock_phi2 : in std_ulogic;
           serial_select : in std_ulogic;
           reg_address : in reg_address_vector;
           data : inout data_vector;
           interrupt_request : out std_ulogic;
           rx_serial_data : in std_ulogic;
           tx_serial_data : out std_ulogic );
  end component serial_interface;

end package serial_interface_defs;

The component declaration in this package corresponds to our entity declaration
for the serial interface:

library ieee;  use ieee.std_logic_1164.all;

use work.serial_interface_defs.all;

entity serial_interface is
  port ( clock_phi1, clock_phi2 : in std_ulogic;
         serial_select : in std_ulogic;
         reg_address : in reg_address_vector;
         data : inout data_vector;
         interrupt_request : out std_ulogic;
         rx_serial_data : in std_ulogic;
         tx_serial_data : out std_ulogic );
end entity serial_interface;



422 Chapter 13 — Components and Configurations

When other designers working on integrating the entire circuit need to instantiate
the serial interface, they only need to import the items in the package, rather than re-
writing all of the declarations. An outline of a design that does this is

library ieee;  use ieee.std_logic_1164.all;

architecture structure of microcontroller is

  use work.serial_interface_defs.serial_interface;

  ...    -- declarations of other components, signals, etc

begin

  serial_a : component serial_interface
    port map ( clock_phi1 => buffered_phi1,
               clock_phi2 => buffered_phi2,
               serial_select => serial_a_select,
               reg_address => internal_addr(1 downto 0),
               data => internal_data_bus,
               interrupt_request => serial_a_int_req,
               rx_serial_data => rx_data_a,
               tx_serial_data => tx_data_a );

  ...    -- other component instances

end architecture structure;

13.2 Configuring Component Instances

Once we have described the structure of one level of a design using components and com-
ponent instantiations, we still need to flesh out the hierarchical implementation for each
component instance. We can do this by writing a configuration declaration for the design.
In it, we specify which real entity interface and corresponding architecture body should
be used for each of the component instances. This is called binding the component in-
stances to design entities. Note that we do not specify any binding information for a com-
ponent instantiation statement that directly instantiates an entity, since the entity and
architecture body are specified explicitly in the component instantiation statement. Thus
our discussion in this section only applies to instantiations of declared components.

13.2.1 Basic Configuration Declarations

We start by looking at a simplified set of syntax rules for configuration declarations, as the
full set of rules is rather complicated. The simplest case arises when the entities to which
component instances are bound are implemented with behavioral architectures. In this
case, there is only one level of the hierarchy to flesh out. The simplified syntax rules are

configuration_declaration ⇐
configuration identifier of entity_name is

for architecture_name



13.2 Configuring Component Instances 423

{ for component_specification
binding_indication ;

end for ; }
end for ;

end [ configuration ] [ identifier ] ;

component_specification ⇐
( instantiation_label { , … } I others I all ) : component_name

binding_indication ⇐ use entity entity_name [ ( architecture_identifier ) ]

The identifier given in the configuration declaration identifies this particular specifica-
tion for fleshing out the hierarchy of the named entity. There may be other configuration
declarations, with different names, for the same entity. Within the configuration declara-
tion we write the name of the particular architecture body to work with (included after
the first for keyword), since there may be several corresponding to the entity. We then
include the binding information for each component instance within the architecture
body. The syntax rule shows that we can identify a component instance by its label and
its component name, as used in the component instantiation in the architecture body. We
bind it by specifying an entity name and a corresponding architecture body name. For ex-
ample, we might bind instances bit0 and bit1 of the component flipflop as follows:

for bit0, bit1 : flipflop
  use entity work.edge_triggered_Dff(basic);
end for;

This indicates that the instances are each to be bound to the design entity
edge_triggered_Dff, found in the current working library, and that the architecture body
basic corresponding to that entity should be used as the implementation of the instances.

Note that since we can identify each component instance individually, we have the
opportunity to bind different instances of a given component to different entity/architec-
ture pairs. After we have specified bindings for some of the instances in a design, we can
use the keyword others to bind any remaining instances of a given component type to
a given entity/architecture pair. Alternatively, if all instances of a particular component
type are to have the same binding, we can use the keyword all instead of naming indi-
vidual instances. The syntax rules also show that the architecture name corresponding to
the entity is optional. If it is omitted, a default binding takes place when the design is elab-
orated for simulation or synthesis. The component instance is bound to whichever archi-
tecture body for the named entity has been most recently analyzed at the time of
elaboration. A further possibility is that we omit bindings for one or more component in-
stances in the design. In this case, the default binding rule attempts to find an entity with
the same name as the component. The entity must be located in the same design library
as the design unit in which the instantiated component is declared. If no entity is found,
the component instance remains unbound (see Section 13.2.5). Relying on the default
binding rules to locate and bind the right entity can make a design difficult to understand
and reduces portability. The safest approach is to ensure that we bind all component in-
stances explicitly.



424 Chapter 13 — Components and Configurations

A configuration declaration is a primary design unit, and as such, may be separately
analyzed and placed into the working design library as a library unit. If it contains suffi-
cient binding information so that the full design hierarchy is fleshed out down to behav-
ioral architectures, the configuration may be used as the target unit of a simulation. The
design is elaborated by substituting instances of the specified architecture bodies for
bound component instances in the way described in Section 5.4. The only difference is
that when component declarations are instantiated, the configuration must be consulted
to find the appropriate architecture body to substitute.

EXAMPLE 13.3 Configuration of a four-bit register

Let us look at a sample configuration declaration that binds the component instances
in the four-bit register of Example 13.1. Suppose we have a resource library for a
project, star_lib, that contains the basic design entities that we need to use. Our con-
figuration declaration might be written as follows:

library star_lib;
use star_lib.edge_triggered_Dff;

configuration reg4_gate_level of reg4 is

  for struct  -- architecture of reg4

    for bit0 : flipflop
      use entity edge_triggered_Dff(hi_fanout);
    end for;

    for others : flipflop
      use entity edge_triggered_Dff(basic);
    end for;

  end for;  -- end of architecture struct

end configuration reg4_gate_level;

The library clause preceding the design unit is required to locate the resource li-
brary containing the entities we need. The use clause following it makes the entity
names we require directly visible in the configuration declaration. The configuration
is called reg4_gate_level and selects the architecture struct of the reg4 entity. Within
this architecture, we single out the instance bit0 of the flipflop component and bind
it to the entity edge_triggered_Dff with architecture hi_fanout. This shows how we
can give special treatment to particular component instances when configuring bind-
ings. We bind all remaining instances of the flipflop component to the
edge_triggered_Dff entity using the basic architecture.



13.2 Configuring Component Instances 425

VHDL-87

The keyword configuration may not be included at the end of a configuration dec-
laration in VHDL-87.

13.2.2 Configuring Multiple Levels of Hierarchy

In the previous section, we saw how to write a configuration declaration for a design in
which the instantiated components are bound to behavioral architecture bodies. Most re-
alistic designs, however, have deeper hierarchical structure. The components at the top
level have architecture bodies that, in turn, contain component instances that must be con-
figured. The architecture bodies bound to these second-level components may also con-
tain component instances, and so on. In order to deal with configuring these more
complex hierarchies, we need to use an alternative form of binding indication in the con-
figuration declaration. The alternative syntax rule is

binding_indication ⇐ use configuration configuration_name

This form of binding indication for a component instance allows us to bind to a precon-
figured entity/architecture pair simply by naming the configuration declaration for the en-
tity. For example, a component instance of reg4 with the label flag_reg might be bound
in a configuration declaration as follows:

for flag_reg : reg4
  use configuration work.reg4_gate_level;
end for;

EXAMPLE 13.4 Hierarchical configuration of a counter

In Chapter 5 we looked at a two-digit decimal counter, implemented using four-bit
registers. We assume that the type digit is defined as follows in a package named
counter_types:

subtype digit is bit_vector(3 downto 0);

The entity declaration for the counter is

use work.counter_types.digit;

entity counter is
  port ( clk, clr : in bit;
         q0, q1 : out digit );
end entity counter;

Now that we have seen how to use component declarations, we can rewrite the
architecture body using component declarations for the registers, as follows:

architecture registered of counter is



426 Chapter 13 — Components and Configurations

  component digit_register is
    port ( clk, clr : in bit;
           d : in digit;
           q : out digit );
  end component digit_register;

  signal current_val0, current_val1, next_val0, next_val1 : digit;

begin

  val0_reg : component digit_register
    port map ( clk => clk, clr => clr, d => next_val0,
               q => current_val0 );

  val1_reg : component digit_register
    port map ( clk => clk, clr => clr, d => next_val1,
               q => current_val1 );

  -- other component instances
  ...

end architecture registered;

We can configure this implementation of the counter with the following configu-
ration declaration:

configuration counter_down_to_gate_level of counter is

  for registered

    for all : digit_register
      use configuration work.reg4_gate_level;
    end for;

    ...    -- bindings for other component instances

  end for;  -- end of architecture registered

end configuration counter_down_to_gate_level;

This configuration specifies that each instance of the digit_register component is
bound using the information in the configuration declaration named reg4_gate_level
in the current design library, shown in Example 13.3. That configuration in turn spec-
ifies the entity to use (reg4), a corresponding architecture body (struct) and the bind-
ings for each component instance in that architecture body. Thus the two
configuration declarations combine to fully configure the design hierarchy down to
the process level.

The example above shows how we can use separate configuration declarations for
each level of a design hierarchy. As a matter of style this is good practice, since it prevents
the configuration declarations themselves from becoming too complex. The alternative ap-
proach is to configure an entity and its hierarchy fully within the one configuration dec-



13.2 Configuring Component Instances 427

laration. We look at how this may be done, as some models from other designers may take
this approach. While this approach is valid VHDL, we recommend the practice of splitting
up the configuration information into separate configuration declarations corresponding
to the entities used in the design hierarchy.

To see how to configure multiple levels within one declaration, we need to look at a
more complex form of syntax rule for configuration declarations. In fact, we need to split
the rule into two parts, so that we can write a recursive syntax rule.

configuration_declaration ⇐
configuration identifier of entity_name is

block_configuration
end [ configuration ] [ identifier ] ;

block_configuration ⇐
for architecture_name

{ for component_specification
binding_indication ;
[ block_configuration ]

end for ; }
end for ;

The rule for a block configuration indicates how to write the configuration informa-
tion for an architecture body and its inner component instances. (The reason for the name
“block configuration” in the second rule is that it applies to block statements as well as
architecture bodies. We discuss block statements in Section 23.1.) Note that we have in-
cluded an extra part after the binding indication for a component instance. If the architec-
ture that we bind to an instance also contains component instances, we can nest further
configuration information for that architecture inside the enclosing block configuration.

EXAMPLE 13.5 A complete configuration for the counter

We can write a configuration declaration equivalent to that in Example 13.4 but con-
taining all of the configuration information for the entire hierarchy, as follows:

library star_lib;
use star_lib.edge_triggered_Dff;

configuration full of counter is

  for registered  -- architecture of counter

    for all : digit_register
      use entity work.reg4(struct);

      for struct  -- architecture of reg4

        for bit0 : flipflop
          use entity edge_triggered_Dff(hi_fanout);
        end for;



428 Chapter 13 — Components and Configurations

        for others : flipflop
          use entity edge_triggered_Dff(basic);
        end for;

      end for;  -- end of architecture struct

    end for;

    ...  -- bindings for other component instances

  end for;  -- end of architecture registered

end configuration full;

The difference between this configuration declaration and the one in Example
13.4 is that the binding indication for instances of digit_register directly refers to the
entity reg4 and the architecture body struct, rather than using a separate configuration
for the entity. The configuration then includes all of the binding information for com-
ponent instances within struct. This relatively simple example shows how difficult it
can be to read nested configuration declarations. Separate configuration declarations
are easier to understand and provide more flexibility for managing alternative com-
positions of a design hierarchy.

13.2.3 Direct Instantiation of Configured Entities

As we have seen, a configuration declaration specifies the design hierarchy for a design
entity. We can make direct use of a fully configured design entity within an architecture
body by writing a component instantiation statement that directly names the configuration.
The alternative syntax rule for component instantiation statements that expresses this pos-
sibility is

component_instantiation_statement ⇐
instantiation_label :

configuration configuration_name
[ generic map ( generic_association_list ) ]
[ port map ( port_association_list ) ] ;

The configuration named in the statement includes a specification of an entity and a
corresponding architecture body to use. We can include generic and port maps in the com-
ponent instantiation to provide actual values for any generics of the entity and actual sig-
nals to connect to the ports of the entity. This is much like instantiating the entity directly,
but with all of the configuration information for its implementation included.

EXAMPLE 13.6 Direct instantiation of the counter configuration

The following architecture body for an alarm clock directly instantiates the two-digit
decimal counter entity. The component instantiation statement labeled seconds refers
to the configuration counter_down_to_gate_level, shown in Example 13.4. That con-
figuration, in turn, specifies the counter entity and architecture to use.



13.2 Configuring Component Instances 429

architecture top_level of alarm_clock is

  use work.counter_types.digit;

  signal reset_to_midnight, seconds_clk : bit;
  signal seconds_units, seconds_tens : digit;
  ...

begin

  seconds : configuration work.counter_down_to_gate_level
    port map ( clk => seconds_clk, clr => reset_to_midnight,
               q0 => seconds_units, q1 => seconds_tens );

  ...

end architecture top_level;

VHDL-87

VHDL-87 does not allow direct instantiation of configured entities. Instead, we must
declare a component, instantiate the component and write a separate configuration
declaration that binds the instance to the configured entity.

13.2.4 Generic and Port Maps in Configurations

We now turn to a very powerful and important aspect of component configurations: the
inclusion of generic maps and port maps in the binding indications. This facility provides
a great deal of flexibility when binding component instances to design entities. However,
the ideas behind the facility are somewhat difficult to grasp on first encounter, so we will
work through them carefully. First, let us look at an extended syntax rule for a binding
indication that shows how generic and port maps can be included:

binding_indication ⇐
use ( entity entity_name [ ( architecture_identifier ) ]

I configuration configuration_name )
[ generic map ( generic_association_list ) ]
[ port map ( port_association_list ) ]

This rule indicates that after specifying the entity to which to bind (either directly or
by naming a configuration), we may include a generic map or a port map or both. We
show how this facility may be used by starting with some simple examples illustrating the
more common uses. We then proceed to the general case.

One of the most important uses of this facility is to separate the specification of ge-
neric constants used for timing from the structure of a design. We can write component
declarations in a structural description without including generic constants for timing.
Later, when we bind each component instance to an entity in a configuration declaration,



430 Chapter 13 — Components and Configurations

we can specify the timing values by supplying actual values for the generic constants of
the bound entities.

EXAMPLE 13.7 Timing generics in a configuration

Suppose we are designing an integrated circuit for a controller, and we wish to use
the register whose entity declaration includes generic constants for timing and port
width, as follows:

library ieee;  use ieee.std_logic_1164.all;

entity reg is
  generic ( t_setup, t_hold, t_pd : delay_length;
            width : positive );
  port ( clock : in std_ulogic;
         data_in : in std_ulogic_vector(0 to width - 1);
         data_out : out std_ulogic_vector(0 to width - 1) );
end entity reg;

We can write a component declaration for the register without including the ge-
neric constants used for timing, as shown in the following architecture body for the
controller:

architecture structural of controller is

  component reg is
    generic ( width : positive );
    port ( clock : in std_ulogic;
           data_in : in std_ulogic_vector(0 to width - 1);
           data_out : out std_ulogic_vector(0 to width - 1) );
  end component reg;

  ...

begin

  state_reg : component reg
    generic map ( width => state_type'length )
    port map ( clock => clock_phase1,
               data_in => next_state,
               data_out => current_state );

  ...

end architecture structural;

The component represents a virtual idealized module that has all of the structural
characteristics we need, but ignores timing. The component instantiation statement
specifies a value for the port width generic constant, but does not specify any timing
parameters.



13.2 Configuring Component Instances 431

Since we are operating in the real world, we cannot ignore timing forever. Ulti-
mately the values for the timing parameters will be determined from the physical lay-
out of the integrated circuit. Meanwhile, during the design phase, we can use
estimates for their values. When we write a configuration declaration for our design,
we can configure the component instance as shown below, supplying the estimates
in a generic map. Note that we also need to specify a value for the width generic of
the bound entity. In this example, we supply the value of the width generic of the
component instance. We discuss this in more detail on page 433.

configuration controller_with_timing of controller is

  for structural

    for state_reg : reg
      use entity work.reg(gate_level)
      generic map ( t_setup => 200 ps, t_hold => 150 ps,
                    t_pd => 150 ps, width => width );
    end for;

    ...

  end for;

end configuration controller_with_timing;

When we simulate the design, the estimated values for the generic constants are
used by the real design entity to which the component instance is bound. Later, when
the integrated circuit has been laid out, we can substitute, or back annotate, the actual
timing values in the configuration declaration without having to modify the architec-
ture body of the model. We can then resimulate to obtain test vectors for the circuit
that take account of the real timing.

Another important use of generic and port maps in a configuration declaration arises
when the entity to which we want to bind a component instance has different names for
generic constants and ports. The maps in the binding indication can be used to make the
link between component generics and ports on the one hand, and entity generics and
ports on the other. Furthermore, the entity may have additional generics or ports beyond
those of the component instance. In this case, the maps can be used to associate actual
values or signals from the architecture body with the additional generics or ports.

EXAMPLE 13.8 Remapping generics and ports in a configuration

Suppose we need to use a two-input-to-four-output decoder in a design, as shown in
the outline of an architecture body below. The component declaration for the decoder
represents a virtual module that meets our needs exactly.

architecture structure of computer_system is



432 Chapter 13 — Components and Configurations

  component decoder_2_to_4 is
    generic ( prop_delay : delay_length );
    port ( in0, in1 : in bit;
           out0, out1, out2, out3 : out bit );
  end component decoder_2_to_4;

  ...

begin

  interface_decoder : component decoder_2_to_4
    generic map ( prop_delay => 4 ns )
    port map ( in0 => addr(4), in1 => addr(5),
               out0 => interface_a_select,
               out1 => interface_b_select,
               out2 => interface_c_select,
               out3 => interface_d_select );

  ...

end architecture structure;

Now suppose we check in our library of entities for a real module to use for this
instance and find a three-input-to-eight-output decoder. The entity declaration is:

entity decoder_3_to_8 is
  generic ( Tpd_01, Tpd_10 : delay_length );
  port ( s0, s1, s2 : in bit;
         enable : in bit;
         y0, y1, y2, y3, y4, y5, y6, y7 : out bit );
end entity decoder_3_to_8;

We could make use of this entity in our design if we could adapt to the different
generic and port names and tie the unused ports to appropriate values. The following
configuration declaration shows how this may be done.

configuration computer_structure of computer_system is

  for structure

    for interface_decoder : decoder_2_to_4
      use entity work.decoder_3_to_8(basic)
      generic map ( Tpd_01 => prop_delay, Tpd_10 => prop_delay )
      port map ( s0 => in0, s1 => in1, s2 => '0',
                 enable => '1',
                 y0 => out0, y1 => out1, y2 => out2, y3 => out3,
                 y4 => open, y5 => open, y6 => open, y7 => open );
    end for;

    ...

  end for;



13.2 Configuring Component Instances 433

end configuration computer_structure;

The generic map in the binding indication specifies the correspondence between
entity generics and component generics. In this case, the component generic
prop_delay is to be used for both entity generics. The port map in the binding indi-
cation similarly specifies which entity ports correspond to which component ports.
Where the entity has extra ports, we can specify how those ports are to be connected.
In this design, s2 is tied to ‘0’, enable is tied to ‘1’, and the remaining ports are left
unassociated (specified by the keyword open).

The two preceding examples illustrate the most common uses of generic maps and
port maps in configuration declarations. We now look at the general mechanism that un-
derlies these examples, so that we can understand its use in more complex cases. We use
the terms local generics and local ports to refer to the generics and ports of a component.
Also, in keeping with previous discussions, we use the terms formal generics and formal
ports to refer to the generics and ports of the entity to which the instance is bound.

When we write a component instantiation statement with a generic map and a port
map, these maps associate actual values and signals with the local generics and ports of
the component instance. Recall that the component is just a virtual module used as a tem-
plate for a real module, so at this stage we have just made connections to the template.
Next, we write a configuration declaration that binds the component instance to a real en-
tity. The generic and port maps in the binding indication associate actual values and sig-
nals with the formal generics and ports of the entity. These actual values and signals may
be the locals from the component instance, or they may be values and signals from the
architecture body containing the component instance. Figure 13.1 illustrates the mappings.
It is this two-stage association mechanism that makes configurations so powerful in map-
ping a design to real modules.

Figure 13.1 shows that the actual values and signals supplied in the configuration dec-
laration may be local generics or ports from the component instance. This is the case for
the formal generics Tpd_01 and Tpd_10 and for the formal ports s0, s1, y0, y1, y2 and
y3 in Example 13.8. Every local generic and port of the component instance must be
associated with a formal generic or port, respectively; otherwise the design is in error. The
figure also shows that the configuration declaration may supply values or signals from the
architecture body. Furthermore, they may be any other values or signals visible at the
point of the component instantiation statement, such as the literals ‘0’ and ‘1’ shown in the
example. Note that while it is legal to associate a signal in the architecture body with a
formal port of the entity, it is not good practice to do so. This effectively modifies the struc-
ture of the circuit, making the overall design much more difficult to understand and man-
age. For example, in the configuration in Example 13.8, had we associated the formal port
s2 with the signal addr(6) instead of the literal value ‘0’, the operation of the circuit would
be substantially altered. Note also that the two-level mapping of generics applies not only
to generic constants, but also to generic types, subprograms, and packages.

The preceding examples show how we can use generic and port maps in binding in-
dications to deal with differences between the component and the entity in the number
and names of generics and ports. However, if the component and entity have similar in-
terfaces, we can rely on a default binding rule. This rule is used automatically if we omit



434 Chapter 13 — Components and Configurations

the generic map or the port map in a binding indication, as we did in the earlier examples
in this section. The default rule causes each local generic or port of the component to be
associated with a formal generic or port of the same name in the entity interface. If the
entity interface includes further formal generics or ports, they remain open. If the entity
does not include a formal with the same name as one of the locals, the design is in error.
So, for example, if we declare a component as

component nand3 is
  port ( a, b, c : in bit := '1';  y : out bit );
end component nand3;

and instantiate it as

gate1 : component nand3
  port map ( a => s1, b => s2, c => open, y => s3 );

then attempt to bind to an entity declared as

entity nand2 is
  port ( a, b : in bit := '1';  y : out bit );
end entity nand2;

with a component configuration

FIGURE 13.1 

The generic and port maps in the component instantiation and the configuration declaration
define a two-stage association. Values and signals in the architecture body are associated, via
the local generics and ports, with the formal generics and ports of the bound entity.

Component 
instance

Entity

Values and signals 
in architecture body

Association specified in 
component instantiation 
statement

Association specified in 
configuration declaration



13.2 Configuring Component Instances 435

for gate1 : nand3
  use entity work.nand2(basic);
end for;

an error occurs. The reason for the error is that there is no formal port named c to associate
with the local port of that name. The default rule requires that such a correspondence be
found, even though the local port is unconnected in the architecture body.

13.2.5 Deferred Component Binding

We have seen that we can specify the binding for a component instance either by naming
an entity and a corresponding architecture body, or by naming a configuration. A third
option is to leave the component instance unbound and to defer binding it until later in
the design cycle. The syntax rule for a binding indication that expresses this option is

binding_indication ⇐ use open

If we use this form of binding indication to leave a component instance unbound, we can-
not include a generic map or port map. This makes sense: since there is no entity, there
are no formal generics or ports with which to associate actual values or signals.

A scenario in which we may wish to defer binding arises in complex designs that can
be partially simulated before all subsystems are complete. We can write an architecture
body for the system, including component declarations and instances as placeholders for
the subsystems. Initially, we write a configuration declaration that defers bindings of the
subsystems. Then, as the design of each subsystem is completed, the corresponding com-
ponent configuration is updated to bind to the new entity. At intermediate stages it may
be possible to simulate the system with some of the components unbound. The effect of
the deferred bindings is simply to leave the corresponding ports unassociated when the
design is elaborated. Thus the inputs to the unbound modules are not used, and the out-
puts remain undriven.

EXAMPLE 13.9 Deferred binding in a computer system model

Following is an outline of a structural architecture for a single-board computer system.
The design includes all of the components needed to construct the system, including
a CPU, main memory and a serial interface.

architecture structural of single_board_computer is

  ...  -- type and signal declarations

  component processor is
    port ( clk : in bit;  a_d : inout word; ... );
  end component processor;

  component memory is
    port ( addr : in bit_vector(25 downto 0); ... );
  end component memory;



436 Chapter 13 — Components and Configurations

  component serial_interface is
    port ( clk : in bit;
           address : in bit_vector(3 downto 0); ... );
  end component serial_interface;

begin

  cpu : component processor
    port map ( clk => sys_clk, a_d => cpu_a_d, ... );

  main_memory : component memory
    port map ( addr => latched_addr(25 downto 0), ... );

  serial_interface_a : component serial_interface
    port map ( clk => sys_clk,
               address => latched_addr(3 downto 0), ... );

  ...

end architecture structural;

However, if we have not yet designed an entity and architecture body for the se-
rial interface, we cannot bind the component instance for the interface. Instead, we
must leave it unbound, as shown in the following configuration declaration:

library chips;

configuration intermediate of single_board_computer is

  for structural

    for cpu : processor
      use entity chips.XYZ3000_cpu(full_function)
      port map ( clock => clk, addr_data => a_d, ... );
    end for;

    for main_memory : memory
      use entity work.memory_array(behavioral);
    end for;

    for all : serial_interface
      use open;
    end for;

    ...

  end for;

end configuration intermediate;

We can proceed to simulate the design, using the implementations of the CPU and
main memory, provided we do not try to exercise the serial interface. If the processor
were to try to access registers in the serial interface, it would get no response. Since



13.3 Configuration Specifications 437

there is no entity bound to the component instance representing the interface, there
is nothing to drive the data or other signals connected to the instance.

13.3 Configuration Specifications

We complete this chapter with a discussion of configuration specifications. These provide
a way of including binding information for component instances in the same architecture
body as the instances themselves, as opposed to separating the information out into a con-
figuration declaration. In some respects, this language feature is a relic of VHDL-87, which
did not allow direct instantiation of entities in an architecture body. In VHDL-93 and
VHDL-2002, if we know the interface of the entity and want to use it “as is,” we can in-
stantiate it directly, without having to write a corresponding component declaration. The
main remaining use of configuration specifications is to bind a known entity to component
instances in cases where our idealized module is different from the entity. Using a com-
ponent declaration to describe the idealized module may make the design easier to un-
derstand. The syntax rule for a configuration specification is

configuration_specification ⇐
for component_specification

binding_indication ;
[ end for ; ]

A configuration specification is similar to a component configuration, so we need to
take care not to confuse the two. The component specification and binding indication are
written in exactly the same way in both cases. However, a configuration specification does
not provide an opportunity to configure the internal structure of the architecture to which
the component instance is bound. That must be done in a separate configuration declara-
tion. If we write a configuration specification for a component instance, it must be
included in the declarative part of the architecture body or block that directly contains the
component instance.

The effect of a configuration specification in an architecture body is exactly the same
as if the binding indication had been included in a configuration declaration. Thus, we
can bind a component instance to a design entity, and we can specify the mapping be-
tween the local generics and ports of the component instance and the formal generics and
ports of the entity.

EXAMPLE 13.10 A configuration specification binding a gate component

Suppose we need to include a two-input nand gate in a model, but our library only
provides a three-input nand gate, declared as

entity nand3 is
  port ( a, b, c : in bit;  y : out bit );
end entity nand3;



438 Chapter 13 — Components and Configurations

We can write our model using a component declaration to show that we really would
prefer a two-input gate, and include a configuration specification to handle the differ-
ence in interfaces between the component instance and the entity. The architecture is

library gate_lib;

architecture ideal of logic_block is

  component nand2 is
    port ( in1, in2 : in bit;  result : out bit );
  end component nand2;

  for all : nand2
    use entity gate_lib.nand3(behavioral)
    port map ( a => in1, b => in2, c => '1', y => result );
  end for;

  ...  -- other declarations

begin

  gate1 : component nand2
    port map ( in1 => s1, in2 => s2, result => s3 );

  ...  -- other concurrent statements

end architecture ideal;

VHDL-87, -93, and -2002

In these versions of VHDL, the reserved words end for cannot be included in a con-
figuration specification. For example, the configuration specification in Example 13.10
must be written as

for all : nand2
  use entity gate_lib.nand3(behavioral)
  port map ( a => in1, b => in2, c => '1', y => result );

13.3.1 Incremental Binding

We have now seen that there are two places where we can specify the mapping between
the local generics and ports of a component instance and the formal generics and ports
of the bound entity. The mappings can be specified either in a configuration specification
or in a separate configuration declaration. We must now consider the possibility of having
two binding indications for a given component instance, one in each of these places.
VHDL does, in fact, allow this. The first binding indication, in the configuration specifica-
tion in the architecture body, is called the primary binding indication. The second binding
indication, in the configuration declaration, is called an incremental binding indication.
The primary binding indication must at least specify the entity or configuration to which



13.3 Configuration Specifications 439

the instance is bound and may also include generic and port maps. If there is a primary
binding indication, the incremental binding indication can either repeat the entity part ex-
actly as specified in the primary binding indication, or it can omit the entity part. The full
syntax rule for a binding indication allows for the entity part to be omitted in this case (see
Appendix B). The incremental binding indication can also include generic and port maps,
and the associations in them override those made in the primary binding indication, with
some restrictions. An incremental binding indication must include at least one of the entity
part, a port map or a generic map, since it must not be empty. Further, the only generics
that can be incrementally bound are generic constants, not generic types, subprograms,
or packages. We look at the various possibilities for incremental binding, with some ex-
amples.

The first possibility is that the primary binding indication for a component instance
leaves some of the formal generic constants or ports of the entity unassociated. In this
case, the incremental binding indication can “fill in the gaps” by associating actual values
and with the unassociated generic constants and ports.

EXAMPLE 13.11 Incremental binding of unassociated generic constants and ports

Following is an architecture body for the control section of a processor, including a
register component to store flag bits.

architecture structural of control_section is

  component reg is
    generic ( width : positive );
    port ( clk : in std_ulogic;
           d : in std_ulogic_vector(0 to width - 1);
           q : out std_ulogic_vector(0 to width - 1) );
  end component reg;

  for flag_reg : reg
    use entity work.reg(gate_level)
    port map ( clock => clk, data_in => d, data_out => q );
  end for;

  ...

begin

  flag_reg : component reg
    generic map ( width => 3 )
    port map ( clk => clock_phase1,
               d(0) => zero_result, d(1) => neg_result,
               d(2) => overflow_result,
               q(0) => zero_flag, q(1) => neg_flag,
               q(2) => overflow_flag );

  ...

end architecture structural;



440 Chapter 13 — Components and Configurations

The configuration specification binds the register component instance to the fol-
lowing register entity:

library ieee;  use ieee.std_logic_1164.all;

entity reg is
  generic ( t_setup, t_hold, t_pd : delay_length;
            width : positive );
  port ( clock : in std_ulogic;
         reset_n : in std_ulogic := 'H';
         data_in : in std_ulogic_vector(0 to width - 1);
         data_out : out std_ulogic_vector(0 to width - 1) );
end entity reg;

This entity has additional formal generic constants t_setup, t_hold and t_pd for
timing parameters, and an additional port, reset_n. Since the component declaration
does not include corresponding local generic constants and ports, and the configura-
tion specification does not specify values or signals for the formal generic constants
and ports, they are left open in the architecture body.

The configuration declaration for the design, shown below, contains an incremen-
tal binding indication for the register component instance. It does not specify an en-
tity/architecture pair, since that was specified in the primary binding indication. It
does, however, include a generic map, filling in values for the formal generic con-
stants that were left open by the primary binding indication. The generic map also
associates the value of the local generic constant width with the formal generic con-
stant width. The port map in the incremental binding indication associates the literal
value ‘1’ with the formal port reset_n.

configuration controller_with_timing of control_section is

  for structural

    for flag_reg : reg
      generic map ( t_setup => 200 ps, t_hold => 150 ps,
                    t_pd => 150 ps, width => width )
      port map ( reset_n => '1' );
    end for;

    ...

  end for;

end configuration controller_with_timing;

The second possibility is that the primary binding indication associates actual values
with the formal generic constants of the entity bound to the component instance. In this
case, the incremental binding indication can include new associations for these formal ge-
neric constants, overriding the associations in the primary binding indication. This may be
useful in the back-annotation stage of design processing. Estimates for values of generic
constants controlling propagation delay can be included in the primary binding indication



13.3 Configuration Specifications 441

and the design simulated before doing physical layout. Later, when actual delay values
have been calculated from the physical layout, they can be included in incremental bind-
ing indications in a configuration declaration without having to modify the architecture
body in any way.

EXAMPLE 13.12 Incremental rebinding of generic constants

The following outline of an architecture body for the interlock control logic of a pipe-
lined processor declares a nor-gate component with a generic constant for the input
port width, but with no generic constants for timing parameters.

architecture detailed_timing of interlock_control is

  component nor_gate is
    generic ( input_width : positive );
    port ( input : in std_ulogic_vector(0 to input_width - 1);
           output : out std_ulogic );
  end component nor_gate;

  for ex_interlock_gate : nor_gate
    use entity cell_lib.nor_gate(primitive)
    generic map ( width => input_width,
                  Tpd01 => 250 ps, Tpd10 => 200 ps );  -- estimates
  end for;

  ...

begin

  ex_interlock_gate : component nor_gate
    generic map ( input_width => 2 )
    port map ( input(0) => reg_access_hazard,
               input(1) => load_hazard,
               output => stall_ex_n);

  ...

end architecture detailed_timing;

The architecture includes a configuration specification for the instance of the gate
component, which binds it to a nor-gate entity that does include generic constants for
timing. The generic map in the configuration specification supplies estimates of the
timing as actual values for the generic constants.

This model can be simulated with these estimates by configuring it as follows:

configuration interlock_control_with_estimates
  of interlock_control is

  for detailed_timing

  end for;



442 Chapter 13 — Components and Configurations

  ...

end configuration interlock_control_with_estimates;

Since there is no further configuration information supplied for the nor-gate in-
stance, the estimated timing values are used. After the design has been laid out and
the real timing values have been determined, the configuration declaration can be
updated as follows:

configuration interlock_control_with_actual
  of interlock_control is

  for detailed_timing

    for ex_interlock_gate : nor_gate
      generic map ( Tpd01 => 320 ps, Tpd10 => 230 ps );
    end for;

    ...

  end for;

end configuration interlock_control_with_actual;

An incremental binding indication has been added, supplying the new values for
the generic constants. When the design is simulated with this updated configuration,
these new values override the estimates specified in the primary binding indication in
the architecture body.

The third possibility to consider is that the primary binding indication associates actual
signals with the formal ports of the entity. In this case, the incremental binding indication
cannot override the associations, since to do so would modify the structure of the design.

The final case that arises is one in which a component instantiation associates actual
values and signals with local generic constants and ports, but the primary binding indica-
tion does not explicitly associate actual values or signals with formal generic constants or
ports of the same name. In this case, the default binding rule normally causes the local
generic constants to be associated with formal generic constants of the same name and
local ports to be associated with formal ports of the same name. However, we can preempt
this default rule by supplying alternative associations for the formal generic constants and
ports in the incremental binding indication.

EXAMPLE 13.13 Incremental binding in place of default association

Following is an outline of an architecture body for a block of miscellaneous logic. It
includes a component declaration for a three-input nand gate and an instance of the
component with an actual value supplied for a local timing generic. The primary bind-
ing indication binds the instance to a three-input nand gate entity, but does not specify
the mappings between the local generic and ports and the formal generic and ports.

architecture gate_level of misc_logic is



13.3 Configuration Specifications 443

  component nand3 is
    generic ( Tpd : delay_length );
    port ( a, b, c : in bit;  y : out bit );
  end component nand3;

  for all : nand3
    use entity project_lib.nand3(basic);
  end for;

  ...

begin

  gate1 : component nand3
    generic map ( Tpd => 2 ns )
    port map ( a => sig1, b => sig2, c => sig3, y => out_sig );

  ...

end architecture gate_level;

The configuration declaration for this design shown below overrides the default
mapping. It supplies an actual value for the formal timing generic Tpd, instead of us-
ing the value of the local generic of that name. It maps the local port c onto the formal
port a, and the local port a onto the formal port c. The local ports b and y map onto
the formal ports of the same names.

configuration misc_logic_reconfigured of misc_logic is

  for gate_level

    for gate1 : nand3
      generic map ( Tpd => 1.6 ns )
      port map ( a => c, c => a, b => b, y => y );
    end for;

  end for;

end configuration misc_logic_reconfigured;

VHDL-87

VHDL-87 does not allow incremental binding. It is an error if a design includes both
a configuration specification and a component configuration for a given component
instance. If we expect to revise the associations in a generic map or port map of a
configuration specification, we should omit the configuration specification and write
the initial associations in the configuration declaration. Later, when we need to revise
the associations, we can simply edit the configuration declaration without changing
the architecture containing the component instance.



444 Chapter 13 — Components and Configurations

Exercises

1. [➊ 13.1] List some of the differences between an entity declaration and a component
declaration.

2. [➊ 13.1] Write a component declaration for a binary magnitude comparitor, with two
standard-logic vector data inputs, a and b, whose length is specified by a generic con-
stant, and two standard-logic outputs indicating whether a = b and a < b. The com-
ponent also includes a generic constant for the propagation delay.

3. [➊ 13.1] Write a component instantiation statement that instantiates the magnitude
comparitor described in Exercise 2. The data inputs are connected to signals
current_position and upper_limit, the output indicating whether a < b is connected
to position_ok and the remaining output is open. The propagation delay of the in-
stance is 12 ns.

4. [➊ 13.1] Write a package declaration that defines a subtype of natural numbers repre-
sentable in eight bits and a component declaration for an adder that adds values of
the subtype.

5. [➊ 13.2] Suppose we have an architecture body for a digital filter, outlined as follows:

architecture register_transfer of digital_filter is
  ...
  component multiplier is
    port ( ... );
  end component multiplier;
begin
  coeff_1_multiplier : component multiplier
    port map ( ... );
  ...
end architecture register_transfer;

Write a configuration declaration that binds the multiplier component instance to a
multiplier entity called fixed_point_mult from the library dsp_lib, using the architec-
ture algorithmic.

6. [➊ 13.2] Suppose the library dsp_lib referred to in Exercise 5 includes a configuration
of the fixed_point_mult entity called fixed_point_mult_std_cell. Write an alternative
configuration declaration for the filter described in Exercise 5, binding the multiplier
instance using the fixed_point_mult_std_cell configuration.

7. [➊ 13.2] Modify the outline of the filter architecture body described in Exercise 5 to
directly instantiate the fixed_point_mult_std_cell configuration described in Exercise
6, rather than using the multiplier component.

8. [➊ 13.2] Suppose we declare and instantiate a multiplexer component in an architec-
ture body as follows:

component multiplexer is
  port ( s, d0, d1 : in bit; z : out bit );



Exercises 445

end component multiplexer;
...

serial_data_mux : component multiplexer
  port map ( s => serial_source_select,
             d0 => rx_data_0, d1 => rx_data_1,
             z => internal_rx_data );

Write a binding indication that binds the component instance to the following entity
in the current working library, using the most recently analyzed architecture and spec-
ifying a value of 3.5 ns for the propagation delay.

entity multiplexer is
  generic ( Tpd : delay_length := 3 ns );
  port ( s, d0, d1 : in bit; z : out bit );
end entity multiplexer;

9. [➊ 13.2] Draw a diagram, based on Figure 13.1, that shows the mapping between en-
tity ports and generics, component ports and generics and other values in the config-
ured computer system model of Example 13.8.

10. [➊ 13.2] Suppose we have an entity nand4 with the following interface in a library
gate_lib:

entity nand4 is
  generic ( Tpd_01, Tpd_10 : delay_length := 2 ns );
  port ( a, b, c, d : in bit := '1';  y : out bit );
end entity nand4;

We bind the entity to the component instance gate1 described on page 434 using the
following component configuration:

for gate1 : nand3
  use entity get_lib.nand4(basic);
end for;

Write the generic and port maps that comprise the default binding indication used in
this configuration.

11. [➊ 13.3] Rewrite the component configuration information in Example 13.8 as a con-
figuration specification for inclusion in the computer system architecture body.

12. [➊ 13.3] Assuming that the computer system referred to in Exercise 11 includes the
configuration specification, write a configuration declaration that includes an incre-
mental binding indication, specifying values of 4.3 ns and 3.8 ns for the entity generics
Tpd_01 and Tpd_10, respectively.

13. [➋ 13.1] Develop a structural model of a 32-bit bidirectional transceiver, implemented
using a component based on the 8-bit transceiver described in Exercise 13 in Chapter
8.



446 Chapter 13 — Components and Configurations

14. [➋ 13.1] Develop a structural model for an 8-bit serial-in/parallel-out shift register, as-
suming you have available a 4-bit serial-in/parallel-out shift register. Include a com-
ponent declaration for the 4-bit register, and instantiate it as required for the 8-bit
register. The 4-bit register has a positive-edge-triggered clock input, an active-low
asynchronous reset input, a serial data input and four parallel data outputs.

15. [➋ 13.1] Develop a package of component declarations for two-input gates and an in-
verter, corresponding to the logical operators in VHDL. Each component has ports of
type bit and generic constants for rising output and falling output propagation delays.

16. [➋ 13.2] Develop a configuration declaration for the 32-bit transceiver described in Ex-
ercise 13 that binds each instance of the 8-bit transceiver component to the 8-bit trans-
ceiver entity.

17. [➋ 13.2] Develop a behavioral model of a 4-bit shift register that implements the com-
ponent interface described in Exercise 14. Write a configuration declaration for the 8-
bit shift register, binding the component instances to the 4-bit shift register entity.

18. [➋ 13.2] Suppose we wish to use an XYZ1234A serial interface controller in the mi-
crocontroller described in Example 13.2. The entity interface for the XYZ1234A is

entity XYZ1234A is
  generic ( T_phi_out, T_d_z : delay_length;
            debug_trace : boolean := false );
  port ( phi1, phi2 : in std_ulogic;   -- 2 phase clock
         cs : in std_ulogic;           -- chip select
         a : in std_ulogic_vector(1 downto 0);     -- address
         d : inout std_ulogic_vector(1 downto 0);  -- data
         int_req : out std_ulogic;     --  interrupt
         rx_d : in std_ulogic;         -- rx serial data
         tx_d : out std_ulogic );      -- tx serial data
end entity XYZ1234A;

Write a configuration declaration that binds the serial_interface component instance
to the XYZ1234A entity, using the most recently compiled architecture, setting both
timing generics to 6 ns and using the default value for the debug_trace generic.

19. [➋ 13.1/13.2] Use the package described in Exercise 15 to develop a structural model
of a full adder, described by the Boolean equations

Write behavioral models of entities corresponding to each of the gate components and
a configuration declaration that binds each component instance in the full adder to
the appropriate gate entity.

20. [➌ 13.2] Develop a structural model of a 4-bit adder using instances of a full-adder
component. Write a configuration declaration that binds each instance of the full-
adder component, using the configuration declaration described in Exercise 19. For

S A B⊕( ) Cin⊕=

Cout A B A B⊕( ) Cin⋅+⋅=



Exercises 447

comparison, write an alternative configuration declaration that fully configures the 4-
bit adder hierarchy without using the configuration declaration described in Exercise
19.

21. [➌ 13.2] Develop a behavioral model of a RAM with bit-vector address, data-in and
data-out ports. The size of the ports should be constrained by generics in the entity
interface. Next, develop a test bench that includes a component declaration for the
RAM without the generics and with fixed-sized address and data ports. Write a con-
figuration declaration for the test bench that binds the RAM entity to the RAM compo-
nent instance, using the component local port sizes to determine values for the entity
formal generics.

22. [➌ 13.3] The majority function of three inputs can be described by the Boolean equa-
tion

Develop a structural model of a three-input majority circuit, using inverter, and-gate
and or-gate components with standard-logic inputs and outputs. Also develop behav-
ioral models for the inverter and gates, including generic constants in the interfaces
to specify propagation delays for rising and falling output transitions. Include config-
uration specifications in the structural model to bind the component instances to the
entities. The configuration specifications should include estimated propagation delays
of 2 ns for all gates.

Next, develop a configuration declaration for the majority circuit that includes in-
cremental bindings to override the estimated delays with actual propagation delays as
shown below.

23. [➍] Develop a suite of models of a digital stopwatch circuit. The circuit has three in-
puts: a 100 kHz clock, a start/stop switch input and a lap/reset switch input. The two
switch inputs are normally high and are pulled low when an external push-button
switch is pressed. The circuit has outputs to drive an external seven-segment display
of minutes, seconds and hundredths of seconds, formatted as shown in the margin.
There is a single output to drive the minutes (') and seconds (") indicators. When an
output is high, the corresponding segment or indicator is visible. When the output is
low, the segment or indicator is blank. The stopwatch circuit contains a time counter
that counts minutes, seconds and hundredths of seconds.

The stopwatch counter is initially reset to 00'00"00, with the display showing the
counter time and the minute and second indicators on. In this state, pressing the
start/stop button starts counting, with the display showing the counter time. Pressing

rising-output delay falling-output delay

inverter 1.8 ns 1.7 ns

and gate 2.3 ns 1.9 ns

or gate 2.2 ns 2.0 ns

M a b c, ,( ) a b c⋅ ⋅ a b c⋅ ⋅ a b c a b c⋅ ⋅+⋅ ⋅+ +=



448 Chapter 13 — Components and Configurations

the start/stop button again stops counting. Successive presses of start/stop continue
or stop counting, with the display showing the counter time. If the lap/reset button is
pressed while the counter is stopped and the display is showing the counter time, the
counter is reset to 00'00"00. If the lap/reset button is pressed while the counter is run-
ning, the display freezes the time at which the lap/reset button was pressed, the
counter continues running and the minutes and seconds indicators flash at a 1 Hz rate
to indicate that the counter is still running. If the start/stop button is pressed, the
counter stops, the minutes and seconds indicators stop flashing and the displayed time
is unchanged. Successive presses of start/stop continue or stop counting, with the dis-
played time unchanged and the minutes and seconds indicators flashing when the
counter is running. Pressing the lap/reset button while the display is frozen causes it
to return to displaying the current counter time, whether the counter is running or
stopped.

The first model in your suite should be a behavioral model. Test your behavioral
model by writing a test bench for it. You should write a configuration declaration for
the test bench that binds the unit under test to the behavioral stopwatch model. Next,
refine your stopwatch model to a structural design, including a control sequencer, reg-
isters, counters, decoders and other components as required. Develop behavioral
models corresponding to each of these components, and write a configuration for the
stopwatch that binds the behavioral models to the component instances. Revise the
test bench configuration to use the structural model, and compare its operation with
that of the behavioral model. Continue this process of refinement by implementing
the control sequencer as a finite-state machine with next-state logic and a state register
and by implementing the other components using successively lower-level compo-
nents down to the level of flipflops and gates. At each stage, develop configuration
declarations to bind entities to component instances, and test the complete model us-
ing the test bench.



449

Chapter 14 

Generate Statements

Many digital systems can be implemented as regular iterative compositions of subsystems.
Memories are a good example, being composed of a rectangular array of storage cells.
Indeed, VLSI designers prefer to find such implementations, as they make it easier to pro-
duce a compact, area-efficient layout, thus reducing cost. If a design can be expressed as
a repetition of some subsystem, we should be able to describe the subsystem once, then
describe how it is to be repeatedly instantiated, rather than describe each instantiation in-
dividually. In this chapter, we look at the VHDL facility that allows us to generate such
regular structures.

14.1 Generating Iterative Structures

We have seen how we can describe the implementation of a subsystem using concurrent
statements such as processes and component instantiations. If we want to replicate a sub-
system, we can use a generate statement. This is a concurrent statement containing further
concurrent statements that are to be replicated during elaboration of a design. Generate
statements are particularly useful if the number of times we want to replicate the concur-
rent statements is not fixed but is determined, for example, from the value of a generic
constant. The syntax rule for writing for-generate statements is

for_generate_statement ⇐
generate_label :
for identifier in discrete_range generate

generate_statement_body
end generate [ generate_label ] ;

generate_statement_body ⇐
[ { block_declarative_item }

begin ]
{ concurrent_statement }

[ end ; ]



450 Chapter 14 — Generate Statements

The generate label is required to identify the generated structure. The header of the
for-generate statement looks very similar to that of a for loop and indeed serves a similar
purpose. The discrete range specifies a set of values, and for each value, the block declar-
ative items and concurrent statements in the body are replicated once. Within each repli-
cation, the value from the range is given by the identifier, called the generate parameter.
It appears as a constant, with a type that is the base type of the discrete range. We can
specify the discrete range using the same notations that we used in for loops. As a
reminder, here is the syntax rule for a discrete range:

discrete_range ⇐
discrete_subtype_indication
I range_attribute_name
I simple_expression ( to I downto ) simple_expression

The kinds of declarations we can include in the generate statement body are the same
kinds that we can declare in the declarative part of the architecture body, including con-
stants, types, subtypes, subprograms and signals. These items are replicated once for each
copy of the body and are local to that copy. Note that the syntax rule for a for-generate
statement requires us to include the keyword begin if we include any declarations. How-
ever, if we have no declarations, we may omit the keyword. Also, we can include a closing
end keyword at the end of the body before the end generate keywords. The syntax al-
lows this for consistency with the more elaborate forms of generate statement that we will
see in Section 14.2. In practice, we would not normally include the keyword in for-
generate statements.

EXAMPLE 14.1 A register consisting of replicated flipflop cells

We can implement a register by replicating a flipflop cell. Let us look at how to do
this for a register with tristate outputs, conforming to the following entity declaration:

library ieee;  use ieee.std_logic_1164.all;

entity register_tristate is
  generic ( width : positive );
  port ( clock : in std_ulogic;
         out_enable : in std_ulogic;
         data_in : in std_ulogic_vector(0 to width - 1);
         data_out : out std_ulogic_vector(0 to width - 1) );
end entity register_tristate;

The generic constant width specifies the width of the register in bits and is used
to determine the size of the data input and output ports. The clock port enables data
to be stored in the register, and the out_enable port controls the tristate data output
port.

The architecture body for the register implements this register in terms of a D-
flipflop component and a tristate buffer for each bit:

architecture cell_level of register_tristate is



14.1 Generating Iterative Structures 451

  component D_flipflop is
    port ( clk : in std_ulogic;  d : in std_ulogic;
           q : out std_ulogic );
  end component D_flipflop;

  component tristate_buffer is
    port ( a : in std_ulogic;
           en : in std_ulogic;
           y : out std_ulogic );
  end component tristate_buffer;

begin

  cell_array : for bit_index in 0 to width - 1 generate

    signal data_unbuffered : std_ulogic;

  begin

    cell_storage : component D_flipflop
      port map ( clk => clock, d => data_in(bit_index),
                 q => data_unbuffered );

    cell_buffer : component tristate_buffer
      port map ( a => data_unbuffered, en => out_enable,
                 y => data_out(bit_index) );

  end generate cell_array;

end architecture cell_level;

The for-generate statement in this structural architecture body replicates the com-
ponent instantiations labeled cell_storage and cell_buffer, with the number of copies
being determined by width. For each copy, the generate parameter bit_index takes
on successive values from 0 to width – 1. This value is used within each copy to de-
termine which elements of the data_in and data_out ports are connected to the
flipflop input and tristate buffer output. Within each copy there is also a local signal
called data_unbuffered, which connects the flipflop output to the buffer input.

EXAMPLE 14.2 Replication in a graphics transformation pipeline

We can also use for-generate statements to describe behavioral models in which be-
havioral elements implemented using process statements are replicated. Suppose we
are modeling part of a graphics transformation pipeline in which a stream of points
representing vertices in a scene is to be transformed by matrix multiplication. The
equation describing the transformation is



452 Chapter 14 — Generate Statements

where  is the input point to the pipeline stage, and  is the trans-
formed output three clock cycles later. We can implement the transformation with
three identical cells, each producing one result element. The equation is

An outline of the architecture body implementing the pipeline with this stage is

architecture behavioral of graphics_engine is

  type point is array (1 to 3) of real;
  type transformation_matrix is array (1 to 3, 1 to 3) of real;

  signal p, transformed_p : point;
  signal a : transformation_matrix;
  signal clock : bit;
  ...

begin

  transform_stage : for i in 1 to 3 generate
  begin

    cross_product_transform : process is
      variable result1, result2, result3 : real := 0.0;
    begin
      wait until clock = '1';
      transformed_p(i) <= result3;
      result3 := result2;
      result2 := result1;
      result1 :=  a(i, 1) * p(1) + a(i, 2) * p(2) + a(i, 3) * p(3);
    end process cross_product_transform;

  end generate transform_stage;

  ...  -- other stages in the pipeline, etc

end architecture behavioral;

The for-generate statement replicates the process statement three times, once for
each element of the transformed point signal. Each copy of the process uses its value
of the generate parameter i to index the appropriate elements of the point and trans-
formation matrix signals.

p'1
p'2
p'3

a11 a12 a13

a21 a22 a23

a31 a32 a33

p1

p2

p3

=

p1 p2 p3, ,[ ] p'1 p'2 p'3, ,[ ]

p'i ai1 p1⋅ ai2 p2⋅ ai3 p3,⋅+ += i 1 2 3, ,=



14.1 Generating Iterative Structures 453

If we need to describe a regular two-dimensional structure, we can use nested for-
generate statements. Nesting of generate statements is allowed in VHDL, since a generate
statement is a kind of concurrent statement, and generate statements contain concurrent
statements. Usually we write nested for-generate statements so that the outer statement
creates the rows of the structure, and the inner statement creates the elements within each
row. Of course, this is purely a convention relating to the way we might draw such a reg-
ular structure graphically. However, the convention does help to design and understand
such structures.

EXAMPLE 14.3 A two-dimensional memory structure

We can use nested generate statements to describe a memory array, constructed from
4-bit-wide static memory (SRAM) circuits. Each SRAM stores 4M words (4 × 220 words)
of four bits each. We can construct a 16M × 32-bit memory array by generating a 4 × 8
array of SRAM circuits. An outline of the architecture body containing the memory ar-
ray is shown below, and a schematic diagram is shown in Figure 14.1.

architecture generated of memory is

  component SRAM is
    port ( clk : in std_ulogic;
           a :  in std_ulogic_vector(0 to 10);
           d :  inout std_ulogic_vector(0 to 3);
           en, we : in std_ulogic );
  end component SRAM;

  signal buffered_address : std_ulogic_vector(0 to 10);
  signal SRAM_data : std_ulogic_vector(0 to 31);
  signal bank_select : std_ulogic_vector(0 to 3);
  signal buffered_we : std_ulogic;

  ...  -- other declarations

begin

  bank_array : for bank_index in 0 to 3 generate
  begin

    nibble_array : for nibble_index in 0 to 7 generate

      constant data_lo : natural := nibble_index * 4;
      constant data_hi : natural := nibble_index * 4 + 3;

    begin

      an_SRAM : component SRAM
        port map ( clk => clk,
                   a => buffered_address,
                   d => SRAM_data(data_lo to data_hi),
                   en => bank_select(bank_index),
                   we => buffered_we );



454 Chapter 14 — Generate Statements

    end generate nibble_array;

  end generate bank_array;

  ...  -- other component instances, etc

end architecture generated;

VHDL-87, -93, and -2002

These versions do not allow us to include a closing end keyword before the end gen-
erate keywords in a for-generate statement.

FIGURE 14.1 

A schematic for a 16M × 32-bit memory array composed of 4M × 4-bit SRAM circuits.

0–3 4–7 8–11 12–15 16–19 20–23 24–27 28–31

0–3 4–7 8–11 12–15 16–19 20–23 24–27 28–31

0–3 4–7 8–11 12–15 16–19 20–23 24–27 28–31

0–3 4–7 8–11 12–15 16–19 20–23 24–27 28–31

clk, buffered_address, buffered_we

bank_
select(0)

bank_
select(1)

bank_
select(2)

bank_
select(3)

SRAM_data



14.2 Conditionally Generating Structures 455

VHDL-87

A generate statement may not include a declarative part or the keyword begin in
VHDL-87. The syntax for a for-generate statement is

for_generate_statement ⇐
generate_label :
for identifier in discrete_range generate

{ concurrent_statement }
end generate [ generate_label ] ;

Since it is not possible to declare objects locally within a generate statement, we
must declare them in the architecture body containing the generate statement. We can
declare an array of objects indexed by the same range as the generate parameter. For
example, the signal data_unbuffered declared in the generate statement in Example
14.1 can be replaced by an array in the declarative part of the architecture body:

signal data_unbuffered : std_ulogic_vector(0 to width - 1);

Each reference to data_unbuffered within the generate statement is replaced by a ref-
erence to the element data_unbuffered(bit_index).

14.2 Conditionally Generating Structures

In the examples in the previous section, each cell in an iterative structure was connected
identically. In some designs, however, there are particular cells that need to be treated dif-
ferently. This often occurs where cells are connected to their neighbors. The cells at each
end do not have neighbors on both sides, but instead are connected to signals or ports in
the enclosing architecture body. We can deal with these special cases within an iterative
structure using a conditional forms of generate statement. The first of these is an if-
generate statement, with the syntax rule:

if_generate_statement ⇐
generate_label :
if condition generate

generate_statement_body
{ elsif condition generate

generate_statement_body }
[ else generate

generate_statement_body ]
end generate [ generate_label ] ;

This is like a sequential if statement, except that the conditions control how declara-
tions and concurrent statements are copied in the design, rather than controlling selection
of sequential statements for execution. When the model is elaborated, the conditions in
the if-generate statement are tested from first to last until one is found that is true. The
declarations (if any) and concurrent statements in the corresponding body are then



456 Chapter 14 — Generate Statements

included in the elaborated model. If no condition is true and there is an else generate
alternative, the declarations and statements from that alternative are included. The else
generate alternative is optional, allowing for the possibility of no declarations or state-
ments being included if none of the conditions is true. The generate label in an if-generate
statement is required to identify the structure that is generated, if any.

When we write an if-generate statement within an enclosing for-generate statement to
deal with boundary conditions, we can refer to the values of generic constants or the gen-
erate parameter of the enclosing statement in the conditions of the if-generate statement.

EXAMPLE 14.4 A shift register composed of flipflop cells

We can construct a serial-to-parallel shift register from master/slave flipflop cells, as
follows:

library ieee;  use ieee.std_logic_1164.all;

entity shift_reg is
  port ( phi1, phi2 : in std_ulogic;
         serial_data_in : in std_ulogic;
         parallel_data : out std_ulogic_vector );
end entity shift_reg;

--------------------------------------------------

architecture cell_level of shift_reg is

  alias normalized_parallel_data :
          std_ulogic_vector(0 to parallel_data'length - 1)
        is parallel_data;

  component master_slave_flipflop is
    port ( phi1, phi2 : in std_ulogic;
           d : in std_ulogic;
           q : out std_ulogic );
  end component master_slave_flipflop;

begin

  reg_array : for index in normalized_parallel_data'range generate
  begin

    reg : if index = 0 generate
      cell : component master_slave_flipflop
        port map ( phi1, phi2,
                   d => serial_data_in,
                   q => normalized_parallel_data(index) );
    else generate
      cell : component master_slave_flipflop
        port map ( phi1, phi2,
                   d => normalized_parallel_data(index - 1),



14.2 Conditionally Generating Structures 457

                   q => normalized_parallel_data(index) );
    end generate other_cell;

  end generate reg_array;

end architecture cell_level;

The architecture contains a component declaration for the flipflop, then makes
multiple instantiations using a for-generate statement. Within the for-generate state-
ment, an if-generate statement is used to treat the first flipflop cell differently from the
other cells. The condition “index = 0” identifies this first cell, which takes its input data
from the serial_data_in port. The remaining cells take their input from the neighboring
cell’s output.

EXAMPLE 14.5 A ripple-carry adder composed of full adders and a half adder

A ripple-carry adder has a half adder at the least-significant end and has different carry
in and out connections for the cells at the ends and in the middle. We can use a nested
if-generate with three alternatives to deal with the differences:

adder: for i in width-1 downto 0 generate

  signal carry_chain : unsigned(width-1 downto 1);

begin

  adder_cell: if i = width-1 generate -- most-significant cell

    add_bit: component full_adder
      port map (a => a(i), b => b(i), s => s(i),
                c_in => carry_chain(i), c_out => c_out);

  elsif i = 0 generate -- least-significant cell

    add_bit: component half_adder
      port map (a => a(i), b => b(i), s => s(i),
                c_out => carry_chain(i+1));

  else generate -- middle cell

    add_bit: component full_adder
      port map (a => a(i), b => b(i), s => s(i),
                c_in => carry_chain(i),
                c_out => carry_chain(i+1));

  end generate adder_cell;

end generate adder;

Another important use of if-generate statements is to conditionally include or omit part
of a design, usually depending on the value of a generic constant. A good example is the



458 Chapter 14 — Generate Statements

inclusion or otherwise of instrumentation: additional processes or component instances
that trace or debug the operation of a design during simulation. When the design is suffi-
ciently tested, a generic constant can be changed to exclude the instrumentation so that it
does not slow down a large simulation and is not included when the design is synthesized.

EXAMPLE 14.6 Conditional inclusion of instrumentation code

Suppose we wish to measure the relative frequencies of instruction fetches, data reads
and data writes made by a CPU accessing memory in a computer system. This infor-
mation may be important when considering how to optimize a design to improve per-
formance. An entity declaration for the computer system is

entity computer_system is
  generic ( instrumented : boolean := false );
  port ( ... );
end entity computer_system;

The generic constant instrumented is used to determine whether to include the
instrumentation to measure relative frequencies of each kind of memory access. An
outline of the architecture body is

architecture block_level of computer_system is

  ...  -- type and component declarations for cpu and memory, etc

  signal clock : bit;    -- the system clock
  signal mem_req : bit;  -- cpu access request to memory
  signal ifetch : bit;   -- indicates access is
                         --   to fetch an instruction
  signal write : bit;    -- indicates access is a write
  ...                    -- other signal declarations

begin

  ...  -- component instances for cpu and memory, etc

  instrumentation : if instrumented generate

    signal ifetch_freq, write_freq, read_freq : real := 0.0;

  begin

    access_monitor : process is
      variable access_count, ifetch_count,
               write_count, read_count : natural := 0;
    begin
      wait until mem_req = '1';
      if ifetch then
        ifetch_count := ifetch_count + 1;
      elsif write then
        write_count := write_count + 1;



14.2 Conditionally Generating Structures 459

      else
        read_count := read_count + 1;
      end if;
      access_count := access_count + 1;
      ifetch_freq <= real(ifetch_count) / real(access_count);
      write_freq <= real(write_count) / real(access_count);
      read_freq <= real(read_count) / real(access_count);
    end process access_monitor;

  end generate instrumentation;

end architecture block_level;

The signals ifetch_freq, write_freq and read_freq and the process access_monitor
are only included in the design if the generic constant instrumented is true. The pro-
cess resumes each time the CPU requests access to the memory and keeps count of
the number of each kind of access, as well as the total access count. It uses these val-
ues to update the relative frequencies. We can trace these signals using our simulator
to see how the relative frequencies converge over the lifetime of a simulation.

We can control whether the instrumentation is included or not when we write a
configuration declaration for the design. To include the instrumentation, we configure
an instance of the computer system as follows:

for system_under_test : computer_system
  use entity work.computer_system(block_level)
  generic map ( instrumented => true )
  ...
end for;

To exclude the instrumentation, we change the value of the generic constant in the
generic map to false.

VHDL-87, -93, and -2002

These versions do not allow us to include elsif or else alternatives in an if-generate
statement. Instead, we must write each alternative as a separate if-generate statement.
For example, the if-generate statement in Example 14.5 would be written as:

msb_cell: if i = width-1 generate -- most-significant cell
  ...
end generate msb_cell;

lsb_cell: if i = 0 generate -- least-significant cell
  ...
end generate lsb_cell;

mid_cell: if i > 0 and i < width-1 generate -- middle cell
  ...
end generate lsb_cell;



460 Chapter 14 — Generate Statements

Also, these versions do not permit a closing end keyword in each alternative of
an if-generate statement.

VHDL-87

A generate statement may not include a declarative part or the keyword begin in
VHDL-87. The syntax for a conditional generate statement is

generate_statement ⇐
generate_label :
if condition generate

{ concurrent_statement }
end generate [ generate_label ] ;

Any objects required by the generate statement must be declared in the declarative
part of the enclosing architecture body.

The second conditional form of generate statement is a case-generate statement, in
which we specify alternatives in a similar way to a case statement. We specify a static ex-
pression (one whose value can be computed during elaboration), and choice values for
each alternative. The syntax rule is:

case_generate_statement ⇐
generate_label :
case expression generate

( when choices =>
generate_statement_body )

{ … }
end generate [ generate_label ] ;

This is like a sequential case statement, except that the expression and choices control
how declarations and concurrent statements are copied in the design. When the model is
elaborated, the expression is evaluated (which explains why it must be static) and a
matching choice is selected. The declarations (if any) and concurrent statements in the cor-
responding body are then included in the elaborated model. The rules governing sequen-
tial case statement expressions and choices also apply to the expression and choices in a
case-generate statement, with the further stipulation that the expression be static.

EXAMPLE 14.7 Selection among alternative implementations

Multiplication of complex numbers in Cartesian form involves four scalar multiplica-
tions, a subtraction, and an addition. Depending on the constraints that apply to a de-
sign, these operations can be implemented in one clock cycle using multiple function
units, in multiple clock cycles using fewer function units, or in a pipeline. Suppose



14.2 Conditionally Generating Structures 461

we have an enumeration type, defined as follows, for specifying the implementation
to use:

type implementation_type is
       (single_cycle, multicycle, pipelined);

An entity declaration for a complex multiplier has a generic constant of this type
controlling the implementation:

entity complex_multiplier is
  generic ( implementation : implementation_type; ... );
  port ( ... );
end entity complex_multiplier;

Within the architecture, we use the value of the generic constant in a case-
generate statement to determine what components to instantiate and how to intercon-
nect them:

architecture rtl of complex_multiplier is
  ...
begin

  mult_structure : case implementation generate

    when single_cycle =>
        signal real_pp1, real_pp2 : ...;
        ...
      begin
        real_mult1 : component multiplier
          port map ( ... );
        ...
      end;

    when multicycle =>
        signal real_pp1, real_pp2 : ...;
        ...
      begin
        mult : component multiplier
          port map ( ... );
        ...
      end;

    when pipelined =>
        signal real_pp1, real_pp2 : ...;
        ...
      begin
        mult1 : component multiplier
          port map ( ... );
        ...
      end;



462 Chapter 14 — Generate Statements

  end generate mutl_structure;

end architecture rtl;

The case-generate statement includes three alternatives, one for each possible im-
plementation style. Each alternative can have local declarations and concurrent state-
ments with the same names and labels as those in other alternatives, as well as
differently named declarations and differently labeled statements.

VHDL-87, -93, and -2002

These versions do not provide case-generate statements. Instead, we must write each
alternative as a separate if-generate statement in which the condition compares the
selector expression with a choice value.

14.2.1 Recursive Structures

A more unusual application of conditional generate statements arises when describing re-
cursive hardware structures, such as tree structures. We can write a description of a recur-
sive structure using a recursive model, that is, one in which an architecture of an entity
creates an instance of that same entity. We enclose the recursive instantiation in a condi-
tional generate statement that determines when to terminate the recursion.

EXAMPLE 14.8 A recursive clock fanout tree structure

Clock-signal distribution can be a problem in a large integrated circuit. We typically
have one clock signal that must be distributed to a very large number of components
without overloading the clock drivers and without creating too much skew between
different parts of the circuit. One solution is to distribute the clock signal using a
fanout tree. A simplified binary fanout tree is shown in Figure 14.2. The clock signal
feeds two buffers, each of which in turn feeds two buffers, and so on, until we have
generated enough buffered clock signals to drive all elements of the circuit. As the
diagram shows, we can think of a tree of height 3 as being constructed from two buff-
ers feeding trees of height 2. Similarly, a tree of height 2 is two buffers feeding trees
of height 1. A tree of height 1 is two buffers feeding the outputs of the fanout tree.
We can think of these output connections as being degenerate trees of height 0. In
general, we can say that a tree of height n consists of two buffers feeding trees of
height n – 1, where n > 0.

We can describe this structure in VHDL by starting with an entity declaration for
a fanout tree that includes a generic constant height specifying the height of the tree,
shown below. The entity has one input and 2height outputs.

library ieee;  use ieee.std_logic_1164.all;

entity fanout_tree is
  generic ( height : natural );



14.2 Conditionally Generating Structures 463

  port ( input : in std_ulogic;
         output : out std_ulogic_vector (0 to 2**height - 1) );
end entity fanout_tree;

The architecture body, shown below, uses an if-generate statement that tests the
value of height to see if any subtrees are required. If height is zero, the output port
of the fanout tree is a vector of length one. The body for that alternative creates a
connection from the input to the single output element. Otherwise, if height is greater
than zero, the else alternative creates two buffers and two subtrees of reduced height.
The local signals buffered_input_0 and buffered_input_1 connect the buffers to the
inputs of the subtrees. The outputs of the subtrees are of length 2height–1 and are con-
nected to slices of the output port vector of the enclosing tree.

architecture recursive of fanout_tree is

begin

  tree : if height = 0 generate

      output(0) <= input;

  else generate  -- height > 0

      signal buffered_input_0, buffered_input_1 : std_ulogic;

    begin

      buf_0 : entity work.buf(basic)
        port map ( a => input, y => buffered_input_0 );

      subtree_0 : entity work.fanout_tree(recursive)
        generic map ( height => height - 1 )

FIGURE 14.2 

A binary fanout tree for clock distribution. The inner shaded section is a fanout tree of height 1,
and the outer shaded section is a tree of height 2. The whole structure is a tree of height 3.



464 Chapter 14 — Generate Statements

        port map ( input => buffered_input_0,
                   output => output(0 to 2**(height - 1) - 1) );

      buf_1 : entity work.buf(basic)
        port map ( a => input, y => buffered_input_1 );

      subtree_1 : entity work.fanout_tree(recursive)
        generic map ( height => height - 1 )
        port map ( input => buffered_input_1,
                   output =>
                     output(2**(height - 1) to 2**height - 1) );

    end;

  end generate tree;

end architecture recursive;

This compact description of a relatively complex structure is fleshed out when the
design is elaborated. Suppose we instantiate a fanout tree of height 3 in a design:

clock_buffer_tree : entity work.fanout_tree(recursive)
  generic map ( height => 3 )
  port map ( input => unbuffered_clock,
             output => buffered_clock_array );

In the first stage of elaboration, height has the value 3, so the generate statement
creates the first two buffers and two instances of the fanout_tree entity with height
having the value 2. In each of these instances, the generate statement creates two
more buffers and two instances of the fanout_tree entity with height having the value
1. Then, in each of these instances, the generate statement creates a further two buff-
ers and two instances of the fanout_tree entity with height having the value 0. In these
last instances, the condition of the generate statement is true, so it creates a connec-
tion directly from its input to its output. This alternative is where the recursion termi-
nates, as there are no further instantiations of the fanout_tree entity within the
alternative.

VHDL-87

Since VHDL-87 does not allow direct instantiation of design entities, descriptions of
recursive structures are slightly more complex. In the architecture body, we must de-
clare a component with the same interface as the design entity. Instead of directly in-
stantiating the design entity, we instantiate the declared component and bind it to the
design entity using a configuration specification. Note that the configuration specifi-
cation must be written in the declarative region of the construct immediately enclosing
the instantiated component. In our example above, the recursive component instan-
tiation statement is included in an if-generate statement. In VHDL-87, generate state-
ments do not include a declarative part, so we cannot include a configuration
specification as part of the generate statement. Instead, we must write the component



14.3 Configuration of Generate Statements 465

instantiation statement within a block statement that is in turn nested in the generate
statement. (We describe block statements in Section 23.1.) We then write the config-
uration specification in the declarative part of the block statement. For example, we
can rewrite the recursive fanout tree model of Example 14.8 by declaring a component
fanout_tree with the same interface as the fanout tree entity. The component instan-
tiation statement labeled subtree_0 is rewritten as shown below.

block_0 : block
  for subtree_0 : fanout_tree
    use entity work.fanout_tree(recursive);
begin
  subtree_0 : fanout_tree
    generic map ( height => height - 1 )
    port map (  input => buffered_input_0,
                output => output(0 to 2**(height - 1) - 1) );
end block block_0;

14.3 Configuration of Generate Statements

In this section we describe how to write configuration declarations for designs that include
generate statements. If a design includes a for-generate statement, we need to be able to
identify individual cells from the iteration in order to configure them. If the design includes
an if-generate or case-generate statement, we need to be able to include configuration in-
formation that is to be used only if a given cell is included in the design. In order to handle
these cases, we use an extended form of block configuration. We first introduced block
configurations in Section 13.2.2. The syntax rule for the extended form is

block_configuration ⇐
for ( architecture_name

I block_statement_label
I generate_statement_label

[ ( ( static_discrete_range I static_expression I alternative_label  ) ) ] )
{ block_configuration
I for component_specification

[ binding_indication ; ]
[ block_configuration ]

end for ; }
end for ;

The new part in this rule is the alternative allowing us to configure a generate state-
ment by writing its label. The optional part after the label allows us to write an expression
whose value selects a particular cell from an iterative structure, a range of values that select
a collection of cells from an iterative structure, or a label that selects a particular alternative
of an if-generate or case-generate statement. We will return to these possibilities shortly.
Once we have identified the generate statement using its label, the remaining configura-
tion information within the block configuration specifies how the concurrent statements
within the generated cell or cells are to be configured.



466 Chapter 14 — Generate Statements

Let us first apply this rule to writing configurations for a simple if-generate statement
with a single condition and no elsif or else alternatives. In this case, we simply write the
generate statement label in the block configuration and fill in the configuration informa-
tion for generated component instances. If the generate statement condition is true when
the design is elaborated, the configuration information is used to bind entities to the com-
ponent instances. On the other hand, if the condition is false, no instances are created,
and the configuration information is ignored.

EXAMPLE 14.9 Configuration of conditionally included instrumentation

Let us return to our model of a computer system that uses a conditional generate state-
ment to include instrumentation. Recall that the entity declaration was

entity computer_system is
  generic ( instrumented : boolean := false );
  port ( ... );
end entity computer_system;

Suppose we wish to use a general-purpose bus monitor component that collects sta-
tistics on bus transactions between the CPU and the memory. An outline of the revised
architecture body is

architecture block_level of computer_system is

  ...  -- type and component declarations for cpu and memory, etc.

  signal clock : bit;    -- the system clock
  signal mem_req : bit;  -- cpu access request to memory
  signal ifetch : bit;   -- indicates access is
                         --   to fetch an instruction
  signal write : bit;    -- indicates access is a write
  ...                    -- other signal declarations

begin

  ...  -- component instances for cpu and memory, etc.

  instrumentation : if instrumented generate

    use work.bus_monitor_pkg;
    signal bus_stats : bus_monitor_pkg.stats_type;

  begin

    cpu_bus_monitor : component bus_monitor_pkg.bus_monitor
      port map ( mem_req, ifetch, write, bus_stats );

  end generate instrumentation;

end architecture block_level;

We can write a configuration declaration for the computer system as follows:



14.3 Configuration of Generate Statements 467

configuration architectural of computer_system is

  for block_level

    ...  -- component configurations for cpu and memory, etc

    for instrumentation

      for cpu_bus_monitor : bus_monitor_pkg.bus_monitor
        use entity work.bus_monitor(general_purpose)
        generic map ( verbose => true, dump_stats => true );
      end for;

    end for;

  end for;

end configuration architectural;

This configuration information may be used when the computer system entity is
elaborated. If the value of the generic constant instrumented is true, the bus monitor
is instantiated. In this case, the information in the block configuration starting with
“for instrumentation” is used to bind an entity to the bus monitor instance. On the
other hand, if instrumented is false, no instance is created, and the configuration in-
formation is ignored.

We now turn to configurations for designs including for-generate statements. The sim-
plest case is a structure in which all cells are to be configured identically. In this case, we
just write the generate statement label in the block configuration and include the config-
uration information to be applied to each cell.

EXAMPLE 14.10 Configuration of the register composed of flipflops

In the register model in Example 14.1, each cell consisted of a flipflop and a tristate
buffer component. We can write a configuration declaration for this design as shown
below. The block configuration starting with “for cell_array” identifies the iterative
generate statement labeled cell_array. Since there is no specification of particular cells
within the generated structure, the information in the block configuration is applied
to all cells.

library cell_lib;

configuration identical_cells of register_tristate is

  for cell_level

    for cell_array

      for cell_storage : D_flipflop
        use entity cell_lib.D_flipflop(synthesized);
      end for;



468 Chapter 14 — Generate Statements

      for cell_buffer : tristate_buffer
        use entity cell_lib.tristate_buffer(synthesized);
      end for;

    end for;

  end for;

end configuration identical_cells;

Where we have a design that includes nested generate statements to generate a two-
dimensional structure, we simply nest block configurations in a configuration declaration.

EXAMPLE 14.11 Configuration of the two-dimensional memory structure

The memory array described in Example 14.3 is implemented using two nested itera-
tive generate statements. We can write a configuration declaration for the design as
shown below. The block configuration starting with “for bank_array” selects the
memory array generated by the outer generate statement labeled bank_array. Each
bank is configured identically, using the inner block configuration starting with “for
nibble_array”. This selects the generate statement that creates a bank of SRAM chips
and configures each chip in the bank identically to the rest.

library core_lib;  use core_lib.all;

configuration behavioral_SRAM of memory is

  for generated

    for bank_array

      for nibble_array

        for an_SRAM : SRAM
          use entity SRAM_4M_by_4(behavior);
        end for;

      end for;

    end for;

    ...  -- configurations of other component instances

  end for;

end configuration behavioral_SRAM;

Before we look at further examples of examples of block configurations for for-
generate statements, we need to consider how to write block configurations for the if-gen-
erate or case-generate statements that are often nested inside for-generate statements. We
saw that the nested generate statement may have different alternatives for cells that are



14.3 Configuration of Generate Statements 469

connected differently. We need to be able to write a distinct block configuration for each
alternative. In order to do that, we need to label the alternatives so that we can distinguish
one from another. Thus, we extend our syntax rules for generate statements to include
alternative labels. The extended rule for if-generate statements is:

if_generate_statement ⇐
generate_label :
if [ alternative_label : ] condition generate

generate_statement_body
{ elsif [ alternative_label : ] condition generate

generate_statement_body }
[ else [ alternative_label : ] generate

generate_statement_body ]
end generate [ generate_label ] ;

and for case-generate statements:

case_generate_statement ⇐
generate_label :
case expression generate

( when [ alternative_label : ] choices =>
generate_statement_body )

{ … }
end generate [ generate_label ] ;

We can then use an alternative label in a block configuration for the generate state-
ment to identify a particular alternative of the statement. This is shown in the syntax rule
on page 465. If the alternative is included when the design is elaborated, the configuration
information is used. If the alternative is not included, the configuration information is ig-
nored. Note that, in the simple case of an if-generate statement with only one alternative,
we do not need to label the alternative. It is sufficient to refer to the generate statement
label in a corresponding block configuration, as we did in Example 14.9.

EXAMPLE 14.12 Configuration of the ripple-carry adder

In Example 14.5 we showed a structure for a ripple-carry adder, in which differences
among bit positions were handled by alternatives of an if-generate statement. We can
revise the statement to include labels in each alternative:

adder: for i in width-1 downto 0 generate

  signal carry_chain : unsigned(width-1 downto 1);

begin

  adder_cell: if most_significant: i = width-1 generate

    add_bit: component full_adder
      port map (...);



470 Chapter 14 — Generate Statements

  elsif least_significant: i = 0 generate

    add_bit: component half_adder
      port map (...);

  else middle: generate

    add_bit: component full_adder
      port map (...);

  end generate adder_cell;

end generate adder;

We can now write a configuration declaration for the enclosing entity and archi-
tecture:

configuration widget_cfg of arith_unit is
  for ripple_adder
    for adder

      for adder_cell(most_significant)
        for add_bit: full_adder
          use entity widget_lib.full_adder(asic_cell);
      end for;

      for adder_cell(middle)
        for add_bit: full_adder
          use entity widget_lib.full_adder(asic_cell);
      end for;

      for adder_cell(least_significant)
        for add_bit: half_adder
          use entity widget_lib.half_adder(asic_cell);
      end for;

    end for; -- adder
  end for; -- ripple_adder
end configuration widget_cfg;

The block configuration “for adder ... end for” applies to all of the repetitions of
the for-generate statement. Within it, we have three block configurations, one for each
alternative of the if-generate statement. We identify each alternative with a combina-
tion of the if-generate statement label (adder_cell) and the alternative label
(most_significant, least_significant, and middle, respectively). The configuration in-
formation for each alternative is only acted upon during elaboration if the correspond-
ing condition is true and the alternative is included in the design hierarchy.



14.3 Configuration of Generate Statements 471

EXAMPLE 14.13 Configuration of alternative implementations

We can revise the case-generate statement in Example 14.7 to include alternative la-
bels, allowing the alternatives to be configured:

mult_structure : case implementation generate
  when single_cycle_mult: single_cycle =>
     ...
  when multicycle_mult: multicycle =>
     ...
  when pipelined_mult: pipelined =>
     ...;
end generate mutl_structure;

We can now write a configuration declaration for the complex multiplier:

configuration wallace_tree of complex_multiplier is
  for rtl

    for mult_structure(single_cycle_mult)
      for real_mult1 : multiplier
        use entity work.multiplier(wallace_tree);
      ...
    end for;

    for mult_structure(multicycle_mult)
      for mult : multiplier
        use entity work.multiplier(wallace_tree);
      ...
    end for;

    for mult_structure(pipelined_mult)
      for mult1 : multiplier
        use entity work.multiplier(wallace_tree);
      ...
    end for;

  end for; -- rtl
end for wallage_tree;

In some designs using for-generate statements, there may be particular cells or groups
of cells that we wish to configure differently from other cells. In these cases we can use
an expression or a range of values in parentheses after the generate statement label in the
block configuration. The values identify those cells to which the configuration information
applies. The rules for specifying the discrete range are the same as those for specifying a
discrete range in other contexts.



472 Chapter 14 — Generate Statements

EXAMPLE 14.14 Configuration of the shift register composed of flipflops

The shift register design shown in Example 14.4 is composed of cells indexed from 0
to one less than the length of the parallel_data port. Each cell includes an instance of
a master/slave flipflop. Suppose we wish to use an ordinary flipflop for all except the
last cell of the shift register and a flipflop with high drive capacity for the last cell. In
order to be able to refer to the different alternatives in a configuration, we need to
add alternative labels, as follows:

architecture cell_level of shift_reg is

  ...

begin

  reg_array : for index in normalized_parallel_data'range generate
  begin

    reg : if first_cell : index = 0 generate
      cell : component master_slave_flipflop
        port map ( ... );
    else other_cell : generate
      cell : component master_slave_flipflop
        port map ( ... );
    end generate other_cell;

  end generate reg_array;

end architecture cell_level;

A configuration declaration for the shift register that configures the generated
flipflop instances as required is:

library cell_lib;

configuration last_high_drive of shift_reg is

  for cell_level

    for reg_array ( 0 to parallel_data'length - 2 )

      for reg(first_cell)
        for cell : master_slave_flipflop
          use entity cell_lib.ms_flipflop(normal_drive);
        end for;
      end for;

      for reg(other_cell)
        for cell : master_slave_flipflop
          use entity cell_lib.ms_flipflop(normal_drive);
        end for;
      end for;



Exercises 473

    end for;

    for reg_array ( parallel_data'length - 1 )

      for reg(other_cell)
        for cell : master_slave_flipflop
          use entity cell_lib.ms_flipflop(high_drive);
        end for;
      end for;

    end for;

  end for;

end configuration last_high_drive;

The first of the block configurations for reg_array identifies those cells generated
with index values in the range 0 to width – 2. In the first of these cells, the condition
labeled first_cell of the inner if-generate statement reg is true, and the condition la-
beled other_cell is false. In the remaining cells, the condition labeled first_cell is false
and the condition labeled other_cell is true. The two inner block configurations for
reg(first_cell) and reg(other_cell) configure whichever flipflop component instance is
created in each of these cells.

The second of the block configurations for reg_array singles out the cell
generated with index value parallel_data'length – 1. This is the cell for which we wish
to use a flipflop with high drive capacity. We know that in this cell the condition
labeled first_cell is false. Hence, we do not need to include a nested block configu-
ration for that alternative. We only include a nested block configuration for the
other_cell alterntive.

VHDL-87, -93, -2002

These versions of VHDL do not allow alternative labels in if-generate statements. Since
an if-generate statement can only include one alternative, the statement label alone is
sufficient to identify the alternative in a correspsonding block configuration.

Exercises

1. [➊ 14.1] Draw a diagram illustrating the circuit described by the following generate
statement:

synch_delay_line : for stage in 1 to 4 generate
  delay_ff : component d_ff
    port map ( clk => sys_clock,
               d => delayed_data(stage - 1),
               q => delayed_data(stage) );
end generate synch_delay_line;



474 Chapter 14 — Generate Statements

2. [➊ 14.1] Write a generate statement that instantiates an inverter component for each
element of an input bit-vector signal data_in to derive an inverted bit-vector output
signal data_out_n. Use the index range of data_in to determine the number of invert-
ers required, and assume that data_out_n has the same index range as data_in.

3. [➊ 14.2] Write a conditional generate statement that connects a signal external_clock
directly to a signal internal_clock if a Boolean generic constant positive_clock is true.
If the generic is false, the statement should connect external_clock to internal_clock
via an instance of an inverter component.

4. [➊ 14.3] Write block configurations for the generate statement shown in Exercise 1.
The first flipflop (with index 1) should be bound to the entity d_flipflop in the library
parts_lib, using the architecture body low_input_load. The remaining flipflops should
be bound to the same entity, but use the architecture body standard_input_load.

5. [➊ 14.3] Write a block configuration for the generate statement described in Exercise
3. The inverter component, if generated, should be bound to the entity inverter using
the most recently analyzed architecture body in the library parts_lib.

6. [➋ 14.1] Develop a structural model for an n-bit-wide two-input multiplexer com-
posed of single-bit-wide two-input multiplexer components. The width n is a generic
constant in the entity interface.

7. [➋ 14.1] A first-in/first-out (FIFO) queue can be constructed from the register compo-
nent shown in Figure 14.3. The bit width of the component is a generic constant in
the component interface. The FIFO is constructed by chaining cells together and con-
necting their reset inputs in parallel. The depth of the FIFO is specified by a generic
constant in the entity interface. Develop a structural model for a FIFO implemented
in this manner.

FIGURE 14.3 

A register component used to construct a FIFO.

8. [➋ 14.1/14.2] Develop a structural model for a binary ripple counter implemented us-
ing D-flipflops as shown in Figure 14.4. The width n is a generic constant in the entity
interface.

fifo_cell
data_in

shift_in

in_rdy

reset

data_out

out_rdy

shift_out

n n



Exercises 475

FIGURE 14.4 

A binary ripple counter.

9. [➋ 14.1/14.2] Develop a structural model for an n-bit-wide ripple-carry adder. The
least-significant bits are added using a half-adder component, and the remaining bits
are added using full-adder components.

10. [➋ 14.3] Develop a behavioral model for a single-bit-wide two-input multiplexer. Write
a configuration declaration for the n-bit-wide multiplexer described in Exercise 6,
binding the behavioral implementation to each component instance.

11. [➋ 14.3] Develop a behavioral model for the D-flipflop described in Exercise 8. Write
a configuration declaration for the ripple counter, binding the behavioral implemen-
tation to each D-flipflop component instance.

12. [➋ 14.3] Develop a behavioral model for a half adder and a full adder. Write a config-
uration declaration for the ripple-carry adder described in Exercise 9, binding the be-
havioral models to the component instances.

13. [➌ 14.1/14.2] Exercises 33 and 37 in Chapter 5 describe the components needed to
implement a 16-bit carry-look-ahead adder. The same components can be used to im-
plement a 64-bit carry-look-ahead adder as shown in Figure 14.5. The 64-bit addition
is split into four identical 16-bit groups, each implemented with a 16-bit carry-look-
ahead adder. The carry-look-ahead generator is augmented to include generate and
propagate outputs, calculated in the same way as those calculated by each 4-bit adder.
An additional carry-look-ahead generator is used to calculate the carry inputs to each
16-bit group. Develop a structural model of a 64-bit carry-look-ahead adder using
nested generate statements to describe the two-level iterative structure of the circuit.

d_ff
d

clk

q

q_n

d_ff
d

clk

q

q_n

d_ff
d

clk

q

q_n
clk

q(0) q(1) q(n–1)

q_n(0) q_n(1) q_n(n–1)



476 Chapter 14 — Generate Statements

FIGURE 14.5 

A 64-bit carry-look-ahead adder.

14. [➌ 14.2] A circuit to generate the odd-parity function of an 8-bit word is implemented
using a tree of exclusive-or gates as shown in Figure 14.6. This structure can be gen-
eralized to an input word size of 2n, implemented using a tree with n levels of gates.
Develop a recursive model that describes such a parity generator circuit. The depth
of the tree is a generic constant in the entity interface and is used to constrain the size
of the input word.

FIGURE 14.6 

An odd-parity generator implemented using exclusive-or gates.

15. [➌ 14.3] Develop a behavioral model for the FIFO cell described in Exercise 7. The
cell contains storage for one n-bit word of data. When reset, the cell sets in_rdy to ‘1’
and out_rdy to ‘0’, indicating that it contains no data. When shift_in changes to ‘1’,
the cell latches the input data and makes it available at data_out, then sets in_rdy to
‘0’ and out_rdy to ‘1’, indicating that the cell contains data. When shift_out changes
to ‘1’, the cell sets in_rdy to ‘1’ and out_rdy to ‘0’, indicating that the cell no longer
contains data. Write a configuration declaration for the FIFO queue described in Ex-
ercise 7, binding the behavioral FIFO cell model to each component instance.

adder

g p
c_in

adder

g p
c_in

adder

g p
c_in

adder

g p
c_in

c_in

carry_look_ahead_generator

g0 c1p0

c_in

c2 c3g1 p1 g2 p2 g3 p3

g p

carry_look_ahead_generator

g0 c1p0

c_in

c2 c3g1 p1 g2 p2 g3 p3

g p

c_in
g p

c_in
g p

c_in
g p

z

d(1)
d(0)

d(3)
d(2)

d(5)
d(4)

d(7)
d(6)



Exercises 477

16. [➍] Ward and Halstead, in their book Computation Structures ([17], pp. 130–134), de-
scribe a combinatorial array multiplier that multiplies two unsigned binary numbers.
The multiplier consists of an array of cells, each of which contains an and gate to mul-
tiply two operand bits and a full adder to form a partial-product bit, as shown in Fig-
ure 14.7.

The cells are connected in the multiplier array as shown in Figure 14.8. Develop
a structural model of an n-bit × n-bit array multiplier, in which the word length n is
a generic constant in the entity interface. Write a behavioral model of the multiplier
cell and a configuration declaration that binds the cell model to each cell component
instance in the array multiplier. Next, refine the behavioral cell model to a gate-level
model, and revise the configuration declaration to use the refined cell model.

FIGURE 14.7 

A single-bit multiplier cell.

a b

c_out c_in

s

p_in

p_out

c_out c_in

y

x

FIGURE 14.8 

A multiplier array constructed from single-bit multiplier cells.

0

0

0

0

0000
x(n–1) x(2) x(1) x(0)

y(0)

y(1)

y(2)

y(n–1)

p(0)p(1)p(2)p(n–1)p(n)p(n+1)p(2n–2)



478 Chapter 14 — Generate Statements

17. [➍] Weste and Eshraghian, in their book Principles of CMOS VLSI Design: A Systems
Perspective ([18], pp. 384–407), describe a systolic array processor for dynamic time
warping (DTW) pattern-matching operations used in speech recognition. Develop a
model of the DTW processing element, and use it to implement the systolic array pro-
cessor.

18. [➍] A hypercube multicomputer consists of a collection of 2n processing elements
(PEs) arranged at the vertices of an n-dimensional cube. Hypercubes with dimensions
1, 2, 3 and 4 are illustrated in Figure 14.9.

FIGURE 14.9 

Hypercubes of dimension 1, 2, 3 and 4.

Each PE has a unique address, formed by concatenating the index (0 or 1) in each
dimension to derive a binary number. Attached to each PE is a message switch with
n bidirectional message channels, one in each dimension. The switches are intercon-
nected along the edges of the hypercube. PEs exchange messages by passing them to
the attached switches, which route them through the interconnections from source to
destination. A message includes source and destination PE addresses, allowing the
switches to determine a route for the message.

The hypercube structure can be described recursively. A hypercube of dimension
1 is simply a line from position 0 to position 1 in the first dimension. A hypercube of
dimension n (n > 1) is composed of two sub-hypercubes of dimension n – 1, one at
position 0 in the nth dimension and the other at position 1 in the nth dimension. Each
vertex in one sub-hypercube is joined to the vertex with the same address in the other
sub-hypercube.

Develop a recursive structural model of an n-dimensional hypercube multicom-
puter, where the number of dimensions is specified by a generic constant in the entity
interface. Your model should include separate component instances for the PEs and
the message switches. Also develop behavioral models for the PEs and message
switches. The PEs should generate streams of test messages to different destinations
to test the switch network. Each switch should implement a simple message-routing
algorithm of your devising.



479

Chapter 15 

Access Types

We have seen in previous chapters how we can use variables within processes to create
data that is associated with a name. We can write a variable name in a model to read its
value in expressions and to update its value in variable assignment statements. In this
chapter, we introduce access types as a mechanism in VHDL for creating and managing
unnamed data during a simulation.

15.1 Access Types

The scalar and composite data types we are now familiar with can be used to represent
either single data items or regular collections of data. However, in some applications, we
need to store collections of data whose size is not known in advance. Alternatively, we
may need to represent a complex set of relations between individual data objects. In these
cases, simple scalar and composite types are not sufficient. Instead, we need to create data
objects as they are required during a simulation and to represent the links between these
data objects. We do this in VHDL using access types. These are similar to pointer types
found in many programming languages. In VHDL, access types are used mainly in high-
level behavioral models and rarely in low-level models.

We start this section with a description of access types, pointers and mechanisms for
creating data objects. Then we look at the way in which these mechanisms are used to
create linked data structures during a simulation.

15.1.1 Access Type Declarations and Allocators

We can declare an access type using a new form of type definition, given by the syntax
rule

access_type_definition ⇐ access subtype_indication

We can include such a type definition in a type declaration, for example:

type natural_ptr is access natural;



480 Chapter 15 — Access Types

This defines a new type, named natural_ptr, representing values that point to data objects
of type natural. Values of type natural_ptr can only point to natural numbers, not to ob-
jects of any other type. In general, we can write access type declarations referring to any
VHDL type except file types or protected types.

Once we have declared an access type, we can declare a variable of that type within
a process or subprogram. For example, we might declare a variable of the type natural_ptr
shown above:

variable count : natural_ptr;

This declaration creates a variable, called count, that may point to a data object of type
natural stored in memory. Initially, the variable has the value null. This is a special pointer
value that does not point to any data object and is the default initial value for any access
type. We can represent the null pointer variable pictorially as shown in Figure 15.1(a). The
box represents the location in memory where the variable count is stored. Since it is a
named variable, we can label the box with the variable name. Note that we cannot declare
constants or signals of access types. Variables are the only class of object that may be of
an access type.

Next, we can create a new natural number data object and set count to point to it. We
do this using an allocator, written according to the following syntax rule:

primary ⇐ new subtype_indication I new qualified_expression

This rule shows that an allocator, written using the keyword new, is a kind of primary.
Recall that primaries are the basis of VHDL expressions. The first form of allocator creates
a new data object of the specified subtype in memory, initializes it to the default initial
value for the subtype and returns a pointer to it. For example, the allocator expression

new natural

creates a natural number data object in memory and initialized to 0 (the leftmost value in
the subtype natural). The allocator then returns a pointer to the object, as shown in Figure
15.1(b). The box represents the location in memory where the data object is stored, but
since it is an unnamed object, there is no label. Instead, the arrow represents the pointer
to the object. This is the only way of accessing the object.

FIGURE 15.1 

(a) An access variable initialized to null. (b) A data object created by an allocator expression.
(c) A pointer returned by an allocator assigned to the access variable.

null

count

0

(a) (b) (c)

count

0



15.1 Access Types 481

The next step is to assign the pointer to the access variable count. Since the allocator
is an expression that returns the pointer value, we can write it on the right-hand side of a
variable assignment statement, as follows:

count := new natural;

This statement has the combined effects of creating and initializing the data object and
assigning a pointer to it to the variable count, as shown in Figure 15.1(c). The pointer
overwrites the null pointer previously stored in count.

Now that we have an access variable pointing to a data object in memory, we can use
and update the value of the object, accessing it via the variable. This use of the variable
is the reason for the terms “access type” and “access variable.” We access the object using
the keyword all as a suffix after the access variable name. For example, we can update
the object’s value as follows:

count.all := 10;

and we use its value in an expression:

if count.all = 0 then
  ...
end if;

Note that we need to use the keyword all in this way if we wish to use the data object
rather than the pointer itself. If we had written the expression “count = 0”, our VHDL an-
alyzer would report an error, since the value of count is a pointer, not a number, so it
cannot be compared with the number 0.

The second form of allocator, shown in the syntax rule on page 480, uses a qualified
expression to specify both the subtype and the initial value for the created data object.
Recall that the syntax rule for a qualified expression is

qualified_expression ⇐ type_mark ' ( expression ) I type_mark ' aggregate

Thus, instead of writing the two statements

count := new natural;
count.all := 10;

we could achieve the same effect with this second form of allocator:

count := new natural'(10);

The qualified expression can also take the form of an array or record aggregate. For
example, if we have a record type and access type declared as

type stimulus_record is record
    stimulus_time : time;
    stimulus_value : bit_vector(0 to 3);
  end record stimulus_record;

type stimulus_ptr is access stimulus_record;



482 Chapter 15 — Access Types

and an access variable declared as

variable bus_stimulus : stimulus_ptr;

we could create a new stimulus record data object and set bus_stimulus to point to it as
follows:

bus_stimulus := new stimulus_record'( 20 ns, B"0011" );

The value in the allocator is a qualified record aggregate that specifies both the type of
the data object (stimulus_record) and the value for each of the record elements.

15.1.2 Assignment and Equality of Access Values

Let us now look at the effect of assigning one access variable value to another access vari-
able. Suppose we have two access variables declared as follows:

variable count1, count2 : natural_ptr;

and we create data objects and set the variables to point to them:

count1 := new natural'(5);
count2 := new natural'(10);

The variables and data objects are illustrated in Figure 15.2(a). Next, we perform the fol-
lowing variable assignment:

count2 := count1;

The effect of this assignment is to copy the pointer from count1 into count2, making
both access variables point to the same object, as shown in Figure 15.2(b). We can see
that this is in fact the case by accessing the object via each of the access variables. For
example, if we update the object via count1,

count1.all := 20;

FIGURE 15.2 

The effect of assigning one access variable to another. The two variables point to the same data
object.

(a) (b)

count1

5

count2

10

count1

5

count2

10



15.1 Access Types 483

then the value we get via count2.all is 20.
Note that when we copied the pointer from count1 to count2, we overwrote the

pointer to the data object 10. The object itself is still stored in memory, but count2 is no
longer pointing to it. If we had previously copied the pointer before overwriting it, then
we could access the object via that other copy. However, if there is no other pointer to
the object, it is inaccessible. This is one of the main differences between named variables
and allocated data objects. We can always access a variable by using its name, but an al-
located object has no name, so we can only access it via pointers. If there are no pointers
to an object, it is lost forever, even though it is still resident in the host computer’s memory.
We often call such inaccessible objects garbage. We return to the topic of dealing with
unneeded objects later in this section.

Next, we look at the effect of comparing two access variables using the “=” and “/=”
operators. These operators test whether the two pointers point to the same location in
memory. For example, after performing the assignment

count2 := count1;

the expression

count1 = count2

is true, since, as Figure 15.2(b) shows, the two access variables then point to the same
object. However, if we instead set count1 and count2 as follows:

count1 := new natural'(30);
count2 := new natural'(30);

we create two distinct data objects in memory, each storing the number 30. The variable
count1 points to one of them, and count2 points to the other. In this case the result of the
equality comparison is false. If we really want to test whether the data objects are equal,
as opposed to testing the pointers, we write

count1.all = count2.all

One very useful pointer comparison is the test for equality with null, the special
pointer value that does not point to any object. For example, we might write

if count1 /= null then
  count1.all := count1.all + 1;
end if;

The test in the if statement ensures that we only access the value pointed to by count1 if
there is a value to access. If count1 has the value null, trying to access count1.all results
in an error.

15.1.3 Access Types for Records and Arrays

We have introduced access types in this section by concentrating on access types that
point to scalars, in order to keep things simple. However, most models that include access



484 Chapter 15 — Access Types

types use them to point to records or arrays. Pointers to records are mainly used for build-
ing linked data structures, and pointers to arrays are used if the lengths of the arrays are
not known when the model is written. In both cases, we can use a shorthand notation for
referring to objects via access variables.

Let us start with records and return to the example shown earlier, in which we had
types declared as

type stimulus_record is record
    stimulus_time : time;
    stimulus_value : bit_vector(0 to 3);
  end record stimulus_record;

type stimulus_ptr is access stimulus_record;

We also declared an access variable as

variable bus_stimulus : stimulus_ptr;

We have seen that we can access a record object pointed to by bus_stimulus using the
notation “bus_stimulus.all”. If we want to refer to the stimulus_time element, we could
write “bus_stimulus.all.stimulus_time”. In practice, we usually want to refer either to the
pointer itself or to an element of the record, and rarely to the record as a whole. For this
reason, VHDL allows us to write “bus_stimulus.stimulus_time” to refer to the record ele-
ment. Whenever we select a record element name after an access variable name, we au-
tomatically follow the pointer to get to the record.

A similar shorthand notation applies when we use access variables that point to array
data objects. For example, suppose we declare types as follows:

type coordinate is array (1 to 3) of real;
type coordinate_ptr is access coordinate;

and an access variable:

variable origin : coordinate_ptr := new coordinate'(0.0, 0.0, 0.0);

This last declaration creates the access variable and initializes it to point to an array object
initialized with the aggregate value. We can refer to the elements of the array using the
notation “origin(1)”, “origin(2)” and “origin(3)”, instead of having to write “origin.all(1)”,
and so on. This is similar to accessing elements of records. Whenever we write an array
index after an access variable name, we automatically follow the pointer to the array.

One of the advantages of using access types that point to array objects is that we can
deal with arrays of mixed lengths. This is in contrast to array variables, which have their
length fixed when they are created. For example, if we create an array variable
activation_times as follows:

type time_array is array (positive range <>) of time;
variable activation_times : time_array(1 to 100);



15.1 Access Types 485

it is fixed at 100 elements for its entire lifetime. On the other hand, we can create an access
type that points to data objects of an unconstrained or partially constrained composite
type. For example, if we declare an access type as follows:

type time_array_ptr is access time_array;

we can declare our variable to be a pointer of this type:

variable activation_times : time_array_ptr;

Since the variable points to an array object of an unconstrained type, it may point to
different array objects of different lengths during the course of a simulation. However,
each array object is fully constrained. This means that once an array object is created in
memory, its length is fixed. We can create an array object using an allocator that includes
a qualified aggregate, for example:

activation_times := new time_array'(10 us, 15 us, 40 us);

This allocator creates an array object whose length is determined from the length of
the aggregate. We can update each of these elements, but we cannot change the size of
the array. If we need to add two more elements, we have to create a new array object of
length five, with the first three elements being a copy of the elements from the old array.
This might be done as follows:

activation_times := new time_array'( activation_times.all
                                     & time_array'(70 us, 100 us) );

The allocator in this assignment creates an array object whose length is determined
by the result of the concatenation operation. If we want to create an array object without
initializing the values, we write an allocator that names the array type and includes an in-
dex constraint. For example, to create an array object of length 10, we might write

activation_times := new time_array(1 to 10);

We can also write allocators for more complicated composite types with uncon-
strained elements. In general, the allocator determines all of the the index ranges of the
allocated object. If we write an allocator with just a subtype indication, it must specify a
fully constrained subtype, and the index ranges are taken from that subtype. For example,
given the following declarations:

type RV is record
  v1 : bit_vector;
  v2 : time_vector;
end record RV;
type RV_ptr is access RV;
variable p : RV_ptr;

we can write an allocator using a subtype indication:

p := new RV_record(v1(0 to 23), v2(0 to 23));



486 Chapter 15 — Access Types

The subtype indication specifies index ranges of 0 to 23 for both elements, so they are
used for the allocated object. The object is then initialized with the default initial value.

On the other hand, if we write an allocator with a qualified expression, the value in
the expression is converted to the named subtype (as described in Section 4.3.7), and that
determines the index ranges for the allocated object. Where that subtype specifies index
ranges, they are used; and where no index range is specified, an index range is deter-
mined from the corresponding index subtype. For example, given the preceding declara-
tions, we can write an allocator:

p := new RV_record'(v1 => "010", v2 => (2 ns, 4 ns, 6 ns));

Since the subtype RV_record does not specify any index ranges, the index subtypes
for the record elements are used to determine index ranges for the allocated value. For
each element, the index subtype is natural, so the index ranges are 0 to 2.

15.2 Linked Data Structures

Suppose we wish to store a list of values to be used to stimulate a signal during a simu-
lation. One possible approach would be to define an array variable of stimulus values.
However, a problem arises if we do not know how large to make the array. If we make it
too small, we may run out of space. If we make it too large, we may waste space in the
host computer’s memory and run out of space for other variables. The alternative ap-
proach is to use access types and to create values only as they are needed. The values can
be linked together with pointers to form an extensible data structure. There are several
possible organizations for linked structures, but we look at one of the simplest, a linked
list, as an example, showing how it is constructed and manipulated.

A linked list of values that might be used as stimuli for a signal is shown in Figure
15.3. To construct this list, we need to compose each cell from a record that has one ele-
ment for the stimulus value and an extra element for a pointer to the next cell in the list.
This pointer must be of an access type used to access record objects. A first attempt to
write the type declarations for this structure might be

type value_cell is record
    value : bit_vector(0 to 3);
    next_cell : value_ptr;
  end record value_cell;

type value_ptr is access value_cell;

FIGURE 15.3 

A linked list structure of stimulus records.

stimulus_list

B"0000" B"0010" B"1000"

null



15.2 Linked Data Structures 487

The problem here is that the definition of value_cell uses the name value_ptr as the
type of one of the elements, but value_ptr is not declared until after the declaration of
value_cell. If we reverse the two type declarations, the same problem arises in the defini-
tion of value_ptr when it tries to use the name value_cell. To solve this “chicken and egg”
problem, VHDL lets us write an incomplete type declaration for the record type. The syn-
tax rule is

type_declaration ⇐ type identifier ;

An incomplete type declaration simply names the type, indicating that it will be fully
defined later. Meanwhile, we can use the type name to declare access types. However, we
must complete the definition of the incomplete type before the end of the declarative part
in which the incomplete declaration appears. Since we can do this after the access type
declaration, we can use the name of the access type within the complete type declaration.
Thus, we can rewrite our circular type declarations as

type value_cell;

type value_ptr is access value_cell;

type value_cell is record
    value : bit_vector(0 to 3);
    next_cell : value_ptr;
  end record value_cell;

Next we can declare an access variable to point to the beginning of the list:

variable value_list : value_ptr;

This declaration creates a variable containing a null pointer, as shown in Figure 15.4(a).
We can think of this as representing an empty list. Thus, if we need to determine whether
a list is empty, we can test the access variable to see whether it is null, for example:

if value_list /= null then
  ...  -- do something with the list
end if;

We can add a cell to the empty list by allocating a new record and assigning the point-
er to the access variable, as follows:

value_list := new value_cell'( B"1000", value_list );

The second element in the aggregate is a copy of the pointer initially stored in
value_list. This has the value null, so the result of executing the whole statement is as
shown in Figure 15.4(b). The reason for using the old value of value_list instead of writing
in the value null is that we can use the same form of statement to add the next cell:

value_list := new value_cell'( B"0010", value_list );

The allocator creates a new cell in memory, with the value element initialized to
B"0010" and the next_cell element initialized to a copy of the pointer to the old cell. A



488 Chapter 15 — Access Types

pointer to the new cell is then returned and assigned to value_list, as shown in Figure
15.4(c). We can create the third cell in the same way:

value_list := new value_cell'( B"0000", value_list );

This assignment produces the final list as shown in Figure 15.4(d). Note that each cell we
create is added on to the front of the list.

Now suppose we have a list of stimulus values of arbitrary length, pointed to by our
access variable, and we wish to go through the list applying each value to a signal. We
can write a loop to traverse the list as follows. We need to make use of a working variable,
current_cell, of type value_ptr. The statements to perform this traversal are:

current_cell := value_list;
while current_cell /= null loop
  s <= current_cell.value;
  wait for 10 ns;
  current_cell := current_cell.next_cell;
end loop;

The first assignment sets current_cell to point to the first cell in the list, as shown in
Figure 15.5(a). The first pass through the loop uses the value element of this cell to stim-
ulate the signal, then copies the next_cell element of the cell into the working variable.
At the end of the first iteration the working variable points to the next element in the list,
as shown in Figure 15.5(b). The loop repeats in this way, with current_cell being advanced
from one cell to the next cell in each iteration. In the last iteration, the variable points to
the last cell as shown in Figure 15.5(c). The next_cell element of this cell is null, and this

FIGURE 15.4 

Successive stages in the creation of a list of stimulus values.

value_list

B"0000" B"0010" B"1000"

null

(d)

value_list

B"0010" B"1000"

null

(c)

value_list

B"1000"

null

null (b)

value_list

(a)



15.2 Linked Data Structures 489

is copied into current_cell. When the loop test is performed again it evaluates to false, and
so the loop terminates.

Another operation we may wish to perform on a list is to search for a particular value.
Again, we make use of a working access variable to traverse the list, checking each cell
to see if its value element matches the value for which we are searching, as follows:

current_cell := value_list;
while current_cell /= null
    and current_cell.value /= search_value loop
  current_cell := current_cell.next_cell;
end loop;
assert current_cell /= null
  report "search for value failed";

The test for a null pointer in the loop condition is most important. It guards against
the possibility that the sought value is not in the list. If the list terminates with the working

FIGURE 15.5 

Successive stages in traversing a list of stimulus values.

value_list

current_cell

B"0000" B"0010" B"1000"

null

(a)
…

value_list

current_cell

B"0000" B"0010" B"1000"

null

(b)
…

value_list

current_cell

B"0000" B"0010" B"1000"

null

(c)
…



490 Chapter 15 — Access Types

variable equal to null, we know that the value was not found, and we can deal with the
condition appropriately. Note that the and operator in the loop condition is a “short cir-
cuit” operator, so the second part of the test will not proceed if current_cell is null, not
pointing to any list cell.

The linked list data structure is just one of a number of linked data structures that we
can construct using access types. Other examples include queues, trees and network struc-
tures. We come across some of these in further examples in this chapter and later in the
book. However, the field of data structures is much larger than we can hope to cover in
a book that focuses on hardware modeling and simulation. Fortunately, there are numer-
ous good textbooks available that discuss data structures at length. Of these, the books
that use the Ada programming language are particularly relevant, as VHDL’s access types
are based on those of Ada. (See, for example, [6].)

15.2.1 Deallocation and Storage Management

We saw earlier that if we overwrite a pointer to an unnamed data object, we can lose all
means of accessing the object, making it “garbage.” While this is usually not a problem, if
we create too much garbage during a simulation run, the host computer may run out of
memory space for allocating new objects. Some computers are able to avoid this problem
by periodically scanning memory for inaccessible data and reclaiming the space they oc-
cupy, a process called garbage collection. However, most computers do not provide this
service, so we may have to perform our own storage management.

The mechanism VHDL provides for us to do this is the implicitly defined procedure
deallocate. Whenever we declare an access type, VHDL automatically provides an over-
loaded version of deallocate to handle pointers of that type. For example, if we declare
an access type for pointers to objects of type T as follows:

type T_ptr is access T;

we automatically get a version of deallocate declared as

procedure deallocate ( P : inout T_ptr );

The purpose of this procedure is to reclaim the memory space used by the data object
pointed to by the parameter P. When the procedure returns, it sets P to the null pointer,
since the object is no longer stored in memory. Note that if P is null to start with, the
procedure has no effect. Thus, there is no need to test whether a pointer is null before
passing it to deallocate.

EXAMPLE 15.1 Deleting cells from a linked list

Suppose we wish to delete cells from our list of stimulus values, shown in the previ-
ous example. The first cell in the list is pointed to by the access variable value_list.
We can delete the first cell and reclaim its storage as follows:



15.3 An Ordered-Dictionary ADT Using Access Types 491

cell_to_be_deleted := value_list;
value_list := value_list.next_cell;
deallocate(cell_to_be_deleted);

The first statement simply copies the pointer to the first cell into the access vari-
able cell_to_be_deleted, so that we do not lose access to it. The second statement ad-
vances the list head to the second cell. The third statement then reclaims the storage
used by the first cell. Note that, if we do not need to reclaim the storage for the first
cell, we only need to include the second statement.

If we wish to delete the whole list, we can use a loop to repeat these statements
for each cell in the list, as follows:

while value_list /= null loop
  cell_to_be_deleted := value_list;
  value_list := value_list.next_cell;
  deallocate(cell_to_be_deleted);
end loop;

This loop simply repeats the steps needed to delete the cell at the head of the list
until the list is empty, indicated by value_list being null.

We can use deallocate to reclaim memory space, provided we are sure that no other
pointer points to the object being deallocated. It is very important that we keep this con-
dition in mind when using deallocate. If some other pointer points to an object that we
deallocate, that pointer is not set to null. Instead, it becomes a “dangling” pointer, possibly
pointing to some random piece of data in memory or not pointing to a valid memory lo-
cation at all. If we try to access data via a dangling pointer, the effects are unpredictable,
varying from accessing seemingly random data to crashing the simulation run. Thus, we
must take the utmost care to avoid this situation when using deallocate. Furthermore, we
should document such models very thoroughly, so that other designers using or modifying
the models are aware of the potential problems.

15.3 An Ordered-Dictionary ADT Using Access Types

In Chapter 12, we introduced the notion of abstract data types (ATDs) and showed how
we could write a reusable ADT in the form of a package with generics. We presented an
example of an ordered dictionary ATD implemented by a sorted array of elements. One
problem with that implementation is that the maximum size of a dictionary is fixed when
the package is instantiated. We may not always be able to determine in advance the max-
imum number of elements needed in an application. We can avoid this problem by im-
plementing the ADT with a different data structure based on access types and dynamically
allocated storage for elements.

The data structure that we will use in this section is called a binary search tree, and
is described in textbooks on software data structures. The tree consists of a collection of
records, each of which stores one elements and has pointers to two subtrees, as shown in
Figure 15.6. All of the elements in the left subtree have key values less than that of the



492 Chapter 15 — Access Types

element in the root record, and all of the elements in the right subtree have key values
greater than that of the element in the root record. This relationship holds recursively in
both the left and right subtrees. The elements in the tree of Figure 15.6 have a numeric
key, but this need not always be the case. All that is required is that the key type be totally
ordered; that is, there must be a “<” relation among key values.

The package declaration for the ADT is shown below. It is much the same as the im-
plementation using a sorted array, apart from the details of the private types and the ab-
sence of the size generic constant. In particular, the operations are identical, illustrating
the separation of interface and implementation afforded by ADTs.

package dictionaries is
  generic ( type element_type;
            type key_type;
            function key_of ( E : element_type ) return key_type;
            function "<" ( L, R : key_type )
                         return boolean is <> );

  -- types provided by the package

  type dictionary_object;    -- private

  type dictionary_type is access dictionary_object;

  -- operations on dictionaries

  procedure initialize ( dictionary : inout dictionary_type );

FIGURE 15.6 

A binary search tree.

dictionary

key: 1

…

nullnull

key: 15

…

null

key: 18

…

null

null

null

key: 30

…

nullnull

key: 27

…

key: 10

…

key: 59

…



15.3 An Ordered-Dictionary ADT Using Access Types 493

  procedure lookup ( dictionary : in dictionary_type; 
                     lookup_key : in key_type;
                     element : out element_type;
                     found : out boolean );

  procedure search_and_insert
              ( dictionary : inout dictionary_type;
                element : in element_type;
                already_present : out boolean );

  procedure traverse
    generic   ( procedure action ( element : in element_type ) )
    parameter ( dictionary : in dictionary_type );

  -- private types: pretend these are not visible

  type dictionary_object is
    record
      element : element_type;
      left, right : dictionary_type;
    end record dictionary_object;

end package dictionaries;

We can use this implementation of the ADT in exactly the same way as shown in the
examples in Chapter 12, apart from the minor difference in the package instantiation. We
simply omit the size generic:

package test_pattern_dictionaries is new work.dictionaries
  generic map ( element_type => test_pattern_type,
                key_type => time,
                key_of => test_time_of );

As implementers of the ADT, we are concerned with the details of the private types.
Specifically, the dictionary_object record type represents the storage for an element and
the left and right subtree pointers. The public type dictionary_type is an access type point-
ing to the root element of a tree. The package body for the ADT is

package body dictionaries is

  procedure initialize ( dictionary : inout dictionary_type ) is
  begin
    if dictionary /= null then
      initialize ( dictionary.left );
      initialize ( dictionary.right );
      deallocate ( dictionary );
    end if;
  end function new_dictionary;

  procedure lookup ( dictionary : in dictionary_type;
                     lookup_key : in key_type;



494 Chapter 15 — Access Types

                     element : out element_type;
                     found : out boolean ) is
    variable current : dictionary_type := dictionary;
  begin
    found := false;
    while current /= null loop
      if lookup_key < key_of ( current.element ) then
        current := current.left;
      elsif key_of ( current.element ) < lookup_key then
        current := current.right;
      else
        found := true;
        element := current.element;
        return;
      end if;
    end loop;
  end procedure lookup;

  procedure search_and_insert
              ( dictionary : inout dictionary_type;
                element : in element_type;
                already_present : out boolean ) is
  begin
    if dictionary = null then
      already_present := false;
      dictionary
        := new dictionary_object'( element => element,
                                   left => null, right => null );
    elsif key_of ( element ) < key_of ( dictionary.element ) then
      search_and_insert ( dictionary.left,
                          element, already_present );
    elsif key_of ( dictionary.element ) < key_of ( element ) then
      search_and_insert ( dictionary.right,
                          element, already_present );
    else
      already_present := true;
    end if;
  end procedure search_and_insert;

  procedure traverse
    generic   ( procedure action ( element : in element_type ) )
    parameter ( dictionary : in dictionary_type ) is
  begin
    if dictionary = null then
      return;
    end if;
    traverse ( dictionary.left );
    action   ( dictionary.element );



Exercises 495

    traverse ( dictionary.right );
  end procedure traverse;

end package body dictionaries;

The function initialize clears the tree representing a dictionary recursively. Provided
the tree has at least a root element, the procedure clears the left and right subtrees, then
deallocates the root object. This has the effect of setting the dictionary pointer to null.

The lookup procedure searches for an element with the desired key by descending
down a path from the root. At a given position in the tree, if the desired key is less than
that of the element at the position, the procedure descends into the left subtree. If the
desired key is greater than that of the element, the procedure descends into the right sub-
tree. If neither case is true, the keys must be equal, and the element at the given position
is the one sought. The descent continues until the sought element is found or until a null
pointer is found.

The search_and_insert procedure searches the tree for the position in which to insert
a given element. While we could write the procedure using a loop, as we did for the
lookup procedure, it is more clearly expressed in recursive form. The procedure descends
the tree using recursion. If it reaches a null pointer, the tree contains no element with the
given key. The procedure allocates a new object for the element, and updates the parent’s
pointer, sets already_present to false, and returns. For example, in Figure 15.6, if the new
element has a key value of 12, the procedure would descend via elements with keys 27,
10 and 15, before reaching the null left pointer of the element with key 15. The procedure
would then allocate the object for the new element and update the null pointer to refer
to the new object. If the procedure reaches an element with the same key as that of the
new element, it sets already_present to true, does not insert the new element, and returns.

The traverse procedure is also recursive. It must apply the action procedure to ele-
ments in ascending order of their keys. Since all the elements in the left subtree of a given
element have lesser keys, and all the elements in the right subtree have greater keys, ac-
tion must be applied to all of the left subtree elements, then the given element, then the
right subtree elements. In the case of an empty subtree (indicated by a null pointer), no
application is needed, so the procedure returns immediately.

The recursive traverse procedure further illustrates the rules we mentioned in Section
12.3 for interpreting names in uninstantiated units. The reference to the name traverse
within that procedure is interpreted, in each instance of the procedure, as a reference to
the instance. Thus each instance is properly recursive. This is the only situation where we
can write a call to an uninstantiated subprogram.

Exercises

1. [➊ 15.1] Write a type declaration for an access type that points to a character data ob-
ject. Declare a variable of the type, initialized by allocating a character with the value
ETX. Write a statement that changes the character value to ‘A’.

2. [➊ 15.1] Identify the error in the following VHDL fragment:

type real_ptr is access real;
variable r : real_ptr;



496 Chapter 15 — Access Types

...
r := new real;
r := r + 1.0;

3. [➊ 15.1] Draw a diagram showing the pointer variables and the data objects to which
they refer after execution of the following VHDL fragment:

type int_ptr is access integer;
variable a, b, c, d : int_ptr;
...
a := new integer'(1);  b := new integer'(2);
c := new integer'(3);  d := new integer'(4);
b := a;  a := b;
c.all := d.all;

4. [➊ 15.1] After execution of the fragment shown in Exercise 3, what is the value of each
of the following conditions?

a = b            c = d

a.all = b.all    c.all = d.all

5. [➊ 15.1] Write a type declaration for an access type that points to a string data object.
Declare a variable of the type, initialized by allocating a string of four spaces. Write a
statement that changes the first character in the string to the character NUL.

6. [➊ 15.1] The following declarations define a type for complex numbers, an access type
referring to the complex number type and three pointer variables:

type complex is record
    re, im : real;
  end record complex;
type complex_ptr is access complex;
variable x, y, z : complex_ptr;

Write statements that assign the complex product of the values pointed to by x and y
to the data object pointed to by z. The steps required in complex multiplication are
given by the following formulas:

7. [➊ 15.2] Write type declarations for use in constructing a linked list of message objects.
Each message contains a source and destination number (both of type natural) and a
256-bit data field. Declare a variable to point to a list of messages, and write a state-
ment to add to the list a message with source number 1, destination number 5 and a
data field of all ‘0’ bits.

zreal xreal yreal× ximag yimag×–=

zimag xreal yimag× ximag yreal×+=



Exercises 497

8. [➊ 15.2] Why is the following fragment to delete the first object in a linked list incor-
rect?

cell_to_be_deleted := value_list;
deallocate(cell_to_be_deleted);
value_list := value_list.next_cell;

9. [➋ 15.2] In Section 15.2 on page 488, we show statements to traverse a linked list of
stimulus values and apply them to a signal. Encapsulate these statements in a proce-
dure with the list pointer and the signal as parameters.

10. [➋ 15.2] The algorithm for traversing a list, encapsulated in a procedure as described
in Exercise 9, can be expressed recursively. If the list is empty, the procedure has
nothing to do, so it returns. Otherwise, the procedure applies the first stimulus value
from the list, waits for the delay, then recursively calls itself with the next cell pointer
as the list parameter. Thus, recursive invocation of the procedure replaces the iterative
traversal of the list. Rewrite the procedure to use this recursive algorithm.

11. [➋ 15.2] Write a recursive procedure to delete all cells from a linked list pointed to by
a parameter of type value_ptr. Hint: The procedure should call itself to delete the cells
after the first cell, then delete the first cell.

12. [➌ 15.2/15.3] Modify the implementation of the dictionary ADT to include a delete
procedure to delete an element with a given key and to deallocate the storage for the
deleted element.

13. [➌ 15.3] Develop an ADT for last-in/first-out stacks of objects. The ADT should be pa-
rameterized by the type of object and should provide operations to create a new stack,
to test whether a stack is empty, to push an object onto the stack and to pop the top
object from the stack and return the object’s value.

14. [➌ 15.3] Develop an ADT for first-in/first-out queues of objects. The ADT should be
parameterized by the type of object and maximum number of objects allowed in the
queue. The operations are to create a new queue, to test whether a queue is empty
or full, to add an object to the tail of a queue and to remove an object from the head
of a queue and return the object’s value. The queue may be implemented as a linked
list, as shown in Figure 15.7. Use the ADT in a behavioral model of an 8-bit-wide
FIFO, based on the behavior described in Exercises 7 and 15 in Chapter 14.



498 Chapter 15 — Access Types

FIGURE 15.7 

Linked list implementation of a queue.

15. [➍ 15.3] Develop an alternative implementation of the ordered-collection ADT based
on a doubly-linked list data structure. A doubly-linked list is a collection of cells, each
of which contains pointers to the previous and next cells. Cells are inserted in the list
in order of their keys.

16. [➍] Develop an ADT for sparse arrays. A sparse array dynamically allocates storage for
array elements as they are accessed. One approach is to allocate chunks of contiguous
elements, since array accesses usually exhibit locality of reference. The ADT should
have generics for the index bounds, the element type, and the default initial value of
each element. It should provide operations to set an element to a given value and to
read the value of an element.

queue

null
…

head

tail



499

Chapter 16 

Files and Input/Output

In this chapter we look at the facilities in VHDL for file input and output. Files serve a
number of purposes, one of which is to provide long-term data storage. In this context,
“long-term” means beyond the lifetime of one simulation run. Files can be used to store
data to be loaded into a model when it is run, or to store the results produced by a sim-
ulation. VHDL also provides specialized versions of file operations for working with text
files. We show how textual input and output can be used to extend the user interface of
a simulator with model-specific operations.

16.1 Files

We start our discussion of files by looking at the general-purpose mechanisms provided
in VHDL for file input and output. VHDL provides sequential access to files using opera-
tions, such as “open”, “close”, “read” and “write”, that are familiar to users of conventional
programming languages.

16.1.1 File Declarations

A VHDL file is a class of object used to store data. Hence, as with other classes of objects,
we must include file-type definitions in our models. The syntax rule for defining a file type
is

file_type_definition ⇐ file of type_mark

A file-type definition simply specifies the type of objects to be stored in files of the
given type. For example, the type declaration

type integer_file is file of integer;

defines integer_file to be a type of file that can only contain integers. A file can only con-
tain one type of object, but that type can be almost any VHDL type, including scalar types,
records and one-dimensional arrays. The only types that cannot be stored in files are mul-
tidimensional arrays, access types, protected types and other files.



500 Chapter 16 — Files and Input/Output

Once we have defined a file type, we can then declare file objects. We do this with a
new form of object declaration, described by the syntax rule

file_declaration ⇐
file identifier { , … } : subtype_indication

[ [ open file_open_kind_expression ] is string_expression ] ;

A file declaration creates one or more file objects of a given file type. We can include
a file declaration in any declarative part in which we can create objects, such as within
architecture bodies, blocks, processes, packages and subprograms.

The optional parts of a file declaration allow us to make an association between the
file object and a physical file in the host file system. If we include these parts, the file is
automatically opened for access during simulation. The string after the keyword is is a file
logical name, which identifies the host file to access. Since different host operating sys-
tems use different formats for naming files, many simulators provide some form of map-
ping between the logical name strings that we include in our models and the file names
used in the host file system. For example, if we declare a file as

file lookup_table_file : integer_file is "lookup-values";

a simulator running under the UNIX operating system may associate the file object with a
physical file named “lookup-values” in the current working directory. A different simula-
tor, running under a Windows operating system, may associate the file object differently,
since file names usually include a file-type extension in that operating system. So it might
associate the object with a physical file called “lookup-values.dat” in the current working
directory.

The optional expression after the keyword open allows us to specify how the phys-
ical file associated with the file object should be opened. This expression must have a
value of the predefined type file_open_kind, declared in the package standard. The dec-
laration is

type file_open_kind is (read_mode, write_mode, append_mode);

If we omit the open kind information from a file declaration but include the file logical
name, the physical file is opened in read mode. In the rest of this section we discuss each
of these modes and see how data is read and written using files opened in each of the
modes.

VHDL-87

The syntax rule for file declarations in VHDL-87 is

file_declaration ⇐
file identifier : subtype_indication is

[ in I out ] string_expression ;

VHDL-87 does not provide the predefined type file_open_kind. Instead, the
keywords in and out are used in file declarations to open files in read or write mode,



16.1 Files 501

respectively. The default is that a file is opened in read mode. Note that the VHDL-87
syntax for file declarations is not a subset of the VHDL-93 and VHDL-2002 syntax. If
a model includes either of the keywords in or out, it cannot be successfully analyzed
with a VHDL-93 or VHDL-2002 analyzer.

16.1.2 Reading from Files

If a file is opened in read mode, successive elements of data are read from the file using
the read operation. Reading starts from the first element in the file, and each time an ele-
ment is read the file position advances to the next element. We can use the endfile oper-
ation to determine when we have read the last element in the file. Given a file type
declared as follows:

type file_type is file of element_type;

the read and endfile operations are implicitly declared as

procedure read ( file f : file_type;  value : out element_type );

function endfile ( file f : file_type ) return boolean;

We explain subprogram file parameters later in this section.

EXAMPLE 16.1 Initializing the contents of a ROM from a file

We can use file operations to initialize the contents of a read-only memory (ROM)
from a file. Following is an entity declaration for a ROM that includes a generic con-
stant to specify the name of a file from which to load the ROM contents.

library ieee;  use ieee.std_logic_1164.all;

entity ROM is
  generic ( load_file_name : string );
  port ( sel : in std_ulogic;
         address : in std_ulogic_vector;
         data : inout std_ulogic_vector );
end entity ROM;

The architecture body for the ROM, shown below, uses the file name in a file dec-
laration, creating a file object associated with a physical file of data words. The pro-
cess that implements the behavior of the ROM loads the ROM storage array by reading
successive words of data from the file, using endfile to determine when to stop.

architecture behavioral of ROM is

begin

  behavior : process is



502 Chapter 16 — Files and Input/Output

    subtype word is std_ulogic_vector(0 to data'length - 1);
    type storage_array is
      array (natural range 0 to 2**address'length - 1) of word;
    variable storage : storage_array;
    variable index : natural;
    ...  -- other declarations

    type load_file_type is file of word;
    file load_file : load_file_type
           open read_mode is load_file_name;

  begin

    -- load ROM contents from load_file
    index := 0;
    while not endfile(load_file) loop
      read(load_file, storage(index));
      index := index + 1;
    end loop;

    -- respond to ROM accesses
    loop
      ...
    end loop;

  end process behavior;

end architecture behavioral;

In the above example, each element of the file is a standard-logic vector of a fixed
length, determined by the ROM data port width. However, we are not restricted to fixed-
length arrays as file elements. We may declare a file type with an unconstrained or partially
constrained array type for the element type, provided the array element type is a scalar
type or a fully constrained composite subtype, for example:

type bit_vector_file is file of bit_vector;

The data in a file of this type is a sequence of bit vectors, each of which may be of a
different length. For such a file, the read operation takes a slightly different form, to allow
for the fact that we do not know the length of the next element until we read it. The op-
eration is implicitly declared as

procedure read ( file f : file_type;
                 value : out element_type;  length : out natural );

When we call this form of read operation, we supply an array variable large enough
to receive the value we expect to read, and another variable to receive the actual length
of the value read. For example, if we make the following declarations:



16.1 Files 503

file vectors : bit_vector_file open read_mode is "vectors.dat";
variable next_vector : bit_vector(63 downto 0);
variable actual_len : natural;

we can call the read operation as follows:

read(vectors, next_vector, actual_len);

This allows us to read a bit vector up to 64 bits long. If the next value in the file is
less than or equal to 64 bits long, it is placed in the leftmost part of next_vector, with the
remaining bits being unchanged. If the value in the file is longer than 64 bits, the first 64
bits of the value are placed in next_vector, and the remaining bits are discarded. In both
cases, actual_len is set to the actual length of the value in the file, whether it be shorter
or longer than the length of the second argument to read. This allows us to test whether
information has been lost. If the expression

actual_len > next_vector'length

is true, the vector variable was not long enough to receive all of the bits.

EXAMPLE 16.2 Reading stimulus values from a file

Suppose we have designed a model for a network receiver and we wish to test it. We
can generate network packets to stimulate the model by reading variable-length pack-
ets from a file. The outline of a process to do this is:

stimulate_network : process is

  type packet_file is file of bit_vector;
  file stimulus_file : packet_file
         open read_mode is "test packets";

  variable packet : bit_vector(1 to 2048);
  variable packet_length : natural;

begin

  while not endfile(stimulus_file) loop

    read(stimulus_file, packet, packet_length);
    if packet_length > packet'length then
      report "stimulus packet too long - ignored"
        severity warning;
    else
      for bit_index in 1 to packet_length loop
        wait until stimulus_clock;
        stimulus_network <= not stimulus_network;
        wait until not stimulus_clock;
        stimulus_network <= stimulus_network
                            xor packet(bit_index);



504 Chapter 16 — Files and Input/Output

      end loop;
    end if;

  end loop;

  wait;  -- end of stimulation: wait forever

end process stimulate_network;

The process declares a file object, stimulus_file, containing variable-length bit
vectors. Each file element is read into the bit-vector variable packet, with the length
of the bit vector read from the file being stored in packet_length. If the bit vector in
the file is longer than the bit-vector variable, the process reports the fact and ignores
that stimulus packet. Otherwise, the value in packet_length is used to determine how
many bits from packet should be used as data bits to stimulate the network.

16.1.3 Writing to Files

If a file is opened in write mode, a new empty file is created in the host computer’s file
system, and successive data elements are added using the write operation. For each file
type declared, the write operation is implicitly declared as

procedure write ( file f : file_type;  value : in element_type );

One common use of output files is to save information gathered by instrumentation
code. When the simulation is complete, or upon some other trigger condition, the instru-
mentation code can use write operations to write the data to a file for subsequent analysis.

EXAMPLE 16.3 Recording CPU instruction frequencies

When we are designing a new CPU instruction set, it is useful to know how frequently
each instruction is used in different programs. We measure this by simulating the CPU
running a program and having the CPU keep count of how often it executes each in-
struction. When it completes the program (for example, by reaching a halt instruc-
tion), it writes the accumulated counts to a file.

The architecture body for a CPU shown below illustrates this approach. It contains
a file, instruction_counts, opened in write mode. There is also a process, interpreter,
that fetches and interprets instructions. It contains an array of counters, indexed by
opcode values. As the instruction interpreter process decodes each instruction, it in-
crements the appropriate counter. When a halt instruction is executed, the interpreter
stops execution and writes the counter values as successive elements in the
instruction_counts file.

architecture instrumented of CPU is

  type count_file is file of natural;
  file instruction_counts : count_file
         open write_mode is "instructions";



16.1 Files 505

begin

  interpreter : process is

    variable IR : word;
    alias opcode : byte is IR(0 to 7);
    variable opcode_number : natural;
    type counter_array is
      array (0 to 2**opcode'length - 1) of natural;
    variable counters : counter_array := (others => 0);
    ...

  begin

    ...  -- initialize the instruction set interpreter

    instruction_loop : loop

      ...  -- fetch the next instruction into IR

      -- decode the instruction
      opcode_number := convert_to_natural(opcode);
      counters(opcode_number) := counters(opcode_number) + 1;
      ...

      -- execute the decoded instruction
      case opcode is
        ...
        when halt_opcode => exit instruction_loop;
        ...
      end case;

    end loop instruction_loop;

    for index in counters'range loop
      write(instruction_counts, counters(index));
    end loop;
    wait;  -- program finished, wait forever

  end process interpreter;

end architecture instrumented;

If an existing physical file in the host computer’s file system is opened in append
mode, successive data elements are added to the end of the file using the write operation.
If there is no host file of the given name in the host file system, opening the file object in
append mode creates a new file, so that data elements are written from the beginning.
Append mode is used for a file that accumulates log information or simulation results over
a number of simulation runs. Each run adds its data to the end of the previously accumu-
lated data in the file.



506 Chapter 16 — Files and Input/Output

EXAMPLE 16.4 Measuring cache performance

When we are designing a cache memory to attach to a CPU, we need to measure how
different cache organizations affect the miss rate, since this influences the average ac-
cess time seen by the CPU. We measure the miss rate by monitoring the traffic on the
buses between the CPU and cache and between the cache and main memory. At the
end of a simulation run, the process monitoring the buses appends a record to a data
file, storing the parameter values that determine the cache organization and the mea-
sured miss rate and average access time. An outline of the process is:

cache_monitor : process is

  type measurement_record is
    record
      cache_size, block_size, associativity : positive;
      benchmark_name : string(1 to 10);
      miss_rate : real;
      ave_access_time : delay_length;
    end record;
  type measurement_file is file of measurement_record;
  file measurements : measurement_file
    open append_mode is "cache-measurements";
  ...

begin
  ...
  loop
    ...
    exit when halt;
    ...
  end loop;

  write ( measurements,
          measurement_record'(
            -- write values of generics for this run
            cache_size, block_size, associativity, benchmark_name,
            -- calculate performance metrics
            miss_rate => real(miss_count) / real(total_accesses),
            ave_access_time => total_delay / total_accesses ) );
  wait;

end process cache_monitor;

The process declares a record type that represents the information to be recorded
for the simulation run and opens a file of records of this type in append mode. At the
end of the simulation run, it creates a record value and appends it to the end of the
previously existing data in the file. The record includes the values of generic constants



16.1 Files 507

that control the cache organization and identify the benchmark program being run, as
well as the calculated values for the miss rate and average access time.

Most file system implementations buffer data written to files in order to improve per-
formance. Data is typically stored in a file in relatively large blocks. Writing a partial block
is often more expensive than writing a whole block, since the block must be read from
storage, part of it updated, and then the modified block written back to storage. Moreover,
when network-based file systems are used, partial-block writes involve more network traf-
fic, further reducing performance. Most file systems thus accumulate complete blocks of
data in memory and defer writing to the file storage. While this improves performance, it
can cause synchronization problems when the data is read by some other application run-
ning concurrently with the VHDL simulation. In particular, if the data consists of textual
messages and the “other application” is a human reader, we may be unable to monitor
simulation progress properly.

VHDL provide a file flush operation to help us avoid these problems. For each file
type declared, the operation is implicitly declared as

procedure flush ( file f : file_type );

The effect of the operation is to request that the host system complete all deferred
write operations, writing the buffered data to the file system store. The flush should be
completed before any subsequent read operations can proceed. It is important to note that
the flush operation is a request to synchronize writes and reads, not a guarantee. A simple
computer with local file system storage might be able to satisfy the request reliably. How-
ever, simulators in complex design environments may use distributed network-based file
systems and interact with many other applications. In such environments, it may not be
possible to satisfy all flush requests completely. We must make do with a best effort.

VHDL-87, -93, and -2002

These versions do not provide the flush operation.

16.1.4 Files Declared in Subprograms

In all of the previous examples, the file object is declared in an architecture body or a
process. In these cases, the file is opened at the start of the simulation and automatically
closed again at the end of the simulation. The same applies to files declared in packages.
We can also declare files within subprograms, but the behavior in these cases is slightly
different. The file is opened when the subprogram is called and is automatically closed
again when the subprogram returns. Hence the file object, and its association with a phys-
ical file in the host file system, is purely local to the subprogram activation. So, for exam-
ple, if we declare a file in a subprogram:

procedure write_to_file is
  file data_file : data_file_type open write_mode is "datafile";
begin



508 Chapter 16 — Files and Input/Output

  ...
end procedure write_to_file;

each time we call the procedure a new physical file is created, replacing the old one.

EXAMPLE 16.5 Initializing a constant value from a file

We can initialize the value of a constant array by calling a function that reads element
values from a file. Suppose the array is of the following type, containing integer ele-
ments:

type integer_vector is array (integer range <>) of integer;

The function declaration is:

impure function read_array ( file_name : string;
                             array_length : natural )
                           return integer_vector is
  type integer_file is file of integer;
  file data_file : integer_file open read_mode is file_name;
  variable result : integer_vector(1 to array_length)
             := (others => 0);
  variable index : integer := 1;
begin
  while not endfile(data_file) and index <= array_length loop
    read(data_file, result(index));
    index := index + 1;
  end loop;
  return result;
end function read_array;

The first parameter is the name of the file from which to read data elements, and
the second parameter is the size of the array that the function should return. The func-
tion creates a file object representing a file of integer values and uses the file name
parameter to open the file. It then reads values from the file into an array until it
reaches the end of the file or the end of the array. It returns the array as the function
result. When the function returns, the file is automatically closed. We can use this
function in a constant declaration as follows:

constant coeffs : integer_vector := read_array("coeff-data", 16);

The length of the constant is determined by the result of the function.

One important point to note about files is that we should be careful not to associate
more than one VHDL file object with a single physical file in the host file system. While
the language does not expressly prohibit multiple associations, it does not specify what
happens when we do several reads or writes to the same physical file through different



16.1 Files 509

VHDL file objects. Hence the results may be unpredictable and may vary from one host
to another.

This restriction may seem fairly trivial, but we may violate it inadvertently. For exam-
ple, we might declare a file object in an architecture body for some entity as follows:

file log_info : log_file open write_mode is "logfile";

If our design uses multiple instances of the entity, we have multiple instances of the
file object, each associated with “logfile”. Possible consequences include interleaving of
writes from different instances and loss of data written from all but one instance. The so-
lution to this problem depends on the desired effect. If we intend to merge log data from
all instances into one file, we should declare the file in a package. On the other hand, if
we intend each instance to have its own log file, we should compute separate file logical
name strings for each instance.

16.1.5 Explicit Open and Close Operations

The syntax rule for a file object declaration, shown on page 500, indicates that the file
open mode and logical name are optional. If we include either of them, the physical file
is automatically opened when the file object is created. If we omit them, the file object is
created but remains unassociated with any physical file. An example of a file declaration
in this form is

file lookup_table_file, result_file : integer_file;

If we declare a file object in this way, we explicitly associate it with a physical file and
open the file using the file_open operation. Given a file type declared as follows:

type file_type is file of element_type;

file_open is implicitly declared as

procedure file_open ( file f : file_type;
                      external_name : in string;
                      open_kind : in file_open_kind := read_mode );

The external_name and open_kind parameters serve exactly the same purpose as the
corresponding information in the optional part of a file object declaration. For example,
the declaration

file lookup_table_file : integer_file
     open read_mode is "lookup-values";

is equivalent to

file lookup_table_file : integer_file;
...



510 Chapter 16 — Files and Input/Output

file_open ( lookup_table_file,
            external_name => "lookup-values",
            open_kind => read_mode );

The advantage of using an explicit file_open operation, as opposed to having the file
automatically opened when the file object is created, is that we can first perform some
other computation to determine how to open it. For example, we might ask the user to
type in a file name.

A problem that arises with both of the previously mentioned ways of opening a file
is that the operation may fail, causing the whole simulation to come to an abrupt halt. We
can make a model more robust by including some error checking, using a second form of
the file_open operation, implicitly declared as

procedure file_open ( status : out file_open_status;
                      file f : file_type;
                      external_name : in string;
                      open_kind : in file_open_kind := read_mode );

The extra parameter, status, is used to return information about the success or failure
of the operation. Its type is predefined in the package standard as

type file_open_status is (open_ok, status_error,
                          name_error, mode_error);

If the file was successfully opened, the value open_ok is returned, and we can pro-
ceed with read, write and endfile operations, according to the mode. If there was a prob-
lem during the file_open operation, one of the remaining values is returned. The value
status_error indicates that the file object had previously been opened and associated with
a physical file. (This error is different from the case in which multiple file objects are as-
sociated with the same physical file.) The value name_error is returned under different
circumstances, depending on the mode in which we attempt to open the file. In read
mode, it is returned if the named host file does not exist. In write mode, it is returned if
a file of the given name cannot be created. In append mode, it is returned if the named
file does not exist and a new file of that name cannot be created. Finally, the value
mode_error is returned from the file_open operation if the file exists but cannot be opened
in the specified mode. This error may arise if we attempt to write or append to a file
marked read-only in the host file system.

Complementing the file_open operation, VHDL also provides a file_close operation,
which can be used to close a file explicitly. The operation disassociates the file object from
the physical file. When a file type is declared, a corresponding version of file_close is im-
plicitly declared as

procedure file_close ( file f : file_type );

We can use file_open and file_close in combination, either to associate a file object
with a number of different physical files in succession, or to access a particular physical
file multiple times. While applying the file_close operation to a file object that is already
closed has no effect, it is good style to make sure that file_open and file_close operations



16.1 Files 511

are always paired. We should open a file in the desired mode, perform the reads and
writes required, then close the file. This discipline helps ensure that we do not inadvert-
ently write the wrong data to the wrong file. Finally, a flush operation is usually not re-
quired before we close a file. The act of closing the file usually includes flushing deferred
writes.

EXAMPLE 16.6 A directory file for stimulus files

Suppose we wish to apply stimulus vectors from a number of different files to a model
during a simulation run. We create a directory file containing a list of file names to be
used as stimulus files. Our test bench model then reads the stimulus file names from
this directory file and opens the stimulus files one-by-one to read the stimulus data.
An outline of a process that reads the stimulus files is:

stimulus_generator : process is

  type directory_file is file of string;
  file directory : directory_file
       open read_mode is "stimulus-directory";
  variable file_name : string(1 to 50);
  variable file_name_length : natural;
  variable open_status : file_open_status;

  subtype stimulus_vector is std_ulogic_vector(0 to 9);
  type stimulus_file is file of stimulus_vector;
  file stimuli : stimulus_file;
  variable current_stimulus : stimulus_vector;
  ...

begin
  file_loop : while not endfile(directory) loop
    read( directory, file_name, file_name_length );
    if file_name_length > file_name'length then
      report "file name too long: "
             & file_name & "... - file skipped"
        severity warning;
      next file_loop;
    end if;
    file_open ( open_status, stimuli,
                file_name(1 to file_name_length), read_mode );
    if open_status /= open_ok then
      report file_open_status'image(open_status)
             & " while opening file "
             & file_name(1 to file_name_length)
             & " - file skipped"
        severity warning;
      next file_loop;
    end if;



512 Chapter 16 — Files and Input/Output

    stimulus_loop : while not endfile(stimuli) loop
      read(stimuli, current_stimulus);
      ...  -- apply the stimulus
    end loop stimulus_loop;
    file_close(stimuli);
  end loop file_loop;
  wait;
end process stimulus_generator;

The process has a string variable, file_name, into which it reads the name of the
next stimulus file to be opened. Note the test to see if the actual file name is longer
than this variable. This test guards against the open failing through truncation of a file
name. The second form of file_open is used to open the stimulus file, using the slice
of the file_name variable containing the name read from the directory. If the open
fails, the stimulus file is skipped. Otherwise, the process reads the stimulus vectors
from the file, then closes it. When the end of the directory is reached, all stimulus files
have been read, so the process suspends.

VHDL-87

The explicit file open and close operations are not provided in VHDL-87, nor is the
predefined type file_open_status.

16.1.6 File Parameters in Subprograms

We have seen that the file operations described above take a file object as a parameter. In
general, we can include a file parameter in any subprogram we write. Files form a fourth
class of parameter, along with constants, variables and signals. The syntax for a file pa-
rameter in a subprogram specification is as follows:

interface_file_declaration ⇐ file identifier { , … } : subtype_indication

The file parameters in the file operations we have seen conform to this syntax rule.
The subtype indication must denote a file type. When the subprogram is called, a file ob-
ject of that type must be supplied as an actual parameter. This object can be a file object
declared by the caller, or, if the caller is itself a subprogram, a formal file parameter of the
caller. The file object is passed into the subprogram and any of the file operations can be
performed on it (depending on the mode in which the file object is opened).

EXAMPLE 16.7 Reading two-dimensional array data from a file

Suppose we need to initialize a number of two-dimensional transformation arrays of
real numbers using data stored in a file. We cannot directly declare the file of array
objects, as VHDL only allows us to store one-dimensional arrays in a file. Instead, we
declare the file to be a file of real numbers and use a procedure to read numbers from



16.1 Files 513

the file into an array parameter. First, here are the declarations for the arrays and the
file:

type transform_array is array (1 to 3, 1 to 3) of real;
variable transform1, transform2 : transform_array;

type transform_file is file of real;
file initial_transforms : transform_file
     open read_mode is "transforms.ini";

Next, the declaration of the procedure to read values into an array is:

procedure read_transform
  ( file f : transform_file;
    variable transform : out transform_array ) is
begin
  for i in transform'range(1) loop
    for j in transform'range(2) loop
      if endfile(f) then
        report "unexpected end of file in read_transform - "
               & "some array elements not read"
          severity error;
        return;
      end if;
      read ( f, transform(i, j) );
    end loop;
  end loop;
end procedure read_transform;

The procedure uses the endfile operation to test whether there is an element to read.
If not, it reports the fact and returns. Otherwise, it proceeds to use the read operation
to fetch the next element of the array.

We call this procedure to read values into the two array variables as follows:

read_transform ( initial_transforms, transform1 );
read_transform ( initial_transforms, transform2 );

The file object initial_transforms remains opened between the two calls, so the sec-
ond call reads values from the file beyond those read by the first call.

VHDL-87

In VHDL-87, files are of the variable class of objects. Hence file parameters in subpro-
grams are specified as variable-class parameters. For example, the procedure
read_transform in Example 16.7 can be written in VHDL-87 as



514 Chapter 16 — Files and Input/Output

procedure read_transform
            ( variable f : in transform_file;
              variable transform : out transform_array ) is ...

A subprogram that reads a file parameter should declare the parameter to be of mode
in. A subprogram that writes a file parameter should declare the parameter to be of
mode out.

16.1.7 Portability of Files

We finish this section on VHDL’s file facilities with a few comments about the way in
which file data is stored. It is important to note that files of the types we have described
store the data in some binary representation. The format is dependent on the host com-
puter system and on the simulator being used. This fact raises the issue of portability of
files between different systems. All we can expect is that a file of a given type written by
one model can be read as a file of the same type in a different model, provided it is run
on the same host computer using the same VHDL simulator. There is no guarantee that it
can be read on a different host computer, even using the same simulator retargeted for
that host, nor that it can be read on any host using a different simulator.

While this might seem to limit the use of files for storing data, in reality it does not
present much of an obstacle. If we do need to transfer files between systems, we can use
text files as the interchange medium. As we see in the next section, VHDL provides an
extensive set of facilities for dealing with the textual representation of data. Furthermore,
tools for transferring text files between different computer systems are commonplace. The
other potential problem arises if we wish to use non-VHDL software tools to process files
written by VHDL models. For example, we may wish to write a program in some conven-
tional programming language to perform data analysis on a data file produced by an in-
strumented VHDL model. Again, we can use text files to write data in a form readable by
other tools. Alternatively, we can consult the VHDL tool vendor’s documentation to learn
the details of the binary data representation in a file and write a program to read data in
that format.

16.2 The Package Textio

The predefined package textio in the library std provides a number of useful types and
operations for reading and writing text files, that is, files of character strings. In particular,
it provides procedures for reading and writing textual representations of the various pre-
defined data types provided in VHDL. These operations make it possible to write files that
can be read by other software tools and transferred to other host computer systems. The
package specification is:1

package textio is

  type line is access string;

1. Derived from IEEE Draft Std 1076-2008/D4.1, Draft Standard VHDL Language Reference Manual.



16.2 The Package Textio 515

  type text is file of string;

  type side is (right, left);

  subtype width is natural;

  file input : text open read_mode is "STD_INPUT";
  file output : text open write_mode is "STD_OUTPUT";

  procedure readline(file F: text; L: inout line);

  procedure read ( L : inout line;  value: out bit;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out bit );

  procedure read ( L : inout line;  value: out bit_vector;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out bit_vector );

  procedure read ( L : inout line;  value: out boolean;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out boolean );

  procedure read ( L : inout line;  value: out character;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out character );

  procedure read ( L : inout line;  value: out integer;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out integer );

  procedure read ( L : inout line;  value: out real;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out real );

  procedure read ( L : inout line;  value: out string;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out string );

  procedure read ( L : inout line;  value: out time;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out time );

  procedure sread ( L: inout line;  value : out string;
                                    strlen: out natural);

  alias string_read is sread [line, string, natural];

  alias bread is read [line, bit_vector, boolean];
  alias bread is read [line, bit_vector];
  alias binary_read is read [line, bit_vector, boolean];
  alias binary_read is read [line, bit_vector];



516 Chapter 16 — Files and Input/Output

  procedure oread ( L: inout line;  value: out bit_vector;
                                    good : out boolean );
  procedure oread ( L: inout line;  value: out bit_vector );

  alias octal_read is oread [line, bit_vector, boolean];
  alias octal_read is oread [line, bit_vector];

  procedure hread ( L: inout line;  value: out bit_vector;
                                    good : out boolean );
  procedure hread ( L: inout line;  value: out bit_vector );

  alias hex_read is hread [line, bit_vector, boolean];
  alias hex_read is hread [line, bit_vector];

  procedure writeline ( file F : text;  L : inout line );

  procedure tee ( file F: text;  L: inout line );

  function justify ( value: string;
                     justified: side := right;
                     field: width := 0 ) return string;

  procedure write ( L : inout line;  value : in bit;
                    justified: in side := right;
                    field: in width := 0 );

  procedure write ( L : inout line;  value : in bit_vector;
                    justified: in side := right;
                    field: in width := 0 );

  procedure write ( L : inout line;  value : in boolean;
                    justified: in side := right;
                    field: in width := 0 );

  procedure write ( L : inout line;  value : in character;
                    justified: in side := right;
                    field: in width := 0 );

  procedure write ( L : inout line;  value : in integer;
                    justified: in side := right;
                    field: in width := 0 );

  procedure write ( L : inout line;  value : in real;
                    justified: in side := right;
                    field: in width := 0;
                    digits: in natural := 0 );

  procedure write ( L: inout line;  value: in real;
                    format: in string);

  procedure write ( L : inout line;  value : in string;
                    justified: in side := right;
                    field: in width := 0 );



16.2 The Package Textio 517

  procedure write ( L : inout line;  value : in time;
                    justified: in side := right;
                    field: in width := 0;
                    unit: in time := ns );

  alias swrite is write [line, string, side, width];
  alias string_write is write [line, string, side, width];

  alias bwrite is write [line, bit_vector, side, width];
  alias binary_write is write [line, bit_vector, side, width];

  procedure owrite ( L: inout line;  value: in bit_vector;
                     justified: in side := right;
                     field: in width := 0 );

  alias octal_write is owrite [line, bit_vector, side, width];

  procedure hwrite ( L: inout line;  value: in bit_vector;
                     justified: in side := right;
                     field: in width := 0 );

  alias hex_write is hwrite [line, bit_vector, side, width];

end package textio;

Input and output operations using textio are based on dynamic strings, accessed using
pointers of the type line, declared in the package. We use the readline operation to read
a complete line of text from an input file. It creates a string object in the host computer’s
memory and returns a pointer to the string. We then use various versions of the read op-
eration to extract values of different types from the string. When we need to write text,
we first use various versions of the write operation to form a string object in memory, then
pass the string to the writeline operation via its pointer. The operation writes the complete
line of text to the output file and resets the pointer to point to an empty string. If the
pointer passed to writeline is null, the operation writes a blank line to the output file.

The reason that VHDL takes this approach to input and output is to allow multiple
processes to read or write to a single file without interfering with each other. Recall that
multiple processes that are resumed in the same simulation cycle execute concurrently. If
processes were to write directly to the file, partial lines from different processes might be
intermixed, making the output unintelligible. By having each process form a line locally,
we can write each line as one atomic action. The result is an output file consisting of in-
terleaved lines from the different processes. A similar argument applies to input. If read
operations were to read directly from the file, no process would be able to read an entire
line without the possibility of interference from another process also reading input. The
solution is for a process to read an entire line as one atomic action and then to extract the
data from the line locally.

One point to note about the read and write operations provided by textio is that they
may deallocate storage used by lines of text passed to them as arguments. For example,
when a read operation extracts characters from the beginning of a line, the storage for the
extracted characters may be deallocated. Alternatively, the whole line may be deallocated
and a new line formed from the remaining characters. The trap to be aware of is that if



518 Chapter 16 — Files and Input/Output

we copy the pointer to a line, using assignment of one value of type line to another, we
may end up with dangling pointers after doing read or write operations. The best way to
avoid problems is to avoid modifying variables of type line other than with read and write
operations.

The package textio declares the file type text, representing files of strings. The oper-
ations provided by the package act on files of this type. The package also declares the file
objects input and output, respectively associated with physical files using the logical
names STD_INPUT and STD_OUTPUT. The intention is that the host simulator associate
these file objects with the standard devices used for input and output. For example, the
file input might be associated with the workstation keyboard and the file output with the
workstation display. A model then uses the files to interact with the user. Prompts and
informational messages are displayed by writing them to output, and commands and data
typed by the user are read from input.

16.2.1 Textio Read Operations

Let us now look at the read operations in detail. Each version of read has at least two
parameters: a pointer to the line of text from which to read and a variable in which to
store the value. The operations extract characters from the beginning of the line, looking
for characters that form a textual representation of a value of the expected type. The line
is modified to contain only the remaining characters, and the value represented by the
extracted characters is returned.

The character version of read simply extracts the first character in the line and returns
it. It does not look for quotation marks around the character. For example, if the line
pointed to by L contains

a'bcd

two successive character read operations would return the characters ‘a’ and ‘ ' ’.
The string version extracts enough characters to fill the actual string argument. This

version of read does not look for double quotation marks around the string. For example,
if s is a string variable of length five, and L points to the line

fred "cat"

a read into s returns the string “fred ”. A second read into s returns the string “"cat"”. If the
line does not contain enough characters to fill the string variable, the read operation fails.
If this possibility could cause problems, we can use the sread procedure (or the
string_read alias) instead. This procedure also heps us divide a line of input into separate
tokens, separated by spaced. The procedure starts by skipping over any whitespace char-
acters in the line, and then reads as many non-whitespace characters as are available, up
to the length of the value parameter. It returns the number of characters actually read in
the strlen parameter. A whitespace character is a space, a non-breaking space or a hori-
zontal tab character. We might use this procedure as follows:

sread(L, s, s_len);
for i in 1 to s_len loop



16.2 The Package Textio 519

  ... s(i) ...
end loop;

The versions of read for all other types of data skip over any whitespace characters
in the line before the textual representation of the data. They then extract as many char-
acters from the line as can be used to form a valid literal of the expected type. Characters
are extracted up to the first character that is not valid for a literal of that type or to the end
of the line. For example, if L points to the line

12       -4.27!

an integer read extracts the first two characters and returns the value 12. A subsequent
read into a real variable skips the spaces, then extracts the characters up to but not includ-
ing the ‘!’ and returns the value –4.27.

For time values, the literal should be a number followed by a time unit, with at least
one whitespace character between them. For bit-vector values, the literal in the line should
be a binary string without quotation marks or a base specifier (that is, just a string of ‘0’
or ‘1’ characters). It may include underline characters (‘_’), provided they conform to the
rules for bit-string literals. That means they can only occur within the bit string, not at ei-
ther end, and should only occur singly.

The textio package includes bread and binary_read aliases for the bit-vector read op-
erations. These parallel the oread and hread procedures (and octal_read and hex_read
aliases), which read octal and hexadecimal string representations of bit vectors, respec-
tively. The procedures read octal (or hexadecimal) digits, skipping over properly embed-
ded underline characters, until sufficient digits have been read to fill the value vector. Each
digit corresponds to a group of three (or four) bits. If the value vector is not a multiple of
three (or four) in length, bits from the leftmost group of three (or four) are discarded, pro-
vided they are ‘0’. If any are not ‘0’, the read operation fails. This ensures that significant
bits are not lost. For example, an hread of “3F” into a 6-bit vector succeeds, since the left-
most group is “0011”, and the two discarded bits are both ‘0’. On the other hand, an hread
of “7F” into the 6-bit vector would fail, since the leftmost group is “0111”, and one of the
two discarded bits is ‘1’.

The versions of the read operations in textio that include the third parameter, good,
allow for graceful recovery if the next value on the input line is not a valid textual repre-
sentation of a value of the expected type. In that case, they return with good set to false,
the line unmodified and the value parameter undefined. For example, an integer read
from a line containing

$%@!!&

fails in this way. On the other hand, if the line does contain valid text, good is set to true,
and the value is extracted as described above. The versions of read without the good pa-
rameter cause an error if the line contains invalid text.



520 Chapter 16 — Files and Input/Output

EXAMPLE 16.8 Reading textual stimulus values

Suppose we have designed a model for a thermostat system and need to test it. The
thermostat has inputs connected to signals temperature and setting of type integer
and enable and heater_fail of type bit. We can use a text editor to write a file that
specifies input stimuli to test the thermostat. Each line of the file is formatted as fol-
lows

time    string    value

where time is the simulation time at which the stimulus is applied, string is a four-
character string identifying one of the inputs and value is the value to be applied to
the input. The allowed string values are “temp”, “set ”, “on ” and “fail”. We assume
that the stimuli are sorted in increasing order of application time. A sample file in this
format is

0 ms      on      0
2 ms      fail    0
15 ms     temp   56
100 ms    set    70
1.5 sec   on      1

We write a process to interpret such a stimulus control file as follows:

stimulus_interpreter : process is

  use std.textio.all;

  file control : text open read_mode is "control";

  variable command : line;
  variable read_ok : boolean;
  variable next_time : time;
  variable whitespace : character;
  variable signal_id : string(1 to 4);
  variable temp_value, set_value : integer;
  variable on_value, fail_value : bit;

begin

  command_loop : while not endfile(control) loop

    readline ( control, command );

    -- read next stimulus time, and suspend until then
    read ( command, next_time, read_ok );
    if not read_ok then
      report "error reading time from line: " & command.all
        severity warning;
      next command_loop;



16.2 The Package Textio 521

    end if;
    wait for next_time - now;

    -- skip whitespace
    while command'length > 0
      and ( command(command'left) = ' '    -- ordinary space
            or command(command'left) = ' '  -- non-breaking space
            or command(command'left) = HT ) loop
      read ( command, whitespace );
    end loop;

    -- read signal identifier string
    read ( command, signal_id, read_ok );
    if not read_ok then
      report "error reading signal id from line: " & command.all
        severity warning;
      next command_loop;
    end if;
    -- dispatch based on signal id
    case signal_id is

      when "temp" =>
        read ( command, temp_value, read_ok );
        if not read_ok then
          report "error reading temperature value from line: "
                 & command.all
            severity warning;
          next command_loop;
        end if;
        temperature <= temp_value;

      when "set " =>
        ...  -- similar to "temp"

      when "on  " =>
        read ( command, on_value, read_ok );
        if not read_ok then
          report "error reading on value from line: "
                 & command.all
            severity warning;
          next command_loop;
        end if;
        enable <= on_value;

      when "fail" =>
        ...  -- similar to "on  "

      when others =>
        report "invalid signal id in line: " & signal_id



522 Chapter 16 — Files and Input/Output

          severity warning;
        next command_loop;

    end case;

  end loop command_loop;

  wait;

end process stimulus_interpreter;

The process declares a file object, control, associated with the stimulus control
file, and an access variable, command, to point to a command line read from the file.
It also declares a number of variables to store values read from a line. The process
body repeatedly reads lines from the file and extracts the fields from it using read op-
erations. We use the forms of read with good parameters to do error checking. In this
way, we make the model less sensitive to formatting errors in the control file and re-
port useful error information when an error is detected. When the end of the com-
mand file is reached, the process suspends for the rest of the simulation.

For each command line, the process first extracts the time value and suspends un-
til simulation advances to that time. It then skips over whitespace characters in the
line up to the first non-whitespace character, which should represent the signal iden-
tifier string. The process skips whitespace characters by repeatedly inspecting the first
character in what remains of the command line and, if it is a whitespace character,
removing it with a character read operation. Skipping whitespace in this way allows
the user some flexibility in formatting the command file. The process next dispatches
to different branches of a case statement depending on the signal identifier string. For
each string value, the process reads a stimulus value of the appropriate type from the
command line and applies it to the corresponding signal.

VHDL-87, -93, and -2002

The textio package for these versions does not include the sread procedure or
string_read alias. If a read into a string variable could fail for lack of sufficient char-
acters, we can directly access the text line. So, for example, we can test the length of
the line and extract fewer characters than the length of the string variable as follows:

if L'length < s'length then
  read(L, s(1 to L'length));
else
  read(L, s);
end if;

Since L is an access variable to a string, the 'length attribute applied to L returns the
length of the string pointed to by L, provided that L is not null.

These versions of VHDL do not provide the oread and hread procedures and their
aliases, nor the bread and binary_read aliases. Moreover, the read procedure for bit
vectors does not skip underline characters.



16.2 The Package Textio 523

VHDL-87

The VHDL-87 version of the textio package declares an additional function:

function endline ( L : in line ) return boolean;

This function returns the value true if the string pointed to by L is empty and false
otherwise. The same condition can be tested in VHDL-93 and VHDL-2002 by evaluat-
ing the expression L'length = 0.

16.2.2 Textio Write Operations

We now turn to write operations, which form a line of text ready for output. Each version
of write has two parameters, specifying the pointer to the line being formed and the value
whose textual representation is to be added to the line. Subsequent parameters beyond
these two are used to control the formatting of the textual representation. The field pa-
rameter specifies how many characters are used to represent the value. If the field is wider
than necessary, space characters are used as padding. The characters representing the val-
ue are either left-justified or right-justified within the field, depending on the justified pa-
rameter. For example, if we write the integer 42 left-justified in a field of five characters,
the string “42 ” is added to the line. If we write the same value right-justified in a field
of five characters, the string “ 42” is added. If we specify a field width that is smaller than
the minimum required to represent the value, that minimal representation is used with no
space padding. Thus, writing the integer 123 with a specified field width of two characters
or less results in the three-character string “123” being added to the line. Note that the
default values for justified and field conveniently result in the minimal representation be-
ing used.

The write operations for character, string and bit-vector values write representations
that do not include quotation marks or a base specifier. Bit-vector values are written in
binary. For example, if we perform the following write operations to a line, L, that is ini-
tially empty:

write ( L, string'( "fred" ) );
write ( L, ' ' );
write ( L, bit_vector'( X"3A" ) );

the resulting line is

fred 00111010

There are two versions of the write operation for real values, corresponding to the
two overloaded versions of to_string that we described in Section 2.5. One version has an
additional parameter, digits, that specifies how many digits to the right of the decimal
point are to be included in the textual representation of the value. For example, writing
the value 3.14159 with digits set to 2 results in the string “3.14” being added to the line
(without the quotation marks). If digits is set to 0 (the default value), the value is repre-
sented in exponential notation. For example, writing 123.4567 in this way results in the



524 Chapter 16 — Files and Input/Output

string “1.234567e+02” (or something similar) being added to the line. The other version
of write has a parameter, format, for a format specification string of the same form as that
used in the C printf function. For example, writing 123.4567 with a format string of
“%10.3f” results in the string “ 123.457” being added to the line.

The write operation for time values has a parameter, unit, that specifies the time unit
to use to express the value. The output is expressed as a multiple of this unit. For example,
writing the value 40 ns with unit set to ps results in the string “40000 ps” being added to
the line. If the value to be written is not an integral multiple of the specified unit, a real
literal is used in the textual representation. For example, writing the value 23 µs with unit
set to ms results in the string “0.023 ms” being added to the line.

The package provides owrite and hwrite operations and the aliases bwrite,
binary_write, octal_write and hex_write, mirroring the binary, octal and hexadecimal read
operations for bit vectors. The values written by the owrite and hwrite operations are the
same as those produced by the to_ostring and to_hstring operations, respectively.

There are also aliases swrite and string_write for the string version of the write pro-
cedure, mirroring the sread operation and string_read alias. One of the benefits of using
the swrite alias is that there are no other overloaded versions of that name. Compare this
with write, for which there are overloaded version for string and bit_vector, among oth-
ers. This means that we need to explicitly qualify a string literal when applying the write
operation, as we did in the example above. If we write:

write ( L, "Trace message " );
write ( L, "0000" );

the type rules of the language are not sufficient to distinguish between the string and
bit_vector versions. The rules do not include looking at the characters within a string lit-
eral to determine the literal’s type. Since writing a literal string value is very common, we
can use the swrite procedure to avoid type qualification each time:

swrite ( L, "Trace message " );
swrite ( L, "0000" );

EXAMPLE 16.9 Writing a textual log file for bus activity

We can write a bus monitor process for a computer system model that creates a log
file of bus activity, similar to that displayed by a bus-state analyzer monitoring real
hardware. Suppose the model includes the following signals connecting the CPU with
memory and I/O controllers:

signal address : bit_vector(15 downto 0);
signal data : resolve_bytes byte;
signal rd, wr, io : bit;    -- read, write, io/mem select
signal ready : resolve_bits bit;

Our monitor process is written as follows:

bus_monitor : process is



16.2 The Package Textio 525

  constant header : string(1 to 44)
    := FF & "      Time   R/W I/M  Address          Data";

  use std.textio.all;

  file log : text open write_mode is "buslog";
  variable trace_line : line;
  variable line_count : natural := 0;

begin

  if line_count mod 60 = 0 then
    write ( trace_line, header );
    writeline ( log, trace_line );
    writeline ( log, trace_line );    -- empty line
  end if;
  wait until (rd or wr) and ready;
  write ( trace_line, now,
          justified => right, field => 10, unit => us );
  write ( trace_line, string'("    ") );
  if rd then
    write ( trace_line, 'R' );
  else
    write ( trace_line, 'W' );
  end if;
  write ( trace_line, string'("   ") );
  if io then
    write ( trace_line, 'I' );
  else
    write ( trace_line, 'M' );
  end if;
  write ( trace_line, string'("   ") );
  write ( trace_line, address );
  write ( trace_line, ' ');
  write ( trace_line, data );
  writeline ( log, trace_line );
  line_count := line_count + 1;

end process bus_monitor;

The process declares an output file log, of type text, and an access variable
trace_line, of type line, for accumulating each line of output. The process is resumed
when the memory or I/O controller responds to a bus read or write request. It gener-
ates a formatted line using write operations. It also keeps count of how many lines
are written to the log file and includes a header line after every 60 lines of trace data.
A sample log file showing how the data is formatted is

      Time   R/W I/M  Address          Data

    0.4 us    R   M   0000000000000000 10011110



526 Chapter 16 — Files and Input/Output

    0.9 us    R   M   0000000000000001 00010010
      2 us    R   M   0000000000010100 11100111
    2.7 us    W   I   0000000000000111 00000000

The textio package also declares the tee operation, which, like writeline, writes a
complete line of text to a specified file. It also writes a copy of the line to the output file.
Thus, using this operation, we can write information to a display device and also record
it in a file for subsequent processing or review. For example, we could use the tee proce-
dure in place of writeline in the preceding example as follows:

tee ( log, trace_line );

This would allow us to see each line of trace data on the display as well as recording it in
the log file.

The write operations that we have described so far all include the parameters justified
and field to control how the string representation is laid out. Since that form of control is
very useful for aligning output, the textio package provides a function, justify, for con-
trolling justification as a stand-alone operation. We can use it in combination with the pre-
defined and overloaded to_string operations on various data types to align text other than
for text-file output. For example, if we repeatedly execute a report statement to trace the
values of objects during a simulation, we can use the justify function to align the content
of the report messages:

report "%%%TRACE:" &
       justify(to_string(now, ns),  width => 10) &
       justify(to_hstring(out_vec), width =>  6) &
       justify(to_string(count),    width => 10);

Successive executions might yield the following messages:

%%%TRACE:     20 ns  XXXX         0
%%%TRACE:    120 ns  ZZ00         1
%%%TRACE:    220 ns  FFC0        10
%%%TRACE:    320 ns  0000        31

A final aspect of textual output using textio operations is that the host system inter-
prets line-feed (LF) characters as line breaks in the output, using the appropriate conven-
tion for the host operating system. This applies to all writes to files of type text (including
output), whether the writes are done using the writeline or tee procedures or using the
predefined file write operation for the text file type. For example, we could write a group
of output lines using the predefined write operation as follows:

write(output, "%%%ERROR data value miscompare." & LF &
              " Actual value = " & to_hstring(data) & LF &
              " Expected value = " & to_hstring(expdata) & LF &
              " at time: " & to_string(now) );



16.2 The Package Textio 527

One reason for writing lines this way is to ensure that the whole group is written atomi-
cally without interleaving output from other processes.

VHDL-87, -93, and -2002

There are a number of features for textual output added to textio in VHDL-2008 and
not provided in earlier versions. These include: the swrite and string_write aliases;
the owrite and hwrite procedures, together with the bwrite, binary_write, octal_write,
and hex_write aliases; the write operation for real with the C-style format parameter;
the tee procedure; and the justify function. Also, line-feed characters written to files
of type text are not interpreted as line breaks in earlier versions.

16.2.3 Reading and Writing Other Types

We have seen that textio provides read and write operations for the predefined types. If
we need to read or write values of types we declare, such as new enumeration or physical
types, we use the 'image and 'value attributes to convert between the values and their
textual representations. For example, if we declare an enumeration type and variable as

type speed_category is (stopped, slow, fast, maniacal);
variable speed : speed_category;

we can write a value of the type using the 'image attribute to create a string to supply to
the string version of write:

write ( L, speed_category'image(speed) );

Alternatively, we can use the predefined to_string operations, for example:

write ( L, to_string(speed) );

Reading a value of a new type we define presents more problems if we want our
model to be robust in the face of invalid input. In this case, we must write VHDL code
that analyzes the line of text to ensure that it contains a valid representation of a value of
the expected type. If we are not so concerned with robustness, we can simply use the
'value attribute to convert the input line to a value of the expected type. For example, the
statements

readline( input, L );
sread(L, str, str_len
speed := speed_category'value(str(1 to str_len));

read a line of input, extract a sequence of characters delimited by whitespace, and convert
the sequence to a value of type speed_category.



528 Chapter 16 — Files and Input/Output

Standard Package Read and Write Operations

In Chapter 9 we described the standard packages in library ieee and mentioned that they
provide overloaded read and write operations. Now that we have described file types and
operations, and textual input/output in particular, we can complete our summary of the
operations provided by the standard packages.

Overloaded versions of the operations are defined for the following types, as well as
for the corresponding subtypes with resolved elements and other subtypes:

• std_ulogic_vector in std_logic_1164

• unresolved_unsigned and unresolved_signed in numeric_bit and numeric_std

• unresolved_ufixed and unresolved_sfixed in fixed_generic_pkg and instances of it

• unresolved_float in float_generic_pkg and instances of it

The set of operations is read, oread, hread, write, owrite, and hwrite, each with similar
signature to the operations for bit vectors in textio. In addition, the same set of aliases if
provided in each package as in textio.

The write operations each produce the same string representation as the to_string op-
eration on the value parameter. The effect of the write operation is equivalent to:

textio.write (L, to_string(value), justified, field);

where the to_string operation used is that defined for the type of value in the appropriate
page. We described the to_string operations in Chapter 9. The owrite and hwrite opera-
tions are similarly defined, being equivalent to

textio.write (L, to_ostring(value), justified, field);

textio.write (L, to_hstring(value), justified, field);

The behavior of the read procedures is somewhat more complicated, as they are de-
signed to provide flexible input formats. The binary read procedures for unsigned and
signed in numeric_bit behave in the same way as those for bit_vector in textio. In the
remaining packages, where the vector types are based on std_ulogic, each binary read
procedure starts by skipping whitespace. It then reads std_ulogic values until it encounters
whitespace or a non-std_ulogic value, or until it has read value'length characters.
Underscore characters (“_”) embedded within the value are skipped, though it is an error
if two underscores appear consecutively. The procedure must read enough characters to
fill all of the elements of the value array, so it is an error if a space or an invalid character
is encountered before value'length characters are read. The read procedures for ufixed
and sfixed also accept a radix point (“.”) in the input, though it is an error if the radix
point is not at the appropriate position. Specifically, the characters before the radix point
must fill elements of the value parameter with non-negative indices, and the characters
after the radix point must fill elements with negative indices. An error occurs if the radix
point is encountered at a position other than between the characters corresponding to in-
dices 0 and –1. Similarly, the read procedures for float accept “:” or “.” delimiters between



16.2 The Package Textio 529

the sign, exponent, and fraction parts of the input, though it is an error if they are not at
the appropriate positions.

The oread and hread procedures in std_logic_1164, numeric_bit, and numeric_std all
have behavior similar to the procedures for bit_vector in textio. Each operation must read
sufficient characters to fill the value argument, or an error occurs. Since value need not
be a multiple of 3 (for oread) or 4 (for hread) in length, the length is rounded up to the
nearest multiple of 3 or 4 to determine how many characters to read. Oread (hread) starts
by skipping whitespace. It then reads octal (hexadecimal) digits until it encounters
whitespace or a non-octal (non-hexadecimal) character other than “_”, or until it has read
sufficient characters to fill the value argument. Underscore characters embedded within
the octal (hexadecimal) value are skipped. Oread converts each octal digit (0–7) to its 3-
bit representation, and hread converts each hexadecimal digit (0–9, a–f, or A–F) to its 4-
bit representation. For array types based on std_ulogic, the characters ‘X’ and ‘Z’ are also
permitted. For octal, these characters are repeated 3 times in the result; hence, a ‘Z’ input
is expanded to “ZZZ”. Similarly, for hexadecimal, these characters are repeated 4 times in
the result; hence, a ‘Z’ input is expanded to “ZZZZ”. If conversion of characters to groups
of 3 or 4 elements result in more elements than the length of the value argument, only the
rightmost elements are used. Depending on the values of the discarded elements, an error
may occur. If the type of the value argument is bit_vector, std_ulogic_vector, or unsigned,
an error occurs if any of the discarded elements are ‘1’. For example, an hread that reads
the characters “82” (“10000010” in binary) into a 6-bit unsigned value produces an error,
since the two discarded bits are “10”. If the type of the value argument is signed, an error
occurs if the discarded elements are not all the same as the leftmost element used for the
value argument. For example, an hread that read the characters “7F” into a 6-bit signed
value produces an error, since the two discarded bits are “01”, and the leftmost bit used
for value is ‘1’.

The oread and hread operations are also defined for ufixed and sfixed in the fixed-
point packages. Oread and hread each reads the value prior to the radix point as described
above for unsigned or signed (depending on whether the value parameter is ufixed or
sfixed, respectively). For the characters following the radix point, oread and hread each
reads the value as described above for std_ulogic_vector; however, instead of discarding
elements on the left, the operations discard elements on the right. An error occurs if an
element discarded on the right is a ‘1’. The radix point may be explicitly included in the
input, but an error occurs if it is not at the appropriate position (that is, between the char-
acters corresponding to indices 0 and –1 of the value parameter). The radix point may also
be omitted, in which case it is assumed at the appropriate position.

Finally, the oread and hread operations are defined for float in the floating-point
packages. The behavior of the oread and hread operations depends on whether “:” or “.”
delimiters are used in the input to separate the sign, exponent, and fraction parts of a float-
ing-point number. When “:” delimiters are used (with the input formatted as
“S:EEEE:FFFFFFFF”), the sign bit, the exponent, and the fraction are each read as separate
octal or hexadecimal values using the same rules as described above for std_ulogic_vector
values. When a ‘.’ delimiter is used (with the input formatted as “SEEEE.FFFFFFFF”), the
rules described above for reading ufixed values are used. The value read before the radix
point forms the part of the result comprising the sign and exponent elements, and the val-
ue read after the radix point forms the fraction part of the result. When no delimiters are



530 Chapter 16 — Files and Input/Output

used in the input, the entire float value is read as a single hexadecimal value as described
above for std_ulogic_vector values.

VHDL-87, -93, and -2002

The std_logic_1164, numeric_bit and numeric_std packages for these versions of
VHDL do not include the read and write operations.

Exercises

1. [➊ 16.1] Write declarations to define a file of real values associated with the host file
“samples.dat” and opened for reading. Write a statement to read a value from the file
into a variable x.

2. [➊ 16.1] Write declarations to define a file of bit-vector values associated with the host
file “/tmp/trace.tmp” and opened for writing. Write a statement to write the concate-
nation of the values of two signals, addr and d_bus, to the file.

3. [➊ 16.1] Write statements that attempt to open a file of integers called “waveform” for
reading and report any error that results from the attempt.

4. [➊ 16.2] Suppose the next line in a text file contains the characters

123 4.5 6789

What is the result returned by the following read calls?

readline(in_file, L);
read(L, bit_value);   -- read a value of type bit
read(L, int_value);   -- read a value of type integer
read(L, real_value);  -- read a value of type real
read(L, str_value);   -- read a value of type string(1 to 3)

5. [➊ 16.2] Write declarations and statements for a process to prompt the user to enter a
number and to accept the number from the user.

6. [➊ 16.2] What string is written to the output file by the following statements:

write(L, 3.5 us, justified => right, field => 10, unit => ns);
write(L, ' ');
write(L, bit_vector'(X"3C"));
write(L, ' ');
swrite(L, "ok", justified => left, field => 5);
writeline(output, L);

7. [➋ 16.1] Develop a behavioral model of a microcomputer system address decoder with
the following entity interface:



Exercises 531

entity address_decoder is
  generic ( log_file_name : string );
  port ( address : in natural;  enable : in bit;
         ROM_sel, RAM_sel, IO_sel, int_sel : out bit );
end entity address_decoder;

When enable is ‘1’, the decoder uses the value of address to determine which of the
output signals to activate. The address ranges are 0 to 16#7FFF# for ROM, 16#8000#
to 16#BFFF# for RAM, 16#C000# to 16#EFFF# for I/O and 16#F000# to 16#FFFF# for
interrupts. The decoder should write the address to the named log file each time en-
able is activated. The log file should be a binary file rather than a text file.

8. [➋ 16.1] Write a function that may be called to initialize an array of bit-vector words.
The words are of the subtype

subtype word is std_ulogic_vector(0 to 15);

The function should have two parameters, the first being the name of a file from
which the words of data are read, and the second being the size of the array to return.
If the file contains fewer words than required, the extra words in the array are initial-
ized with all bits set to ‘U’.

9. [➋ 16.1] Develop a procedure that writes the contents of a memory array to a file. The
memory array is of the type mem_array, declared as

subtype byte is bit_vector(7 downto 0);
type mem_array is array (natural range <>) of byte;

The procedure should have two parameters, one being the array whose value is to be
written and the other being a file of byte elements into which the data is written. The
procedure should assume the file has already been opened for writing.

10. [➋ 16.2] Develop a procedure that has a file name and an integer signal as parameters.
The file name refers to a text file that contains a delay value and an integer on each
line. The procedure should read successive lines, wait for the time specified by the
delay value, then assign the integer value to the signal. When the last line has been
processed, the procedure should return. Invoke the procedure using a concurrent
procedure call in a test bench.

11. [➋ 16.2] Develop a procedure that logs the history of values on a bit-vector signal to
a file. The procedure has two parameters, the name of a text file and a bit-vector sig-
nal. The procedure logs the initial value and the new values when events occur on
the signal. Each log entry in the file should consist of the simulation time and the sig-
nal value at that time.

12. [➋ 16.2] Develop a procedure similar to that described in Exercise 11, but which logs
values of a signal of type motor_control, declared as

type motor_state is (idle, forward, reverse);
type motor_control is record
    state : motor_state;



532 Chapter 16 — Files and Input/Output

    speed : natural;
  end record motor_control;

The motor_control values should be written in the format of a record aggregate using
positional association.

13. [➌ 16.1] Experiment with your simulator to determine the format it uses for binary
files. Write a model that creates files of various data types, and use operating system
utilities (for example, hexadecimal dump utilities) to see how the data is stored. Try
to develop programs in a conventional programming language to write files that can
be read by VHDL models run by your simulator.

14. [➌ 16.2] A 16L2 programmable logic device (PLD) is organized as shown in Figure
16.1. A programmable fuse connects each of the 32 column wires with each of the 16
row wires. If all fuses for a row are disconnected, the row wire floats high. A row wire
is tied low by leaving all fuses in the row intact. The programming of the fuses may
be specified in a fuse-map text file. It contains 16 lines, each with 32 ‘1’ or ‘0’ charac-
ters. A ‘1’ corresponds to a disconnected fuse, and a ‘0’ corresponds to an intact fuse.

Develop a behavioral model of a 16L2 PLD, with input and output ports of type
bit and a generic constant string to specify the fuse-map file for programming an in-
stance. The model should read the fuse-map file during initialization and use the in-
formation to perform the programmed logic function during simulation.

FIGURE 16.1 

Organization of a 16L2 PLD.

15. [➌ 16.2] Develop a package that provides textual read and write operations for
standard-logic scalar and vector values, analogous to the operations provided for
types bit and bit_vector by the textio package.

o(0)

o(1)

i(0)

i(1)

i(15)

24
25
26
27
28
29
30
31

32
33
34
35
36
25
38
39

0 1 2 3 30 31



Exercises 533

16. [➌ 16.2] Develop a package that provides textual read and write operations for bit-
vector  values in octal and hexadecimal.

17. [➍ 16.2] Develop a suite of behavioral models of programmable logic devices (PLDs)
that read JEDEC format fuse-map files during initialization. Information about the
JEDEC format can be found in [5].

18. [➍ 16.2] Develop a behavioral model of a ROM that reads its contents from a file in
Intel hex-format.

19. [➍ 16.2] Develop a behavioral model of a ROM that reads its contents from a file in
Motorola S-format.



535

Chapter 17 

Case Study:
A Package for Memories

In this case study, we will develop a package of operations on memories, including op-
erations to read and write memories, to implement the behavior of different kinds of mem-
ories, to load a simulated memory from a file, and to dump the contents of a simulated
memory to a file. Our package is written to be reusable for memories of various sizes and
various address and data types. For this case study, we will focus on implementations from
which synthesis tools could, in principle, infer block memory resources. Such implemen-
tations use array signals for the memory storage. The memory sizes that are fesible range
from relatively small (Kbits) to moderately large (100s of Kbits). Test benches, on the other
hand, typically use memory models implemented using sparse data structures. Storage for
a memory is dynamically allocated as memory locations are accessed. This allows a test
bench to deal with much larger memories, which would typically be instantiated as part
of a structural model, rather than being inferred by a synthesis tool. Our memories pack-
age could be extended to provide such an implementation. However, we omit it here in
the interest of brevity.

17.1 The Memories Package

We will make the memory operations package reusable in different designs by specifying
the memory width and depth with generic constants, and the types of control, address,
and data types with generic types. The package declaration is

library ieee;
use ieee.std_logic_1164.std_ulogic_vector;

package memories is
  generic ( width : positive;
            depth : positive;
            type control_type;
            type address_type;
            type data_type;



536 Chapter 17 — Case Study: A Package for Memories

            pure function "??" (c : control_type)
              return boolean is <>;
            function rising_edge(signal c : control_type)
              return boolean is <>;
            pure function to_integer (a : address_type)
              return natural is <>;
            pure function to_address_type (a : natural)
              return address_type is <>;
            pure function to_std_ulogic_vector (d : data_type)
              return std_ulogic_vector is <>;
            pure function to_data_type (d : std_ulogic_vector)
              return data_type is <> );

  type RAM_type is array (0 to 2**depth - 1) of data_type;

  procedure read_RAM (signal   RAM     : in  RAM_type;
                      constant address : in  address_type;
                      signal   data    : out data_type);

  procedure write_RAM (signal   RAM     : out RAM_type;
                       constant address : in  address_type;
                       constant data    : in  data_type);

  procedure asynch_SRAM (signal RAM      : in  RAM_type;
                         signal wr       : in  control_type;
                         signal address  : in  address_type;
                         signal data_in  : out data_type;
                         signal data_out : out data_type);

  procedure flow_through_SSRAM
              (signal RAM         : in  RAM_type;
               signal clk, en, wr : in  control_type;
               signal address     : in  address_type;
               signal data_in     : out data_type;
               signal data_out    : out data_type);

  procedure pipelined_SSRAM
              (signal RAM         : in  RAM_type;
               signal clk, en, wr : in  control_type;
               signal address     : in  address_type;
               signal data_in     : out data_type;
               signal data_out    : out data_type);

  procedure dump_RAM (signal   RAM            : in  RAM_type;
                      constant file_name      : in  string;
                      constant start_address  : in  address_type
                        := to_address_type(0);
                      constant finish_address : in  address_type
                        := to_address_type(2**depth - 1));



17.1 The Memories Package 537

  impure function load_RAM
                    (constant file_name      : in  string;
                     constant start_address  : in  address_type
                       := to_address_type(0);
                     constant finish_address : in  address_type
                       := to_address_type(2**depth - 1))
                    return RAM_type;

end package memories;

The formal generic constants width and depth specify the bit width of memory data
and addresses, respectively. The formal generic types control_type, address_type and
data_type are used for control signals, memory addresses and data, respectively. The
memory has 2depth locations, indexed from 0 to 2depth–1, each storing a data_type value.
Since we need to test the state of control signals, we need functions to convert a control
signal value to boolean (the formal generic function “??”) and to test for a rising edge (the
formal generic function rising_edge). Further, since we need to use integer values to index
an array storing the memory contents, we need a function to convert an address to an
integer; hence, the formal generic function to_integer. We also specify formal generic
functions for use in the load and dump operations: to convert from an integer to an
address_type value, to convert from a std_ulogic_vector value to a data_type value, and
to convert from a data_type value to a std_ulogic_vector value. The reason for the last
two is that the load and dump operations will read and write data values using the same
formatting as that used for std_ulogic_vector values.

The type RAM_type provided by the package is an array type used in models for sig-
nals representing RAM contents. The procedures read_RAM and write_RAM each have a
signal parameter of this type, as well as parameters for the address and data. A memory
model can use these procedures to implement the memory read and write operations, re-
spectively. The package also provides procedures for implementing memories of different
kinds: asynchronous SRAM, and flow-through and pipelined SSRAM. Each procedure can
be called using a concurrent procedure call, as we will see in Section 17.2.

The dump_RAM procedure also has a RAM_type signal parameter and writes to a file
whose name is specified in the file_name parameter. The start and finish addresses are
specified as parameters, with default values specified as integers converted to
address_type values using the formal generic conversion functions.

The load_RAM function reads from a file whose name is specified in the file_name
parameter and returns an array value of type RAM_type containing the memory contents.
The start and finish addresses for reading are specified as parameters as for the dump_RAM
procedure. A memory model can call this function to initialize a signal used for memory
storage.

The memories package body is outlined below. A detailed description of each of the
operations follows.

package body memories is

  procedure read_RAM (signal   RAM     : in  RAM_type;
                      constant address : in  address_type;
                      signal   data    : out data_type) is



538 Chapter 17 — Case Study: A Package for Memories

  begin
    assert to_integer(address) <= 2**depth - 1;
    data <= RAM(to_integer(address));
  end procedure read_RAM;

  procedure write_RAM (signal   RAM     : out RAM_type;
                       constant address : in  address_type;
                       constant data    : in  data_type) is
  begin
    assert to_integer(address) <= 2**depth - 1;
    RAM(to_integer(address)) <= data;
  end procedure write_RAM;

  procedure asynch_SRAM (signal RAM      : in  RAM_type;
                         signal wr       : in  control_type;
                         signal address  : in  address_type;
                         signal data_in  : out data_type;
                         signal data_out : out data_type) is
  begin
    loop
      if wr then
        write_RAM(RAM, address, data_in);
        data_out <= data_in;
      else
        read_RAM(RAM, address, data_out);
      end if;
      wait on wr, address, data_in;
    end loop;
  end procedure asynch_SRAM;

  procedure flow_through_SSRAM
              (signal RAM         : in  RAM_type;
               signal clk, en, wr : in  control_type;
               signal address     : in  address_type;
               signal data_in     : out data_type;
               signal data_out    : out data_type) is
  begin
    loop
      if rising_edge(clk) then
        if en then
          if wr then
            write_RAM(RAM, address, data_in);
            data_out <= data_in;
          else
            read_RAM(RAM, address, d_out);
          end if;
        end if;
      end if;



17.1 The Memories Package 539

      wait on clk;
    end loop;
  end procedure flow_through_SSRAM;

  procedure pipelined_SSRAM
              (signal RAM         : in  RAM_type;
               signal clk, en, wr : in  control_type;
               signal address     : in  address_type;
               signal data_in     : out data_type;
               signal data_out    : out data_type) is
    variable pipelined_en       : control_type;
    variable pipelined_data_out : data_type;
  begin
    loop
      if rising_edge(clk) then
        if pipelined_en then
          data_out <= pipelined_data_out;
        end if;
        pipelined_en := en;
        if en then
          if wr then
            write_RAM(RAM, address, data_in);
            pipelined_data_out := data_in;
          else
            assert to_integer(address) <= 2**depth - 1;
            pipelined_data_out := RAM(to_integer(address));
          end if;
        end if;
      end if;
      wait on clk;
    end loop;
  end procedure pipelined_SSRAM;

  use std.textio.all;
  use ieee.numeric_std.all;

  procedure dump_RAM (...) is ...

  impure function load_RAM (...) return RAM_type is ...

end package body memories;

The read_RAM procedure first verifies that the address, converted to integer, is within
the valid address range. It then uses the converted address to index the RAM signal pa-
rameter and drives the data output signal with the result. The write_RAM procedure is sim-
ilar. After verifying that the converted address is in range, it uses the converted address as
the index into the RAM signal and updates that element with the data input value.

The asynch_SRAM procedure consists of a loop that performs a write or read opera-
tion, depending on the state of the wr control signal, and then waits for changes on any



540 Chapter 17 — Case Study: A Package for Memories

of the input signals. When this procedure is called using a concurrent procedure call in
an architecture body, the effect is the same as a process containing the procedure’s state-
ments. Note that the condition in the if statement involves an implicit conversion of the
value of wr from control_type to boolean using the formal generic function “??”.

The flow_through_SSRAM procedure is likewise intended for use in a concurrent pro-
cedure call. Its loop tests for a rising edge on the clk control signal using the formal generic
function rising_edge. Then, if the en control signal is true, either a write or read operation
is performed on the RAM signal. The pipelined_SSRAM procedure is somewhat more in-
volved, as it must represent the internal pipeline registers of the SSRAM. It does this using
the two local variables, pipelined_en and pipelined_data_out. The loop in the procedure
uses the write_RAM operation to write data to the RAM signal. However, when it reads the
memory, it must read into the local variable. Since the read_RAM operation has a signal
parameter, we cannot use that operation. Instead, the pipelined_SSRAM procedure simply
performs the same steps as read_RAM, but assigns to the local variable using a variable
assignment statement.

Before we describe the dump_RAM and load_RAM procedures, we need to describe
the format of data stored in the files. We will use the hexadecimal VMEM format accepted
by the $readmemh operation in the Verilog hardware description language, since several
tools for generating memory contents can write data in that format.

A hexadecimal VMEM format file consists of a sequence of hexadecimal numbers,
each representing a location in the memory. The numbers are separate by whitespace
characters (space, non-breaking space and tab), form feeds characters, and new lines.
Numbers can contain hexadecimal digits, ‘Z’ and ‘X’ characters representing groups of ‘Z’
and ‘X’ standard-logic values, and ‘_’ characters for readability (as can occur in bit-string
literals). In addition, the file may contain addresses, represented by hexadecimal numbers
prefixed with the ‘@’ character. Subsequent numbers are located in memory starting from
the specified address. For the purpose of this case study, we will assume that the number
of digits in a hexadecimal number is exactly that required for an hread operation required
to read an address or data value. Finally, the file can contain comments: either single-line
comments starting with the characters “//”, or block comments delimited by “/*” and “*/”.
Comments can occur anywhere between numbers.

We will describe the dump_RAM procedure first, since it is significantly simpler than
load_RAM. The dump_RAM procedure is

  procedure dump_RAM (signal   RAM            : in  RAM_type;
                      constant file_name      : in  string;
                      constant start_address  : in  address_type
                        := to_address_type(0);
                      constant finish_address : in  address_type
                        := to_address_type(2**depth - 1)) is

    file dump_file  : text;
    variable status : file_open_status;
    variable L : line;
    constant start_address_int : natural
               := to_integer(start_address);
    constant finish_address_int : natural



17.1 The Memories Package 541

               := to_integer(finish_address);
    variable address : natural;

  begin
    if start_address_int >= 2**depth - 1 then
      report "dump_RAM: start address "
             & to_hstring(start_address_int) & " out of range"
        severity error;
      return;
    end if;
    assert finish_address_int <= 2**depth - 1 then
      report "dump_RAM: finish address "
             & to_hstring(finish_address_int) & " out of range"
        severity error;
      return;
    end if;
    file_open(f => dump_file, external_name => file_name,
              open_kind => write_mode, status => status);
    if status /= open_ok then
      report "dump_RAM: " & to_string(status)
             " opening file " & file_name
        severity error;
      return;
    end if;
    -- Write the start address
    write(L, '@');
    hwrite(L, to_unsigned(to_integer(start_address), depth));
    writeline(dump_file, L);
    -- Write the data
    for address in to_integer(start_address)
                   to to_integer(finish_address) loop
      hwrite(L, to_std_ulogic_vector(RAM(address)));
      writeline(dump_file, L);
    end loop;
    file_close(f => dump_file);
  end procedure dump_RAM;

The procedure declares two constants, start_address_int and finish_address_int, that
are converted versions of the two address parameters. The procedure verifies that the con-
verted addresses are within range for the memory size, determined by the depth generic
constant. It then attempts to open the named file for writing. If any of these steps fails, the
procedure reports an error message and returns.

Next, dump_RAM writes the contents of the file. It writes a line containing the starting
address in hexadecimal, converted first to numeric form using the formal generic conver-
sion function and then to an unsigned vector using the to_unsigned function from
numeric_std. After writing the address line, the procedure writes successive data lines. It
uses a for loop in which the numeric address iterates from the converted start address to



542 Chapter 17 — Case Study: A Package for Memories

the converted finish address. For each address, the procedure indexes the RAM array, con-
verts the data to std_ulogic_vector form using the formal generic function, and writes the
result in hexadecimal form. Once the file has been written, the procedure closes the file.

We now turn to the load_RAM function. This function loads data from a VMEM file
into successive memory locations starting at the address specified in the load_RAM call.
When an address is encountered in the file, subsequent numbers are loaded from that ad-
dress. If an address to be loaded falls outside the range specified in the load_RAM call, the
operation fails. The numbers in the file are interpreted as representing std_ulogic_vector
values with length given by the width generic constant of the package. The numbers may
not contain exactly the right number of digits, so they may need to be resized.

  impure function load_RAM
                    (constant file_name      : in  string;
                     constant start_address  : in  address_type
                       := to_address_type(0);
                     constant finish_address : in  address_type
                       := to_address_type(2**depth - 1))
                    return RAM_type is

    file load_file  : text;
    variable status : file_open_status;
    variable L : line := null;
    variable ok : boolean;
    constant start_address_int : natural
               := to_integer(start_address);
    constant finish_address_int : natural
               := to_integer(finish_address);
    variable next_address : natural := to_integer(start_address);
    variable next_address_unsigned : unsigned;
    variable data_sulv : std_ulogic_vector(0 to width);
    variable RAM : RAM_type;

    procedure skip_whitespace_and_comments is ...

  begin
    if start_address_int > 2**depth - 1 then
      report "dump_RAM: start address "
             & to_hstring(start_address_int)
             & " out of range";
      return RAM;
    end if;
    if finish_address_int > 2**depth - 1 then
      report "dump_RAM: finish address "
             & to_hstring(finish_address_int)
             & " out of range";
      return RAM;
    end if;
    file_open(f => load_file, external_name => file_name,
              open_kind => read_mode, status => status);



17.1 The Memories Package 543

    if status /= open_ok then
      report "load_RAM: " & to_string(status)
             " opening file " & file_name;
      return RAM;
    end if;
    -- code to read and parse memory file contents
    loop
      skip_whitespace_and_comments;
      exit when not ok or endfile(load_file);
      if L(L'left) = '@' then -- address follows
        read(L, at_char);
        hread(L, next_address_unsigned, ok);
        if not ok then
          report "load_RAM: error reading address in file "
                 & file_name;
          exit;
        end if;
        next_address := to_integer(next_address_unsigned);
      else -- data number
        -- read the number
        hread(L, data_sulv, ok);
        if not ok then
          report "load_RAM: error reading data at address "
                 & to_hstring(next_address)
                 & " in file " & file_name;
          exit;
        end if;
        if next_address > finish_address_int
           or next_address < start_address_int then
          report "load_RAM: address " & to_hstring(next_address)
                 & " out of range " & to_hstring(start_address_int)
                 & " to " & to_hstring(finish_address_int) & LF
                 & "  in file " & file_name;
          ok := false;
          exit;
        RAM(next_address) := to_data_type(data_sulv);
        next_address := next_address + 1;
      end if;
    end loop;
    file_close(f => load_file);
    return RAM;
  end procedure load_RAM;

The load_RAM function declares a number of constants and variables for use in read-
ing the file and loading a memory. Included are RAM, into which data is loaded, and
next_address, for keeping track of the next location to load. Next_address is initialized
using the start_address parameter. Load_RAM, like dump_RAM, starts by verifying that the



544 Chapter 17 — Case Study: A Package for Memories

address parameters are within range for the memory size. It then attempts to open the
named file for reading. If any of these steps fails, the function reports an error message
and returns. Otherwise, the function enters a loop to read the file contents. Each iteration
of the loop reads either an address or a data value.

The loop starts by calling a local procedure to skip whitespace and comments pre-
ceding the address or data value. We will come back to the details of that procedure short-
ly. If the procedure encounters an error during its operation, it reports the fact and returns
with ok set to false. In that case, load_RAM exits the loop. The procedure might also en-
counter the end of the file while skipping whitespace and comments, in which case
load_RAM exits the loop.

If the function does not exit the loop, it is because there is something to read. The
function looks ahead at the next character in the string pointed to by L to see if there is
an address to read, indicated by the character being the ‘@’ prefix. If so, the function reads
the prefix character, then attempts to read an unsigned address vector using the hread
procedure from numeric_std. If the read fails, the function reports a message and exits the
loop. Otherwise, the function converts the unsigned address vector using the formal ge-
neric conversion function and saves the result as the next memory address to load.

If the look-ahead character is not the ‘@’ prefix, the numer to be read is a data value.
The function attempts to read it in std_ulogic_vector form. If the read fails, the function
reports a message and exits the loop. Otherwise, the function verifies that the next address
to be loaded is within the start address to finish address range, and reports a message and
exits if not. If these checks all succeed, the function updates the next memory location
with the data value converted using the formal generic function and increments the next
address variable.

The loop in the load_RAM function can be exited for a number of reasons, as we de-
scribed, either as a result of an error or through the file being completely read. In all cases,
the function closes the file and returns the value of the RAM variable.

Part of the operation of the load_RAM function involved skipping whitespace charac-
ters and comments in the file. The local procedure to do this is

    procedure skip_whitespace_and_comments is
      variable skipping_block_comment : boolean := false;
      variable whitespace_char, comment_char : character;
    begin
      loop
        if L = null or L'length = 0 then
          if endfile(load_file) then
            if skipping_block_comment then
              report "load_RAM: unterminated block comment in file"
                & file_name;
              ok := false;
            else
              ok := true;
            end if;
            return;
          else
            readline(load_file, L);



17.1 The Memories Package 545

          end if;
        elsif L(L'left) = ' ' or L(L'left) = ''
              or L(L'left) = HT or L(L'left) = FF then
          read(L, whitespace_char);
        elsif skipping_block_comment then
          read(L, comment_char);
          if comment_char = '*' and
             L /= null and L'length /= 0 and L(L'left) = '/' then
            read(L, comment_char);
            skipping_block_comment := false;
          end if;
        elsif L(L'left) = '/' then
          read(L, comment_char);
          read(L, comment_char, ok);
          if not ok then
            report "load_RAM: error reading comment in file "
                   & file_name;
            return; -- ok is false
          end if;
          if comment_char = '/' then -- single-line comment
            deallocate(L); -- skip rest of comment line
          elsif comment_char = '*' then -- block comment
            skipping_block_comment := true;
          else
            report "load_RAM: malformed comment in file "
                   & file_name;
            ok := false;
            return;
          end if;
        else -- not whitespace or comment
          ok := true;
          return;
        end if;
      end loop;
    end procedure skip_whitespace_and_comments;

The procedure consists of a loop in which it looks ahead at the content of the file and
consumes content until it reaches a character that is not whitespace and not within a com-
ment. It leaves that character as the next character to be read from the file. It declares a
local state variable, skipping_block_comment, to keep track of whether characters being
skipped are within a block comment or not. Initially, the variable is false. Recall also that
the procedure returns with the variable ok set to true or false depending on whether an
error is detected.

Each iteration of the loop starts by checking whether the current line of input (if any)
has been exhausted. If so, the procedure checks whether the end of the file has been
reached. When that condition occurs, the procedure returns. It sets ok to false if it was
skipping characters of a block comment at the time, since reaching the end of the file



546 Chapter 17 — Case Study: A Package for Memories

would indicate an unterminated comment. Otherwise, it sets ok to true, indicating that
reading the file is complete. If the end of the file has not been reached, the procedure
reads the next line from the file, effectively skipping the whitespace represented by the
line end.

The next condition checked in the loop is whether the next character of the line is a
whitespace character. If so, the procedure reads the character from the line. If not, the
procedure checks whether characters in a block comment are being skipped. If so, the
next character is read from the line. If it was a ‘*’ character, it could be the first of the “*/”
sequence closing the block comment. The procedure looks ahead to see if the following
character is a ‘/’ character, and if is, reads it and clears the state variable to false. If not,
block-comment skipping continues.

If the procedure is not skipping block-comment characters, it checks whether the next
character in the line is a ‘/’ character, indicating the start of a comment. If it is, it is read
from the line and the following character read. If there is no following character (indicated
by the read failing, the procedure reports a message and returns with ok set to false. If the
following character is also ‘/’, the two ‘/’ characters start a single-line comment, so the pro-
cedure skips the rest of the line by deallocating the string pointed to by L. On the next
iteration of the loop, reading continues with the next line (if any). If the character after ‘/’
is ‘*’, the two characters start a block comment, so the procedure sets the state variable to
true. If the character following the first ‘/’ is neither ‘/’ nor ‘*’, the start of the comment is
malformed, so the procedure reports a message, sets ok to false, and returns.

Finally, if none of the preceding tests lead to characters to be skipped, then the next
character in the line is the start of an address or data value. The procedure sets ok to true
and returns to the load_RAM function.

17.2 Using the Memories Package

We can use the memories package to model various kinds of memory devices. Suppose
we are developing an embedded system that has a 128 K × 16-bit asynchronous ROM for
instruction storage and a 32 K × 32-bit flow-through synchronous SRAM for data storage.
We will use the package to model these devices. We will load the ROM from a file, and
use the dump_RAM procedure as part of the test bench for the system.

The entity declaration for the ROM is

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_bit.all;

entity instruction_ROM is
  generic ( file_name : string );
  port ( address : in unsigned(16 downto 0);
         d_out : out std_ulogic_vector(15 downto 0) );
end entity instruction_ROM;

The entity has a generic constant of type string for specifying the file from which to
load the ROM content. The address port is a 17-bit unsigned vector, and the data output
port is a 16-bit std_ulogic_vector.

The entity declaration for the RAM is similar:



17.2 Using the Memories Package 547

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_bit.all;

entity data_RAM is
  port ( clk, en, wr : in std_ulogic;
         address : in unsigned(14 downto 0);
         d_in : in std_ulogic_vector(31 downto 0);
         d_out : out std_ulogic_vector(31 downto 0) );
end entity data_RAM;

For this memory, the address port is an 15-bit unsigned vector, and data input and
output ports are 32-bit std_ulogic_vector values.

For both memories, we need to instantiate the memories package to provide opera-
tions with the required address and data types. We could include the instantiations within
the architecture bodies for the two memories. However, that would hide the data types
and operations for the memory signals inside the architecture bodies and make them in-
accessible to the test bench. In particular, the test bench would not be able to call the
dump_RAM operation for the data memory. We can avoid this problem by instantiating
the memories package within a separate design-unit package that is accessible both to the
memory architectures and to the test bench. The package declaration is

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_bit.all;

package embedded_memories is

  constant instruction_width : positive := 16;
  constant instruction_depth : positive := 17;

  constant data_width : positive := 32;
  constant data_depth : positive := 15;

  function to_instruction_address_type ( n : natural )
                                      return unsigned;

  function to_data_address_type ( n : natural )
                                return unsigned;

  function to_std_ulogic_vector ( d : std_ulogic_vector )
                                return std_ulogic_vector;

  package instruction_memories is new work.memories
    generic map ( width => instruction_width,
                  depth => instruction_depth,
                  control_type => std_ulogic,
                  address_type => unsigned(19 downto 0),
                  data_type => std_ulogic_vector(15 downto 0),
                  "??" => ieee.std_logic_1164."??",
                  rising_edge => ieee.std_logic_1164.rising_edge,
                  to_integer => ieee.numeric_std.to_integer,
                  to_address_type => to_instruction_address_type,



548 Chapter 17 — Case Study: A Package for Memories

                  to_std_ulogic_vector => to_std_ulogic_vector,
                  to_data_type => to_std_ulogic_vector );

  package data_memories is new work.memories
    generic map ( width => data_width, depth => data_depth,
                  control_type => std_ulogic,
                  address_type => unsigned(17 downto 0),
                  data_type => std_ulogic_vector(31 downto 0),
                  "??" => ieee.std_logic_1164."??",
                  rising_edge => ieee.std_logic_1164.rising_edge,
                  to_integer => ieee.numeric_std.to_integer,
                  to_address_type => to_data_address_type,
                  to_std_ulogic_vector => to_std_ulogic_vector,
                  to_data_type => to_std_ulogic_vector );

end package embedded_memories;

The embedded_memories package instantiates the memories package twice, once
each for the instruction ROM and the data RAM. The control_type generic is set to
std_ulogic in both instances, even though the ROM has no control signals, since the pack-
age requires a type for this generic. The “??” and rising_edge operations for std_ulogic are
provided as actual functions for the corresponding formal generic functions. (Note that we
could omit these actual generics, since the package has “<>” as the default for “??” and
rising_edge. The actual functions we have specified would be used had we left the formals
unassociated.) The address_type and data_type generics correspond to the types of the
address and data ports of the memories. We can use the to_integer conversion function
from numeric_std to convert address values to numeric form. To convert in the other di-
rection, we can use the to_unsigned function from numeric_std. However, that function
has a second parameter to specify the result length. Since we need this to be fixed at 17
for the instruction ROM and 15 for the data RAM, we declare wrapper functions named
to_instruction_address_type and to_data_address_type to convert numbers to unsigned
values of the required sizes. We use these functions as the actuals for the to_address_type
generic in the two package instances. Since the data types for the memories are subtypes
of  std_ulogic_vector, we don’t actually need to do any conversion. Nonetheless, the
memories package requires conversion functions between data_type and
std_ulogic_vector. We just declare an identity function, to_std_ulogic_vector, and use it
as the actual generic for both data-type conversions in each package instance. The pack-
age body, showing the implementations of the conversion functions, is

package embedded_memories is

  function to_instruction_address_type ( n : natural )
                                       return unsigned is
  begin
    return ieee.numeric_std_to_unsigned(n, instruction_depth);
  end function to_instruction_address_type;

  function to_data_address_type ( n : natural )
                                return unsigned is



17.2 Using the Memories Package 549

  begin
    return ieee.numeric_std_to_unsigned(n, data_depth);
  end function to_data_address_type;

  function to_std_ulogic_vector ( d : std_ulogic_vector )
                                return std_ulogic_vector is
  begin
    return d;
  end function to_std_ulogic_vector;

end package body embedded_memories;

We now turn to the architecture bodies of the memories. For the ROM, the architecture
is

architecture file_loaded of instruction_ROM is

  use work.embedded_memories.instruction_memories.all;

  signal ROM : RAM_type := load_RAM(file_name);

begin

  read_RAM(ROM, address, d_out);

end architecture file_loaded;

We use declarations from the instruction_memories package instance declared in the
embedded_memories package.  We declare a signal, ROM, of the RAM_type array type
delared by the package instance and initialize the signal by calling the load_RAM function.
The behavior of the ROM is then implemented by the concurrent procedure call to the
read_RAM procedure. Whenever the address changes, the procedure is called, reading the
addressed element of the ROM and and assigning it to the d_out port. Note that the con-
current procedure call is also sensitive to the ROM signal, but since it never changes after
being initialized, the procedure is only called in response to address changes.

The architecture of the data memory is similar:

architecture rtl of data_RAM is

  use work.embedded_memories.data_memories.all;

  signal RAM : RAM_type;

begin

  flow_through_SSRAM(RAM, clk, en, wr, address, d_in, d_out);

end architecture rtl;

The concurrent procedure call invokes the flow_through_SSRAM procedure from the
data_memories package instance. Once called, this procedure never returns. The sensivity
to clock edges is implemented internally to the procedure.

The instruction ROM and data RAM might be instantiated with the model for the em-
bedded system as follows:



550 Chapter 17 — Case Study: A Package for Memories

entity embedded_system is
  generic ( code_file_name : string );
  port ( ... );
end entity embedded_system;

----------------------------------------------------------------

architecture struct of embedded_system is

  ...

begin

  instr : entity work.instruction_ROM(file_loaded)
    generic map ( file_name => code_file_name )
    port map ( ... );

  data : entity work.data_RAM(rtl)
    port map ( ... );

  ...

end architecture struct;

An outline of the test bench architecture for the embedded system is

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_bit.all;

architecture dump_data of testbench is

  ...

begin

  dut : entity work.embedded_system(struct)
    generic map ( code_file_name => "testbench.vmem" )
    port map ( ... );

  dumper : process is
    use work.embedded_memories.data_memories.all;
    alias RAM is <<signal dut.data.RAM : RAM_type>>;
  begin
    wait until dump_triggered;
    dump_RAM(RAM, "testbench-dump.vmem");
    wait;
  end process dumper;

end architecture dump_data;

The test bench instantiates the embedded system as dut. The dumper process uses
declarations from the data_memories package instance in the embedded_memories
design-unit package. It declares an alias, using an external name, for the RAM signal of



17.2 Using the Memories Package 551

the data memory. When a trigger condition is true, the process invokes the dump_RAM
procedure to dump the contents of the data memory signal to the named file.

17.2.1 Common Address and Data Conversions

There are several common cases for address and data types. Specifically, addresses are
commonly of type natural, std_ulogic_vector, or unsigned; and data values are commonly
of type std_ulogic_vector, unsigned, or signed. As we saw earlier in our example of mem-
ories for an embedded system, much of the overhead in using the memories package lies
in defining conversion functions for the address and data types. In support of common
cases, we can define a package of conversion functions that can be reused, simplifying
instantiation of the memories package. Our support package declaration is

library ieee; use ieee.all;
use std_logic_1164.std_ulogic_vector;

package memories_support is
  generic ( width : positive;
            depth : positive;
            package fixed_pkg is new fixed_generic_pkg
              generic map ( <> );
            package float_pkg is new float_generic_pkg
              generic map ( <> ) );

  -- Conversions for actual types for address_type:
  -- natural, std_ulogic_vector, unsigned

  pure function to_integer (a: natural) return natural;

  alias to_integer is ieee.numeric_std_unsigned.to_integer;

  alias to_integer is ieee.numeric_std.to_integer
                        [ieee.numeric_std.unsigned return natural];

  pure function to_address_type (a : natural)
                                return natural;

  pure function to_address_type (a : natural)
                                return std_ulogic_vector;

  pure function to_address_type (a : natural)
                                return numeric_std.unsigned;

  -- Conversions for actual types for data_type:
  -- natural, std_ulogic_vector, unsigned, signed,
  -- ufixed, sfixed, float

  pure function to_std_ulogic_vector (d : natural)
                                     return std_ulogic_vector;

  pure function to_std_ulogic_vector (d : std_ulogic_vector)
                                     return std_ulogic_vector;



552 Chapter 17 — Case Study: A Package for Memories

  pure function to_std_ulogic_vector (d : numeric_std.unsigned)
                                     return std_ulogic_vector;

  pure function to_std_ulogic_vector (d : numeric_std.signed)
                                     return std_ulogic_vector;

  alias to_std_ulogic_vector is
    fixed_pkg.to_std_ulogic_vector
      [fixed_pkg.ufixed return std_ulogic_vector];

  alias to_std_ulogic_vector is
    fixed_pkg.to_std_ulogic_vector
      [fixed_pkg.sfixed return std_ulogic_vector];

  alias to_std_ulogic_vector is
    float_pkg.to_std_ulogic_vector
      [float_pkg.float return std_ulogic_vector];

  pure function to_data_type (d : std_ulogic_vector)
                             return natural;

  pure function to_data_type (d : std_ulogic_vector)
                             return std_ulogic_vector;

  pure function to_data_type (d : std_ulogic_vector)
                             return numeric_std.unsigned;

  pure function to_data_type (d : std_ulogic_vector)
                             return numeric_std.signed;

  pure function to_data_type_generic_ufixed
    generic ( left_index, right_index : integer )
    parameter (d : std_ulogic_vector) return fixed_pkg.ufixed;

  pure function to_data_type_generic_sfixed
    generic ( left_index, right_index : integer )
    parameter (d : std_ulogic_vector) return fixed_pkg.sfixed;

  pure function to_data_type_generic_float
    generic ( exponent_width : natural
                := float_pkg.float_exponent_width;
              fraction_width : natural
                := float_pkg.float_fraction_width)
    parameter (d : std_ulogic_vector) return float_pkg.float;

end package memories_support;

The package has width and depth generic constants, since these are needed to deter-
mine the vector length for conversions from integer values to vector values. There are also
formal generic packages for fixed-point and floating-point packages, which are needed to
define the fixed-point and floating-point data types. The to_integer conversions for
std_ulogic_vector or unsigned as address types are just aliases for the functions provided
by the numeric_std_unsigned and numeric_std packages, respectively. Similarly, the



17.2 Using the Memories Package 553

to_std_ulogic_vector conversions for ufixed, sfixed, or float as data types are just aliases
for the conversion function provided by the packages defining the types. The remaining
function bodies are either identities or wrappers around type conversions or conversion
functions. The conversion functions from std_ulogic_vector to the ufixed, sfixed and float
data types are uninstantiated functions, with generic constants for specifying the index
range of the result. We declare them in this way to allow particular index ranges to be
bound into an instance of each function, giving a conversion function of one parameter,
as required by the memories package.

The package body includes the implementations of the conversion functions:

package body memories_support is

  pure function to_integer (a: natural) return natural is
  begin
    return a;
  end function to_integer;

  pure function to_address_type (a : natural)
                                return natural is
  begin
    return a;
  end function to_address_type;

  pure function to_address_type (a : natural)
                                return std_ulogic_vector is
  begin
    return numeric_std_unsigned.to_std_ulogic_vector(a, depth);
  end function to_address_type;

  pure function to_address_type (a : natural)
                                return numeric_std.unsigned is
  begin
    return numeric_std.to_unsigned(a, depth);
  end function to_address_type;

  pure function to_std_ulogic_vector (d : natural)
                                     return std_ulogic_vector is
  begin
    return numeric_std_unsigned.to_std_ulogic_vector(d, width);
  end function to_std_ulogic_vector;

  pure function to_std_ulogic_vector (d : std_ulogic_vector)
                                     return std_ulogic_vector is
  begin
    return d;
  end function to_std_ulogic_vector;

  pure function to_std_ulogic_vector (d : numeric_std.unsigned)
                                     return std_ulogic_vector is
  begin



554 Chapter 17 — Case Study: A Package for Memories

    return std_ulogic_vector(d);
  end function to_std_ulogic_vector;

  pure function to_std_ulogic_vector (d : numeric_std.signed)
                                     return std_ulogic_vector is
  begin
    return std_ulogic_vector(d);
  end function to_std_ulogic_vector;

  pure function to_data_type (d : std_ulogic_vector)
                             return natural is
  begin
    return numeric_std_unsigned.to_integer(d);
  end function to_data_type;

  pure function to_data_type (d : std_ulogic_vector)
                             return std_ulogic_vector is
  begin
    return d;
  end function to_data_type;

  pure function to_data_type (d : std_ulogic_vector)
                             return numeric_std.unsigned is
  begin
    return numeric_std.unsigned(d);
  end function to_data_type;

  pure function to_data_type (d : std_ulogic_vector)
                             return numeric_std.signed is
  begin
    return numeric_std.signed(d);
  end function to_data_type;

  pure function to_data_type_generic_ufixed
    generic ( left_index, right_index : integer )
    parameter (d : std_ulogic_vector) return fixed_pkg.sfixed is
  begin
    return fixed_pkg.to_ufixed(d, left_index, right_index);
  end function to_data_type;

  pure function to_data_type_generic_sfixed
    generic ( left_index, right_index : integer )
    parameter (d : std_ulogic_vector) return fixed_pkg.sfixed is
  begin
    return fixed_pkg.to_sfixed(d, left_index, right_index);
  end function to_data_type;

  pure function to_data_type_generic_float
    generic ( exponent_width : natural
                := float_pkg.float_exponent_width;
              fraction_width : natural



17.2 Using the Memories Package 555

                := float_pkg.float_fraction_width)
    parameter (d : std_ulogic_vector) return float_pkg.float is
  begin
    return float_pkg.to_float(d, exponent_width, fraction_width);
  end function to_data_type;

end package body memories_support;

With this support package in place, we no longer need to declare our own conversion
functions in the embedded_memories package of our earlier example. Instead, we can
replace them with instantiations of the memories support package. The revised
embedded_memories package is

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_bit.all;

package embedded_memories is

  constant instruction_width : positive := 16;
  constant instruction_depth : positive := 17;

  constant data_width : positive := 32;
  constant data_depth : positive := 15;

  package instruction_support is new work.memories_support
    generic map ( width => instruction_width,
                  depth => instruction_depth,
                  fixed_pkg => ieee.fixed_pkg,
                  float_pkg => ieee.float_pkg );

  package instruction_memories is new work.memories
    generic map
      ( width => instruction_width, depth => instruction_depth,
        control_type => std_ulogic,
        address_type => unsigned(19 downto 0),
        data_type => std_ulogic_vector(15 downto 0),
        to_integer => instruction_support.to_integer,
        to_address_type => instruction_support.to_address_type,
        to_std_ulogic_vector =>
          instruction_support.to_std_ulogic_vector,
        to_data_type => instruction_support.to_data_type );

  package data_support is new work.memories_support
    generic map ( width => data_width,
                  depth => data_depth,
                  fixed_pkg => ieee.fixed_pkg,
                  float_pkg => ieee.float_pkg );

  package data_memories is new work.memories
    generic map
      ( width => data_width, depth => data_depth,



556 Chapter 17 — Case Study: A Package for Memories

        control_type => std_ulogic,
        address_type => unsigned(17 downto 0),
        data_type => std_ulogic_vector(31 downto 0),
        to_integer => data_support.to_integer,
        to_address_type => data_support.to_address_type,
        to_std_ulogic_vector => data_support.to_std_ulogic_vector,
        to_data_type => data_support.to_data_type );

end package body embedded_memories;

In this version, we have also omitted generic associations for the “??” and rising_edge
operations for std_ulogic, relying instead on the generic subprogram default to identify
the versions from std_logic_1164 that are directly visible. Note that we need to supply
actual packages for the formal generic packages fixed_pkg and float_pkg. We just use the
standard package instances from the ieee library, though they are not used in this exam-
ple.

As a further illustration, suppose we are designing a digital signal processing applica-
tion that requires a data memory to store fixed-point data. The memory has 212 = 4 K
locations, each of which stores a 16-bit sfixed value indexed from 4 down to –11. Our
design instantiates fixed_generic_pkg as a design unit for use throughout the design as
follows:

library ieee;
use ieee.fixed_float_types.all;

package dsp_fixed_pkg is new ieee.fixed_generic_pkg
  generic map ( fixed_round_style => fixed_truncate, 
                fixed_overflow_style => fixed_saturate,
                fixed_guard_bits => 2,
                no_warning );

We can instantiate the memories support package and memories package as follows:

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_bit.all;
use work.dsp_fixed_pkg.all;

package dsp_data_pkg is

  package dsp_data_support is new work.memories_support
    generic map ( width => 16, depth => 12,
                  fixed_pkg => work.dsp_fixed_pkg,
                  float_pkg => ieee.float_pkg );

  use dsp_data_support.all;

  function to_data_type is new to_data_type_generic_sfixed
    generic map ( left_index => 4, right_index => -11 );

  package dsp_data_memories is new work.memories
    generic map



17.2 Using the Memories Package 557

      ( width => 16, depth => 12,
        control_type => std_ulogic,
        address_type => unsigned(11 downto 0),
        data_type => sfixed(4 downto -11) );

end package dsp_data_pkg;

The instance of the support package has dsp_fixed_pkg as the actual fixed-point
package for defining the sfixed type. The to_data_type_generic_sfixed function is instan-
tiated with the index bounds for our application data as the values for the generic con-
stants. This gives a to_data_type function that converts a std_ulogic_vector value to an
sfixed value with the required index bounds.

In the instance of the memories package, we provide actual values for the width and
depth and actual types for the control signals, adresses and data. We don’t need to specify
any of the conversion functions explicitly, as all of the required functions are directly vis-
ible and used by default. The “??” and rising_edge operations come from std_logic_1164.
The to_integer function on unsigned addresses comes from numeric_std, and
to_address_type converting from natural to unsigned comes from dsp_data_support. The
to_std_ulogic_vector function for the data type sfixed comes from dsp_fixed_pkg, and
to_data_type is the instance of to_data_type_generic_sfixed.

With this package in place, the data memory design is quite simple:

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_bit.all;
use work.dsp_fixed_pkg.all;

entity dsp_data_RAM is
  port ( clk, en, wr : in std_ulogic;
         address : in unsigned(11 downto 0);
         d_in : in sfixed(4 downto -11);
         d_out : out sfixed(4 downto -11) );
end entity dsp_data_RAM;

----------------------------------------------------------------

architecture rtl of dsp_data_RAM is

  use work.dsp_data_pkg.dsp_data_memories.all;

  signal RAM : RAM_type;

begin

  pipelined_SSRAM(RAM, clk, en, wr, address, d_in, d_out);

end architecture rtl;



558 Chapter 17 — Case Study: A Package for Memories

Exercises

1. [➊ 17.2] Write instantiations of the memories_support and memories packages for a
1024 × 24-bit memory using bit for control signals and std_ulogic_vector for
addresses and data.

2. [➊ 17.2] Write instantiations of the memories_support and memories packages for a
32 × 128-bit memory using std_ulogic for control signals, unsigned for addresses, and
float128 from ieee.float_pkg for data.

3. [➌ 17.1] Develop a function to add to the memories package that loads a memory
with random values.

4. [➍] For large memories, using an array signal to represent the stored data involves too
much overhead during simulation. Instead, we can implement behavioral models of
large memories using sparse data structures. A sparse array dynamically allocates
chunks of storage as memory locations are accessed during simulation. Develop a
package for a sparse array abstract data type, and use it to extend the memories pack-
age with procedures for large memories.



559

Chapter 18 

Test Bench and Verification Features

One of the characteristics of VHDL is that it allows a verification test bench to be written
in the same language as the design to be verified. We have seen this in numerous exam-
ples in earlier chapters. We include the design to be verified as a component instance in
a test bench model. We write VHDL statements to apply sequences of test values to the
input ports of the design, and verify that the design produces the expected output values.
However, some aspects of the language that we have seen so far make it hard to verify
designs. The visibility rules are an example. They are intended to help us manage name
spaces in complex designs by enforcing abstraction of interfaces and hiding of internal
information. While they are good for a design in isolation, they can prevent a test bench
from accessing items internal to a design. A test bench may need to monitor the state of
internal signals, or force internal signals to particular values.

Another approach to verification relies less on testing and more on formal mathemat-
ical proof of correctness of a design. In order to prove correctness, we need to be able to
specify what the design is intended to do. VHDL allows us to express design intent in the
form of properties written in the Property Specification Language (PSL). While PSL is a
separate language, defined by an IEEE standard and applicable to a number of hardware
description languages, VHDL allows us to embed PSL specification within a VHDL model.
A formal verification tool can then analyze the VHDL behavioral statements to prove that
the properties hold.

In this chapter, we will look at features of VHDL that help us write test benches to
verify operation of a design. We will start with features that allow a test bench to access
objects nested within a design hierarchy, and then look at features for forcing signals. Fi-
nally, we will show how PSL specifications can be integrated into VHDL models.

18.1 External Names

VHDL provides a naming feature, external names, that allows us to write a test bench that
accesses items not normally visible according to the hierarchical scope and visibility rules.
An external name specifies a hierarchical path through the design hierarchy to reach a de-
clared object. Thus, a test bench using an external name must have sufficient knowledge
of the hierarchical structure of the design for the path to be valid. Validity of the external



560 Chapter 18 — Test Bench and Verification Features

name is assumed during analysis of the test bench, and is checked during elaboration of
the complete design hierarchy.

The syntax rule for an external name is

external_name ⇐
  << constant external_pathname : subtype_indication >>
I << signal external_pathname : subtype_indication >>
I << variable external_pathname : subtype_indication >>

external_pathname ⇐
absolute_pathname I relative_pathname I package_pathname

As the syntax rule suggests, when we write an external name, we provide more infor-
mation than just the path to the object. We also specify the class of object (constant, signal,
or variable) and the subtype of the object. These specifications are used during analysis
to ensure correct usage of the named object and are checked for validity during elabora-
tion. In particular, the subtype indication specifies a view of the object, in a way similar
to an alias.

The syntax rule for the pathname shows that there are three forms we can use. We
will start with absolute pathnames, and return to the other two forms later in this section.
A simplified syntax rule for an absolute pathname is:

absolute_pathname ⇐
 . { pathname_element . } object_identifier

pathname_element ::=
  entity_identifier
I component_instantiation_label

An absolute pathname starts at the top of a design hierarchy. The first pathname ele-
ment is the identifier for the top-level entity. In a test bench, where external names typi-
cally occur, the top-level entity is usually the test bench entity. Following the entity name,
the pathname includes labels of component instantiation statements. The first of these re-
fers to a component instance in the architecture of the top-level entity. The next is a com-
ponent instance in the bound entity and architecture; the following is a component
instance in the bound entity and architecture for the second instance; and so on. Thus, the
pathname delves into the design hierarchy to the component instance whose bound entity
and architecture contains the named object.

As an example, we might use the following external name in a test bench to monitor
the value of a signal within a design under verification:

assert <<signal .tb.duv.controller.state :
                  std_ulogic_vector(0 to 4)>> /= "00000"
  report "Illegal controller state";

Within the test bench, this external name is a reference to a signal nested within the
component labeled controller, which is nested within the component labeled duv, which
is within the top-level entity tb. The signal is interpreted as a std_ulogic_vector indexed
from 0 to 4. When the test bench is analyzed, the existence and type of the signal is not



18.1 External Names 561

checked. However, once the complete design hierarchy is elaborated, the signal must exist
and be of an appropriate type to match the subtype specified in the external name.

An external name is just a different form of name for a constant, signal or variable, so
we can use an external name at any place where a name is appropriate, subject to some
rules that we will return to shortly. That means we can refer to a constant or signal value
in an expression, and we can assign to a signal or include it in a port map. The rules for
forming a pathname only allow us to refer to items declared in concurrent regions of a
design, such as entity and architecture declarative parts, so an external variable name can
only refer to a shared variable. Since we have deferred discussion of shared variables to
Chapter 19, we will focus on use of external names for constants and signals in this chap-
ter.

If an external name refers to an object of a composite type, we can refer to an element
of the object. For example, given an array signal declared within a design, we can index
the array with an external name as the prefix:

<<signal .tb.duv_rtl.data_bus :
           std_ulogic_vector(0 to 15)>>(8) <= '1';

Another way to use an external name is to declare an alias. If we do that, we need
only write the full external name in the alias declaration. Thereafter, we can just use the
shorter alias name, making the model more succinct. For example, if we need to refer to
the data_bus signal in several places in a test bench, we could declare an alias for it:

alias duv_data_bus is
  <<signal .tb.duv_rtl.data_bus : std_ulogic_vector(0 to 15)>>;

and then just use the alias in the assignment and other places:

duv_data_bus(8) <= '1';
sign <= duv_data_bus(0);

Recall from Chapter 11 that we have the option of specifying a subtype after the alias
name in an alias declaration. The syntax rule is:

alias_declaration ⇐
alias identifier [ : subtype_indication] is name ;

An alias declared with a subtype indication gives us a view of the named object as
being of that subtype. However, when the name we are aliasing is an external name, the
subtype is specified in the external name. We do not repeat the subtype (or specify a con-
flicting subtype!) after the alias name. So the following two alias declarations are illegal:

alias duv_data_bus : std_ulogic_vector(0 to 15) is -- illegal!
  <<signal .tb.duv_rtl.data_bus : std_ulogic_vector(0 to 15)>>;

alias duv_data_bus : std_ulogic_vector(15 downto 0) is -- illegal!
  <<signal .tb.duv_rtl.data_bus : std_ulogic_vector(0 to 15)>>;

We can use an external constant name (or an alias of such a name) in an expression,
provided the constant has been elaborated and given a value by the time the expression



562 Chapter 18 — Test Bench and Verification Features

is evaluated. In some cases, expressions are evaluated during elaboration of a design. For
example, initial-value expressions and index-bound expressions in declarations are eval-
uated when the declaration is elaborated, so an external constant name appearing in those
places must refer to a constant that has already been elaborated. We can ensure this is the
case by writing the part of the design that includes the constant declaration prior to the
part of the design that contains the external constant name. VHDL’s elaboration rules spec-
ify that the design is elaborated in depth-first top-to-bottom order.

EXAMPLE 18.1 Elaboration order for external names

To illustrate how we can take account of the elaboration order, suppose we have an
entity and architecture for a design that declares a constant, as follows:

entity design is
  port ( ... );
end entity design;

architecture rtl is
  constant width : natural := 32;
  ...
begin
  ...
end architecture rtl;

Suppose also that we have a test bench entity and architecture:

entity test_bench is
end entity test_bench;

architecture directed of test_bench is
  signal test_in :
    bit_vector(0 to <<constant .top.duv.width : natural>> - 1);
  ...
begin
  ...
end architecture directed;

We now assemble the design and test bench in a top-level entity and architecture:

entity top is
end entity top;

architecture level of top is
begin
  assert false
    report "Width = " &
           to_string(<<constant .top.duv.width : natural>>);
  duv : entity work.design(rtl);



18.1 External Names 563

  tb  : entity work.test_bench(directed);
end architecture level;

In this case, the instance of the design under verification is elaborated before the
test bench instance. Thus, the declaration of the constant width is elaborated and giv-
en a value before the external constant name within the tb instance is evaluated. Had
we written the two instances in the reverse order, the constant would not have been
elaborated at the time of elaborating the external constant name, and an error would
occur. The external constant name in the concurrent assertion statement, on the other
hand, is not evaluated until the model is executed, by which time the model is com-
pletely elaborated. Thus, the external constant name is allowed to precede the in-
stance of the design under test in which the constant is declared.

VHDL has a related rule regarding elaboration of a signal referenced by an external
signal name. If such a name (or an alias of such a name) is used in a port map, the signal
declaration must have been previously elaborated. The reason is that the hierarchy of sig-
nal nets and drivers is built during elaboration. If a signal used in a port map is not yet
elaborated, the elaborator would have to revisit elaboration of that part of the design hi-
erarchy once the signal declaration was encountered. In general, allowing such use of ex-
ternal signal names would make elaboration of signal nets indefinitely complicated. The
rule preventing such use allows elaboration to proceed in a well-defined order, and is not
onerous in practice. It usually just requires that the component instance in which the signal
is declared be written before the instance referencing the signal in a port map. The typical
scenario is that a design under verification be instantiated before the test bench code con-
taining external names.

We will now look at the full syntax rule for an absolute pathname:

absolute_pathname ⇐ . { pathname_element . } object_identifier

pathname_element ::=
  entity_identifier
I component_instantiation_label
I block_label
I generate_statement_label [ ( static_expression ) ]
I package_identifier

As we described earlier, the first element in the pathname names the top-level entity,
which has an associated architecture. The entity and architecture can contain declarations
of objects. We can identify such an object by writing the object name after the entity name.
The entity and architecture can also contain nested declarative parts, such as the compo-
nent instances we mentioned earlier. Other nested declarative parts can include block
statements (which we describe in Chapter 23), generate statements (Chapter 14), and lo-
cally declared packages (Chapter 7) and package instances (Section 12.3). These parts can,
in turn, contain declarations of objects. We can identify an object in such a nested declar-
ative part by joining the object name onto the name for the declarative part and the name
for the top-level entity. In the case of a block, the name for the declarative part is the block
label. In the case of a generate statement, the name for the declarative part is the generate



564 Chapter 18 — Test Bench and Verification Features

label. A for-generate also requires a value to indicate which iteration of the generate to
use. In the case of a local package, the name for the declarative part is the package name.
Note that we cannot use the name of an uninstantiated package in this way; we can only
use the name of an instance of the uninstantiated package. A component instance is some-
what different, in that the declarative part is not written textually inside the enclosing en-
tity or architecture. Instead, the declarative part we refer to is that of the bound entity and
architecture. Nonetheless, we use the label of the componenent instantiation statement as
the name for the declarative part.

We apply these rules recursively to build up a chain of declarative part names, starting
from the entity at the top of the design hierarchy and leading through levels of nesting to
identify any object instantiated within the hierarchy. For example, the absolute pathname

.tb.duv_rtl.data_bus

refers to the object named data_bus declared within the entity and architecture bound to
the component labeled duv_rtl within the top-level entity tb. Similarly, the absolute
pathname

.tb.duv_rtl.memory(3).addr_bus

refers to the object named addr_bus within the for-generate iteration with index 3 within
the component labeled duv_rtl within the top-level entity tb.

EXAMPLE 18.2 Monitoring states in an embedded state machine

Suppose we are verifying a system that includes a finite-state machine control unit em-
bedded as a subcomponent. The control unit is described by the following entity and
architecture:

library ieee; use ieee.std_logic_1164.all;
entity control is
  port ( clk, reset : in std_ulogic; ... );
end entity control;

architecture fsm of control is
  subtype state_type is std_ulogic_vector(3 downto 0);
  constant idle     : state_type := "0000";
  constant pending1 : state_type := "0001";
  ...
  signal current_state, next_state : state_type;
begin
  state_reg : process (clk) is ...
  fsm_logic : process (all) is ...
end architecture fsm;

The entity and architecture for the system being designed are

library IEEE; use IEEE.std_logic_1164.all;
entity system is



18.1 External Names 565

  port ( clk, reset : in std_ulogic; ... );
end entity system;

architecture rtl of system is
  component control is
    port ( clk, reset : in std_ulogic; ... );
  end component control;
begin
  control_unit : component control
    port map ( clk => clk, reset => reset, ... );
  ...
end architecture rtl;

We can define a test bench entity and architecture that traces the sequence of
states in the control unit, issuing a report message for each:

entity state_monitor is
end entity state_monitor;

architecture tracing of state_monitor is
  alias fsm_clk is
    <<signal .tb.system_duv.control_unit.clk : std_ulogic>>;
  alias fsm_state is
    <<signal .tb.system_duv.control_unit.current_state :
               std_ulogic_vector(3 downto 0)>>;
begin
  monitor : process (fsm_clk) is
  begin
    if falling_edge(fsm_clk) then
      report to_string(now) & ": " & to_string(fsm_state);
    end if;
  end process monitor;
end architecture tracing;

Note here that the external reference to the clk port of the control_unit instance
treats the port as a signal declared in the region corresponding to the instance. This
reflects the rule in VHDL that a port is considered to be a signal declared within an
entity. A generic constant of an instance would similarly be referenced using an ex-
ternal constant name with a pathname for the instance.

The external references in this architecture assume that the complete design hier-
archy has an entity named tb at the root, and that the instance of the system to be
monitored is labeled system_duv within the top-level architecture. To satisfy those as-
sumptions, we write the top-level entity and architecture as

library IEEE; use IEEE.std_logic_1164.all;
entity tb is
end entity tb;



566 Chapter 18 — Test Bench and Verification Features

architecture monitoring of tb is
  signal system_clk, system_reset : std_ulogic;
  ...
begin

  ... -- clock and reset generation

  system_duv : entity work.system(rtl)
    port map ( clk => system_clk, reset => system_reset, ... );

  state_monitor : entity work.state_monitor(tracing);

end architecture monitoring;

Within the tracing architecture of the state_monitor entity, we write an external
name for the current_state signal with a std_ulogic_vector subtype. Normally, we
would declare an enumeration type for the states of a finite-state machine. If we de-
clare such a type locally within the control unit architecture, it would not be visible
to the external monitor. We would not be able to write an external name with an ap-
propriate subtype for the referenced signal. That is why we used a std_ulogic_vector
subtype for the state type in this example. If we want to declare an enumeration type
for an object that is to be externally monitored, we would have to declare the type in
a package that is visible both in the object declaration and in the monitor.

In some test benches, the test bench code is written in the same architecture as an
instance of the design under verification. In those cases, there is no need to specify the
absolute path starting from the top-level entity. Instead, we can use a relative pathname,
consisting of the chain of names starting from the immediately enclosing declarative part,
without the leading dot symbol. A simplified syntax rule for a relative pathname is:

relative_pathname ⇐ { pathname_element . } object_identifier

For example, if a test bench architecture includes an instance of the design under ver-
ification labeled duv, then the architecture could also contain the assertion statement:

assert <<signal duv.controller.state :
                  std_ulogic_vector(0 to 4)>> /= "00000"
  report "Illegal controller state";

Since the starting point for the relative pathname is the enclosing architecture, the first
part of the pathname refers to the component instance, and subsequent parts refer to items
nested within the bound entity and architecture.

An important point to note when we are talking about the innermost declarative part
for a relative pathname is that only concurrent regions are considered. By concurrent re-
gion, we mean an entity or architecture body, a block statement, a generate statement, or
a package declared locally within a concurrent region. If we write an external name with
a relative pathname within a process or subprogram, that region does not count, since it
is not a concurrent region. Moreover, if the name is within a package that is declared
within a process or subprogram, the package does not count either. We need to look out-



18.1 External Names 567

ward in the design hierarchy to find an enclosing entity, architecture, block, or generate
statement, or a package that is declared in such a region.

EXAMPLE 18.3 Revised state monitoring for an embedded state machine

Returning to the test bench of Example 18.2, we can write the state-monitoring code
directly in the top-level architecture rather than in an instantiated entity and architec-
ture. In that case, we can use relative pathnames, and so do not have to assume the
name of the top-level entity. The revised top-level architecture is

architecture monitoring of tb is

  signal system_clk, system_reset : std_ulogic;

  alias fsm_clk is
    <<signal system_duv.control_unit.clk : std_ulogic>>;
  ...

begin

  ... -- clock and reset generation

  system_duv : entity work.system(rtl)
    port map ( clk => system_clk, reset => system_reset, ... );

  monitor : process (fsm_clk) is
    use std.textio.all;
    file state_file : text open write_mode is state_file_name;
    alias fsm_state is
      <<signal system_duv.control_unit.current_state :
                 std_ulogic_vector(3 downto 0)>>;
  begin
    if falling_edge(fsm_clk) then
      report to_string(now) & ": " & to_string(fsm_state);
    end if;
  end process monitor;

end architecture monitoring;

In this architecture, the alias declarations refer to external names identified with
relative pathnames. The component label system_duv is declared in the same enclos-
ing architecture region as the alias declarations, so that label is the one used in the
pathnames. Even though the external name aliased to fsm_state is written within the
process region, the innermost region considered is that of the enclosing architecture.

A further form of relative pathname allows us to identify an outer region as the starting
point for the pathname. We write such a pathname using one or more leading “^” symbols
in place of names. The full syntax rule for a relative pathname shows this:

relative_pathname ⇐ { ^ . } { pathname_element . } object_identifier



568 Chapter 18 — Test Bench and Verification Features

As for the relative pathname without the “^” symbols, we initially start with the inner-
most concurrent region enclosing the external name. Then, for each “^” symbol, we look
in the next enclosing region. In the case of instantiated components, the region enclosing
an instance of a bound entity and architecture is the region in which the instantiation is
written. Thus, if we use this form of pathname in an entity or architecture, we are making
a strong assumption about the context in which the entity and architecture are instantiated.
Specifically, we are assuming that context also includes the names written in the
pathname. The complete design hierarchy must be built in such a way as to ensure the
assumption is met, otherwise an error will occur during elaboration.

EXAMPLE 18.4 Relative pathname in a nested monitor

Suppose we are verifying a multicore platform, in which each core includes an in-
stance of a CPU described by the following entity and architecture:

entity CPU is
  ...
end entity CPU;

architecture BFM of CPU is
  use work.CPU_types.all;
  signal fetched_instruction : instruction_type;
  ...
begin
   ...
end architecture BFM;

The architecture includes a signal representing a fetched instruction. The
multicore platform is described by an entity with a generic constant specifying the
number of cores. The architecture of the entity uses a for-generate statement to repli-
cate instances of the CPU.

entity platform is
  generic ( num_cores : positive );
  port    ( ... );
end entity platform;

architecture BFM_multicore of platform is
  ...
begin
  cores : for core_num in 1 to num_cores generate
    processor : entity work.CPU(BFM) ...;
    ...
  end generate cores;
  ...
end architecture BFM_multicore;



18.1 External Names 569

We now consider the test bench that instantiates the platform entity and architec-
ture. Again, we use a generic constant to determine the number of cores in the design
under verification. We can include a monitor for each instantiated core by writing a
for-generate statement in the test bench, mirroring that in the platform architecture.

entity test_bench is
  generic ( num_cores : positive );
end entity test_bench;

architecture test_BFM of test_bench is
  ...
begin

  duv : entity work.platform(BFM_multicore)
    generic map ( num_cored => num_cores )
    port map    ( ... );

  monitors : for core_num in 1 to num_cores generate
    use work.CPU_types.all, work.CPU_trace.all;
    process is
    begin
      ...
      trace_instruction
        ( <<signal
          ^.duv.cores(core_num).processor.fetched_instruction :
            instruction_type>>,
          ... );
      ...
    end process;
  end generate monitors;

end architecture test_BFM;

The process within the generate statement includes an external name referring to
the fetched_instruction signal in the corresponding core instance. The pathname uses
the value of the core_num generate parameter to identify the corresponding iteration
of the generate statement labeled cores in the design under verification. Since the ex-
ternal name is in a process nested within a generate statement, the generate statement
is the innermost region used as the starting point for the relative pathname. For that
reason, the pathname starts with a “^” symbol to look outside the starting region to
the enclosing architecture region. The duv component instance is declared in that re-
gion, so it can be used as the next part of the pathname.

We now turn to the third form of pathname, a package pathname, that we can write
in an external name. For objects declared in a package declaration written as a design unit,
we can just use the package name as a prefix in a normal selected name to refer to the
object. However, objects declared in the package body are not visible to designs. They
would normally be referenced indirectly using procedures declared in the package decla-



570 Chapter 18 — Test Bench and Verification Features

ration. A test bench, on the other hand, can use an external name to refer to such a hidden
object. An object in a design-unit package is not nested within the design hierarchy, but
is considered to be nested within the library containing the package. So the chain of region
names starts with the library name (the name defined by a library clause) and leads
through the top-level package name and any nested package names to the referenced ob-
ject.

A package pathname takes a similar form to an absolute pathname, but starts with an
“@” symbol instead. That is followed by name of the library containing the package, then
the package name, then the names of any intervening nested packages, and finally the
object name. The syntax rule is:

package_pathname ⇐ @ library_identifier . { package_identifier . } object_identifier

For example, given the following package declaration and body analyzed into the
working library:

package p1 is
  ...
end package p1;

package body p1 is
  ...
  package p2 is
    signal s : bit;
  end package p2;
  ...
end package body p1;

we could write the following external name to refer to the signal:

<<signal @work.p1.p2.s : bit>>

VHDL-87, -93, and -2002

These versions of VHDL do not allow external names.

18.2 Force and Release Assignments

When verifying a design, we often would like to be able to override the value assigned to
a signal in the normal course of design operation and force a different value onto the sig-
nal. One reason for doing this is to set up a test scenario by forcing values to a state that
would normally be arrived at through a complex initialization sequence. Forcing the val-
ues allows us to bypass the sequence and set up the scenario quickly, and so reduce the
verification time significantly. Another reason for forcing values is to inject erroneous val-
ues into the design to ensure that it detects the error or otherwise responds appropriately.

The forms of signal assignment that we have seen in earlier chapters all contribute to
a signal’s value. If there are multiple assignment statements in different parts of a model,



18.2 Force and Release Assignments 571

they constitue separate sources, and their contributed values are resolved to determine the
signal’s value. For verification purposes, we need a different form of assignment that over-
rides the normal form. VHDL provides such a form, called a force assignment. The syntax
rule for a simple force assignment is:

signal_assignment_statement ⇐
[ label : ] name <= force [ in I out ] expression ;

This is a sequential assignment written within a process forming part of the test bench.
The effect is to cause a delta cycle and to force the named signal to take on the value of
the expression in that delta cycle, regardless of any value assigned to the signal by any
normal signal assignment. The signal is considered to be active during the delta cycle, and
if the forcing value is different from the previous value, an event occurs on the signal.
Processes sensitive to changes on the signal value would then respond to the value change
in the normal way. The usual rules relating the type of the expression to the type of the
target signal apply for force assignments. The target signal name can be a normal signal
name, or it can be an external signal name or alias.

Once a signal has been forced, we can update the signal with another force assign-
ment to change the overriding value, again causing the signal to become active and pos-
sibly to have another event. We can do this as often as needed. Eventually, if we want to
stop forcing a signal, we can execute a release assignment. The syntax rule is

signal_assignment_statement ⇐
[ label : ] name <= release [ in I out ] ;

This causes a further delta cycle, with the signal being active. However, since the sig-
nal is no longer forced, the current values of its sources are used to determine the signal
value in the normal way. We can think of this as the design “taking back control” of the
signal.

EXAMPLE 18.5 Simulated corruption of a state machine’s state value

Clocked sequential systems are usually controlled by a finite-state machine. If the stor-
age for the current state is corrupted, the system may be able to recover by transition-
ing from the illegal state back to an initial state. A test bench can verify that a design
under verification recovers correctly by forcing the signal storing the current state of
the state machine to an illegal value. It can then release the signal and monitor recov-
ery. The test bench process is

verify_state_recovery : process is
  use work.control_pkg.all;
  alias clk is <<signal duv.clk : std_ulogic>>;
  alias current_state is
          <<signal duv.control.current_state : state_type>>;
begin
  ...
  -- inject corrupt state
  wait until falling_edge(clk);



572 Chapter 18 — Test Bench and Verification Features

  current_state <= force illegal_state_12;
  wait until falling_edge(clk);
  current_state <= release;
  -- monitor recovery activity
  ...
end process verify_state_recovery;

Our discussion of force assignments has so far focused on signals. We can also force
and release ports of a design, since they are a form of signal. However, for a port, we
distinguish between the driving value and the effective value. The driving value is the val-
ue presented externally by an entity, and is determined by the internal sources within the
entity. The effective value is the value seen internally by an entity and is determined by
whatever is externally connected to the port, whether that be an explicitly declared signal
or a port of an enclosing entity. Depending on the port mode and the external connec-
tions, the driving and effective values may be different. For example, an inout-mode port
of type std_ulogic might drive a ‘0’ value, but the externally connected signal might have
another source driving a ‘1’ value. In that case, the resolved value of the signal is ‘X’, and
that value is seen as the effective value of the inout-mode port.

VHDL allows us to force the driving and effective values of a signal or port indepen-
dently by including a force mode in an assignment. For explicitly declared signals, where
the driving and effective values are the same, the distinction makes no difference. For
ports and signal parameters, we can force the driving value by including the keyword out
in the force assignment, for example:

duv_bus <= force out "ZZZZZZZZ";

Alternatively, we force the effective value by including the keyword in in the force
assignment, for example:

duv_bus <= force in "XXXXXXXX";

Once we’ve forced a port’s or signal parameter’s driving value, we can stop forcing it
by writing a release assignment with the keyword out:

duv_bus <= release out;

Similarly, to release a forced effective value, we write a release assignment with the
keyword in:

duv_bus <= release in;

We can force and release driving values of ports and signal parameters of mode out,
inout, and buffer, but not those of mode in, since they do not have driving values. How-
ever, all ports and signal parameters have effective values, so we can force and release the
effective value of a port or signal parameter of any mode. (The exception is ports of mode
linkage, which we describe briefly in Chapter 23.)

If we omit the force mode (out or in) in a force or release assignment, a default force
mode applies. For assignments to ports and signal parameters of mode in and to explicitly



18.2 Force and Release Assignments 573

declared signals, the default force mode is in, forcing the effective value. For assignments
to ports and signal parameters of mode out, inout, or buffer, the default force mode is
out, forcing the driving value.

EXAMPLE 18.6 Forcing disconnection of a port’s driving value

Serial buses such as I2C, USB and FireWire have bidirectional connections to the bus’
physical wires. This allows a device to drive the clock and data wires when transmit-
ting data and to sense the clock and data values when receiving. A test bench can
model a broken data driver connection by forcing a ‘Z’ value on the output part of
the bidirectional port, while allowing the input part of the port to operate normally.
The code in the test bench is

...
-- Test scenario: break in the output connection
<<signal duv.SDA : std_ulogic>> <= force out 'Z';
-- Monitor device operation under this fault condition
...
-- Restore connection for the next scenario
<<signal duv.SDA : std_ulogic>> <= release out;
...

In Chapter 5 we introduced conditional and selected forms of sequential signal assign-
ment statements. We can also write conditional and selected force assignments, choosing
the value to force onto the target signal from a number of alternatives. The syntax rule for
a conditional force assignment is

conditional_force_assignment ⇐
[ label : ]
name <= force [ in I out ]

expression when condition
{ else expression when condition }
[ else expression ] ;

and for a selected force assignment:

selected_signal_assignment ⇐
[ label : ]
with expression select [ ? ]

name <= force [ in I out ]
{ expression when choices , }
expression when choices ;

The force mode is optional, and can be either in or out to specify forcing of the ef-
fective value or the driving value of the target signal, respectively, as described above. The
effect of these statements is to allow us to choose the value to force onto the target, de-
pending on a number of conditions or on the value of an expression. They provide a more



574 Chapter 18 — Test Bench and Verification Features

succinct way of writing the alternatives than embedding a number of simple force assign-
ments in an if statement or case statement.

EXAMPLE 18.7 Conditional force assignment

A conditional force assignment can be used to choose between a randomly generated
stimulus value or a directed-test stimulus value in a loop that applies successive tests.
The stimulus value is used to force the effective value of a bidirectional port of a de-
sign under test. The code in the test bench is

alias dut_d_bus is
  <<signal dut.d_bus:std_ulogic_vector(15 downto 0)>>;
...

for test_count in 1 to num_tests loop
  dut_d_bus <= force in
    next_random_stim(dut_d_bus'length)
      when test_mode = random else
    directed_stim(test_count);
  wait for test_interval;
end loop;

As we have seen earlier, VHDL allows us to assign a composite value to a collection
of signals by writing the collection in the form of an aggregate on the left-hand side of the
assignment, for example:

(carry_out, sum) <= ('0' & a) + ('0' & b);

We cannot, however, write an aggregate of signal names as the target of a force or
release assignment to force or release each of the signal values. Instead, we must write a
separate force or release assignment for each of the signals. For example, if we want to
force and release the driving values of the two ports carry_out and sum, we would have
to write:

sum <= force out unsigned'("00000000");
carry_out <= force out '1';
...

sum <= release out;
carry_out <= release out;

There is a further form of target signal for which we cannot write a force or release
assignment. Suppose we define a resolved signal of a composite type, such as an array
type. By that, we mean a signal with multiple sources, each of which is a composite value.
The resolution function for the signal takes an array of composite values and determines
a composite value as the resolved value of the signal. We cannot write a force or release
assignment with an element of such a signal as the target. We can only force or release
the signal as a whole. This mirrors the requirements that a process driving such a signal



18.3 Embedded PSL in VHDL 575

have a driver for all elements of the signal, and that sources for such a signal be sources
for the entire signal. Note that resolved composite signals are different from signals of re-
solved elements, for example, signals of type std_logic_vector. We can force and release
individual elements or slices of those signals, since each element is resolved individually.

Another case to consider is a force or release assignment written in a subprogram.
VHDL has a rule, mentioned in Chapter 6, that a signal assignment written in a procedure
that is not contained within a process can only assign to a signal parameter of the proce-
dure. The rationale is that assignment to a signal implies a driver for the signal. For signal
parameters, the driver used is the driver for the actual signal provided by the process that
calls the procedure. For other signals, a driver for the target signal would be implied for
every process that calls the procedure. Identifying all of the callers in a large model would
be very difficult. Moreover, if the procedure body is written separately from the calling
processes, determining what drivers are created for a given process would be difficult.
Thus, the restriction makes VHDL designs easier to analyze and understand. Force and
release assignments, on the other hand, do not imply drivers. Rather, they would typically
occur in test bench code, often referring to the target signals with external names. For
these reasons, VHDL allows force and release assignments in procedures outside of pro-
cesses to signals other than signal parameters.

One final aspect to discuss is the effect of multiple concurrent force and release as-
signments. Since they are sequential assignments written in processes, it is possible that
multiple forces and releases could occur for a given signal during a single simulation cycle.
If a force and release both occur, the effect is as though the release is immediately over-
ridden by the force, and so the signal remains forced, but with the new force value. The
effect of multiple forces is not defined. We should write our test bench models to avoid
that occurring. The effect of multiple releases, however, is the same as a single release,
and a release assignment on a signal that is not forced has no effect.

VHDL-87, -93, and -2002

These versions of VHDL do not allow force and release assignments. Simulators for
these versions typically provide commands for forcing and releasing signals interac-
tively or as part of a simulation control script.

18.3 Embedded PSL in VHDL

PSL is the IEEE Standard Property Specification Language (IEEE Std 1850). It allows spec-
ification of temporal properties of a model that can be verified either statically (using a
formal proof tool) or dynamically (using simulation checkers). VHDL allows PSL code to
be embedded as part of a VHDL model. This makes design for verification a much more
natural activity, and simplifies development and maintenance of models. Since PSL is itself
a significant language, we won’t describe all of its features in detail in this book. Instead,
we will just describe the way in which PSL can be embedded in VHDL. For a full descrip-
tion of PSL and its use in verifying designs, the interested reader is referred to other pub-
lished books on the subject. (See, for example, A Practical Introduction to PSL [4].)



576 Chapter 18 — Test Bench and Verification Features

In VHDL we can include PSL property, sequence, and default clock declarations in
the declarative part of an entity, architecture, block statement (see Chapter 23), generate
statement, or package declaration. We can then use the declared properties and sequences
in PSL directives written in the corresponding statement parts.

Any properties that we write in PSL declarations and directives must conform to PSL’s
simple subset rules. In practice, this means that we can only write properties in which time
moves forward from left to right through the property. Two examples from the PSL stan-
dard illustrate this. First, the following property is in the simple subset:

always (a -> next[3] b)

This property states that if a is true, then three cycles later, b is true; that is, time moves
forward three cycles as we scan the property left to right. In contrast, the following prop-
erty is not in the simple subset:

always ((a && next[3] b) -> c)

This property states that if a is true and b is true three cycles later, then c must have
been true at the time a was true. The problem with this property is that time goes back-
ward from b being true to c being true. A tool to check such a property is much more
complex than one to check properties in the simple subset.

PSL directives require specification of a clock that determines when temporal expres-
sions are evaluated. We can include a clock expression in a directive. However, since the
same clock usually applies to all directives in a design, it is simpler to include a default
clock declaration. If we write a default clock declaration in a region of a design, it applies
to any PSL directives written in that region. We can include at most one default clock dec-
laration in any given region.

EXAMPLE 18.8 Pipelined handshake assertion

In their book Assertion-Based Design [7], Foster et al. describe a verification pattern
for a system in which handshaking is pipelined. In their example, a system can receive
up to 16 requests before acknowledging any of them. The system counts the number
of requests and acknowledgments and includes an assertion that, for every request
with a given request count, there is an acknowledgment with the same count within
100 clock cycles. We can describe the system in VHDL as follows:

library ieee; context ieee.ieee_std_context;
entity slave is
  port ( clk, reset : in  std_ulogic;
         req        : in  std_ulogic;
         ack        : out std_ulogic;
         ... );
end entity slave;

architecture pipelined of slave is

  signal req_cnt, ack_cnt : unsigned(3 downto 0);



18.3 Embedded PSL in VHDL 577

  default clock is rising_edge(clk);

  property all_requests_acked is
    forall C in {0 to 15}:
      always {req and req_cnt = C} |=>
             {[*0 to 99]; ack and ack_cnt = C};

begin

  req_ack_counter : process (clk) is
  begin
    if rising_edge(clk) then
      if reset = '1' then
        req_cnt <= "0000"; ack_cnt <= "0000";
      else
        if req = '1' then req_cnt <= req_cnt + 1; end if;
        if ack = '1' then ack_cnt <= ack_cnt + 1; end if;
      end if;
    end if;
  end process req_ack_counter;

  ...

  assert all_requests_acked;

end architecture pipelined;

The counters for requests and acknowledgments are implemented using the sig-
nals req_cnt and ack_cnt and the process req_ack_counter. We declare a property,
all_requests_acked that expresses the verification condition for the design. We also
include a default clock declaration for the architecture. It applies to the assert directive
that we write in the statement part of the architecture, asserting that the verification
condition holds.

There is one case where embedding of PSL within VHDL may lead to ambiguity. Both
PSL and VHDL include assert statements, but their meanings differ. If we write a statement
of the form

assert not (a and b) report "a and b are both true";

it could be interpreted as a regular VHDL concurrent assertion statement that is to be
checked whenever either of a or b changes value. Alternatively, it could be interpreted as
a PSL assert directive that requires the property not (a and b) to hold at time 0. In the
interest of backward compatibility with earlier versions of the language, VHDL interprets
such ambiguous statements as regular VHDL concurrent assertion statements. If we really
want to write a PSL assert directive of this form, we could modify the property so that it
is unambiguously a PSL property, for example:

assert next[0] not (a and b) report "a and b are both true";



578 Chapter 18 — Test Bench and Verification Features

In PSL, verification code can be written in verification units (vunit, vprop and
vmode units) that are bound to instances of VHDL entities and architectures. VHDL con-
siders such verification units as primary design units. Thus, they can be declared in VHDL
design files and analyzed into VHDL design libraries.

A verification unit can include binding information that identifies a component in-
stance to which directives apply. Alternatively, we can bind a verification unit as part of
the configuration of a design. One place to do that is in a configuration declaration, intro-
duced in Chapter 13. If we want to bind one or more verification units to the top-level
entity in a configuration declaration, we include binding information according to the fol-
lowing synax rule:

configuration_declaration ⇐
configuration identifier of entity_name is

{ use vunit verification_unit_name { , … } ; }
block_configuration

end [ configuration ] [ identifier ] ;

Whenever the configuration declaration is instantiated, either at the top-level of a de-
sign hierarchy or as a component instance within a larger design, the named verification
units are bound to the instance of the named entity and architecture. That means the
names used in the verification units are interpreted in the context of the entity instance.

EXAMPLE 18.9 Binding a verification unit in a configuration declaration

Suppose we have a verification unit that ensures two outputs named Q and Q_n are
complementary when sampled on rising edges of a signal named clk. The verification
unit is

vunit complementary_outputs {
  assert always Q = not Q_n;
}

We can bind this verification unit to various parts of a design. For example, a gate-
level model of a D flipflop might be described as follows:

entity D_FF is
  port ( clk, reset, D : in  bit;
         Q, Q_n        : out bit );
end entity D_FF;

architecture gate_level of D_FF is
  component and2 is ...
  ...
begin
  G1 : and2 ...
  ...
end architecture gate_level;



18.3 Embedded PSL in VHDL 579

A configuration declaration for the D flipflop can bind the verification unit to the
top-level entity as follows:

configuration fast_sim of D_FF is
  use vunit complementary_outputs;
  for gate_level
    for all : and2
      ...
    end for;
    ...
  end for;
end configuration fast_sim;

We could then instantiate the configuration in a design, and for each instance, the
verification unit complementary_outputs would be bound to the instantiated entity
and architecture.

We can also bind verification units to component instances that are configured by a
component configuration nested within a configuration declaration. The augmented form
of component configuration, assuming the components are bound to an entity and archi-
tecture, and the architecture is further configured, is

component_configuration ⇐
for component_specification

binding_indication ;
{ use vunit verification_unit_name { , … } ; }
[ block_configuration ]

end for ;

In this case, the named verification units are bound to the instances specified in the
component configuration.

EXAMPLE 18.10 Binding a verification unit in a component configuration

Suppose we instantiate a parallel-in/serial-out shift register within an RTL design:

entity system is
  ...
end entity system;

architecture RTL of system is
  component shift_reg is
    port ( clk, reset, D : in  bit_vector;
           Q, Q_n        : out bit );
  end component shift_reg;
  ...
begin



580 Chapter 18 — Test Bench and Verification Features

  serializer : shift_reg ...;
  ...
end architecture RTL;

We can write a configuration declaration that binds an entity and architecture to
the component instance and that also binds the complementary_outputs verification
unit shown in Example 18.9:

configuration verifying of system is
  for RTL
    for serializer : shift_reg
      use entity work.shift_reg(RTL);
      use vunit complementary_outputs;
    end for;
  end for;
end configuration verifying;

In this case, the assertion in the verification unit applies to the Q and Q_n outputs
of the shift register entity bound to the serializer component instance.

The third place in which we can bind verification units in a VHDL design is in a con-
figuration specification in the architecture where components are instantiated. The aug-
mented syntax rule for a configuration specification, again assuming components are
bound to an entity and architecture, is

configuration_specification ⇐
for component_specification

binding_indication ;
{ use vunit verification_unit_name { , … } ; }

end for ;

This is similar to the form in a component configuration, but without the nested configu-
ration for the architecture.

EXAMPLE 18.11 Binding a verification unit in a configuration specification

We can revise the architecture of Example 18.10 to include the binding information
directly, rather than in a separate configuration. The revised architecture is

architecture RTL of system is
  component shift_reg is
    ...
  end component shift_reg;
  for serializer : shift_reg
    use entity work.shift_reg(RTL);
    use vunit complementary_outputs;
  end for;



18.3 Embedded PSL in VHDL 581

begin
  serializer : shift_reg ...;
  ...
end architecture RTL;

Since a verification unit may include binding information as part of its declaration,
there is potential for that information to conflict with binding information we write in a
configuration. VHDL prevents such conflict by making it illegal to bind a verification unit
in a configuration if the declaration of the unit already includes binding information.
Hence, we would normally only write verification bindings in configurations for general-
purpose verification units, and not for those written with particular instances in mind. In
any case, it would be an error if we wrote a verification unit binding for a component
instance that had no bound entity and architecture.

In addition to binding verification units directly in their declaration or indirectly in
configurations, VHDL allows a tool to bind additional verification units through
implementation-defined means. That might include command-line options, script com-
mands, or selection using a graphical user interface.

There are a couple of further points to make about PSL embedded in VHDL. First, PSL
has a rich set of reserved words, some of which may conflict with VHDL identifiers. The
following PSL keywords are VHDL reserved words, and cannot be used as identifiers:

assert             assume              assume_guarantee
cover              default             fairness
property           restrict            restrict_guarantee
sequence           strong              vmode
vprop              vunit

Other PSL reserved words are only recognized as such within VHDL code when they
occur in PSL declarations and directives. They can be used as VHDL identifiers, but such
identifiers are hidden within PSL declarations and directives. For example, we can legally
write the following declaration:

function rose ( x : boolean ) return boolean is ...;

But if we then declare a sequence:

sequence cover_fifo_empty is
  {reset_n && rose(cnt = 0)};

The reference to rose in the sequence declaration is to the PSL built-in function, not to
the declaration written in VHDL.

Second, PSL includes features for declaring and instantiating macros, and allows for
preprocessor directives. These features can only be used in PSL verification units, not in
other VHDL design units.



582 Chapter 18 — Test Bench and Verification Features

VHDL-87, -93, and -2002

These versions of VHDL do not allow PSL to be embedded within VHDL models. PSL
code must be written in separate verification units and bound to the VHDL design us-
ing tool-defined means.

Exercises

1. [➊ 18.1] The following architecture declares a number of objects:

architecture rtl of datapath is
  constant d_width : positive := 8;
  signal d_bus : std_ulogic_vector(d_width - 1 downto 0);
begin
  adder : for i in 0 to d_width - 1 generate
    signal carry : std_ulogic;
  begin
    ...
  end generate adder;
  ...
end architecture datapath;

The entity datapath is instantiated in a top-level architecture as follows:

architecture data_test of test_bench is
  ...
begin

  dp : entity work.datapath(rtl)
    port map ( ... );

  verifier : process is
  begin
    ...
  end process verifier;

end architecture data_test;

Write absolute external names for the objects d_width and d_bus and for the object
carry in the instance of the generate statement with i = 3.

2. [➊ 18.1] Write alias declarations for each of the external names described in Exercise 1.

3. [➊ 18.1] Write relative external names for each of the external names described in Ex-
ercise 1, assuming the names occur within the process verifier.

4. [➊ 18.2] Write statements to force a signal reset to the value ‘1’ and then to release it
after 200 ns.



Exercises 583

5. [➊ 18.1/18.2] Example 8.5 on page 282 describes a memory entity, memory_1Mx8,
with a bidirectional port d of type std_logic_vector(7 downto 0). Assuming this entity
is instantiated in a test bench architecture using the label mem as the component in-
stantiation label, write statements to force both the driving and effective values of d
to all ‘Z’ values, and subsequently to release both the driving and effective values.

6. [➊ 18.3] Write a configuration declaration that binds the verification unit
verify_protocol to a top-level entity bus_interface with architecture behavior.

7. [➊ 18.3] Given an architecture that instantiates a component ext_interface using the
label ext, write a configuration specification that binds the entity bus_interface with
architecture behavior and the verification unit verify_protocol to the instance.

8. [➋ 18.1] Write a test bench for the counter of Example 5.22 on page 177. The test
bench should verify that the output of each incrementer is one greater than the cor-
responding register output.

9. [➋ 18.1] Write a test bench for the register of Example 14.1 on page 450. The test
bench should verify that, after each clock edge, the internal data_unbuffered signals
have the same values as the data_in values supplied as stimulus.

10. [➋ 18.2] Write a procedure that forces a signal of type bit_vector to a random value.



585

Chapter 19 

Shared Variables and Protected Types

When we introduced variables in Chapter 2, we noted that they can only be declared in
processes; hence only one process can access each variable. We have also seen variables
declared in subprograms, in which case they are local to the invocation of the subprogram.
The reason for these restrictions is to prevent indeterminate results arising from a number
of processes accessing a variable in an indeterminate order during a simulation cycle. In
some circumstances, however, it is desirable to allow a number of processes to share ac-
cess to a variable. Either the fact of non-determinacy may be irrelevant, or the use of
shared variables may allow a more concise and understandable model. In this chapter, we
will show how to declare and use shared variables.

19.1 Shared Variables and Mutual Exclusion

VHDL provides a mechanism for sharing variables, shown by the full syntax rule for a vari-
able declaration:

variable_declaration ⇐
[ shared ] variable identifier { , … } : subtype_indication [ := expression ] ;

If we include the keyword shared in a variable declaration, the variables defined are
called shared variables and can be accessed by more than one process. We can only de-
clare shared variables in the places in a model where we cannot declare normal variables,
namely, in entity declarations, architecture bodies, block statements (see Chapter 23), gen-
erate statements, and packages that are not local to processes or subprograms. Unlike nor-
mal variables, there are a number of restrictions on the way we declare and use shared
variables. We discuss these restrictions in this section.

Problems with shared variables potentially arise when the processes in the model are
executed on a parallel computer, such as a multiprocessor workstation or a parallel
supercomputer. They can also occur on a single-processor computer if the simulation
kernel preemptively switches between processes. The simplest problem is that two pro-
cesses trying to update a shared variable might interfere with each other, resulting in an
unpredictable final result for the variable. Suppose, for example, that two processes try to
increment a counter. Each process executes the statement



586 Chapter 19 — Shared Variables and Protected Types

counter := counter + 1;

This statement typically involves reading the variable’s value, adding 1 to the value,
then storing the result back into the variable’s memory location. If one process completes
this sequence before the other starts, the variable is incremented by two, as expected.
However, if both processes read the initial value before either performs the write, the vari-
able is only incremented by 1. Since the model writer has no control over the interleaving
of memory access from multiple processes, the result is non-deterministic. More complex
problems arise when the shared variable is not simply a scalar, but is instead a composite
or dynamic data structure requiring complex update operations. In these cases, interfer-
ence between processes can put the data structure in an inconsistent state, resulting in lost
or corrupted data.

The key to avoiding interference between processes that concurrently access a shared
variable is mutual exclusion. A process must acquire exclusive access when it needs to
read or update the variable using some sequence of instructions. While the process is per-
forming those instructions, no other process is allowed access to the variable. This rule is
enforced by the language implementation.

We achieve mutual exclusion for a shared variable by declaring the variable to be of
a protected type. There are two parts to the definition of a protected type: a protected type
declaration and a protected type body, each of which is included in a type declaration. The
extended syntax rule for type declarations is included in Appendix B. The protected type
declaration specifies the interface of the protected type. It contains methods, subprograms
that will be used by processes to access the shared variable with mutual exclusion. The
syntax rule for a protected type declaration is

protected_type_declaration ⇐
protected

{ protected_type_declarative_item }
end protected [ identifier ]

The optional identifier in the syntax rule indicates that the name of the protected type
may be repeated at the end of the declaration. The declarations in the declarative part can
include subprogram (procedure and function) declarations for the methods of the type,
attribute specifications and use clauses. Only the interfaces of subprograms are included;
the subprogram bodies are deferred to the protected type body.

EXAMPLE 19.1 Protected type declaration for a shared counter

A simple example of a protected type declaration is

type shared_counter is protected
  procedure reset;
  procedure increment ( by : integer := 1 );
  impure function value return integer;
end protected shared_counter;



19.1 Shared Variables and Mutual Exclusion 587

This declares a protected type for a shared counter with methods to reset the counter
value to zero, to increment the counter by some amount and to read the value of the
counter.

We can declare a shared variable to be of this type using a shared variable decla-
ration, for example:

shared variable event_counter : shared_counter;

A process uses the name of the shared variable as a prefix to a method name to iden-
tify the shared variable on which the method is invoked. For example:

event_counter.reset;
event_counter.increment (2);
assert event_counter.value > 0;

In each case, the process acquires exclusive access to event_counter before executing
the body of the method. While the process is executing the method, other processes
that try to invoke any method on the same shared variable must wait. When the first
process finishes executing its method, it releases exclusive access to the shared vari-
able. One of the waiting processes may then resume. The order in which waiting pro-
cesses are chosen for resumption is not defined.

A protected type body specifies the implementation details of a protected type. The
syntax rule for a protected type body is

protected_type_body ⇐
protected body

{ protected_type_body_declarative_item }
end protected body [ identifier ]

Again, the optional identifier in the syntax rule indicates that the name of the
protected type may be repeated at the end of the declaration. The declarations in the
declarative part can include subprogram declarations and bodies; type, subtype, constant,
variable, file and alias declarations; attribute declarations and specifications; group tem-
plates and group declarations; and use clauses. We must include subprogram bodies for
the methods declared in the protected type declaration. Items declared within a protected
type body are not visible outside the protected type, so the only way a process can access
the items is by using the methods of the protected type.

Note that we usually include variable declarations in a protected type body. These
variables constitute the data stored in a shared variable of the protected type. We might
also include file declarations. In this case, the methods of the protected type can be used
to ensure that multiple lines of output to a file from a process are performed atomically,
rather than being interleaved with output from other processes. We would not normally
write a protected type body without variable or file declarations, since there would be no
need for mutual exclusion in that case.



588 Chapter 19 — Shared Variables and Protected Types

EXAMPLE 19.2 Protected type body for a shared counter

We can implement the shared counter protected type declared in Example 19.1 as fol-
lows:

type shared_counter is protected body

  variable count : integer := 0;

  procedure reset is
  begin
    count := 0;
  end procedure reset;

  procedure increment ( by : integer := 1 ) is
  begin
    count := count + by;
  end procedure increment;

  impure function value return integer is
  begin
    return count;
  end function value;

end protected body shared_counter;

The variable count represents the storage for the counter type. Each shared vari-
able of this type has its own instance of the count variable. The methods simply op-
erate on the variable to update or read its variable without interference from other
processes.

There are a number of rules governing the use of protected types. In summary, the
rules are the following:

• Only method names declared in the protected type declaration are visible outside the
protected type definition. Nothing declared in the protected type body is visible out-
side. However, all names declared in the protected type declaration are visible in the
corresponding protected type body. This rule is analogous to the visibility rule for
names declared in package declarations and package bodies.

• If a protected type is declared in a package declaration, the protected type body must
be declared in the corresponding package body. This is similar to the way in which
subprogram specifications and bodies are declared in packages. In other cases, the
protected type body must be declared in the same declarative region as the protected
type declaration.

• Only variables and variable-class subprogram parameters can be of protected types.
Actual values of protected type subprogram parameters are passed by reference. This
ensures that when the subprogram invokes a method of the parameter, exclusive ac-
cess is acquired to the actual shared variable, not to a copy of the variable.



19.1 Shared Variables and Mutual Exclusion 589

• Shared variables must be of protected types. Other variables may be of protected
types, but since they are only accessible to the process in which they are declared,
there is no need for mutual exclusion.

• Protected types cannot be used as elements of files, as elements of composite types,
or as types designated by access types.

• Variable assignment of one protected-type variable to another is not allowed, since
assignment does not provide mutual exclusion for the operands. As a consequence,
a protected-type variable must not have an initial value expression in its declaration.

• Similarly, the equality (“=”) and inequality (“/=”) operators are not predefined for pro-
tected types, since they do not provide mutual exclusion.

• A protected type method must not include or execute a wait statement. This ensures
that all methods complete and release exclusion within one simulation cycle.
Processes that must share information across different simulation cycles should use
signals for communication.

• A function method must be declared as impure, since it accesses the variables de-
clared within the protected-type body that are outside the declaration of the function
itself.

• A function method that is a unary operator must be declared with no parameters, since
the variable on which is is invoked is implicitly the parameter. Similarly, a function
method that is a binary operator must be declared with only one parameter. Such
function methods can only be invoked using the selected-name notation; they cannot
be invoked using infix operator notation.

The preceding examples show that we use a selected name to invoke a method. The
prefix is the shared variable name, and the suffix is the method name. In the example, the
shared variable is directly visible, so we just used the identifier as the prefix. In a test
bench design, we can use an external name to refer to a shared variable declared within
the design hierarchy. We can use the external name as a prefix in a selected name to in-
voke a method of the shared variable.

EXAMPLE 19.3 Accessing a shared variable from a test bench

Suppose we declare the shared counter protected type from Examples 19.1 and 19.2
in a package so that it can be used both in a design and in the test bench for the de-
sign. The package declaration is

package shared_counter_pkg is

  type shared_counter is protected
    procedure reset;
    procedure increment ( by : integer := 1 );
    impure function value return integer;
  end protected shared_counter;

end package shared_counter_pkg;



590 Chapter 19 — Shared Variables and Protected Types

and the package body is

package body shared_counter_pkg is

  type shared_counter is protected body
    variable count : integer := 0;
    procedure reset is ...
    procedure increment ( by : integer := 1 ) is ...
    impure function value return integer is
    begin
      return count;
    end function value;
  end protected body shared_counter; ...

end package body shared_counter_pkg;

The event_counter shared variable is declared within an architecture of a design
under verification, and the design is instantiated with the label duv_behavior in a test
bench. Within the test bench, we can invoke the reset method of the event counter
variable as follows:

<<variable .tb.duv_behavior.event_counter :
             work.shared_counter_pkg.shared_counter>>.reset;

We could also declare an alias for the shared variable and use it to invoke the
increment method:

alias duv_event_counter is
  <<variable .tb.duv_behavior.event_counter :
               work.shared_counter_pkg.shared_counter>>;
...

duv_event_counter.increment(4);

A typical scenario in which we might use shared variables is to describe passive
shared objects that are accessed concurrently by different parts of a design. An example
of such an object is a register file in a pipelined CPU, represented simply as an array of
bit vectors. The register file must be accessed by the processes representing the operand
fetch stage and the result write-back stage. At a lower level of abstraction, we would im-
plement the register file as a component with read and write ports. Read and write oper-
ations would take place over signals and would conform to some signaling protocol.
However, at the behavioral level of abstraction, we can describe the register file more sim-
ply as a shared variable of a protected type with read and write methods. The mutual ex-
clusion afforded by the protected type ensures that reads and writes do not interfere with
each other.



19.1 Shared Variables and Mutual Exclusion 591

EXAMPLE 19.4 A two-port register file

Suppose we need to model a two-port register that is read using one port and written
using the other. The entity declaration is

entity two_port_reg is
  generic ( width : natural );
  port ( read_clk : in bit;
         read_data : out bit_vector(0 to width-1);
         write_clk : in bit;
         write_data : in bit_vector(0 to width-1) );
end entity two_port_reg;

In the architecture body, we represent the reading and writing behavior using
separate processes, as follows:

architecture behavioral of two_port_reg is

  subtype word is bit_vector(0 to width-1);

  type protected_reg is protected
    impure function get return word;
    procedure set ( new_value : word );
  end protected protected_reg;

  type protected_reg is protected body

    variable reg : word;

    impure function get return word is
    begin
      return reg;
    end function get;

    procedure set ( new_value : word ) is
    begin
      reg := new_value;
    end procedure set;

  end protected body protected_reg;

  shared variable reg_store : protected_reg;

begin
  reader : process ( read_clk ) is
  begin
    if read_clk then               -- on rising edge
      read_data <= reg_store.get;  -- read current value
    end if;
  end process reader;
  writer : process ( write_clk ) is
  begin



592 Chapter 19 — Shared Variables and Protected Types

    if write_clk then                -- on rising edge
      reg_store.set ( write_data );  -- set to new value
    end if;
  end process writer;
end architecture behavioral;

The protected type protected_reg encapsulates the register data and provides get
and set methods to access the storage. The shared variable reg_store represents the
storage of the register. The two processes reader and writer implement the behavior
for read-port and write-port accesses, respectively.

Another scenario in which we might use shared variables is to instrument a model.
We can use a shared variable to collect information about the behavior of processes within
a design over the course of a simulation run. Each process updates the variable using up-
date methods as events of interest occur. Mutual exclusion ensures that concurrent up-
dates do not conflict.

EXAMPLE 19.5 Shared instrumentation in a multiprocessor computer model

In this example we use shared variables to instrument a behavioral model of a
multiprocessor computer system, shown in Figure 19.1. Each processing element (PE)
has an attached level 2 (L2) cache. The shared variable cache counters is used to col-
lect sharing statistics for blocks in the address space. Processes representing caches
invoke methods to record accesses to memory blocks. The log controller process
periodically writes the recorded statistics to a log file.

FIGURE 19.1 

An instrumented multiprocessor computer system with caches.

PE

log controller cache counters

memory

L2 cache

PE

L2 cache

PE

L2 cache

. . .

. . .

signals

access to 
shared 
variables



19.1 Shared Variables and Mutual Exclusion 593

The package declaration cache_instrumentation, shown in below, includes a
protected-type declaration for the instrumentation data structure. The protected type
includes methods for recording read and write misses and for writing the recorded
data to a file. The package also declares a shared variable of the protected type for
collecting the data.

package cache_instrumentation is

  use work.cache_types.all;

  type shared_counters is protected

    procedure log_read_miss ( block_number : block_range;
                              is_shared : bit );

    procedure log_write_miss ( block_number : block_range );

    procedure dump_log ( file log_file : std.textio.text );

  end protected shared_counters;

  shared variable cache_counters : shared_counters;

end package cache_instrumentation;

The implementations of the data structure and the methods are described in the
protected-type body, which is declared in the package body:

package body cache_instrumentation is

  type shared_counters is protected body

    type counter_record is record  -- counters for a block
      shared_read_misses,
      private_read_misses,
      write_misses : natural;
    end record counter_record;

    type counter_array is array ( block_range ) of counter_record;

    -- instrumentation data structure
    variable counters : counter_array := (others => (0, 0, 0));

    procedure log_read_miss ( block_number : block_range;
                              is_shared : bit ) is
    begin
      if is_shared then
        counters(block_number).shared_read_misses
            := counters(block_number).shared_read_misses + 1;
      else
        counters(block_number).private_read_misses
            := counters(block_number).private_read_misses + 1;
      end if;
    end procedure log_read_miss;



594 Chapter 19 — Shared Variables and Protected Types

    procedure log_write_miss ( block_number : block_range ) is
    begin
      counters(block_number).write_misses
          := counters(block_number).write_misses + 1;
    end procedure log_write_miss;

    procedure dump_log ( file log_file : std.textio.text ) is
      use std.textio.all;
      variable L : line;
    begin
      -- write a line of data for each block in the address space
      for block_number in block_range loop
        swrite ( L, "Block " );
        write  ( L, block_number );
        swrite ( L, ":  shared read misses = " );
        write  ( L, counters(block_number).shared_read_misses );
        ...
        writeline ( log_file, L );
      end loop;
    end procedure dump_log;

  end protected body shared_counters;

end package body cache_instrumentation;

The protected-type body includes an array of records, one for each block of the
multiprocessor’s memory space. Each record contains counters for the different kinds
of misses to be logged.

The individual caches are described by a behavioral architecture body, shown be-
low. The cache controller process invokes the instrumentation methods when cache
miss events occur.

architecture behavioral of cache is

  use work.cache_instrumentation.all;
  ...

begin

  cache_controller : process is
    ...  -- local variables used by the cache controller
  begin
    ...
    -- if cache miss, record in the instrumentation shared variable
    if not hit then
      if read then
        cache_counters.log_read_miss ( current_block_number,
                                       block_is_shared );
      else
        cache_counters.log_write_miss ( current_block_number );



19.1 Shared Variables and Mutual Exclusion 595

      end if;
    end if;
    ...
  end process cache_controller;

  ...

end architecture behavioral;

The complete multiprocessor system is described by the following architecture
body:

architecture system of multiprocessor is

  ... -- signal declarations

begin

  PE_array : for PE_index in 0 to num_PEs - 1 generate

    -- a processing element
    PE : entity work.processor(behavioral)
      port map ( ... );

    -- and its attached level-2 cache
    L2_cache : entity work.cache(behavioral)
      port map ( ... );

    ...

  end generate PE_array;

  -- the instrumentation process that periodically dumps
  -- recorded counts to the output file
  log_controller : process is
    use work.cache_instrumentation.all;
  begin
    wait for 10 ms;
    cache_counters.dump_log ( std.textio.output );
  end process log_controller;

  ...

end architecture system;

The generate statement creates multiple instances of a processing element, each
with an attached cache. Since each cache instance includes a cache controller process,
there are multiple cache controller processes that may concurrently access the instru-
mentation variable in the instrumentation package. Furthermore, the multiprocessor
model includes the log_controller process that periodically invokes the dump_log
method. All of these processes share access to the instrumentation variable, so mutual
exclusion is required to prevent interference.



596 Chapter 19 — Shared Variables and Protected Types

An important point to note in using VHDL protected types is the potential for
deadlock. It is possible to write a model in which two processes block waiting for mutual
exclusion over shared variables and can never resume. To illustrate the possibility, con-
sider an extension of the shared counter in Examples 19.1 and 19.2. Suppose we augment
the protected type to include a method to copy the value from one counter to another.
We declare the method in the protected type declaration as

procedure copy ( variable from : in shared_counter );

We declare the method implementation in the protected-type body as

procedure copy ( variable from : in shared_counter ) is
begin
  count := from.value;
end procedure copy;

We declare two shared variables as

shared variable a, b : shared_counter;

Now consider what might happen if process P1 executes the statement

a.copy(b);

and process P2 executes

b.copy(a);

A possible interleaving of execution involves P1 acquiring access to a and P2 acquiring
access to b, before either reaches the body of the method. Note that passing a variable of
protected type simply involves passing a reference; it does not involve acquiring access
to the variable. When P1 reaches the invocation of the value method within the copy
method, it tries to acquire access to b. Since P2 already has access to b, P1 blocks. Similarly,
when P2 reaches the invocation of the value method, it tries to acquire access to a. P1
already has access to a, so P2 blocks. Neither process can proceed, and execution
deadlocks.

While this is a contrived example, it illustrates one situation under which deadlock
can arise. VHDL does not prohibit such situations, nor does it require that a simulator de-
tect or resolve deadlock. When writing models using protected types, we must take care
not to introduce the potential for deadlock. One way is to ensure that all processes acquire
exclusive access to collections of variables in the same order. Of course, if processes only
need exclusive access to one variable at a time, the protected-type mechanism does not
deadlock.

VHDL-87

Shared variables are not provided in VHDL-87.



19.2 Uninstantiated Methods in Protected Types 597

VHDL-93

In VHDL-93, shared variables need not be of protected types. Instead, they are like
normal unshared variables. A shared variable can be declared of any type except a
file type, and the declaration can include an initial value expression. The value of a
shared variable can be used in an expression and can be updated using a normal vari-
able assignment statement. The difference is that there is no mutual exclusion for ac-
cess to a shared variable by different processes in a given simulation cycle. This means
that read and assignment operations by different processes might interfere with one
another. Hence we must take great care when using shared variables in VHDL-93 to
ensure that only one process can access each shared variable in each simulation cycle.
The VHDL-93 language specification deems a model to be in error if it depends on
the value of a shared variable accessed by more than one process during any simula-
tion cycle.

19.2 Uninstantiated Methods in Protected Types

We now return to a discussion of the relationship between uninstantiated subprograms
and protected types. We introduced uninstantiated subprograms, those that include
generic lists, in Chapter 12. We will build on our discussion in that chapter to provide
motivating examples of the relationships that can occur. There are two cases to consider.
The first is declaration of an instance of an uninstantiated subprogram as a method of a
protected type, and the second is declaration of an uninstantiated subprogram within a
protected type.

Starting with the first case, if we have an uninstantiated subprogram declared outside
a protected type, and we declare an instance of the subprogram within the protected type
declaration, the instance becomes a method of the protected type. The scheme is

procedure uninstantiated_name
  generic ( ... )
  parameter ( ... );

type PT is protected
  ...
  procedure instance_name is new uninstantiated_name
    generic map ( ... );
  ...
end protected PT;

We can declare a shared variable of the protected type and call the method:

shared variable SV : PT;
...

SV.instance_name ( ... );

On the face of it, there seems no purpose to this scheme. The uninstantiated subpro-
gram, being outside the protected type, cannot refer to the items encapsulated within the



598 Chapter 19 — Shared Variables and Protected Types

protected type. So there would appear to be no reason for instantiating the subprogram
in the protected type. However, we can provide controlled access to the encapsulated
items via a method of the protected type provided as an actual generic subprogram to the
instance. The refinement to the scheme is:

procedure uninstantiated_name
  generic ( ...; formal_generic_subprogram; ... )
  parameter ( ... );

type PT is protected
  method_declaration;
  procedure instance_name is new uninstantiated_name
    generic map ( ..., method_name, ... );
  ...
end protected PT;

In this scheme, the method has access to the encapsulated items within the protected
type. When the instance invokes the actual generic subprogram, the method is called.

EXAMPLE 19.6 Test-vector set with tracing

Suppose we have an uninstantiated subprogram that gets a test-vector value corre-
sponding to a specified time and that writes the vector value to the standard output
file. The procedure has a formal generic subprogram representing the action to per-
form to get the test vector.

procedure trace_test_vector is
  generic  ( impure function get_test_vector
                               ( vector_time : time )
                               return test_vector )
  parameter ( vector_time : time ) is

  variable vector : test_vector;
  use std.textio.all;
  variable L : line;

begin
  write(L, now);
  write(L, string'(": "));
  vector := get_test_vector(vector_time);
  ...  -- write test vector
  writeline(output, L);
end procedure trace;

We can declare a protected type representing a set of test vectors to be applied
at various times. The protected type has a method for getting a test vector for a specific
time. We include an instance of the trace_test_vector procedure as a method to trace
a test vector from the particular set represented by a shared variable of the protected
type. The protected type declaration is



19.2 Uninstantiated Methods in Protected Types 599

type test_set is protected
  ...

  impure function get_vector_for_time ( vector_time : time )
                                      return test_vector;

  procedure trace_for_time is new trace_test_vector
    generic map ( get_test_vector => get_vector_for_time );

end protected test_set;

We might declare two shared variables of this protected type, representing two
distinct sets of test vectors:

shared variable main_test_set, extra_test_set : test_set;

If we invoke the trace_for_time method on one of the shared variables:

main_test_set.trace_for_time(100 ns);

the instance of the trace_test_vector procedure invokes the actual subprogram pro-
vided for the instance of the protected type. That is, it invokes the get_vector_for_time
method associated with the shared variable main_test_set. If, on the other hand, we
invoke the trace_for_time method on the other shared variable:

extra_test_set.trace_for_time(100 ns);

the instance of the trace_test_vector procedure invokes the get_vector_for_time
method associated with the shared variable extra_test_set. What this reveals is that
each shared variable of the protected type binds its get_vector_for_time method,
which has access to the shared variable’s state, as the actual generic procedure in its
instance of the trace_test_vector procedure. That instance, provided as a method of
the shared variable, thus has indirect access to the shared variable’s state.

The second case to consider is the declaration of an uninstantiated subprogram within
a protected type. That uninstantiated procedure is not itself a method, since it cannot be
called. However, it can be instantiated within the protected type to provide a method.
Moreover, each shared variable of the protected type logically contains a separate decla-
ration of the uninstantiated subprogram. That subprogram can be instantiated, giving a
subprogram that has access to the items encapsulated in the shared variable. We will il-
lustrate these mechanisms with an example.

EXAMPLE 19.7 Stimulus list with visitor traversal

For a design requiring signed stimulus values, we can declare a procedure for display-
ing a signed value to the standard output file, as follows:

procedure output_signed ( value : in signed ) is
  use std.textio.all;



600 Chapter 19 — Shared Variables and Protected Types

  variable L : line;
begin
  write(L, value);
  writeline(output, L);
end procedure output_signed;

We also declare a protected type for a list of signed stimulus values:

type signed_stimulus_list is protected
  ...

  procedure traverse_with_in_parameter
    generic ( procedure visit ( param : in signed ) );

  procedure output_all is new traverse_with_in_parameter
    generic map ( visit => output_signed );

end protected signed_stimulus_list;

The protected type includes an uninstantiated procedure,
traverse_with_in_parameter, to apply a visitor procedure to each element in the list
of signed values. It instantiates the traversal procedure to provide a method that dis-
plays each element. We can use this protected type to declare a shared variable and
then invoke the method to display its element values:

shared variable list1 : signed_stimulus_list;
...

list1.output_all;

Suppose now we want to use the traversal procedure to accumulate the sum of
elements in a list so that we can calculate the average value. We can provide another
action procedure and use it in a further instantiation of the traversal procedure:

variable sum, average : signed(31 downto 0);
variable count : natural := 0;

procedure accumulate_signed ( value : in signed ) is
begin
  sum := sum + value;
  count := count + 1;
end procedure accumulate_signed;

procedure accumulate_all_list1 is
  new list1.traverse_with_in_parameter
    generic map ( visit => accumulate_signed );
...

accumulate_all_list1;
average := sum / count;



Exercises 601

In this case, the instance is a procedure declared externally to the protected type.
However, since it is an instance of a subprogram defined within the shared variable
list1, the instance has access to the encapsulated items within list1. The instance
accumulate_all_list1 thus applies the accumulate_signed visitor procedure to each el-
ement within list1.

If we want to calculate the average value of any list of elements, we need to wrap
these declarations up in a procedure that has a shared variable as a parameter. That
includes declaring the instance of the traversal procedure within the outer procedure.
The complete procedure would be

procedure calculate_average
  ( variable list : inout signed_stimulus_list
    variable average : out signed ) is

  variable sum : signed(average’range);
  variable count : natural := 0;

  procedure accumulate_signed ( value : in signed ) is
  begin
    sum := sum + value;
    count := count + 1;
  end procedure accumulate_signed;

  procedure accumulate_all is
    new list.traverse_with_in_parameter
      generic map ( visit => accumulate_signed );

begin
  accumulate_all;
  average := sum / count;
end procedure calculate_average;

In this case, the instance of the traversal procedure is also declared externally to
the protected type. However, it is an instance of the subprogram defined within the
shared variable list provided as a parameter to the calculate_average procedure. Log-
ically, each time the calculate_average procedure is called, a new instance of the tra-
versal procedure is defined particular to the actual shared variable provided as the
parameter. The instance thus applies the local accumulate_signed visitor procedure
to each element within the actual shared variable.

Exercises

1. [➊ 19.1] Suppose, using VHDL-93, we have a shared variable declared as follows in a
package instrumentation:

shared variable multiply_counter : natural := 0;

We have two instances, m1 and m2, of a behavioral multiplier model that includes
the statement



602 Chapter 19 — Shared Variables and Protected Types

instrumentation.multiply_counter
  := instrumentation.multiply_counter + 1;

Show how, in VHDL-93, the variable may be updated incorrectly if we allow the two
instances to access the variable in the same simulation cycle.

2. [➊ 19.1] Write a protected type declaration and body that provides mutual exclusion
for an integer shared variable. The protected type should include a method called set
to update the variable value and a method called get to retrieve the variable value.

3. [➌ 19.1] The bounded buffer ADT in Section 12.3.2 could be used to send a stream of
bytes from one process to another. However, if the sender called the write procedure
at the same time as the receiver called the read procedure, they may interfere and
cause corruption of the state of the buffer. Develop a package that defines a protected
type for a protected bounded buffer. The protected-type body should encapsulate a
variable of the bounded buffer ADT from Section 12.3.2. The protected type should
include methods to test whether the buffer is full, whether it is empty, and to read and
write bytes. Test your package in an architecture body with producer and consumer
processes that communicate using a shared variable of the protected bounded buffer
type.

4. [➌ 19.1] We can use a protected type to encapsulate the private data of an abstract
data type in a way that hides the data from the user of the type. For example, we can
declare a type for random number streams as follows:

type random_generator is protected
  impure function next_random return real;
  impure function next_random ( min, max : real )
                              return real;
  impure function next_random ( min, max : integer )
                              return integer;
  ...
end protected random_generator;

The protected type body includes variable declarations for storing the random
seeds. The methods use the seeds in conjunction with the math_real.uniform proce-
dure to generate successive random numbers, with each method scaling and convert-
ing the type of the result.

Develop a package that completes the definition of this protected type, including
methods that return values of types bit_vector and std_ulogic_vector. Use your pack-
age in a model that generates random stimulus value for a 32-bit adder under test.



603

Chapter 20 

Attributes and Groups

VHDL provides comprehensive facilities for expressing the behavior and structure of a de-
sign. VHDL also provides the attribute mechanism for annotating a model with additional
information. In this chapter, we review the predefined attributes and show how to define
new attributes. We also look at the group mechanism, which allows us to describe addi-
tional relationships between various items in a model.

20.1 Predefined Attributes

Throughout this book we have seen predefined attributes that are used to retrieve infor-
mation about types, objects and other items within a model. In this section we summarize
the previously introduced attributes and fully describe the remaining predefined attributes.

VHDL-87

VHDL-87 provides two additional attributes beyond those described in the rest of this
section. The attributes 'behavior and 'structure can be applied to the names of archi-
tecture bodies and that return a Boolean result. The 'behavior attribute indicates
whether the architecture body is a behavioral description. It returns true if the archi-
tecture body contains no component instantiation statements. The 'structure attribute
indicates whether the architecture body is a structural description. It returns true if the
architecture body contains only component instantiations and passive processes. If
both attributes are false, the architecture body is a mix of behavioral and structural
modeling constructs.

20.1.1 Attributes of Scalar Types

The first group of predefined attributes gives information about the values in a scalar type.
These were introduced in Chapter 2 and are summarized in Table 20.1.



604 Chapter 20 — Attributes and Groups

TABLE 20.1 The predefined attributes giving information about values in a type

VHDL-87

The predefined attributes 'ascending, 'image and 'value are not provided in VHDL-87.

20.1.2 Attributes of Array Types and Objects

The second group of predefined attributes gives information about the index values of an
array object or type. These were introduced in Chapter 4 and are summarized in Table
20.2. The prefix A in the table refers either to an array type or subtype whose index ranges
are defined, to an array object, or to a slice of an array. If A is a variable of an access type
pointing to an array object, the attribute refers to the array object, not the pointer value.
Each of the attributes optionally takes an argument that selects one of the index dimen-

Attribute Type of T Result type Result

T'left Any scalar type or 
subtype

Same as T Leftmost value in T

T'right " " Rightmost value in T

T'low " " Least value in T

T'high " " Greatest value in T

T'ascending " boolean True if T is an ascending range, 
false otherwise

T'image(x) " string A textual representation of the 
value x of type T

T'value(s) " base type of T Value in T represented by the 
string s

T'pos(s) Any discrete or physi-
cal type or subtype

universal integer Position number of x in T

T'val(x) " Base type of T Value at position x in T

T'succ(x) " " Value at position one greater 
than x in T

T'pred(x) " " Value at position one less than 
x in T

T'leftof(x) " " Value at position one to the left 
of x in T

T'rightof(x) " " Value at position one to the 
right of x in T



20.1 Predefined Attributes 605

sions of the array. The default is the first dimension. Note that if the prefix A is an alias
for an array object, the attributes return information about the index values declared for
the alias, not those declared for the original object.

TABLE 20.2 The predefined attributes giving information about the index range of an array

VHDL-87

The predefined attribute 'ascending is not provided in VHDL-87.

20.1.3 Attributes Giving Types

The third group of predefined attributes, summarized in Table 20.3, provides type infor-
mation. The table describes the kind of prefix to which each attribute can be applied.

TABLE 20.3 The predefined attributes giving type information

Attribute Result

A'left(n) Leftmost value in index range of dimension n

A'right(n) Rightmost value in index range of dimension n

A'low(n) Least value in index range of dimension n

A'high(n) Greatest value in index range of dimension n

A'range(n) Index range of dimension n

A'reverse_range(n) Index range of dimension n reversed in direction and bounds

A'length(n) Length of index range of dimension n

A'ascending(n) True if index range of dimension n is ascending, false otherwise

Attribute Prefix Result

T'base Any type or subtype The base type of T, for use only as prefix of another 
attribute

O'subtype Any object or alias of 
an object

The fully constrained subtype of O, including constraints 
defining index ranges (if O is an array or has elements 
that are arrays)

A'element Any array type, 
subtype, or object

If A is an array type or subtype, the element subtype of 
A. If A is an arrray object, the element subtype of A 
including constraints defining all index ranges



606 Chapter 20 — Attributes and Groups

VHDL-87, -93, and -2002

The attributes 'subtype and 'element are not provided in these versions.

20.1.4 Attributes of Signals

The third group of predefined attributes gives information about signals or defines new
implicit signals derived from explicitly declared signals. These attributes were introduced
in Chapters 5 and 8 and are summarized in Table 20.4. The prefix S in the table refers to
any statically named signal. Three of the attributes optionally take a non-negative argu-
ment t of type time. The default is 0 fs.

TABLE 20.4 The predefined attributes giving information about signals and values of signals

Attribute Result type Result

S'delayed(t) base type of S Implicit signal, with the same value as S, but delayed 
by t time units (t ≥ 0 ns)

S'stable(t) boolean Implicit signal, true when no event has occurred on S 
for t time units, false otherwise (t ≥ 0 ns)

S'quiet(t) boolean Implicit signal, true when no transaction has occurred 
on S for t time units, false otherwise (t ≥ 0 ns)

S'transaction bit Implicit signal, changes value in simulation cycles in 
which a transaction occurs on S

S'event boolean True if an event has occurred on S in the current sim-
ulation cycle, false otherwise

S'active boolean True if a transaction has occurred on S in the current 
simulation cycle, false otherwise

S'last_event time Time since last event occurred on S, or time'high if 
no event has yet occurred

S'last_active time Time since last transaction occurred on S, or 
time'high if no transaction has yet occurred

S'last_value base type of S Value of S before last event occurred on it

S'driving boolean True if the containing process is driving S (or every 
element of a composite signal S), or false if the con-
taining process has disconnected its driver for S (or 
any element of S) with a null transaction

S'driving_value base type of S Value contributed by driver for S in the containing 
process



20.1 Predefined Attributes 607

VHDL-87

The predefined attributes 'driving and 'driving_value are not provided in VHDL-87.
Note also that the 'last_value attribute for a composite signal returns the aggregate of
last values for each of the scalar elements of the signal. This behavior is different from
the VHDL-93 and VHDL-2002 behavior, in which the attribute returns the last value of
the entire composite signal. Furthermore, the behavior of the 'last_event and
'last_active attributes differs from VHDL-93 and VHDL-2002. In VHDL-87, 'last_event
returns 0 ns if no event has yet occurred, and 'last_active returns 0 ns if no transaction
has yet occurred.

20.1.5 Attributes of Named Items

The remaining predefined attributes are applied to any declared item and return a string
representation of the name of the item. These attributes are summarized in Table 20.5. The
prefix X in the table refers to any declared item. If the item is an alias, the attribute returns
the name of the alias itself, not the aliased item.

TABLE 20.5 The predefined attributes that provide names of declared items

The 'simple_name attribute returns a string representation of the name of an item. For
example, if a package utility_definitions in a library utilities declares a constant named
word_size, the attribute

utilities.utility_definitions.word_size'simple_name

returns the string “word_size”. We might ask why VHDL provides this attribute, since we
need to write the simple name of the item in order to apply the attribute. It would be sim-
pler to write the string literal directly. If nothing else, we can use the attribute to gain con-
sistency of style in reporting item names in messages, since the 'simple_name attribute
always returns a lowercase version of the name.

The 'path_name and 'instance_name attributes both return string representations of
the path through the design hierarchy to an item. They are especially useful in assertion
or report statements to pinpoint exactly which instance of a library unit is the source of a
message. VHDL only requires that the message reported to the user by these statements

Attribute Result

X'simple_name A string representing the identifier, character or operator symbol defined 
in the declaration of the item X

X'path_name A string describing the path through the elaborated design hierarchy, 
from the top-level entity or package to the item X

X'instance_name A string similar to that produced by X'path_name, but including the 
names of the entity and architecture bound to each component instance 
in the path



608 Chapter 20 — Attributes and Groups

indicate the name of the library unit (entity, architecture body or package) containing the
statement. We can use the 'path_name or 'instance_name attribute to determine which
particular instance of a process in the design hierarchy is the source of a message.

EXAMPLE 20.1 Using name attributes in assertion messages

Suppose we have a design that includes numerous instances of a flipflop component
bound to an entity flipflop and using an architecture behavior. Within this architecture
we wish to include timing checks and report an error message if the constraints are
violated. An outline of the architecture body incorporating these checks is

architecture behavior of flipflop is
begin

  timing_check : process (clk) is
  begin
    if clk = '1' then
      assert d'last_event >= Tsetup
        report "set up violation detected in "
               & timing_check'path_name
        severity error;
    end if;
  end process timing_check;

  ...  -- functionality

end architecture behavior;

When a flipflop instance in the design detects a timing violation, it will issue an
assertion violation message indicating that the problem arose in the architecture be-
havior of flipflop. We use the 'path_name attribute in the message string to identify
which component instance bound to the flipflop entity is the one responsible for is-
suing the message.

The format of the string produced by the 'path_name and 'instance_name attributes
for a library, a design-unit package, or an item declared in a design-unit package is de-
scribed by the EBNF rule

package_based_path ⇐
: library_logical_name :

{ ( subprogram_designator signature
I variable_identifier
I package_identifier ) : }

[ identifier I character_literal I operator_symbol ]

The colon characters serve as punctuation, separating elements within the path string.
If the item to which the attribute is applied is a library, the path string includes only the
library name. If the item is a design-unit package, the path string includes the library name



20.1 Predefined Attributes 609

and the package name. If the item is declared in a package, the path string includes the
library name, the package name and the name of the item. If the item is nested within a
subprogram, shared variable, or local package in the design-unit package, the string also
includes the names of the containing subprogram, shared variable, or local package. The
signature of each subprogram is also included to distinguish between possibly overloaded
versions of the subprogram name. Recall that the syntax rule for a subprogram signature is

signature ⇐ [ [ type_mark { , … } ] [ return type_mark ] ]

If the item is further nested, the names of all the enclosing subprograms, shared variables,
or local packages are included in order from outermost to innermost.

Note that, for subprograms that overload operators, the name included in the path
string is the operator symbol surrounded by quotation marks. For example, an overloaded
abs operator declared in a package pkg in a library lib would have the path string:

:lib:pkg:"abs":

EXAMPLE 20.2 Name attributes for items in a package

Suppose we have a package mem_pkg stored in the library project. The package dec-
laration is

package mem_pkg is

  subtype word is bit_vector(0 to 31);
  type word_array is array (natural range <>) of word;

  procedure load_array ( words : out word_array;
                         file_name : string );

end package mem_pkg;

The 'path_name attribute applied to these items gives the following results:

mem_pkg'path_name = ":project:mem_pkg:"
word'path_name = ":project:mem_pkg:word"
word_array'path_name = ":project:mem_pkg:word_array"
load_array'path_name = ":project:mem_pkg:load_array:"

The 'instance_name attribute returns the same strings for these items. An outline
of the package body is

package body mem_pkg is

  procedure load_array ( words : out word_array;
                         file_name : string ) is
    -- words'path_name = ":project:mem_pkg:load_array:words"

    use std.textio.all;
    file load_file : text open read_mode is file_name;



610 Chapter 20 — Attributes and Groups

    -- load_file'path_name
    --   = ":project:mem_pkg:load_array:load_file"

    procedure read_line is
    -- read_line'path_name
    --   = ":project:mem_pkg:load_array:read_line:"
      variable current_line : line;
      -- current_line'path_name
      --   = ":project:mem_pkg:load_array:read_line:current_line"
    begin
      ...
    end procedure read_line;

  begin  -- load_array
    ...
  end procedure load_array;

end package body mem_pkg;

The comments indicate the values of the 'path_name attribute applied to various
names within the package body. Again, the 'instance_name attribute returns the same
strings as the 'path_name attribute.

In the case of a shared variable, it is the name of the variable that is included in the
path string, not the name of the protected type used to declare the variable. This allows
us to distinguish between items declared in a protected type but occurring in different
shared variables.

EXAMPLE 20.3 Path name for items in shared variables

Suppose we have a package in library project_lib that declares a protected type, as
follows:

package counter_pkg is

  type counter is protected
    procedure increment;
    ...
  end protected counter;

end package counter_pkg;

package body counter_pkg is

  type counter is protected body

    constant limit : natural := 100;
    variable count : natural := 0;

    procedure increment is
    begin



20.1 Predefined Attributes 611

      assert count < limit
        report "Counter overflow in " & increment'path_name;
      count := (count + 1) mod limit;
    end procedure increment;

    ...

  end protected body counter;

end package body counter_pkg;

We now declare a package with two shared variables of the protected type:

library project_lib;
package system_counter_pkg is
  use project_lib.counter_pkg.all;
  shared variable test_counter, event_counter : counter;
end package system_counter_pkg;

If, as a result of system operation, the assertion fails during execution of the
method call test_counter.increment, the assertion message includes the path string

:work:system_counter_pkg:test_counter:increment:

This allows us to identify which instance of the protected type caused the assertion
violation.

If an item is declared within an entity or architecture body, the 'path_name and
'instance_name attributes return different strings depending on the structure of the elab-
orated design and the location of the declared item within the design hierarchy. We first
look at the string returned by the 'path_name attribute, as it is the simpler of the two. The
format of the string is described by the EBNF rules

instance_based_path ⇐
: { path_instance_element : }

[ simple_name I character_literal I operator_symbol ]

path_instance_element ⇐
entity_identifier
I component_instantiation_label
I block_label
I generate_label [ ( literal ) ]
I [ process_label ]
I subprogram_designator signature
I [ loop_label ]
I variable_identifier
I package_identifier

The string starts with the name of the topmost entity in the design and continues with
the labels of any blocks (see Chapter 23), generate statements, processes, subprograms,



612 Chapter 20 — Attributes and Groups

and so on, between the top and the item. If the design hierarchy includes a component
instance bound to an entity and architecture body containing the item, the attribute string
includes the label of the component instantiation statement. If the item is contained within
a for-generate statement, the string includes the value of the generate parameter for the
particular iteration containing the item. The value is included in parentheses after the gen-
erate statement label. If the item is included in a process that has no label, the string in-
cludes an empty element in place of a process label. If the item is included in a
subprogram, the string includes the signature of the subprogram to distinguish between
possibly overloaded versions of the subprogram name. If the item is the loop parameter
of a for loop, the string includes the label of the loop, or an empty element if the loop is
unlabeled. If the item is declared in a protected type used as the type of a variable, the
string includes the name of the variable (not the name of the protected type). If the item
is included within a locally declared package, the string includes the package name.

The format of the string returned by the 'instance_name attribute is described by the
EBNF rules

full_instance_based_path ⇐
: { full_path_instance_element : }

[ simple_name I character_literal I operator_symbol ]

full_path_instance_element ⇐
entity_identifier ( architecture_identifier )
I component_instantiation_label

@ entity_identifier ( architecture_identifier )
I block_label
I generate_label [ ( literal ) ]
I [ process_label ]
I subprogram_designator signature
I [ loop_label ]
I variable_identifier
I package_identifier

It is the same as that returned by 'path_name, except that the names of the entity and
architecture bound to a component instance are included after the label of the component
instantiation statement. Furthermore, the architecture name for the top-level design entity
is also included.

EXAMPLE 20.4 Name attributes in a design hierarchy

We illustrate the results returned by the 'path_name and 'instance_name attributes by
looking at a sample design hierarchy. The top level of the hierarchy is formed by the
entity top and its corresponding architecture top_arch, declared as follows:

entity top is
end entity top;

--------------------------------------------------

architecture top_arch of top is



20.1 Predefined Attributes 613

  signal top_sig : ...;                  -- 1

begin

  stimulus : process is
    variable var : ...;                  -- 2
  begin
    ...
  end process stimulus;

  rep_gen : for index in 0 to 7 generate
  begin

    end_gen : if index = 7 generate
      signal end_sig : ...;              -- 3
    begin
      ...
    end generate end_gen;

    other_gen : if index /= 7 generate
      signal other_sig : ...;            -- 4
    begin
      other_comp : entity work.bottom(bottom_arch)
        port map ( ... );
    end generate other_gen;

  end generate rep_gen;

end architecture top_arch;

The numbered comments in this model mark points at which various declared
items are visible. The values of the 'path_name and 'instance_name attributes of these
items at the marked points are shown in Table 20.6. At point 4, the string returned
varies between repetitions created by the generator. Where the table shows index in

TABLE 20.6 The results of applying the path and instance name attributes at the top level

Point Item Item'path_name and item'instance_name

1 top :top: :top(top_arch):

1 top_sig :top:top_sig :top(top_arch):top_sig

2 stimulus :top:stimulus: :top(top_arch):stimulus:

2 var :top:stimulus:var :top(top_arch):stimulus:var

3 end_sig :top:rep_gen(7):end_gen:end_sig
:top(top_arch):rep_gen(7):end_gen:end_sig

4 other_sig :top:rep_gen(index):other_gen:other_sig
:top(top_arch):rep_gen(index):other_gen:other_sig



614 Chapter 20 — Attributes and Groups

the attribute value, the value of the generate parameter for that repetition is
substituted. For example, in the repetition with the generate parameter set to 4, the
result of other_sig'path_name is “:top:rep_gen(4):other_gen:other_sig”.

The entity declaration and architecture body for the bottom level of the design
hierarchy, instantiated in the preceding architecture body, are

entity bottom is
  port ( ... );
end entity bottom;

--------------------------------------------------

architecture bottom_arch of bottom is

  signal bot_sig : ...;             -- 5

  procedure proc ( ... ) is
    variable v : ...;               -- 6
  begin
    ...
  end procedure proc;

begin

  delays : block is
    constant d : integer := 1;      -- 7
  begin
    ...
  end block delays;

  func : block is
  begin

    process is
      variable v : ...;             -- 8
    begin
      ...
    end process;

  end block func;

end architecture bottom_arch;

The architecture includes block statements, which we describe in detail in Chap-
ter 23. Nonetheless, we include them here to illustrate the form of path strings involv-
ing them. The values of the 'path_name and 'instance_name attributes of items within
this architecture at the marked points are shown in Table 20.7. The values shown are
for the instance of the architecture corresponding to the component instantiation
statement in the repetition of rep_gen with index set to 4. Point 8 is within a process
that has no label, so the strings returned for the item v include an empty element (two
consecutive colon characters) where the process label would otherwise be.



20.1 Predefined Attributes 615

TABLE 20.7 The results of applying the path and instance name attributes at the bottom level

VHDL-93 and -2002

In these versions, the path element for a subprogram was officially an identifier, so an
overloaded operator symbol could not be represented. This was an error of specifica-
tion in the VHDL standard, so most implementations would have assumed some rep-
resentation for the operator symbol. Also, in these versions, there was no provision
for names of variables (shared or otherwise) of protected types or for loop labels in
path strings. Finally, since these versions do not allow locally declared packages, there
is no provision for package names other than as design-unit packages in package-
based paths.

VHDL-93

The signature for a subprogram is not included in the 'path_name and 'instance_name
attributes in VHDL-93. Furthermore, the specification of these attributes in the VHDL-
93 Language Reference Manual is ambiguous and contains contradictory examples.
As a consequence, the results returned by the attributes is somewhat implementation
dependent.

VHDL-87

The predefined attributes 'simple_name, 'path_name and 'instance_name are not pro-
vided in VHDL-87.

Point Item Item'path_name and item'instance_name

5 bot_sig :top:rep_gen(4):other_gen:other_comp:bot_sig
:top(top_arch):rep_gen(4):other_gen:other_comp@bottom(bottom_arch):bot_sig

6 v :top:rep_gen(4):other_gen:other_comp:proc:v
:top(top_arch):rep_gen(4):other_gen:other_comp@bottom(bottom_arch):proc:v

7 d :top:rep_gen(4):other_gen:other_comp:delays:d
:top(top_arch):rep_gen(4):other_gen:other_comp@bottom(bottom_arch):delays:d

8 v :top:rep_gen(4):other_gen:other_comp:func::v
:top(top_arch):rep_gen(4):other_gen:other_comp@bottom(bottom_arch):func::v



616 Chapter 20 — Attributes and Groups

20.2 User-Defined Attributes

The predefined attributes provide information about types, objects or other items in a
VHDL model. VHDL also provides us with a way of adding additional information of our
own choosing to items in our models, namely, through user-defined attributes. We can use
them to add physical design information such as standard cell allocation and placement,
layout constraints such as maximum wire delay and inter-wire skew or information for
synthesis such as encodings for enumeration types and hints about resource allocation. In
general, information of a non-structural and non-behavioral nature can be added using
attributes and processed using software tools operating on the design database.

20.2.1 Attribute Declarations

The first step in defining an attribute is to declare the name and type of an attribute, using
an attribute declaration. The syntax rule describing this is

attribute_declaration ⇐ attribute identifier : type_mark ;

An attribute declaration simply defines the identifier as representing a user-defined at-
tribute that can take on values from the specified type. The type can be any VHDL type
except an access, file or protected type or a composite type with a subelement that is an
access, file or protected type. Some examples of attribute declarations are

attribute cell_name : string;
attribute pin_number : positive;
attribute max_wire_delay : delay_length;
attribute encoding : bit_vector;

The attribute type need not be a simple scalar. For example, we might define an at-
tribute to represent cell placement as follows:

type length is range 0 to integer'high
  units nm;
    um = 1000 nm;
    mm = 1000 um;
    mil = 25400 nm;
  end units length;

type coordinate is record
    x, y : length;
  end record coordinate;

attribute cell_position : coordinate;

20.2.2 Attribute Specifications

Once we have defined an attribute name and type, we then use it to decorate items within
a design. We write attribute specifications, nominating items that take on the attribute with
particular values. The syntax rules for an attribute specification are



20.2 User-Defined Attributes 617

attribute_specification ⇐
attribute identifier of entity_name_list : entity_class is expression ;

entity_name_list ⇐
( ( identifier I character_literal I operator_symbol ) [ signature ] ) { , … }
I others
I all

entity_class ⇐
entity I architecture I configuration I package
I procedure I function I type I subtype
I constant I signal I variable I file
I component I label I literal I units
I group I property I sequence

The first identifier in an attribute specification is the name of a previously declared
attribute. The items to be decorated with this attribute are listed in the entity name list.
Note that we use the term “entity” here to refer to any item in the design, not to be con-
fused with an entity interface defined in an entity declaration. We adopt this terminology
to remain consistent with the VHDL Language Reference Manual, since you may need to
refer to it occasionally. However, we use the term as little as possible, preferring instead
to refer to “items” in the design, to avoid confusion. The items to be decorated with the
attribute are those named items of the particular kind specified by the “entity” class. The
list of classes shown covers every kind of item we can name in a VHDL description, so
we can decorate any part of a design with an attribute. Finally, the actual value for the
attribute of the decorated items is the result of the expression included in the attribute
specification. Here are some examples of attribute specifications using the attributes de-
fined earlier:

attribute cell_name of std_cell : architecture is "DFF_SR_QQNN";
attribute pin_number of enable : signal is 14;
attribute max_wire_delay of clk : signal is 50 ps;
attribute encoding of idle_state : literal is b"0000";
attribute cell_position of the_fpu : label is ( 540 um, 1200 um );

In the case of an attribute declared to be of a composite type, we can write the at-
tribute value in the form of an aggregate or string or bit-string literal. The type can be an
unconstrained or partially constrained subtype, in which any index ranges not defined by
the subtype are determined from the attribute value. For example, if we declare an at-
tribute of a composite type:

type string_vector is array (positive range <>) of string;
attribute key_vector : string_vector;

we can decorate an item with the attribute as follows:

attribute key_vector of e : entity is
  ("66A6D 7DF3A 88CE1 8DEEB", "012BD 2BEE9 98634 93FE1");



618 Chapter 20 — Attributes and Groups

Since the subtype for the attribute specifies index ranges in neither the top-level nor
the element position, the corresponding index ranges of the aggregate are used to deter-
mine the index ranges for the attribute value, giving the ranges 1 to 2 for the top level and
1 to 23 for each element.

We now look at how attribute values may be specified for each of the classes of items
shown in the syntax rule. For most classes of items, an attribute specification must appear
in the same group of declarations as the declaration for the item being decorated. How-
ever, the first three classes shown in the syntax rule are design units that are placed in a
design library as library units when analyzed. They are not declared within any enclosing
declarative part. Instead, we can consider them as being declared in the context of the
design library. The same also applies to packages that are declared as design units, as op-
posed to being declared locally within a design unit. However, this presents a problem if
we wish to decorate an item of one of these classes with an attribute. For entities, archi-
tectures, configurations and packages, we solve this problem by placing the attribute spec-
ification in the declarative part of the design unit itself. For example, we decorate an
architecture std_cell with the cell_name attribute as follows:

architecture std_cell of flipflop is

  attribute cell_name of std_cell : architecture is "DFF_SR_QQNN";

  ...  -- other declarations

begin
  ...
end architecture std_cell;

In the case of packages, this rule applies whether a package is declared as a design
unit or locally. The attribute specification must be included in the package declaration, not
the package body. For example, we can decorate a package model_utilities with the op-
timize attribute as follows:

package model_utilities is

  attribute optimize : string;
  attribute optimize of model_utilities : package is "level_4";

  ...

end package model_utilities;

When we decorate subprograms we may need to distinguish between several
overloaded versions. The syntax rule on page 617 shows that we can include a signature
to identify one version uniquely by specifying the types of its parameters and return value.
Signatures were introduced in Chapter 11.



20.2 User-Defined Attributes 619

EXAMPLE 20.5 Decorating a subprogram

If we have two overloaded versions of the procedure add_with_overflow declared in
a process as shown below, we can decorate them using signatures in the attribute
specification.

process is

  procedure add_with_overflow ( a, b : in integer;
                                sum : out integer;
                                overflow : out boolean ) is ...

  procedure add_with_overflow ( a, b : in bit_vector;
                                sum : out bit_vector;
                                overflow : out boolean ) is ...

  attribute built_in : string;

  attribute built_in of
    add_with_overflow [ integer, integer,
                        integer, boolean ] : procedure is
    "int_add_overflow";

  attribute built_in of
    add_with_overflow [ bit_vector, bit_vector,
                        bit_vector, boolean ] : procedure is
    "bit_vector_add_overflow";

begin
  ...
end process;

The syntax rule also shows that we can identify an overloaded operator by writing the
operator symbol as the function name. For example, if we declare a function to concate-
nate two lists of stimulus vectors:

function "&" ( a, b : stimulus_list ) return stimulus_list;

we can decorate it with an attribute as follows:

attribute debug : string;
attribute debug of "&" [ stimulus_list, stimulus_list
                         return stimulus_list ] : function is
                   "source_statement_step";

The syntax rules for attribute specifications show the signature to be optional, and in-
deed, we can omit it when decorating subprograms. In this case, the attribute specification
applies to all subprograms with the given name and class declared in the same declarative
part as the attribute specification. For example, if we declare the following overloaded
subprograms:



620 Chapter 20 — Attributes and Groups

procedure add ( a, b : in integer; s : out integer );
procedure add ( a, b : in real; s : out real );
function add ( a, b : integer ) return integer;
function add ( a, b : real ) return real;

and write and attribute declaration and specifications:

attribute built_in : boolean;
atribute built_in of add : procedure is true;
attribute built_in of add : function is false;

the two procedures are decorated with the attribute value true, and the two functions are
decorated with the attribute value false.

We can decorate a type, subtype or data object (a constant, variable, signal or file) by
including an attribute specification after the declaration of the item. The attribute specifi-
cation must appear within the same declarative part as the declaration of the item. For
example, if we declare a resolved subtype resolved_mvl:

type mvl is ('X', '0', '1', 'Z');
type mvl_vector is array ( integer range <>) of mvl;
function resolve_mvl ( drivers : mvl_vector ) return mvl;

subtype resolved_mvl is resolve_mvl mvl;

we can decorate it as follows:

type builtin_types is (builtin_bit, builtin_mvl, builtin_integer);
attribute builtin : builtin_types;

attribute builtin of resolved_mvl : subtype is builtin_mvl;

Generics and ports in the interface of an entity can be decorated with attributes. Ge-
neric constants are of constant class, generic types are of type class, generic subpro-
grams are of procedure or function class, generic packages are of package class, and
ports are of signal class. The interface list is considered to be in the declarative part of
the entity. Hence, we write attribute specifications for generics and ports in the declarative
part of the entity.

EXAMPLE 20.6 Decorating generics and ports of an entity

Suppose the package physical_attributes declared the following attributes:

attribute layout_ignore : boolean;
attribute pin_number : positive;

We can declare an entity with decorated generic constants and ports as follows:

library ieee;  use ieee.std_logic_1164.all;
use work.physical_attributes.all;



20.2 User-Defined Attributes 621

entity \74x138\ is
  generic ( Tpd : time );
  port ( en1, en2a_n, en2b_n : in std_ulogic;
         s0, s1, s2 : in std_ulogic;
         y0, y1, y2, y3, y4, y5, y6, y7 : out std_ulogic );

  attribute layout_ignore of Tpd : constant is true;

  attribute pin_number of s0 : signal is 1;
  attribute pin_number of s1 : signal is 2;
  attribute pin_number of s2 : signal is 3;
  attribute pin_number of en2a_n : signal is 4;
  ...

end entity \74x138\;

Subprogram parameters can also be decorated with attributes. The class is specified
or implied in the interface list of the subprogram. We write the attribute specifications for
subprogram parameters in the declarative part of the subprogram. Similarly, for uninstan-
tiated subprograms, we can decorate the generics by writing attribute specifications in the
declarative part. For uninstantiated packages, we can decorate the generics by writing at-
tribute specification in the package declaration (not the package body). In both cases, the
classes of generics are as described above for generics of entities.

EXAMPLE 20.7 Decorating parameters of a subprogram

The following procedure has three parameters of different classes. Attribute specifica-
tions for the parameters are included in the declarative part of the procedure.

procedure mem_read ( address : in natural;
                     result : out byte_vector;
                     signal memory_bus : inout ram_bus ) is

  attribute trace of address : constant is "integer/hex";
  attribute trace of result : variable is "byte/multiple/hex";
  attribute trace of memory_bus : signal is
                     "custom/command=rambus.cmd";
  ...

begin
  ...
end procedure mem_read;

We can decorate a component in a model by including an attribute specification along
with the component declaration. An important point to realize is that the attribute deco-
rates the template defined by the component declaration. It does not decorate component
instances that use that template.



622 Chapter 20 — Attributes and Groups

EXAMPLE 20.8 Decorating a component declaration

The package below includes a component declaration for an and gate. The package
imports two attributes, graphic_symbol and graphic_style, from a second package
graphics_pkg in the library graphics and decorates the component template with each
of these attributes.

library ieee;  use ieee.std_logic_1164.all;
library graphics;

package gate_components is

  use graphics.graphics_pkg.graphic_symbol,
      graphics.graphics_pkg.graphic_style;

  component and2 is
    generic ( prop_delay : delay_length );
    port ( a, b : in std_ulogic;  y : out std_ulogic );
  end component and2;

  attribute graphic_symbol of and2 : component is "and2";
  attribute graphic_style of and2 : component is
                             "color:default, weight:bold";

  ...

end package gate_components;

If we wish to decorate a component instance or any other concurrent statement with
an attribute, we do so by decorating the label of the statement. The label is implicitly de-
clared in the declarative part of the architecture or block containing the concurrent state-
ment. Hence, we place the attribute specification in that declarative part.

EXAMPLE 20.9 Decorating a component instance

We might decorate a component instance in an architecture body with an attribute
describing cell placement as follows:

architecture cell_based of CPU is

  component fpu is
    port ( ... );
  end component;

  use work.cell_attributes.all;

  attribute cell_position of the_fpu : label is
                             ( 540 um, 1200 um );

  ...



20.2 User-Defined Attributes 623

begin

  the_fpu : component fpu
    port map ( ... );

  ...

end architecture cell_based;

We can decorate sequential statements within a process or a subprogram in a similar
way. The syntax rules for sequential statements show that each kind of sequential state-
ment may be labeled. We decorate a sequential statement by specifying an attribute for
the label. We place the attribute specification in the declarative part of the process or
subprogram containing the sequential statement.

EXAMPLE 20.10 Decorating a sequential statement

If we wish to decorate a loop statement in a process with the attribute synthesis_hint,
we do so as follows:

controller : process is

  attribute synthesis_hint of control_loop : label is
                              "implementation:FSM(clk)";
  ...

begin
  ...  -- initialization
  control_loop : loop
    wait until clk = '1';
    ...
  end loop;
end process controller;

When we introduced aliases and signatures in Chapter 11, we mentioned that enu-
meration literals can be thought of as functions with no parameters that return values of
their enumeration types. We can take the same approach when decorating enumeration
literals with attributes, in order to distinguish between literals of the same name from dif-
ferent enumeration types.

EXAMPLE 20.11 Decorating an enumeration literal

If we have two enumeration types declared as

type controller_state is (idle, active, fail_safe);
type load_level is (idle, busy, overloaded);



624 Chapter 20 — Attributes and Groups

we can decorate the literals of type controller_state as follows:

attribute encoding of
  idle [ return controller_state ] : literal is b"00";
attribute encoding of
  active [ return controller_state ] : literal is b"01";
attribute encoding of
  fail_safe [ return controller_state ] : literal is b"10";

The signature associated with the literal idle indicates that it is of type
controller_state, not load_level. As with attribute specifications for subprograms, if a
signature is not included for a literal, all literals of the given name declared in the same
declarative part as the attribute specification are decorated with the attribute.

When we declare a physical type we introduce a primary unit name and possibly a
number of secondary unit names. Each of the unit names is a declared item and so may
be decorated with attributes.

EXAMPLE 20.12 Decorating a physical unit

The package below defines a physical type voltage. It also declares an attribute, res-
olution, and decorates each of the units of voltage with this attribute.

package voltage_defs is

  type voltage is range -2e9 to +2e9
    units
      nV;
      uV = 1000 nV;
      mV = 1000 uV;
      V = 1000 mV;
    end units voltage;

  attribute resolution : real;

  attribute resolution of nV : units is 1.0;
  attribute resolution of uV : units is 0.01;
  attribute resolution of mV : units is 0.01;
  attribute resolution of V : units is 0.001;

end package voltage_defs;

If we embed PSL code in a VHDL model, we can decorate declared properties and
sequences. For example:

property SingleCycleRequest is
  always req -> next not req;



20.2 User-Defined Attributes 625

sequence ReadCycle is
  { ba; {bb[*]} && {ar[->]; dr[->]}; not bb };

attribute enable_heuristics of
            SingleCycleRequest : propery is true;
attribute enable_heuristics of ReadCycle : sequence is true;

The one remaining class of items that can be decorated with attributes is groups. We
introduce groups in the next section and show examples of decorated groups.

If we return to the syntax rules for attribute specifications, shown on page 617, we
see that we can write the keyword others in place of the list of names of items to be
decorated. If we do so, the attribute specification applies to all items of the given class in
the declarative part that are not otherwise decorated with the attribute. Such an attribute
specification must be the last one in the declarative part that refers to the given attribute
name and item class.

EXAMPLE 20.13 Decorating items not previously decorated

In the following architecture body, signals are decorated with attributes specifying the
maximum allowable delays due to the physical layout. The two signals
recovered_clk1 and recovered_clk2 are explicitly decorated with the attribute value
100 ps. The remaining signals are decorated with the value 200 ps.

library ieee;  use ieee.std_logic_1164.all;
use work.timing_attributes.all;

architecture structural of sequencer is

  signal recovered_clk1, recovered_clk2 : std_ulogic;
  signal test_enable : std_ulogic;
  signal test_data : std_ulogic_vector(0 to 15);

  attribute max_wire_delay of
    recovered_clk1, recovered_clk2 : signal is 100 ps;

  attribute max_wire_delay of others : signal is 200 ps;

  ...

begin
  ...
end architecture structural;

The syntax rules also show that we can use the keyword all in place of a list of item
names. In this case, all items of the given class defined in the declarative part containing
the attribute specification are decorated. Such an attribute specification must be the only
one in the declarative part to refer to the given attribute name and item class.

Although we can only decorate an item with one value for a given attribute name, we
can decorate it with several different attributes. We simply write one attribute specification



626 Chapter 20 — Attributes and Groups

for each of the attributes decorating the item. For example, a component instance labeled
mult might be decorated with several attributes as follows:

attribute cell_allocation of
  mult : label is "wallace_tree_multiplier";
attribute cell_position of
  mult : label is ( 1200 um, 4500 um );
attribute cell_orientation of
  mult : label is down;

If an item in a design is decorated with a user-defined attribute, we can refer to the
attribute value using the same notation that we use for predefined attributes. The syntax
rule for an attribute name referring to a user-defined attribute is

attribute_name ⇐ name [ signature ] ' identifier

If the name of the item is unambiguous, we can simply write an apostrophe and the
attribute name after the item name. For example:

std_cell'cell_name
enable'pin_number
clk'max_wire_delay
v4 := idle_state'encoding
the_fpu'cell_position

In the case of attributes decorating subprograms or enumeration literals, it may be
necessary to use a signature to distinguish between a number of alternative names. For
example, we might refer to attribute values of different versions of an increment function
as

increment [ bit_vector return bit_vector ] 'built_in
increment [ std_ulogic_vector return std_ulogic_vector ] 'built_in

Similarly, we might refer to attribute values of enumeration literals as

high [ return speed_range ] 'representation
high [ return coolant_level ] 'representation

While it is legal VHDL to refer to attribute values such as these in expressions, it is not
good design practice to use attribute values to affect the structure or behavior of the
model. It is better to describe structure and behavior using the language facilities intended
for that purpose and use attributes to annotate the design with other kinds of information
for use by other software tools. For this reason, we do not further discuss the use of
attribute values in models. Software tools that use attributes should include documentation
describing the required attribute types and their usage.

In Chapter 11, we introduced aliases as a way of defining alternate names for items
in a design. In most cases, referring to an item using an alias is exactly the same as refer-
ring to it using its original name. The same interpretation holds when decorating items
with attributes. When we use an alias of an item in an attribute specification, it is the orig-



20.2 User-Defined Attributes 627

inal object denoted by the alias that is decorated, not the alias. This is the interpretation
we saw for the predefined attributes discussed in the previous section. The exceptions are
the predefined attributes that return the path name of an item and those that return infor-
mation about the index ranges of arrays. One restriction on decorating data objects using
aliases is that we may only do so using aliases that denote whole objects, not elements or
slices of records or arrays. This restriction corresponds to the restriction that an attribute
must decorate a whole object. The syntax rule for an attribute specification does not pro-
vide for naming parts of objects, since we can only write a simple identifier as an object
name.

One final point to mention about user-defined attributes relates to component instan-
tiation statements and to subprogram calls. In a component instantiation statement, actual
signals are associated with formal ports of an entity. If the actual signal is decorated with
an attribute, the attribute information is only visible in the context of the actual signal,
namely, in the architecture body in which the signal is declared. It is not carried through
to the instantiated entity. For example, if we have a signal s decorated with an attribute
attr, we might use it as an actual signal in a component instantiation statement:

c1 : entity work.e(arch)
  port map ( p => s );

Within the architecture body arch, we cannot refer the attribute of the signal using the
notation p'attr. This notation instead refers to the attribute attr of the port p, which can
only be defined in the entity declaration.

In a subprogram call an actual parameter (such as a constant, variable, signal or file)
is associated with a formal parameter of the subprogram. If the actual parameter is deco-
rated with an attribute, that attribute information is likewise not carried through to the sub-
program. The decoration is purely local to the region in which the actual object is
declared.

VHDL-87, -93, and -2002

Since these versions of VHDL do not allow PSL code to be embedded within VHDL
models, we cannot use the word property or sequence attribute specifications for
the class of an item to be decorated.

VHDL-87

The syntax rules for attribute specifications in VHDL-87 do not allow us to name a
character literal as an item to be decorated. Nor may we specify the entity class liter-
al, units, group or file. Furthermore, we may not include a signature after an item
name. Hence there is no way to distinguish between overloaded subprograms or enu-
meration literals; all items of the given name are decorated.



628 Chapter 20 — Attributes and Groups

20.3 Groups

The user-defined attribute facility discussed in the previous section allows us to annotate
individual items in a design with non-structural and non-behavioral information. However,
much of the additional information we may need to include can best be expressed as re-
lationships between collections of items, rather than pertaining to individual items. For this
reason VHDL provides a grouping mechanism to identify a collection of items over which
some relationship holds. The information about the relationship is expressed as an at-
tribute of the group. In this section we see how to define kinds of groups, to identify par-
ticular groups of related items and to specify attributes for particular groups.

The first stage in grouping items is to define a template for the classes of items that
can be included in the group. We do this with a group template declaration, for which the
syntax rule is

group_template_declaration ⇐
group identifier is ( ( entity_class [ <> ] ) { , … } ) ;

A group template declaration lists one or more classes of items, in order, that may con-
stitute a group. Note that the syntax rule uses the term “entity” here in the same way as
the rules for attribute specifications, namely, to refer to any kind of item in a design. We
discuss the meaning of the “<>” notation shortly. An example of a group template decla-
ration is

group signal_pair is (signal, signal);

This defines a template for groups consisting of two signals. We can use this template to
define a number of groups using group declarations. The syntax rule for a group declara-
tion is

group_declaration ⇐
group identifier : group_template_name

( ( name I character_literal ) { , … } ) ;

A group declaration names a template to use for the group and lists the items that are
to be members of the group. Each item in the list must be of the class specified in the
corresponding position in the template. For example, if we have two clock signals in a
design, clk_phase1 and clk_phase2, we can group them together using the signal_pair
template defined above by writing

group clock_pair : signal_pair ( clk_phase1, clk_phase2 );

As we mentioned earlier, the main use of groups is as a mechanism for defining rela-
tionships between items by decorating a group of items with an attribute. We decorate a
group by naming it in an attribute specification, identifying it as an item of class group.
For example, if we have an attribute declared as

attribute max_skew : time;

we can decorate the clock_pair group with this attribute as follows:



20.3 Groups 629

attribute max_skew of clock_pair : group is 200 ps;

The decoration can be interpreted as an annotation to the design, indicating to a layout
tool that the maximum permissible skew between the two signals in the group is 200 ps.

The syntax rule for a group template shows that we may write the box symbol (“<>”)
after an item class. In fact, we may only include such a class specification once in any
template, and it must be in the last position in the list of item classes. It indicates that a
group based on that template may have an indefinite number of elements of the given
class (including none).

EXAMPLE 20.14 Groups for physical packaging

We can define a group template for a group representing component instances to be
allocated to the same physical package. The members of such a group are the labels
of the component instances. The group template declaration is

group component_instances is ( label <> );

We can use the template to create groups of instances:

group U1 : component_instances ( nand1, nand2, nand3 );
group U2 : component_instances ( inv1, inv2 );

We can specify what kind of integrated circuit should be used for each group by
defining an attribute and using it to decorate the group:

attribute IC_allocation : string;

attribute IC_allocation of U1 : group is "74LS00";
attribute IC_allocation of U2 : group is "74LS04";

An individual item in a design can belong to more than one group. We simply include
its name in the declaration of each group of which it is a member.

EXAMPLE 20.15 Groups for port-to-port timing constraints

We can use groups of signals as the basis for annotating a design entity with port-to-
port timing constraints. Suppose we declare a group template port_pair and an at-
tribute max_prop_delay in a package constraints:

group port_pair is ( signal, signal );

attribute max_prop_delay : time;

We can then use the template to group pairs of ports of an entity and annotate
them with constraint attributes, as follows:



630 Chapter 20 — Attributes and Groups

library ieee;  use ieee.std_logic_1164.all;
use work.constraints.port_pair, work.constraints.max_prop_delay;

entity clock_buffer is
  port ( clock_in : in std_ulogic;
         clock_out1, clock_out2, clock_out3 : out std_ulogic );

  group clock_to_out1 : port_pair ( clock_in, clock_out1 );
  group clock_to_out2 : port_pair ( clock_in, clock_out2 );
  group clock_to_out3 : port_pair ( clock_in, clock_out3 );

  attribute max_prop_delay of clock_to_out1 : group is 2 ns;
  attribute max_prop_delay of clock_to_out2 : group is 2 ns;
  attribute max_prop_delay of clock_to_out3 : group is 2 ns;

end entity clock_buffer;

In this entity declaration, the item clock_in is a member of each of the three
groups clock_to_out1, clock_to_out2 and clock_to_out3.

VHDL-87

VHDL-87 does not allow declaration of group templates or groups.

Exercises

1. [➊ 20.1] What are the values of the following attributes of items, assuming all design
units are analyzed and placed in a library named proj_lib:

• word'path_name, where word is declared in the cpu_types package in Example
7.1 on page 246.

• mult_unsigned'path_name, where mult_unsigned is the procedure in the
bit_vector_signed_arithmetic package in Example 7.5 on page 253.

• bv2'path_name, where bv2 is the parameter of mult_unsigned.

• next_test_case'path_name and next_test_case'instance_name, where
next_test_case is the variable in the stim_gen process in Example 7.6 on
page 255. Assume the process is an architecture test_rtl of entity test_bench,
which is the top-level entity.

• get_ID'path_name and get_ID'instance_name, where get_ID is the procedure in
the ID_manager package in the stim_gen process.

2. [➊ 20.1] Suppose we instantiate the counter entity on page 179 in Example 5.22 in a
test bench as follows:

dut : entity work.counter(registered)
  port map ( ... );



Exercises 631

The test bench entity name is test_bench, and the architecture body name is
counter_test. What are the values of the following attributes:

• val0_reg'path_name in the architecture registered of counter,

• bit0'path_name in the instance val1_reg of the struct architecture body of reg4
and

• clr'path_name in the instance bit2 of the behavioral architecture body of
edge_triggered_Dff, in the instance val1_reg?

What are the values of the 'instance_name attributes of the same items?

3. [➊ 20.2] Given a physical type capacitance, declared as

type capacitance is range 0 to integer'high
  units pF;
  end units capacitance;

write an attribute declaration that represents a capacitive load and an attribute speci-
fication that decorates a signal d_in with a load of 3 pF.

4. [➊ 20.2] Write a physical type declaration for areas, with a primary unit of µm2. Write
an appropriate attribute declaration and specification to decorate an architecture body
library_cell of an entity and3 with an area of 15 µm2.

5. [➊ 20.2] Given an attribute declared as

attribute optimization : string;

decorate the following procedure with the attribute value “inline”. Assume that
another overloaded version of the procedure, which must not be decorated, is visible.

procedure test_empty ( variable list : in list_ptr;
                       is_empty : out boolean ) is ...

6. [➊ 20.3] Define a group template that allows two or more statement labels as mem-
bers. Next, declare a group that includes the labels of the following two statements:

step_1 : a := b * c + k;
step_2 : n := a + 4 * j;

Then, write an attribute specification that decorates the group with the attribute
resource_allocation having the value max_sharing.

7. [➋ 20.1] Since the definitions in the VHDL-93 and VHDL-2002 versions of the VHDL
Language Reference Manual of the 'path_name and 'instance_name attributes of
items declared within packages are ambiguous, different simulators may produce dif-
ferent results. Construct some small examples, such as those shown in Section 20.1,
and experiment with your simulator to see how it constructs values for these at-
tributes.



632 Chapter 20 — Attributes and Groups

8. [➋ 20.1] Develop an edge-triggered register model that includes generics for setup and
hold times in its entity interface and that reports an assertion violation if the timing
constraints are not met. The message reported should include the full instance name
of the entity instance in which the violation occurs.

9. [➋ 20.2] Write an entity interface that describes a 74x138 three-to-eight decoder. In-
clude an attribute declaration and attribute specifications to decorate the ports with
pin-number information for the package shown in Figure 20.1.

FIGURE 20.1 

A package for a 74x138 decoder.

10. [➋ 20.3] Write an entity interface for an and-or-invert gate that implements the follow-
ing function:

Since the “and” function is commutative and associative, a layout tool should be able
to permute the connections within each of the groups a1, a2, a3 and b1, b2, b3 without
affecting the function performed by the circuit. Include in the entity interface of the
and-or-invert gate a group template declaration and group declarations that encom-
pass ports among which connections may be permuted.

s0

s1

s2

g2a_n

g2b_n

g1

y7_n

gnd

vcc

y0_n

y1_n

y2_n

y3_n

y4_n

y5_n

y6_n

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

z a1 a2 a3⋅ ⋅ b1 b2 b3⋅ ⋅+=



633

Chapter 21 

Design for Synthesis

In this book we have discussed many aspects of VHDL and looked at examples of its use.
One very strong motivation for using VHDL is hardware synthesis. The idea behind syn-
thesis is to allow us to think of our design in abstract terms. We need not be so concerned
about how best to implement the design in hardware logic—that is the job of the synthesis
tool. It converts our abstract description into a structural description at a lower level of
abstraction.

This chapter offers a brief introduction to synthesis, based on the IEEE standards that
cover synthesis of VHDL models. A full coverage of the topic warrants a complete book
in its own right. We refer the interested reader to the large number of books on hardware
synthesis (for example, [1]).

21.1 Synthesizable Subsets

There are several synthesis tools available from different design automation tool vendors.
While many of them perform the same general process, they differ in their command sets
and the way in which we specify synthesis constraints. Hence we discuss synthesis tools
only in very general terms. More important, synthesis tools differ in the subsets of VHDL
that they accept as input. The majority only accept designs described at the register-
transfer level and synthesize to circuits composed of gates, flipflops, registers, and other
basic components. A small number of behavioral synthesis tools accept designs described
at a higher level of abstraction. However, developing behavioral synthesis technology that
is usable in practice has proven to be very difficult, so the techniques are not widely
adopted. They are most successful in certain specialized application areas, such as digital
signal processing.

The disparity between synthesis tools motivated the development of IEEE Standard
1076.6, Standard for VHDL Register Transfer Level Synthesis. The first version of this stan-
dard, published in 1999, specified a “level-1” lowest common denominator subset of
VHDL that was acceptable to most synthesis tools. The intention was to assist designers
in writing models that were portable between synthesis tools and to ensure that the be-
havior of the synthesized designs matched simulation results.



634 Chapter 21 — Design for Synthesis

In 2004, a revision of the standard was published, specifying a level-2 synthesis subset
of VHDL. The intention of this subset, as described in the Introduction to the standard, is
“to include a maximum subset of VHDL that could be used to describe synthesizable RTL
logic.” It provides considerably more flexibility in the way models can be written. It is
much closer to the subsets now implemented by synthesis tools. Nonetheless, there re-
mains variation among tools, so we need to consult the documentation for any particular
tool that we might use to find out what forms of input it accepts.

There are two aspects of synthesis subsets of VHDL. The first is the collection of lan-
guage features that are included in the subset. This comprises the types that can be used
to represent data and the declarations, specifications, and statements that can be included
in models. The second aspect is the way in which we write code to represent different
hardware elements. The task of a synthesis tool is to analyze a VHDL description and infer
what hardware elements are represented and how they are connected. A tool cannot infer
hardware from any arbitrarily written VHDL model. Instead, we need to write models in
a synthesis style that is recognized by the tool. Style guidelines include templates for pro-
cess statements from which various kinds of hardware elements can be inferred, and re-
strictions on the way in which we write and combine statements. We will look at both of
these aspects, as specified by the IEEE 1076.6-2004 standard.

One further point to note about synthesis subsets is that they have historically lagged
behind revisions of the VHDL standard. As an illustration, the 1999 version of the IEEE
1076.6 standard specified that models use the VHDL-87 version of the language, despite
VHDL-93 having been published six years earlier. In 1999, many synthesis tools still only
supported VHDL-87; now, VHDL-93 is widely supported. The changes between VHDL-93
and VHDL-2002 were relatively minor, apart from the addition of protected types. Since
these are not supported for synthesis, synthesis tools effectively support VHDL-2002. That
is the version of the language referenced in IEEE 1076.6-2004. The changes between
VHDL-2002 and VHDL-2008 are much more significant. If past experience is an indicator,
it may be some time before synthesis vendors implement the changes in their tools. Again,
we should consult the documentation for any particular tool to see whether it supports
VHDL-2008 features. The notes throughout this book describing differences between ear-
lier versions of VHDL and VHDL-2008 will also be helpful as we write synthesizable mod-
els.

21.2 Use of Data Types

The synthesis standard allows us to use the following data types:

• enumeration types, including the predefined types boolean, bit and character

• integer types, including the predefined type integer and the subtypes natural and pos-
itive

• arrays of scalar elements, including the predefined types bit_vector and string

• std_ulogic, std_ulogic_vector, std_logic and std_logic_vector, defined in package
std_logic_1164

• unsigned and signed, defined in package numeric_bit



21.2 Use of Data Types 635

• unsigned and signed, defined in package numeric_std

The synthesis standard allows us to use these types for constants, signals, and vari-
ables. When we declare a constant, we must include an initial value expression to give
the constant a value. We cannot declare a deferred constant in a package. The synthesis
standard specifies that any initial value expression in a signal or variable declaration is ig-
nored. This makes sense in some circuits, such as ASICs, where the initial value of a stor-
age location is indeterminate. In FPGAs, however, the storage can be initialized to
specified values. Tools for synthesizing to FPGAs may allow an initial value expression in
a signal or variable declaration for this purpose.

21.2.1 Scalar Types

Models conforming with the synthesis standard may define and use enumeration types,
with some restrictions. The predefined types boolean and bit and the standard logic types
std_ulogic and std_logic are implemented in hardware as individual bits. Most of the time,
we use std_ulogic and std_logic, since that allows us to represent high-impedance and
unknown states, as well as low and high logic levels. User-defined enumeration types may
be implemented by tool-dependent encoding. Alternatively, we may specify the encoding
by decorating the type with a string attribute, enum_encoding, described in Section 21.7.

Models conforming with the synthesis standard may also define and use integer types.
Values of these types are implemented in the synthesized design as vectors of bits. If an
integer type includes only non-negative values, the synthesized vector uses unsigned bi-
nary encoding. If the type includes negative values, two’s-complement signed encoding
is used. The number of bits in the encoding is determined by the range of values in the
type. For example, given the following declarations in a model:

type sample is range -64 to 63;
subtype table_index is natural range 0 to 1023;

values of type sample should be implemented using 7-bit two’s-complement encoding,
and values of subtype table_index should be implemented using 10-bit unsigned encod-
ing. Types that don’t include 0 are encoded as though 0 were allowed. For example, the
type

type index_type is range 4 to 15;

would be represented using 4-bit unsigned encoding. Synthesis tools conforming with the
standard should support integers within the range –231 to +231 – 1, mapping to 32-bit
two’s-complement encoding.

The synthesis standard also allows use of other predefined enumeration types, includ-
ing character, but they may not be supported by tools. The remaining classes of scalar
types, namely, physical and floating-point types, are not supported by the synthesis stan-
dard. Definition and use of such types in a model are either ignored or treated as an error.



636 Chapter 21 — Design for Synthesis

21.2.2 Composite and Other Types

Models conforming with the synthesis standard may define and use array and record
types, but there are some significant restrictions on the use of array types. They must be
indexed by an integer range, and the index bounds must be static, so that the synthesis
tool can determine how much storage or how many bits of data are required in the hard-
ware. The element type can only be an allowed scalar type, as described above, or a one-
dimensional vector of an enumeration type representing individual bits. Thus, for exam-
ple, the following array types are permissible:

type coeffs is array (3 downto 0) of integer;

type channel_states is array (0 to 7) of state;
  -- state is an enumeration type

subtype word is bit_vector(31 downto 0);
type reg_file is array (0 to 15) of word;

whereas the following are not:

type color is (red, green, blue);
type plane_status is array (color) of boolean;
  -- non-integer index type

type matrix is array (1 to 3, 1 to 3) of real;
  -- 2D, and floating-point elements

type reg_file_set is array (0 to 3) of reg_file;
  -- elements are vectors of non-bits

In addition, some tools limit arrays to be one-dimensional. Such tools would not allow the
matrix type shown above.

The types unsigned and signed defined in numeric_bit and numeric_std are array
types that meet the requirements for synthesizability, since they are one-dimensional ar-
rays of elements that represent bits. The synthesis standard requires that we use these
types if we need to represent unsigned or signed numbers at the bit level. We cannot use
array types that we define in our model.

Historically, many designers have used the non-standard packages std_logic_arith,
std_logic_signed, and std_logic_unsigned. These packages provide types and operations
similar to those now provided by numeric_std and numeric_std_unsigned. With VHDL-
2008, the standard packages incorporate all the operations provided by the non-standard
packages. Nonetheless, synthesis tools still support use of the non-standard packages for
representing numeric data at the bit level.

The synthesis standard does not support use of access types, file types or incomplete
type declarations. Synthesis tools should ignore their declarations and are not required to
accept models that use access-type values or file operations. In particular, dynamic allo-
cation of objects using the new allocator and deallocation of objects using the deallocate
procedure are not supported. The synthesis standard does support declaration of
subtypes, but ignores user-defined resolution functions within subtype indications.



21.3 Interpretation of Standard Logic Values 637

21.3 Interpretation of Standard Logic Values

If we use the standard logic types std_ulogic or std_logic in our models, we need to con-
sider how a synthesis tool interprets values of different driving strength and unknown val-
ues. The synthesized hardware deals only with logic 0 and 1 values. We use standard logic
values other than 0 and 1 to simulate the effects of weak driving strength and indetermi-
nate logic values. We use the term metalogical to refer to the values ‘U’, ‘X’, ‘W’, and ‘–’
that do not represent logic levels.

When our model assigns to a signal a value calculated by an expression from other
signal values, the synthesis tool generates a hardware circuit that implements the logic of
the expression. However, when our model uses a literal standard logic value, the synthesis
tool must represent the value as either a logic 0 or a logic 1. The synthesis standard spec-
ifies that the standard logic values ‘0’ and ‘L’, like the bit value ‘0’ and the Boolean value
false, are represented as a logic 0. Similarly, the standard logic values ‘1’ and ‘H’, like the
bit value ‘1’ and the Boolean value true, are represented as a logic 1. Thus the synthesis
tool does not attempt to interpret the strength information associated with the standard
logic value.

When our model assigns the standard logic value ‘Z’ to a signal, the synthesis tool
generates a tristate buffer for the signal. Usually such an assignment is nested within a
conditional statement. In that case, hardware generated for the condition is used to enable
or disable the tristate buffer. For example, the if statement

if request_enable = '1' then
  request <= ready;
else
  request <= 'Z';
end if;

would result in synthesis of a tristate buffer driving request. The input to the buffer would
be connected to ready, and the control signal to enable the buffer would be connected to
request_enable. When our model uses ‘Z’ in contexts other than a signal assignment (for
example, in a comparison expression), the synthesis tool treats it in the same way as a
metalogical value.

Use of metalogical values in a model is either ignored or not accepted by the synthesis
tool, depending on the context. When values are tested for equality with metalogical val-
ues, the result is deemed to be false. Similarly, a test for inequality with metalogical values
is deemed to be true. The rationale is that real hardware values are known to be either
logic 0 or logic 1, so it does not make sense to synthesize hardware to compare with any
other values. Thus any statements controlled by an equality comparison with a metalogical
value, such as statements nested in an if statement or a case statement, can be ignored by
the synthesis tool. They exist in the model purely for simulation purposes. In the cases of
metalogical values appearing as operands of other relational operators and of arithmetic,
logical and shift operators, the synthesis tool should not accept the model.

The std_match function defined in the numeric_std package can be used to compare
standard logic values and vectors. It has the advantage of producing the same results in
simulation and synthesis, unlike comparison using the “=” operator. Synthesis tools repre-
sent the use of std_match by an equivalence test. Simulation tools perform the comparison



638 Chapter 21 — Design for Synthesis

ignoring the driving strength of the parameters. If both values represent the same logic
level, the comparison returns true. If either value is a metalogical value other than ‘–’, the
comparison returns false. The value ‘–’ is interpreted as “don’t care”, so comparison with
it returns true. Synthesis of a comparison using std_match with a literal vector containing
“don’t care” elements results in comparison hardware that excludes the “don’t care” bits
from the comparison. VHDL-2008 defines the matching relational operators, including
“?=”, which has the same behavior for std_ulogic and std_ulogic_vector values as
std_match. As synthesis tools evolve to implement VHDL-2008 features, we should expect
to see them treat the matching relational operators in a similar way to std_match.

21.4 Modeling Combinational Logic

Combinational circuits are those in which the outputs are determined solely by the current
values of inputs; the circuit does not maintain any internal state. The simplest way to
model combinational logic in synthesizable VHDL is using concurrent signal assignment
statements. For example, we can model a Boolean function of inputs as follows:

status <= '1' when ready and sample < limit else '0';

A synthesis tool would generate hardware composed of a comparator for the input signals
sample and limit, and a gate to combine the comparison output with the signal ready. It
may optimize the hardware to meet timing and area constraints, but the result would per-
form the same function. Note that we have written the statement in this way to be com-
patible with VHDL-2002. As tools include VHDL-2008 features, we can rewrite the
statement as

status <= ready and sample ?< limit;

EXAMPLE 21.1 Modeling arithmetic circuits

We can model a combinational arithmetic circuit using a concurrent assignment with
an arithmetic expression on the right-hand side. For example, the following assign-
ment in an architecture represents an adder for unsigned operands a and b, producing
an unsigned result, sum, of the same size:

sum <= a + b;

If we also need to include a carry input to an addition, we can write the following
in VHDL-2008:

sum <= a + b + carry_in;

In earlier versions of the numeric_bit and numeric_std packages, there was no
overloaded addition operator with a scalar operand. We would have to write this as

sum <= a + b + unsigned'(0 => carry_in);



21.4 Modeling Combinational Logic 639

to create a one-element vector from the carry_in scalar. Alternatively, if we are using
a synthesis tool that supports the std_logic_arith package, we could use the vector/
scalar operator defined there.

If we want the carry result of the addition, we need to extend the operands by
one bit, so that the result is one bit longer than the operands. We can then use the
extra result bit as the carry:

tmp_sum <= ('0' & a) + ('0' & b);
sum <= tmp_sum(7 downto 0);
carry <= tmp_sum(8);

In VHDL-2008, we can write this as:

(carry, sum) <= ('0' & a) + ('0' & b);

EXAMPLE 21.2 Modeling a multiplexer

We can use a selected signal assignment statement to describe a multiplexer, for ex-
ample:

with addr(1 downto 0) select
  request <=  request_a when "00",
              request_b when "01",
              request_c when "10",
              request_d when "11";

This assumes bit_vector signals. If we are using std_ulogic_vector signals, the
choices do not cover all possible values. We would have to include a further alterna-
tive as follows:

with addr(1 downto 0) select
  request <=  request_a when "00",
              request_b when "01",
              request_c when "10",
              request_d when "11",
              'X' when others;

A synthesis tool would interpret the choices covering valid logic levels as implying
hardware, and the others choice as representing metalogical values for simulation
purposes, to be ignored.

We could also have expressed this behavior using a conditional signal assignment
statement, as follows:

request <= request_a when addr(1 downto 0) = "00" else
           request_b when addr(1 downto 0) = "01" else
           request_c when addr(1 downto 0) = "10" else
           request_d when addr(1 downto 0) = "11" else
           'X';



640 Chapter 21 — Design for Synthesis

However, in a conditional signal assignment, the conditions need not be mutually ex-
clusive, so the synthesis tool would infer a priority-encoded chain of multiplexers to
conform with the language semantics. This structure would be slower than a simple
multiplexer. The tool may be able to optimize the hardware, but it is safer to use a
selected signal assignment to imply a multiplexer function if that is our design intent.

One situation in which a conditional signal assignment statement is appropriate is
combinational logic with a tristate buffered output, for example:

data_bus <= resize(sample_byte, 16)
              when std_match(sample_enable, '1') else
            "ZZZZZZZZZZZZZZZZ";

We can also use a process statement to describe combinational logic. The process
must be sensitive to all of the inputs, and the combinational outputs must be assigned val-
ues in all possible executions of the process. This form of process is most useful when
there are multiple outputs.

EXAMPLE 21.3 A combinational process for multiple outputs

Suppose we need to model a block of logic that has multiple outputs with tristate driv-
ers all controlled by the same condition. We could use separate conditional signal as-
signment statements, but that would require us to repeat the condition in each one.
Instead, we use a process to represent the logic block, as follows:

read_sample : process ( read_enable,
                        sample, limit_exceeded, ready )
begin
  if std_match(read_enable, '1') then
    data <= sample;
    parity <= calc_parity(sample);
    status <= ready and not limit_exceeded;
  else
    data <= "ZZZZZZZZ";
    parity <= 'Z';
    status <= 'Z';
  end if;
end process read_sample;

In this process, any change in any of the inputs results in new values being deter-
mined for all of the outputs. Thus the design is purely combinational. A synthesis tool
would infer combinational network with tristate drivers on the outputs.

When we write a process that declares and uses a variable, a synthesis tool may infer
a need for storage in the synthesized hardware. However, if all possible executions of the



21.5 Modeling Sequential Logic 641

model in response to input changes involve the variable being assigned a value before
being read, no storage is needed.

EXAMPLE 21.4 Intermediate variables in combinational processes

Consider the following process containing a variable assignment:

adder : process ( sel, a, b, c )
  variable operand : integer;
begin
  if sel = '1' then
    operand := a;
  else
    operand := b;
  end if;
  sum <= operand + c;
end process adder;

The process is sensitive to all of the inputs. There are two possible execution
paths when an input changes. If sel is ‘1’, the value of a is assigned to operand and
subsequently added with c to determine the output sum. Alternatively, if sel is ‘0’, the
value of b is assigned to operand and added with c. Thus we can think of operand
as representing the intermediate node in a combinational network consisting of a mul-
tiplexer and an adder. The value assigned to operand need not be stored.

Note the importance of including in the sensitivity list all inputs that are read by a
combinational process. A synthesis tool will typically issue a warning if an input is read
in the process but not mentioned in the sensitivity list. The difficulty in maintaining con-
sistency between the sensitivity list and the set of signals read is the main motivation for
allowing the reserved word all in sensitivity lists in VHDL-2008. Since this is a relatively
minor extension for synthesis vendors to implement, we would hope to see it introduced
quickly.

21.5 Modeling Sequential Logic

Sequential circuits are those that maintain an internal state. The outputs they produce in
response to given inputs depend on the history of inputs received previously. Most se-
quential circuits we design are synchronous, or clocked. They use a rising or falling edge
of a clock, or a level of an enable signal, to control advance of state or storage of data.
The synthesis standard supports descriptions of these kinds of circuits. Most current design
methodologies prefer edge-triggered sequential design, since achieving correct timing is
more straightforward. Occasionally we might design an asynchronous circuit: a sequential
circuit without a clock or enable input. Such circuits store state using combinational
feedback loops. The synthesis standard and most synthesis tools do not support synthesis
of these kinds of circuits. If we must include them, we must describe them using structural
models and instantiate them as components within a synthesizable model.



642 Chapter 21 — Design for Synthesis

Unlike signals used for data, which can be of a fairly wide variety of types, clock sig-
nals are restricted to be of type bit, std_ulogic or a subtype such as std_logic. A clock
signal need not necessarily be a single scalar signal; it may be a scalar element of an array
of bit or std_ulogic values.

21.5.1 Modeling Edge-Triggered Logic

We model edge-triggered sequential logic using processes. The synthesis standard allows
considerable flexibility in modeling edge-triggered sequential logic, though not all synthe-
sis tools implement the full generality. The premise is that a signal or variable assignment
executed under control of a clock-edge condition implies edge-triggered storage. Clock-
edge conditions are expressions of the following forms, for rising clock-edges:

• rising_edge( clock_signal_name )

• clock_signal_name'event and clock_signal_name = '1'

• clock_signal_name = '1' and clock_signal_name'event

• not clock_signal_name'stable and clock_signal_name = '1'

• clock_signal_name = '1' and not clock_signal_name'stable

and for falling clock-edges:

• falling_edge( clock_signal_name )

• clock_signal_name'event and clock_signal_name = '0'

• clock_signal_name = '0' and clock_signal_name'event

• not clock_signal_name'stable and clock_signal_name = '0'

• clock_signal_name = '0' and not clock_signal_name'stable

We can write an expression of one of these forms in the condition of an if statement
within a process. The process must also have the clock signal name in its sensitivity list.
Any signal or variable assignments within the if statement are then said to be synchronous
assignments, controlled by the clock-edge condition. We can also include assignments in
if statements controlled by other conditions involving asynchronous control signals. We
must also include the control signals in the sensitivity list of the process. The assignments
within such if statements are called asynchronous assignments, as they are not controlled
by a clock-edge condition. The operators in expressions on the right-hand sides of assign-
ments, whether synchronous or asynchronous, imply combinational logic connected to
register inputs. As well as assignments, we can include other sequential statements within
the process. These statements govern the flow of control leading to assignments. Thus,
they imply combination logic, such as multiplexers, that feed the inputs of registers im-
plied by the assignments. There are some restrictions, however. For example, we cannot
arbitrarily include wait statements, nor can we refer to clock-edge expressions in assign-
ments.



21.5 Modeling Sequential Logic 643

EXAMPLE 21.5 Edge-triggered register

One of the simplest forms of process represents an edge-triggered register:

simple_reg : process ( clk ) is
begin
  if clk'event and clk = '1' then
    reg_out <= data_in;
  end if;
end process simple_reg;

In this process, the assignment to reg_out is a synchronous assignment, controlled
by the rising clock-edge condition. The process represents a register with clk as the
clock signal, data_in as the input, and reg_out as the output.

EXAMPLE 21.6 Edge-triggered register with synchronous control inputs

We can include more involved statements within the controlling if statement to model
registers with synchronous control signals. For example, the following process models
a register with synchronous reset and enable controlling storage for two output sig-
nals:

dual_reg : process ( clk ) is
begin
  if rising_edge(clk) then
    if reset = '1' then
      q1 <= X"00";
      q2 <= X"0000";
    elsif en = '1' then
      q1 <= d1;
      q2 <= d2;
    end if;
  end if;
end process dual_reg;

In this case, all of the assignments are synchronous, governed by the rising clock-
edge condition. The nested if statement chooses between resetting the outputs,
updating them, or leaving them unchanged. A synthesis tool could infer a register,
updated on every clock-edge, with a multiplexer at the input selecting between the
hardwired 0 values, the data inputs, and the fed-back outputs. Alternatively, if the tar-
get technology supports registers with separate reset and enable control signals, the
tool may infer use of them. We will see in Section 21.7 how we can use attributes to
select the implementation.



644 Chapter 21 — Design for Synthesis

EXAMPLE 21.7 Counters as registers combined with arithmetic

We can combine computational logic and storage in the one process. The computa-
tional logic is represented by the expressions in assignments. Counters are a good il-
lustration of this approach. The following process represents an up/down counter
wtih synchronous reset, load and count enable:

signal d_in, count : unsigned(11 downto 0);
...

up_down_counter : process (clk) is
begin
  if rising_edge(clk) then
    if reset = '1' then
      count <= X"000";
    elsif load_en = '1' then
      count <= d_in;
    elsif count_en = '1' then
      if dir = '1' then
        count <= count + 1;
      else
        count <= count - 1;
      end if;
    end if;
  end if;
end process up_down_counter;

We could augment this with a concurrent assignment statement to derive a termi-
nal count signal:

tc <= '1' when std_match(count, X"111") else '0';

EXAMPLE 21.8 Register wtih asynchronous control signals

If our implementation technology provides registers with asynchronous control sig-
nals, we can represent them with processes containing asynchronous assignments.
For example, the following process represents a register with asynchronous reset:

reg : process (clk, reset) is
begin
  if reset = '1' then
    q <= "0000";
  elsif rising_edge(clk) then
    q <= d;
  end if;
end process reg;



21.5 Modeling Sequential Logic 645

In this process, the first assignment is not controlled by a clock-edge condition;
hence, it is asynchronous, and the reset control signal must be included in the sensi-
tivity list of the process. The second assignment is synchronous and models the edge-
triggered behavior of the register.

EXAMPLE 21.9 Shift register with asynchronous and synchronous control

We can combine asynchronous and synchronous control in a single process. For ex-
ample, the we could model a shift register with asyncrhnous reset and synchronous
parallel load as follows:

shift_reg : process (clk, reset) is
begin
  if reset = '1' then
    q <= "00000000";
  elsif rising_edge(clk) then
    if load_en = '1' then
      q <= d_in
    else
      q <= q(6 downto 0) & d_s;
    end if;
  end if;
end process reg;

Note that we do not include the load_en signal in the sensitivity list, as it is a syn-
chronous control signal.

The synthesis standard allows more involved structures than those demonstrated by
the preceding examples. For example, it lists the following as a legal synthesizable pro-
cess:

RegProc5 : process( clk, reset )
begin
  if (en = '1' and rising_edge(clk)) or reset = '1' then
    if reset = '1' then
      Q <= '0'; -- async assignment
    elsif en = '1' and rising_edge(clk) then -- sync condition
      Q <= D; -- sync assignment
    end if;
  end if ;
end process ;

While it is, in principle, possible to analyze the control flow in such a process and
determine whether each of the assignments is synchronous or asynchronous, synthesis
tools are generally more restrictive in what they will accept. It is often clearer to write pro-
cesses in the forms illustrated by the preceding examples than in more convoluted forms.



646 Chapter 21 — Design for Synthesis

Recall that a process with signals listed in the sensitivity list is equivalent to a process
containing a wait statement that is sensitive to the signals. Synthesis tools allow us to ex-
press edge-sensitive behavior using explicit wait statements in a process, with some re-
strictions. The synthesis standard specifies quite complicated rules for the structure of such
wait statements, covering the signals that can be listed in the on clause and the form of
condition that can be written in the until clause. (A for clause is not allowed, as that
would imply specific timing.) Current synthesis tools are more restrictive, since inferring
control logic for the general cases allowed by the standard could be arbitrarily compli-
cated.

The simplest case allowed by synthesis tools is a wait statement as the first statement
in the process, with a clock-edge condition in the until clause. There must not be any other
wait statements or references to clock-edges in the process, nor in any procedures called
from the process.

EXAMPLE 21.10 Edge-triggered register with explicit wait statement

We can represent and edge-triggered register with synchronous reset as follows:

reg : process is
begin
  wait until rising_edge(clk);
  if reset = '1' then
    q <= X"00";
  elsif en = '1' then
    q <= d;
  end if;
end process dual_reg;

The assignments to q only occur after a rising edge occurs on the clk signal. Hence,
both reset and en are synchronous control signals.

EXAMPLE 21.11 Explicit wait and asynchronous control

The synthesis standard allows us to write the following process to express asynchro-
nous control using an explicit wait statement.

reg : process is
begin
  wait until reset = '1' or rising_edge(clk);
  if reset = '1' then
    q <= X"00";
  elsif rising_edge(clk) then
    if en = '1' then
      q <= d;
    end if;



21.5 Modeling Sequential Logic 647

  end if;
end process dual_reg;

The asynchronous condition is included in the wait statement. The wait statement
is followed immediately by an if statement that tests both the asynchronous condition
and the clock-edge condition. Thus, in this example, reset is an asynchronous control
signal and en is a synchronous control signal. While this is acceptable according to
the synthesis standard, not all tools accept it, instead limiting conditions in wait state-
ments to just clock-edge conditions.

The synthesis standard allows a process to include multiple explicit wait statements,
though some tools do not support it. In general, the hardware inferred for such a process
includes some form of state machine, since the hardware must keep track of progress
through the statements from one cycle to the next. Compare this with a process containing
only one wait statement (explicit or implied), which always performs one complete pass
through the process statement body for each clock-edge.

The rules for processes with multiple wait statements require that each statement must
wait for the same condition, and in particular, must wait for the same edge of a single
clock signal. This makes sense, as the wait statements correspond to transitions in the con-
trolling state machine in the inferred hardware. If the wait statements include asynchro-
nous conditions, as in Example 21.11, then each wait statement must be followed by
identical tests for those conditions. Again, this corresponds to the control hardware imple-
mentation. The asynchronous behavior is that of the state machine.

EXAMPLE 21.12 Sequential multiplier

We can describe a multiplier that takes multiple clock cycles to compute its result us-
ing a shift-and-add method. The following process, based on an example in the IEEE
1076.6 standard, describes the behavior:

MultProc : process is
begin
  wait until rising_edge(clk);
  if start = '1' then
    done <= '0';
    P <= (others => '0');
    for i in A'range loop
      wait until rising_edge(clk);
      if A(i) = '1' then
        P <= (P(6 downto 0) & '0') + B;
      else
        P <= P(6 downto 0) & '0';
      end if;
    end loop;
    done <= '1';



648 Chapter 21 — Design for Synthesis

  end if;
end process;

This process implies an edge-triggered state machine that controls registers for the
done and P output signals. The state machine tests the start signal on each clock-edge.
When it is ‘0’, it leaves P unchanged and sets done. Otherwise, it resets done and P,
then sequences through a number of cycles (determined by A'range) to update P with
successive partial products. On completion of the sequence, it sets done again.

Where wait statements appear in a loop that implements sequential behavior, we can
use an exit or next statement after each wait statement to describe reset behavior. For asyn-
chronous reset, this is a case of each wait statement being followed by identical tests for
asynchronous conditions.

EXAMPLE 21.13 Reset in a loop

The following process from the IEEE 1076.6 synthesis standard models a UART seri-
alizer for data transmission:

UartTxFunction : process is
begin
  TopLoop : loop
    if nReset = '0' then
      SerialDataOut <= '1';
      TxRdyReg <= '1';
    end if;

    wait until nReset = '0' or
               (rising_edge(UartTxClk) and DataRdy = '1');
    next TopLoop when nReset = '0';
    SerialDataOut <= '0';
    TxRdyReg <= '0';

    -- Send 8 Data Bits
    for i in 0 to 7 loop
      wait until nReset = '0' or rising_edge(UartTxClk);
      next TopLoop when nReset = '0';
      SerialDataOut <= DataReg(i);
      TxRdyReg <= '0';
    end loop;

    -- Send Parity Bit
    wait until nReset = '0' or rising_edge(UartTxClk);
    next TopLoop when nReset = '0';
    SerialDataOut <=
      DataReg(0) xor DataReg(1) xor DataReg(2) xor
      DataReg(3) xor DataReg(4) xor DataReg(5) xor



21.5 Modeling Sequential Logic 649

      DataReg(6) xor DataReg(7);
    TxRdyReg <= '0';

    -- Send Stop Bit
    wait until nReset = '0' or rising_edge(UartTxClk);
    next TopLoop when nReset = '0';
    SerialDataOut <= '1';
    TxRdyReg <= '1';
  end loop;
end process;

Each wait statement in the process includes a test for a rising edge of the
UartTxClk signal, as well as for the the asynchronous nReset signal. The identical next
statements all restart the outer loop when the asynchronous reset condition is true.

We can rewrite this process to describe synchronous reset, as follows:

UartTxFunction : process is
begin
  TopLoop : loop
    wait until rising_edge(UartTxClk);
    if nReset = '0' then
      SerialDataOut <= '1';
      TxRdyReg <= '1';
    elsif DataRdy = '1' then
      SerialDataOut <= '0';
      TxRdyReg <= '0';

      -- Send 8 Data Bits
      for i in 0 to 7 loop
        wait rising_edge(UartTxClk);
        exit TopLoop when nReset = '0';
        SerialDataOut <= DataReg(i);
        TxRdyReg <= '0';
      end loop;

      -- Send Parity Bit
      wait rising_edge(UartTxClk);
      exit TopLoop when nReset = '0';
      SerialDataOut <=
        DataReg(0) xor DataReg(1) xor DataReg(2) xor
        DataReg(3) xor DataReg(4) xor DataReg(5) xor
        DataReg(6) xor DataReg(7);
      TxRdyReg <= '0';

      -- Send Stop Bit
      wait until rising_edge(UartTxClk);
      exit TopLoop when nReset = '0';
      SerialDataOut <= '1';
      TxRdyReg <= '1';



650 Chapter 21 — Design for Synthesis

    end if;
  end loop;
end process;

In this case we have used exit statements instead of next statements, though the
latter would work just as well.

The until clause in a wait statement can also be an expression of the following forms,
in addition to those listed on page 642:

• clock_signal_name = '1'

• clock_signal_name = '0'

Since the wait statement waits until the signal changes value, a change to ‘1’ must repre-
sent a rising edge, and a change to ‘0’ must represent a falling edge. Thus, we could write
the wait statement in Example 21.10 as:

wait until clk = '1';

While this is allowed, the form using rising_edge is a preferred style, since it is more de-
scriptive and deals correctly with weak driving strengths (‘L’ and ‘H’) during simulation.

21.5.2 Level-Sensitive Logic and Inferring Storage

Level-sensitive sequential logic maintains state, but does not respond to clock-edges. In-
stead, state is usually updated under control of an enable signal. While the enable signal
is asserted, the state can change according to data inputs. While the enable signal is ne-
gated, changes on the data inputs are ignored and the circuit maintains its current state.

EXAMPLE 21.14 A transparent latch

Consider the following model for a transparent latch:

latch : process ( enable, d )
begin
  if enable = '1' then
    q <= d;
  end if;
end process latch;

This process is sensitive to changes on the enable and d inputs. If enable is ‘1’
when either input changes, the data value is used to update the output q. If enable is
‘0’, the current value is maintained on q. This behavior is implied by the semantics of
signals and signal assignment in VHDL. When the synthesis tool implements the
model as a hardware circuit, it must provide some storage to maintain the value for
the output. The tool must infer the need for storage from the model semantics.



21.5 Modeling Sequential Logic 651

In general, a synthesis tool must infer storage if there are possible executions of the
process that do not involve assignment to a given signal or variable. If the process does
not include clock-edge conditions, then level-sensitive storage is inferred. The process
must then include in its sensitivity list all signals that the process reads. The latch example
illustrates storage inference due to existence of paths on which a signal is not updated. If
the process executes when enable is ‘0’, the assignment to q is bypassed, so storage is
inferred for q.

EXAMPLE 21.15 Transparent latch with reset

The following process is another example of a latch, in this case involving storage in-
ference for a variable:

latch_with_reset : process ( enable, reset, d )
  variable stored_value : bit;
begin
  if reset = '1' then
    stored_value := '0';
  elsif enable = '1' then
    stored_value := d;
  end if;
  q <= stored_value;
end process latch_with_reset;

The output signal q is assigned on every execution of the process, so no storage
is inferred for it. However, the variable stored_value is not assigned when reset and
enable are both ‘0’; hence storage is inferred for the variable.

In principle, storage is also inferred for a process that does not include a reference to
a clock-edge expression if there are possible executions in which a signal or variable is
read before being assigned. However, such a process represents an asynchronous sequen-
tial circuit and is not supported by synthesis tools. Consider the following erroneous pro-
cess intended to describe a counter with reset:

counter : process ( count_en )
  variable count : natural range 0 to 15;
begin
  q <= (q + 1) mod 16;
end process counter;

The process is sensitive to changes of count_en. Whenever that signal changes, the
old value of q is read and incremented to determine the new value. The value must be
maintained until the next change of count_en, implying the need for storage for q, even
though it is assigned in all possible executions of the process.

The synthesis standard recommends against writing level-sensitive processes in which
signals or variables are read before being assigned. Usually such processes are not what



652 Chapter 21 — Design for Synthesis

we intend, and the inference of storage is inadvertent. On the other hand, a process in
which a variable is first assigned and then read in all possible execution paths is legal and
useful. Such a process simply models combinational logic, as we discussed in Section 21.4,
with the variable denoting an intermediate node in the combinational network.

21.5.3 Modeling State Machines

Many designs expressed at the register-transfer level consist of combinational data paths
controlled by finite-state machines. Hence it is important to be able to describe a finite-
state machine in such a way that it can be synthesized. The preferred style is to separate
the implementation into two processes, one describing the combinational logic that cal-
culates the next state and output values, and the other being a register that stores the state.
This style is accepted by all synthesis tools, whereas finite-state machines implied by mul-
tiple wait statements in a process, as described in Section 21.5.1, are not uniformly sup-
ported.

EXAMPLE 21.16 Finite-state machine with Mealy and Moore outputs

The following architecture body represents a finite state machine described using two
processes:

architecture rtl of state_machine is
  type state is (ready, ack, err);
  signal current_state, next_state : state;
begin

  next_state_and_output : process ( current_state, in1, in2 )
  begin
    case current_state is
      when ready =>
        out1 <= '0';
        if in1 = '1' then
          out2 <= '1';
          next_state <= ack;
        else
          out2 <= '0';
          next_state <= ready;
        end if;
      when ack =>
        out1 <= '0';
        if in2 = '1' then
          out2 <= '0';
          next_state <= ready;
        else
          out2 <= '0';
          next_state <= err;
        end if;



21.5 Modeling Sequential Logic 653

      when err =>
        out1 <= '1';
        out2 <= '0';
        next_state <= err;
    end case;
  end process next_state_and_output;

  state_reg : process ( clk, reset )
  begin
    if reset = '1' then
      current_state <= ready;
    elsif rising_edge(clk) then
      current_state <= next_state;
    end if;
  end process state_reg;

end rtl;

The architecture body defines an enumeration type for the state values. We can
either rely on the synthesis tool to determine the encoding for the state or use the
enum_encoding attribute to define our own encoding, as described in Section 21.7.
The signal current_state represents the output of the state register, and the signal
next_state is the state to be assumed by the state machine on the next clock-edge.
The process next_state_and_output describes the combinational logic. It uses a case
statement to determine the next state and output values, depending on the current
state value. Note that the output out1 is uniquely determined by the current state. It
is a Moore machine output. The output out2, on the other hand, depends on both the
current state and the current inputs to the machine. It is a Mealy machine output. The
process state_reg describes the state register. It has an asynchronous reset control in-
put that forces the machine into the ready state. When reset is inactive, the process
updates the current state on each rising clock-edge.

In the process representing the combinational logic, we have included assign-
ments for both output signals in all states. An alternative way of writing the process is:

  next_state_and_output : process ( current_state, in1, in2 )
  begin
    out1 <= '0'; out2 <= '0';
    case current_state is
      when ready =>
        if in1 = '1' then
          out2 <= '1';
          next_state <= ack;
        else
          next_state <= ready;
        end if;
      when ack =>
        if in2 = '1' then
          next_state <= ready;



654 Chapter 21 — Design for Synthesis

        else
          next_state <= err;
        end if;
      when err =>
        out1 <= '1';
        next_state <= err;
    end case;
  end process next_state_and_output;

In this version, we include “default” assignments to the outputs before the case
statement. Then, in the case statement, we only assign to each output when the value
differs from the default. This is a much more succinct form, especially when there are
many outputs. Moreover, it helps us avoid missing an assignment and inadvertently
implying level-sensitive storage for an output. For these reasons, we recommend this
style.

21.6 Modeling Memories

Many designs include memories, and many implementation technologies, such as FPGAs,
include memory resources that can be used as RAMs and ROMs. Synthesis tools can infer
memory hardware for processes written in certain ways. The IEEE 1076.6 synthesis stan-
dard specifies that a RAM be modeled in much the same way as a register, but with the
storage represented by an array of bits, vectors, or integers. An address vector, converted
to integer, is used to index the array for reading or writing.

A RAM model typically includes declaration of an array type and a signal of that type,
for example:

type mem_array is array (0 to 2**depth - 1) of
                    std_ulogic_vector(width - 1 downto 0);
signal RAM : mem_array;

The way we write the process modeling the memory determines what kind of RAM
inferred.

EXAMPLE 21.17 Asynchronous RAM

An asynchronous RAM is essentially a level-sensitive storage device. Thus, we can
model it in a similar way to a latch. Assuming the type and signal declaration given
above, the behavior is modeled as follows:

asynch_RAM : process (addr, d_in, we) is
begin
  if we = '1' then
    RAM(to_integer(addr)) <= d_in;
  end if;
end process asynch_RAM;



21.6 Modeling Memories 655

d_out <= RAM(to_integer(addr));

The process represents the writing part of the behavior; it updates the RAM signal
while the we input is ‘1’. The assignment represents the reading part of the behavior.
Note that not all implementation technologies provide asynchronous memories, since
they do not interface well with clocked synchronous designs.

EXAMPLE 21.18 Synchronous RAM with asynchronous read

Most implementation technologies provide RAMs that perform write operations syn-
chronously. They have embedded registers that store the address and data for a write.
In some technologies, the read operation is done asynchronously. A model for such
a RAM is

synch_RAM : process (clk) is
begin
  if rising_edge(clk) then
    if we = '1' then
      RAM(to_integer(addr)) <= d_in;
    end if;
  end if;
end process synch_RAM;

d_out <= RAM(to_integer(addr));

EXAMPLE 21.19 Synchronous RAM with synchronous read

If a RAM has embedded registers for the read control signals, read operations are also
performed synchronously. RAMs differ in the data they read when a write is also per-
formed in the same cycle. One form of RAM reads the old content of the memory lo-
cation before updating it with the new data. We can model this as follows:

synch_RAM : process (clk) is
begin
  if rising_edge(clk) then
    d_out <= RAM(to_integer(addr));
    if we = '1' then
      RAM(to_integer(addr)) <= d_in;
    end if;
  end if;
end process synch_RAM;

We could interchange the assignment to d_out with the inner if statement without
affecting the behavior, since the assignments do not affect the RAM content until after
the process suspends. A synthesis tool would infer the same behavior with the state-
ments in either order.



656 Chapter 21 — Design for Synthesis

Another form provides the newly written data, modeled as follows:

synch_RAM : process (clk) is
begin
  if rising_edge(clk) then
    if we = '1' then
      RAM(to_integer(addr)) <= d_in;  d_out <= d_in;
    else
      d_out <= RAM(to_integer(addr));
    end if;
  end if;
end process synch_RAM;

In both cases, we can add an enable input controlling reading and writing at a
new address. For example, the first version above, augmented with an enable input, is

synch_RAM : process (clk) is
begin
  if rising_edge(clk) then
    if en = '1' then
      d_out <= RAM(to_integer(addr));
      if we = '1' then
        RAM(to_integer(addr)) <= d_in;
      end if;
    end if;
  end if;
end process synch_RAM;

EXAMPLE 21.20 Pipelined synchronous RAM

The RAMs with synchronous read in the preceding examples start a read access on a
clock-edge and provide the data after a read-access delay. In some designs, the data
may arrive too late in a clock cycle to be used for further computation. We can add a
storage register on the RAM output so that the data can be used in the subsequent
clock cycle. This amounts to pipelining the RAM access. We can combine the RAM
and pipeline registers into a single process representing a pipelined RAM:

pipelined_RAM : process (clk) is
  variable pipelined_en : std_ulogic;
  variable pipelined_d_out :
             std_ulogic_vector(width - 1 downto 0);
begin
  if rising_edge(clk) then
    if pipelined_en = '1' then
      d_out <= pipelined_d_out;
    end if;
    pipelined_en := en;



21.6 Modeling Memories 657

    if en = '1' then
      pipelined_d_out := RAM(to_integer(addr));
      if we = '1' then
        RAM(to_integer(addr)) <= d_in;
      end if;
    end if;
  end if;
end process pipelined_RAM;

If we are synthesizing to an implementation technology, such as an FPGA, in which
a RAM can be loaded with initial contents on system reset, we may be able to specify the
initial content as part of the synthesizable model. Some tools allow us to specify initial
contents in an initial value aggregate in the signal declaration, for example:

signal RAM : RAM_array := (X"0020", X"FC01", X"101E", X"C000",
                           ...
                           others => X"0000");

Some tools also allow us to write a function that loads data from a file and returns an
array of values to assign as the initial value for the signal. We took this approach in the
case study in Chapter 17. The IEEE 1076.6 synthesis standard, however, does not specify
either of these approaches. We would need to consult our tool vendor’s documentation
to see how a memory can be initialized, and we should recognize that the approach used
may not be portable among different tools.

We can model ROMs using similar techniques to those used for RAMs, but omitting
the code representing the write operations. Since ROM content does not change, we can
use a constant instead of a signal to model the storage. We specify the ROM content in the
form of an array aggregate, for example:

constant ROM : mem_array := (X"0020", X"FC01", X"101E", X"C000",
                             ...
                             others => X"0000");

Reading the ROM asynchronously can then be modeled using a concurrent assign-
ment:

d_out <= ROM(to_integer(addr));

For a small ROM, a synthesis tool could optimize this as combinational logic. 
Another way to model a small ROM is using a case statement. We use the address as

the selector expression and assign different literal values to the output signal based on the
address.

EXAMPLE 21.21 A small ROM modeled using a case statement

We can model a lookup ROM giving 7-segment display codes for BCD digits as fol-
lows:



658 Chapter 21 — Design for Synthesis

decoder : process ( bcd ) is
begin
  case bcd is
    when X"0" =>   seg <= "0111111";
    when X"1" =>   seg <= "0000110";
    when X"2" =>   seg <= "1011011";
    when X"3" =>   seg <= "1001111";
    when X"4" =>   seg <= "1100110";
    when X"5" =>   seg <= "1101101";
    when X"6" =>   seg <= "1111101";
    when X"7" =>   seg <= "0000111";
    when X"8" =>   seg <= "1111111";
    when X"9" =>   seg <= "1101111";
    when others => seg <= "1000000";
  end case;
end process decoder;

Alternatively, we could use a selected assignment:

with bcd select
  seg <= "0111111" when X"0", "0000110" when X"1",
         "1011011" when X"2", "1001111" when X"3",
         "1100110" when X"4", "1101101" when X"5",
         "1111101" when X"6", "0000111" when X"7",
         "1111111" when X"8", "1101111" when X"9",
         "1000000" when others

If we want to use a block RAM resource as a ROM, we can use the same form of pro-
cess as for a RAM, but omit the statements that update the array. For example, we can
adapt the first process in Example 21.19 to model a ROM as follows:

block_ROM : process (clk) is
begin
  if rising_edge(clk) then
    d_out <= ROM(to_integer(addr));
  end if;
end process block_ROM;

21.7 Synthesis Attributes

When we use a synthesis tool to infer a hardware implementation for a design, we can
direct it to optimize either the speed or area of the generated circuit. In some applications,
that general directive may be sufficient, resulting in an implementation that meets our con-
straints. Often, however, we need to take finer control of the synthesis process. One way
in which we can do so is by including attribute specifications (see Chapter 20) in our mod-
els to direct a synthesis tool to infer hardware in particular ways.



21.7 Synthesis Attributes 659

Different synthesis tools support different attributes to specify different aspects of
hardware inference and different aspects of target technologies. This is possibly an aspect
in which tools most widely diverge, since the attributes a given tool supports reflect the
particular capabilities and synthesis algorithms implemented by the tool. We need to refer
to a tool’s documentation to discover what attributes are supported and how to use them.

In an effort to create at least a small amount of harmony, the IEEE 1076.6 synthesis
standard defines a minimal set of synthesis attributes. We describe them here, as they are
indicative of the kinds of attributes supported by tools. The standard specifies a package
of attribute declaration to be analyzed into the ieee library. While we could declare the
attributes ourselves in each design, using the standard package is more convenient. Syn-
thesis tools usually include similar packages for their implementation-defined attributes.
The standard package is

package RTL_ATTRIBUTES is
  attribute KEEP : boolean;
  attribute CREATE_HIERARCHY : boolean;
  attribute DISSOLVE_HIERARCHY : boolean;
  attribute SYNC_SET_RESET : boolean;
  attribute ASYNC_SET_RESET : boolean;
  attribute ONE_HOT : boolean;
  attribute ONE_COLD : boolean;
  attribute FSM_STATE : string;
  attribute FSM_COMPLETE : boolean;
  attribute BUFFERED : string;
  attribute INFER_MUX : boolean;
  attribute IMPLEMENTATION : string;
  attribute RETURN_PORT_NAME : string;
  attribute ENUM_ENCODING : string;
  attribute ROM_BLOCK : string;
  attribute RAM_BLOCK : string;
  attribute LOGIC_BLOCK : string;
  attribute GATED_CLOCK : boolean;
  attribute COMBINATIONAL : boolean;
end package RTL_ATTRIBUTES;

If we need to use any of these attributes, we can include a use clause in our model
to make them directly visible. Several of these attributes are boolean. Decorating an item
with the value true for one of these attributes directs a tool to synthesize in a particular
way. Decorating with the value false is the same as not decorating the item. Attributes of
type string allow us to specify further information for use by the synthesis tool. The mean-
ing of each attribute is described below.

KEEP : boolean

Decorates: entity, component declaration, component instantiation, signal,
variable

This attribute directs the tool to preserve the hardware represented by the
decorated item in the inferred hardware. The item should not be deleted or



660 Chapter 21 — Design for Synthesis

replicated during optimization of the design. We can use this attribute for
parts of a design that we have previously synthesized and are re-using.

CREATE_HIERARCHY : boolean

Decorates: entity, block, subprogram, process
This attribute directs the tool to maintain the decorated item as a distinct

hierarchical construct in the inferred hardware. It should not be subsumed
into an enclosing construct during optimization.

DISSOLVE_HIERARCHY : boolean

Decorates: entity, component declaration, component instantiation
This attribute directs the tool to merge the construct into the hardware in

which the item is instantiated. The tool can then globally optimize the con-
struct in the context of its instantiation.

SYNC_SET_RESET : boolean

Decorates: signal, process, block, entity
This attribute is used to identify edge-sensitive storage devices that have

separate synchronous set/reset inputs in the target technology. Using those
inputs is more efficient than multiplexing the data inputs. We use the attribute
to decorate a set/reset signal connected to storage devices or the construct
that represents a storage device. For example, in the following:

attribute SYNC_SET_RESET of reset : signal is true;
...

reg : process ( clk ) is
begin
  if rising_edge(clk) then
    if reset = '1' then
      q <= (others => '0');
    else
      q <= d;
    end if;
  end if;
end process reg;

the tool infers hardware with reset connected to the separate synchronous
reset input of the register. Without the attribute, the tool could infer a register
whose input comes from a multiplexer with reset as the select input, a zero
vector as one data input, and d as the other data input.

ASYNC_SET_RESET : boolean

Decorates: signal, process, block, entity
This attribute is used to identify level-sensitive storage devices that have

separate asynchronous set/reset inputs in the target technology. It is used in
a similar way to SYNC_SET_RESET.



21.7 Synthesis Attributes 661

ONE_HOT : boolean

Decorates: signal
This attribute specifies that, in a collection of signals, each of which is

decorated with true for this attribute, at most one scalar value is ‘1’ at any
time. The directive allows a synthesis tool to avoid inferring priority logic
based on the signals in the collection. For example, if we write 

ff : process ( clk, reset, set ) is
begin
  if reset = '1' then
    q <= '0';
  elsif set = '1' then
    q <= '1';
  elsif rising_edge(clk) then
    q <= d;
  end if;
end process ff;

we are specifying that reset has priority over set. If the target technology in-
cludes flipflops with set and reset, but requires that only one be active at a
time, the tool would infer a connection to the set input driven with set and
not reset. If we add the following attribute specification:

attribute ONE_HOT of set, reset : signal is true;

we are telling the tool that only one of set and reset is active at a time, so it
can make direct connections to the set and reset input of the flipflop. Of
course, we must ensure separately that our statement is valid. We might in-
clude an assertion to that effect in the model.

ONE_COLD : boolean

Decorates: signal
This attribute specifies that, in a collection of signals, each of which is

decorated with true for this attribute, at most one scalar value is ‘0’ at any
time. It is used in a similar way to ONE_HOT.

FSM_STATE : string

Decorates: type, subtype, signal, variable
This attribute directs the tool to encode the state vector of a finite-state

machine in a specified way. The allowed attribute values are:

• "BINARY": unsigned binary encoding with the minimal number of bits

• "GRAY": Gray coding, in which exactly one bit value changes on each tan-
sition

• "ONE_HOT": an encoding in which each code value has exactly one ‘1’ bit



662 Chapter 21 — Design for Synthesis

• "ONE_COLD": an encoding in which each code value has exactly one ‘0’
bit

• "AUTO" or empty string: the tool selects an encoding

• A string of the same form as the ENUM_ENCODING attribute, described
on page 664

If both the FSM_STATE and ENUM_ENCODING attributes are specified for
a given state machine, the FSM_STATE attribute takes precedence.

FSM_COMPLETE : boolean

Decorates: type, subtype, signal, variable
This attribute directs the tool to include default transitions in the finite-

state machine that uses the decorated item for its state vector. We typically
describe the default transitions with an others clause in a case statement, deal-
ing with state encodings not explicitly described. For example, given the fol-
lowing declarations and attribute specifications:

type state_type is (idle, state1, state2);
signal state, next_state : state_type;
attribute FSM_STATE of state, next_state : signal is
            "ONE_HOT";
attribute FSM_COMPLETE of state, next_state : signal is
            true;
...

we can write a process for the state machine’s combinational logic as follows:

fsm_logic : process (state, ...) is
begin
  case state is
    when idle   =>  next_state <= ...;
    when state1 =>  next_state <= ...;
    when state2 =>  next_state <= ...;
    when others =>  next_state <= idle;
  end case;
end process fsm_logic;

According to the rules of VHDL, all alternatives for the state value are
covered by the first three choices in the case statement. However, there are
several synthesized encoding values that are not covered, since one-hot en-
coding is specified. Given the FSM_COMPLETE attribute, the synthesis tool in-
cludes additional transitions based on the others clause, as this would be the
alternative selected for an illegal state value.

BUFFERED : string

Decorates: signal



21.7 Synthesis Attributes 663

This attribute directs the tool to use a particular library cell to buffer the
driver for the decorated signal. The attribute value specifies the name of the
library cell to use, for example:

attribute BUFFERED of clk : signal is "BUFG";

Alternatively, the attribute value can be one of the following special strings:

• "HIGH_DRIVE": use a high-drive buffer from the synthesis library

• "CLOCK_BUF": use a clock buffer from the synthesis library

• "RESET_BUF": use a reset buffer from the synthesis library

INFER_MUX : boolean

Decorates: case statement label, selected assignment statement label
This attribute directs the tool to infer a multiplexer implementation for

the statement instead of random logic or ROM implementation.

IMPLEMENTATION : string

Decorates: procedure, function, signal or variable assignment label
This attribute directs the tool to use a specified synthesis library cell to

implement calls to a subprogram or an assigment to a signal or variable,
rather than inferring hardware from the subprogram body or assignment
expression. The attribute value specifies the library cell name. We use this
attribute when we have a VHDL implementation that we wish to simulate, but
want to synthesize using the library cell. For example:

procedure multiplier
            ( signal clk, start : in std_ulogic;
              signal a, b : in unsigned(15 downto 0);
              signal done : out std_ulogic;
              signal p : out unsigned(31 downto 0) is
begin
  ...
end procedure multiplier;

attribute IMPLEMENTATION of multiplier : procedure is
            "MULTSEQ_16X16;
...

multiplier(clk, start, data1, data2, done, product);

When we simulate this model, the body of the procedure is called. When we
synthesize, the procedure body is ignored, and the MULTSEQ_16X16 library
cell is included in the inferred hardware.

RETURN_PORT_NAME : string

Decorates: function



664 Chapter 21 — Design for Synthesis

This attribute is used in conjunction with the IMPLEMENTATION attribute
for a function. The RETURN_PORT_NAME attribute value specifies the name
of the port on the library cell that corresponds to the return value of the func-
tion. For example:

function and_or_invert (a, b, c, d : in std_ulogic)
                       return std_ulogic is
begin
  return not ( (a and b) or (c and d) );
end function and_or_invert;

attribute IMPLEMENTATION of and_or_invert : function is
            "AOI";
attribute RETURN_PORT_NAME of and_or_invert : function is
            "O";
...

q <= and_or_invert(w, x, y, z);

The IMPLEMENTATION attribute specifies that the AOI library cell be used for
the function. The RETURN_PORT_NAME attribute specifies that the O port of
that cell is the output port.

ENUM_ENCODING : string

Decorates: type, subtype
This attribute directs the tool to use a specified binary encoding for values

of the enumeration type or subtype decorated by the attribute. The value of
the attribute is a sequence of bit-vector literals, representing the encoding for
the enumeration values in the type. For example, given an enumeration type
for states in a finite-state machine:

type state is (idle, preamble, data, crc, ok, error);

we can define the state encoding as follows:

attribute enum_encoding of state : type is
            "000 001 010 011 100 111";

The bit vectors correspond in order to the enumeration values in the type
definition. All of the literals must contain the same number of bits, and un-
derscore characters may be included to enhance readability. Note that we
should ensure that the enumeration values are listed in ascending order of
their encodings. Otherwise synthesized relational operations may not pro-
duce the same results as relational operators evaluated during simulation.

ROM_BLOCK : string

Decorates: constant, variable, signal
This attribute directs the tool to implement the decorated item as a ROM.

The attribute value specifies the library cell to use for the ROM. For example:



21.7 Synthesis Attributes 665

constant ROM : mem_array := (X"0020", X"FC01",
                             ...
                             others => X"0000");

attribute ROM_BLOCK of ROM : constant is "ROM_SYNCH";

RAM_BLOCK : string

Decorates: variable, signal
This attribute directs the tool to implement the decorated item as a RAM.

The attribute value specifies the library cell to use for the RAM. For example:

signal RAM : mem_array;

attribute RAM_BLOCK of RAM : signal is "RAM_PIPELINED";

LOGIC_BLOCK : string

Decorates: constant, variable, signal
This attribute directs the tool to implement the decorated item as a com-

binational logic block (instead of a ROM) or discrete sequential logic (for ex-
ample, using flipflops and registers, instead of a RAM).

GATED_CLOCK : boolean

Decorates: signal, process
This attribute directs the tool to use clock gating rather than separate en-

able inputs for edge-triggered storage devices. Use of clock gating can reduce
power consumption considerably. However, we must ensure that the enable
signal used to gate the clock is glitch free and has appropriate timing.

We can use this attribute to decorate a gated clock signal, in which case
all storage devices connected to the clock use clock gating. For example:

attribute GATED_CLOCK of gclk : signal is true;
...

gclk <= clk and enable;

reg : process (gclk) is
begin
  if rising_edge(gclk) then
    q <= d;
  end if;
end process;

Alternatively, we can use the attribute to decorate specific processes that
are to use clock gating. For example:

attribute GATED_CLOCK of reg : label is true;

reg : process(clk) is
begin
  if rising_edge(clk) then



666 Chapter 21 — Design for Synthesis

    if enable = '1' then
      q <= d;
    end if;
  end if;
end process;

Without gated clocking, the register inferred for this process would be ac-
tive on each clock-edge. The internal logic transitions would involve dynamic
power consumption. By decorating the process with the attribute, we direct
the tool to use clock gating instead of using the enable signal to select the
input to be stored. The register is only active on those clock-edges where en-
able is ‘1’.

COMBINATIONAL : boolean

Decorates: process, signal assignment label
This attribute directs the tool to infer purely combinational logic for the

decorated item. It is an error if the decorated item represents sequential logic.
We can use this attribute to force the synthesis tool to issue an error if we
inadvertently imply level sensitive storage by omitting an assignment to an
object on some path through a process.

21.8 Metacomments

Normally, comments in a model are not interpreted by a tool. We include comments as
documentation for the human reader. However, the synthesis standard defines two meta-
comments, that is, comments that are to be interpreted by a synthesis tool. They are

-- rtl_synthesis off

and

-- rtl_synthesis on

The metacomments are not case sensitive; they can be in lowercase, uppercase or a com-
bination of the two. Any VHDL code following an rtl_synthesis off metacomment and be-
fore a subsequent rtl_synthesis on metacomment is ignored by the synthesis tool. It is as
though the code were also comments. Thus the model, excluding the ignored parts, must
still be a valid VHDL model. Other tools, such as simulators, do not ignore the code. We
would normally use the metacomments to exclude from synthesis parts of the model that
are only intended for simulation. Examples are processes that check timing or that use file
input/output for instrumentation. 

EXAMPLE 21.22 Omitting monitoring code from synthesis

Suppose we include code in an architecture body to monitor operation of the design
during simulation. We can exclude the code from analysis by the synthesis tool by
surrounding it in metacomments, as follows:



Exercises 667

architecture rtl of subsystem is
   ...
begin

  ... -- synthesizable processes and assignments

  -- rtl_synthesis off

  monitor : process is
    use std.textio.all;
    file monitor_file : text open write_mode is "monitor.txt";
    variable L : line;
    ...
  begin
    ...
  end process monitor;

  -- rtl_synthesis on

end architecture rtl;

Use of files and file operations is not allowed in synthesizable code, so the syn-
thesis tool would produce errors if it tried to interpret the monitor process.

We must take care when excluding part of a model from synthesis to ensure that we
don’t inadvertently omit part of the model that should be synthesized to hardware. Oth-
erwise we can get a mismatch between simulation results and operation of the synthesized
hardware.

Exercises

1. [➊ 21.2] Which of the following types does the IEEE 1076.6 standard allow as the type
of a variable?

type temp is range -60 to 150;
type temp_vec is array (natural range <>) of temp;
type location is (inside, outside, buried);
type local_temp_vec is array (location) of temp;
type location_vec is array (natural range <>) of location;
type word_vec is array (natural range <>) of
        std_ulogic_vector(31 downto 0);

2. [➊ 21.3] What hardware, if any, would be inferred for the following statement?

if sel = '0' or sel = 'L' then
  z <= in0;
elsif sel = '1' or sel = 'H' then
  z <= in1;
elsif sel = 'U' then



668 Chapter 21 — Design for Synthesis

  z <= 'U';
else
  z <= 'X';
end if;

3. [➊ 21.4] What hardware would be inferred for the following assignment?

with fn select
  z <= a + b       when "00",
       a - b       when "01",
       a and b     when "10",
       a and not b when "11";

4. [➊ 21.4] Write a synthesizable process that represents a logic block with tristate
outputs. If enable_n is ‘0’, an 8-bit output dat_o is driven with the value of either reg1
(if adr is ‘0’) or reg2 (if adr is ‘1’), and a single-bit output ack_o is driven with ‘1’. If
enable_n is ‘1’, both outputs are ‘Z’.

5. [➊ 21.4/21.5] Why would a synthesis tool infer storage for the following process?

mux_adder : process ( sel, x, y, z, carry_in )
  variable operand : unsigned(15 downto 0);
begin
  case sel is
    when "00" => operand := x;
    when "01" => operand := y;
    when "10" => operand := z;
    when others =>
      report "Illegal value for sel." severity error;
  end case;
  sum <= operand + carry_in;
end process mux_adder;

6. [➊ 21.5] Write a process representing an edge-triggered register with no reset but with
synchronous enable.

7. [➊ 21.6] Write declarations for the storage of an 8K × 16-bit RAM storing values of type
signed, with all locations initialized to zero.

8. [➊ 21.6] Rewrite the 7-segment decoder of Example 21.21 using a constant to repre-
sent the ROM storage.

9. [➊ 21.7] Write an attribute specification for inclusion in the state machine model of
Example 21.16 specifying an encoding of “00” for ready, “01” for ack, and “11” for err.



669

Chapter 22 

Case Study: System Design
Using the Gumnut Core

In this case study we develop a series of models for the Gumnut 8-bit microcontroller
core, described in Digital Design: An Embedded Systems Approach Using VHDL [2]. We first
develop a behavioral model and verify it using a test bench consisting of instrumentation
to monitor instruction execution. Next, we refine the model to the synthesizable register-
transfer level. We verify this version in a test bench that compares its outputs with those
of the behavioral version. Finally, we develop a system model of a digital alarm clock that
uses the Gumnut as an embedded soft core, and synthesize the system for implementation
in an FPGA target.

22.1 Overview of the Gumnut

The Gumnut is an 8-bit processor core intended for educational purposes. (A gumnut is
a small seedpod of an Australian eucalyptus tree. It is something small from which large
things grow.) The Gumnut is similar to 8-bit microcontrollers for small embedded appli-
cations, but has an instruction set architecture more similar to RISC processors. We use it
as the subject of this case study to show how we might develop high-level models of com-
plex devices such as a CPU. We start by describing the view of the processor as seen by
the machine language programmer and by the hardware designer interfacing the proces-
sor with the rest of a computer system.

22.1.1 Instruction Set Architecture

The Gumnut has separate instruction and data memories. The instruction memory stores
up to 4,096 instructions (using 12-bit addresses), and the data memory stores 256 bytes
(using 8-bit addresses). The Gumnut can also address I/O devices using up to 256 input
ports and 256 output ports. Within the core, there are eight general-purpose registers,
named r0 through r7, that can hold data to be operated upon by instructions. Register r0
is special, in that it is hardwired to have the value 0, and any updates to it are ignored.
The processor also has two single-bit condition-code registers called Z (zero) and C



670 Chapter 22 — Case Study: System Design Using the Gumnut Core

(carry). They are set to 1 or cleared to 0 depending on the result of certain instructions,
and can be tested to decide among alternative courses of action in the program.

Table 22.1 lists the complete Gumnut instruction set in assembly-language format. In
the table, rd and rs are registers, op2 is a register (rs2) or an immediate value (immed),
count is count of number of places to shift or rotate, disp is a displacement from the next-
instruction address, and addr is a jump target address.

TABLE 22.1 The Gumnut instruction set

Arithmetic and logical instructions

add rd, rs, op2 Add rs and op2, result in rd

addc rd, rs, op2 Add rs and op2 with carry, result in rd

sub rd, rs, op2 Subtract op2 from rs, result in rd

subc rd, rs, op2 Subtract op2 from rs with carry, result in rd

and rd, rs, op2 Logical AND of rs and op2, result in rd

or rd, rs, op2 Logical OR of rs and op2, result in rd

xor rd, rs, op2 Logical XOR of rs and op2, result in rd

mask rd, rs, op2 Logical AND of rs and NOT op2, result in rd

Shift instructions

shl rd, rs, count Shift rs value left count places, result in rd

shr rd, rs, count Shift rs value right count places, result in rd

rol rd, rs, count Rotate rs value left count places, result in rd

ror rd, rs, count Rotate rs value right count places, result in rd

Memory and I/O instructions

ldm rd, (rs)±offset Load to rd from memory

stm rd, (rs)±offset Store to memory from rd

inp rd, (rs)±offset Input to rd from input controller register

out rd, (rs)±offset Output to output controller register from rd

Branch instructions

bz ±disp Branch if Z is set

bnz ±disp Branch is Z is not set

bc ±disp Branch if C is set

bnc ±disp Branch if C is not set



22.1 Overview of the Gumnut 671

The arithmetic and logical instructions operate on 8-bit data values stored in the core’s
general-purpose registers and store the result in the destination register, rd. For each in-
struction, one value is taken from a source register, rs. The other value, op2, either comes
from a second source register (rs2) or is an immediate value (immed) specified as part of
the instruction.

The addition and subtraction instructions treat the data values as 8-bit unsigned inte-
gers. The addc instruction includes the value of the C condition code as a carry-in bit, and
the subc instruction includes the C value as a borrow-in bit. All of the instructions in this
group modify the Z and the C bits. They set Z to 1 if the instruction result is 0, and they
clear Z to 0 if the result is non-zero. The add and addc instructions set C to the carry-out
bit of the addition, the sub and subc instruction set C to the borrow out of the subtraction,
and the remaining logical instructions clear C to 0.

The shift instructions shift or rotate 8-bit values taken from the general purpose reg-
ister rs and store the result in register rd. The number of places to shift or rotate is spec-
ified in the instruction as count. The shift-left and shift-right instructions discard the bits
shifted past the end of the 8-bit byte and fill the vacated bit positions with 0s. The rotate-
left and rotate-right instructions copy the bits shifted past the end of the byte around to
the other end. All of these instructions set Z to 1 if the instruction result is 0, and they clear
Z to 0 if the result is non-zero. They set the C bit to the value of the last bit shifted past
the end of the byte.

The Gumnut has separate instructions and separate 8-bit address spaces for accessing
data memory and I/O controllers. For all of the Gumnut’s memory and I/O instructions,
the address to access is computed by adding the current value in rs and an offset value
specified in the instruction. The load from memory instruction reads from the data mem-
ory at the computed address and puts the read value in register rd. The store to memory
writes the value from register rd to the data memory at the computed address. The input
and output instructions perform similar operations, but read or write to the I/O controller
registers at the computed address. None of these instructions affect the values of the Z and
C bits.

Jump instructions

jmp addr Jump to addr

jsb addr Jump to subroutine at addr

Miscellaneous instructions

ret Return from subroutine

reti Return from interrupt

enai Enable interrupts

disi Disable interrupts

wait Wait for interrupts

stby Enter low-power standby mode



672 Chapter 22 — Case Study: System Design Using the Gumnut Core

If we want to specify a particular address to access, we can use r0 as the register for
rs. Recall that r0 always contains 0, so adding it to the offset value specified in the instruc-
tion just gives the offset value. In this case, we usually interpret the offset value as an un-
signed 8-bit address. Our assembler tool allows us to imply the specification “(r0)” by
omission and just write the address value, for example,

inp r3, 156

which reads from the I/O controller register at address 156 into r3. Similarly, if a register
contains the address we want to access, we can use an offset of 0. Again, our assembler
allows us to imply a 0 offset by omission, as in the instruction

out r3, (r7)

The branch instructions modify the sequential flow of execution by changing value of
the program counter (PC) in the Gumnut core. Each form of branch tests a condition, and
if the condition is true, adds a signed 8-bit displacement value to the PC. The displace-
ment, specified in the instruction, indicates how many locations forward or backward the
next instruction to execute is from the current instruction. (A displacement of 0 refers to
the instruction after the branch, since the PC has already been incremented after fetching
the branch instruction.) If the condition is false, the PC is unchanged, and execution con-
tinues sequentially. The different branch instructions allow us to test each of the Z and C
condition code bits for being set to 1 or not set to 1. Since these bits are affected by arith-
metic, logical and shift instructions, we often deliberately precede a branch instruction
with one of these instructions to compare data values. In other cases, the condition code
setting occurs as a serendipitous side effect of data operations that we need to perform
anyway. Execution of a branch instruction does not affect the values of the Z and C bits.

The first of the jump instructions, jmp, unconditionally breaks the sequential flow of
execution by setting the PC to the address specified in the instruction. The second of the
jump instructions, jsb, allows us to call a subroutine. It is used in tandem with the ret in-
struction, which returns from the subroutine to the place of the call. The jsb instruction
pushes the incremented PC value (the return address) onto an internal stack and then up-
dates the PC with the subroutine address specified in the instruction. The ret instruction
pops the saved return address from the stack to the PC. The return-address stack can hold
up to eight entries. The jmp and jsb instructions do not affect the values of the Z and C bits.

The remaining miscellaneous instructions deal with interrupts. The enable-interrupt
(enai) instruction allows the processor to respond to interrupt events, and the disable-
interrupt (disi) instruction prevents the processor from responding. When the processor
responds to an interrupt event, it saves the incremented PC value and the values of the Z
and C condition codes in special registers, disables further interrupts, and then transfers
control to the interrupt handler at address 1. The interrupt handler finishes with a return-
from-interrupt (reti) instruction rather than an ret instruction. The reti instruction restores
the saved PC and condition code values and re-enables interrupts. The wait instruction
suspends execution until an interrupt occurs, and the stby instruction enters a low-power
standby mode until an interrupt occurs. The difference is that the CPU would normally be
able to respond to an interrupt immediately when suspended using a wait instruction,
whereas it could take some time to power up from a stby instruction. The instructions in
this group, apart from the reti instruction, do not affect the values of the Z and C bits.



22.1 Overview of the Gumnut 673

Instructions in the Gumnut are all 18 bits long, and are encoded in several formats,
shown in Figure 22.1. The leftmost bits, together with the function code (fn), form the
opcode. The encoding used for function codes is shown in Table 22.2. Those instructions
that specify register numbers have the numbers encoded in 3-bit binary form in the rd, rs,
and rs2 fields of the instruction word. Similarly, instructions that specify immediate values,
offsets, or displacements have those values binary encoded in the rightmost 8 bits of the
instruction word. The shaded parts of the instruction word in each format represent bits
that are ignored.

FIGURE 22.1 

Gumnut instruction formats.

TABLE 22.2 Function code values

add 000 addc 001 sub 010 subc 011

and 100 or 101 xor 110 mask 111

shl 00 shr 01 rol 10 ror 11

ldm 00 stm 01 inp 10 out 11

bz 00 bnz 01 bc 10 bnc 11

jmp 0 jsb 1

ret 000 reti 001 enai 010 disi 011

wait 100 stby 101

1 1 01 1 1 fn disp
6 2 2 8

Branch

Arith/Logical
Register

Arith/Logical
Immediate

Shift

Memory, I/O

1 1 01 fnrd rs rs2
4 3 33 3 2

0 fn rd rs immed
1 83 3 3

1 1 0 fnrd rs count
3 31 23 3 3

1 0 fn rd rs offset
2 2 3 3 8

1 1 1 1 0

0

fn addr
5 1 12

Jump

1 1 1 1 1 1 fn
7 3 8

Miscellaneous



674 Chapter 22 — Case Study: System Design Using the Gumnut Core

22.1.2 External Interface

The Gumnut interfaces to the rest of the system in which it is embedded via a number of
external signals. These are shown in Figure 22.2. Each of the instruction memory, data
memory, and I/O ports connect to the core using a simplified version of the Wishbone
bus, an open bus specification published by the OpenCores Organization [13]. The clk_i
signal is the master clock for the Gumnut. All other signals are sampled or set synchro-
nously with the clock. The rst_i signal re-initializes the Gumnut to its reset state. When
rst_i is negated, the Gumnut commences instruction execution, starting from address 0 in
the instruction memory.

The int_req signal is used to request an interrupt of the Gumnut. When this signal is
active and the Gumnut interrupts are enabled, the Gumnut will save state and transfer to
the interrupt service code. It asserts the int_ack signal for one cycle to indicate start of
interrupt service. The I/O port controller must negate int_req before the service code re-
turns and re-enables interrupts; otherwise a second spurious interrupt will be received.
Usually, an I/O port controller would negate the interrupt request in response to int_ack
or to the Gumnut reading or writing an I/O port register.

We will describe the bus timing for read and write operations on the data memory
bus. The timing for reads and writes on the port bus and for reads on the instruction mem-
ory bus is identical. The timing of read operations is shown in Figure 22.3. The Gumnut
starts a read operation by driving the data_adr_o signals with the address and setting
data_cyc_o and data_stb_o to 1. It also sets data_we_o to 0 to indicate that the operation
is a read. The memory decodes the address to access the data and drives the data onto
the data_dat_i signal. If the memory is able to provide the data within the first clock cycle,
it sets the data_ack_i signal to 1 in that cycle, as shown in Figure 22.3(a). On the next
rising clock-edge, the Gumnut sees data_ack_i at 1 and completes the operation by setting
data_cyc_o, data_stb_o and data_we_o all to 0. If, on the other hand, the memory is slow
and is not able to provide the data within the cycle, it leaves data_ack_i at 0, as shown in

FIGURE 22.2 

Gumnut core external interface.

inst_adr_o
inst_dat_i

rst_i

gumnut

inst_cyc_o
inst_stb_o
inst_ack_i

data_adr_o

data_dat_i
data_dat_o

data_cyc_o
data_stb_o

data_ack_i
data_we_o

port_adr_o

port_dat_i
port_dat_o

port_cyc_o
port_stb_o

port_ack_i
port_we_o

int_ack
int_req

clk_i



22.1 Overview of the Gumnut 675

Figure 22.3(b). The Gumnut sees data_ack_i at 0 on the rising clock-edge, and extends the
operation for a further cycle. The memory can keep data_ack_i at 0 for as long as it needs
to access the data. Eventually, when it is ready, it drives data_ack_i to 1 to complete the
operation.

The timing of write operations is similar, shown in Figure 22.4. Again, the Gumnut
starts a write operation by driving the data_adr_o signal with the address and setting
data_cyc_o and data_stb_o to 1. It sets data_we_o to 1 to indicate that the operation is a
write and drives the data to be written into the data_dat_o signal. The memory decodes
the address and updates the selected location with the data. If the memory is able to com-
plete the write within the first clock cycle, it sets the data_ack_i signal to 1 in that cycle,
as shown in Figure 22.4(a), and the handshake completes as for the read operation. Oth-

FIGURE 22.3 

Gumnut data memory read operation: without wait cycles (a), and with one wait cycle (b).

clk_i

data_adr_o

data_cyc_o

data_dat_i

data_ack_i

data_stb_o

data_we_o

(a) (b)

FIGURE 22.4 

Gumnut data memory write operation: without wait cycles (a), and with one wait cycle (b).

clk_i

data_adr_o

data_cyc_o

data_dat_o

data_ack_i

data_stb_o

data_we_o

(a) (b)



676 Chapter 22 — Case Study: System Design Using the Gumnut Core

erwise, if the memory is slow, it leaves data_ack_i at 0, as shown in Figure 22.4(b), and
the operation is extended, as for a read operation.

At first sight, it might appear that the data_cyc_o and data_stb_o signals are duplicates
of each other. However, the Wishbone bus specification defines other more involved op-
erations in which the two control signals serve distinct purposes. While the Gumnut does
not use those operations, it includes the signals in order to maintain compatibility with the
Wishbone specification. The additional signal is a small cost to pay for compatibility with
a large pool of third-party components.

The Gumnut Entity Declaration

We can now write the entity declaration for the Gumnut core, as shown below. The ge-
neric constant debug controls whether the model writes debugging messages to the stan-
dard output stream. The ports of the entity correspond to those shown in Figure 22.2.

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;

entity gumnut is
  generic ( debug : boolean := false );
  port ( clk_i : in std_ulogic;
         rst_i : in std_ulogic;
         -- Instruction memory bus
         inst_cyc_o : out std_ulogic;
         inst_stb_o : out std_ulogic;
         inst_ack_i : in std_ulogic;
         inst_adr_o : out unsigned(11 downto 0);
         inst_dat_i : in std_ulogic_vector(17 downto 0);
         -- Data memory bus
         data_cyc_o : out std_ulogic;
         data_stb_o : out std_ulogic;
         data_we_o : out std_ulogic;
         data_ack_i : in std_ulogic;
         data_adr_o : out unsigned(7 downto 0);
         data_dat_o : out std_ulogic_vector(7 downto 0);
         data_dat_i : in std_ulogic_vector(7 downto 0);
         -- I/O port bus
         port_cyc_o : out std_ulogic;
         port_stb_o : out std_ulogic;
         port_we_o : out std_ulogic;
         port_ack_i : in std_ulogic;
         port_adr_o : out unsigned(7 downto 0);
         port_dat_o : out std_ulogic_vector(7 downto 0);
         port_dat_i : in std_ulogic_vector(7 downto 0);
         -- Interrupts
         int_req : in std_ulogic;



22.1 Overview of the Gumnut 677

         int_ack : out std_ulogic );
end entity gumnut;

Instruction and Data Memories

In systems that use the Gumnut core, we need to provide instruction and data memories.
We can provide them as further IP blocks to be instantiated in designs. The entity decla-
ration for the instruction memory is

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;

entity inst_mem is
  generic ( IMem_file_name : string := "gasm_text.dat" );
  port ( clk_i : in std_ulogic;
         cyc_i : in std_ulogic;
         stb_i : in std_ulogic;
         ack_o : out std_ulogic;
         adr_i : in unsigned(11 downto 0);
         dat_o : out std_ulogic_vector(17 downto 0) );
end entity inst_mem;

The generic constant IMem_file_name specifies the name of a file from which program
is loaded. The default file name used by gasm is gasm_text.dat, so we use the same de-
fault name for the generic constant. The ports of the entity mirror those of the Gumnut
entity.

The entity declaration for the data memory is similar:

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;

entity data_mem is
  generic ( DMem_file_name : string := "gasm_data.dat" );
  port ( clk_i : in std_ulogic;
         cyc_i : in std_ulogic;
         stb_i : in std_ulogic;
         we_i : in std_ulogic;
         ack_o : out std_ulogic;
         adr_i : in unsigned(7 downto 0);
         dat_i : in std_ulogic_vector(7 downto 0);
         dat_o : out std_ulogic_vector(7 downto 0) );
end entity data_mem;

Again, the entity has a generic for specifying the file name for the initial memory con-
tents, and ports that mirror those of the Gumnut entity. We don’t show the architecture
bodies for the memories here, in the interest of brevity. They are based on the memory
models we described in Chapter 17.



678 Chapter 22 — Case Study: System Design Using the Gumnut Core

Next, we provide a subsystem model that includes an instance of the core and each
of the memories. This subsystem can then be instantiated in a larger design and connected
to the required I/O controllers. The subsystem entity declaration is

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;

entity gumnut_with_mem is
  generic ( IMem_file_name : string := "gasm_text.dat";
            DMem_file_name : string := "gasm_data.dat";
            debug : boolean := false );
  port ( clk_i : in std_ulogic;
         rst_i : in std_ulogic;
         -- I/O port bus
         port_cyc_o : out std_ulogic;
         port_stb_o : out std_ulogic;
         port_we_o : out std_ulogic;
         port_ack_i : in std_ulogic;
         port_adr_o : out unsigned(7 downto 0);
         port_dat_o : out std_ulogic_vector(7 downto 0);
         port_dat_i : in std_ulogic_vector(7 downto 0);
         -- Interrupts
         int_req : in std_ulogic;
         int_ack : out std_ulogic );
end entity gumnut_with_mem;

The structural architecture body is shown below. It uses component declarations for
the Gumnut core and the memories, allowing alternative architecture bodies to be bound
using a separate configuration declaration.

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;

architecture struct of gumnut_with_mem is

  -- Instruction memory bus
  signal inst_cyc_o : std_ulogic;
  signal inst_stb_o : std_ulogic;
  signal inst_ack_i : std_ulogic;
  signal inst_adr_o : unsigned(11 downto 0);
  signal inst_dat_i : std_ulogic_vector(17 downto 0);
  -- Data memory bus
  signal data_cyc_o : std_ulogic;
  signal data_stb_o : std_ulogic;
  signal data_we_o : std_ulogic;
  signal data_ack_i : std_ulogic;
  signal data_adr_o : unsigned(7 downto 0);
  signal data_dat_o : std_ulogic_vector(7 downto 0);
  signal data_dat_i : std_ulogic_vector(7 downto 0);



22.1 Overview of the Gumnut 679

  component gumnut is
    generic ( debug : boolean );
    port ( clk_i : in std_ulogic;
           rst_i : in std_ulogic;
           -- Instruction memory bus
           inst_cyc_o : out std_ulogic;
           inst_stb_o : out std_ulogic;
           inst_ack_i : in std_ulogic;
           inst_adr_o : out unsigned(11 downto 0);
           inst_dat_i : in std_ulogic_vector(17 downto 0);
           -- Data memory bus
           data_cyc_o : out std_ulogic;
           data_stb_o : out std_ulogic;
           data_we_o : out std_ulogic;
           data_ack_i : in std_ulogic;
           data_adr_o : out unsigned(7 downto 0);
           data_dat_o : out std_ulogic_vector(7 downto 0);
           data_dat_i : in std_ulogic_vector(7 downto 0);
           -- I/O port bus
           port_cyc_o : out std_ulogic;
           port_stb_o : out std_ulogic;
           port_we_o : out std_ulogic;
           port_ack_i : in std_ulogic;
           port_adr_o : out unsigned(7 downto 0);
           port_dat_o : out std_ulogic_vector(7 downto 0);
           port_dat_i : in std_ulogic_vector(7 downto 0);
           -- Interrupts
           int_req : in std_ulogic;
           int_ack : out std_ulogic );
  end component gumnut;

  component inst_mem is
    generic ( IMem_file_name : string );
    port ( clk_i : in std_ulogic;
           cyc_i : in std_ulogic;
           stb_i : in std_ulogic;
           ack_o : out std_ulogic;
           adr_i : in unsigned(11 downto 0);
           dat_o : out std_ulogic_vector(17 downto 0) );
  end component inst_mem;

  component data_mem is
    generic ( DMem_file_name : string );
    port ( clk_i : in std_ulogic;
           cyc_i : in std_ulogic;
           stb_i : in std_ulogic;
           we_i : in std_ulogic;
           ack_o : out std_ulogic;



680 Chapter 22 — Case Study: System Design Using the Gumnut Core

           adr_i : in unsigned(7 downto 0);
           dat_i : in std_ulogic_vector(7 downto 0);
           dat_o : out std_ulogic_vector(7 downto 0) );
  end component data_mem;

begin

  core : component gumnut
    generic map ( debug => debug )
    port map ( clk_i      => clk_i,
               rst_i      => rst_i,
               inst_cyc_o => inst_cyc_o,
               inst_stb_o => inst_stb_o,
               inst_ack_i => inst_ack_i,
               inst_adr_o => inst_adr_o,
               inst_dat_i => inst_dat_i,
               data_cyc_o => data_cyc_o,
               data_stb_o => data_stb_o,
               data_we_o  => data_we_o,
               data_ack_i => data_ack_i,
               data_adr_o => data_adr_o,
               data_dat_o => data_dat_o,
               data_dat_i => data_dat_i,
               port_cyc_o => port_cyc_o,
               port_stb_o => port_stb_o,
               port_we_o  => port_we_o,
               port_ack_i => port_ack_i,
               port_adr_o => port_adr_o,
               port_dat_o => port_dat_o,
               port_dat_i => port_dat_i,
               int_req    => int_req,
               int_ack    => int_ack );

  core_inst_mem : component inst_mem
    generic map ( IMem_file_name => IMem_file_name )
    port map ( clk_i => clk_i,
               cyc_i => inst_cyc_o,
               stb_i => inst_stb_o,
               ack_o => inst_ack_i,
               adr_i => inst_adr_o,
               dat_o => inst_dat_i );

  core_data_mem : component data_mem
    generic map ( DMem_file_name => DMem_file_name )
    port map ( clk_i => clk_i,
               cyc_i => data_cyc_o,
               stb_i => data_stb_o,
               we_i  => data_we_o,
               ack_o => data_ack_i,



22.2 A Behavioral Model 681

               adr_i => data_adr_o,
               dat_i => data_dat_o,
               dat_o => data_dat_i );

end architecture struct;

22.2 A Behavioral Model

Our first model for the Gumnut core is a behavioral architecture body. However, before
we write this unit, we will look at a package that defines the types and values representing
the Gumnut instruction encoding. This package is common to all models of the Gumnut
core.

22.2.1 The Gumnut Definitions Package

The following package declaration defines the types for the Gumnut internal signals,
based on standard-logic vectors. The package also defines subtypes and constants for en-
coded instructions and for use within implementations of the processor.

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;

package gumnut_defs is

  constant IMem_addr_width : positive := 12;
  constant IMem_size : positive := 2**IMem_addr_width;
  subtype IMem_addr is unsigned(IMem_addr_width - 1 downto 0);

  subtype instruction is unsigned(17 downto 0);
  type instruction_array is array (natural range <>) of instruction;

  subtype IMem_array is instruction_array(0 to IMem_size - 1);

  constant DMem_size : positive := 256;

  subtype unsigned_byte is unsigned(7 downto 0);
  type unsigned_byte_array is
         array (natural range <>) of unsigned_byte;

  subtype DMem_array is unsigned_byte_array(0 to DMem_size - 1);

  subtype signed_byte is signed(7 downto 0);
  type signed_byte_array is array (natural range <>) of signed_byte;

  subtype reg_addr is unsigned(2 downto 0);
  subtype immed is unsigned(7 downto 0);
  subtype offset is unsigned(7 downto 0);
  subtype disp is unsigned(7 downto 0);
  subtype shift_count is unsigned(2 downto 0);

  subtype alu_fn_code is unsigned(2 downto 0);
  subtype shift_fn_code is unsigned(1 downto 0);



682 Chapter 22 — Case Study: System Design Using the Gumnut Core

  subtype mem_fn_code is unsigned(1 downto 0);
  subtype branch_fn_code is unsigned(1 downto 0);
  subtype jump_fn_code is unsigned(0 downto 0);
  subtype misc_fn_code is unsigned(2 downto 0);

  constant alu_fn_add  : alu_fn_code := "000";
  constant alu_fn_addc : alu_fn_code := "001";
  constant alu_fn_sub  : alu_fn_code := "010";
  constant alu_fn_subc : alu_fn_code := "011";
  constant alu_fn_and  : alu_fn_code := "100";
  constant alu_fn_or   : alu_fn_code := "101";
  constant alu_fn_xor  : alu_fn_code := "110";
  constant alu_fn_mask : alu_fn_code := "111";

  constant shift_fn_shl : shift_fn_code := "00";
  constant shift_fn_shr : shift_fn_code := "01";
  constant shift_fn_rol : shift_fn_code := "10";
  constant shift_fn_ror : shift_fn_code := "11";

  constant mem_fn_ldm : mem_fn_code := "00";
  constant mem_fn_stm : mem_fn_code := "01";
  constant mem_fn_inp : mem_fn_code := "10";
  constant mem_fn_out : mem_fn_code := "11";

  constant branch_fn_bz  : branch_fn_code := "00";
  constant branch_fn_bnz : branch_fn_code := "01";
  constant branch_fn_bc  : branch_fn_code := "10";
  constant branch_fn_bnc : branch_fn_code := "11";

  constant jump_fn_jmp : jump_fn_code := "0";
  constant jump_fn_jsb : jump_fn_code := "1";

  constant misc_fn_ret  : misc_fn_code := "000";
  constant misc_fn_reti : misc_fn_code := "001";
  constant misc_fn_enai : misc_fn_code := "010";
  constant misc_fn_disi : misc_fn_code := "011";
  constant misc_fn_wait : misc_fn_code := "100";
  constant misc_fn_stby : misc_fn_code := "101";
  constant misc_fn_undef_6 : misc_fn_code := "110";
  constant misc_fn_undef_7 : misc_fn_code := "111";

  subtype disassembled_instruction is string(1 to 30);

  procedure disassemble ( instr : instruction;
                          result : out disassembled_instruction );

end package gumnut_defs;

The constant IMem_addr_width specifies the size of instruction memory addresses in
a Gumnut implementation, and the related constant IMem_size specifies the size of the
instruction memory. The subtype IMem_addr is used for instruction memory addresses.



22.2 A Behavioral Model 683

The type instruction represents an 18-bit encoded instruction word, and instruction_array
is an array of instruction words. The subtype IMem_array is used in an implementation as
the type of the instruction memory. A similar set of declarations follows for the data mem-
ory, whose size is specified by the constant DMem_size and in which each element is of
the subtype unsigned_byte. There is also a subtype signed_byte for an 8-bit signed value,
used for arithmetic operations in processor implementations. For each of these subtypes,
array types are also defined.

The next group of subtypes, from reg_addr through to misc_fn_code, represent the
fields of encoded instructions. These are followed by constants whose values represent
the encodings for function codes.

The string type disassembled_instruction is used in conjuction with the disassemble
procedure, which accepts a word representing a Gumnut instruction in the parameter instr
and returns a textual representation of the instruction in the parameter result.

The package body provides an implementation of the disassemble subprogram:

package body gumnut_defs is

  procedure disassemble ( instr : instruction;
                          result : out disassembled_instruction ) is

    subtype name is string(1 to 4);

    type name_table is array (natural range <>) of name;

    constant alu_name_table : name_table(0 to 7)
      := ( 0 => "add ", 1 => "addc", 2 => "sub ", 3 => "subc",
           4 => "and ", 5 => "or  ", 6 => "xor ", 7 => "msk " );

    constant shift_name_table : name_table(0 to 3)
      := ( 0 => "shl ", 1 => "shr ", 2 => "rol ", 3 => "ror " );

    constant mem_name_table : name_table(0 to 3)
      := ( 0 => "ldm ", 1 => "stm ", 2 => "inp ", 3 => "out " );

    constant branch_name_table : name_table(0 to 3)
      := ( 0 => "bz  ", 1 => "bnz ", 2 => "bc  ", 3 => "bnc " );

    constant jump_name_table : name_table(0 to 1)
      := ( 0 => "jmp ", 1 => "jsb " );

    constant misc_name_table : name_table(0 to 7)
      := ( 0 => "ret ", 1 => "reti", 2 => "enai", 3 => "disi",
           4 => "wait", 5 => "stby", 6 => "um_6", 7 => "um_7" );

    variable instr_01 : instruction := to_01(instr);

    alias instr_alu_reg_fn : alu_fn_code is instr_01(2 downto 0);
    alias instr_alu_immed_fn : alu_fn_code is
            instr_01(16 downto 14);
    alias instr_shift_fn : shift_fn_code is instr_01(1 downto 0);
    alias instr_mem_fn : mem_fn_code is instr_01(15 downto 14);
    alias instr_branch_fn : branch_fn_code is
            instr_01(11 downto 10);



684 Chapter 22 — Case Study: System Design Using the Gumnut Core

    alias instr_jump_fn : jump_fn_code is instr_01(12 downto 12);
    alias instr_misc_fn : misc_fn_code is instr_01(10 downto 8);

    alias instr_rd : reg_addr is instr_01(13 downto 11);
    alias instr_rs : reg_addr is instr_01(10 downto 8);
    alias instr_r2 : reg_addr is instr_01(7 downto 5);
    alias instr_immed : immed is instr_01(7 downto 0);
    alias instr_count : shift_count is instr_01(7 downto 5);
    alias instr_offset : offset is instr_01(7 downto 0);
    alias instr_disp : disp is instr_01(7 downto 0);
    alias instr_addr : IMem_addr is instr_01(11 downto 0);

    procedure disassemble_reg ( reg : reg_addr;
                                index : positive ) is
      constant str : string := to_string(to_integer(reg));
    begin
      result(index) := str(str'left);
    end procedure disassemble_reg;

    procedure disassemble_unsigned ( n : unsigned;
                                     index : positive ) is
      constant str : string := to_string(to_integer(n));
    begin
      result(index to index + str'length - 1) := str;
    end procedure disassemble_unsigned;

    procedure disassemble_signed ( n : signed;
                                   index : positive ) is
      constant str : string := to_string(to_integer(n));
    begin
      result(index to index + str'length - 1) := str;
    end procedure disassemble_signed;

    procedure disassemble_effective_addr ( r : reg_addr;
                                           d : offset;
                                           index : positive ) is
      constant signed_str : string
                 := to_string(to_integer(signed(d)));
      constant unsigned_str : string
                 := to_string(to_integer(d));
    begin
      if r = 0 then
        result(index to index + unsigned_str'length - 1)
          := unsigned_str;
      else
        result(index to index + 3) := "(r )";
        disassemble_reg(r, index + 2);
        result(index + 4 to index + 4 + signed_str'length - 1)
          := signed_str;



22.2 A Behavioral Model 685

      end if;
    end procedure disassemble_effective_addr;

  begin
    if is_X(instr) then
      report "disassemble: metalogical value in instruction word"
        severity error;
      result := (others => 'X');
      return;
    end if;
    result := (others => ' ');

    if instr_01(17) = '0' then
      -- Arithmetic/Logical Immediate
      result(1 to name'length)
        := alu_name_table(to_integer(instr_alu_immed_fn));
      result(name'length + 2 to name'length + 8) := "R , R ,";
      disassemble_reg(instr_rd, name'length + 3);
      disassemble_reg(instr_rs, name'length + 7);
      disassemble_unsigned(instr_immed, name'length + 10);
    elsif instr_01(16) = '0' then
      -- Memory I/O
      result(1 to name'length)
        := mem_name_table(to_integer(instr_mem_fn));
      result(name'length + 2 to name'length + 4) := "R ,";
      disassemble_reg(instr_rd, name'length + 3);
      disassemble_effective_addr(instr_rs,
                                 instr_offset, name'length + 6);
    elsif instr_01(15) = '0' then
      -- Shift
      result(1 to name'length)
        := shift_name_table(to_integer(instr_shift_fn));
      result(name'length + 2 to name'length + 8) := "R , R ,";
      disassemble_reg(instr_rd, name'length + 3);
      disassemble_reg(instr_rs, name'length + 7);
      disassemble_unsigned(instr_count, name'length + 10);
    elsif instr_01(14) = '0' then
      -- Arithmetic/Logical Register
      result(1 to name'length)
        := alu_name_table(to_integer(instr_alu_reg_fn));
      result(name'length + 2 to name'length + 10) := "R , R , R";
      disassemble_reg(instr_rd, name'length + 3);
      disassemble_reg(instr_rs, name'length + 7);
      disassemble_reg(instr_r2, name'length + 11);
    elsif instr_01(13) = '0' then
      -- Jump
      result(1 to name'length)
        := jump_name_table(to_integer(instr_jump_fn));



686 Chapter 22 — Case Study: System Design Using the Gumnut Core

      disassemble_unsigned(instr_addr, name'length + 2);
    elsif instr_01(12) = '0' then
      -- Branch
      result(1 to name'length)
        := branch_name_table(to_integer(instr_branch_fn));
      disassemble_signed(signed(instr_disp), name'length + 2);
    elsif instr_01(11) = '0' then
      -- Miscellaneous
      result(1 to name'length)
        := misc_name_table(to_integer(instr_misc_fn));
    else
      result(1 to 19) := "Illegal Instruction";
    end if;
  end procedure disassemble;

end package body gumnut_defs;

The six constant arrays of fixed-length strings contain textual representations of the
instruction names. For example, if we were to convert the binary function code for the
addc instruction to an integer and use it to index the array alu_name_table, we would re-
trieve the string "addc". Next, the variable instr_01 is a copy of the instruction word with
all bits converted to ‘0’ or ‘1’. This simplifies disassembly, since we don’t need to deal with
the strength of bits or with unknown value. The variable is followed by a number of alias-
es for the fields of the instruction to be disassembled, allowing us to refer to the individual
fields easily.

Within the disassemble procedure, there are a number of local procedures. The first
of these, disassemble_reg, disassembles a register number given by the parameter reg into
the result string at the position given by the parameter index. The procedure uses the
to_string and to_integer operations to derive a string representation of the register num-
ber. Since register numbers are between 0 and 7, the string is only one character.

The second local procedure, disassemble_unsigned, adds the decimal representation
of an unsigned binary number to result. It also uses the to_string and to_integer opera-
tions to derive the decimal string. The procedure disassemble_signed is similar, but deals
with signed binary numbers.

The final local procedure, disassemble_effective_address, adds an effective address
expression to result. The parameter r is the base register number, and d is the displace-
ment. If the base register is r0, its value is 0, so the displacement is interpreted as an un-
signed absolute memory address or I/O port number. In this case, the effective address
expression is just the displacement value. If the base register is other than r0, the displace-
ment is interpreted as a signed offset to be added to the base register value. In this case,
the effective address expression includes the register number and the offset, for example,
“(r2)–4”. The procedure first uses the to_string and to_integer operations to derive deci-
mal strings, one for the signed interpretation of the displacement and one for the unsigned
interpretation. The procedure then checks the register number. If it is 0, the procedure
simply adds the unsigned decimal string to result. Otherwise, the procedure adds the tem-
plate string “(r )” and calls the disassemble_reg procedure to fill in the register number
in the template. It then adds the signed decimal string after the template.



22.2 A Behavioral Model 687

The body of disassemble starts by checking whether the original instruction passed
to it has any unknown values in it. If so, the instruction word cannot be properly disas-
sembled, so the procedure reports an error message and returns with the result set to a
string of ‘X’ characters. Otherwise, the procedure clears the result in preparation for dis-
assembly.

The procedure examines successive bits of the instruction word, starting from the left,
to determine the kind of instruction. For an arithmetic/logical immediate format instruc-
tion, the procedure uses the function code field to index the corresponding instruction
name table and inserts the instruction name into the result string. It then inserts a template
for the register and immediate operands, then calls the disassemble_reg procedure for
each register operand and the disassemble_unsigned for the immediate operand.

For a memory-I/O instruction, the procedure similarly uses the function code to in-
clude the instruction name in the result string, then includes a template for the source or
destination register operand. It then calls disassemble_effective_address to process the
base address register and the displacement.

The remaining instructions are all processed similarly, using function codes to include
the name of the instruction, adding templates for operands, and calling the locally de-
clared procedures to disassemble operands.

After checking for the encoding of all of the valid instructions, the procedure includes
an else alternative to deal with an illegal instruction, that is, an encoding that does not
represent a Gumnut instruction. Such an instruction might be executed in the case of a
coding error in a Gumnut program causing a control transfer to an uninitialized part of the
instruction memory. The disassemble procedure simply returns a result string containing
an error message.

22.2.2 The Gumnut Behavioral Architecture Body

We are now in a position to write the behavioral architecture body for the Gumnut core.
An outline of the architecture body is shown below. It consists of a single process labeled
interpreter, which implements the fetch/execute loop common to nearly all basic CPUs.
The process also contains variables that represent the internal registers of the Gumnut. We
use unsigned-vector types for these internal registers and perform operations using the
arithmetic functions from the IEEE standard numeric_std package.

library ieee;  use ieee.numeric_std.all;

use work.gumnut_defs.all;
use std.textio.all;

architecture behavior of gumnut is
begin

  interpreter : process

    variable PC : IMem_addr;

    variable IR : instruction;

    alias IR_alu_reg_fn : alu_fn_code is IR(2 downto 0);
    alias IR_alu_immed_fn : alu_fn_code is IR(16 downto 14);



688 Chapter 22 — Case Study: System Design Using the Gumnut Core

    alias IR_shift_fn : shift_fn_code is IR(1 downto 0);
    alias IR_mem_fn : mem_fn_code is IR(15 downto 14);
    alias IR_branch_fn : branch_fn_code is IR(11 downto 10);
    alias IR_jump_fn : jump_fn_code is IR(12 downto 12);
    alias IR_misc_fn : misc_fn_code is IR(10 downto 8);

    alias IR_rd : reg_addr is IR(13 downto 11);
    alias IR_rs : reg_addr is IR(10 downto 8);
    alias IR_r2 : reg_addr is IR(7 downto 5);
    alias IR_immed : immed is IR(7 downto 0);
    alias IR_count : shift_count is IR(7 downto 5);
    alias IR_offset : disp is IR(7 downto 0);
    alias IR_disp : disp is IR(7 downto 0);
    alias IR_addr : IMem_addr is IR(11 downto 0);

    constant stack_depth : positive := 8;
    subtype stack_index is natural range 0 to stack_depth - 1;
    type stack_array is array (stack_index) of IMem_addr;
    variable stack : stack_array;
    variable SP : stack_index;

    subtype reg_index is natural range 0 to 7;
    variable GPR : unsigned_byte_array(reg_index);

    variable ALU_result : unsigned_byte;
    variable cc_Z : std_ulogic;
    variable cc_C : std_ulogic;

    variable int_en : std_ulogic;
    variable int_PC : IMem_addr;
    variable int_Z, int_C : std_ulogic;

    variable disassembled_instr : disassembled_instruction;
    variable debug_line : line;

    -- local procedures for use within the interpreter
    ...

  begin -- interpreter
    perform_reset;
    wait until rising_edge(clk_i) and rst_i = '0';
    -- fetch/decode/execute loop
    fetch_execute_loop : loop
      -- check for interrupts
      if int_en and int_req then
        perform_interrupt;
        exit fetch_execute_loop when rst_i;
        next fetch_execute_loop;
      end if;



22.2 A Behavioral Model 689

      -- fetch next instruction
      fetch_instruction;
      exit fetch_execute_loop when rst_i;
      next fetch_execute_loop when is_X(IR);

      -- decode and execute the instruction
      if IR(17) = '0' then
        -- Arithmetic/Logical Immediate
        perform_alu_op(fn => IR_alu_immed_fn,
                       a => GPR(to_integer(IR_rs)),
                       b => IR_immed,
                       C_in => cc_C,
                       result => ALU_result,
                       Z_out => cc_Z, C_out => cc_C);
        if IR_rd /= 0 then
          GPR(to_integer(IR_rd)) := ALU_result;
        end if;
      elsif IR(16) = '0' then
        -- Memory I/O
        perform_mem;
        exit fetch_execute_loop when rst_i;
      elsif IR(15) = '0' then
        -- Shift
        perform_shift_op(fn => IR_shift_fn,
                         a => GPR(to_integer(IR_rs)),
                         count => IR_count,
                         result => ALU_result,
                         Z_out => cc_Z, C_out => cc_C);
        if IR_rd /= 0 then
          GPR(to_integer(IR_rd)) := ALU_result;
        end if;
      elsif IR(14) = '0' then
        -- Arithmetic/Logical Register
        perform_alu_op(fn => IR_alu_reg_fn,
                       a => GPR(to_integer(IR_rs)),
                       b => GPR(to_integer(IR_r2)),
                       C_in => cc_C,
                       result => ALU_result,
                       Z_out => cc_Z, C_out => cc_C);
        if IR_rd /= 0 then
          GPR(to_integer(IR_rd)) := ALU_result;
        end if;
      elsif IR(13) = '0' then
        -- Jump
        perform_jump;
      elsif IR(12) = '0' then
        -- Branch



690 Chapter 22 — Case Study: System Design Using the Gumnut Core

        perform_branch;
      elsif IR(11) = '0' then
        -- Miscellaneous
        perform_misc;
        exit fetch_execute_loop when rst_i;
      else
        -- Illegal instruction
        null;
      end if;

    end loop fetch_execute_loop;
  end process interpreter;

end architecture behavior;

Overview of the Interpreter

The first group of declarations in the interpreter process represents the Gumnut internal
registers. The variable PC represents the program counter, and IR represents the instruction
register. The aliases represent the fields of instructions of different formats. These aliases
allow us to refer easily to the fields of an instruction in order to interpret it. The declara-
tions stack_depth, stack_index, stack_array and stack represent the return address stack
used for subroutine linkage, and the variable SP is the stack pointer. Reg_index and GPR
represent the general purpose registers described in Section 22.1.1. ALU_result is a tem-
porary register used for the result of ALU instructions, and cc_Z and cc_C represent the Z
and C condition codes. Int_en is a flag indicating whether interrupts are enabled, and
int_PC, int_Z and int_C are used to save the state of the processor during interrupt service.
Finally, the variables disassembled_instr and debug_line are used in conjunction with the
disassemble procedure described earlier to form debug messages reported by the model.
Following the object declarations, we include declarations of local procedures for use
within the interpreter. We describe them in detail later in this section.

The statement part of the interpreter process implements the behavior of the Gumnut
core. The process first resets the internal state of the Gumnut using the locally declared
perform_reset procedure, then waits until the next rising edge of clk_i at which rst_i is ‘0’
before proceeding. The process then enters the fetch/execute loop. While the rst_i input
remains negated, the loop checks for interrupt requests, fetches the next instruction from
the instruction memory, analyzes the fields of the fetched instruction and then performs
the appropriate operations to execute the instruction. The analysis is done using an if
statement that examines bits of the instruction word, in a similar way to the disassemble
procedure described earlier. Each class of instruction is performed by calling one of the
local procedures. In the case of arithmetic/logical and shift instructions, which produce a
result in a destination register, the register is only written if it is not r0. After performing a
memory operation, which involves waiting for one or more clock-edges, the process tests
the rst_i input again and exits the loop if it is ‘1’. The same is done for miscellaneous group
of instructions, which include the wait and stby instructions. When the loop is terminated,
the process starts again from the top of the statement part.



22.2 A Behavioral Model 691

Resetting the Interpreter

The procedure that resets the interpreter before entering the loop is shown below. These
statements are executed when the model is initialized, simulating a power-on reset, and
when the rst_i input to the processor is activated. The first group of assignments initializes
the processor’s internal state by clearing all internal registers and flags to 0. The second
group resets the external interface of the processor by setting the bus control and interrupt
acknowledge signals to ‘0’.

    procedure perform_reset is
    begin
      -- Reset internal state
      PC := (others => '0');
      SP := 0;
      GPR := (others => X"00");
      cc_Z := '0';
      cc_C := '0';
      int_en := '0';
      -- Reset bus signals
      inst_cyc_o <= '0';
      inst_stb_o <= '0';
      data_cyc_o <= '0';
      data_stb_o <= '0';
      data_we_o <= '0';
      port_cyc_o <= '0';
      port_stb_o <= '0';
      port_we_o <= '0';
      int_ack <= '0';
    end perform_reset;

Acknowledging an Interrupt

The procedure for acknowledging an interrupt is shown below. It first saves a copy of the
current program counter, converted to integer form, for subsequent use in displaying a
debug message. It then copies the current values of the program counter and condition
codes to the variables used to save them during interrupt service, and disables further in-
terrupts, and forces the PC to instruction address 1. The procedure then sets the int_ack
output of the processor core to ‘1’ for a clock cyle, then back to ‘0’, to indicate to the I/O
port that the interrupt request is acknowledged. Finally, if debug messages are enabled,
the procedure displays a debug message showing the address at which the interrupt oc-
curred.

    procedure perform_interrupt is
      variable PC_num : natural;
    begin
      PC_num := to_integer(PC);
      int_PC := PC;



692 Chapter 22 — Case Study: System Design Using the Gumnut Core

      int_Z := cc_Z;
      int_C := cc_C;
      int_en := '0';
      PC := to_unsigned(1, PC'length);
      int_ack <= '1';
      wait until rising_edge(clk_i);
      int_ack <= '0';
      if debug then
        swrite(debug_line, "Interrupt acknowledged at PC = ");
        write(debug_line, PC_num, field => 4, justified => right);
        writeline(output, debug_line);
      end if;
    end procedure perform_interrupt;

Fetching an Instruction

The next procedure, shown below, fetches an instruction from the instruction memory.
The procedure first saves a copy of the program counter, converted to integer form, for
use in a debug message. Next, it starts a read operation on the instruction memory bus,
as described in Section 22.1.2. On each subsequent rising clock-edge, the procedure
checks whether rst_i is active, and if so, returns so that the main interpreter process can
reset the core. When the instruction memory sets inst_ack_i to ‘1’, the procedure exits the
loop and completes the read operation, assigns the read data to the instruction register
variable, and increments the PC. Finally, if debug messages are enabled, the procedure
disassembles the fetched instruction and displays a debug message showing the address
of the instruction and its disassembled form.

    procedure fetch_instruction is
      variable PC_num : natural;
    begin
      PC_num := to_integer(PC);
      inst_cyc_o <= '1';
      inst_stb_o <= '1';
      inst_adr_o <= PC;
      loop
        wait until rising_edge(clk_i);
        if rst_i then
          return;
        end if;
        exit when inst_ack_i;
      end loop;
      IR := unsigned(inst_dat_i);
      PC := PC + 1;
      inst_cyc_o <= '0';
      inst_stb_o <= '0';
      if debug then
        disassemble(IR, disassembled_instr);



22.2 A Behavioral Model 693

        write(debug_line, PC_num, field => 4, justified => right);
        swrite(debug_line, ": ");
        write(debug_line, disassembled_instr);
        writeline(output, debug_line);
      end if;
    end procedure fetch_instruction;

Performing an Arithmetic/Logical Operation

The procedure perform_alu_op, shown below, performs operations needed for arith-
metic/logic unit (ALU) instructions and for calculating the effective address in memory-I/
O instructions. The parameter fn is the function code indicating the operation to perform;
a and b are the operands; c_in is the carry-in; result is the result of the operation; and
Z_out and C_out are the condition code values produced by the operation.

    procedure perform_alu_op ( fn : in alu_fn_code;
                               a, b : in unsigned_byte;
                               C_in : in std_ulogic;
                               result : out unsigned_byte;
                               Z_out, C_out : out std_ulogic ) is
    begin
      case fn is
        when alu_fn_add =>
          (C_out, result) := ('0' & a) + ('0' & b);
        when alu_fn_addc =>
          (C_out, result) := ('0' & a) + ('0' & b) + C_in;
        when alu_fn_sub =>
          (C_out, result) := ('0' & a) - ('0' & b);
        when alu_fn_subc =>
          (C_out, result) := ('0' & a) - ('0' & b) - C_in;
        when alu_fn_and =>
          (C_out, result) := ('0' & a) and ('0' & b);
        when alu_fn_or =>
          (C_out, result) := ('0' & a) or ('0' & b);
        when alu_fn_xor =>
          (C_out, result) := ('0' & a) xor ('0' & b);
        when alu_fn_mask =>
          (C_out, result) := ('0' & a) and not ('0' & b);
        when others =>
          report "Program logic error in interpreter"
            severity failure;
      end case;
      Z_out := result ?= X"00";
    end procedure perform_alu_op;

In the body of the procedure, the case statement selects which ALU operation to per-
form. In each case, the operands are extended with an additional ‘0’ bit so that the carry-



694 Chapter 22 — Case Study: System Design Using the Gumnut Core

out of the operation can be captured in C_out. Arithmetic operations are performed using
the overloaded operators from the numeric_std package. In the case of add and subtract
with carry, the carry-in is included in the operation. After computing the result, the pro-
cedure compares it with a vector of ‘0’ bits to determine the value of the Z_out flag.

Performing a Shift Operation

The procedure for performing shift operations, perform_shift_op, is shown below and is
similar to perform_alu_op. Instead of a second operand parameter, it has the parameter
count to specify the number of bits by which to shift.

    procedure perform_shift_op ( fn : in shift_fn_code;
                                 a : in unsigned_byte;
                                 count : in shift_count;
                                 result : out unsigned_byte;
                                 Z_out, C_out : out std_ulogic ) is
    begin
      case fn is
        when shift_fn_shl =>
          (C_out, result) := ('0' & a) sll to_integer(count);
        when shift_fn_shr =>
          (result, C_out) := (a & '0') srl to_integer(count);
        when shift_fn_rol =>
          result := a rol to_integer(count);
          C_out := result(unsigned_byte'right);
        when shift_fn_ror =>
          result := a ror to_integer(count);
          C_out := result(unsigned_byte'left);
        when others =>
          report "Program logic error in interpreter"
            severity failure;
      end case;
      Z_out := result ?= X"00";
    end procedure perform_shift_op;

The statements that perform shift-left and shift-right operations append a ‘0’ bit to the
operand, on the left for left shifts and on the right for right shifts, so that the last bit shifted
out of the operand can be captured in the C_out parameter. In the case of rotate opera-
tions, the operand value is simply rotated using VHDL operators. The C_out parameter is
the last bit value rotated out of the operand vector and back into the opposite end. Thus,
it is the rightmost bit of the result for rotate-left operations, and the leftmost bit of the result
for rotate-right operations. After computing the result and C_out values, the procedure
compares the result with a vector of ‘0’ bits to determine the Z_out value.



22.2 A Behavioral Model 695

Performing a Memory-I/O Instruction

The procedure perform_mem, shown below, performs memory and I/O instructions. The
procedure first calculates the effective address by using the perform_alu_op procedure to
add the values of the base address register and the displacement. The carry-in is set to ‘0’,
and the carry-out and zero flag results are unused. The procedure then uses the memory-
I/O instruction function code to determine whether to perform a read or write operation
using the data memory bus or the I/O port bus. The operations are performed in the same
way as described earlier for fetching an instruction. For memory load and I/O input in-
structions, the procedure assigns the read data to the destination register, provided the reg-
ister is not r0. For memory store and I/O output instructions, the procedure uses the value
from the source register as the data for the bus write operation.

    procedure perform_mem is
      variable mem_addr : unsigned_byte;
      variable tmp_Z, tmp_C : std_ulogic;
    begin
      perform_alu_op(fn => alu_fn_add,
                     a => GPR(to_integer(IR_rs)), b => IR_offset,
                     C_in => '0',
                     result => mem_addr,
                     Z_out => tmp_Z, C_out => tmp_C);
      case IR_mem_fn is
        when mem_fn_ldm =>
          data_cyc_o <= '1';
          data_stb_o <= '1';
          data_we_o <= '0';
          data_adr_o <= mem_addr;
          ldm_loop : loop
            wait until rising_edge(clk_i);
            if rst_i then
              return;
            end if;
            exit ldm_loop when data_ack_i;
          end loop ldm_loop;
          if IR_rd /= 0 then
            GPR(to_integer(IR_rd)) := unsigned(data_dat_i);
          end if;
          data_cyc_o <= '0';
          data_stb_o <= '0';
        when mem_fn_stm =>
          data_cyc_o <= '1';
          data_stb_o <= '1';
          data_we_o <= '1';
          data_adr_o <= mem_addr;
          data_dat_o <= std_ulogic_vector(GPR(to_integer(IR_rd)));
          stm_loop : loop



696 Chapter 22 — Case Study: System Design Using the Gumnut Core

            wait until rising_edge(clk_i);
            if rst_i then
              return;
            end if;
            exit stm_loop when data_ack_i;
          end loop stm_loop;
          data_cyc_o <= '0';
          data_stb_o <= '0';
        when mem_fn_inp =>
          port_cyc_o <= '1';
          port_stb_o <= '1';
          port_we_o <= '0';
          port_adr_o <= mem_addr;
          inp_loop : loop
            wait until rising_edge(clk_i);
            if rst_i then
              return;
            end if;
            exit inp_loop when port_ack_i;
          end loop inp_loop;
          if IR_rd /= 0 then
            GPR(to_integer(IR_rd)) := unsigned(port_dat_i);
          end if;
          port_cyc_o <= '0';
          port_stb_o <= '0';
        when mem_fn_out =>
          port_cyc_o <= '1';
          port_stb_o <= '1';
          port_we_o <= '1';
          port_adr_o <= mem_addr;
          port_dat_o <= std_ulogic_vector(GPR(to_integer(IR_rd)));
          out_loop : loop
            wait until rising_edge(clk_i);
            if rst_i then
              return;
            end if;
            exit out_loop when port_ack_i;
          end loop out_loop;
          port_cyc_o <= '0';
          port_stb_o <= '0';
        when others =>
          report "Program logic error in interpreter"
            severity failure;
      end case;
    end procedure perform_mem;



22.2 A Behavioral Model 697

For I/O input instructions, the procedure sets the port_addr signal to the effective ad-
dress and asserts the port_read control signal. It then enters a loop in which it waits for
the next clock edge. When that occurs, if the reset input is active, the procedure simply
returns, allowing the main interpreter process to reset the processor state. If reset is inac-
tive and the port_ready input is active, the procedure exits from the loop; otherwise, it
repeats, waiting for the next clock-edge. On exit from the loop, if the destination register
is not R0, the procedure copies the data from the port_data_in signal to the destination
register and clears the port_read control signal. I/O write instructions are performed sim-
ilarly. The difference is that, prior to the loop, data is copied from the source register to
the port_data_out signal and the port_write control signal is asserted. After the loop, the
port_write signal is cleared.

Performing a Branch Instruction

The procedure for performing branch instructions is shown below. The procedure uses
the branch function code to determine which condition code to check to decide whether
the branch is taken or not. If the branch is taken, the procedure adds the branch displace-
ment to the program counter.

    procedure perform_branch is
      variable branch_taken : std_ulogic;
    begin
      case IR_branch_fn is
        when branch_fn_bz =>
          branch_taken := cc_Z;
        when branch_fn_bnz =>
          branch_taken := not cc_Z;
        when branch_fn_bc =>
          branch_taken := cc_C;
        when branch_fn_bnc =>
          branch_taken := not cc_C;
        when others =>
          report "Program logic error in interpreter"
            severity failure;
      end case;
      if branch_taken then
        PC := unsigned(signed(PC) + signed(IR_disp));
      end if;
    end procedure perform_branch;

Performing a Jump Instruction

The procedure for performing jump instructions is shown below. In the case of a jmp in-
struction, the procedure simply copies the target address from the instruction register to
the program counter. In the case of a jsb instruction, before updating the program counter,
the procedure first copies the current program counter value to the stack location indexed



698 Chapter 22 — Case Study: System Design Using the Gumnut Core

by SP, then increments SP. The increment is done using modulo arithmetic. If subroutine
calls are nested too deeply, the earlier return address is overwritten with later addresses.
The Gumnut does not check for this, as it has no mechanism for dealing with the error.
Rather, it relies on the programmer or a compiler to avoid the error condition.

    procedure perform_jump is
    begin
      case IR_jump_fn is
        when jump_fn_jmp =>
          PC := IR_addr;
        when jump_fn_jsb =>
          stack(SP) := PC;
          SP := (SP + 1) mod stack_depth;
          PC := IR_addr;
        when others =>
          report "Program logic error in interpreter"
            severity failure;
      end case;
    end procedure perform_jump;

Performing a Miscellaneous Instruction

The procedure for performing the class of miscellaneous instructions is shown below. For
ret instructions, the procedure decrements SP to index the return address on the stack and
copies the address to the program counter. For reti instructions, the procedure restores
the program counter and condition code flags from the variables in which they were
stored during interrupt service and re-enables interrupts. For enai and disi instructions, the
procedure simply sets the interrupt-enable flag to ‘1’ or ‘0’, respectively.

    procedure perform_misc is
    begin
      case IR_misc_fn is
        when misc_fn_ret =>
          SP := (SP - 1) mod stack_depth;
          PC := stack(SP);
        when misc_fn_reti =>
          PC := int_PC;
          cc_Z := int_Z;
          cc_C := int_C;
          int_en := '1';
        when misc_fn_enai =>
          int_en := '1';
        when misc_fn_disi =>
          int_en := '0';
        when misc_fn_wait | misc_fn_stby =>
          wait_loop : loop
            wait until rising_edge(clk_i);



22.2 A Behavioral Model 699

            if rst_i then
              return;
            end if;
            exit wait_loop when int_en and int_req;
          end loop wait_loop;
          perform_interrupt;
        when misc_fn_undef_6 | misc_fn_undef_7 =>
          null;
        when others =>
          report "Program logic error in interpreter"
            severity failure;
      end case;
    end procedure perform_misc;

For both wait and stby instructions, the procedure enters a loop in which it checks
rst_i and int_req on successive clock cycles. If rst_i is asserted, the procedure returns so
that the main interpreter process can reset the core. If int_ack is asserted and interrupts
are enabled, the procedure calls the instruction for processing interrupts, thus completing
the required operations for the wait and stby instructions. Note that if interrupts are not
enabled, any interrupt request will be ignored. The only way to exit processing for these
instructions in that case is to reset the core. Note also that this procedure does not model
the low-power standby state of the processor; wait and stby instructions are modeled
identically.

22.2.3 Verifying the Behavioral Model

Now that we have developed our behavioral Gumnut model, we can verify it by writing
a test bench model. Since the function performed by the processor is to execute a machine
language program stored in memory, we can test the processor by loading the instruction
memory with a test program and observing the values in registers and the I/O operations
on the external interface. We will use an assembler called gasm (provided on the compan-
ion website for this book) to generate the machine language program from assembly lan-
guage source code.

The entity declaration for the test bench model is:

entity test is
end test;

and the architecture body is:

library ieee;
use ieee.std_logic_1164.all, ieee.numeric_std.all;

use work.gumnut_defs.all;
use std.textio.all;

architecture gumnut of test is



700 Chapter 22 — Case Study: System Design Using the Gumnut Core

  signal syscon_clk_o : std_ulogic;
  signal syscon_rst_o : std_ulogic;
  -- I/O port bus
  signal gumnut_port_cyc_o : std_ulogic;
  signal gumnut_port_stb_o : std_ulogic;
  signal gumnut_port_we_o : std_ulogic;
  signal gumnut_port_ack_i : std_ulogic;
  signal gumnut_port_adr_o : unsigned(7 downto 0);
  signal gumnut_port_dat_o : std_ulogic_vector(7 downto 0);
  signal gumnut_port_dat_i : std_ulogic_vector(7 downto 0);
  -- Interrupts
  signal gumnut_int_req : std_ulogic;
  signal gumnut_int_ack : std_ulogic;

  component gumnut_with_mem is
    port ( clk_i : in std_ulogic;
           rst_i : in std_ulogic;
           -- I/O port bus
           port_cyc_o : out std_ulogic;
           port_stb_o : out std_ulogic;
           port_we_o : out std_ulogic;
           port_ack_i : in std_ulogic;
           port_adr_o : out unsigned(7 downto 0);
           port_dat_o : out std_ulogic_vector(7 downto 0);
           port_dat_i : in std_ulogic_vector(7 downto 0);
           -- Interrupts
           int_req : in std_ulogic;
           int_ack : out std_ulogic );
  end component gumnut_with_mem;

begin

  reset_gen : syscon_rst_o <= '0',
                              '1' after   5 ns,
                              '0' after  25 ns;

  clk_gen : process
  begin
    syscon_clk_o <= '0';
    wait for 10 ns;
    loop
      syscon_clk_o <= '1', '0' after 5 ns;
      wait for 10 ns;
    end loop;
  end process clk_gen;

  int_gen : process
  begin
    gumnut_int_req <= '0';



22.2 A Behavioral Model 701

    for int_count in 1 to 10 loop
      for cycle_count in 1 to 25 loop
        wait until falling_edge(syscon_clk_o);
      end loop;
      gumnut_int_req <= '1';
      wait until falling_edge(syscon_clk_o)
                 and gumnut_int_ack = '1';
      gumnut_int_req <= '0';
    end loop;
    wait;
  end process int_gen;

  io_control : process
    -- Hard-wired input stream
    constant input_data : unsigned_byte_array
      := ( X"00", X"01", X"02", X"03", X"04", X"05", X"06", X"07",
           X"08", X"09", X"0A", X"0B", X"0C", X"0D", X"0E", X"0F",
           X"10", X"11", X"12", X"13", X"14", X"15", X"16", X"17",
           X"18", X"19", X"1A", X"1B", X"1C", X"1D", X"1E", X"1F" );
    variable next_input : integer := 0;
    variable debug_line : line;
    constant show_actions : boolean := true;    
  begin
    gumnut_port_ack_i <= '0';
    loop
      wait until falling_edge(syscon_clk_o);
      if gumnut_port_cyc_o and gumnut_port_stb_o then
        if to_X01(gumnut_port_we_o) = '0' then
          if show_actions then
            swrite(debug_line, "IO: port read; address = ");
            hwrite(debug_line, gumnut_port_adr_o);
            swrite(debug_line, ", data = ");
            hwrite(debug_line, input_data(next_input) );
            writeline(output, debug_line);
          end if;
          gumnut_port_dat_i <=
            std_ulogic_vector(input_data(next_input));
          next_input := (next_input + 1) mod input_data'length;
          gumnut_port_ack_i <= '1';
        else
          if show_actions then
            swrite(debug_line, "IO: port write; address = ");
            hwrite(debug_line, gumnut_port_adr_o );
            swrite(debug_line, ", data = ");
            hwrite(debug_line, gumnut_port_dat_o );
            writeline(output, debug_line);
          end if;



702 Chapter 22 — Case Study: System Design Using the Gumnut Core

          gumnut_port_ack_i <= '1';
        end if;
      else
        gumnut_port_ack_i <= '0';
      end if;
    end loop;
  end process io_control;

  dut : component gumnut_with_mem
    port map ( clk_i      => syscon_clk_o,
               rst_i      => syscon_rst_o,
               port_cyc_o => gumnut_port_cyc_o,
               port_stb_o => gumnut_port_stb_o,
               port_we_o  => gumnut_port_we_o,
               port_ack_i => gumnut_port_ack_i,
               port_adr_o => gumnut_port_adr_o,
               port_dat_o => gumnut_port_dat_o,
               port_dat_i => gumnut_port_dat_i,
               int_req    => gumnut_int_req,
               int_ack    => gumnut_int_ack );

end architecture gumnut;

The architecture includes a component declaration corresponding to the subsystem
containing the Gumnut core and its memories. This component is instantiated as the de-
sign under test (dut). The architecture also includes an assignment to the reset signal and
a clock-generator process, corresponding to a Wishbone system controller (“syscon”). The
int_gen process generates a sequence of 10 interrupt requests at intervals of 25 clock cy-
cles. The io_control process represents an I/O port controller that monitors the external
interface of the processor. When the processor performs a read operation, the controller
supplies the next in a sequence of input data values and displays a debug message show-
ing the port address and the data value. When the processor performs a write operation,
the controller likewise displays a debug message showing the address and data value.

In the test bench, we do not include the debug generic constant in the component
declaration for the Gumnut. Instead, we use a separate configuration declaration, shown
below, to bind the Gumnut entity to the component instance and to fill in values for the
generic constant. We set the debug generic constant of the processor to true so that we
can trace its operation.

configuration test_gumnut_behavior of test is
  for gumnut

    for dut : gumnut_with_mem
      use entity work.gumnut_with_mem(struct);
      for struct
        for core : gumnut
          use entity work.gumnut(behavior)
            generic map ( debug => true );
        end for;



22.2 A Behavioral Model 703

      end for;
    end for;

  end for;
end configuration test_gumnut_behavior;

In order to execute the test bench, we need to prepare a test program to run on the
processor core. The following is a small test program, written in the gasm assembly lan-
guage:

; Counts from 10 downto 1, storing successive values to memory.

        text
        org     0               ; reset
        jmp     begin

        org     1               ; interrupt service
        reti

        org     16
begin:  enai
        add     r1, r0, 10      ; initialize count to 10
loop:   stm     r1, 0
        sub     r1, r1, 1       ; decrement count
        bnz     loop
stop:   disi
        stby

        data
        org     0
count:  bss     1

We assemble this program to produce the initialization files for the instruction and
data memories. (Instructions on using the gasm assembler are provided on the companion
website.) We also analyze each of the design units described so far and then invoke our
simulator, specifying the configuration declaration as the unit to simulate. We then use the
facilities of the simulator to step through the model, to examine the test bench signals to
verify that the machine language program in the memory is correctly executed by the CPU.
We do not describe the process in detail, as different simulators provide different com-
mands and facilities for executing the model. The companion website provides a number
of small test programs, including the one shown above, that can be executed using this
test bench. The following is an example of the debugging messages, produced when the
program above was run on the author’s simulator.

#    0: jmp  16                       
#   16: enai                          
#   17: add  R1, R0, 10               
#   18: stm  R1, 0                    



704 Chapter 22 — Case Study: System Design Using the Gumnut Core

#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
# Interrupt acknowledged at PC =   18
#    1: reti                          
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   18: stm  R1, 0                    
#   19: sub  R1, R1, 1                
#   20: bnz  -3                       
#   21: disi                          
#   22: stby                          

22.3 A Register-Transfer-Level Model

We now turn our attention to the next level of refinement of our Gumnut model: a syn-
thesizable register-transfer-level description. At this level, the processor is composed of
registers, buses, multiplexers, an ALU and a sequential control section. Figure 22.5 shows
the register-transfer-level datapath of the processor upon which we base our VHDL model.
It includes a register file (Reg) for the general-purpose registers, storage for the return-
address stack (Stack), individual registers for the program counter (PC), instruction register
(IR), stack pointer (SP), ALU result (A) and condition codes (CC), the data memory and
input/output port data input (D) and the interrupt register (Int Reg). These all correspond
to variables defined in the behavioral architecture of the processor. Multiplexers are in-
cluded to select between inputs to the various components.



2
2

.3
A

 R
egister-T

ra
n

sfer-Level M
od

el
705

F
IG

U
R

E
 2

2
.5

 

T
h

e orga
n

iza
tion

 of th
e G

u
m

n
u

t a
t th

e register-tra
n

sfer level.

PC
12-bit

IR
18-bit

Int Reg

+
ALU/
Shift

1

cc_Z
cc_C

int_Z
int_C

1
d
is

p

rs r2 rdad
d
r

im
m

ed

rd

SP
D

A

±1

CC

data_adr_o
port_adr_o

inst_adr_o

data_dat_o
port_dat_o

data_dat_i

inst_dat_i

port_dat_i

Stack
8×12

Din

Ain

Dout

Aout

Reg
8×8

A1

A2

R1

R2
A3 W3

cc_Z
cc_C

int_Z
int_C



706 Chapter 22 — Case Study: System Design Using the Gumnut Core

Not shown in the figure is the control section, which activates components in the data
path in sequence to interpret Gumnut instructions. Each instruction takes multiple clock
cycles to execute. Different instructions may take different numbers of cycles, depending
on the interpretation steps required.

The first cycle of execution involves checking whether an interrupt request is pending.
If so, the current PC and condition code bits are saved in the interrupt register and the PC
is set to 1. Execution of the interrupt service code then proceeds in the subsequent cycle.
If no interrupt is requested, the first cycle is used to start the instruction memory read op-
eration. When the operation completes (either in the first cycle, or in a subsequent cycle
if the memory causes wait cycles) the fetched instruction is stored in the IR, and the PC
register is updated with the incremented PC value.

During the second cycle, the register file is accessed to fetch operands, in case they
are required. The register file in this implementation has synchronous read ports, and the
operands are stored in two output registers. Also in this cycle, control-flow processing is
performed. If the instruction in the IR is a conditional branch that is taken, the PC is up-
dated with the sum of its current value and the branch displacement. If the instruction is
a jmp, the PC is updated with the target address. If the instruction is a jsb, the PC is up-
dated with the target address, the current PC value is pushed onto the return-address stack,
and the stack pointer is incremented. If the instruction is a ret, the PC is updated from the
top of the stack, and the stack pointer is decremented. If the instruction is a reti, the PC
and condition codes are restored from the interrupt register, and interrupts are enabled. If
the instruction is an enai or disi, the interrupt enable bit is set accordingly. In all cases of
control flow instructions, processing is complete after the second cycle.

The third cycle (if required) involves computation of a data result or an effective ad-
dress by the ALU. The result is stored in the A register. Also, for arithmetic, logic and shift
instructions, the condition code bits are updated.

For memory and I/O instructions, a further cycle is used to access the data memory
or I/O port. The A register is used as the address, and for write operations, the register file
r2 output is used for the data. The Gumnut checks the acknowledge input at the end of
the cycle. If it is negated, the Gumnut repeats the cycle, allowing the data memory or port
controller extra time to read or write the data. When the acknowledge input is active, the
operation is complete. For read operations, the data is stored in the D register.

A final cycle is required for instructions that update a destination register in the reg-
ister file, namely, arithmetic, logic, shift, load and input instructions. The data source is the
ALU output register (A) or the data memory and I/O port input register (D), depending
on the instruction. The destination register (if not r0) is updated at the end of the cycle.

22.3.1 The Architecture Body

The synthesizable architecture body for the Gumnut core is outlined below. The signals
represent the interconnections between the data path components, including both buses
and control signals. Within the statement part of the architecture body, the assignments to
the signals IR_decode_alu_immed, etc., represent decoding of the instruction word in the
instruction regsister. These assignments are followed by a number of processes and further
assignments that represent the control section and the data path components. We will de-
scribe them in turn in this section.



22.3 A Register-Transfer-Level Model 707

library ieee;  use ieee.std_logic_1164.all, ieee.numeric_std.all;

use work.gumnut_defs.all;

architecture rtl_unpipelined of gumnut is

  signal PC : IMem_addr;

  signal branch_taken : std_ulogic;

  signal IR : instruction;

  alias IR_alu_reg_fn : alu_fn_code is IR(2 downto 0);
  alias IR_alu_immed_fn : alu_fn_code is IR(16 downto 14);
  alias IR_shift_fn : shift_fn_code is IR(1 downto 0);
  alias IR_mem_fn : mem_fn_code is IR(15 downto 14);
  alias IR_branch_fn : branch_fn_code is IR(11 downto 10);
  alias IR_jump_fn : jump_fn_code is IR(12 downto 12);
  alias IR_misc_fn : misc_fn_code is IR(10 downto 8);

  alias IR_rd : reg_addr is IR(13 downto 11);
  alias IR_rs : reg_addr is IR(10 downto 8);
  alias IR_r2 : reg_addr is IR(7 downto 5);
  alias IR_immed : immed is IR(7 downto 0);
  alias IR_count : shift_count is IR(7 downto 5);
  alias IR_offset : disp is IR(7 downto 0);
  alias IR_disp : disp is IR(7 downto 0);
  alias IR_addr : IMem_addr is IR(11 downto 0);

  signal IR_decode_alu_immed,
         IR_decode_mem,
         IR_decode_shift,
         IR_decode_alu_reg,
         IR_decode_jump,
         IR_decode_branch,
         IR_decode_misc : std_ulogic;

  signal D_state : std_ulogic;

  signal int_PC : IMem_addr;
  signal int_Z : std_ulogic;
  signal int_C : std_ulogic;
  signal int_en : std_ulogic;

  constant SP_length : positive := 3;
  signal SP : unsigned(SP_length - 1 downto 0);
  signal stack_top : IMem_addr;

  signal GPR_rs : unsigned_byte;
  signal GPR_r2 : unsigned_byte;

  signal ALU_result : unsigned_byte;
  signal ALU_Z : std_ulogic;



708 Chapter 22 — Case Study: System Design Using the Gumnut Core

  signal ALU_C : std_ulogic;
  signal ALU_out : unsigned_byte;

  signal cc_Z : std_ulogic;
  signal cc_C : std_ulogic;

  signal D : unsigned_byte;

  type control_state is (fetch_state,
                         decode_state,
                         execute_state,
                         mem_state,
                         write_back_state,
                         int_state);
  signal state, next_state : control_state;

begin

  IR_decode_alu_immed <= IR(17) ?= '0';
  IR_decode_mem       <= IR(17 downto 16) ?= "10";
  IR_decode_shift     <= IR(17 downto 15) ?= "110";
  IR_decode_alu_reg   <= IR(17 downto 14) ?= "1110";
  IR_decode_jump      <= IR(17 downto 13) ?= "11110";
  IR_decode_branch    <= IR(17 downto 12) ?= "111110";
  IR_decode_misc      <= IR(17 downto 11) ?= "1111110";

  ...

end architecture rtl_unpipelined;

The control section is implemented as a state machine. The state diagram is shown in
Figure 22.6. In the transition conditions, the instruction classes shown in italics represent
the instruction decode signals, and the instruction names in italic represent values for the
function code fields of the instruction register. The term “int” represents the condition that
interrupts are enabled and the interrupt request input is active. We write the conditions in
this way in the diagram for brevity. They are written out in full in the VHDL code for the
state machine.

The state machine is represented by two processes, shown below. The control pro-
cess determines the next state value, and the state_reg process represents the register for
the current state. The state values are defined by the enumeration type control_state, each
of which corresponds to one of the cycles of instruction interpretation.

  control : process (all)
  begin
    case state is
      when fetch_state =>
        if not inst_ack_i then
          next_state <= fetch_state;
        else
          next_state <= decode_state;
        end if;



22.3 A Register-Transfer-Level Model 709

      when decode_state =>
        if IR_decode_branch or IR_decode_jump or IR_decode_misc then
          if IR_decode_misc
             and (IR_misc_fn ?= misc_fn_wait
                  or IR_misc_fn ?= misc_fn_stby)
             and not (int_en and int_req) then
            next_state <= decode_state;
          elsif int_en and int_req then
            next_state <= int_state;
          else
            next_state <= fetch_state;
          end if;
        else
          next_state <= execute_state;

FIGURE 22.6 

The state diagram for the control section.

fetch_state

decode_stateint_state

execute_state

mem_state

write_back_state

branch and not int
jump and not int
misc and not (wait or stby) and not int

branch and int
jump and int
misc and int

alu_immed
alu_reg
shift
mem

misc and (wait or stby) and not int

not inst_ack_i

mem and (ldm or stm) and not data_ack_i
mem and (inp or out) and not port_ack_i

mem and stm and data_ack_i and not int
mem and out and port_ack_i and not int

stm and data_ack_i and not int
out and port_ack_i and not int

stm and data_ack_i and int
out and port_ack_i and int

not int

int

mem and stm and data_ack_i and int
mem and out and port_ack_i and int

(ldm or stm) and not data_ack_i
(inp or out) and not port_ack_i

mem and ldm and data_ack_i
mem and inp and port_ack_i
not mem

ldm and data_ack_i
inp and port_ack_i

inst_ack_i



710 Chapter 22 — Case Study: System Design Using the Gumnut Core

        end if;
      when execute_state =>
        if IR_decode_mem then
          if (IR_mem_fn ?= mem_fn_ldm or IR_mem_fn ?= mem_fn_stm)
             and not data_ack_i then
            next_state <= mem_state;
          elsif (IR_mem_fn ?= mem_fn_inp or IR_mem_fn ?= mem_fn_out)
                and not port_ack_i then
            next_state <= mem_state;
          elsif IR_mem_fn ?= mem_fn_ldm
                or IR_mem_fn ?= mem_fn_inp then
            next_state <= write_back_state;
          else
            if int_en and int_req then
              next_state <= int_state;
            else
              next_state <= fetch_state;
            end if;
          end if;
        else
          next_state <= write_back_state;
        end if;
      when mem_state =>
        if (IR_mem_fn ?= mem_fn_ldm or IR_mem_fn ?= mem_fn_stm)
           and not data_ack_i then
          next_state <= mem_state;
        elsif (IR_mem_fn ?= mem_fn_inp or IR_mem_fn ?= mem_fn_out)
              and not port_ack_i then
          next_state <= mem_state;
        elsif IR_mem_fn ?= mem_fn_ldm
              or IR_mem_fn ?= mem_fn_inp then
          next_state <= write_back_state;
        else
          if int_en and int_req then
            next_state <= int_state;
          else
            next_state <= fetch_state;
          end if;
        end if;
      when write_back_state =>
        if int_en and int_req then
          next_state <= int_state;
        else
          next_state <= fetch_state;
        end if;
      when int_state =>
        next_state <= fetch_state;



22.3 A Register-Transfer-Level Model 711

    end case;
  end process control;

  state_reg : process (clk_i)
  begin
    if rising_edge(clk_i) then
      if rst_i then
        state <= fetch_state;
      else
        state <= next_state;
      end if;
    end if;
  end process state_reg;

Upon reset, the state machine enters fetch_state. In this state, the processor performs
a read operation on the instruction memory bus. The state machine remains in fetch_state
until the bus acknowledge signal is asserted, after which it transitions to decode_state.

In decode_state, the processor decodes the instruction in the instruction register and
fetches register operands. It also computes the next PC value for branch, jump, and return
instructions. For wait and stby instructions, the machine stays in decode_state until an
interrupt is pending, after which it transitions to int_state. For branch, jump, and the re-
maining miscellaneous statements, the decode_state cycle completes their execution. The
state machine transitions either to int_state if an interrupt is pending, or back to
fetch_state otherwise. For all other instructions, there is further work to do, so the state
machine transitions to execute_state.

In execute_state, the processor uses the ALU to compute an arithmetic/logical result
or an effective address. For non-memory-I/O instructions, the state machine then transi-
tions to write_back_state to update the register file. For memory-I/O instructions, a fast
memory or I/O controller may be able to complete the operation in the same cycle as that
in which the address is calculated. If so, it asserts its acknowledge signal in that cycle, and
the state machine transitions to write_back_state (for ldm and inp instructions, requiring
a register to be updated), to int_state (for stm and out instructions if an interrupt is pend-
ing), or back to fetch_state otherwise. A slower memory or I/O controller, on the other
hand, requires one or more extra cycles, so it leaves its acknowledge signal negated. In
that case, the state machine transitions to mem_state.

In mem_state, the state machine waits for the relevant acknowledge signal to be as-
serted. It then makes similar transitions to those described for memory-I/O instructions
from execute_state.

In write_back_state, the processor updates the register file with the result of an arith-
metic/logical, shift, ldm, or inp instruction. The state machine then transitions either to
int_state, if an interrupt is pending, or to fetch_state otherwise.

The state machine transitions to int_state in order to acknowledge a pending inter-
rupt. The processor asserts the int_ack signal for one cycle in this state. After that, the state
machine transitions back to fetch_state so that the first instruction of the interrupt handler
can be fetched.

The next statement in the RTL architecture body represents the combinational logic
for the branch condition decoder:



712 Chapter 22 — Case Study: System Design Using the Gumnut Core

  with IR_branch_fn select
    branch_taken <=     cc_Z when branch_fn_bz,
                    not cc_Z when branch_fn_bnz,
                        cc_C when branch_fn_bc,
                    not cc_C when branch_fn_bnc,
                    'X'      when others;

This assignment simply uses the branch function field of the instruction in the IR to deter-
mine which condition code (or negation) decides the branch outcome.

The following process represents the program counter and its input combinational
logic:

  PC_reg : process (clk_i)
  begin
    if rising_edge(clk_i) then
      if rst_i then
        PC <= (others => '0');
      elsif state = fetch_state and inst_ack_i = '1' then
        PC <= PC + 1;
      elsif state = decode_state then
        if IR_decode_branch and branch_taken then
          PC <= unsigned(signed(PC) + signed(IR_disp));
        elsif IR_decode_jump then
          PC <= IR_addr;
        elsif IR_decode_misc and IR_misc_fn ?= misc_fn_ret then
          PC <= stack_top;
        elsif IR_decode_misc and IR_misc_fn ?= misc_fn_reti then
          PC <= int_PC;
        end if;
      elsif state = int_state then
        PC <= to_unsigned(1, PC'length);
      end if;
    end if;
  end process PC_reg;

A synthesis tool will infer storage to drive the PC signal. On reset, the process clears
the PC to 0, the address at which execution commences. When the control section is in
fetch_state and the instruction memory acknowledges completion of the read operation,
the process increments the PC ready for the next instruction. When the control section is
in decode_state, the action taken by the process depends on the kind of instruction in the
IR. If it is a branch instruction that is taken, the process adds the branch displacement to
the PC. If the instruction is a jump, the process updates the PC with the target address. For
a return instruction, the process updates the PC with the value on the top of the return
address stack, and for a return from interrupt, the process updates the PC from the inter-
rupt register.

The statements representing the interrupt register and associated logic is

  int_ack <= '1' when state = int_state else '0';



22.3 A Register-Transfer-Level Model 713

  int_reg : process (clk_i)
  begin
    if rising_edge(clk_i) then
      if rst_i then
        int_en <= '0';
      elsif state = int_state then
        int_PC <= PC;
        int_Z <= cc_Z;
        int_C <= cc_C;
        int_en <= '0';
      elsif state = decode_state and IR_decode_misc = '1' then
        case IR_misc_fn is
          when misc_fn_reti | misc_fn_enai =>
            int_en <= '1';
          when misc_fn_disi =>
            int_en <= '0';
          when others =>
            null;
        end case;
      end if;
    end if;
  end process int_reg;

The int_ack signal is asserted when the control section is in int_state, as described
earlier. For the int_reg process, a synthesis tool will infer storage for the driven signals,
int_en, int_PC, int_Z, and int_C. On reset, the process clears the interrupt enable signal.
When the control section is in int_state, the process saves the current PC and condition
code values. It also clears the interrupt enable signal to prevent further interrupts. When
the control section is in decode_state and the instruction in the IR is a miscellaneous in-
struction, the process may need to update the interrupt enable signal again. For reti and
enai instructions, it sets the signal; for disi instructions, it clears the signal; and for other
cases, it leaves the signal unchanged.

The statements representing the instruction memory bus interface and the instruction
register are

  inst_cyc_o <= '1' when state = fetch_state else '0';
  inst_stb_o <= '1' when state = fetch_state else '0';
  inst_adr_o <= PC;

  instr_reg : process (clk_i)
  begin
    if rising_edge(clk_i) then
      if state = fetch_state and inst_ack_i = '1' then
        IR <= unsigned(to_X01(inst_dat_i));
      end if;
    end if;
  end process instr_reg;



714 Chapter 22 — Case Study: System Design Using the Gumnut Core

The assignments to the inst_cyc_o and inst_stb_o signals cause a bus read to occur when
the control section is in fetch_state. The address for the read is the PC value. A synthesis
tool will infer a register for the instr_reg process driving the instruction register (IR) signal.
The process updates IR with the data returned by the instruction memory when it com-
pletes the read operation.

The process representing the return address stack, the stack pointer (SP) and the as-
sociated logic is

  stack_mem : process (clk_i)
    constant stack_depth : positive := 2**SP_length;
    subtype stack_index is natural range 0 to stack_depth - 1;
    type stack_array is array (stack_index) of IMem_addr;
    variable stack : stack_array;
  begin
    if rising_edge(clk_i) then
      if rst_i then
        SP <= (others => '0');
      elsif state = decode_state then
        if IR_decode_jump and IR_jump_fn ?= jump_fn_jsb then
          stack(to_integer(SP)) := PC;
          SP <= SP + 1;
        elsif IR_decode_misc and IR_misc_fn ?= misc_fn_ret then
          SP <= SP - 1;
        end if;
      end if;
      stack_top <= stack(to_integer(SP - 1));
    end if;
  end process stack_mem;

The storage for saved addresses is represented by the variable stack. A synthesis tool will
infer a memory for this and registers for the SP and the top-of-stack output. The SP points
to the next free location in the stack memory. On reset, the SP is cleared to 0. The stack
is updated when the control section is in decode_state, depending on the instruction be-
ing executed. For jsb instructions, the PC value (already incremented after fetching the jsb
instruction) is written to the next free stack location and the SP is incremented. For ret
instructions, the SP is decremented. Regardless of the instruction kind, the stack_top out-
put is updated with the memory location preceding the free location. Note that the old SP
value is used to index the top of stack, not the updated value. The assignments to the SP
take effect after the process suspends.

The process representing the general purpose register (GPR) file and its associated
logic is

  GPR_mem : process (clk_i)
    subtype reg_index is natural range 0 to 7;
    variable r2_addr : reg_addr;
    variable write_data : unsigned_byte;
    variable GPR : unsigned_byte_array(reg_index)
               := (others => X"00");



22.3 A Register-Transfer-Level Model 715

  begin
    if rising_edge(clk_i) then
      if rst_i then
        GPR := (others => (others => '0'));
      else
        if state = write_back_state and IR_rd /= 0 then
          if IR_decode_alu_reg or IR_decode_alu_immed
             or IR_decode_shift then
            write_data := ALU_out;
          elsif IR_decode_mem
                and (IR_mem_fn ?= mem_fn_ldm
                     or IR_mem_fn ?= mem_fn_inp) then
            write_data := D;
          end if;
          GPR(to_integer(IR_rd)) := write_data;
        end if;
        if state = decode_state then
          if IR_decode_mem 
             and (IR_mem_fn ?= mem_fn_stm
                  or IR_mem_fn ?= mem_fn_out) then
            r2_addr := IR_rd;
          else
            r2_addr := IR_r2;
          end if;
          GPR_rs <= GPR(to_integer(IR_rs));
          GPR_r2 <= GPR(to_integer(r2_addr));
        end if;
      end if;
    end if;
  end process GPR_mem;

The storage for the registers is represented by the variable GPR. A synthesis tool will infer
a memory for the register file with one write port and two read ports. It will infer registers
for the outputs GPR_rs and GPR_r2. However, it will not infer registers for the variables
r2_addr and write_data, as they are both used for intermediate values within any given
activation of the process. On reset, the process clears the GPR memory. When the control
section is in write_back_state and the destination register is other than r0, the process se-
lects the data to be written, depending on the instruction, and updates the GPR memory
location indexed by the rd field of the IR. For arithmetic/logical and shift instructions, the
data is taken from the ALU output register, and for memory load and I/O input instruc-
tions, the data is taken from the data input register. When the control section is in
decode_state, the process selects the register address for the r2 operand: either the rd
field of the IR, for memory store or I/O output instructions, or the r2 field, for other in-
structions. The process then reads the rs and r2 operands from the GPR memory.

The process representing the arithmetic/logic unit (ALU) and shift logic is



716 Chapter 22 — Case Study: System Design Using the Gumnut Core

  ALU : process (all)
    variable fn : alu_fn_code;
    variable right_operand : unsigned_byte;
    variable shift_result : unsigned_byte;
  begin
    if IR_decode_alu_reg or IR_decode_alu_immed
       or IR_decode_mem then
      if IR_decode_alu_reg then
        fn := IR_alu_reg_fn;
        right_operand := GPR_r2;
      elsif IR_decode_alu_immed then
        fn := IR_alu_immed_fn;
        right_operand := IR_immed;
      else
        fn := alu_fn_add;
        right_operand := IR_offset;
      end if;
      case fn is
        when alu_fn_add =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 + ('0' & right_operand);
        when alu_fn_addc =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 + ('0' & right_operand)
                                 + cc_C;
        when alu_fn_sub =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 - ('0' & right_operand);
        when alu_fn_subc =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 - ('0' & right_operand)
                                 - cc_C;
        when alu_fn_and =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 and ('0' & right_operand);
        when alu_fn_or =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 or ('0' & right_operand);
        when alu_fn_xor =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 xor ('0' & right_operand);
        when alu_fn_mask =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 and not ('0' & right_operand);
        when others =>
          (ALU_C, ALU_result) <= 'X'
                                 & unsigned_byte'(others => 'X');



22.3 A Register-Transfer-Level Model 717

      end case;
    else
      case IR_shift_fn is
        when shift_fn_shl =>
          (ALU_C, ALU_result) <= ('0' & GPR_rs)
                                 sll to_integer(IR_count);
        when shift_fn_shr =>
          (ALU_result, ALU_C) <= (GPR_rs & '0')
                                 srl to_integer(IR_count);
        when shift_fn_rol =>
          shift_result := GPR_rs rol to_integer(IR_count);
          ALU_result <= shift_result;
          ALU_C <= shift_result(unsigned_byte'right);
        when shift_fn_ror =>
          shift_result := GPR_rs ror to_integer(IR_count);
          ALU_result <= shift_result;
          ALU_C <= shift_result(unsigned_byte'left);
        when others =>
          (ALU_C, ALU_result) <= 'X'
                                 & unsigned_byte'(others => 'X');
      end case;
    end if;
  end process ALU;

  ALU_Z <= ALU_result ?= unsigned_byte'(others => '0');

A synthesis tool will infer combinational logic for this process, as it is sensitive to all
of the signals that are read (specified by all in the sensitivity list), and all variables are
assigned before being read on all paths through the statements. The process uses the in-
struction decode signals to determine whether to perform and arithmetic/logic operation
or a shift operation. For arithmetic register instructions, the process selects the
IR_alu_reg_fn field of the IR as the function code and the r2 GPR output as the right op-
erand. For arithmetic immediate instructions, the process selects the IR_alu_immed_fn field
of the IR as the function code and the IR_immed field of the IR as the right operand. For
memory and I/O instructions, the process uses alu_fn_add as the function code and the
IR_offset field of the IR as the right operand. It then performs the operation indicated by
the function code. The statements are largely the same as those in the behavioral model.
For shift instructions, the process performs the operation indicated by the IR_shift_fn field
of the IR, again using statements that are largely the same as those in the behavioral model.
For all instructions, the concurrent assignment to ALU_Z compares the ALU result with 0
to detemine the condition value.

The ALU result and condition values are stored in registers inferred by a synthesis tool
from the following processes:

  ALU_reg : process (clk_i)
  begin
    if rising_edge(clk_i) then
      if state = execute_state then



718 Chapter 22 — Case Study: System Design Using the Gumnut Core

        ALU_out <= ALU_result;
      end if;
    end if;
  end process ALU_reg;

  cc_reg : process (clk_i)
  begin
    if rising_edge(clk_i) then
      if rst_i then
        cc_Z <= '0';
        cc_C <= '0';
      elsif state = execute_state
            and (IR_decode_alu_reg = '1'
                 or IR_decode_alu_immed = '1'
                 or IR_decode_shift = '1') then
        cc_Z <= ALU_Z;
        cc_C <= ALU_C;
      elsif state = decode_state
            and IR_decode_misc = '1'
            and IR_misc_fn = misc_fn_reti then
        cc_Z <= int_Z;
        cc_C <= int_C;
      end if;
    end if;
  end process cc_reg;

The ALU_reg process updates the ALU output register whenever the control section is
in execute_state. The cc_reg process, representing the condition-code register, is
somewhat more involved. On reset, it clears the condition codes to ‘0’. When the control
section is in execute_state and an arithmetic/logical or shift instruction is being executed,
the process updates the condition codes with the outputs from the ALU. When the control
section is in decode_state and an reti instruction is being executed, the process restores
the saved condition codes from the interrupt register.

The statements representing the memory and I/O data register are

  D_state <= '1' when (state = execute_state or state = mem_state)
                         and IR_decode_mem = '1' else '0';

  D_reg : process (clk_i)
  begin
    if rising_edge(clk_i) then
      if D_state and IR_mem_fn ?= mem_fn_ldm and data_ack_i then
        D <= unsigned(data_dat_i);
      elsif D_state and IR_mem_fn ?= mem_fn_inp and port_ack_i then
        D <= unsigned(port_dat_i);
      end if;
    end if;
  end process D_reg;



22.3 A Register-Transfer-Level Model 719

The D_state signal is asserted when the processor is performing a memory or I/O bus
operation, namely, when the control section is in execute_state or mem_state and the in-
struction in the IR is a memory-I/O instruction. This signal is used in the enable condition
of the data register, represented by the D_reg process. A synthesis tool will infer a register
driving the D signal. When D_state is asserted, the instruction in the IR is ldm, and the
data memory has completed the data read, the process updates D with the memory data.
Similarly, when D_state is asserted, the instruction in the IR is inp, and the I/O controller
has completed the port read, the process updates D with the port data.

The remaining assignments represent the rest of the data memory and I/O bus inter-
faces:

  data_cyc_o <= D_state and (IR_mem_fn ?= mem_fn_stm
                             or IR_mem_fn ?= mem_fn_ldm);
  data_stb_o <= D_state and (IR_mem_fn ?= mem_fn_stm
                             or IR_mem_fn ?= mem_fn_ldm);
  data_we_o  <= D_state and IR_mem_fn ?= mem_fn_stm;

  data_adr_o <= ALU_result;
  data_dat_o <= std_ulogic_vector(GPR_r2);

  port_cyc_o <= D_state and (IR_mem_fn ?= mem_fn_inp
                             or IR_mem_fn ?= mem_fn_out);
  port_stb_o <= D_state and (IR_mem_fn ?= mem_fn_inp
                             or IR_mem_fn ?= mem_fn_out);
  port_we_o  <= D_state and IR_mem_fn ?= mem_fn_out;

  port_adr_o <= ALU_result;
  port_dat_o <= std_ulogic_vector(GPR_r2);

The data_cyc_o and data_stb_o signals are asserted when the processor performs a
memory bus operation. The data_we_o signal is only asserted for an stm instruction. The
address for a data bus operation is the value previously computed by the ALU, and the
data is the value fetched from the GPR register file. The assignments for the I/O bus in-
terface are similar.

The final process, shown below, monitors operation of the processor core and writes
debug trace messages.

  debug_monitor : if debug generate

    debugger : process
      use std.textio.all;
      variable disassembled_instr : disassembled_instruction;
      variable debug_line : line;
      variable PC_num : natural;
    begin
      wait until rising_edge(clk_i);
      loop
        if rst_i then
          swrite(debug_line, "Resetting");
          writeline(output, debug_line);



720 Chapter 22 — Case Study: System Design Using the Gumnut Core

          wait until rising_edge(clk_i) and rst_i = '0';
          next;
        elsif state = fetch_state then
          PC_num := to_integer(PC);
        elsif state = decode_state then
          disassemble(IR, disassembled_instr);
          write(debug_line, PC_num,
                field => 4, justified => right);
          swrite(debug_line, ": ");
          write(debug_line, disassembled_instr);
          writeline(output, debug_line);
          wait until rising_edge(clk_i)
            and (rst_i ='1' or state /= decode_state);
          next;
        elsif state = int_state then
          PC_num := to_integer(PC);
          swrite(debug_line, "Interrupt acknowledged at PC = ");
          write(debug_line, PC_num,
                field => 4, justified => right);
          writeline(output, debug_line);
        end if;
        wait until rising_edge(clk_i);
      end loop;
    end process debugger;

  end generate debug_monitor;

The enclosing generate statement ensures that the process is only included if the de-
bug generic is true. The process writes messages when the Gumnut is reset, when an in-
terrupt is acknowledged, and when an instruction has been fetched into the IR. The output
produced is similar to that produced by the behavioral model.

22.3.2 Verifying the RTL Model

We can test our register-transfer-level model using the same test bench that we used to
test the behavioral model, as described in Section 22.2.3. We need to modify the configu-
ration declaration for the test bench to bind the register-transfer-level implementation to
the processor component in the test bench. The revised configuration declaration is

configuration test_gumnut_rtl_unpipelined of test is
  for gumnut

    for dut : gumnut_with_mem
      use entity work.gumnut_with_mem(struct);
      for struct
        for core : gumnut
          use entity work.gumnut(rtl_unpipelined)
            generic map ( debug => true );      



22.4 A Digital Alarm Clock 721

        end for;
      end for;
    end for;

  end for;
end configuration test_gumnut_rtl_unpipelined;

We can then run our simulator, specifying the new configuration as the unit to simu-
late, to test the register-transfer-level model in the same way as we tested the behavioral
model. The sequence of operations should be the same. The only observable difference
should be that the CPU takes longer to execute each instruction. This is because our
register-transfer-level model accurately describes the cycle-by-cycle operation of the pro-
cessor.

22.4 A Digital Alarm Clock

In this section we design a digital alarm clock based on the Gumnut as an illustration of
a design flow for a complete embedded processor system. We will focus on the hardware
design aspects using VHDL, and refer to details of the embedded software design on the
companion website. We start with a statement of functional requirements.

Our alarm clock shall have four 7-segment LED digits for displaying the clock time
and the alarm time in 24-hour format. The clock shall have four push-button switches:

• Alarm set: When this button is held on, the alarm time can be advanced.

• Time set: When this button is held on, the clock time can be advance.

• Hours advance: When this button is pressed once, the hours of the alarm time or clock
time are advanced by one. Whe the button is pressed and held, the hours of the alarm
time or clock time are advanced at a a rate of four per second.

• Minutes advance: This button is similar to the hours advance button, but advances the
minutes of the alarm time or clock time instead of the hours.

When both the hours advance and minutes advance buttons are pressed while the
alarm set or time set button is held on, the alarm time or clock time, respectively, is reset
to midnight. When neither the alarm set nor the time set button is held on, the hours ad-
vance and minutes advance buttons have no effect.

The clock shall have a two-position switch that enables or disables the alarm, and a
LED indicator that shows whether the alarm is enabled. The clock shall also have an out-
put that activates a sounder when the alarm is triggered. (The output could also activate
an alternate device, such as a radio or CD player.) The alarm is triggered when the clock
time equals the alarm time, provided that the alarm is enabled and neither the clock time
nor the alarm time is being set.

These requirements may appear to be quite precise and complete, but as we will see
as we proceed through the design, there are some details that are unspecified. We will
need to make assumptions based on our common sense and understanding of what a dig-
ital alarm clock should do. This is not unusual in system design.



722 Chapter 22 — Case Study: System Design Using the Gumnut Core

22.4.1 System Design

For the purpose of this case study, we will describe an implementation of the digital alarm
clock using an FPGA development board. The author used a Xilinx Spartan-3 starter board
with four 7-segment displays, four push buttons, eight 2-position slider switches and eight
discrete LEDs. One of the slider switches serves as the alarm enable switch, and one dis-
crete LED serves for the alarm enable indicator. Another discrete LED serves in place of
the alarm sounder output.

We start our system design by considering the hardware/software trade-off. We could
implement the design entirely in hardware. However, that may not be the most effective,
since the clock would need numerous counters, multiplexers and comparators. Since an
FPGA includes block memories that can be used for program and data storage, we may
be able to fit an implementation based on an embedded processor into a smaller FPGA
than would be needed for a hardware implementation. Moreover, developing and main-
taining software can be simpler than hardware, so there may be non-technical benefits to
an embedded processor implementation. For this case study, we will focus on an imple-
mentation that uses an embedded Gumnut core for nearly all of the functionality, and
leave comparison with a hardware implementation to an exercise.

Figure 22.7 shows a block diagram of the alarm clock system. It includes

• The Gumnut core, driven by an externally generated 50MHz clock.

• An input port for the push buttons (pb(3 downto 0)).

• An input button for the slider switches (sw(7 downto 0)).

• A registered output port for the digit anode drivers (digit(3 downto 0)).

• A register output port for the digit segment drivers (seg(7 downto 0)). Seg(0) is seg-
ment a, seg(1) is segment b, etc., and seg(7) is the decimal point.

• A registered output port for the discrete LEDs (led(7 downto 0)).

FIGURE 22.7 

A block diagram of the digital alarm clock using an embedded Gumnut core.

Gumnut
core

÷50 timer

digit

seg

led

int_req

clk_1MHz
clk

pb
sw



22.4 A Digital Alarm Clock 723

• An output port for a programmable timer for generating periodic interrupts. The timer
is driven by a 1 MHz clock divided down from the external clock and has a register
to store the divisor written by the processor. The timer repeatedly counts down from
the divisor value and generates an interrupt upon reaching 0.

An entity declaration for the alarm clock is shown below. It includes a debug generic
constant for use in simulation and ports corresponding to the external connection shown
in the block diagram.

library ieee;
use ieee.std_logic_1164.all;

entity alarm_clock is
  generic ( debug : boolean := false );
  port ( clk : in std_ulogic;
         pb : in std_ulogic_vector(3 downto 0);
         sw : in std_ulogic_vector(7 downto 0);
         led : out std_ulogic_vector(7 downto 0);
         digit : out std_ulogic_vector(3 downto 0);
         seg : out std_ulogic_vector(7 downto 0) ); 
end entity alarm_clock ;

The synthesizable architecture body for the alarm clock is based on the block diagram:

library ieee; use ieee.numeric_std.all;

architecture synth of alarm_clock is

  component gumnut_with_mem is
    generic ( debug : boolean := false );
    port ( clk_i : in std_ulogic;
           rst_i : in std_ulogic;
           port_cyc_o : out std_ulogic;
           port_stb_o : out std_ulogic;
           port_we_o : out std_ulogic;
           port_ack_i : in std_ulogic;
           port_adr_o : out unsigned(7 downto 0);
           port_dat_o : out std_ulogic_vector(7 downto 0);
           port_dat_i : in std_ulogic_vector(7 downto 0);
           int_req : in std_ulogic;
           int_ack : out std_ulogic );
  end component gumnut_with_mem;

  signal reset : std_ulogic;

  signal port_cyc_o : std_ulogic;
  signal port_stb_o : std_ulogic;
  signal port_we_o : std_ulogic;
  signal port_ack_i : std_ulogic;
  signal port_adr_o : unsigned(7 downto 0);



724 Chapter 22 — Case Study: System Design Using the Gumnut Core

  signal port_dat_o : std_ulogic_vector(7 downto 0);
  signal port_dat_i : std_ulogic_vector(7 downto 0);
  signal int_req : std_ulogic;
  signal int_ack : std_ulogic;

  signal pb_synch : std_ulogic_vector(pb'range);
  signal sw_synch : std_ulogic_vector(sw'range);
  signal clk_1MHz : std_ulogic;

begin

  -- reset generation

  reset_gen : reset <= '0';

  -- processor core

  core : gumnut_with_mem
    generic map ( debug => debug )
    port map ( clk_i => clk,
               rst_i => reset,
               port_cyc_o => port_cyc_o,
               port_stb_o => port_stb_o,
               port_we_o => port_we_o,
               port_ack_i => port_ack_i,
               port_adr_o => port_adr_o,
               port_dat_o => port_dat_o,
               port_dat_i => port_dat_i,
               int_req => int_req,
               int_ack => int_ack );

  port_ack_i <= '1';

  -- input port:
  --   push buttons 1 and 0 when port_addr = "-------0"
  --   switches when port_addr = "-------1"

  synch : process ( clk )
    variable pb_tmp : std_ulogic_vector(pb'range);
    variable sw_tmp : std_ulogic_vector(sw'range);
  begin
    if rising_edge(clk) then
      pb_synch <= pb_tmp;
      sw_synch <= sw_tmp;
      pb_tmp := pb;
      sw_tmp := sw;
    end if;
  end process synch;  

  with port_adr_o(0) select
    port_dat_i <= "0000" & pb_synch when '0',



22.4 A Digital Alarm Clock 725

                  sw_synch when '1',
                  "XXXXXXXX" when others;

  -- digit output port register (port_addr = "-------1")

  digit_reg : process (clk)
  begin
    if rising_edge(clk) then
      if reset = '1' then
        digit <= "1111";
      elsif port_cyc_o = '1' and port_stb_o = '1'
            and port_we_o = '1' and port_adr_o(0) = '1' then
        digit <= not port_dat_o(3 downto 0);
      end if;
    end if;
  end process digit_reg;

  -- segment output port register (port_addr = "------1-")

  seg_reg : process (clk)
  begin
    if rising_edge(clk) then
      if reset = '1' then
        seg <= "11111111";
      elsif port_cyc_o = '1' and port_stb_o = '1'
            and port_we_o = '1' and port_adr_o(1) = '1' then
        seg <= not port_dat_o;
      end if;
    end if;
  end process seg_reg;

  -- led output port register (port_addr = "-----1--")

  led_reg : process (clk, reset)
  begin
    if rising_edge(clk) then
      if reset = '1' then
        led <= "00000000";
      elsif port_cyc_o = '1' and port_stb_o = '1'
            and port_we_o = '1' and port_adr_o(2) = '1' then
        led <= port_dat_o;
      end if;
    end if;
  end process led_reg;

  -- divide 50MHz clock down to 1MHz

  div_50 : process (clk)
    variable count : integer range 0 to 49;
  begin
    if rising_edge(clk) then



726 Chapter 22 — Case Study: System Design Using the Gumnut Core

      if reset = '1' then
        clk_1MHz <= '0';
        count := 49;
      elsif count = 0 then
        count := 49;
        clk_1Mhz <= '1';
      else
        count := count - 1;
        clk_1Mhz <= '0';
      end if;
    end if;      
  end process div_50;

  -- timer (port_addr = "----1---")

  timer : process (clk)
    variable divisor, count : unsigned(7 downto 0);
  begin
    if rising_edge(clk) then
      if reset = '1' then
        divisor := X"00";
        count := X"00";
        int_req <= '0';
      elsif port_cyc_o = '1' and port_stb_o = '1'
            and port_we_o = '1' and port_adr_o(3) = '1' then
        divisor := unsigned(port_dat_o);
        count := divisor;
      elsif clk_1MHz = '1' then
        if count = 0 then
          int_req <= '1';
          count := divisor;
        else
          count := count - 1;
        end if;
      end if;
      if int_ack = '1' then
        int_req <= '0';
      end if;
    end if;
  end process timer;

end architecture synth;

The architecture includes a component declaration for the Gumnut core with instruc-
tion and data memories, described in Section 22.1.2, and an instance of the component.
We will rely on the default binding rules to bind the Gumnut entity and architecture to the
instance, rather than using a configuration, since not all synthesis tools support use of con-
figurations. The reset input to the core is tied to ‘0’, since we don’t need an external reset



22.4 A Digital Alarm Clock 727

in this design. The port_ack_i input is tied high, since all input/output ports transfer data
in a single cycle.

The input ports are represented by the process synch and the combinational assign-
ment statement. The process synchronizes the push button and switch inputs with the sys-
tem clock to avoid problems with metastability that might arise from input changes close
to a clock-edge. The combinational assignment simply selects between the synchronized
push button and switch inputs, based on the port address bus from the Gumnut. The reg-
istered output ports for the digit, segment and LED drivers are represented by the
processes digit_reg, seg_reg and led_reg, respectively. The digit and segment registers
both invert the data, since the circuits on the development board illuminate the display
when the driver outputs are low. The circuits for the discrete LEDs, on the other hand,
illuminate the LEDs when the driver outputs are high, so the LED register does not not
invert the data.

The div_50 process represents the clock divider. It generates a one-cycle pulse on
clk_1MHz whenever the count variable reaches 0. The timer process represents the pro-
grammable timer. It has variables for the divisor written by the processor and for the down
counter. When the clk_1MHz signal is pulsed, the timer decrements the counter. Upon
reaching 0, the int_req signal is activated and the counter reloaded with the divisor. When
the int_ack signal is activated, the int_req signal is cleared.

While the alarm clock entity and architecture body describe the main hardware re-
quired for the system, they do not deal with the specific electrical interface for the FPGA
pins. We describe that information in a top-level entity and architecture, as follows:

library ieee;
use ieee.std_logic_1164.all;

entity alarm_clock_top is
  generic ( debug : boolean := false );
  port ( clk50in : in std_ulogic;
         pb_in : in std_ulogic_vector(3 downto 0);
         sw_in : in std_ulogic_vector(7 downto 0);
         led_out : out std_ulogic_vector(7 downto 0);
         digit_out : out std_ulogic_vector(3 downto 0);
         seg_out : out std_ulogic_vector(7 downto 0) );
end entity alarm_clock_top ;

----------------------------------------------------------------

library unisim;
use unisim.vcomponents.all ;

architecture struct of alarm_clock_top is

  signal clkint : std_ulogic;
  signal clk : std_ulogic;

  signal pb : std_ulogic_vector(pb_in'range);
  signal sw : std_ulogic_vector(sw_in'range);
  signal led : std_ulogic_vector(led_out'range);



728 Chapter 22 — Case Study: System Design Using the Gumnut Core

  signal digit : std_ulogic_vector(digit_out'range);
  signal seg : std_ulogic_vector(seg_out'range);

  component alarm_clock is
    generic ( debug : boolean := false );
    port ( clk : in std_ulogic;
           pb : in std_ulogic_vector(3 downto 0);
           sw : in std_ulogic_vector(7 downto 0);
           led : out std_ulogic_vector(7 downto 0);
           digit : out std_ulogic_vector(3 downto 0);
           seg : out std_ulogic_vector(7 downto 0) );
  end component alarm_clock ;

begin

  -- input/output and clock buffers

  clkin_ibuf : component ibufg_lvcmos33
    port map ( i => clk50in, o => clkint );

  clk_bufg : component bufg
    port map ( i => clkint, o => clk ) ;

  pb_buf_gen : for i in 0 to 3 generate
    pb_buf : component ibuf_lvcmos33
      port map ( i => pb_in(i), o => pb(i) );
  end generate pb_buf_gen;

  sw_buf_gen : for i in 0 to 7 generate
    sw_buf : component ibuf_lvcmos33
      port map ( i => sw_in(i), o => sw(i) );
  end generate sw_buf_gen;

  led_buf_gen : for i in 0 to 7 generate
    led_buf : component obuf_lvcmos33
      port map ( i => led(i),   o => led_out(i) );
  end generate led_buf_gen;

  digit_buf_gen : for i in 0 to 3 generate
    digit_buf : component obuf_lvcmos33
      port map ( i => digit(i), o => digit_out(i) );
  end generate digit_buf_gen;

  seg_buf_gen : for i in 0 to 7 generate
    seg_buf : component obuf_lvcmos33
      port map ( i => seg(i),   o => seg_out(i) );
  end generate seg_buf_gen;

  -- the alarm clock core

  alarm_clock_core : alarm_clock
    generic map ( debug => debug )



22.4 A Digital Alarm Clock 729

    port map ( clk => clk, pb => pb, sw => sw,
               led => led, digit => digit, seg => seg );

end architecture struct;

The entity is much the same as that described earlier. The architecture declares a com-
ponent for the alarm clock internal hardware and instantiates it. The main purpose of the
architecture, however, is to instantiate pin buffers connected between the internal
hardware signals and the FPGA pins. The component declarations for the buffers are
drawn from the package vcomponents in library unisim, supplied by the FPGA vendor.
The pins are programmed to use 3.3V low-voltage CMOS electrical levels, specified using
the ibuf_lvcmos33 input buffer components and the obuf_lvcmos33 components. The
buffered clock signal, clkint, is further buffered using a bufg component, which drives a
global clock tree on the FPGA. These buffer components are all recognized by the FPGA
vendor’s synthesis and mapping tools. Documentation on use of the buffers and sample
models illustrating their use are provided by the vendor.

The hardware we have described so far simply provides an interface to the alarm
clock’s “user interface.” Most of the functionality of the alarm clock is implemented by the
embedded software that runs on the Gumnut core. Since we are focusing on the hardware
using VHDL in this book, we do not describe the software here. The complete design
suite, including the software source code, documentation and tools, is available on the
companion website.

22.4.2 Synthesizing and Implementing the Alarm Clock

Now that we have a synthesizable description of the alarm clock, we outline the steps
needed to implement it in our FPGA development board. We make use of a number of
tools provided by the FPGA vendor, and an assembler for the Gumnut. The basic tool flow
is illustrated in Figure 22.8. The inputs to the tool flow are the assembler source code for
the emedded software, the VHDL source files, and a constraints file created using a con-
straints editor program. The constraints include a requirement that the clock frequency be
50 MHz. They also include placement of input and output pins based on the physical con-
nections of FPGA pins to circuits on the development board. These connections are de-
scribed in the documentation for the development board.

Implementation commences with assembly of the software code. The Gumnut assem-
bler produces two memory data files, one for the program memory image and one for the
data memory image. Next, the VHDL files are used by the synthesis tool to generate a low-
level representation of the system. The representation also makes use of specialized hard-
ware resources provided by the target FPGA, such as block memories and carry-chains.
The mapping tool allocates each of the elements in the low-level representation to specific
hardware resources in the target FPGA. The place and route tool then decides which logic
blocks, memories and routing connections in the FPGA are used for the hardware resourc-
es. This tool makes use of the constraints to ensure that the inputs and outputs are prop-
erly connected and that delays do not exceed the maximum specified. The output of the
place and route tool is a database (the .ncd file) containing detailed information about
how the design is implemented in the FPGA.



730 Chapter 22 — Case Study: System Design Using the Gumnut Core

Two tools use the database to generate further information. The static timing analysis
tool uses a timing model of the internal paths of the FPGA to determine the delays in the
placed and routed design. It predicts that the mimimum clock period for correct operation
is 16.989 ns, corresponding to a maximum clock frequency of 58.862 MHz. This is well
within the specified clock constraint, so no tuning of the implementation is needed. Were
the constraint violated, we could use the tools to identify critical paths and add constraints
to guide the tools toward a faster implementation. Alternatively, we could modify the
VHDL code to avoid implying hardware with long delays. For example, we could reduce
the complexity of combinational logic that processes data between clock-edges.

The second tool that uses the database is the bit-file generator. It creates a file con-
taining information needed to program the target FPGA. In a manufactured design, the bit
file would be stored in a flash memory and used to configure the FPGA upon power-up.
For our development board, the programmer tool uses a JTAG interface to configure the
FPGA from the bit file. Once the FPGA is configured, it commences operation, with the

FIGURE 22.8 

Tool flow for implementing the alarm clock design.

Synthesis 

Assembler 

.vhd .dat

.gsm

.pcf 

Report .ncd 

.bit 

Mapping 

Static Timing 

Place & Route 

Programmer 

Gen Bit File 

FPGA 



Exercises 731

Gumnut executing the embedded software. The development board becomes a digital
alarm clock.

Of course, it is unrealistic to expect to write the VHDL code and embedded software,
implement it and have it work correctly first time. For that reason, the flow described
above is idealized. In practice, the author developed the alarm clock model and the em-
bedded software incrementally. First, the hardware was developed and simulated using a
simple test bench that verified correct operation of the timer. Development of the software
started with the interrupt service routine and the periodic task dispatcher. That was fol-
lowed by code to drive each of the input and output interfaces. The tasks for scanning
digits, debouncing buttons and switches, setting the alarm and time values using the but-
tons, counting the clock time, and managing the alarm function were each added and
tested in turn. The behavior of this system is sufficiently simple that debugging could be
done by careful code review and by deduction from details of malfunction. An alternative
would be to use embedded monitoring hardware that can be automatically inserted into
the design using the FPGA vendor’s tools.

Exercises

1. [➊ 22.1] Determine the encoding for the following Gumnut instructions:

a. sub r2, r1, r0

b. and r4, r4, 0x30

c. ror r1, r1, 2

d. ldm r6, (r2)–1

e. out r4, 0x10

f. bz +7

g. jsb 0xD0

2. [➊ 22.1] What Gumnut instructions are encoded by the following 18-bit hexadecimal
values?

a. 0DBC0

b. 38326

c. 33D63

d. 25906

e. 3EC11

f. 3DC70

g. 3F200

3. [➍ 22.2] Develop a “bus functional” architecture body for the Gumnut core. Rather
than fetching and interpreting instructions, the model reads a file of commands. A
“bus-transaction” command specifies a time at which a bus transaction is to be



732 Chapter 22 — Case Study: System Design Using the Gumnut Core

initiated by the CPU and includes the address and transaction kind (instruction fetch,
data read or write, or I/O port read or write). The time is a delay from completion of
the previous command. An “intack” command causes the model to activate the int_ack
port for one clock cycle. An “include” command causes the model to process a sub-
sidiary command file. Note that the subsidiary file may also contain nested include
commands. When the CPU reset port is activated, the model terminates command pro-
cessing and resets the bus signals. When reset is removed, the model resumes pro-
cessing the command file from the beginning.

4. [➍ 22.3] Develop a pipelined implementation of the Gumnut core. Implement the in-
struction fetch, decode, execute, memory, and write back operations as separate pipe-
line stages.

5. [➍ 22.4] Synthesize and implement the alarm clock design using an FPGA develop-
ment board.

6. [➍] Develop I/O controllers to interface with the Gumnut core. Possibilities include a
serial input/output UART, parallel input/output, USB interface, I2C interface, analog-
to-digital and digital-to-analog converters, real-time clock/calendar, and so on. You
may wish to contribute your designs to the OpenCores repository at
www.opencores.org.

www.opencores.org


733

Chapter 23 

Miscellaneous Topics

In the preceding chapters we introduced most of the facilities provided by VHDL and
showed how they may be used to model a variety of hardware systems at various levels
of detail. However, there remain a few VHDL facilities that we have not yet discussed. In
this chapter, we tie off these loose ends.

23.1 Guards and Blocks

In this section we look at a number of closely related topics. First, we discuss another kind
of resolved signal called a guarded signal. We see how we can disconnect drivers from
such signals. Next, we introduce the idea of blocks in a VHDL design. We show how
blocks and guarded signals work together with guards and guard expressions to cause
automatic disconnection of drivers. Finally, we discuss blocks as a mechanism for describ-
ing a hierarchical structure within an architecture. While these aspects of VHDL may be
useful in some designs, they are not widely used. Hence, we have deferred consideration
of the features to this chapter.

23.1.1 Guarded Signals and Disconnection

In Chapter 8 we saw how we can use resolved signals that include values such as ‘Z’ for
modeling high-impedance outputs. However, if we are modeling at a higher level of ab-
straction, we may wish to use a more abstract type such as an integer type or a simple bit
type to represent signals. In such cases, it is not appropriate to include the high-
impedance state as a value, so VHDL provides us with an alternative approach, using
guarded signals. These are resolved signals for which we can disconnect the drivers; that
is, we can cause the drivers to stop contributing values to the resolved signal. We see why
these signals are called “guarded” later in this section. First, let us look at the complete
syntax rule for a signal declaration, which includes a means of declaring a signal to be
guarded.



734 Chapter 23 — Miscellaneous Topics

signal_declaration ⇐
signal identifier { , … } : subtype_indication [ register I bus ]

[ := expression ] ;

The difference between this rule and the simplified rule we introduced earlier is the
inclusion of the option to specify the signal kind as either a register signal or a bus signal.
Note that a guarded signal must be a resolved signal. Hence, the subtype indication in the
signal declaration must denote a resolved subtype. Some examples of declarations of
guarded signals are

signal interrupt_request : pulled_up bit bus;

signal stored_state : resolve_state state_type register
         := init_state;

The difference between the two kinds of guarded signals lies in their behavior when
all of their drivers are disconnected. A bus signal uses the resolution function to determine
the signal value by passing it an empty array. The bus kind of guarded signal can be used
to model a signal that is “pulled up” to some value dependent on the signal type when all
drivers are disconnected. A register signal, on the other hand, keeps the resolved value
that it had just before the last disconnection. The register kind of guarded signal can be
used to model signals with dynamic storage, for example, signals in CMOS logic that store
data as charge on transistor gates when all drivers are disconnected. Note that a signal may
be neither a register nor a bus signal, in which case it is a regular (unguarded) signal, from
which drivers may not be disconnected.

A process can disconnect a driver for a guarded signal by specifying a null transaction
in a signal assignment statement. As a reminder, the syntax rule we used to introduce a
signal assignment was

signal_assignment_statement ⇐
[ label : ] name <= [ delay_mechanism ] waveform ;

The waveform is a sequence of transactions, that is, new values to be applied to the signal
after given delays. A more complete syntax rule for waveforms includes null transactions:

waveform ⇐
( value_expression [ after time_expression ]

I null [ after time_expression ] ) { , … }

This rule shows that instead of specifying a value in a transaction, we can use the
keyword null to indicate that the driver should be disconnected after the given delay.
When this null transaction matures, the driver ceases to contribute values to the resolution
function used to compute the signal’s value. Hence the size of the array of values passed
as an argument to the resolution function is reduced by one for each driver that currently
has a null transaction determining its contribution. When a driver subsequently performs
a non-null transaction, it reconnects and contributes the value in the non-null transaction.



23.1 Guards and Blocks 735

EXAMPLE 23.1 Disconnection from a bus of type bit

Following is an outline of an architecture body for a computer system consisting of a
CPU, a memory and a DMA controller.

architecture top_level of computer_system is

  function resolve_bits ( bits : bit_vector ) return bit is
    variable result : bit := '0';
  begin
    for index in bits'range loop
      result := result or bits(index);
      exit when result;
    end loop;
    return result;
  end function resolve_bits;

  signal write_en : resolve_bits bit bus;
  ...

begin

  CPU : process is
    ...
  begin
    write_en <= '0' after Tpd;
    ...
    loop
      wait until clock;
      if hold_req then
        write_en <= null after Tpd;
        wait on clock until clock and not hold_req;
        write_en <= '0' after Tpd;
      end if;
      ...
    end loop;
  end process CPU;

  ...

end architecture top_level;

The architecture body includes a guarded signal of kind bus, write_en, represent-
ing a control connection to the memory. The resolution function performs the logical
“or” operation of all of the contributing drivers and returns ‘0’ if there are no drivers
connected. This result ensures that the memory remains inactive when neither the
CPU nor the DMA controller is driving the write_en control signal.

When the process representing the CPU is initialized, it drives write_en with the
value ‘0’. Subsequently, when the DMA controller requests access to the memory by
asserting the hold_req signal, the CPU schedules a null transaction on write_en. This



736 Chapter 23 — Miscellaneous Topics

transaction removes the CPU’s driver from the set of drivers contributing to the re-
solved value of write_en. Later, when the DMA controller negates hold_req, the CPU
reconnects its driver to write_en by scheduling a transaction with the value ‘0’.

EXAMPLE 23.2 Disconnection from a bus of type bit_vector

An outline of a register-transfer-level model of a processor, in which datapath ele-
ments are modeled by processes, is

architecture rtl of processor is

  subtype word is bit_vector(0 to 31);
  type word_vector is array (natural range <>) of word;

  function resolve_unique ( drivers : word_vector ) return word is
  begin
    return drivers(drivers'left);
  end function resolve_unique;

  signal source1, source2 : resolve_unique word register;
  ...

begin

  source1_reg : process (phase1, source1_reg_out_en, ...) is
    variable stored_value : word;
  begin
    ...
    if source1_reg_out_en and phase1 then
      source1 <= stored_value;
    else
      source1 <= null;
    end if;
  end process source1_reg;

  alu : perform_alu_op ( alu_opcode,
                         source1, source2, destination, ... );

  ...

end architecture rtl;

The datapath includes two register signals that represent the source operand con-
nections to the ALU. The source operand buses are register guarded signals driven by
processes during phase 1 of a clock cycle. They retain their values during phase 2. In
this design, only one process should drive each of these signals at a time. The reso-
lution function returns the single contributing value.

The process source1_reg represents one of the datapath elements that connects
to the source1 signal. When its output enable signal and the clock phase 1 signal are
both ‘1’, the process drives the signal with its stored value. The resolution function is



23.1 Guards and Blocks 737

passed an array of one element consisting of this driving value. It is applied to the
source1 signal and is used by the concurrent procedure call representing the ALU. At
the end of the clock phase, the process disconnects from source1 by scheduling a null
transaction. Since source1 is a register signal and all drivers are now disconnected,
the resolution function is not called, and source1 retains its value until some other
driver connects. This models a real system in which the operand value is stored as
electrical charge on the inputs of transistors in the ALU.

When we are dealing with guarded signals of a composite type such as an array type,
it is important to note that within each driver for the signal, all elements must be connected
or all must be disconnected. It is not permissible to disconnect some elements using a null
transaction and leave other elements connected. The reason for this rule is that the com-
plete composite value from each driver is passed as a contribution to the resolution func-
tion. For example, it is not possible to pass just half of a bit vector as an element in the
array of values to be resolved. Thus, given a guarded bit-vector signal declared as

subtype word is bit_vector(0 to 31);
type word_array is array (integer range <>) of word;

function resolve_words ( words : word_array ) return word;

signal s : resolve_words word bus;

we may not write the following signal assignments within one process:

s(0 to 15) <= X"003F" after T_delay;
s(16 to 31) <= null after T_delay;

If the design requires that only part of a composite driver be connected at some stages
during model execution, then the signal type must be a composite of individually resolved
elements, rather than a resolved composite type. This is similar to the requirement we dis-
cussed in Section 8.1.1.

In the above examples, we have assumed that a null transaction is scheduled after all
previously scheduled transactions have been applied. We have yet to consider how null
transactions are scheduled in the general case where there are still transactions pending
in the driver. In Section 5.2.5 we described in detail how the list of transactions previously
scheduled on a driver is edited when a signal assignment is executed. In particular, when
the inertial delay mechanism is used, transactions are deleted if their values differ from
that of the newly scheduled transaction. For the purpose of this editing algorithm, a null
transaction is deemed to have a value that is different from any value of the signal type.
Successive null transactions are deemed to have the same value.

The Driving Attribute

In addition to the 'driving_value attribute for signals that we saw in Chapter 8, VHDL also
provides an attribute, 'driving, that is useful with guarded signals. It returns true if the
driver in the process referring to the attribute currently has its driver connected to the sig-
nal. It returns false if the driver is disconnected. Of course, the attribute 'driving_value



738 Chapter 23 — Miscellaneous Topics

should not be used if the driver is disconnected, since there is no driving value in that
case. An error will occur if a model tries to do this.

VHDL-87

The 'driving attribute is not provided in VHDL-87.

Guarded Ports

Throughout all the examples in this book, we have seen that the ports of an entity are
treated as signals within an architecture body for that entity. Just as we can have guarded
signals, so we can have guarded ports as part of an entity’s interface. However, there are
some important limitations that come about due to the way in which ports are resolved.
The main restriction is that a guarded port can only be of the bus kind, not the register
kind. A guarded port includes the keyword bus in its declaration. For example, given the
following declarations to define a resolved subtype resolved_byte:

subtype byte is bit_vector(0 to 7);
type byte_array is array (integer range <>) of byte;
function resolve ( bytes : byte_array ) return byte;
subtype resolved_byte is resolve byte;

we can declare an entity with a guarded port q as follows:

entity tri_state_reg is
  port ( d : in resolved_byte;
         q : out resolved_byte bus;
         clock, out_enable : in bit );
end entity tri_state_reg;

Since the port q is declared to be a guarded port, a process in an architecture body
for tri_state_reg can disconnect from the port by assigning a null transaction. Here is
where the behavior is different from what we might first expect. Since the port is of a re-
solved subtype, it is resolved independently of any external signal associated with it. This
means that even if all processes in the architecture for tri_state_reg are disconnected, the
resolution function for the port is still invoked to determine the port’s value. The port itself
does not become disconnected. It continues to contribute its resolved value to the external
signal associated with it. While this may seem counter-intuitive, it follows directly from the
way resolved signals and ports behave in VHDL. Hence the entity tri_state_reg declared
above does not in fact represent a module that can disconnect its port from an associated
signal. There is no mechanism in VHDL for doing that. While some designers argue that
this is a limitation of the language, there are often ways to circumvent the problem. The
difficulty mainly arises when modeling at a high level of abstraction. At a lower level, we
would use some multivalued logic type that includes a representation of the high-
impedance state instead of using disconnection, so the problem does not arise.



23.1 Guards and Blocks 739

Guarded Signal Parameters

In Chapter 6 we saw how we can write subprograms that have signal class parameters.
We cannot, however, specify that a signal parameter be a bus signal by adding the
keyword bus in the parameter list, as we can for ports. Instead, the subprogram uses the
kind of the actual signal (bus, register or unguarded) associated with a signal parameter.
A procedure can include signal assignment statements that assign null transactions to a
formal parameter, but if the actual signal is not a guarded signal, the model is in error.
Recall that for signal parameters of mode out or inout, when the procedure is called, it
is passed a reference to the driver for the actual signal. Signal assignments within the pro-
cedure schedule transactions onto the driver for the actual signal. If the actual signal is a
guarded signal, and the procedure assigns a null transaction to it, the driver that is discon-
nected is the one in the calling process. When the actual signal is resolved, the subpro-
gram, acting on behalf of the process, does not contribute a value. We can take advantage
of this behavior when writing high-level models that include processes that disconnect
from bus signals. We can use a subprogram as an abstraction for processes, instead of
using component instances.

VHDL-87

The VHDL-87 language definition does not disallow the keyword bus in the specifi-
cation of a signal parameter. However, it does not specify whether the kind of signal,
guarded or unguarded, is determined by the formal parameter specification or by the
actual signal associated with the parameter. Implementations of VHDL-87 make dif-
ferent interpretations. Some require the formal parameter specification to include the
keyword bus if the procedure includes a null signal assignment to the parameter. The
actual signal associated with the parameter in a procedure call must then be a guarded
signal. Other implementations follow the approach adopted in VHDL-93 and VHDL-
2002, prohibiting the keyword bus in the parameter specification and determining the
kind of the parameter from the kind of the actual signal.

23.1.2 Blocks and Guarded Signal Assignment

We now introduce the VHDL block statement. In their most general form, blocks provide
a way of partitioning the concurrent statements within an architecture body. However, we
start with a simpler form of block statement that relates to guarded signals and return to
the more general form later in this section.

A block statement is a concurrent statement that groups together a number of inner
concurrent statements. A simplified syntax rule for block statements is

block_statement ⇐
block_label :
block [ ( guard_expression ) ] [ is ]
begin

{ concurrent_statement }
end block [ block_label ] ;



740 Chapter 23 — Miscellaneous Topics

The block label is required to identify the block statement. The syntax rule shows that we
can write a block statement with an optional Boolean guard expression. If the guard ex-
pression is present, it must be surrounded by parentheses and appear after the keyword
block. Since a Boolean value is required for the expression, the “??” operator is applied
implicitly if necessary to convert the expression value from some other type to boolean.
It is used to determine the value of an implicitly declared signal called guard. This signal
is only implicitly declared if the guard expression is present. Its visibility extends over the
whole of the block statement. Whenever a transaction occurs on any of the signals men-
tioned in the guard expression, the expression is reevaluated and the guard signal is im-
mediately updated. Since the guard signal has its value automatically determined, we may
not include a source for it in the block. That means we may not write a signal assignment
for it, nor use it as an actual signal for an output port of a component instance.

The main use of guard expressions in a block is to control operation of guarded signal
assignments. These are special forms of the concurrent signal assignments described in
Section 5.2.7. If the target of a concurrent signal assignment is a guarded signal, we must
use a guarded signal assignment rather than an ordinary concurrent signal assignment. The
extended syntax rules are

concurrent_simple_signal_assignment ⇐
name <= [ guarded ] [ delay_mechanism ] waveform ;

concurrent_conditional_signal_assignment ⇐
name <= [ guarded ] [ delay_mechanism ]

waveform when condition
{ else waveform when condition }
[ else waveform ] ;

concurrent_selected_signal_assignment ⇐
with expression select [ ? ]

name <= [ guarded ] [ delay_mechanism ]
{ waveform when choices , }
waveform when choices ;

The difference is the inclusion of the keyword guarded after the assignment symbol.
This denotes that the signal assignment is to be executed when the guard signal changes
value. The effect depends on whether the target of the assignment is a guarded signal or
an ordinary signal. For a guarded target, if guard changes from true to false, the driver for
the target is disconnected using a null transaction. When guard changes back to true, the
assignment is executed again to reconnect the driver.

EXAMPLE 23.3 Distributed multiplexing using guarded assignments

The architecture body outlined below describes a processor node of a multiprocessor
computer.

architecture dataflow of processor_node is

  signal address_bus : resolve_unique word bus;
  ...



23.1 Guards and Blocks 741

begin

  cache_to_address_buffer :
  block ( cache_miss and dirty ) is
  begin
    address_bus <= guarded
      tag_section0 & set_index & B"0000"
        when replace_section = '0' else
      tag_section1 & set_index & B"0000";
  end block cache_to_address_buffer;

  snoop_to_address_buffer :
  block ( snoop_hit and flag_update ) is
  begin
    address_bus <= guarded snoop_address(31 downto 4) & B"0000";
  end block snoop_to_address_buffer;

  ...

end architecture dataflow;

The signal address_bus is a guarded bit-vector signal. The block labeled
cache_to_address_buffer has a guard expression that is true when the cache misses
and a block needs to be replaced. The expression is evaluated whenever either
cache_miss or dirty changes value, and the implicit signal guard in the block is set to
the result. If it is true, the driver in the concurrent signal assignment statement within
the block is connected. Any changes in the signals mentioned in the statement cause
a new assignment to the target signal address_bus. When the guard signal changes
to false, the driver in the assignment is disconnected using a null transaction.

The block labeled snoop_to_address_buffer also has a guard expression, which
is true when an external bus monitor (the “snoop”) needs to update flags in the cache.
The expression is evaluated when either snoop_hit or flag_update changes. The result
is assigned to a separate guard signal for this block, used to control a second concur-
rent signal assignment statement with address_bus as the target. Assuming that the
two guard expressions are mutually exclusive, only one of the drivers is connected to
address_bus at a time.

If the target of a guarded signal assignment is an ordinary unguarded signal, the driver
is not disconnected when guard changes to false. Instead, the assignment statement is dis-
abled. No further transactions are scheduled for the target, despite changes that may occur
on signals to which the statement is sensitive. Subsequently, when guard changes to true,
the assignment is executed again and resumes normal operation.

EXAMPLE 23.4 Latch behavior using guarded assignment

A simple model for a transparent latch can be written using a guarded signal assign-
ment, as shown below. The architecture body uses a block statement with a guard
expression that tests the state of the enable signal. When enable is ‘0’, the guard signal



742 Chapter 23 — Miscellaneous Topics

is false, and the guarded signal assignment is disabled. Changes in d are ignored, so
q maintains its current value. When enable changes to ‘1’, the guarded signal assign-
ment is enabled and copies the value of d to q. So long as enable is ‘1’, changes in d
are copied to q.

entity latch is
  generic ( width : positive );
  port ( enable : in bit;
         d : in bit_vector(0 to width - 1);
         q : out bit_vector(0 to width - 1) );
end entity latch;

--------------------------------------------------

architecture behavioral of latch is
begin

  transfer_control : block ( enable ) is
  begin
    q <= guarded d;
  end block transfer_control;

end architecture behavioral;

VHDL-87, -93, and -2002

These versions of VHDL do not provide implicit conversion using the “??” operator.
Hence, a guard expression must be of type boolean without conversion.

VHDL-87

The keyword is may not be included in a block header in VHDL-87.

Explicit Guard Signals

In the preceding examples, the guarded signal assignment statements used the implicitly
declared guard signal to determine whether the assignment should be executed. As an
alternative, we can explicitly declare our own Boolean signal called guard. Provided it is
visible at the position of a guarded signal assignment, it will be used to control the signal
assignment. The advantage of this approach is that we can use a more complex algorithm
to control the guard signal, rather than relying on a simple Boolean expression. For ex-
ample, we might use a separate process to drive guard. Whenever guard is changed to
false, guarded signal assignments are disabled, disconnecting any drivers for guarded sig-
nals. When guard is changed back to true, the assignments are reenabled.



23.1 Guards and Blocks 743

Disconnection Specifications

One aspect of guarded signal assignments for guarded signals that we have not yet dealt
with is timing. In the previous examples illustrating guarded signal assignment, we have
only shown zero-delay models. If we need to include delays in signal assignments, we
should also include a specification of the delay associated with disconnecting a driver in
a guarded signal assignment. The problem is that the null transaction that disconnects a
driver in this case is not explicitly written in the model. It occurs as a result of the guard
signal changing to false. The mechanism in VHDL that we may use if we need to specify
a non-zero disconnection delay is a disconnection specification. The syntax rule is

disconnection_specification ⇐
disconnect ( signal_name { , … } I others I all ) : type_mark

after time_expression ;

A disconnection specification allows us to identify a particular signal or set of signals
by name and type, and to specify the delay associated with any null transactions sched-
uled for the signals. This delay only applies to the implicit null transactions resulting from
guarded signal assignments. It does not apply to null transactions we may write explicitly
using the keyword null in a signal assignment in a process.

A disconnection specification for a guarded signal must appear in the same list of dec-
larations as the signal declaration for the guarded signal. So, for example, we might in-
clude the following in the declarative part of an architecture body:

signal memory_data_bus : resolved_word bus;
disconnect memory_data_bus : resolved_word after 3 ns;

We might then include the following block in the architecture body:

mem_write_buffer : block (mem_sel and mem_write) is
begin
  memory_data_bus <=
    guarded reject 2 ns inertial cache_data_bus after 4 ns;
end block mem_write_buffer;

This indicates that so long as the guard expression evaluates to true, the value of
cache_data_bus will be copied to memory_data_bus with a delay of 4 ns and a pulse re-
jection interval of 2 ns. When the guard expression changes to false, the driver corre-
sponding to the guarded signal assignment is disconnected with a null transaction. The
delay used is 3 ns, as indicated in the disconnection specification, but the pulse rejection
limit of 2 ns is still taken from the assignment statement. When the guard expression
changes back to true, the assignment is executed again, scheduling a new transaction with
4 ns delay.

If we have a number of guarded signals of the same type in an architecture body, and
we wish to use the same disconnection delay for all of them, we can use the all keyword
in a disconnection specification instead of listing all of the signals. For example, if the fol-
lowing signal declarations are the only ones for guarded signals of type resolved_word:



744 Chapter 23 — Miscellaneous Topics

signal source_bus_1, source_bus_2 : resolved_word bus;
signal address_bus : resolved_word bus;

we can specify a disconnection delay of 2 ns for all of the signals as follows:

disconnect all : resolved_word after 2 ns;

The remaining way of identifying which signals a disconnection specification applies
to is with the keyword others. This identifies all remaining signals of a given type that
are not referred to by previous disconnection specifications. For example, suppose that
the signal address_bus shown above should have a disconnection delay of 3 ns instead
of 2 ns. We could write the disconnection specifications for the set of signals as

disconnect address_bus : resolved_word after 3 ns;

disconnect others : resolved_word after 2 ns;

If we write a disconnection specification using the keyword others in an architecture
body, it must appear after any other disconnection specifications referring to signals of the
same type and after all declarations of signals of that type. Similarly, if we write a discon-
nection specification using the keyword all, it must be the only disconnection specifica-
tion referring to signals of the given type and must appear after all declarations of signals
of that type.

23.1.3 Using Blocks for Structural Modularity

We now look at the use of blocks to partition the concurrent statements within an archi-
tecture body. We can think of a block as a way of drawing a line around a collection of
concurrent statements and their associated declarations, so that they can be clearly seen
as a distinct aspect of a design. The full syntax rule for a block statement is as follows:

block_statement ⇐
block_label :
block [ ( guard_expression ) ] [ is ]

[ generic ( generic_interface_list ) ;
[ generic map ( generic_association_list ) ; ] ]
[ port ( port_interface_list ) ;
[ port map ( port_association_list ) ; ] ]
{ block_declarative_item }

begin
{ concurrent_statement }

end block [ block_label ] ;

The block label is required to identify the block statement. The guard expression, as
we saw earlier, may be used to control guarded signal assignments. If we are only using
a block as a means of partitioning a design, we do not need to include a guard expression.
The generic and port clauses allow us to define an interface to the block. We return to this
shortly.



23.1 Guards and Blocks 745

The declarative part of a block statement allows us to declare items that are local to
the block. We can include the same kinds of declarations here as we can in an architecture
body, for example, constant, type, subtype, signal and subprogram declarations. Items de-
clared in a block are only visible within that block and cannot be referred to before or
after it. However, items declared in the enclosing architecture body remain visible (unless
hidden by a local item declared within the block).

EXAMPLE 23.5 Blocks for partitioning timing and functionality

To illustrate how blocks can be used for partitioning a design, we develop a model
for a counter, including detailed pin-to-pin propagation delays and some error check-
ing. We can specify the propagation delays as combinations of input delays before the
function block and output delays after the function block, as shown in Figure 23.1.
The function block implements the behavior of the counter with zero delay.

The entity declaration for this counter is

entity counter is

  generic ( tipd_reset,             -- input prop delay on reset
            tipd_clk,               -- input prop delay on clk
            topd_q : delay_length;  -- output prop delay on q
            tsetup_reset,           -- setup: reset before clk
            thold_reset :           -- hold time: reset after clk
              delay_length );

  port ( reset,                     -- synchronous reset input
         clk : in bit;              -- edge-triggered clock input
         q : out bit_vector );      -- counter output

end entity counter;

We can separate the delay, function and error-checking aspects of the model into
separate blocks within the architecture body, as follows:

architecture detailed_timing of counter is

FIGURE 23.1 

A propagation delay model for a counter.

zero-
delay

counter

tipd_reset

tipd_clk

topd_q
q

reset

clk



746 Chapter 23 — Miscellaneous Topics

  signal reset_ipd,                   -- data input port delayed
         clk_ipd : bit;               -- clock input port delayed
  signal q_zd : bit_vector(q'range);  -- q output with zero delay

begin

  input_port_delay : block is
  begin
    reset_ipd <= reset after tipd_reset;
    clk_ipd <= clk after tipd_clk;
  end block input_port_delay;

  functionality : block is

    function increment ( bv : bit_vector ) return bit_vector is
      variable result : bit_vector(bv'range) := bv;
      variable carry : bit := '1';
    begin
      for index in result'reverse_range loop
        result(index) := bv(index) xor carry;
        carry :=  bv(index) and carry;
        exit when carry = '0';
      end loop;
      return result;
    end function increment;

    signal next_count : bit_vector(q'range);

  begin
    next_count <= increment(q_zd) when reset_ipd = '0' else
                  (others => '0');
    q_zd <= next_count when clk_ipd = '1' and clk_ipd'event;
  end block functionality;

  output_port_delay : block is
  begin
    q <= q_zd after topd_q;
  end block output_port_delay;

  timing_checks : block is
  begin
    -- check setup time: reset before clk
    ...
    -- check hold time: reset after clk
    ...
  end block timing_checks;

end architecture detailed_timing;

The first block, input_port_delay, derives delayed versions of the input ports.
These are used in the second block, functionality, the zero-delay behavioral imple-



23.1 Guards and Blocks 747

mentation of the counter. This block consists of two concurrent signal assignment
statements that together implement a finite-state machine. One statement calculates
the next count value using the increment function locally declared within the block,
and the other implements an edge-triggered register. The signal next_count, also lo-
cally declared within the block, is used to connect the two statements. The output of
the state machine is used in the third block, output_port_delay, to apply the delay
between the function block and the output port. The final block outlined in the archi-
tecture body, timing_checks, contains processes that verify correct setup and hold
times for the reset signal.

Since a block contains a collection of concurrent statements, and a block statement is
itself a concurrent statement, it is perfectly legal to nest blocks one inside another. The
same visibility rules that we described for subprograms also apply for items declared in
nested blocks. However, in practice, we would rarely write a model with nested blocks.
If the design hierarchy is that complex, it is better to use separate entities and component
instantiation statements to partition the design. The main reason VHDL allows complex
nesting of blocks is that the block structure is used as the underlying mechanism for im-
plementing other VHDL constructs, such as component instantiation (described in Chapter
13) and generate statements (described in Chapter 14). The language definition defines
these constructs in terms of the substitution of blocks containing the contents of the archi-
tecture body being instantiated or the contents of the generate statement.

External Names and Blocks

As we mentioned in Section 18.1, a block statement forms a concurrent region in a design.
When we write external names, we need to include the label of a block in the pathname
for any item declared in the block or in an entity instantiated in the block.

EXAMPLE 23.6 Referring to a block in an external pathname

Suppose the counter design of Example 23.5 in instantiated with a test bench archi-
tecture. We can use an external name in the test bench to refer to the next_count sig-
nal. The test bench outline is as follows:

architecture verifying of test_bench is

  signal clk, reset : bit;
  signal duv_q : bit_vector(7 downto 0);

  alias duv_next_count is
    <<signal duv.functionality.next_count :
               bit_vector(duv_q'range)>>;
  ...

begin



748 Chapter 23 — Miscellaneous Topics

  duv : entity work.counter(detailed_timing)
    generic map ( ... )
    port map ( clk => clk, reset => reset, q => duv_q );

  ...

end architecture verifying;

The counter is instantiated using the label duv. In the external name, the relative
pathname starts with duv, followed by the block label functionality and then the sig-
nal name next_count.

Generics and Ports in Blocks

Another aspect of block statements, also arising from their use as the underlying mecha-
nism for component instantiation, is the possibility of including generic and port interface
lists. These allow us to make explicit the interface between the block and its enclosing
architecture body or enclosing block. The formal generics and ports can be used within
the block in exactly the same way that those of an entity are used within a corresponding
architecture body. The actual values for genericts are supplied by a generic map in the
block header, and the actual signals associated with the formal ports are supplied by a
port map. These are all shown in the syntax rule for block statements on page 744. Since
this facility is rarely used in actual model writing, we do not dwell on it.

Configuring Designs with Blocks

In Chapter 13 we showed how to configure a design whose hierarchy was formed by in-
stantiating components. We configure an architecture body containing nested block state-
ments in a similar way. When we write configuration declarations for such architecture
bodies, the configuration information must mirror the block structure of the architecture
body. We introduce a further level of detail in the syntax rules for configuration declara-
tions, showing how to configure architecture bodies containing blocks.

configuration_declaration ⇐
configuration identifier of entity_name is

block_configuration
end [ configuration ] [ identifier ] ;

block_configuration ⇐
for ( architecture_name I block_statement_label )

{ block_configuration
I for component_specification

[ binding_indication ; ]
[ block_configuration ]

end for ; }
end for ;



23.1 Guards and Blocks 749

The difference here is that we have added a block statement label as an alternative to
an architecture name at the point where we specify the region containing concurrent state-
ments. Furthermore, we have allowed a block configuration as an alternative to compo-
nent configuration information within that region. If we put these together, we can see
how to write the configuration information for an architecture body containing block state-
ments. At the top level of the configuration declaration, we write a block configuration
naming the architecture body, just as we have done in all of the previous examples. Within
it, however, we include block configurations that name and configure each block.

EXAMPLE 23.7 Configuration of a design partitioned with blocks

Suppose we need to write a model for an integrated circuit that takes account of prop-
agation delays through input and output pads. The entity declaration and architecture
body are shown below. The architecture body is divided into blocks for input delay,
function and output delay. The operation of the circuit is described structurally, as an
interconnection of cells within the function block.

entity circuit is
  generic ( inpad_delay, outpad_delay : delay_length );
  port ( in1, in2, in3 : in bit;  out1, out2 : out bit );
end entity circuit;

--------------------------------------------------

architecture with_pad_delays of circuit is

  component subcircuit is
    port ( a, b : in bit;  y1, y2 : out bit );
  end component subcircuit;

  signal delayed_in1, delayed_in2, delayed_in3 : bit;
  signal undelayed_out1, undelayed_out2 : bit;

begin

  input_delays : block is
  begin
    delayed_in1 <= in1 after inpad_delay;
    delayed_in2 <= in2 after inpad_delay;
    delayed_in3 <= in3 after inpad_delay;
  end block input_delays;

  functionality : block is
    signal intermediate : bit;
  begin
    cell1 : component subcircuit
      port map ( delayed_in1, delayed_in2,
                 undelayed_out1, intermediate );
    cell2 : component subcircuit
      port map ( intermediate, delayed_in3,



750 Chapter 23 — Miscellaneous Topics

                 undelayed_out2, open );
  end block functionality;

  output_delays : block is
  begin
    out1 <= undelayed_out1 after outpad_delay;
    out2 <= undelayed_out2 after outpad_delay;
  end block output_delays;

end architecture with_pad_delays;

A configuration declaration for this design is

configuration full of circuit is

  for with_pad_delays  -- configure the architecture

    for functionality    -- configure the block

      for all : subcircuit
        use entity work.real_subcircuit(basic);
      end for;

    end for;

  end for;

end configuration full;

The configuration binds the instances of the component subcircuit within the
block functionality to an entity real_subcircuit with architecture basic. The block con-
figuration starting with “for with_pad_delays” specifies the architecture of circuit that
is being configured. Within it, the block configuration starting with “for functionality”
specifies the configuration of the contents of the block labeled functionality. It, in
turn, contains a component configuration for the two component instances. Note that
there are no block configurations for the other two blocks in the design, since they
do not contain any component instances. They only contain concurrent signal assign-
ment statements, which represent leaf nodes of the design hierarchy.

23.2 IP Encryption

As designs become more complex, designers are increasingly using intellectual property
(IP) provided by IP vendors. IP providers invest considerable effort in developing their
products, and may be loath to release them without protecting their investment. From the
IP provider’s point of view, there are two potential places where their IP may be compro-
mised. First, the IP provider must transmit the IP to a customer. During that process, a
malicious third party could eavesdrop on the transmission and intercept the IP. Second,
the customer must receive, store, and use the IP. During that process, an unscrupulous
customer could reuse the IP without compensating the provider. Hence, the customer is
technically treated as a malicious third party, though it would not be politic to express the
relationship in those terms! The real recipient of the IP is the customer’s tool, which must



23.2 IP Encryption 751

use the IP only in ways approved by the IP provider and must avoid disclosing the IP to
the customer.

One way of protecting IP is for the provider to encrypt it in a form that can be de-
crypted and used by a customer’s tools, but that cannot be read by the customer. VHDL
provides a flexible set of features to support such protection. Before we describe them in
detail, we will first review some of the basic principles and protocols for encryption so
that we can understand how to use the language features.

Information to be communicated between two parties can be protected by transform-
ing it with a cipher. A cipher is a function that takes plain text and a string of bits called
a key as input and produces cipher text as output. This process is called encryption. The
reverse process, decryption, takes the cipher text and a key as input and reproduces the
original plain text. The quality of a cipher is determined by the difficulty of determining
the plain text from the cipher text without the key. A good cipher will yield significantly
different cipher text for minor changes to the key used for encryption.

There are two forms of cipher in widespread use. A symmetric cipher uses the same
key for both encryption and decryption. The key is called a secret key, since it must be
kept secret between the communicating parties. Should the secret be revealed to a third
party, they could decrypt any intercepted encrypted information. Examples of symmetric
ciphers are the Data Encryption Standard (DES), and the Advanced Encryption Standard
(AES).

An asymmetric cipher uses a pair of related keys, one for encryption and the other for
decryption. Key pairs are generated in such a way that it is infeasible to determine either
key from the other. Information encrypted with one key of a pair can only be decrypted
with the other key of the pair. Examples of asymmetric ciphers are RSA and ElGamal.
Asymmetric ciphers are used in protocols where each communicating party generates a
key pair. They keep one key of the pair, the private key, secret. They publish the other
key, the public key, through some means of dissemination that associates the public key
with the communicating party’s identity. For example, they might publish it on their
website. A sender of information can use an asymmetric cipher to protect information des-
tined for a recipient. The sender encrypts the information using the recipient’s public key.
Only the recipient can then decrypt the information, since only they have the correspond-
ing private key.

While asymmetric ciphers can yield more secure communication, they involve signif-
icantly greater computation than symmetric ciphers. For that reason, most applications in-
volving asymmetric ciphers use a two-stage encryption process called a digital envelope.
First a session key is randomly generated, for use in one communication session only. Next,
that session key is used with a symmetric cipher to encrypt the information. In order to
communicate the session key to the recipient so that they can decrypt the information, the
session key is encrypted using an asymmetric cipher with the recipient’s public key, and
sent to the recipient. They are the only party able to decrypt the session key, since only
they have the right private key. They can then proceed to decrypt the communicated in-
formation using the symmetric cipher with the decrypted session key. The advantage of
this approach is that only a relatively small amount of information (the session key) need
be processed using the computationally intensive asymmetric cipher. The bulk of the in-
formation is processed using the lighter-weight symmetric cipher.

One problem that arises in protected communication is the need to verify that re-
ceived information did in fact originate with the purported sender, and that it was not



752 Chapter 23 — Miscellaneous Topics

changed in transit (either by corruption or maliciously) by a third party. This problem is
addressed by having the sender transmit a digital signature for the information. The
sender uses a hash function to compute a digest of the information. A hash function takes
a (potentially large) string of bits as input and produces a small string of bits, the digest,
that depends on all of the input bits. A good hash function has the property that two dis-
tinct input strings are highly unlikely to yield the same output string. Examples of hash
functions include SHA1, MD2, MD5, and RIPEMD. Having computed the digest of the in-
formation, the sender encrypts it using an asymmetric cipher with their private key and
transmits the result as the digital signature. A recipient decrypts the signature using the
purported sender’s public key to retrieve the digest. The recipient also independently cal-
culates the digest of the received information using the hash function. If the two digests
are the same, the information has been received correctly, since only the real sender’s
public key could decrypt the digest correctly, and only the real information would yield
the same digest. If, on the other hand, the digests differ, then either the transmitted digest
was encrypted with someone else’s key, or the transmitted message was changed. Either
way, the transmission was compromised, and the recipient knows not to trust the received
information.

If we are to apply cryptographic techniques to transmission of VHDL models, we need
to consider the way in which the encrypted information is encoded. Plain-text VHDL mod-
els consist of printable ASCII or Latin-1 characters and are immune to the way ends of
lines are encoded. Consequently, we can store and transmit plain-text models through a
variety of media without being concerned about encodings. However, the process of en-
cryption produces a string of bits, which cannot be guaranteed to be interpreted as print-
able characters. We cannot reliably transmit the encrypted model, since some media might
transform sequences of bits interpreted as line ends, or might interpret sequences of bits
as in-band control codes. To avoid these problems, we can encode the encrypted model
using an encoding method that uses printable characters to represent the string of bits. A
sender encrypts information and encodes it for transmission, and a recipient decodes the
received information and decrypts the result. Examples of encoding methods include
uuencode, base64, and quoted-printable, all of which are described by Internet message-
transfer standards.

With this overview of cryptography in hand, we can now discuss the features
provided in VHDL to support cryptographic protection of IP. The features use a standard
set of tool directives. A tool directive is an annotation included in a VHDL design file that
provides information to a tool processing the VHDL design. It does not logically form part
of the design itself. The syntax for a tool directive is

tool_directive ⇐ ` identifier { graphic_character }

A tool directive starts with the “tick” symbol, and ends at the end of the line. The identifier
specifies to the tool what form of processing to perform. The remaining text, up to the
end of the line, provides any additional information needed.

For IP protection, VHDL defines protect directives, in which the identifier is protect.
(Although the identifier is not a reserved word, we write it and other keywords in protect
directives in boldface type to indicate that they have special meanings in the directives.)
The protect directives are used by an IP provider’s encryption tool to govern encryption
of sections of a VHDL design and by a customer’s decryption tool to decrypt those sections.



23.2 IP Encryption 753

The decryption tool is typically a simulator, synthesis tool, or some other tool that deals
with VHDL code. It uses the decrypted sections of the design, but does not store them in
any form that could be revealed to the customer. Protect directives each takes one of three
forms:

`protect keyword
`protect keyword = value
`protect keyword = ( keyword = value, ... )

The keyword or keywords in a protect directive identify the kind of information con-
veyed by the directive. The values are literal expressions of various types. If we have a
number of consecutive protect directives, we can merge them into a single directive. Thus,
we can write the sequence of directives

`protect keyword1 = value1
`protect keyword2 = value2
`protect keyword3

equivalently as

`protect keyword1 = value1, keyword2 = value2, keyword3

An IP provider starts the process by identifying one or more sections of a VHDL design
file that they want to protect. They edit the design file to wrap each section in an encryp-
tion envelope, consisting of one or more protect directives at the start of the section, and
a closing protect directive at the end of the section. The simplest form of encryption en-
velope is

`protect begin
... -- protected source code in plain-text form
`protect end

This simply delimits the protected source code, and assumes an encryption tool will
use default information about the ciphers, keys and encoding for encryption. More elab-
orate encryption envelopes precede the begin directive with protect directives specifying
ciphers, keys, encoding and other optional information.

The IP provider then processes the design file with an encryption tool to produce a
version of the design file with each encryption envelope replaced by a corresponding de-
cryption envelope of the following form:

`protect begin_protected
protect directives and encoded encrypted information
`protect end_protected

We will use a series of examples to show how the various directives are used to form
encryption and decryption envelopes for various use cases. In each case we will assume
that the decryption tool has access to the required keys, and that the encryption tool
knows about those keys. We will return to the topic of key exchange in Section 23.2.1.



754 Chapter 23 — Miscellaneous Topics

EXAMPLE 23.8 Simple encryption envelope with symmetric cipher

In one of the simplest use cases, an IP provider wants to provide protected IP to a
customer for use with a single tool. We can use a symmetric cipher, for which the key
is known to both the IP provider and to the customer’s decryption tool. The IP pro-
vider wraps the protected section in the source code in an encryption envelope, as
follows:

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect data_keyowner = "ACME IP User"
`protect data_keyname  = "ACME Sim Key"
`protect data_method   = "aes192-cbc"
`protect encoding      = (enctype = "base64")
`protect begin
  signal ...
begin
  process ...
  ...
`protect end
end architecture RTL;

The IP provider leaves the information about the entity’s interface and the name
of the architecture unprotected so that the customer can instantiate the design. The
entire inner workings of the architecture, however, are not to be revealed to the cus-
tomer. The data_keyowner and data_keyname directives specify identifiers that
the encryption and decryption tools can use to retrieve the key. The data_method
directive specifies the cipher to use for encryption and decryption, and the encoding
directive specifies the method to use to encode the cipher text produced by the en-
cryption tool. 

The IP provider processes the original source code file with an encryption tool,
which produces a modified file with the encryption envelope replaced by a decryp-
tion envelope:

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent      = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect data_keyowner = "ACME IP User"
`protect data_keyname  = "ACME Sim Key"
`protect data_method   = "aes192-cbc"



23.2 IP Encryption 755

`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text
...
`protect end_protected
end architecture RTL;

The encrypt_agent and encrypt_agent_info directives provide information
about the encryption tool. This can help in tracking down any problems that might
arise. The directives specifying the key, cipher, and encoding method are replicated
in the decryption envelope. In the case of the encoding directive, further information
about the maximum line length for the encoded cipher text and the number of bytes
of cipher text is also provided. The encoded cipher text then starts immediately after
the data_block directive. The end_protected directive marks the end of the decryp-
tion envelope.

EXAMPLE 23.9 Digital envelope encrypted for a single customer

One of the problems with using a symmetric cipher to encrypt IP is that the risk of
the secret key being divulged. We can avoid that risk by using a digital envelope to
transmit the IP. The IP provider includes directives in the encryption envelope to spec-
ify a cipher and key to use to encrypt a session key. The IP provider can also specify
the symmetric cipher to use to encrypt the data with the session key. The design file
with the revised encryption envelope is

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect key_keyowner = "ACME IP User"
`protect key_keyname  = "ACME Sim Key"
`protect key_method   = "rsa"
`protect key_block
`protect data_method  = "aes192-cbc"
`protect encoding     = (enctype = "base64")
`protect begin
  signal ...
begin
  process ...
  ...
`protect end
end architecture RTL;

The key_keyowner and key_keyname directives specify identifiers that the en-
cryption tool can use to retrieve the customer’s public key. The key_method direc-
tive specifies the cipher to use to encrypt the session key. The key_block directive



756 Chapter 23 — Miscellaneous Topics

marks the end of the key information. Its presence in the encryption envelope spec-
ifies use of a digital envelope, since the preceding key directives can be omitted, im-
plying default values. The data_method directive specifies the cipher to use for
encryption and decryption with the session key. The encoding directive specifies the
method to use to encode both the encrypted session key and the encrypted section
of the model.

The IP provider processes this source code file with an encryption tool, which
generates a session key and produces a modified file with the encryption envelope
replaced by a decryption envelope specifying a digital envelope:

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent      = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect key_keyowner = "ACME IP User"
`protect key_keyname  = "ACME Sim Key"
`protect key_method   = "rsa"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect data_method   = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text for model code
...
`protect end_protected
end architecture RTL;

The directives specifying the key and cipher for encrypting the session key are
replicated in the decryption envelope. The encoding directive is also replicated to
specify the encoding for the encrypted session key, augmented with information
about the maximum line length for the encoded cipher text and the number of bytes
in the encrypted session key. The encoded cipher text for the session key then starts
immediately after the key_block directive. Next, the data_method directive specify-
ing the cipher for the model code is replicated in the decryption envelope. The en-
coding directive is also replicated here, augmented with information about the
maximum line length and the number of bytes. The encoded cipher text for the model
code starts immediately after the data_block directive. The end_protected directive
marks the end of the decryption envelope.



23.2 IP Encryption 757

EXAMPLE 23.10 Digital envelope encrypted for multiple customers or tools

In Example 23.8 and Example 23.9, the IP is encrypted in a form that can be decrypted
by a single customer or by a single tool. If the IP provider wants to distribute the IP
to multiple customers or to a customer for use with multiple tools, he or she would
have to generate multiple versions using the encryption tool, once per customer. We
can avoid this repetition by using a variation on the digital envelope approach. Again,
we specify that a session key be used to encrypt the model code. However, that ses-
sion key is then encrypted multiple times, once per customer or customer’s tool. The
revised source file with the encryption envelope is

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect key_keyowner = "ACME IP User1"
`protect key_keyname  = "ACME Sim Key"
`protect key_method   = "rsa"
`protect key_block
`protect key_keyowner = "ACME IP User2"
`protect key_keyname  = "ACME Synth Key"
`protect key_method   = "elgamal"
`protect key_block
`protect key_keyowner = "ACME IP User3"
`protect key_keyname  = "ACME P&R Key"
`protect key_method   = "aes192-cbc"
`protect key_block
`protect data_method  = "aes192-cbc"
`protect encoding     = (enctype = "base64")
`protect begin
  signal ...
begin
  process ...
  ...
`protect end
end architecture RTL;

Each group of key directives specifies information for encryption of a session key
for decryption by a given decryption tool. The first two groups specify encryption us-
ing asymmetric ciphers, as is normally done in digital envelopes. However, we can
also use a symmetric cipher to encrypt the session key, as specified in the third group
of key directives.

As in the earlier examples, the IP provider processes this source code file with an
encryption tool, which generates a session key and produces a modified file with the
encryption envelope replaced by a decryption envelope specifying a digital envelope:



758 Chapter 23 — Miscellaneous Topics

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent      = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect key_keyowner = "ACME IP User1"
`protect key_keyname  = "ACME Sim Key"
`protect key_method   = "rsa"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect key_keyowner = "ACME IP User2"
`protect key_keyname  = "ACME Synth Key"
`protect key_method   = "elgamal"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect key_keyowner = "ACME IP User3"
`protect key_keyname  = "ACME P&R Key"
`protect key_method   = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect data_method   = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text for model code
...
`protect end_protected
end architecture RTL;

In this case, the decryption envelope includes a group of key directives and a key
block corresponding to each group of key directives in the encryption envelope. Each
of the targeted decryption tools, when it processes the decryption envelope, checks
whether it has access to the key specified by each group of key directives. If it has
one of the keys, it can use that key to decrypt the session key, and thus decrypt the
model code.

EXAMPLE 23.11 Digital signature for authentication of the provider

Suppose our IP provider delivers encrypted IP by making it available for download
from a file server. They use our public key to deliver the IP in digital envelope form.
An unscrupulous third-party IP provider could seek to besmirch the name of our



23.2 IP Encryption 759

trusted IP provider by spoofing their server and providing a buggy version of the IP.
Since the IP is encrypted using our public key, which is widely known, we would not
be aware of the switch.

The solution is for our trusted IP provider to include a digital signature in the de-
livered model. The encryption envelope, revised from that in Example 23.10, is

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect key_keyowner = "ACME IP User"
`protect key_keyname  = "ACME Sim Key"
`protect key_method   = "rsa"
`protect key_block
`protect data_method  = "aes192-cbc"
`protect digest_keyowner   = "GoodGuys IP Author"
`protect digest_keyname    = "GoodGuys Signing Key"
`protect digest_key_method = "rsa"
`protect digest_method     = "sha1"
`protect digest_block
`protect encoding = (enctype = "base64")
`protect begin
  signal ...
begin
  process ...
  ...
`protect end
end architecture RTL;

The digest directives in the encryption envelope specify that a digital signature
should be generated for the model code contained in the envelope. The
digest_method directive specifies the hash function for computing the digest, and
the digest_keyowner, digest_keyname and digest_key_method directives spec-
ify the cipher and key to use to encrypt the digest. The digest_key_method directive
must specify an asymmetric cipher, since digital signatures are predicated on the use
of such ciphers.

The IP provider processes this source code file with an encryption tool, which
computes and encrypts the digest to form the digital signature. It uses the private key
of the key pair specified by the digest key directives. It includes the digest in the de-
cryption envelope corresponding to the encryption envelope:

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent      = "Encryptomatic"



760 Chapter 23 — Miscellaneous Topics

`protect encrypt_agent_info = "2.3.4a"
`protect key_keyowner = "ACME IP User"
`protect key_keyname  = "ACME Sim Key"
`protect key_method   = "rsa"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect data_method   = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text for model code
...
`protect digest_keyowner   = "GoodGuys IP Author"
`protect digest_keyname    = "GoodGuys Signing Key"
`protect digest_key_method = "rsa"
`protect digest_method     = "sha1"
`protect digest_block
`protect encoding=(enctype="base64", line_length=40, bytes=16)
`protect digest_block
encoded cipher-text for digest
...
`protect end_protected
end architecture RTL;

Our trusted IP provider places this model on the file server for us to download.
Now suppose the unscrupulous third-party IP provider performs their network hack
and substitutes a buggy model. In their first attempt, they substitute the buggy code,
encrypted with a session key that they generate, and encrypt the session key with our
public key. Our decryption tool successfully decrypts the session key and uses it to
decrypt the model. However, since we want to verify that we have the right model,
the decryption tool computes the digest of the decrypted model using the hash func-
tion specified in the digest_method directive. The tool also uses the public key of
the key pair identified in the digest key directives to decrypt the transmitted digest.
Since the model code is different from the original code provided by the trusted IP
provider, the two digests are not the same. Our decryption tool alerts us to this fact,
and we contact our trusted IP provider to attempt to remedy the problem.

Now suppose the unscrupulous third-party IP provider realizes their ruse was un-
successful, and tries a different tack. As well as substituting the buggy model, suitably
encrypted, they also generate a digital signature for the buggy model and substitute it
for the real digital signature. They use their own private key to encrypt the digest, and
include digest key directives that identify their key pair. Again, our decryption tool
successfully decrypts the model and calculates the digest. The tool also attempts to
decrypt the transmitted digest in order to compare with the computed digest. At this
point, there are two possible outcomes. First, if the tool does not have access to the
unscrupulous provider’s public key, it will be unable to proceed and will warn us that
it could not verify the digital signature. Alternatively, if the tool does have access to
the unscrupulous provider’s public key, it will use it to decrypt the transmitted digest



23.2 IP Encryption 761

and compare it with the computed digest. In this case, the digests will match. It will
be up to us to check that signature verification was performed with the key we ex-
pected. This illustrates that we need to be vigilant when checking digital signatures,
so that we are not duped by a simple key substitution. We will discuss this more in
Section 23.2.1, where we address the issue of key exchange.

EXAMPLE 23.12 Viewport for accessing a declaration in a protected model

An IP provider may wish to allow limited access to some items declared within the
protected source code. In Examples 18.2 and 18.3 in Section 18.1, we showed a test
bench monitoring the internal state of the control section of a design under verifica-
tion. An IP provider can allow such access by including a viewport directive in the
encryption envelope. An example is

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect data_keyowner = "ACME IP User"
`protect data_keyname  = "ACME Sim Key"
`protect data_method   = "aes192-cbc"
`protect encoding      = (enctype = "base64")
`protect viewport=(object="accelerator:RTL.state", access="RW”);
`protect begin
  signal state : std_ulogic_vector(3 downto 0);
  ...
begin
  process ...
  ...
`protect end
end architecture RTL;

While most of the inner workings of the architecture are not revealed to the cus-
tomer, the viewport directive provides the pathname of the object representing the
internal state signal and grants read/write access. The IP provider processes the source
code file with an encryption tool, which includes the viewport directive in the de-
cryption envelope:

entity accelerator is
  port ( ... );
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent      = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect viewport=(object="accelerator:RTL.state", access="RW”);



762 Chapter 23 — Miscellaneous Topics

`protect data_keyowner = "ACME IP User"
`protect data_keyname  = "ACME Sim Key"
`protect data_method   = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text
...
`protect end_protected
end architecture RTL;

The customer can instantiate the IP in a design and use an external name to refer
to the state signal:

architecture monitoring of tb is
  ...
begin

  ... -- clock and reset generation

  accelerator_duv : entity work.accelerator(rtl)
    port map ( ... );

  monitor : process (clk) is
    use std.textio.all;
    file state_file : text open write_mode is state_file_name;
    alias accelerator_state is
      <<signal accelerator_duv.state :
                 std_ulogic_vector(3 downto 0)>>;
  begin
    if falling_edge(clk) then
      write(L, accelerator_state); writeline(state_file, L);
    end if;
  end process monitor;

end architecture monitoring;

While the viewport directive provides access to the internal signal, it does not
provide complete information. The IP provider would also need to provide documen-
tation describing the type of the signal and other relevant information.

Now that we have seen how protection envelopes are formed in various scenarios,
we will describe the details of VHDL’s IP protection mechanism. As we have mentioned,
it is based on a set of tool directives. The full list of directives is as follows:

`protect begin

Indicates the beginning of the source code to be encrypted in an encryption
envelope.



23.2 IP Encryption 763

`protect end

Indicates the end of an encryption envelope.

`protect begin_protected

Indicates the beginning of a decryption envelope.

`protect end_protected

Indicates the end of a decryption envelope.

`protect author = "author name"

Identifies the author of the protected IP. If this directive appears in an encryp-
tion envelope, the encryption tool copies it unchanged to the corresponding
decryption envelope.

`protect author_info = "author info"

Provides further information about the author of the protected IP, such as an
organization name or contact details. If this directive appears in an encryption
envelope, the encryption tool copies it unchanged to the corresponding de-
cryption envelope.

`protect encrypt_agent = "encrypt agent name"

This directive must appear in a decryption envelope, and identifies the en-
cryption tool that produced the decryption envelope.

`protect encrypt_agent_info = "encrypt agent info"

This directive may appear in a decryption envelope, and provides further in-
formation about the encryption tool that produced the decryption envelope.

`protect key_keyowner = "key owner name"

Identifies the owner of a key or key pair used to encrypt a session key.

`protect key_keyname = "key name"

Used together with the key owner name to identify a particular key or key
pair used to encrypt a session key.

`protect key_method = "cipher name"

Specifies the cipher used to encrypt a session key.

`protect key_block

In an encryption envelope, specifies use of a digital envelope. In the corre-
sponding decryption envelope, indicates the beginning of the encoded cipher
text of the session key.

`protect data_keyowner = "key owner name"

Identifies the owner of a key or key pair used to encrypt the source code.



764 Chapter 23 — Miscellaneous Topics

`protect data_keyname = "key name"

Used together with the key owner name to identify a particular key or key
pair used to encrypt the source code.

`protect data_method = "cipher name"

Specifies the cipher used to encrypt the source code.

`protect data_block

In a decryption envelope, indicates the beginning of the encoded cipher text
of the source code.

`protect digest_keyowner = "key owner name"

Identifies the owner of the key pair used to encrypt the digest in a digital
signature.

`protect digest_keyname = "key name"

Used together with the key owner name to identify a particular key pair used
to encrypt the digest in a digital signature.

`protect digest_key_method = "cipher name"

Specifies the asymmetric cipher used to encrypt the digest in a digital signa-
ture.

`protect digest_method = "hash function name"

Specifies the hash function used to compute the digest in a digital signature.

`protect digest_block

In an encryption envelope, specifies use of a digital signature. In the corre-
sponding decryption envelope, indicates the beginning of the encoded cipher
text of the digest.

`protect encoding =
( enctype = "encoding name", line_length = integer, bytes = integer )

In an encryption envelope, this directive specifies the encoding to be used
for cipher text in the corresponding decryption envelope. The line_length
keyword and value are optional and specify the maximum line length for en-
coded text. Text longer than this amount is split into multiple lines. The bytes
keyword and value are also optional and are ignored in an encryption enve-
lope in any case.

In a decryption envelope, this directive appears preceding each key,
data, and digest block. It specifies the encoding, maximum line length, and
number of bytes of cipher text encoded in the block.



23.2 IP Encryption 765

`protect viewport = ( object = "object pathname", access = "access type" )

Identifies an object declared within the protected source code for which ac-
cess is granted. If this directive appears in an encryption envelope, the en-
cryption tool copies it unchanged to the corresponding decryption envelope.

The pathname consists of the names of regions enclosing the declaration,
starting with the design unit name and continuing with the names of nested
regions, separated by “.” characters, for example,

"my_entity.cycle_monitor.cycle_count"

If the object is declared within an architecture, the design unit name is
the combination of the entity name and the architecture name, separated by
a colon, for example,

"my_entity:RTL.current_state"

If the object is declared within a package body, the design unit name
consists of the package name, followed by “:body”, for example,

"IP_pkg:body.trace_file"

The access type string must be one of "R", "W", or "RW" (or the lowercase
equivalents), indicating read access, write access, or read/write access, re-
spectively.

`protect decrypt_license =
( library = "library name",
  entry = "acquisition routine name", feature = "feature name",
  exit = "release routine name", match = integer )

This directive specifies information for acquiring a decryption license. If the
directive appears in an encryption envelope, the encryption tool copies it un-
changed to the corresponding decryption envelope. If the directive appears
in a decryption envelope, a decryption tool must attempt to acquire the spec-
ified license. If acquisition is successful, it continues decrypting the model.
Otherwise, it is expected to stop further decryption.

The library name string identifies the object library in the decryption
tool’s host file system containing routines for license management. The tool
should call the routine identified by the acquisition routine name, passing the
feature name string as an argument, to acquire a license. The tool should
compare the return value of the routine with the match integer. If they are
equal, acquisition succeeded. When the tool has completed decryption, it
should relinquish the license by calling the routine identified by the release
routine name.

`protect runtime_license =
( library = "library name",



766 Chapter 23 — Miscellaneous Topics

  entry = "acquisition routine name", feature = "feature name",
  exit = "release routine name", match = integer )

This directive specifies information for acquiring a runtime license. If the di-
rective appears in an encryption envelope, the encryption tool copies it un-
changed to the corresponding decryption envelope. If the directive appears
in a decryption envelope, a decryption tool must attempt to acquire the spec-
ified license. If acquisition is successful, the tool may continue with analysis
and execution of the model. Otherwise, it is expected not to execute the
model. The information in this directive is the same as that in a
decrypt_license directive. 

`protect comment = "comment string"

This directive allows the IP author to provide comments in the model. If the
directive appears in an encryption envelope, either preceding or within the
source code, the encryption tool copies it unchanged to the corresponding
decryption envelope. If it is within the source code, the encryption tool skips
over it when encrypting the source code.

Note, incidentally, that we have split a number of the longer directives over multiple
lines, for reasons of presentation here. In practice, each directive must appear entirely on
one line in a VHDL model.

Several directives use strings to specify ciphers, encodings, and hash functions. VHDL
defines particular string values for these directives. If a tool supports the given cipher, en-
coding, or hash function, it must use the defined string value to specify it. A tool may also
support other methods, in which case it uses an implementation-defined string value.
Table 23.1 shows the string values for specifying ciphers. Every tool must support at least
the DES cipher. Table 23.2 shows the string values for specifying encodings. Every tool
must support at least uuencode and base64. Table 23.3 shows the string values for speci-
fying hash functions. Every tool must support at least SHA1 and MD5.

TABLE 23.1 Strings for specifying ciphers

String Cipher Cipher type

"des-cbc" DES in CBC mode. Symmetric

"3des-cbc" Triple DES in CBC mode. Symmetric

"aes128-cbc" AES in CBC mode with 128-bit key. Symmetric

"aes192-cbc" AES in CBC mode with 192-bit key. Symmetric

"aes256-cbc" AES in CBC mode with 256-bit key. Symmetric

"blowfish-cbc" Blowfish in CBC mode. Symmetric

"twofish128-cbc" Twofish in CBC mode with 128-bit key. Symmetric

"twofish192-cbc" Twofish in CBC mode with 192-bit key. Symmetric



23.2 IP Encryption 767

TABLE 23.2 Strings for specifying encodings

TABLE 23.3 Strings for specifying hash functions

We can now describe the rules for forming an encryption envelope in a model. The
rules allow for considerable flexibility, but we must at least include the begin and end
directives to mark out the source code to be encrypted.

We can precede the begin directive with a key_block directive if we want to specify
use of digital envelopes. We can specify the cipher and key to use to encrypt the session
key by including a key_method and a key_keyowner directive (and optionally a
key_keyname directive). If we don’t specify the cipher and key, the encryption tool
chooses a default cipher and key. The key_method, key_keyowner and key_keyname

"twofish256-cbc" Twofish in CBC mode with 256-bit key. Symmetric

"serpent128-cbc" Serpent in CBC mode with 128-bit key. Symmetric

"serpent192-cbc" Serpent in CBC mode with 192-bit key. Symmetric

"serpent256-cbc" Serpent in CBC mode with 256-bit key. Symmetric

"cast128-cbc" CAST-128 in CBC mode. Symmetric

"rsa" RSA. Asymmetric

"elgamal" ElGamal. Asymmetric

"pgp-rsa" OpenPGP RSA key. Asymmetric

String Encoding methods

"uuencode" IEEE Std 1003.1™-2001 (uuencode Historical Algorithm) 

"base64" IETF RFC 2045, also IEEE Std 1003.1 (uuencode -m)

"quoted-printable" IETF RFC 2045

"raw" Identity transformation; no encoding is performed, and the data may 
contain non-printing characters.

Digest method string Required/optional Hash function

"sha1" Required Secure Hash Algorithm 1 (SHA-1).

"md5" Required Message Digest Algorithm 5.

"md2" Optional Message Digest Algorithm 2.

"ripemd-160" Optional RIPEMD-160.

String Cipher Cipher type



768 Chapter 23 — Miscellaneous Topics

directives can appear in any order, but must immediately precede the key_block direc-
tive. We can include more than one group of key-related directives, as we described in
Example 23.10.

We can also precede the begin directive with a data_method directive if we want
to specify the cipher to use to encrypt the source code. If we are not using digital enve-
lopes and we include a data_method directive, we must also include a data_keyowner
directive and optionally a data_keyname directive to identify the key. If we are using
digital envelopes, the encryption tool generates the session key, so we do not include di-
rectives to identify the key.  If we omit the data_method directive, the encryption tool
chooses a default cipher. All of the directives relating to encryption of the source code
must appear together in an encryption envelope.

If we want to include a digital signature, we precede the begin directive with a
digest_block directive. We can specify the cipher and key to use to encrypt the digest
by including a digest_key_method and a digest_keyowner directive (and optionally
a digest_keyname directive). If we don’t specify the cipher and key, the encryption tool
chooses a default cipher and key. Similarly, we can specify the hash function to use by
including a digest_method directive. If we don’t specify a hash function, the encryption
tool chooses a default hash function. The digest_key_method, digest_keyowner,
digest_keyname, and digest_method directives can appear in any order, but must im-
mediately precede the digest_block directive.

Beyond these specifications, we can include directives to identify the IP author, de-
scribe licenses and viewports, and specify the encoding to use. If we don’t specify the en-
coding, the encryption tool chooses a default encoding. We can also include comment
directives anywhere within the encryption envelope, including in the source code be-
tween the begin and end directives.

The rules that an encryption tool must follow to form a decryption envelope are some-
what more prescriptive. Groups of directives must appear in a specified order, even if the
corresponding directives in the encryption envelope appeared in a different order or dis-
tributed among other directives, though not all groups are required in every decryption
envelope. The layout of a decryption envelope is

`protect begin_protected
author directives
license directives
encrypt agent directives
viewport directives
key block directives
data block directives
digest block directives
`protect end_protected

The author, license, and viewport directives are those that appear in the encryption
envelope, if any. The encrypt_agent directive and optionally and encypt_agent_info
directive are included by the encryption tool. If a digital envelope is used, there is a group
of key block directives for each encryption of the session key. The directives occur in the
following order, with only the key_keyname directive being optional:



23.2 IP Encryption 769

key_keyowner directive
key_keyname directive
key_keymethod directive
encoding directive
key_block directive
encoded cipher text for session key

The data block directives occur in the following order, with the data_keyowner and
(optional) data_keyname directives only appearing if a digital envelope is not being
used:

data_keyowner directive
data_keyname directive
data_method directive
encoding directive
data_block directive
encoded cipher text for source code

If a digital signature is used, the digest block directives occur in the following order,
with only the digest_keyname directive being optional: 

digest_keyowner directive
digest_keyname directive
digest_key_method directive
digest_method directive
encoding directive
digest_block directive
encoded cipher text for digest

23.2.1 Key Exchange

In our description of IP exchange so far we have assumed that the IP provider’s encryption
tool and the customer’s decryption tool each have the required keys. What we have
glossed over is how the tools get the keys. This is a very important topic, since protection
of IP from disclosure relies on the security of the encryption and decryption keys. Should
a key become known to an unauthorized party, the encrypted IP can be decrypted and
disseminated. Normally, when encryption is used to secure communication between two
parties, the parties are assumed to have an interest in the security of the encrypted mes-
sages and can be trusted to keep the keys secret. However, as we mentioned earlier, when
an IP provider delivers a model to a customer, it is the customer’s tool that is really the
communicating party. The IP provider may not trust the customer not to look at the code
or use it in some unauthorized way. A further complication is that the customer may have
to provide his or her tool’s key to an IP provider, creating an opportunity for the customer
to copy the key and subsequently decrypt the code. Given these considerations, we can
see that exchange of keys can be quite complicated. VHDL does not specify how keys
should be exchanged; that is left to negotiation between IP providers, tool vendors, and



770 Chapter 23 — Miscellaneous Topics

customers. The following discussion, drawn from the VHDL standard, explores some of
the issues.

Many applications that require secure exchange of keys rely on public key infrastructure (PKI).
Parties to communication generate, or are given, key pairs for use with asymmetric ciphers.
Each party keeps their private key secret, and publishes their public key, for example, in a di-
rectory. In order to establish that a public key does, in fact, belong to a given party, the public
key is digitally signed by a trusted authority. The signed public key is represented in the form
of a digital certificate, containing the key and the signature. The trusted authority is called a
certification authority (CA). Many PKI systems have a hierarchy of CAs, allowing a certificate
signed by a subordinate CA to be signed by a superior CA, allowing trust to be distributed hi-
erarchically. One or more root CAs are required to be globally trusted.

Key exchange for IP protection may be built upon public key infrastructure. For example,
a vendor of a decryption tool may embed a private key of a key pair in the tool and register
the public key with a CA. The tool can then generate a key pair for the tool’s user, keeping the
private key secret and signing the public key with both the vendor’s private key and the user’s
private key. This allows verification that the public key originates with the instance of the ven-
dor’s tool owned by the tool user. That public key may then be used by IP authors to provide
IP for that use of that tool only. Similar mechanisms might also be employed within tools to
allow exchange of private keys among tools without disclosure to the tools’ user.

In addition to providing for secure key exchange, a decryption tool must take measures to
ensure that stored keys are not disclosed to the tool user. If a tool user could read a tool’s stored
keys, the user could decrypt IP independently of the tool. One way of ensuring security of a
tool’s keys is for the tool to encrypt its key store using a secret key embedded in the tool in a
disguised manner, and to provide for update and re-encryption of the secret key in case it is
compromised.

23.3 VHDL Procedural Interface (VHPI)

VHPI is an application-programming interface (API) to VHDL tools. Using VHPI, a pro-
gram written in a language such as C or C++ can access information about a VHDL model
during analysis, elaboration, and execution of the model. VHPI allows development of
add-in tools, such as linters, profilers, code coverage analyzers, timing and power analyz-
ers, and external models, among others. Use of the VHPI to develop such tools is quite
complex, and is beyond the scope of this book. Instead, we will describe the way in which
we can invoke VHPI programs as part of a VHDL simulation.

VHPI programs are divided into two classes: foreign models and foreign applications.
A foreign model corresponds to an architecture or a subprogram decorated with the 'for-
eign attribute, predefined in the package standard as follows:

attribute foreign : string;

An architecture or subprogram decorated with this attribute is not elaborated or exe-
cuted in the same way as a normal architecture or subprogram. Instead, the value of the
attribute is used to identify the VHPI program that implements the behavior of the archi-
tecture or subprogram, respectively.

A foreign application does not have a counterpart in the VHDL code. It is executed
as part of simulation and performs application-specific processing. Both forms of VHPI



23.3 VHDL Procedural Interface (VHPI) 771

program can use API calls to obtain information about the VHDL model, to react to
changes in the simulation state, and to cause changes in the simulation state.

VHDL-87, -93, and -2002

These versions of VHDL do not provide a standard API for foreign models or appli-
cations. Instead, simulation vendors have provided proprietary APIs for use with their
tools. Such APIs are not portable between tools.

VHDL-87

The predefined attribute 'foreign is not provided in VHDL-87. There is no standard
mechanism to define foreign language interfaces.

23.3.1 Direct Binding

If we are to instantiate a foreign model as part of a VHPI design, we need to identify where
the VHPI program code is to be found. Typically, the provider of the foreign model would
provide documentation listing the names of libraries and functions to which we should
refer. The most straightforward method of referring to the VHPI program code is to pro-
vide the information in the value of the 'foreign attribute in a form known as direct bind-
ing. For a foreign architecture, we write the attribute value in the following form:

"VHPIDIRECT object_lib_path elab_function exec_function"

The keyword VHPIDIRECT specifies standard direct binding, and must be written in
uppercase. The object_lib_path is a host-dependent path and file name identifying the bi-
nary object library in the host file system. It can contain any characters; however, if a space
character is required, we must precede it with a backslash character, and if a backslash
character is required, we must double the backslash. The elab_function is the name of a
function within the object library that performs elaboration for the foreign architecture. It
is called to elaborate each instance of the foreign architecture during elaboration of the
enclosing design. The exec_function is similarly the name of a function in the object library
that performs simulation for the foreign architecture. It is called once for each instance of
the foreign architecture during the initialization phase of simulation.

In the attribute value, we can substitute the keyword null for the object library path.
In that case, the host system locates the object library in an implementation-dependent
way. It might, for example, use an environment variable containing a list of pathnames.
We can also substitute the keyword null for the elaboration function name if the foreign
model does not require any action during elaboration. In both cases, the keyword null
must be written in lowercase.



772 Chapter 23 — Miscellaneous Topics

EXAMPLE 23.13 Foreign processor core model

Suppose a foreign model for a CPU32 processor core is provided in an object library
called cpu32.a that we have installed in the directory /usr/local/cpu32. The
elaboration and execution functions for a bus-functional version are named
cpu32_bf_elab_f and cpu32_bf_exec_f, respectively. An entity and architecture that
use standard direct binding for the bus-functional version are:

entity cpu32 is
  generic ( ... );
  port ( ... );
end entity cpu_32;

architecture bus_functional of cpu32 is
  attribute foreign of bus_functional : architecture is
    "VHPIDIRECT /usr/local/cpu32/cpu32.a " &
    "cpu32_bf_elab_f cpu32_bf_exec_f";
begin
end architecture bus_functional;

The attribute value for standard direct binding for a foreign subprogram takes a similar
form:

"VHPIDIRECT object_library_path exec_function"

In this case, the execution function name identifies a function that performs the action
of the foreign subprogram. It is called whenever the foreign subprogram is called during
simulation. For foreign subprograms, we can substitute the keyword null for the execu-
tion function name. In that case, the execution function name is taken to be the same as
that of the foreign subprogram declared in the VHDL model, using the case of letters in
the VHDL declaration.

EXAMPLE 23.14 Foreign display subprograms

Suppose we are given subprograms that show 7-segment display digits graphically on
the screen during simulation. The subprograms are in the library displaylib.a, and in-
clude a function named create_digit and a procedure named update_digit. We can
declare corresponding foreign subprograms in a package as follows:

package display_pkg is

  impure function create_digit (title : in string)
                               return natural;

  attribute foreign of create_digit : function is
    "VHPIDIRECT displaylib.a null";



23.3 VHDL Procedural Interface (VHPI) 773

  procedure update_digit (id : in natural;
                          val : in bit_vector(0 to 7));

  attribute foreign of update_digit : procedure is
    "VHPIDIRECT displaylib.a null";

end package display_pkg;

23.3.2 Tabular Registration and Indirect Binding

An alternative way of identifying the VHPI program code for a foreign model is to use a
tabular registry, which is a text file containing the identifying information. A tool can be
supplied with any number of tabular registry files, each describing one or more foreign
models or applications. The way in which we specify use of a tabular registry file is tool-
dependent. It might, for example, involve use of a command-line option or an entry in an
options-setting file. Each line of a tabular registry is an entry describing one foreign model,
foreign application, or library of VHPI programs. The file can also contain comment lines,
starting with characters “--”, and blank lines.

A foreign architecture is described by a line of the following form in a tabular registry:

object_lib_name model_name vhpiArchF elab_function exec_function

The object_lib_name is a logical name for the binary object library containing the
VHPI program code. The host system maps the logical name to a physical object library
in some host-dependent way. The model_name is an identifier for the foreign architecture
in the object library. Both the library logical name and the model name can be written as
a normal identifier or, if non-standard characters are required, as an extended identifier
delimited by backslash characters. The keyword vhpiArchF indicates that the line in the
tabular registry describes a foreign architecture. It must be written using the combination
of uppercase and lowercase letters shown here. The elab_function and exec_function are
the names of the elaboration function and execution function, respectively, in the object
library. They serve the same purpose as described in Section 23.3.1, and, in a similar way,
the elaboration function name can be replaced by the keyword null.

Having described a foreign architecture in a tabular registry file, we can specify a 'for-
eign attribute in the form of an indirect binding to use the foreign architecture for a VHDL
architecture. This form of attribute value is

"VHPI object_lib_name model_name"

The object_lib_name and model_name identifiers must correspond to the library log-
ical name and model name identifiers specified in an entry in a tabular registry. The for-
eign architecture described in that entry is used for each instance of the VHDL architecture
decorated with the attribute.



774 Chapter 23 — Miscellaneous Topics

EXAMPLE 23.15 Foreign processor core model using indirect binding

Suppose the provider of the CPU32 processor core model described in Example 23.13
also provides a tabular registry file for binding the bus-functional model. The file con-
tains the following entry:

cpu32lib \cpu32-bf\ vhpiArchF cpu32_bf_elab_f cpu_bf_exec_f

We decorate the architecture with the 'foreign attribute using indirect binding for
the bus-functional model:

architecture bus_functional of cpu32 is
  attribute foreign of bus_functional : architecture is
    "VHPI cpu32lib \cpu32-bf\";
begin
end architecture bus_functional;

Tabular registration and indirect binding for a foreign subprogram are similar. An en-
try in a tabular registry file for a foreign procedure takes the form:

object_lib_name model_name vhpiProcF null exec_function

and for a foreign function:

object_lib_name model_name vhpiFuncF null exec_function

In both cases, the object_lib_name and model_name serve the same purpose as for a
foreign architecture, and the exec_function is the name of the function in the object library
that implements the subprogram’s actions. The function name can be replaced by the
keyword null, in which case the execution function is taken to be the same as the model
name. The 'foreign attribute value for indirect binding to a foreign subprogram is the same
as that for indirect binding to a foreign architecture, namely,

"VHPI object_lib_name model_name"

The library name and model name are used in the same way to locate the tabular reg-
istry entry for the foreign subprogram.

EXAMPLE 23.16 Foreign display subprograms using indirect binding

The provider of the display subprograms described in Example 23.14 might provide
a tabular registry file for the subprograms including the following entries:

displaylib create_digit vhpiFuncF null null
displaylib update_digit vhpiProcF null null

The second null in each entry indicates that the execution function names for the
subprograms are the same as the foreign model names, namely, create_digit and



23.3 VHDL Procedural Interface (VHPI) 775

update_digit. We declare the foreign subprograms and use indirect binding in the 'for-
eign attribute values as follows:

package display_pkg is

  impure function create_digit (title : in string)
                               return natural;

  attribute foreign of create_digit : function is
    "VHPI displaylib create_digit";

  procedure update_digit (id : in natural;
                          val : in bit_vector(0 to 7));

  attribute foreign of update_digit : procedure is
    "VHPI displaylib update_digit";

end package display_pkg;

23.3.3 Registration of Applications and Libraries

We can use the tabular registration feature described in Section 23.3.2 to describe a VHPI
application to be run as part of a simulation. A line in the file for a foreign application
takes the form:

object_lib_name application_name vhpiAppF reg_function null

The object_lib_name is a logical name identifying the binary object library containing
the program code, and the application_name is an identifier for the foreign application in
the object library. The rules for these names are the same as those for names identifying
foreign models. Thus, they can be written as normal identifiers or extended identifiers.
The keyword vhpiAppF indicates that the line in the tabular registry describes a foreign
application and must be written using the combination of uppercase and lowercase letters
shown here. The reg_function is the names of a function in the object library that is called
at the start of simulation, before elaboration or initialization, to initialize the state of the
foreign application. This is all the information we need to supply to the tool to include a
foreign application in a simulation. The registration function performs any further
application-specific operations required.

EXAMPLE 23.17 Registration of a power-estimation application

A third-party tool supplier might provide a tool for estimating dynamic power con-
sumption based on activity during simulation of a model. The tool’s program code is
installed in a binary object library in the host file system, with a logical name
powerestlib mapping to the library file. The application is named powerest, and the
registration function in the library is called powerest_reg_f. The supplier provides a
tabular registry file with the following contents:



776 Chapter 23 — Miscellaneous Topics

-- VHPI tabular registry for the PowerEst foreign application.
-- Map library name powerestlib to the pathname for the
-- powerestlib.a file in your installation.

powerestlib powerestlib vhpiAppF powerest_reg_f null

We invoke the simulator with a command-line option identifying this tabular reg-
istry file to include the power estimator tool in a simulation.

The final form of entry in a tabular registry file describes a library of VHPI programs,
including foreign models or applications. The form of the entry is

object_lib_name null vhpiLibF reg_function null

As before, the object_lib_name is a logical name identifying the binary object library
containing the program code. The reg_function is the names of a function in the object
library that is called at the start of simulation. It uses the VHPI API to register each foreign
model or application. This form of registration is convenient when a large suite of VHPI
programs is provided.

23.4 Postponed Processes

VHDL provides a facility, postponed processes, that is useful in delta-delay models. A pro-
cess is made postponed by including the keyword postponed, as shown by the full syntax
rule for a process:

process_statement ⇐
[ process_label : ]
[ postponed ] process [ ( ( signal_name { , … } ) I all ) ] [ is ]

{ process_declarative_item }
begin

{ sequential_statement }
end [ postponed ] process [ process_label ] ;

The difference between a postponed process and a normal process lies in the way in
which they are resumed during simulation. In our discussion of the simulation cycle in
Chapter 5, we said that a normal process is triggered during a simulation cycle in which
one of the signals to which it is sensitive changes value. The process then executes during
that same simulation cycle. A postponed process is triggered in the same way, but may
not execute in the same cycle. Instead, it waits until the last delta cycle at the current sim-
ulation time and executes after all non-postponed processes have suspended. It must wait
until the non-postponed processes have suspended in order to ensure that there are no
further delta cycles at the current simulation time. In addition, during initialization, a post-
poned process is started after all normal processes have been started and have suspended.

When we are writing models that use delta delays, we can use postponed processes
to describe “steady state” behavior at each simulation time. The normal processes are ex-
ecuted over a series of delta delays, during which signal values are determined incremen-



23.4 Postponed Processes 777

tally. Then, when all of the signals have settled to their final state at the current simulation
time, the postponed processes execute, using these signal values as their input.

EXAMPLE 23.18 Assertion based on steady-state values of signals

We can write an entity interface for a set-reset flipflop as follows:

entity SR_flipflop is
  port ( s_n, r_n : in bit;  q, q_n : inout bit );

begin

  postponed process (q, q_n) is
  begin
    assert now = 0 fs or q = not q_n
      report "implementation error: q /= not q_n";
  end postponed process;

end entity SR_flipflop;

The entity declaration includes a process that verifies the outputs of the flipflop.
Every implementation of the interface is required to produce complementary outputs.
(The condition “now = 0 fs” is included to avoid an assertion violation during initial-
ization.)

A dataflow architecture of the flipflop is

architecture dataflow of SR_flipflop is
begin

  gate_1 : q <= s_n nand q_n;
  gate_2 : q_n <= r_n nand q;

end architecture dataflow;

The concurrent signal assignment statements gate_1 and gate_2 model an imple-
mentation composed of cross-coupled gates. Assume that the flipflop is initally in the
reset state. When s_n changes from ‘1’ to ‘0’, gate_1 is resumed and schedules a
change on q from ‘0’ to ‘1’ after a delta delay. In the next simulation cycle, the change
on q causes gate_2 to resume. It schedules a change on q_n from ‘1’ to ‘0’ after a delta
delay. During the first delta cycle, q has the new value ‘1’, but q_n still has its initial
value of ‘1’. If we had made the verification process in the entity declaration a non-
postponed process, it would be resumed in the first delta cycle and report an assertion
violation. Since it is a postponed process, it is not resumed until the second delta cycle
(the last delta cycle after the change on s_n), by which time q and q_n have stabilized.

It is important to note that the condition that triggers a postponed process may not
obtain when the process is finally executed. For example, suppose a signal s is updated
to the value ‘1’, causing the following postponed process to be triggered:



778 Chapter 23 — Miscellaneous Topics

p : postponed process is
  ...
begin
  ...
  wait until s = '1';
  ...  -- s may not be '1'!!
end postponed process p;

Because the process is postponed, it is not executed immediately. Instead, some other
process may execute, assigning ‘0’ to s with delta delay. This assignment causes a delta
cycle during which s is updated to ‘0’. When p is eventually executed, it proceeds with
the statements immediately after the wait statement. However, despite the appearance of
the condition in the wait statement, s does not have the value ‘1’ at that point.

Since each postponed process waits until the last delta cycle at a given simulation time
before executing, there may be several postponed processes triggered by different condi-
tions in different delta cycles, all waiting to execute. Since the cycle in which the post-
poned processes execute must be the last delta cycle at the current simulation time, the
postponed processes must not schedule transactions on signals with delta delay. If they
did, they would cause another delta cycle at the current simulation time, meaning that the
postponed processes should not have executed. The restriction is required to avoid this
paradox.

In previous chapters, we described a number of concurrent statements that are equiv-
alent to similar sequential statements encapsulated in processes. We can write postponed
versions of each of these by including the keyword postponed at the beginning of the
statement, as shown by the following syntax rules:

concurrent_procedure_call_statement ⇐
[ label : ]
[ postponed ] procedure_name [ ( parameter_association_list ) ] ;

concurrent_assertion_statement ⇐
[ label : ]
[ postponed ] assert condition

[ report expression ] [ severity expression ] ;

concurrent_simple_signal_assignment ⇐
name <= [ postponed ] [ guarded ] [ delay_mechanism ] waveform ;

concurrent_conditional_signal_assignment ⇐
name <= [ postponed ] [ guarded ] [ delay_mechanism ]

waveform when condition
{ else waveform when condition }
[ else waveform ] ;

concurrent_selected_signal_assignment ⇐
with expression select [ ? ]

name <= [ postponed ] [ guarded ] [ delay_mechanism ]
{ waveform when choices , }
waveform when choices ;



23.5 Conversion Functions in Association Lists 779

Inclusion of the keyword postponed simply makes the encapsulating process a post-
poned process. Thus, we can rewrite the postponed process in Example 23.18 as

postponed assert now = 0 fs or q = not q_n
  report "implementation error: q /= not q_n";

VHDL-87

Postponed processes are not provided in VHDL-87.

23.5 Conversion Functions in Association Lists

In the preceding chapters, we have seen uses of association lists in generic maps, port
maps and subprogram calls. An association list associates actual values and objects with
formal objects. Let us now look at the full capabilities provided in association lists, shown
by the following full syntax rules:

association_list ⇐ ( [ formal_part => ] actual_part ) { , … }

formal_part ⇐
generic_name
I port_name
I parameter_name
I function_name ( ( generic_name I port_name I parameter_name ) )
I type_mark ( ( generic_name I port_name I parameter_name ) )

actual_part ⇐
[ inertial ] expression
I signal_name
I variable_name
I file_name
I subtype_indication
I subprogram_name
I package_name
I open
I function_name ( ( signal_name I variable_name ) )
I type_mark ( ( signal_name I variable_name ) )

The simple rules for association lists we used previously allowed us to write associa-
tions of the form “formal => actual”. When we are associating signal and variable object,
the new rules allow us to write associations such as

f1 ( formal ) => actual

formal => f2 ( actual )

f1 ( formal ) => f2 ( actual )



780 Chapter 23 — Miscellaneous Topics

These associations include conversion functions or type conversions. We discussed
type conversions in Chapter 2. They allow us to convert a value from one type to another
closely related type. A conversion function, on the other hand, is an explicitly or implicitly
declared subprogram or operation. It can be any function with one parameter and can
compute its result in any way we choose.

A conversion in the actual part of an association is invoked whenever a value is
passed from the actual object to the formal object. For a variable-class subprogram param-
eter, conversion occurs when the subprogram is called. For a signal associated with a port,
conversion occurs whenever an updated signal value is passed to the port. For constant-
class subprogram parameters and for generic constants, the actual values are expressions,
which may directly take the form of function calls or type conversions. In these cases, the
conversion is not considered to be part of the association list; instead, it is part of the ex-
pression. Conversions are not allowed in the remaining cases, namely, signal-class and
file-class actual subprogram parameters.

EXAMPLE 23.19 Conversion in the actual part

We wish to implement a limit checker, which checks whether a signed integer is out
of specified bounds. The integer and bounds are represented as standard-logic vectors
of the subtype word, declared in the package project_util as

subtype word is std_ulogic_vector(31 downto 0);

We can use a comparison function that compares integers represented as bit vectors.
The function is declared in project_util as

function "<" ( bv1, bv2 : bit_vector ) return boolean;

The entity declaration and architecure body for the limit checker are

library ieee;  use ieee.std_logic_1164.all;
use work.project_util.all;

entity limit_checker is
  port ( input, lower_bound, upper_bound : in word;
         out_of_bounds : out std_ulogic );
end entity limit_checker;

--------------------------------------------------

architecture behavioral of limit_checker is

  subtype bv_word is bit_vector(31 downto 0);

  function word_to_bitvector ( w : in word ) return bv_word is
  begin
    return To_bitvector ( w, xmap => '0' );
  end function word_to_bitvector;

begin



23.5 Conversion Functions in Association Lists 781

  algorithm : process (input, lower_bound, upper_bound) is
  begin
    if "<" ( bv1 => word_to_bitvector(input),
             bv2 => word_to_bitvector(lower_bound) )
       or "<" ( bv1 => word_to_bitvector(upper_bound),
                bv2 => word_to_bitvector(input) ) then
      out_of_bounds <= '1';
    else
      out_of_bounds <= '0';
    end if;
  end process algorithm;

end architecture behavioral;

The process performs the comparisons by converting the word values to bit vec-
tors, using the conversion function word_to_bitvector. Note that we cannot use the
function To_bitvector itself in the actual part of the association list, as it has two pa-
rameters, not one. Note also that the result type of the conversion function in this ex-
ample must be a constrained array type in order to specify the array index range for
the actual value passed to the comparison function.

Since an actual for a port can take the form of an expression involving one or more
signals, and the expression could be application of a function to a signal, there is potential
for ambiguity in the association. If it were interpreted as an expression, it would be equiv-
alent to assignment to an intermediate signal and association of that signal as the actual
for the port, as described in Section 5.3. That would involve a delta delay between update
of the actual signal and update of the port. On the other hand, if the actual were
interpreted as a conversion function applied to the actual signal, then the port is updated
in the same simulation cycle as the actual signal, with no intervening delta delay. In order
to resolve this ambiguity, we can include the reserved word inertial in the association to
specify that the interpretation involving an implicit signal is the one to use. If we omit the
reserved word and the association can be interpreted as application of a conversion func-
tion or a type conversion, that interpretation takes precedence.

EXAMPLE 23.20 Using a single-parameter function in an actual part

If we were to write a function with one parameter representing some computational
logic, for example:

function increment ( x : unsigned ) return unsigned;

and use it in a port map:

op_counter : component reg16
  port map ( d_in => increment(op_count), ... );



782 Chapter 23 — Miscellaneous Topics

it would be interpreted as a conversion function, which is not what we want. To make
the intention explicit, we include the reserved word inertial in the port association
to imply an inertial signal assignment of the expression to the anonymous intermedi-
ate signal. Thus, we would write the port map as

op_counter : component reg16
  port map ( d_in => inertial increment(op_count), ... );

A conversion can only be included in the actual part of an association if the interface
object is of mode in or inout. If the conversion takes the form of a type conversion, it
must name a subtype that has the same base type as the formal object and is closely re-
lated to the type of the actual object. If the conversion takes the form of a conversion func-
tion, the function must have only one parameter of the same type as the actual object and
must return a result of the same type as the formal object. If the interface object is of an
unconstrained or partially constrained type, the type mark of the type conversion or the
result type of the conversion function must include constraints that define any index
ranges not defined by the interface object’s subtype.

A conversion in the formal part of an association is invoked whenever a value is
passed from the formal object to the actual object. For a variable-class procedure param-
eter, conversion occurs when the procedure returns. For a signal associated with a port,
conversion occurs whenever the port drives a new value. Conversions are not allowed for
signal-class and file-class formal subprogram parameters.

EXAMPLE 23.21 Conversion in the formal part

Suppose a library contains the following entity, which generates a random number at
regular intervals:

entity random_source is
  generic ( min, max : natural;
            seed : natural;
            interval : delay_length );
  port ( number : out natural );
end entity random_source;

If we have a test bench including signals of type bit, we can use the entity to generate
random stimuli. We use a conversion function to convert the numbers to bit-vector
values. An outline of the test bench is shown below. The function natural_to_bv11
has a parameter that is a natural number and returns a bit-vector result. The architec-
ture instantiates the random_source component, using the conversion function in the
formal part of the association between the port and the signal. Each time the compo-
nent instance generates a new random number, the function is invoked to convert it
to a bit vector for assignment to stimulus_vector.

architecture random_test of test_bench is

  subtype bv11 is bit_vector(10 downto 0);



23.5 Conversion Functions in Association Lists 783

  function natural_to_bv11 ( n : natural ) return bv11 is
    variable result : bv11 := (others => '0');
    variable remaining_digits : natural := n;
  begin
    for index in result'reverse_range loop
      result(index) := bit'val(remaining_digits mod 2);
      remaining_digits := remaining_digits / 2;
      exit when remaining_digits = 0;
    end loop;
    return result;
  end function natural_to_bv11;

  signal stimulus_vector : bv11;
  ...

begin

  stimulus_generator : entity work.random_source
    generic map ( min => 0, max => 2**10 - 1, seed => 0,
                  interval => 100 ns )
    port map ( natural_to_bv11(number) => stimulus_vector );

  ...

end architecture random_test;

The type requirements for conversions included in the formal parts of associations
mirror those of conversions in actual parts. A conversion can only be included in a formal
part if the interface object is of mode out, inout, or buffer. If the conversion takes the
form of a type conversion, it must name a subtype that has the same base type as the ac-
tual object and is closely related to the type of the formal object. If the conversion takes
the form of a conversion function, the function must have only one parameter of the same
type as the formal object and must return a result of the same type as the actual object. If
the interface object is of an unconstrained or partially constrained type, the type mark of
the type conversion or the parameter type of the conversion function must include con-
straints that define any index ranges not defined by the interface object’s subtype.

Note that we can include a conversion in both the formal part and the actual part of
an association if the interface object is of mode inout. The conversion on the actual side
is invoked whenever a value is passed from the actual to the formal, and the conversion
on the formal side is invoked whenever a value is passed from the formal to the actual.

VHDL-87, -93, and -2002

In these versions, we cannot use a non-static expression as an actual for a port. Hence,
the ambiguity between such an expression and a conversion function does not arise.
These versions thus do not allow the reserved word inertial to appear in a port map.

Also, in these versions of VHDL, it is not possible to associate a resolution func-
tion with the elements of an array type to define a subtype with resolved elements.



784 Chapter 23 — Miscellaneous Topics

Instead, a separate array type must be defined with elements of a resolved subtype.
As a consequence, the two array types are distinct, and type conversions are needed
to assign a value of one type to and objects of the other.

One important use of type conversions in association lists arises in the earlier ver-
sions of VHDL when we mix arrays of unresolved and resolved elements in a model.
For example, the standard-logic package declares the two types:

type std_ulogic_vector is array (natural range <>) of std_ulogic;

type std_logic_vector is array (natural range <>) of std_logic;

These are two distinct types, even though the element type of std_logic_vector is
a subtype of the element type of std_ulogic_vector. Thus, we cannot directly associate
a std_ulogic_vector signal with a std_logic_vector port, nor a std_logic_vector signal
with a std_ulogic_vector port. However, we can use type conversions or conversion
functions to deal with the type mismatch.

EXAMPLE 23.22 Array conversions in associations

Suppose we are developing a register-transfer-level model of a computer system in an
earlier version of VHDL. The architecture body for the processor is

architecture rtl of processor is

  component latch is
    generic ( width : positive );
    port ( d : in std_ulogic_vector(0 to width - 1);
           q : out std_ulogic_vector(0 to width - 1);
           ... );
  end component latch;

  component ROM is
    port ( d_out : out std_ulogic_vector;  ... );
  end component ROM;

  subtype std_logic_word is std_logic_vector(0 to 31);

  signal source1, source2, destination : std_logic_word;
  ...

begin

  temp_register : component latch
    generic map ( width => 32 )
    port map ( d => std_ulogic_vector(destination),
               std_logic_vector(q) => source1, ... );

  constant_ROM : component ROM
    port map ( std_logic_word(d_out) => source2, ... );

  ...



23.6 Linkage Ports 785

end architecture rtl;

We declare a latch component and a ROM component, both with unresolved
ports. We also declare a constrained array subtype std_logic_word with resolved ele-
ments and a number of signals of this subtype representing the internal buses of the
processor.

We instantiate the latch component and associate the destination bus with the d
port and the source1 bus with the q port. Since the signals and the ports are of dif-
ferent but closely related types, we use type conversions in the association list. Al-
though the types std_ulogic_vector and std_logic_vector are unconstrained array
types, we can name them in the type conversion in this instance, since the component
ports are constrained.

We also instantiate the ROM component and associate the source2 bus with the
d_out port. Here also we use a type conversion in the association list. However, the
port d_out is of an unconstrained type. Hence we may not use the name
std_logic_vector in the type conversion, since it, too, is unconstrained. Instead, we
use the constrained subtype name std_logic_word. The index range of this subtype is
used as the index range of the port d_out in the component instance.

VHDL-87

VHDL-87 does not allow type conversions in association lists, but does allow conver-
sion functions. If we need to convert between closely related types in an association
list, we can write a function that performs the type conversion and use the function
as a conversion function in the association list.

23.6 Linkage Ports

When we introduced ports in Chapter 5, we identified four modes, in, out, buffer, and
inout, that control how data is passed to and from a design entity. VHDL provides a fur-
ther mode, linkage. This mode may only be specified for ports of entities, blocks and
components, not for generic constants or subprogram parameters.

Linkage ports were originally included in the language as a means of connecting sig-
nals to foreign design entities. If the implementation of an entity is expressed in some lan-
guage other than VHDL, the way in which values are generated and read within the entity
may not conform to the same transaction semantics as those of VHDL. A linkage-mode
port provides the point of contact between the non-VHDL and the VHDL domains. Unless
a simulator provides some additional semantics for generating and reading linkage ports,
a model containing linkage ports anywhere in the hierarchy cannot be simulated.

In practice, linkage ports have not been used as originally intended. One alternative
that has been developed is an extension to VHDL for analog and mixed-digital/analog
modeling, called VHDL-AMS. It defines alternative classes of ports, called quantities and
terminals, for dealing with analog connections. The one place where linkage ports have
been used is in the Boundary Scan Description Language, which is a subset of VHDL for



786 Chapter 23 — Miscellaneous Topics

describing connections to circuits for test equipment. In that language, linkage ports are
used for non-functional connections, such as power, ground, and unconnected pins.

Exercises

1. [➊ 23.1] Write signal declarations for

• a bus-kind signal, serial_bus, of the resolved subtype wired_or_bit, and

• a register-kind signal, d_node, of the resolved subtype unique_bit.

2. [➊ 23.1] A signal rx_bus is declared to be a bus-kind signal of type std_logic. Trace
the value of the signal as transactions from the following two drivers are applied:

• null, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘0’ after 30 ns, null after 40 ns

• null, ‘1’ after 35 ns, ‘0’ after 45 ns, null after 55 ns

3. [➊ 23.1] Repeat Exercise 2, this time assuming rx_bus is a register-kind signal that is
initialized to ‘U’.

4. [➊ 23.1] Write a signal assignment statement that schedules the value 3 on an integer
signal vote after 2 µs, then disconnects from the signal after 5 µs.

5. [➊ 23.1] Suppose a process contains the following signal assignment, executed at time
150 ns:

result <= 0 after 10 ns, 42 after 20 ns,
          0 after 100 ns, null after 120 ns;

Assuming the driver for result is disconnected at time 150 ns, trace the value of re-
sult'driving resulting from the signal assignment.

6. [➊ 23.1] Write a block with a guard expression that is true when a std_ulogic signal
en is ‘1’ or ‘H’. The block should contain a guarded signal assignment that assigns an
inverted version of the signal d_in to the signal q_out_n when the guard expression
is true.

7. [➊ 23.1] Write disconnection specifications that specify

• a disconnection delay of 3.5 ns for a signal source1 of type wired_word,

• a disconnection delay of 3.2 ns for other signals of type wired_word and

• a disconnection delay of 2.8 ns for all signals of type wired_bit.

8. [➊ 23.1] Trace the values on the signal priority resulting from execution of the follow-
ing statements. The resolution function for the subtype resolved_integer selects the
leftmost value from the contributing drivers or returns the value 0 if there are no con-
tributions. Assume that no other drivers for priority are connected.

signal request : integer := 0;
signal guard : boolean := false;



Exercises 787

signal priority : resolved_integer bus := 0;
disconnect priority : resolved_integer after 2 ns;
...

request <= 3 after 40 ns, 5 after 80 ns, 1 after 120 ns;
guard <= true after 50 ns, false after 100 ns;
priority <= guarded request after 1 ns;

9. [➊ 23.1] Write a block statement that encapsulates component instantiation statements
implementing the circuit shown in Figure 23.2. The signal q_internal, of type bit,
should be declared local to the block.

FIGURE 23.2 

An inverting-register circuit.

10. [➊ 23.1] Write a block configuration for the block statement described in Exercise 9,
binding the flipflop component instance to an entity d_flipflop and architecture basic,
and the inverter component to the entity inverter and architecture basic. The entities
are in the current working library.

11. [➊ 23.2] Add protect directives to form an encryption envelope around the declara-
tions and statements in the following architecture. The encryption envelope should
use the triple-DES symmetric cipher with the key owner “IP_werx” and key name
“IP_werx_sim”.

architecture rtl of ethernet_mac is
  signal fifo_enable : std_ulogic;
  ...
begin
  rx_fifo : IP_werx_fifo
    port map ( ... );
  ...
end architecture rtl;

12. [➊ 23.2] Repeat Exercise 11, this time using a digital envelope with the session key
encrypted using the OpenPGP RSA cipher and the data encrypted using the AES ci-
pher with 192-bit key. The recipient key owner is “Aero Industries” and their public
key name is “Aero Design”. The encrypted information should be encoded using the
base64 method.

d
clk

q
dff

q_internald_in
sys_clk

q_out_n



788 Chapter 23 — Miscellaneous Topics

13. [➊ 23.3] Decorate the following architecture with the 'foreign attribute specifying
VHPI direct binding, with the elaboration function control_elab and the execution
function control_exec being stored in the library $VHPIUSERLIB/control.so.

architecture vhpi_implementation of control is
begin
end architecture vhpi_implementation;

14. [➊ 23.3] Repeat Exercise 13, this time using VHPI indirect binding. Show the entry in
the tabular registry identifying the foreign architecture.

15. [➊ 23.5] Suppose we wish to associate an out mode port of type std_ulogic with a
signal of type bit. Why can we not use the function To_bit as a conversion function
in the association?

16. [➊ 23.5] Suppose we have a gate component declared as

component nand2 is
  port ( a, b : in std_ulogic;  y_n : out std_ulogic );
end component nand2;

Write a component instantiation statement that instantiates the gate, with inputs con-
nected to signals s1 and s2 and output connected to the signal s3. All of the signals
are of type bit. Use conversion functions where required.

17. [➋ 23.1] Suppose we declare the following subtypes:

subtype word is bit_vector(31 downto 0);
...
subtype resolved_word is bitwise_or word;

The resolution function performs a bitwise logical “or” operation on the contributing
driver values. Write a procedure that encapsulates the behavior of a tristate buffer. The
procedure has input signal parameters oe of type bit and d of the subtype word and
an output signal parameter z of type resolved_word. When oe is ‘1’, the value of d is
transmitted to z. When oe is ‘0’, z is disconnected. Test the procedure by invoking it
with a number of concurrent procedure calls in a test bench.

18. [➋ 23.1] Develop a dataflow model of a latching four-input multiplexer. The
multiplexer has four data inputs, two bits of select input, and an enable input. When
the enable input is high, the select inputs determine which data input is transmitted
to the single data output. When the enable input is low, the value on the data output
is latched.

19. [➋ 23.1] A dynamic register can be implemented in NMOS technology as shown in
Figure 23.3. Develop a dataflow model for this form of register, using guarded signal
assignments to model the pass transistors. The signals should be of a resolved subtype
of bit, and the signal latched_d should be a register-kind signal.



Exercises 789

FIGURE 23.3 

A circuit for a dynamic register.

20. [➋ 23.1] Develop a behavioral model of a three-to-eight decoder with three select in-
puts, an enable input and eight active-low outputs. The entity interface includes ge-
neric constants for

• input propagation delay for the enable input,

• input propagation delay for the select inputs and

• output propagation delay for the outputs.

Write the architecture body with separate blocks for input delays, function and output
delays.

21. [➋ 23.6] Develop a structural model of an SR-flipflop constructed from nor gates as
shown in Figure 23.4. Use buffer mode ports for q and q_n.

FIGURE 23.4 

An SR-flipflop constructed from not gates.

22. [➌ 23.4] Exercise 17 in Chapter 8 describes a distributed priority arbiter for a shared-
bus multiprocessor system. Each requester computes the minimum of all priorities.
Develop a model of the minimization circuit that operates using delta delays. Include
a number of instances of the minimizer in a test bench. Also include a process that
verifies that the result priority is the minimum of all of the request priorities when the
computation is complete.

23. [➌ 23.1] Revise the tristate buffer procedure described in Exercise 17 to make it bidi-
rectional. Include an additional input parameter that determines the direction of data
transfer.

latched_d

phi1 and load

phi1 and load

d q_n

q

q_n

q

s

r



790 Chapter 23 — Miscellaneous Topics

24. [➌ 23.1] Develop a behavioral model of a read/write memory with a bidirectional data
port of the type resolved_byte, defined on page 738. The data port should be a bus-
kind signal, and the model should use null signal assignments appropriately to indi-
cate when the memory is not supplying data.

25. [➌ 23.1] A 4-bit carry-look-ahead adder can be implemented in CMOS technology with
a Manchester carry chain, shown in Figure 23.5. The signal c0 is the carry input, c4 is
the carry output,  to  are active-low intermediate carry signals, g1 to g4 are carry
generate signals and p1 to p4 are carry propagate signals. During the low half of a
clock cycle, the intermediate carry signals are precharged to ‘1’. During the high half
of the clock cycle, the pass transistors controlled by the generate and propagate sig-
nals conditionally discharge the intermediate carry signals, determining their final
value. The Boolean equations for the sum, generate and propagate signals are

Develop a dataflow model of a 4-bit Manchester carry adder, using register-kind sig-
nals for the internal carry signals. All signals should be of a resolved-bit type.

FIGURE 23.5 

A Manchester carry chain for a carry-look-ahead adder.

26. [➌ 23.1] A 4 × 4 barrel shifter can be constructed from pass transistors as shown in
Figure 23.6. The signals i0 to i3 are the inputs, and z0 to z3 are the outputs. The con-
trol signal s0 causes input bits to be transmitted to the outputs unshifted, s1 causes
them to be shifted by one place, s2 by two places and s3 by three places. The outputs
must be precharged to ‘1’ on the first half of a clock cycle, then one of the control
signals activated on the second half of the clock cycle. Develop a dataflow model of

c0 c4

si ai bi ci 1–⊕ ⊕=

gi aibi=

pi ai bi+=

c4
c0

p1 p2 p3 p4
clk

c0

clk

g1 g2 g3 g4

c1 c2 c3 c4



Exercises 791

the barrel shifter, using register-kind signals for the output signals. All signals should
be of a resolved-bit type.

FIGURE 23.6 

A 4 × 4 barrel shifter.

27. [➌ 23.5] Develop a behavioral model of a counter that counts from 0 to 255 with an
output port of type natural. In a test bench, define and instantiate an 8-bit counter
component. Write a configuration declaration for the test bench, binding the behav-
ioral counter entity to the counter component instance. Use conversion functions in
the binding indication as required. You may wish to use the conversion functions from
the numeric_bit package. Note that a configuration declaration can use items, such as
conversion functions, declared in separate packages.

28. [➍ 23.3] If your simulator allows you to call functions written in the C programming
language using VHPI, develop a register model that uses the graphical display libraries
of your host computer system to create a pop-up window to display the register con-
tents. Instantiate the register model in a test bench, and step through the simulation
to verify that the model creates and updates the display.

z3

z2

z1

z0

i0 s0 i1 s1 i2 s2 i3 s3



793

Appendix A 

Standard Packages

The package declarations for the IEEE standard packages are listed in this appendix.1 The
IEEE standard also includes package bodies defining the detailed meaning of each of the
operators and functions provided by the packages. However, simulator vendors are al-
lowed to substitute accelerated implementations of the packages rather than compiling the
package bodies into simulations. The IEEE standard requires the packages standard, env,
and textio to be in a library called std, and the remaining packages to be in a library
named ieee.

A.1 The Predefined Package standard

The predefined types, subtypes and functions of VHDL are defined in the package stan-
dard. Each design unit in a design is automatically preceded by the following context
clause:

library std, work;  use std.standard.all;

so the predefined items are directly visible in the design. The package standard is listed
here. The comments indicate which operators are implicitly defined for each explicitly de-
fined type. These operators are also automatically made visible in design units. The types
universal_integer and universal_real are anonymous types. They cannot be referred to
explicitly.

package standard is

  type boolean is (false, true);

    -- implicitly declared for boolean operands:
    -- "and", "or", "nand", "nor", "xor" , "xnor", "not"
    -- "=", "/=", "<", "<=", ">", ">="
    -- minimum, maximum, rising_edge, falling_edge, to_string

  type bit is ('0', '1');

1. The material in this appendix is derived from IEEE Draft Std 1076-2008/D4.1, Draft Standard VHDL Language
Reference Manual.



794 Appendix A — Standard Packages

    -- implicitly declared for bit operands:
    -- "and", "or", "nand", "nor", "xor" , "xnor", "not"
    -- "=", "/=", "<", "<=", ">", ">="
    -- "?=", "?/=", "?<", "?<=", "?>", "?>=", "??"
    -- minimum, maximum, rising_edge, falling_edge, to_string

  type character is (
    nul,   soh,   stx,   etx,   eot,   enq,   ack,   bel,
    bs,    ht,    lf,    vt,    ff,    cr,    so,    si,
    dle,   dc1,   dc2,   dc3,   dc4,   nak,   syn,   etb,
    can,   em,    sub,   esc,   fsp,   gsp,   rsp,   usp,
    ' ',   '!',   '"',   '#',   '$',   '%',   '&',   ''',
    '(',   ')',   '*',   '+',   ',',   '-',   '.',   '/',
    '0',   '1',   '2',   '3',   '4',   '5',   '6',   '7',
    '8',   '9',   ':',   ';',   '<',   '=',   '>',   '?',
    '@',   'A',   'B',   'C',   'D',   'E',   'F',   'G',
    'H',   'I',   'J',   'K',   'L',   'M',   'N',   'O',
    'P',   'Q',   'R',   'S',   'T',   'U',   'V',   'W',
    'X',   'Y',   'Z',   '[',   '\',   ']',   '^',   '_',
    '`',   'a',   'b',   'c',   'd',   'e',   'f',   'g',
    'h',   'i',   'j',   'k',   'l',   'm',   'n',   'o',
    'p',   'q',   'r',   's',   't',   'u',   'v',   'w',
    'x',   'y',   'z',   '{',   '|',   '}',   '~',   del,
    c128,  c129,  c130,  c131,  c132,  c133,  c134,  c135,
    c136,  c137,  c138,  c139,  c140,  c141,  c142,  c143,
    c144,  c145,  c146,  c147,  c148,  c149,  c150,  c151,
    c152,  c153,  c154,  c155,  c156,  c157,  c158,  c159,
    ' ',   '¡',   '¢',   '£',   '¤',   '¥',   '¦',   '§',
    '¨',   '©',   'ª',   '«',   '¬',   '-',   '®',   '¯',
    '°',   '±',   '2',   '3',   '´',   'μ',   '¶',   '·',
    '¸',   '1',   'º',   '»',   '¼',   '½',   '¾',   '¿',
    'À',   'Á',   'Â',   'Ã',   'Ä',   'Å',   'Æ',   'Ç',
    'È',   'É',   'Ê',   'Ë',   'Ì',   'Í',   'Î',   'Ï',
    'Ð',   'Ñ',   'Ò',   'Ó',   'Ô',   'Õ',   'Ö',   '×',
    'Ø',   'Ù',   'Ú',   'Û',   'Ü',   'Ý',   'Þ',   'ß',
    'à',   'á',   'â',   'ã',   'ä',   'å',   'æ',   'ç',
    'è',   'é',   'ê',   'ë',   'ì',   'í',   'î',   'ï',
    'ð',   'ñ',   'ò',   'ó',   'ô',   'õ',   'ö',   '÷',
    'ø',    ù',   'ú',   'û',   'ü',   'ý',   'þ',   'ÿ');

    -- implicitly declared for character operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- minimum, maximum, to_string

  type severity_level is (note, warning, error, failure);

    -- implicitly declared for severity_level operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- minimum, maximum, to_string

  -- type universal_integer is range implementation_defined;

    -- implicitly declared for universal_integer operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- unary "+", "-", "abs"
    -- "+", "-", "*", "/", "mod", "rem"
    -- minimum, maximum, to_string

  -- type universal_real is range implementation_defined;



A.1 The Predefined Package standard 795

    -- implicitly declared for universal_real operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- unary "+", "-", "abs"
    -- "+", "-", "*", "/", "mod", "rem"
    -- minimum, maximum, to_string

  type integer is range implementation_defined;

    -- implicitly declared for integer operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- unary "+", "-", "abs"
    -- "**", "+", "-", "*", "/", "mod", "rem"
    -- minimum, maximum, to_string

  subtype natural is integer range 0 to integer'high;
  subtype positive is integer range 1 to integer'high;

  type real is range implementation_defined;

    -- implicitly declared for real operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- unary "+", "-", "abs"
    -- "**", "+", "-", "*", "/"
    -- minimum, maximum, to_string

  type time is range implementation_defined
    units
       fs;
       ps  = 1000 fs;
       ns  = 1000 ps;
       us  = 1000 ns;
       ms  = 1000 us;
       sec = 1000 ms;
       min = 60 sec;
       hr  = 60 min;
    end units;

    -- implicitly declared for time operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- unary "+", "-", "abs"
    -- "+", "-", "*", "/", "mod", "rem"
    -- minimum, maximum, to_string

  subtype delay_length is time range 0 fs to time'high;

  impure impure function now return delay_length;

  type string is array (positive range <>) of character;

    -- implicitly declared for string operands:
    -- "=", "/=", "<", "<=", ">", ">=", "&"
    -- minimum, maximum

  type boolean_vector is array (natural range <>) of boolean;

    -- implicitly declared for boolean_vector operands:
    -- "and", "or", "nand", "nor", "xor" , "xnor", "not"
    -- "sll", "srl", "sla", "sra", "rol", "ror"
    -- "=", "/=", "<", "<=", ">", ">=", "&"
    -- minimum, maximum

  type bit_vector is array (natural range <>) of bit;



796 Appendix A — Standard Packages

    -- implicitly declared for bit_vector operands:
    -- "and", "or", "nand", "nor", "xor" , "xnor", "not"
    -- "sll", "srl", "sla", "sra", "rol", "ror"
    -- "=", "/=", "<", "<=", ">", ">=", "?=", "?/=", "&"
    -- minimum, maximum
    -- to_string, to_bstring, to_binary_string
    -- to_ostring, to_octal_string, to_hstring, to_hex_string

  type integer_vector is array (natural range <>) of integer;

    -- implicitly declared for integer_vector operands:
    -- "=", "/=", "<", "<=", ">", ">=", "&"
    -- minimum, maximum

  type real_vector is array (natural range <>) of real;

    -- implicitly declared for real_vector operands:
    -- "=", "/=", "&"
    -- minimum, maximum

  type time_vector is array (natural range <>) of time;

    -- implicitly declared for time_vector operands:
    -- "=", "/=", "&"
    -- minimum, maximum

  type file_open_kind is (read_mode, write_mode, append_mode);

    -- implicitly declared for file_open_kind operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- minimum, maximum, to_string

  type file_open_status is
         (open_ok, status_error, name_error, mode_error);

    -- implicitly declared for file_open_status operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- minimum, maximum, to_string

  attribute foreign: string;

end STANDARD;

VHDL-87, -93, and -2002

The following items are not included in standard for these earlier versions: the match-
ing relational operators; the “??” operator; array/scalar and reducing logical operators;
the operators mod and rem on time operands; the functions maximum, minimum,
rising_edge, and falling_edge; the functions to_string, to_ostring, to_hstring and as-
sociated aliases; the types boolean_vector, integer_vector, real_vector, and
time_vector and associated operations.

VHDL-87

The following items are not included in standard in VHDL-87: the types
file_open_kind and file_open_status; the subtype delay_length; the attribute foreign;



A.2 The Predefined Package env 797

the operators xnor, sll, srl, sla, sra, rol and ror. The result time of the function
now is time. The type character includes only the first 128 values, corresponding to
the ASCII character set.

A.2 The Predefined Package env

package env is

  procedure stop (status: integer);
  procedure stop;

  procedure finish (status: integer);
  procedure finish;

  function resolution_limit return delay_length;

end package env;

VHDL-87, -93, and -2002

The env package is not provided in these versions.

A.3 The Predefined Package textio

package textio is

  type line is access string;

    -- implicitly declared for line operands:
    -- "=", "/=", deallocate

  type text is file of string;

    -- implicitly declared for text operands:
    -- file_open, file_close, read, write, flush, endfile

  type side is (right, left);

    -- implicitly declared for side operands:
    -- "=", "/=", "<", "<=", ">", ">="
    -- minimum, maximum, to_string

  subtype width is natural;

  file input : text open read_mode is "STD_INPUT";
  file output : text open write_mode is "STD_OUTPUT";

  procedure readline(file F: text; L: inout line);

  procedure read ( L : inout line;  value: out bit;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out bit );

  procedure read ( L : inout line;  value: out bit_vector;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out bit_vector );



798 Appendix A — Standard Packages

  procedure read ( L : inout line;  value: out boolean;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out boolean );

  procedure read ( L : inout line;  value: out character;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out character );

  procedure read ( L : inout line;  value: out integer;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out integer );

  procedure read ( L : inout line;  value: out real;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out real );

  procedure read ( L : inout line;  value: out string;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out string );

  procedure read ( L : inout line;  value: out time;
                                    good : out boolean );
  procedure read ( L : inout line;  value: out time );

  procedure sread ( L: inout line;  value : out string;
                                    strlen: out natural);

  alias string_read is sread [line, string, natural];

  alias bread is read [line, bit_vector, boolean];
  alias bread is read [line, bit_vector];
  alias binary_read is read [line, bit_vector, boolean];
  alias binary_read is read [line, bit_vector];

  procedure oread ( L: inout line;  value: out bit_vector;
                                    good : out boolean );
  procedure oread ( L: inout line;  value: out bit_vector );

  alias octal_read is oread [line, bit_vector, boolean];
  alias octal_read is oread [line, bit_vector];

  procedure hread ( L: inout line;  value: out bit_vector;
                                    good : out boolean );
  procedure hread ( L: inout line;  value: out bit_vector );

  alias hex_read is hread [line, bit_vector, boolean];
  alias hex_read is hread [line, bit_vector];

  procedure writeline ( file F : text;  L : inout line );

  procedure tee ( file F: text;  L: inout line );

  function justify ( value: string;
                     justified: side := right;
                     field: width := 0 ) return string;

  procedure write ( L : inout line;  value : in bit;
                    justified: in side := right; field: in width := 0 );

  procedure write ( L : inout line;  value : in bit_vector;
                    justified: in side := right;  field: in width := 0 );



A.4 Standard VHDL Mathematical Packages 799

  procedure write ( L : inout line;  value : in boolean;
                    justified: in side := right;  field: in width := 0 );

  procedure write ( L : inout line;  value : in character;
                    justified: in side := right;  field: in width := 0 );

  procedure write ( L : inout line;  value : in integer;
                    justified: in side := right;  field: in width := 0 );

  procedure write ( L : inout line;  value : in real;
                    justified: in side := right;  field: in width := 0;
                    digits: in natural := 0 );

  procedure write ( L: inout line;  value: in real;
                    format: in string);

  procedure write ( L : inout line;  value : in string;
                    justified: in side := right;  field: in width := 0 );

  procedure write ( L : inout line;  value : in time;
                    justified: in side := right;  field: in width := 0;
                    unit: in time := ns );

  alias swrite is write [line, string, side, width];
  alias string_write is write [line, string, side, width];

  alias bwrite is write [line, bit_vector, side, width];
  alias binary_write is write [line, bit_vector, side, width];

  procedure owrite ( L: inout line;  value: in bit_vector;
                     justified: in side := right;  field: in width := 0 );

  alias octal_write is owrite [line, bit_vector, side, width];

  procedure hwrite ( L: inout line;  value: in bit_vector;
                     justified: in side := right;  field: in width := 0 );

  alias hex_write is hwrite [line, bit_vector, side, width];

end package textio;

VHDL-87, -93, and -2002

The textio package in these versions does not provide the following items: the flush
operation on text; the maximum, minimum, and to_string operations on side; the jus-
tify and tee operations; the sread, oread, hread, swrite, owrite, and hwrite operations
and associated aliases; the write operation with C-style formatting.

A.4 Standard VHDL Mathematical Packages

A.4.1 The math_real Package

package math_real is

  constant copyrightnotice: string
             := "Copyright 1996, 2008 IEEE. All rights reserved.";



800 Appendix A — Standard Packages

  constant  math_e : real := 2.71828_18284_59045_23536;
  constant  math_1_over_e : real := 0.36787_94411_71442_32160;
  constant  math_pi : real := 3.14159_26535_89793_23846;
  constant  math_2_pi : real := 6.28318_53071_79586_47693;
  constant  math_1_over_pi : real := 0.31830_98861_83790_67154;
  constant  math_pi_over_2 : real := 1.57079_63267_94896_61923;
  constant  math_pi_over_3 : real := 1.04719_75511_96597_74615;
  constant  math_pi_over_4 : real := 0.78539_81633_97448_30962;
  constant  math_3_pi_over_2 : real := 4.71238_89803_84689_85769;
  constant  math_log_of_2 : real := 0.69314_71805_59945_30942;
  constant  math_log_of_10 : real := 2.30258_50929_94045_68402;
  constant  math_log2_of_e : real := 1.44269_50408_88963_4074;
  constant  math_log10_of_e: real := 0.43429_44819_03251_82765;
  constant  math_sqrt_2: real := 1.41421_35623_73095_04880;
  constant  math_1_over_sqrt_2: real := 0.70710_67811_86547_52440;
  constant  math_sqrt_pi: real := 1.77245_38509_05516_02730;
  constant  math_deg_to_rad: real := 0.01745_32925_19943_29577;
  constant  math_rad_to_deg: real := 57.29577_95130_82320_87680;

  function sign  (x : in real) return real;
  function ceil  (x : in real) return real;
  function floor (x : in real) return real;
  function round (x : in real) return real;
  function trunc (x : in real) return real;

  function "mod" (x, y : in real) return real;

  function realmax (x, y : in real) return real;
  function realmin (x, y : in real) return real;

  procedure uniform (variable seed1,seed2 : inout positive;
                     variable x : out real);

  function sqrt (x : in real) return real;
  function cbrt (x : in real) return real;

  function "**" (x : in integer;  y : in real) return real;
  function "**" (x : in real;     y : in real) return real;

  function exp   (x : in rea) return real;
  function log   (x : in rea) return real;
  function log2  (x : in rea) return real;
  function log10 (x : in rea) return real;
  function log   (x : in real; base: in real) return real;

  function sin (x : in real) return real;
  function cos (x : in real) return real;
  function tan (x : in real) return real;

  function arcsin (x : in real) return real;
  function arccos (x : in real) return real;
  function arctan (y : in real) return real;
  function arctan (y : in real;  x : in real ) return real;

  function sinh (x : in real) return real;
  function cosh (x : in real) return real;
  function tanh (x : in real) return real;

  function arcsinh (x : in real) return real;
  function arccosh (x : in real) return real;
  function arctanh (x : in real) return real;

end math_real;



A.4 Standard VHDL Mathematical Packages 801

A.4.2 The math_complex Package

use work.math_real.all;
package math_complex is

  constant copyrightnotice: string
             := "Copyright 1996, 2008 IEEE. All rights reserved.";

  type complex is
    record
      re : real;
      im : real;
    end record;

  subtype positive_real is real range 0.0 to real'high;
  subtype principal_value is real range -math_pi to math_pi;

  type complex_polar is
    record
      mag : positive_real;
      arg : principal_value;  -- -math_pi is illegal
    end record;

  constant math_cbase_1 : complex := complex'(1.0, 0.0);
  constant math_cbase_j : complex := complex'(0.0, 1.0);
  constant math_czero   : complex := complex'(0.0, 0.0);

  function "="  (l : in complex_polar;  r : in complex_polar) return boolean;
  function "/=" (l : in complex_polar;  r : in complex_polar) return boolean;

  function cmplx (x : in real;  y: in real:= 0.0) return complex;

  function get_principal_value (x : in real) return principal_value;

  function complex_to_polar (z : in complex)       return complex_polar;
  function polar_to_complex (z : in complex_polar) return complex;

  function "abs" (z: in complex      ) return positive_real;
  function "abs" (z: in complex_polar) return positive_real;

  function arg   (z: in complex      ) return principal_value;
  function arg   (z: in complex_polar) return principal_value;

  function "-"   (z: in complex      ) return complex;
  function "-"   (z: in complex_polar) return complex_polar;

  function conj  (z: in complex      ) return complex;
  function conj  (z: in complex_polar) return complex_polar;

  function sqrt  (z: in complex      ) return complex;
  function sqrt  (z: in complex_polar) return complex_polar;

  function exp   (z: in complex      ) return complex;
  function exp   (z: in complex_polar) return complex_polar;

  function log   (z: in complex      ) return complex;
  function log2  (z: in complex      ) return complex;
  function log10 (z: in complex      ) return complex;
  function log   (z: in complex_polar) return complex_polar;
  function log2  (z: in complex_polar) return complex_polar;
  function log10 (z: in complex_polar) return complex_polar;
  function log   (z: in complex;        base: in real) return complex;
  function log   (z: in complex_polar;  base: in real) return complex_polar;

  function sin  (z : in complex      ) return complex;
  function sin  (z : in complex_polar) return complex_polar;
  function cos  (z : in complex      ) return complex;
  function cos  (z : in complex_polar) return complex_polar;



802 Appendix A — Standard Packages

  function sinh (z : in complex      ) return complex;
  function sinh (z : in complex_polar) return complex_polar;
  function cosh (z : in complex      ) return complex;
  function cosh (z : in complex_polar) return complex_polar;

  function "+" (l: in complex;  r: in complex) return complex;
  function "+" (l: in real;     r: in complex) return complex;
  function "+" (l: in complex;  r: in real   ) return complex;
  function "+" (l: in complex_polar;  r: in complex_polar) return complex_polar;
  function "+" (l: in real;           r: in complex_polar) return complex_polar;
  function "+" (l: in complex_polar;  r: in real         ) return complex_polar;

  function "-" (l: in complex;  r: in complex) return complex;
  function "-" (l: in real;     r: in complex) return complex;
  function "-" (l: in complex;  r: in real   ) return complex;
  function "-" (l: in complex_polar;  r: in complex_polar) return complex_polar;
  function "-" (l: in real;           r: in complex_polar) return complex_polar;
  function "-" (l: in complex_polar;  r: in real         ) return complex_polar;

  function "*" (l: in complex;  r: in complex) return complex;
  function "*" (l: in real;     r: in complex) return complex;
  function "*" (l: in complex;  r: in real   ) return complex;
  function "*" (l: in complex_polar;  r: in complex_polar) return complex_polar;
  function "*" (l: in real;           r: in complex_polar) return complex_polar;
  function "*" (l: in complex_polar;  r: in real         ) return complex_polar;

  function "/" (l: in complex;  r: in complex) return complex;
  function "/" (l: in real;     r: in complex) return complex;
  function "/" (l: in complex;  r: in real   ) return complex;
  function "/" (l: in complex_polar;  r: in complex_polar) return complex_polar;
  function "/" (l: in real;           r: in complex_polar) return complex_polar;
  function "/" (l: in complex_polar;  r: in real         ) return complex_polar;

end math_complex;

A.5 The std_logic_1164 Multivalue Logic System Package

use std.textio.all;

package std_logic_1164 is

  type std_ulogic is ( 'U',   -- Uninitialized
                       'X',   -- Forcing  Unknown
                       '0',   -- Forcing  0
                       '1',   -- Forcing  1
                       'Z',   -- High Impedance   
                       'W',   -- Weak     Unknown
                       'L',   -- Weak     0       
                       'H',   -- Weak     1       
                       '-'    -- Don't care
                       );

  type std_ulogic_vector is array (natural range <>) of std_ulogic;

  function resolved (s : std_ulogic_vector) return std_ulogic;

  subtype std_logic is resolved std_ulogic;
  subtype std_logic_vector is (resolved) std_ulogic_vector;

  subtype X01 is resolved std_ulogic range 'X' to '1';
  subtype X01Z is resolved std_ulogic range 'X' to 'Z';
  subtype UX01 is resolved std_ulogic range 'U' to '1';
  subtype UX01Z is resolved std_ulogic range 'U' to 'Z';



A.5 The std_logic_1164 Multivalue Logic System Package 803

  function "and"  (l : std_ulogic; r : std_ulogic) return UX01;
  function "nand" (l : std_ulogic; r : std_ulogic) return UX01;
  function "or"   (l : std_ulogic; r : std_ulogic) return UX01;
  function "nor"  (l : std_ulogic; r : std_ulogic) return UX01;
  function "xor"  (l : std_ulogic; r : std_ulogic) return UX01;
  function "xnor" (l : std_ulogic; r : std_ulogic) return ux01;
  function "not"  (l : std_ulogic) return UX01;

  function "and"  (l, r : std_ulogic_vector) return std_ulogic_vector;
  function "nand" (l, r : std_ulogic_vector) return std_ulogic_vector;
  function "or"   (l, r : std_ulogic_vector) return std_ulogic_vector;
  function "nor"  (l, r : std_ulogic_vector) return std_ulogic_vector;
  function "xor"  (l, r : std_ulogic_vector) return std_ulogic_vector;
  function "xnor" (l, r : std_ulogic_vector) return std_ulogic_vector;
  function "not"  (l    : std_ulogic_vector) return std_ulogic_vector;

  function "and"  (l : std_ulogic_vector;
                   r : std_ulogic)        return std_ulogic_vector;
  function "and"  (l : std_ulogic;
                   r : std_ulogic_vector) return std_ulogic_vector;
  function "nand" (l : std_ulogic_vector;
                   r : std_ulogic)        return std_ulogic_vector;
  function "nand" (l : std_ulogic;
                   r : std_ulogic_vector) return std_ulogic_vector;
  function "or"   (l : std_ulogic_vector;
                   r : std_ulogic)        return std_ulogic_vector;
  function "or"   (l : std_ulogic;
                   r : std_ulogic_vector) return std_ulogic_vector;
  function "nor"  (l : std_ulogic_vector;
                   r : std_ulogic)        return std_ulogic_vector;
  function "nor"  (l : std_ulogic;
                   r : std_ulogic_vector) return std_ulogic_vector;
  function "xor"  (l : std_ulogic_vector;
                   r : std_ulogic)        return std_ulogic_vector;
  function "xor"  (l : std_ulogic;
                   r : std_ulogic_vector) return std_ulogic_vector;
  function "xnor" (l : std_ulogic_vector;
                   r : std_ulogic)        return std_ulogic_vector;
  function "xnor" (l : std_ulogic;
                   r : std_ulogic_vector) return std_ulogic_vector;

  function "and"  (l : std_ulogic_vector) return std_ulogic;
  function "nand" (l : std_ulogic_vector) return std_ulogic;
  function "or"   (l : std_ulogic_vector) return std_ulogic;
  function "nor"  (l : std_ulogic_vector) return std_ulogic;
  function "xor"  (l : std_ulogic_vector) return std_ulogic;
  function "xnor" (l : std_ulogic_vector) return std_ulogic;

  function "sll" (l : std_ulogic_vector; r : integer) return std_ulogic_vector;
  function "srl" (l : std_ulogic_vector; r : integer) return std_ulogic_vector;
  function "rol" (l : std_ulogic_vector; r : integer) return std_ulogic_vector;
  function "ror" (l : std_ulogic_vector; r : integer) return std_ulogic_vector;

  function To_bit       (s : std_ulogic;
                         xmap : bit := '0') return bit;
  function To_bitvector (s : std_ulogic_vector;
                         xmap : bit := '0') return bit_vector;

  function To_StdULogic       (b : bit)               return std_ulogic;
  function To_StdLogicVector  (b : bit_vector)        return std_logic_vector;
  function To_StdLogicVector  (s : std_ulogic_vector) return std_logic_vector;
  function To_StdULogicVector (b : bit_vector)        return std_ulogic_vector;
  function To_StdULogicVector (s : std_logic_vector)  return std_ulogic_vector;



804 Appendix A — Standard Packages

  alias To_Bit_Vector is
          To_bitvector[std_ulogic_vector, bit return bit_vector];
  alias To_BV is
          To_bitvector[std_ulogic_vector, bit return bit_vector];

  alias To_Std_Logic_Vector is
          To_StdLogicVector[bit_vector return std_logic_vector];
  alias To_SLV is
          To_StdLogicVector[bit_vector return std_logic_vector];

  alias To_Std_Logic_Vector is
          To_StdLogicVector[std_ulogic_vector return std_logic_vector];
  alias To_SLV is
          To_StdLogicVector[std_ulogic_vector return std_logic_vector];

  alias To_Std_ULogic_Vector is
          To_StdULogicVector[bit_vector return std_ulogic_vector];
  alias To_SULV is
          To_StdULogicVector[bit_vector return std_ulogic_vector];

  alias To_Std_ULogic_Vector is
          To_StdULogicVector[std_logic_vector return std_ulogic_vector];
  alias To_SULV is
          To_StdULogicVector[std_logic_vector return std_ulogic_vector];

  function To_01 (s : std_ulogic_vector;
                  xmap : std_ulogic := '0') return std_ulogic_vector;
  function To_01 (s : std_ulogic;
                  xmap : std_ulogic := '0') return std_ulogic;
  function To_01 (s : bit_vector;
                  xmap : std_ulogic := '0') return std_ulogic_vector;
  function To_01 (s : bit;
                  xmap : std_ulogic := '0') return std_ulogic;

  function To_X01 (s : std_ulogic_vector) return std_ulogic_vector;
  function To_X01 (s : std_ulogic)        return X01;

  function To_X01 (b : bit_vector) return std_ulogic_vector;
  function To_X01 (b : bit)        return X01;

  function To_X01Z (s : std_ulogic_vector) return std_ulogic_vector;
  function To_X01Z (s : std_ulogic)        return X01Z;

  function To_X01Z (b : bit_vector) return std_ulogic_vector;
  function To_X01Z (b : bit)        return X01Z;

  function To_UX01 (s : std_ulogic_vector) return std_ulogic_vector;
  function To_UX01 (s : std_ulogic)        return UX01;

  function To_UX01 (b : bit_vector) return std_ulogic_vector;
  function To_UX01 (b : bit)        return UX01;

  function "??" (l : std_ulogic) return boolean;

  function rising_edge  (signal s : std_ulogic) return boolean;
  function falling_edge (signal s : std_ulogic) return boolean;

  function Is_X (s : std_ulogic_vector) return boolean;
  function Is_X (s : std_ulogic)        return boolean;

  -- the following operations are predefined

  --  function "?=" (l, r : std_ulogic)        return std_ulogic;
  --  function "?=" (l, r : std_ulogic_vector) return std_ulogic;

  --  function "?/=" (l, r : std_ulogic)        return std_ulogic;
  --  function "?/=" (l, r : std_ulogic_vector) return std_ulogic;



A.5 The std_logic_1164 Multivalue Logic System Package 805

  --  function "?<"  (l, r : std_ulogic) return std_ulogic;
  --  function "?<=" (l, r : std_ulogic) return std_ulogic;
  --  function "?>"  (l, r : std_ulogic) return std_ulogic;
  --  function "?>=" (l, r : std_ulogic) return std_ulogic;

  -- the following operations are predefined

  -- function to_string (value : std_ulogic)        return string;
  -- function to_string (value : std_ulogic_vector) return string;

  alias to_bstring       is to_string [std_ulogic_vector return string];
  alias to_binary_string is to_string [std_ulogic_vector return string];

  function to_ostring (value : std_ulogic_vector) return string;
  alias to_octal_string is to_ostring [std_ulogic_vector return string];

  function to_hstring (value : std_ulogic_vector) return string;
  alias to_hex_string is to_hstring [std_ulogic_vector return string];

  procedure read (l : inout line; value : out std_ulogic;
                                  good : out boolean);
  procedure read (l : inout line; value : out std_ulogic);

  procedure read (l : inout line; value : out std_ulogic_vector;
                                  good : out boolean);
  procedure read (l : inout line; value : out std_ulogic_vector);

  procedure write (l : inout line; value : in std_ulogic;
                   justified : in side := right; field : in width := 0);

  procedure write (l : inout line; value : in std_ulogic_vector;
                   justified : in side := right; field : in width := 0);

  alias bread is read [line, std_ulogic_vector, boolean];
  alias bread is read [line, std_ulogic_vector];
  alias binary_read is read [line, std_ulogic_vector, boolean];
  alias binary_read is read [line, std_ulogic_vector];

  procedure oread (l : inout line; value : out std_ulogic_vector;
                                   good : out boolean);
  procedure oread (l : inout line; value : out std_ulogic_vector);
  alias octal_read is oread [line, std_ulogic_vector, boolean];
  alias octal_read is oread [line, std_ulogic_vector];

  procedure hread (l : inout line; value : out std_ulogic_vector;
                                   good : out boolean);
  procedure hread (l : inout line; value : out std_ulogic_vector);
  alias hex_read is hread [line, std_ulogic_vector, boolean];
  alias hex_read is hread [line, std_ulogic_vector];

  alias bwrite is write [line, std_ulogic_vector, side, width];
  alias binary_write is write [line, std_ulogic_vector, side, width];

  procedure owrite (l : inout line; value : in std_ulogic_vector;
                    justified : in side := right; field : in width := 0);
  alias octal_write is owrite [line, std_ulogic_vector, side, width];

  procedure hwrite (l : inout line; value : in std_ulogic_vector;
                    justified : in side := right; field : in width := 0);
  alias hex_write is hwrite [line, std_ulogic_vector, side, width];

end package std_logic_1164;



806 Appendix A — Standard Packages

VHDL-87, -93, and -2002

In the std_logic_1164 package for these versions, std_logic_vector is declared as a
distinct type, not as a subtype of std_ulogic_vector. Operations provided by the pack-
age for std_ulogic_vector are also overloaded for std_logic_vector.

The package for these versions does not provide the following items: array/scalar
and reduction logical operators; shift operators; aliases for the conversion functions;
the To_01 function; the “??” operator; the matching relational operators; the to_string,
to_bstring, to_ostring, and to_hstring functions and associated aliases; the read,
oread, hread, write, owrite, and hwrite operations and associated aliases.

VHDL-87

The overloaded versions of the xnor operator are not included in the VHDL-87 version
of the standard-logic package.

A.6 Standard Integer Numeric Packages

A.6.1 The numeric_bit Package

use std.textio.all;
package numeric_bit is

  constant CopyRightNotice : string
    := "Copyright © 1997, 2008 IEEE. All rights reserved.";

  type unsigned is array (natural range <>) of bit;
  type signed   is array (natural range <>) of bit;

  function "abs" (arg : signed) return signed;
  function "-"   (arg : signed) return signed;

  function "+" (l, r : unsigned)            return unsigned;
  function "+" (l : unsigned; r : bit)      return unsigned;
  function "+" (l : bit;      r : unsigned) return unsigned;
  function "+" (l : unsigned; r : natural)  return unsigned;
  function "+" (l : natural;  r : unsigned) return unsigned;
  function "+" (l, r : signed)              return signed;
  function "+" (l : signed;   r : bit)      return signed;
  function "+" (l : bit;      r : signed)   return signed;
  function "+" (l : integer;  r : signed)   return signed;
  function "+" (l : signed;   r : integer)  return signed;

  function "-" (l, r : unsigned)            return unsigned;
  function "-" (l : unsigned; r : bit)      return unsigned;
  function "-" (l : bit;      r : unsigned) return unsigned;
  function "-" (l : unsigned; r : natural)  return unsigned;
  function "-" (l : natural;  r : unsigned) return unsigned;
  function "-" (l, r : signed)              return signed;
  function "-" (l : signed;   r : bit)      return signed;
  function "-" (l : bit;      r : signed)   return signed;
  function "-" (l : signed;   r : integer)  return signed;
  function "-" (l : integer;  r : signed)   return signed;



A.6 Standard Integer Numeric Packages 807

  function "*" (l, r : unsigned)            return unsigned;
  function "*" (l : unsigned; r : natural)  return unsigned;
  function "*" (l : natural;  r : unsigned) return unsigned;
  function "*" (l, r : signed)              return signed;
  function "*" (l : signed;   r : integer)  return signed;
  function "*" (l : integer;  r : signed)   return signed;

  function "/" (l, r : unsigned)            return unsigned;
  function "/" (l : unsigned; r : natural)  return unsigned;
  function "/" (l : natural;  r : unsigned) return unsigned;
  function "/" (l, r : signed)              return signed;
  function "/" (l : signed;   r : integer)  return signed;
  function "/" (l : integer;  r : signed)   return signed;

  function "rem" (l, r : unsigned)            return unsigned;
  function "rem" (l : unsigned; r : natural)  return unsigned;
  function "rem" (l : natural;  r : unsigned) return unsigned;
  function "rem" (l, r : signed)              return signed;
  function "rem" (l : signed;   r : integer)  return signed;
  function "rem" (l : integer;  r : signed)   return signed;

  function "mod" (l, r : unsigned)            return unsigned;
  function "mod" (l : unsigned; r : natural)  return unsigned;
  function "mod" (l : natural;  r : unsigned) return unsigned;
  function "mod" (l, r : signed)              return signed;
  function "mod" (l : signed;   r : integer)  return signed;
  function "mod" (l : integer;  r : signed)   return signed;

  function find_leftmost  (arg : unsigned; y : bit) return integer;
  function find_leftmost  (arg : signed;   y : bit) return integer;

  function find_rightmost (arg : unsigned; y : bit) return integer;
  function find_rightmost (arg : signed;   y : bit) return integer;

  function "="  (l, r : unsigned)            return boolean;
  function "="  (l : unsigned; r : natural)  return boolean;
  function "="  (l : natural;  r : unsigned) return boolean;
  function "="  (l, r : signed)              return boolean;
  function "="  (l : signed;   r : integer)  return boolean;
  function "="  (l : integer;  r : signed)   return boolean;

  function "/=" (l, r : unsigned)            return boolean;
  function "/=" (l : unsigned; r : natural)  return boolean;
  function "/=" (l : natural;  r : unsigned) return boolean;
  function "/=" (l, r : signed)              return boolean;
  function "/=" (l : signed;   r : integer)  return boolean;
  function "/=" (l : integer;  r : signed)   return boolean;

  function "<"  (l, r : unsigned)            return boolean;
  function "<"  (l : unsigned; r : natural)  return boolean;
  function "<"  (l : natural;  r : unsigned) return boolean;
  function "<"  (l, r : signed)              return boolean;
  function "<"  (l : signed;   r : integer)  return boolean;
  function "<"  (l : integer;  r : signed)   return boolean;

  function "<=" (l, r : unsigned)            return boolean;
  function "<=" (l : unsigned; r : natural)  return boolean;
  function "<=" (l : natural;  r : unsigned) return boolean;
  function "<=" (l, r : signed)              return boolean;
  function "<=" (l : signed;   r : integer)  return boolean;
  function "<=" (l : integer;  r : signed)   return boolean;

  function ">"  (l, r : unsigned)            return boolean;
  function ">"  (l : unsigned; r : natural)  return boolean;
  function ">"  (l : natural;  r : unsigned) return boolean;
  function ">"  (l, r : signed)              return boolean;



808 Appendix A — Standard Packages

  function ">"  (l : signed;   r : integer)  return boolean;
  function ">"  (l : integer;  r : signed)   return boolean;

  function ">=" (l, r : unsigned)            return boolean;
  function ">=" (l : unsigned; r : natural)  return boolean;
  function ">=" (l : natural;  r : unsigned) return boolean;
  function ">=" (l, r : signed)              return boolean;
  function ">=" (l : signed;   r : integer)  return boolean;
  function ">=" (l : integer;  r : signed)   return boolean;

  function minimum (l, r : unsigned)            return unsigned;
  function minimum (l : unsigned; r : natural)  return unsigned;
  function minimum (l : natural;  r : unsigned) return unsigned;
  function minimum (l, r : signed)              return signed;
  function minimum (l : signed;   r : integer)  return signed;
  function minimum (l : integer;  r : signed)   return signed;

  function maximum (l, r : unsigned)            return unsigned;
  function maximum (l : unsigned; r : natural)  return unsigned;
  function maximum (l : natural;  r : unsigned) return unsigned;
  function maximum (l, r : signed)              return signed;
  function maximum (l : signed;   r : integer)  return signed;
  function maximum (l : integer;  r : signed)   return signed;

  function "?="  (l, r : unsigned)            return bit;
  function "?="  (l : unsigned; r : natural)  return bit;
  function "?="  (l : natural;  r : unsigned) return bit;
  function "?="  (l, r : signed)              return bit;
  function "?="  (l : signed;   r : integer)  return bit;
  function "?="  (l : integer;  r : signed)   return bit;

  function "?/=" (l, r : unsigned)            return bit;
  function "?/=" (l : unsigned; r : natural)  return bit;
  function "?/=" (l : natural;  r : unsigned) return bit;
  function "?/=" (l, r : signed)              return bit;
  function "?/=" (l : signed;   r : integer)  return bit;
  function "?/=" (l : integer;  r : signed)   return bit;

  function "?<"  (l, r : unsigned)            return bit;
  function "?<"  (l : unsigned; r : natural)  return bit;
  function "?<"  (l : natural;  r : unsigned) return bit;
  function "?<"  (l, r : signed)              return bit;
  function "?<"  (l : signed;   r : integer)  return bit;
  function "?<"  (l : integer;  r : signed)   return bit;

  function "?<=" (l, r : unsigned)            return bit;
  function "?<=" (l : unsigned; r : natural)  return bit;
  function "?<=" (l : natural;  r : unsigned) return bit;
  function "?<=" (l, r : signed)              return bit;
  function "?<=" (l : signed;   r : integer)  return bit;
  function "?<=" (l : integer;  r : signed)   return bit;

  function "?>"  (l, r : unsigned)            return bit;
  function "?>"  (l : unsigned; r : natural)  return bit;
  function "?>"  (l : natural;  r : unsigned) return bit;
  function "?>"  (l, r : signed)              return bit;
  function "?>"  (l : signed;   r : integer)  return bit;
  function "?>"  (l : integer;  r : signed)   return bit;

  function "?>=" (l, r : unsigned)            return bit;
  function "?>=" (l : unsigned; r : natural)  return bit;
  function "?>=" (l : natural;  r : unsigned) return bit;
  function "?>=" (l, r : signed)              return bit;
  function "?>=" (l : signed;   r : integer)  return bit;
  function "?>=" (l : integer;  r : signed)   return bit;



A.6 Standard Integer Numeric Packages 809

  function shift_left   (arg : unsigned; count : natural) return unsigned;
  function shift_left   (arg : signed;   count : natural) return signed;

  function shift_right  (arg : unsigned; count : natural) return unsigned;
  function shift_right  (arg : signed;   count : natural) return signed;

  function rotate_left  (arg : unsigned; count : natural) return unsigned;
  function rotate_left  (arg : signed;   count : natural) return signed;

  function rotate_right (arg : unsigned; count : natural) return unsigned;
  function rotate_right (arg : signed;   count : natural) return signed;

  function "sll" (arg : unsigned; count : integer) return unsigned;
  function "sll" (arg : signed;   count : integer) return signed;
  function "srl" (arg : unsigned; count : integer) return unsigned;
  function "srl" (arg : signed;   count : integer) return signed;
  function "rol" (arg : unsigned; count : integer) return unsigned;
  function "rol" (arg : signed;   count : integer) return signed;
  function "ror" (arg : unsigned; count : integer) return unsigned;
  function "ror" (arg : signed;   count : integer) return signed;
  function "sla" (arg : unsigned; count : integer) return unsigned;
  function "sla" (arg : signed;   count : integer) return signed;
  function "sra" (arg : unsigned; count : integer) return unsigned;
  function "sra" (arg : signed;   count : integer) return signed;

  function resize (arg : unsigned; new_size : natural) return unsigned;
  function resize (arg : signed;   new_size : natural) return signed;
  function resize (arg, size_res : unsigned) return unsigned;
  function resize (arg, size_res : signed) return signed;

  function to_integer  (arg : unsigned) return natural;
  function to_integer  (arg : signed)   return integer;

  function to_unsigned (arg : natural; size     : natural)  return unsigned;
  function to_unsigned (arg : natural; size_res : unsigned) return unsigned;
  function to_signed   (arg : integer; size     : natural)  return signed;
  function to_signed   (arg : integer; size_res : signed)   return signed;

  function "and"  (l, r : unsigned) return unsigned;
  function "and"  (l, r : signed)   return signed;
  function "nand" (l, r : unsigned) return unsigned;
  function "nand" (l, r : signed)   return signed;
  function "or"   (l, r : unsigned) return unsigned;
  function "or"   (l, r : signed)   return signed;
  function "nor"  (l, r : unsigned) return unsigned;
  function "nor"  (l, r : signed)   return signed;
  function "xor"  (l, r : unsigned) return unsigned;
  function "xnor" (l, r : unsigned) return unsigned;
  function "xnor" (l, r : signed)   return signed;
  function "xor"  (l, r : signed)   return signed;
  function "not"  (l : unsigned)    return unsigned;
  function "not"  (l : signed)      return signed;

  function "and"  (l : bit;      r : unsigned) return unsigned;
  function "and"  (l : unsigned; r : bit)      return unsigned;
  function "and"  (l : bit;      r : signed)   return signed;
  function "and"  (l : signed;   r : bit)      return signed;
  function "nand" (l : bit;      r : unsigned) return unsigned;
  function "nand" (l : unsigned; r : bit)      return unsigned;
  function "nand" (l : bit;      r : signed)   return signed;
  function "nand" (l : signed;   r : bit)      return signed;
  function "or"   (l : bit;      r : unsigned) return unsigned;
  function "or"   (l : unsigned; r : bit)      return unsigned;
  function "or"   (l : bit;      r : signed)   return signed;
  function "or"   (l : signed;   r : bit)      return signed;



810 Appendix A — Standard Packages

  function "nor"  (l : bit;      r : unsigned) return unsigned;
  function "nor"  (l : unsigned; r : bit)      return unsigned;
  function "nor"  (l : bit;      r : signed)   return signed;
  function "nor"  (l : signed;   r : bit)      return signed;
  function "xor"  (l : bit;      r : unsigned) return unsigned;
  function "xor"  (l : unsigned; r : bit)      return unsigned;
  function "xor"  (l : bit;      r : signed)   return signed;
  function "xor"  (l : signed;   r : bit)      return signed;
  function "xnor" (l : bit;      r : unsigned) return unsigned;
  function "xnor" (l : unsigned; r : bit)      return unsigned;
  function "xnor" (l : bit;      r : signed)   return signed;
  function "xnor" (l : signed;   r : bit)      return signed;

  function "and"  (l : unsigned) return bit;
  function "and"  (l : signed)   return bit;
  function "nand" (l : unsigned) return bit;
  function "nand" (l : signed)   return bit;
  function "or"   (l : unsigned) return bit;
  function "or"   (l : signed)   return bit;
  function "nor"  (l : unsigned) return bit;
  function "nor"  (l : signed)   return bit;
  function "xor"  (l : unsigned) return bit;
  function "xor"  (l : signed)   return bit;
  function "xnor" (l : unsigned) return bit;
  function "xnor" (l : signed)   return bit;

  alias rising_edge is std.standard.rising_edge
                          [std.standard.bit return std.standard.boolean];
  alias falling_edge is std.standard.falling_edge
                          [std.standard.bit return std.standard.boolean];

  -- the following operations are predefined

  -- function to_string (value : unsigned) return string;
  -- function to_string (value : signed)   return string;

  alias to_bstring is to_string [unsigned return string];
  alias to_bstring is to_string [signed   return string];

  alias to_binary_string is to_string [unsigned return string];
  alias to_binary_string is to_string [signed   return string];

  function to_ostring (value : unsigned) return string;
  function to_ostring (value : signed)   return string;

  alias to_octal_string is to_ostring [unsigned return string];
  alias to_octal_string is to_ostring [signed   return string];

  function to_hstring (value : unsigned) return string;
  function to_hstring (value : signed)   return string;

  alias to_hex_string is to_hstring [unsigned return string];
  alias to_hex_string is to_hstring [signed   return string];

  procedure read(l : inout line; value : out unsigned; good : out boolean);
  procedure read(l : inout line; value : out unsigned);
  procedure read(l : inout line; value : out signed;   good : out boolean);
  procedure read(l : inout line; value : out signed);

  alias bread is read [line, unsigned, boolean];
  alias bread is read [line, unsigned];
  alias bread is read [line, signed,   boolean];
  alias bread is read [line, signed];

  alias binary_read is read [line, unsigned, boolean];
  alias binary_read is read [line, unsigned];



A.6 Standard Integer Numeric Packages 811

  alias binary_read is read [line, signed,   boolean];
  alias binary_read is read [line, signed];

  procedure oread (l : inout line; value : out unsigned; good : out boolean);
  procedure oread (l : inout line; value : out unsigned);
  procedure oread (l : inout line; value : out signed;   good : out boolean);
  procedure oread (l : inout line; value : out signed);

  alias octal_read is oread [line, unsigned, boolean];
  alias octal_read is oread [line, unsigned];
  alias octal_read is oread [line, signed,   boolean];
  alias octal_read is oread [line, signed];

  procedure hread (l : inout line; value : out unsigned; good : out boolean);
  procedure hread (l : inout line; value : out unsigned);
  procedure hread (l : inout line; value : out signed;   good : out boolean);
  procedure hread (l : inout line; value : out signed);

  alias hex_read is hread [line, unsigned, boolean];
  alias hex_read is hread [line, unsigned];
  alias hex_read is hread [line, signed,   boolean];
  alias hex_read is hread [line, signed];

  procedure write (l : inout line; value : in unsigned;
                   justified : in side := right; field : in width := 0);
  procedure write (l : inout line; value : in signed;
                   justified : in side := right; field : in width := 0);

  alias bwrite is write [line, unsigned, side, width];
  alias bwrite is write [line, signed,   side, width];

  alias binary_write is write [line, unsigned, side, width];
  alias binary_write is write [line, signed,   side, width];

  procedure owrite (l : inout line; value : in unsigned;
                    justified : in side := right; field : in width := 0);
  procedure owrite (l : inout line; value : in signed;
                    justified : in side := right; field : in width := 0);

  alias octal_write is owrite [line, unsigned, side, width];
  alias octal_write is owrite [line, signed,   side, width];

  procedure hwrite (l : inout line; value : in unsigned;
                    justified : in side := right; field : in width := 0);
  procedure hwrite (l : inout line; value : in signed;
                    justified : in side := right; field : in width := 0);

  alias hex_write is hwrite [line, unsigned, side, width];
  alias hex_write is hwrite [line, signed,   side, width];

end package numeric_bit;

VHDL-87, -93, and -2002

The numeric_bit package for these versions does not provide the following items: the
array/bit addition and subtraction operators; the find_leftmost, find_rightmost, max-
imum, and minimum operations; the matching relational operators; the sla and sra
operators; the resize, to_unsigned, and to_signed functions with size_res parameter;
the array/scalar and reduction logical operators; the to_string, to_bstring, to_ostring,
and to_hstring functions and associated aliases; the read, oread, hread, write, owrite,
and hwrite operations and associated aliases.



812 Appendix A — Standard Packages

VHDL-87

The overloaded versions of the shift, rotate and xnor operators must be commented
out of the numeric_bit package if VHDL-87 compatibility is required.

A.6.2 The numeric_std Package

use std.textio.all;
library ieee; use ieee.std_logic_1164.all;

package numeric_std is

  constant CopyRightNotice : string
    := "Copyright © 1997, 2008 IEEE. All rights reserved.";

  type unresolved_unsigned is array (natural range <>) of std_ulogic;
  type unresolved_signed   is array (natural range <>) of std_ulogic;

  alias u_unsigned is unresolved_unsigned;
  alias u_signed   is unresolved_signed;

  subtype unsigned is (resolved) unresolved_unsigned;
  subtype signed   is (resolved) unresolved_signed;

  -- The declaration of all operators and functions is exactly the same
  -- as in numeric_bit, but with parameters of types unresolved_unsigned
  -- and unresolved_signed instead of unsigned and signed, respectively.

  -- In addition, the following functions are declared:

  function std_match (l, r : std_ulogic)          return boolean;
  function std_match (l, r : unresolved_unsigned) return boolean;
  function std_match (l, r : unresolved_signed)   return boolean;
  function std_match (l, r : std_ulogic_vector)   return boolean;

  function To_01 (s : unresolved_unsigned;
                  xmap : std_ulogic := '0') return unresolved_unsigned;
  function To_01 (s : unresolved_signed;
                  xmap : std_ulogic := '0') return unresolved_signed;

  function To_X01 (s : unresolved_unsigned) return unresolved_unsigned;
  function To_X01 (s : unresolved_signed)   return unresolved_signed;

  function To_X01Z (s : unresolved_unsigned) return unresolved_unsigned;
  function To_X01Z (s : unresolved_signed)   return unresolved_signed;

  function To_UX01 (s : unresolved_unsigned) return unresolved_unsigned;
  function To_UX01 (s : unresolved_signed)   return unresolved_signed;

  function Is_X    (s : unresolved_unsigned) return boolean;
  function Is_X    (s : unresolved_signed)   return boolean;

end package numeric_std;

VHDL-87, -93, and -2002

In the numeric_std package for these versions, unsigned and signed are declared as
separate array types with std_logic as the element types. There are no declarations of
unresolved_unsigned, unresolved_signed, or the corresponding aliases. The opera-
tions provided by the package are declared for the unsigned and signed types.



A.6 Standard Integer Numeric Packages 813

As for the numeric_bit package, the numeric_std package for these versions does
not provide the following items: the array/bit addition and subtraction operators; the
find_leftmost, find_rightmost, maximum, and minimum operations; the matching re-
lational operators; the sla and sra operators; the resize, to_unsigned, and to_signed
functions with size_res parameter; the array/scalar and reduction logical operators;
the to_string, to_bstring, to_ostring, and to_hstring functions and associated aliases;
the read, oread, hread, write, owrite, and hwrite operations and associated aliases. In
addition, the package does not provide the To_X01, To_X01Z, To_UX01, and Is_X func-
tions.

VHDL-87

The overloaded versions of the shift, rotate and xnor operators must be commented
out of the numeric_std package if VHDL-87 compatibility is required.

A.6.3 The numeric_bit_unsigned Package

package numeric_bit_unsigned is

  constant CopyRightNotice : STRING :=
    "Copyright 2008 IEEE. All rights reserved.";

  function "+" (l, r : bit_vector)              return bit_vector;
  function "+" (l : bit_vector; r : bit)        return bit_vector;
  function "+" (l : bit;        r : bit_vector) return bit_vector;
  function "+" (l : bit_vector; r : natural)    return bit_vector;
  function "+" (l : natural;    r : bit_vector) return bit_vector;

  function "-" (l, r : bit_vector)              return bit_vector;
  function "-" (l : bit_vector; r : bit)        return bit_vector;
  function "-" (l : bit;        r : bit_vector) return bit_vector;
  function "-" (l : bit_vector; r : natural)    return bit_vector;
  function "-" (l : natural;    r : bit_vector) return bit_vector;

  function "*" (l, r : bit_vector)              return bit_vector;
  function "*" (l : bit_vector; r : natural)    return bit_vector;
  function "*" (l : natural;    r : bit_vector) return bit_vector;

  function "/" (l, r : bit_vector)              return bit_vector;
  function "/" (l : bit_vector; r : natural)    return bit_vector;
  function "/" (l : natural;    r : bit_vector) return bit_vector;

  function "rem" (l, r : bit_vector)              return bit_vector;
  function "rem" (l : bit_vector; r : natural)    return bit_vector;
  function "rem" (l : natural;    r : bit_vector) return bit_vector;

  function "mod" (l, r : bit_vector)              return bit_vector;
  function "mod" (l : bit_vector; r : natural)    return bit_vector;
  function "mod" (l : natural;    r : bit_vector) return bit_vector;

  function find_leftmost  (arg : bit_vector; y : bit) return integer;
  function find_rightmost (arg : bit_vector; y : bit) return integer;

  function "="  (l, r : bit_vector)              return boolean;
  function "="  (l : bit_vector; r : natural)    return boolean;
  function "="  (l : natural;    r : bit_vector) return boolean;



814 Appendix A — Standard Packages

  function "/=" (l, r : bit_vector)              return boolean;
  function "/=" (l : bit_vector; r : natural)    return boolean;
  function "/=" (l : natural;    r : bit_vector) return boolean;

  function "<"  (l, r : bit_vector)              return boolean;
  function "<"  (l : bit_vector; r : natural)    return boolean;
  function "<"  (l : natural;    r : bit_vector) return boolean;

  function "<=" (l, r : bit_vector)              return boolean;
  function "<=" (l : bit_vector; r : natural)    return boolean;
  function "<=" (l : natural;    r : bit_vector) return boolean;

  function ">"  (l, r : bit_vector)              return boolean;
  function ">"  (l : bit_vector; r : natural)    return boolean;
  function ">"  (l : natural;    r : bit_vector) return boolean;

  function ">=" (l, r : bit_vector)              return boolean;
  function ">=" (l : bit_vector; r : natural)    return boolean;
  function ">=" (l : natural;    r : bit_vector) return boolean;

  function minimum (l, r : bit_vector)              return bit_vector;
  function minimum (l : bit_vector; r : natural)    return bit_vector;
  function minimum (l : natural;    r : bit_vector) return bit_vector;

  function maximum (l, r : bit_vector)              return bit_vector;
  function maximum (l : bit_vector; r : natural)    return bit_vector;
  function maximum (l : natural;    r : bit_vector) return bit_vector;

  function "?="  (l, r : bit_vector)              return bit;
  function "?="  (l : bit_vector; r : natural)    return bit;
  function "?="  (l : natural;    r : bit_vector) return bit;

  function "?/=" (l, r : bit_vector)              return bit;
  function "?/=" (l : bit_vector; r : natural)    return bit;
  function "?/=" (l : natural;    r : bit_vector) return bit;

  function "?<"  (l, r : bit_vector)              return bit;
  function "?<"  (l : bit_vector; r : natural)    return bit;
  function "?<"  (l : natural;    r : bit_vector) return bit;

  function "?<=" (l, r : bit_vector)              return bit;
  function "?<=" (l : bit_vector; r : natural)    return bit;
  function "?<=" (l : natural;    r : bit_vector) return bit;

  function "?>"  (l, r : bit_vector)              return bit;
  function "?>"  (l : bit_vector; r : natural)    return bit;
  function "?>"  (l : natural;    r : bit_vector) return bit;

  function "?>=" (l, r : bit_vector)              return bit;
  function "?>=" (l : bit_vector; r : natural)    return bit;
  function "?>=" (l : natural;    r : bit_vector) return bit;

  function shift_left   (arg : bit_vector; count : natural) return bit_vector;
  function shift_right  (arg : bit_vector; count : natural) return bit_vector;
  function rotate_left  (arg : bit_vector; count : natural) return bit_vector;
  function rotate_right (arg : bit_vector; count : natural) return bit_vector;

  function "sll" (arg : bit_vector; count : integer) return bit_vector;
  function "srl" (arg : bit_vector; count : integer) return bit_vector;
  function "rol" (arg : bit_vector; count : integer) return bit_vector;
  function "ror" (arg : bit_vector; count : integer) return bit_vector;
  function "sla" (arg : bit_vector; count : integer) return bit_vector;
  function "sra" (arg : bit_vector; count : integer) return bit_vector;

  function resize (arg : bit_vector; new_size : natural)    return bit_vector;
  function resize (arg : bit_vector; size_res : bit_vector) return bit_vector;

  function to_integer   (arg : bit_vector) return natural;



A.6 Standard Integer Numeric Packages 815

  function to_bitvector (arg : natural;
                         size     : natural)    return bit_vector;
  function to_bitvector (arg : natural;
                         size_res : bit_vector) return bit_vector;

  alias to_bit_vector is
          to_bitvector[natural, natural return bit_vector];
  alias to_bv is
          to_bitvector[natural, natural return bit_vector];

  alias to_bit_vector is
          to_bitvector[natural, bit_vector return bit_vector];
  alias to_bv is
          to_bitvector[natural, bit_vector return bit_vector];

end package numeric_bit_unsigned;

VHDL-87, -93, and -2002

The numeric_bit_unsigned package is not provided in these versions.

A.6.4 The numeric_std_unsigned Package

library ieee; use ieee.std_logic_1164.all;

package numeric_std_unsigned is

  constant CopyRightNotice : string :=
    "Copyright 2008 IEEE. All rights reserved.";

  -- The declaration of the following operators and functions is exactly
  -- the same as in numeric_bit_unsigned, but with parameters of type
  -- std_ulogic_vector instead of bit_vector:
  --   Operators "+", "-", "*", "/", "rem", "mod"
  --   Functions find_leftmost, find_rightmost, minimum, maximum
  --   Operators "=", "/=", "<", "<=", ">", ">="
  --   Operators "?=", "?/=", "?<", "?<=", "?>", "?>="
  --   Functions shift_left, shift_right, rotate_left, rotate_right

  -- Operators "sll", "srl", "rol", "ror" are not declared in this package,
  -- as the versions in std_logic_1164 perform the required operations.
  -- The following shift operators are declared:

  function "sla" (arg : std_ulogic_vector;
                  count : integer) return std_ulogic_vector;
  function "sra" (arg : std_ulogic_vector;
                  count : integer) return std_ulogic_vector;

  -- In addition, the following functions are declared:

  function to_integer (arg : std_ulogic_vector) return natural;

  function To_StdLogicVector (arg : natural; size : natural)
                             return std_logic_vector;
  function To_StdLogicVector (arg : natural; size_res : std_ulogic_vector)
                             return std_logic_vector;

  alias To_Std_Logic_Vector is
          To_StdLogicVector[natural, natural return std_logic_vector];
  alias To_SLV is
          To_StdLogicVector[natural, natural return std_logic_vector];
  alias To_Std_Logic_Vector is



816 Appendix A — Standard Packages

          To_StdLogicVector[natural, std_ulogic_vector return std_logic_vector];
  alias To_SLV is
          To_StdLogicVector[natural, std_ulogic_vector return std_logic_vector];

  function To_StdULogicVector (arg : natural; size : natural)
                              return std_ulogic_vector;
  function To_StdULogicVector (arg : natural; size_res : std_ulogic_vector)
                              return std_ulogic_vector;

  alias To_Std_ULogic_Vector is
          To_StdULogicVector[natural, natural return std_ulogic_vector];
  alias To_SULV is
          To_StdULogicVector[natural, natural return std_ulogic_vector];
  alias To_Std_ULogic_Vector is
          To_StdULogicVector[natural, std_ulogic_vector
                             return std_ulogic_vector];
  alias To_SULV is
          To_StdULogicVector[natural, std_ulogic_vector
                             return std_ulogic_vector];

end package numeric_std_unsigned;

VHDL-87, -93, and -2002

The numeric_std_unsigned package is not provided in these versions.

A.7 Standard Fixed-Point Packages

VHDL-87, -93, and -2002

The standard fixed-point packages are not provided in these versions.

A.7.1 The fixed_float_types Package

This package is used to define the types of generic constants for the standard fixed-point
packages and the standard floating-point packages (see Section A.8).

package fixed_float_types is

  type fixed_round_style_type is (fixed_round, fixed_truncate);

  type fixed_overflow_style_type is (fixed_saturate, fixed_wrap);

  type round_type is (round_nearest, round_inf, round_neginf, round_zero);

end package fixed_float_types;

A.7.2 The fixed_generic_pkg Package

use std.textio.all;
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all;
use ieee.fixed_float_types.all;

package fixed_generic_pkg is
  generic (



A.7 Standard Fixed-Point Packages 817

    fixed_round_style    : fixed_round_style_type    := fixed_round;
    fixed_overflow_style : fixed_overflow_style_type := fixed_saturate;
    fixed_guard_bits     : natural                   := 3;
    no_warning           : boolean                   := false
    );

  -- Author David Bishop (dbishop@vhdl.org)
  constant CopyRightNotice : string :=
    "Copyright 2008 by IEEE. All rights reserved.";

  type unresolved_ufixed is array (integer range <>) of std_ulogic;
  type unresolved_sfixed is array (integer range <>) of std_ulogic;

  alias u_ufixed is unresolved_ufixed;
  alias u_sfixed is unresolved_sfixed;

  subtype ufixed is (resolved) unresolved_ufixed;
  subtype sfixed is (resolved) unresolved_sfixed;

  function "abs" (arg : unresolved_sfixed) return unresolved_sfixed;
  function "-"   (arg : unresolved_sfixed) return unresolved_sfixed;

  function "+" (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function "+" (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function "+" (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function "+" (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function "+" (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function "+" (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function "+" (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function "+" (l : real; r : unresolved_sfixed)    return unresolved_sfixed;
  function "+" (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function "+" (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function "-" (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function "-" (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function "-" (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function "-" (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function "-" (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function "-" (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function "-" (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function "-" (l : real; r : unresolved_sfixed)    return unresolved_sfixed;
  function "-" (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function "-" (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function "*" (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function "*" (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function "*" (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function "*" (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function "*" (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function "*" (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function "*" (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function "*" (l : real; r : unresolved_sfixed)    return unresolved_sfixed;
  function "*" (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function "*" (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function "/" (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function "/" (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function "/" (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function "/" (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function "/" (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function "/" (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function "/" (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function "/" (l : real; r : unresolved_sfixed)    return unresolved_sfixed;



818 Appendix A — Standard Packages

  function "/" (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function "/" (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function "rem" (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function "rem" (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function "rem" (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function "rem" (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function "rem" (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function "rem" (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function "rem" (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function "rem" (l : real; r : unresolved_sfixed)    return unresolved_sfixed;
  function "rem" (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function "rem" (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function "mod" (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function "mod" (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function "mod" (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function "mod" (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function "mod" (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function "mod" (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function "mod" (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function "mod" (l : real; r : unresolved_sfixed)    return unresolved_sfixed;
  function "mod" (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function "mod" (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function divide (l, r        : unresolved_ufixed;
                   round_style : fixed_round_style_type := fixed_round_style;
                   guard_bits  : natural                := fixed_guard_bits)
                  return unresolved_ufixed;

  function divide (l, r        : unresolved_sfixed;
                   round_style : fixed_round_style_type := fixed_round_style;
                   guard_bits  : natural                := fixed_guard_bits)
                  return unresolved_sfixed;

  function reciprocal (arg         : unresolved_ufixed;
                       round_style : fixed_round_style_type := fixed_round_style;
                       guard_bits  : natural                := fixed_guard_bits)
                      return unresolved_ufixed;

  function reciprocal (arg         : unresolved_sfixed;
                       round_style : fixed_round_style_type := fixed_round_style;
                       guard_bits  : natural                := fixed_guard_bits)
                      return unresolved_sfixed;

  function remainder (l, r        : unresolved_ufixed;
                      round_style : fixed_round_style_type := fixed_round_style;
                      guard_bits  : natural                := fixed_guard_bits)
                     return unresolved_ufixed;

  function remainder (l, r        : unresolved_sfixed;
                      round_style : fixed_round_style_type := fixed_round_style;
                      guard_bits  : natural                := fixed_guard_bits)
                     return unresolved_sfixed;

  function modulo (l, r        : unresolved_ufixed;
                   round_style : fixed_round_style_type := fixed_round_style;
                   guard_bits  : natural                := fixed_guard_bits)
                  return unresolved_ufixed;

  function modulo (l, r           : unresolved_sfixed;
                   overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                   round_style    : fixed_round_style_type    := fixed_round_style;



A.7 Standard Fixed-Point Packages 819

                   guard_bits     : natural                   := fixed_guard_bits)
                  return unresolved_sfixed;

  procedure add_carry (l, r   : in  unresolved_ufixed;  c_in   : in  std_ulogic;
                       result : out unresolved_ufixed;  c_out  : out std_ulogic);

  procedure add_carry (l, r   : in  unresolved_sfixed;  c_in   : in  std_ulogic;
                       result : out unresolved_sfixed;  c_out  : out std_ulogic);

  function scalb (y : unresolved_ufixed; N : integer)           return unresolved_ufixed;
  function scalb (y : unresolved_ufixed; N : unresolved_signed) return unresolved_ufixed;
  function scalb (y : unresolved_sfixed; N : integer)           return unresolved_sfixed;
  function scalb (y : unresolved_sfixed; N : unresolved_signed) return unresolved_sfixed;

  function Is_Negative (arg : unresolved_sfixed) return boolean;

  function "="  (l, r : unresolved_ufixed) return boolean;
  function "="  (l : unresolved_ufixed; r : real)    return boolean;
  function "="  (l : real; r : unresolved_ufixed)    return boolean;
  function "="  (l : unresolved_ufixed; r : natural) return boolean;
  function "="  (l : natural; r : unresolved_ufixed) return boolean;

  function "="  (l, r : unresolved_sfixed) return boolean;
  function "="  (l : unresolved_sfixed; r : real)    return boolean;
  function "="  (l : real; r : unresolved_sfixed)    return boolean;
  function "="  (l : unresolved_sfixed; r : natural) return boolean;
  function "="  (l : natural; r : unresolved_sfixed) return boolean;

  function "/=" (l, r : unresolved_ufixed) return boolean;
  function "/=" (l : unresolved_ufixed; r : real)    return boolean;
  function "/=" (l : real; r : unresolved_ufixed)    return boolean;
  function "/=" (l : unresolved_ufixed; r : natural) return boolean;
  function "/=" (l : natural; r : unresolved_ufixed) return boolean;

  function "/=" (l, r : unresolved_sfixed) return boolean;
  function "/=" (l : unresolved_sfixed; r : real)    return boolean;
  function "/=" (l : real; r : unresolved_sfixed)    return boolean;
  function "/=" (l : unresolved_sfixed; r : natural) return boolean;
  function "/=" (l : natural; r : unresolved_sfixed) return boolean;

  function "<"  (l, r : unresolved_ufixed) return boolean;
  function "<"  (l : unresolved_ufixed; r : real)    return boolean;
  function "<"  (l : real; r : unresolved_ufixed)    return boolean;
  function "<"  (l : unresolved_ufixed; r : natural) return boolean;
  function "<"  (l : natural; r : unresolved_ufixed) return boolean;

  function "<"  (l, r : unresolved_sfixed) return boolean;
  function "<"  (l : unresolved_sfixed; r : real)    return boolean;
  function "<"  (l : real; r : unresolved_sfixed)    return boolean;
  function "<"  (l : unresolved_sfixed; r : integer) return boolean;
  function "<"  (l : integer; r : unresolved_sfixed) return boolean;

  function "<=" (l, r : unresolved_ufixed) return boolean;
  function "<=" (l : unresolved_ufixed; r : real)    return boolean;
  function "<=" (l : real; r : unresolved_ufixed)    return boolean;
  function "<=" (l : unresolved_ufixed; r : natural) return boolean;
  function "<=" (l : natural; r : unresolved_ufixed) return boolean;

  function "<=" (l, r : unresolved_sfixed) return boolean;
  function "<=" (l : unresolved_sfixed; r : real)    return boolean;
  function "<=" (l : real; r : unresolved_sfixed)    return boolean;
  function "<=" (l : unresolved_sfixed; r : integer) return boolean;
  function "<=" (l : integer; r : unresolved_sfixed) return boolean;

  function ">"  (l, r : unresolved_ufixed) return boolean;
  function ">"  (l : unresolved_ufixed; r : real)    return boolean;
  function ">"  (l : real; r : unresolved_ufixed)    return boolean;



820 Appendix A — Standard Packages

  function ">"  (l : unresolved_ufixed; r : natural) return boolean;
  function ">"  (l : natural; r : unresolved_ufixed) return boolean;

  function ">"  (l, r : unresolved_sfixed) return boolean;
  function ">"  (l : unresolved_sfixed; r : real)    return boolean;
  function ">"  (l : real; r : unresolved_sfixed)    return boolean;
  function ">"  (l : unresolved_sfixed; r : integer) return boolean;
  function ">"  (l : integer; r : unresolved_sfixed) return boolean;

  function ">=" (l, r : unresolved_ufixed) return boolean;
  function ">=" (l : unresolved_ufixed; r : real)    return boolean;
  function ">=" (l : real; r : unresolved_ufixed)    return boolean;
  function ">=" (l : unresolved_ufixed; r : natural) return boolean;
  function ">=" (l : natural; r : unresolved_ufixed) return boolean;

  function ">=" (l, r : unresolved_sfixed) return boolean;
  function ">=" (l : unresolved_sfixed; r : real)    return boolean;
  function ">=" (l : real; r : unresolved_sfixed)    return boolean;
  function ">=" (l : unresolved_sfixed; r : integer) return boolean;
  function ">=" (l : integer; r : unresolved_sfixed) return boolean;

  function minimum (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function minimum (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function minimum (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function minimum (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function minimum (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function minimum (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function minimum (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function minimum (l : real; r : unresolved_sfixed)    return unresolved_sfixed;
  function minimum (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function minimum (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function maximum (l, r : unresolved_ufixed)           return unresolved_ufixed;
  function maximum (l : unresolved_ufixed; r : real)    return unresolved_ufixed;
  function maximum (l : real; r : unresolved_ufixed)    return unresolved_ufixed;
  function maximum (l : unresolved_ufixed; r : natural) return unresolved_ufixed;
  function maximum (l : natural; r : unresolved_ufixed) return unresolved_ufixed;

  function maximum (l, r : unresolved_sfixed)           return unresolved_sfixed;
  function maximum (l : unresolved_sfixed; r : real)    return unresolved_sfixed;
  function maximum (l : real; r : unresolved_sfixed)    return unresolved_sfixed;
  function maximum (l : unresolved_sfixed; r : integer) return unresolved_sfixed;
  function maximum (l : integer; r : unresolved_sfixed) return unresolved_sfixed;

  function "?="  (l, r : unresolved_ufixed) return boolean;
  function "?="  (l : unresolved_ufixed; r : real)    return boolean;
  function "?="  (l : real; r : unresolved_ufixed)    return boolean;
  function "?="  (l : unresolved_ufixed; r : natural) return boolean;
  function "?="  (l : natural; r : unresolved_ufixed) return boolean;

  function "?="  (l, r : unresolved_sfixed) return boolean;
  function "?="  (l : unresolved_sfixed; r : real)    return boolean;
  function "?="  (l : real; r : unresolved_sfixed)    return boolean;
  function "?="  (l : unresolved_sfixed; r : natural) return boolean;
  function "?="  (l : natural; r : unresolved_sfixed) return boolean;

  function "?/=" (l, r : unresolved_ufixed) return boolean;
  function "?/=" (l : unresolved_ufixed; r : real)    return boolean;
  function "?/=" (l : real; r : unresolved_ufixed)    return boolean;
  function "?/=" (l : unresolved_ufixed; r : natural) return boolean;
  function "?/=" (l : natural; r : unresolved_ufixed) return boolean;

  function "?/=" (l, r : unresolved_sfixed) return boolean;
  function "?/=" (l : unresolved_sfixed; r : real)    return boolean;
  function "?/=" (l : real; r : unresolved_sfixed)    return boolean;



A.7 Standard Fixed-Point Packages 821

  function "?/=" (l : unresolved_sfixed; r : natural) return boolean;
  function "?/=" (l : natural; r : unresolved_sfixed) return boolean;

  function "?<"  (l, r : unresolved_ufixed) return boolean;
  function "?<"  (l : unresolved_ufixed; r : real)    return boolean;
  function "?<"  (l : real; r : unresolved_ufixed)    return boolean;
  function "?<"  (l : unresolved_ufixed; r : natural) return boolean;
  function "?<"  (l : natural; r : unresolved_ufixed) return boolean;

  function "?<"  (l, r : unresolved_sfixed) return boolean;
  function "?<"  (l : unresolved_sfixed; r : real)    return boolean;
  function "?<"  (l : real; r : unresolved_sfixed)    return boolean;
  function "?<"  (l : unresolved_sfixed; r : integer) return boolean;
  function "?<"  (l : integer; r : unresolved_sfixed) return boolean;

  function "?<=" (l, r : unresolved_ufixed) return boolean;
  function "?<=" (l : unresolved_ufixed; r : real)    return boolean;
  function "?<=" (l : real; r : unresolved_ufixed)    return boolean;
  function "?<=" (l : unresolved_ufixed; r : natural) return boolean;
  function "?<=" (l : natural; r : unresolved_ufixed) return boolean;

  function "?<=" (l, r : unresolved_sfixed) return boolean;
  function "?<=" (l : unresolved_sfixed; r : real)    return boolean;
  function "?<=" (l : real; r : unresolved_sfixed)    return boolean;
  function "?<=" (l : unresolved_sfixed; r : integer) return boolean;
  function "?<=" (l : integer; r : unresolved_sfixed) return boolean;

  function "?>"  (l, r : unresolved_ufixed) return boolean;
  function "?>"  (l : unresolved_ufixed; r : real)    return boolean;
  function "?>"  (l : real; r : unresolved_ufixed)    return boolean;
  function "?>"  (l : unresolved_ufixed; r : natural) return boolean;
  function "?>"  (l : natural; r : unresolved_ufixed) return boolean;

  function "?>"  (l, r : unresolved_sfixed) return boolean;
  function "?>"  (l : unresolved_sfixed; r : real)    return boolean;
  function "?>"  (l : real; r : unresolved_sfixed)    return boolean;
  function "?>"  (l : unresolved_sfixed; r : integer) return boolean;
  function "?>"  (l : integer; r : unresolved_sfixed) return boolean;

  function "?>=" (l, r : unresolved_ufixed) return boolean;
  function "?>=" (l : unresolved_ufixed; r : real)    return boolean;
  function "?>=" (l : real; r : unresolved_ufixed)    return boolean;
  function "?>=" (l : unresolved_ufixed; r : natural) return boolean;
  function "?>=" (l : natural; r : unresolved_ufixed) return boolean;

  function "?>=" (l, r : unresolved_sfixed) return boolean;
  function "?>=" (l : unresolved_sfixed; r : real)    return boolean;
  function "?>=" (l : real; r : unresolved_sfixed)    return boolean;
  function "?>=" (l : unresolved_sfixed; r : integer) return boolean;
  function "?>=" (l : integer; r : unresolved_sfixed) return boolean;

  function std_match (l, r : unresolved_ufixed) return boolean;
  function std_match (l, r : unresolved_sfixed) return boolean;

  function "sll" (arg : unresolved_ufixed; count : integer) return unresolved_ufixed;
  function "sll" (arg : unresolved_sfixed; count : integer) return unresolved_sfixed;
  function "srl" (arg : unresolved_ufixed; count : integer) return unresolved_ufixed;
  function "srl" (arg : unresolved_sfixed; count : integer) return unresolved_sfixed;
  function "sla" (arg : unresolved_ufixed; count : integer) return unresolved_ufixed;
  function "sla" (arg : unresolved_sfixed; count : integer) return unresolved_sfixed;
  function "sra" (arg : unresolved_ufixed; count : integer) return unresolved_ufixed;
  function "sra" (arg : unresolved_sfixed; count : integer) return unresolved_sfixed;
  function "rol" (arg : unresolved_ufixed; count : integer) return unresolved_ufixed;
  function "rol" (arg : unresolved_sfixed; count : integer) return unresolved_sfixed;
  function "ror" (arg : unresolved_ufixed; count : integer) return unresolved_ufixed;
  function "ror" (arg : unresolved_sfixed; count : integer) return unresolved_sfixed;



822 Appendix A — Standard Packages

  function shift_left  (arg : unresolved_ufixed; count : natural) return 
unresolved_ufixed;
  function shift_right (arg : unresolved_ufixed; count : natural) return 
unresolved_ufixed;
  function shift_left  (arg : unresolved_sfixed; count : natural) return 
unresolved_sfixed;
  function shift_right (arg : unresolved_sfixed; count : natural) return 
unresolved_sfixed;

  function "and"  (l, r : unresolved_ufixed) return unresolved_ufixed;
  function "and"  (l, r : unresolved_sfixed) return unresolved_sfixed;
  function "nand" (l, r : unresolved_ufixed) return unresolved_ufixed;
  function "nand" (l, r : unresolved_sfixed) return unresolved_sfixed;
  function "or"   (l, r : unresolved_ufixed) return unresolved_ufixed;
  function "or"   (l, r : unresolved_sfixed) return unresolved_sfixed;
  function "nor"  (l, r : unresolved_ufixed) return unresolved_ufixed;
  function "nor"  (l, r : unresolved_sfixed) return unresolved_sfixed;
  function "xor"  (l, r : unresolved_ufixed) return unresolved_ufixed;
  function "xor"  (l, r : unresolved_sfixed) return unresolved_sfixed;
  function "xnor" (l, r : unresolved_ufixed) return unresolved_ufixed;
  function "xnor" (l, r : unresolved_sfixed) return unresolved_sfixed;
  function "not"  (l    : unresolved_ufixed) return unresolved_ufixed;
  function "not"  (l    : unresolved_sfixed) return unresolved_sfixed;

  function "and"  (l : std_ulogic; r : unresolved_ufixed) return unresolved_ufixed;
  function "and"  (l : unresolved_ufixed; r : std_ulogic) return unresolved_ufixed;
  function "and"  (l : std_ulogic; r : unresolved_sfixed) return unresolved_sfixed;
  function "and"  (l : unresolved_sfixed; r : std_ulogic) return unresolved_sfixed;
  function "nand" (l : std_ulogic; r : unresolved_ufixed) return unresolved_ufixed;
  function "nand" (l : unresolved_ufixed; r : std_ulogic) return unresolved_ufixed;
  function "nand" (l : std_ulogic; r : unresolved_sfixed) return unresolved_sfixed;
  function "nand" (l : unresolved_sfixed; r : std_ulogic) return unresolved_sfixed;
  function "or"   (l : std_ulogic; r : unresolved_ufixed) return unresolved_ufixed;
  function "or"   (l : unresolved_ufixed; r : std_ulogic) return unresolved_ufixed;
  function "or"   (l : std_ulogic; r : unresolved_sfixed) return unresolved_sfixed;
  function "or"   (l : unresolved_sfixed; r : std_ulogic) return unresolved_sfixed;
  function "nor"  (l : std_ulogic; r : unresolved_ufixed) return unresolved_ufixed;
  function "nor"  (l : unresolved_ufixed; r : std_ulogic) return unresolved_ufixed;
  function "nor"  (l : std_ulogic; r : unresolved_sfixed) return unresolved_sfixed;
  function "nor"  (l : unresolved_sfixed; r : std_ulogic) return unresolved_sfixed;
  function "xor"  (l : std_ulogic; r : unresolved_ufixed) return unresolved_ufixed;
  function "xor"  (l : unresolved_ufixed; r : std_ulogic) return unresolved_ufixed;
  function "xor"  (l : std_ulogic; r : unresolved_sfixed) return unresolved_sfixed;
  function "xor"  (l : unresolved_sfixed; r : std_ulogic) return unresolved_sfixed;
  function "xnor" (l : std_ulogic; r : unresolved_ufixed) return unresolved_ufixed;
  function "xnor" (l : unresolved_ufixed; r : std_ulogic) return unresolved_ufixed;
  function "xnor" (l : std_ulogic; r : unresolved_sfixed) return unresolved_sfixed;
  function "xnor" (l : unresolved_sfixed; r : std_ulogic) return unresolved_sfixed;

  function "and"  (l : unresolved_ufixed) return std_ulogic;
  function "and"  (l : unresolved_sfixed) return std_ulogic;
  function "nand" (l : unresolved_ufixed) return std_ulogic;
  function "nand" (l : unresolved_sfixed) return std_ulogic;
  function "or"   (l : unresolved_ufixed) return std_ulogic;
  function "or"   (l : unresolved_sfixed) return std_ulogic;
  function "nor"  (l : unresolved_ufixed) return std_ulogic;
  function "nor"  (l : unresolved_sfixed) return std_ulogic;
  function "xor"  (l : unresolved_ufixed) return std_ulogic;
  function "xor"  (l : unresolved_sfixed) return std_ulogic;
  function "xnor" (l : unresolved_ufixed) return std_ulogic;
  function "xnor" (l : unresolved_sfixed) return std_ulogic;

  function find_leftmost  (arg : unresolved_ufixed; y : std_ulogic) return integer;
  function find_leftmost  (arg : unresolved_sfixed; y : std_ulogic) return integer;



A.7 Standard Fixed-Point Packages 823

  function find_rightmost (arg : unresolved_ufixed; y : std_ulogic) return integer;
  function find_rightmost (arg : unresolved_sfixed; y : std_ulogic) return integer;

  function resize (arg            : unresolved_ufixed;
                   left_index     : integer;
                   right_index    : integer;
                   overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                   round_style    : fixed_round_style_type    := fixed_round_style)
                  return unresolved_ufixed;

  function resize (arg            : unresolved_ufixed;
                   size_res       : unresolved_ufixed;
                   overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                   round_style    : fixed_round_style_type    := fixed_round_style)
                  return unresolved_ufixed;

  function resize (arg            : unresolved_sfixed;
                   left_index     : integer;
                   right_index    : integer;
                   overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                   round_style    : fixed_round_style_type    := fixed_round_style)
                  return unresolved_sfixed;

  function resize (arg            : unresolved_sfixed;
                   size_res       : unresolved_sfixed;
                   overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                   round_style    : fixed_round_style_type    := fixed_round_style)
                  return unresolved_sfixed;

  function to_ufixed (arg            : natural;
                      left_index     : integer;
                      right_index    : integer                   := 0;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_ufixed;

  function to_ufixed (arg                     : natural;
                      size_res                : unresolved_ufixed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_ufixed;

  function to_ufixed (arg            : real;
                      left_index     : integer;
                      right_index    : integer;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      guard_bits     : natural                   := fixed_guard_bits)
                     return unresolved_ufixed;

  function to_ufixed (arg            : real;
                      size_res       : unresolved_ufixed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      guard_bits     : natural                   := fixed_guard_bits)
                     return unresolved_ufixed;

  function to_ufixed (arg            : unresolved_unsigned;
                      left_index     : integer;
                      right_index    : integer                   := 0;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_ufixed;

  function to_ufixed (arg            : unresolved_unsigned;
                      size_res       : unresolved_ufixed;



824 Appendix A — Standard Packages

                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_ufixed;

  function to_ufixed (arg : unresolved_unsigned) return unresolved_ufixed;

  function to_unsigned (arg            : unresolved_ufixed;
                        size           : natural;
                        overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                        round_style    : fixed_round_style_type    := fixed_round_style)
                       return unresolved_unsigned;

  function to_unsigned (arg            : unresolved_ufixed;
                        size_res       : unresolved_unsigned;
                        overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                        round_style    : fixed_round_style_type    := fixed_round_style)
                       return unresolved_unsigned;

  function to_real (arg : unresolved_ufixed) return real;

  function to_integer (arg            : unresolved_ufixed;
                       overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                       round_style    : fixed_round_style_type    := fixed_round_style)
                      return natural;

  function to_sfixed (arg            : integer;
                      left_index     : integer;
                      right_index    : integer                   := 0;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_sfixed;

  function to_sfixed (arg            : integer;
                      size_res       : unresolved_sfixed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_sfixed;

  function to_sfixed (arg            : real;
                      left_index     : integer;
                      right_index    : integer;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      guard_bits     : natural                   := fixed_guard_bits)
                     return unresolved_sfixed;

  function to_sfixed (arg            : real;
                      size_res       : unresolved_sfixed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      guard_bits     : natural                   := fixed_guard_bits)
                     return unresolved_sfixed;

  function to_sfixed (arg            : unresolved_signed;
                      left_index     : integer;
                      right_index    : integer                   := 0;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_sfixed;

  function to_sfixed (arg            : unresolved_signed;
                      size_res       : unresolved_sfixed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_sfixed;



A.7 Standard Fixed-Point Packages 825

  function to_sfixed (arg : unresolved_signed) return unresolved_sfixed;

  function to_sfixed (arg : unresolved_ufixed) return unresolved_sfixed;

  function to_signed (arg            : unresolved_sfixed;
                      size           : natural;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_signed;

  function to_signed (arg            : unresolved_sfixed;
                      size_res       : unresolved_signed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style)
                     return unresolved_signed;

  function to_real (arg : unresolved_sfixed) return real;

  function to_integer (arg            : unresolved_sfixed;
                       overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                       round_style    : fixed_round_style_type    := fixed_round_style)
                      return integer;

  function ufixed_high (left_index, right_index   : integer;
                        operation                 : character := 'X';
                        left_index2, right_index2 : integer   := 0) return integer;

  function ufixed_low  (left_index, right_index   : integer;
                        operation                 : character := 'X';
                        left_index2, right_index2 : integer   := 0) return integer;

  function sfixed_high (left_index, right_index   : integer;
                        operation                 : character := 'X';
                        left_index2, right_index2 : integer   := 0) return integer;

  function sfixed_low  (left_index, right_index   : integer;
                        operation                 : character := 'X';
                        left_index2, right_index2 : integer   := 0) return integer;

  function ufixed_high (size_res  : unresolved_ufixed;
                        operation : character := 'X';
                        size_res2 : unresolved_ufixed) return integer;

  function ufixed_low  (size_res  : unresolved_ufixed;
                        operation : character := 'X';
                        size_res2 : unresolved_ufixed) return integer;

  function sfixed_high (size_res  : unresolved_sfixed;
                        operation : character := 'X';
                        size_res2 : unresolved_sfixed) return integer;

  function sfixed_low  (size_res  : unresolved_sfixed;
                        operation : character := 'X';
                        size_res2 : unresolved_sfixed) return integer;

  function saturate (left_index, right_index : integer) return unresolved_ufixed;
  function saturate (left_index, right_index : integer) return unresolved_sfixed;
  function saturate (size_res : unresolved_ufixed) return unresolved_ufixed;
  function saturate (size_res : unresolved_sfixed) return unresolved_sfixed;

  function To_01 (s    : unresolved_ufixed;
                  xmap : std_ulogic := '0')  return unresolved_ufixed;
  function To_01 (s    : unresolved_sfixed;
                  xmap : std_ulogic := '0') return unresolved_sfixed;

  function Is_X    (arg : unresolved_ufixed) return boolean;
  function Is_X    (arg : unresolved_sfixed) return boolean;



826 Appendix A — Standard Packages

  function To_X01  (arg : unresolved_ufixed) return unresolved_ufixed;
  function To_X01  (arg : unresolved_sfixed) return unresolved_sfixed;
  function To_X01Z (arg : unresolved_ufixed) return unresolved_ufixed;
  function To_X01Z (arg : unresolved_sfixed) return unresolved_sfixed;
  function To_UX01 (arg : unresolved_ufixed) return unresolved_ufixed;
  function To_UX01 (arg : unresolved_sfixed) return unresolved_sfixed;

  function To_SLV (arg : unresolved_ufixed) return std_logic_vector;

  alias To_StdLogicVector   is To_SLV [unresolved_ufixed return std_logic_vector];
  alias To_Std_Logic_Vector is To_SLV [unresolved_ufixed return std_logic_vector];

  function To_SLV (arg : unresolved_sfixed) return std_logic_vector;

  alias To_StdLogicVector   is To_SLV [unresolved_sfixed return std_logic_vector];
  alias To_Std_Logic_Vector is To_SLV [unresolved_sfixed return std_logic_vector];

  function To_SULV (arg : unresolved_ufixed) return std_ulogic_vector;

  alias To_StdULogicVector   is To_SULV [unresolved_ufixed return std_ulogic_vector];
  alias To_Std_ULogic_Vector is To_SULV [unresolved_ufixed return std_ulogic_vector];

  function To_SULV (arg : unresolved_sfixed) return std_ulogic_vector;

  alias To_StdULogicVector   is To_SULV [unresolved_sfixed return std_ulogic_vector];
  alias To_Std_ULogic_Vector is To_SULV [unresolved_sfixed return std_ulogic_vector];

  function to_ufixed (arg                     : std_ulogic_vector;
                      left_index, right_index : integer) return unresolved_ufixed;

  function to_ufixed (arg      : std_ulogic_vector;
                      size_res : unresolved_ufixed) return unresolved_ufixed;

  function to_sfixed (arg                     : std_ulogic_vector;
                      left_index, right_index : integer) return unresolved_sfixed;

  function to_sfixed (arg      : std_ulogic_vector;
                      size_res : unresolved_sfixed) return unresolved_sfixed;

  function to_UFix (arg             : std_ulogic_vector;
                    width, fraction : natural) return unresolved_ufixed;

  function to_SFix (arg             : std_ulogic_vector;
                    width, fraction : natural) return unresolved_sfixed;

  function UFix_high (width, fraction   : natural;
                      operation         : character := 'X';
                      width2, fraction2 : natural   := 0) return integer;

  function UFix_low  (width, fraction   : natural;
                      operation         : character := 'X';
                      width2, fraction2 : natural   := 0) return integer;

  function SFix_high (width, fraction   : natural;
                      operation         : character := 'X';
                      width2, fraction2 : natural   := 0) return integer;

  function SFix_low  (width, fraction   : natural;
                      operation         : character := 'X';
                      width2, fraction2 : natural   := 0) return integer;

  function to_string (value : unresolved_ufixed) return string;
  function to_string (value : unresolved_sfixed) return string;

  alias to_bstring is to_string [unresolved_ufixed return string];
  alias to_bstring is to_string [unresolved_sfixed return string];

  alias to_binary_string is to_string [unresolved_ufixed return string];
  alias to_binary_string is to_string [unresolved_sfixed return string];



A.7 Standard Fixed-Point Packages 827

  function to_ostring (value : unresolved_ufixed) return string;
  function to_ostring (value : unresolved_sfixed) return string;

  alias to_octal_string is to_ostring [unresolved_ufixed return string];
  alias to_octal_string is to_ostring [unresolved_sfixed return string];

  function to_hstring (value : unresolved_ufixed) return string;
  function to_hstring (value : unresolved_sfixed) return string;

  alias to_hex_string is to_hstring [unresolved_ufixed return string];
  alias to_hex_string is to_hstring [unresolved_sfixed return string];

  function from_string (bstring                 : string;
                        left_index, right_index : integer) return unresolved_ufixed;
  function from_string (bstring                 : string;
                        left_index, right_index : integer) return unresolved_sfixed;
  function from_string (bstring  : string;
                        size_res : unresolved_ufixed)      return unresolved_ufixed;
  function from_string (bstring  : string;
                        size_res : unresolved_sfixed)      return unresolved_sfixed;
  function from_string (bstring : string)                  return unresolved_ufixed;
  function from_string (bstring : string)                  return unresolved_sfixed;

  alias from_bstring is from_string [string, integer, integer return unresolved_ufixed];
  alias from_bstring is from_string [string, integer, integer return unresolved_sfixed];
  alias from_bstring is from_string [string, unresolved_ufixed
                                     return unresolved_ufixed];
  alias from_bstring is from_string [string, unresolved_sfixed
                                     return unresolved_sfixed];
  alias from_bstring is from_string [string return unresolved_ufixed];
  alias from_bstring is from_string [string return unresolved_sfixed];

  alias from_binary_string is from_string [string, integer, integer
                                           return unresolved_ufixed];
  alias from_binary_string is from_string [string, integer, integer
                                           return unresolved_sfixed];
  alias from_binary_string is from_string [string, unresolved_ufixed
                                           return unresolved_ufixed];
  alias from_binary_string is from_string [string, unresolved_sfixed
                                           return unresolved_sfixed];
  alias from_binary_string is from_string [string return unresolved_ufixed];
  alias from_binary_string is from_string [string return unresolved_sfixed];

  function from_ostring (ostring                 : string;
                         left_index, right_index : integer) return unresolved_ufixed;
  function from_ostring (ostring                 : string;
                         left_index, right_index : integer) return unresolved_sfixed;
  function from_ostring (ostring  : string;
                         size_res : unresolved_ufixed)      return unresolved_ufixed;
  function from_ostring (ostring  : string;
                         size_res : unresolved_sfixed)      return unresolved_sfixed;
  function from_ostring (ostring : string)                  return unresolved_ufixed;
  function from_ostring ( ostring : string)                 return unresolved_sfixed;

  alias from_octal_string is from_ostring [string, integer, integer
                                           return unresolved_ufixed];
  alias from_octal_string is from_ostring [string, integer, integer
                                           return unresolved_sfixed];
  alias from_octal_string is from_ostring [string, unresolved_ufixed
                                           return unresolved_ufixed];
  alias from_octal_string is from_ostring [string, unresolved_sfixed
                                           return unresolved_sfixed];
  alias from_octal_string is from_ostring [string return unresolved_ufixed];
  alias from_octal_string is from_ostring [string return unresolved_sfixed];



828 Appendix A — Standard Packages

  function from_hstring (hstring                 : string;
                         left_index, right_index : integer) return unresolved_ufixed;
  function from_hstring (hstring                 : string;
                         left_index, right_index : integer) return unresolved_sfixed;
  function from_hstring (hstring  : string;
                         size_res : unresolved_ufixed)      return unresolved_ufixed;
  function from_hstring (hstring  : string;
                         size_res : unresolved_sfixed)      return unresolved_sfixed;
  function from_hstring (hstring : string)                  return unresolved_ufixed;
  function from_hstring (hstring : string)                  return unresolved_sfixed;

  alias from_hex_string is from_hstring [string, integer, integer
                                         return unresolved_ufixed];
  alias from_hex_string is from_hstring [string, integer, integer
                                         return unresolved_sfixed];
  alias from_hex_string is from_hstring [string, unresolved_ufixed
                                         return unresolved_ufixed];
  alias from_hex_string is from_hstring [string, unresolved_sfixed
                                         return unresolved_sfixed];
  alias from_hex_string is from_hstring [string return unresolved_ufixed];
  alias from_hex_string is from_hstring [string return unresolved_sfixed];

  procedure read(l : inout line; value : out unresolved_ufixed; good : out boolean);
  procedure read(l : inout line; value : out unresolved_ufixed);
  procedure read(l : inout line; value : out unresolved_sfixed; good : out boolean);
  procedure read(l : inout line; value : out unresolved_sfixed);

  alias bread is read [line, unresolved_ufixed, boolean];
  alias bread is read [line, unresolved_ufixed];
  alias bread is read [line, unresolved_sfixed, boolean];
  alias bread is read [line, unresolved_sfixed];

  alias binary_read is read [line, unresolved_ufixed, boolean];
  alias binary_read is read [line, unresolved_ufixed];
  alias binary_read is read [line, unresolved_sfixed, boolean];
  alias binary_read is read [line, unresolved_sfixed];

  procedure oread(l : inout line; value : out unresolved_ufixed; good : out boolean);
  procedure oread(l : inout line; value : out unresolved_ufixed);
  procedure oread(l : inout line; value : out unresolved_sfixed; good : out boolean);
  procedure oread(l : inout line; value : out unresolved_sfixed);

  alias octal_read is oread [line, unresolved_ufixed, boolean];
  alias octal_read is oread [line, unresolved_ufixed];
  alias octal_read is oread [line, unresolved_sfixed, boolean];
  alias octal_read is oread [line, unresolved_sfixed];

  procedure hread(l : inout line; value : out unresolved_ufixed; good : out boolean);
  procedure hread(l : inout line; value : out unresolved_ufixed);
  procedure hread(l : inout line; value : out unresolved_sfixed; good : out boolean);
  procedure hread(l : inout line; value : out unresolved_sfixed);

  alias hex_read is hread [line, unresolved_ufixed, boolean];
  alias hex_read is hread [line, unresolved_ufixed];
  alias hex_read is hread [line, unresolved_sfixed, boolean];
  alias hex_read is hread [line, unresolved_sfixed];

  procedure write (l : inout line; value : in unresolved_ufixed;
                   justified : in side := right; field : in width := 0);
  procedure write (l : inout line; value : in unresolved_sfixed;
                   justified : in side := right; field : in width := 0);

  alias bwrite is write [line, unresolved_ufixed, side, width];
  alias bwrite is write [line, unresolved_sfixed, side, width];



A.8 Standard Floating-Point Packages 829

  alias binary_write is write [line, unresolved_ufixed, side, width];
  alias binary_write is write [line, unresolved_sfixed, side, width];

  procedure owrite (l : inout line; value : in unresolved_ufixed;
                    justified : in side := right; field : in width := 0);
  procedure owrite (l : inout line; value : in unresolved_sfixed;
                    justified : in side := right; field : in width := 0);

  alias octal_write is owrite [line, unresolved_ufixed, side, width];
  alias octal_write is owrite [line, unresolved_sfixed, side, width];

  procedure hwrite (l : inout line; value : in unresolved_ufixed;
                    justified : in side := right; field : in width := 0);
  procedure hwrite (l : inout line; value : in unresolved_sfixed;
                    justified : in side := right; field : in width := 0);

  alias hex_write is hwrite [line, unresolved_ufixed, side, width];
  alias hex_write is hwrite [line, unresolved_sfixed, side, width];

end package fixed_generic_pkg;

A.7.3 The fixed_pkg Package

library ieee;

package fixed_pkg is new ieee.fixed_generic_pkg
  generic map (
    fixed_round_style    => ieee.fixed_float_types.fixed_round,
    fixed_overflow_style => ieee.fixed_float_types.fixed_saturate,
    fixed_guard_bits     => 3,
    no_warning           => false
    );

A.8 Standard Floating-Point Packages

The types of generic constants in the standard floating-point packages are defined in the
package fixed_float_types (see Section A.7.1).

VHDL-87, -93, and -2002

The standard floating-point packages are not provided in these versions.

A.8.1 The float_generic_pkg Package

use std.textio.all;
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all;
use ieee.fixed_float_types.all;

package float_generic_pkg is
  generic (
    float_exponent_width : natural    := 8;
    float_fraction_width : natural    := 23;
    float_round_style    : round_type := round_nearest;
    float_denormalize    : boolean    := true;
    float_check_error    : boolean    := true;
    float_guard_bits     : natural    := 3;



830 Appendix A — Standard Packages

    no_warning           : boolean    := false;
    package fixed_pkg is new ieee.fixed_generic_pkg generic map (<>) );

  -- Author David Bishop (dbishop@vhdl.org)
  constant CopyRightNotice : string :=
    "Copyright 2008 by IEEE. All rights reserved.";

  use fixed_pkg.all;

  type unresolved_float is array (integer range <>) of std_ulogic;
  alias   u_float is            unresolved_float;
  subtype float   is (resolved) unresolved_float;

  subtype unresolved_float32 is unresolved_float (8 downto -23);
  alias   u_float32 is unresolved_float32;
  subtype float32   is float (8 downto -23);

  subtype unresolved_float64 is unresolved_float (11 downto -52);
  alias   u_float64 is unresolved_float64;
  subtype float64   is float (11 downto -52);

  subtype unresolved_float128 is unresolved_float (15 downto -112);
  alias   u_float128 is unresolved_float128;
  subtype float128   is float (15 downto -112);

  type valid_fpstate is (nan, quiet_nan,
                         neg_inf, neg_normal, neg_denormal, neg_zero,
                         pos_zero, pos_denormal, pos_normal, pos_inf,
                         isx);

  constant fphdlsynth_or_real : boolean;

  function Classfp (x           : unresolved_float;
                    check_error : boolean := float_check_error) return valid_fpstate;

  function "abs" (arg : unresolved_float)  return unresolved_float;
  function "-"   (arg : unresolved_float)  return unresolved_float;

  function "+"   (l, r : unresolved_float)           return unresolved_float;
  function "+"   (l : unresolved_float; r : real)    return unresolved_float;
  function "+"   (l : real; r : unresolved_float)    return unresolved_float;
  function "+"   (l : unresolved_float; r : integer) return unresolved_float;
  function "+"   (l : integer; r : unresolved_float) return unresolved_float;

  function "-"   (l, r : unresolved_float)           return unresolved_float;
  function "-"   (l : unresolved_float; r : real)    return unresolved_float;
  function "-"   (l : real; r : unresolved_float)    return unresolved_float;
  function "-"   (l : unresolved_float; r : integer) return unresolved_float;
  function "-"   (l : integer; r : unresolved_float) return unresolved_float;

  function "*"   (l, r : unresolved_float)           return unresolved_float;
  function "*"   (l : unresolved_float; r : real)    return unresolved_float;
  function "*"   (l : real; r : unresolved_float)    return unresolved_float;
  function "*"   (l : unresolved_float; r : integer) return unresolved_float;
  function "*"   (l : integer; r : unresolved_float) return unresolved_float;

  function "/"   (l, r : unresolved_float)           return unresolved_float;
  function "/"   (l : unresolved_float; r : real)    return unresolved_float;
  function "/"   (l : real; r : unresolved_float)    return unresolved_float;
  function "/"   (l : unresolved_float; r : integer) return unresolved_float;
  function "/"   (l : integer; r : unresolved_float) return unresolved_float;

  function "rem" (l, r : unresolved_float)           return unresolved_float;
  function "rem" (l : unresolved_float; r : real)    return unresolved_float;
  function "rem" (l : real; r : unresolved_float)    return unresolved_float;
  function "rem" (l : unresolved_float; r : integer) return unresolved_float;
  function "rem" (l : integer; r : unresolved_float) return unresolved_float;



A.8 Standard Floating-Point Packages 831

  function "mod" (l, r : unresolved_float)           return unresolved_float;
  function "mod" (l : unresolved_float; r : real)    return unresolved_float;
  function "mod" (l : real; r : unresolved_float)    return unresolved_float;
  function "mod" (l : unresolved_float; r : integer) return unresolved_float;
  function "mod" (l : integer; r : unresolved_float) return unresolved_float;

  function add (l, r        : unresolved_float;
                round_style : round_type := float_round_style;
                guard       : natural    := float_guard_bits;
                check_error : boolean    := float_check_error;
                denormalize : boolean    := float_denormalize)
               return unresolved_float;

  function subtract (l, r        : unresolved_float;
                     round_style : round_type := float_round_style;
                     guard       : natural    := float_guard_bits;
                     check_error : boolean    := float_check_error;
                     denormalize : boolean    := float_denormalize)
                    return unresolved_float;

  function multiply (l, r        : unresolved_float;
                     round_style : round_type := float_round_style;
                     guard       : natural    := float_guard_bits;
                     check_error : boolean    := float_check_error;
                     denormalize : boolean    := float_denormalize)
                    return unresolved_float;

  function divide (l, r        : unresolved_float;
                   round_style : round_type := float_round_style;
                   guard       : natural    := float_guard_bits;
                   check_error : boolean    := float_check_error;
                   denormalize : boolean    := float_denormalize)
                  return unresolved_float;

  function remainder (l, r        : unresolved_float;
                      round_style : round_type := float_round_style;
                      guard       : natural    := float_guard_bits;
                      check_error : boolean    := float_check_error;
                      denormalize : boolean    := float_denormalize)
                     return unresolved_float;

  function modulo (l, r        : unresolved_float;
                   round_style : round_type := float_round_style;
                   guard       : natural    := float_guard_bits;
                   check_error : boolean    := float_check_error;
                   denormalize : boolean    := float_denormalize)
                  return unresolved_float;

  function reciprocal (arg         : unresolved_float;
                       round_style : round_type := float_round_style;
                       guard       : natural    := float_guard_bits;
                       check_error : boolean    := float_check_error;
                       denormalize : boolean    := float_denormalize)
                      return unresolved_float;

  function dividebyp2 (l, r        : unresolved_float;
                       round_style : round_type := float_round_style;
                       guard       : natural    := float_guard_bits;
                       check_error : boolean    := float_check_error;
                       denormalize : boolean    := float_denormalize)
                      return unresolved_float;

  function mac (l, r, c     : unresolved_float;
                round_style : round_type := float_round_style;
                guard       : natural    := float_guard_bits;



832 Appendix A — Standard Packages

                check_error : boolean    := float_check_error;
                denormalize : boolean    := float_denormalize)
               return unresolved_float;

  function sqrt (arg         : unresolved_float;
                 round_style : round_type := float_round_style;
                 guard       : natural    := float_guard_bits;
                 check_error : boolean    := float_check_error;
                 denormalize : boolean    := float_denormalize)
                return unresolved_float;

  function Is_Negative (arg : unresolved_float) return boolean;

  function "="  (l, r : unresolved_float)           return boolean;
  function "="  (l : unresolved_float; r : real)    return boolean;
  function "="  (l : real; r : unresolved_float)    return boolean;
  function "="  (l : unresolved_float; r : integer) return boolean;
  function "="  (l : integer; r : unresolved_float) return boolean;

  function "/=" (l, r : unresolved_float)           return boolean;
  function "/=" (l : unresolved_float; r : real)    return boolean;
  function "/=" (l : real; r : unresolved_float)    return boolean;
  function "/=" (l : unresolved_float; r : integer) return boolean;
  function "/=" (l : integer; r : unresolved_float) return boolean;

  function "<"  (l, r : unresolved_float)           return boolean;
  function "<"  (l : unresolved_float; r : real)    return boolean;
  function "<"  (l : real; r : unresolved_float)    return boolean;
  function "<"  (l : unresolved_float; r : integer) return boolean;
  function "<"  (l : integer; r : unresolved_float) return boolean;

  function "<=" (l, r : unresolved_float)           return boolean;
  function "<=" (l : unresolved_float; r : real)    return boolean;
  function "<=" (l : real; r : unresolved_float)    return boolean;
  function "<=" (l : unresolved_float; r : integer) return boolean;
  function "<=" (l : integer; r : unresolved_float) return boolean;

  function ">"  (l, r : unresolved_float)           return boolean;
  function ">"  (l : unresolved_float; r : real)    return boolean;
  function ">"  (l : real; r : unresolved_float)    return boolean;
  function ">"  (l : unresolved_float; r : integer) return boolean;
  function ">"  (l : integer; r : unresolved_float) return boolean;

  function ">=" (l, r : unresolved_float)           return boolean;
  function ">=" (l : unresolved_float; r : real)    return boolean;
  function ">=" (l : real; r : unresolved_float)    return boolean;
  function ">=" (l : unresolved_float; r : integer) return boolean;
  function ">=" (l : integer; r : unresolved_float) return boolean;

  function eq (l, r        : unresolved_float;
               check_error : boolean := float_check_error;
               denormalize : boolean := float_denormalize)
              return boolean;

  function ne (l, r        : unresolved_float;
               check_error : boolean := float_check_error;
               denormalize : boolean := float_denormalize)
              return boolean;

  function lt (l, r        : unresolved_float;
               check_error : boolean := float_check_error;
               denormalize : boolean := float_denormalize)
              return boolean;

  function gt (l, r        : unresolved_float;
               check_error : boolean := float_check_error;



A.8 Standard Floating-Point Packages 833

               denormalize : boolean := float_denormalize)
              return boolean;

  function le (l, r        : unresolved_float;
               check_error : boolean := float_check_error;
               denormalize : boolean := float_denormalize)
              return boolean;

  function ge (l, r        : unresolved_float;
               check_error : boolean := float_check_error;
               denormalize : boolean := float_denormalize)
              return boolean;

  function minimum (l, r : unresolved_float)           return unresolved_float;
  function minimum (l : unresolved_float; r : real)    return unresolved_float;
  function minimum (l : real; r : unresolved_float)    return unresolved_float;
  function minimum (l : unresolved_float; r : integer) return unresolved_float;
  function minimum (l : integer; r : unresolved_float) return unresolved_float;

  function maximum (l, r : unresolved_float)           return unresolved_float;
  function maximum (l : unresolved_float; r : real)    return unresolved_float;
  function maximum (l : real; r : unresolved_float)    return unresolved_float;
  function maximum (l : unresolved_float; r : integer) return unresolved_float;
  function maximum (l : integer; r : unresolved_float) return unresolved_float;

  function "?="  (l, r : unresolved_float)           return boolean;
  function "?="  (l : unresolved_float; r : real)    return boolean;
  function "?="  (l : real; r : unresolved_float)    return boolean;
  function "?="  (l : unresolved_float; r : integer) return boolean;
  function "?="  (l : integer; r : unresolved_float) return boolean;

  function "?/=" (l, r : unresolved_float)           return boolean;
  function "?/=" (l : unresolved_float; r : real)    return boolean;
  function "?/=" (l : real; r : unresolved_float)    return boolean;
  function "?/=" (l : unresolved_float; r : integer) return boolean;
  function "?/=" (l : integer; r : unresolved_float) return boolean;

  function "?<"  (l, r : unresolved_float)           return boolean;
  function "?<"  (l : unresolved_float; r : real)    return boolean;
  function "?<"  (l : real; r : unresolved_float)    return boolean;
  function "?<"  (l : unresolved_float; r : integer) return boolean;
  function "?<"  (l : integer; r : unresolved_float) return boolean;

  function "?<=" (l, r : unresolved_float)           return boolean;
  function "?<=" (l : unresolved_float; r : real)    return boolean;
  function "?<=" (l : real; r : unresolved_float)    return boolean;
  function "?<=" (l : unresolved_float; r : integer) return boolean;
  function "?<=" (l : integer; r : unresolved_float) return boolean;

  function "?>"  (l, r : unresolved_float)           return boolean;
  function "?>"  (l : unresolved_float; r : real)    return boolean;
  function "?>"  (l : real; r : unresolved_float)    return boolean;
  function "?>"  (l : unresolved_float; r : integer) return boolean;
  function "?>"  (l : integer; r : unresolved_float) return boolean;

  function "?>=" (l, r : unresolved_float)           return boolean;
  function "?>=" (l : unresolved_float; r : real)    return boolean;
  function "?>=" (l : real; r : unresolved_float)    return boolean;
  function "?>=" (l : unresolved_float; r : integer) return boolean;
  function "?>=" (l : integer; r : unresolved_float) return boolean;

  function std_match (l, r : unresolved_float) return boolean;

  function "and"  (l, r : unresolved_float) return unresolved_float;
  function "nand" (l, r : unresolved_float) return unresolved_float;
  function "or"   (l, r : unresolved_float) return unresolved_float;



834 Appendix A — Standard Packages

  function "nor"  (l, r : unresolved_float) return unresolved_float;
  function "xor"  (l, r : unresolved_float) return unresolved_float;
  function "xnor" (l, r : unresolved_float) return unresolved_float;
  function "not"  (l    : unresolved_float) return unresolved_float;

  function "and"  (l : std_ulogic; r : unresolved_float) return unresolved_float;
  function "and"  (l : unresolved_float; r : std_ulogic) return unresolved_float;
  function "nand" (l : std_ulogic; r : unresolved_float) return unresolved_float;
  function "nand" (l : unresolved_float; r : std_ulogic) return unresolved_float;
  function "or"   (l : std_ulogic; r : unresolved_float) return unresolved_float;
  function "or"   (l : unresolved_float; r : std_ulogic) return unresolved_float;
  function "nor"  (l : std_ulogic; r : unresolved_float) return unresolved_float;
  function "nor"  (l : unresolved_float; r : std_ulogic) return unresolved_float;
  function "xor"  (l : std_ulogic; r : unresolved_float) return unresolved_float;
  function "xor"  (l : unresolved_float; r : std_ulogic) return unresolved_float;
  function "xnor" (l : std_ulogic; r : unresolved_float) return unresolved_float;
  function "xnor" (l : unresolved_float; r : std_ulogic) return unresolved_float;

  function "and"  (l : unresolved_float) return std_ulogic;
  function "nand" (l : unresolved_float) return std_ulogic;
  function "or"   (l : unresolved_float) return std_ulogic;
  function "nor"  (l : unresolved_float) return std_ulogic;
  function "xor"  (l : unresolved_float) return std_ulogic;
  function "xnor" (l : unresolved_float) return std_ulogic;

  function find_leftmost  (arg : unresolved_float; y : std_ulogic) return integer;
  function find_rightmost (arg : unresolved_float; y : std_ulogic) return integer;

  function resize (arg            : unresolved_float;
                   exponent_width : natural    := float_exponent_width;
                   fraction_width : natural    := float_fraction_width;
                   round_style    : round_type := float_round_style;
                   check_error    : boolean    := float_check_error;
                   denormalize_in : boolean    := float_denormalize;
                   denormalize    : boolean    := float_denormalize)
                  return unresolved_float;

  function resize (arg            : unresolved_float;
                   size_res       : unresolved_float;
                   round_style    : round_type := float_round_style;
                   check_error    : boolean    := float_check_error;
                   denormalize_in : boolean    := float_denormalize;
                   denormalize    : boolean    := float_denormalize)
                  return unresolved_float;

  function to_float32 (arg            : unresolved_float;
                       round_style    : round_type := float_round_style;
                       check_error    : boolean    := float_check_error;
                       denormalize_in : boolean    := float_denormalize;
                       denormalize    : boolean    := float_denormalize)
                      return unresolved_float32;

  function to_float64 (arg            : unresolved_float;
                       round_style    : round_type := float_round_style;
                       check_error    : boolean    := float_check_error;
                       denormalize_in : boolean    := float_denormalize;
                       denormalize    : boolean    := float_denormalize)
                      return unresolved_float64;

  function to_float128 (arg            : unresolved_float;
                        round_style    : round_type := float_round_style;
                        check_error    : boolean    := float_check_error;
                        denormalize_in : boolean    := float_denormalize;
                        denormalize    : boolean    := float_denormalize)
                       return unresolved_float128;



A.8 Standard Floating-Point Packages 835

  function To_SLV (arg : unresolved_float) return std_logic_vector;

  alias To_StdLogicVector   is To_SLV [unresolved_float return std_logic_vector];
  alias To_Std_Logic_Vector is To_SLV [unresolved_float return std_logic_vector];

  function To_SULV (arg : unresolved_float) return std_ulogic_vector;

  alias To_StdULogicVector   is To_SULV [unresolved_float return std_ulogic_vector];
  alias To_Std_ULogic_Vector is To_SULV [unresolved_float return std_ulogic_vector];

  function to_float (arg            : std_ulogic_vector;
                     exponent_width : natural := float_exponent_width;
                     fraction_width : natural := float_fraction_width)
                    return unresolved_float;

  function to_float (arg            : integer;
                     exponent_width : natural    := float_exponent_width;
                     fraction_width : natural    := float_fraction_width;
                     round_style    : round_type := float_round_style)
                    return unresolved_float;

  function to_float (arg            : real;
                     exponent_width : natural    := float_exponent_width;
                     fraction_width : natural    := float_fraction_width;
                     round_style    : round_type := float_round_style;
                     denormalize    : boolean    := float_denormalize)
                    return unresolved_float;

  function to_float (arg            : unresolved_unsigned;
                     exponent_width : natural    := float_exponent_width;
                     fraction_width : natural    := float_fraction_width;
                     round_style    : round_type := float_round_style)
                    return unresolved_float;

  function to_float (arg            : unresolved_signed;
                     exponent_width : natural    := float_exponent_width;
                     fraction_width : natural    := float_fraction_width;
                     round_style    : round_type := float_round_style)
                    return unresolved_float;

  function to_float (arg            : unresolved_ufixed;
                     exponent_width : natural    := float_exponent_width;
                     fraction_width : natural    := float_fraction_width;
                     round_style    : round_type := float_round_style;
                     denormalize    : boolean    := float_denormalize)
                    return unresolved_float;

  function to_float (arg            : unresolved_sfixed;
                     exponent_width : natural    := float_exponent_width;
                     fraction_width : natural    := float_fraction_width;
                     round_style    : round_type := float_round_style;
                     denormalize    : boolean    := float_denormalize)
                    return unresolved_float;

  function to_float (arg         : integer;
                     size_res    : unresolved_float;
                     round_style : round_type := float_round_style)
                    return unresolved_float;

  function to_float (arg         : real;
                     size_res    : unresolved_float;
                     round_style : round_type := float_round_style;
                     denormalize : boolean    := float_denormalize)
                    return unresolved_float;

  function to_float (arg         : unresolved_unsigned;
                     size_res    : unresolved_float;



836 Appendix A — Standard Packages

                     round_style : round_type := float_round_style)
                    return unresolved_float;

  function to_float (arg         : unresolved_signed;
                     size_res    : unresolved_float;
                     round_style : round_type := float_round_style)
                    return unresolved_float;

  function to_float (arg      : std_ulogic_vector;
                     size_res : unresolved_float)
                    return unresolved_float;

  function to_float (arg         : unresolved_ufixed;
                     size_res    : unresolved_float;
                     round_style : round_type := float_round_style;
                     denormalize : boolean    := float_denormalize)
                    return unresolved_float;

  function to_float (arg         : unresolved_sfixed;
                     size_res    : unresolved_float;
                     round_style : round_type := float_round_style;
                     denormalize : boolean    := float_denormalize)
                    return unresolved_float;

  function to_unsigned (arg         : unresolved_float;
                        size        : natural;
                        round_style : round_type := float_round_style;
                        check_error : boolean    := float_check_error)
                       return unresolved_unsigned;

  function to_signed (arg         : unresolved_float;
                      size        : natural;
                      round_style : round_type := float_round_style;
                      check_error : boolean    := float_check_error)
                     return unresolved_signed;

  function to_ufixed (arg            : unresolved_float;
                      left_index     : integer;
                      right_index    : integer;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      check_error    : boolean                   := float_check_error;
                      denormalize    : boolean                   := float_denormalize)
                     return unresolved_ufixed;

  function to_sfixed (arg            : unresolved_float;
                      left_index     : integer;
                      right_index    : integer;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      check_error    : boolean                   := float_check_error;
                      denormalize    : boolean                   := float_denormalize)
                     return unresolved_sfixed;

  function to_unsigned (arg         : unresolved_float;
                        size_res    : unresolved_unsigned;
                        round_style : round_type := float_round_style;
                        check_error : boolean    := float_check_error)
                       return unresolved_unsigned;

  function to_signed (arg         : unresolved_float;
                      size_res    : unresolved_signed;
                      round_style : round_type := float_round_style;
                      check_error : boolean    := float_check_error)
                     return unresolved_signed;



A.8 Standard Floating-Point Packages 837

  function to_ufixed (arg            : unresolved_float;
                      size_res       : unresolved_ufixed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      check_error    : boolean                   := float_check_error;
                      denormalize    : boolean                   := float_denormalize)
                     return unresolved_ufixed;

  function to_sfixed (arg            : unresolved_float;
                      size_res       : unresolved_sfixed;
                      overflow_style : fixed_overflow_style_type := fixed_overflow_style;
                      round_style    : fixed_round_style_type    := fixed_round_style;
                      check_error    : boolean                   := float_check_error;
                      denormalize    : boolean                   := float_denormalize)
                     return unresolved_sfixed;

  function to_real (arg         : unresolved_float;
                    check_error : boolean    := float_check_error;
                    denormalize : boolean    := float_denormalize)
                   return real;

  function to_integer (arg         : unresolved_float;
                       round_style : round_type := float_round_style;
                       check_error : boolean    := float_check_error)
                      return integer;

  function realtobits (arg : real)              return std_ulogic_vector;
  function bitstoreal (arg : std_ulogic_vector) return real;

  function To_01 (arg  : unresolved_float;
                  xmap : std_logic := '0') return unresolved_float;

  function Is_X    (arg : unresolved_float) return boolean;

  function To_X01  (arg : unresolved_float) return unresolved_float;
  function To_X01Z (arg : unresolved_float) return unresolved_float;
  function To_UX01 (arg : unresolved_float) return unresolved_float;

  procedure break_number (arg         : in  unresolved_float;
                          denormalize : in  boolean := float_denormalize;
                          check_error : in  boolean := float_check_error;
                          fract       : out unresolved_unsigned;
                          expon       : out unresolved_signed;
                          sign        : out std_ulogic);

  procedure break_number (arg         : in  unresolved_float;
                          denormalize : in  boolean := float_denormalize;
                          check_error : in  boolean := float_check_error;
                          fract       : out unresolved_ufixed;
                          expon       : out unresolved_signed;
                          sign        : out std_ulogic);

  function normalize (fract          : unresolved_unsigned;
                      expon          : unresolved_signed;
                      sign           : std_ulogic;
                      sticky         : std_ulogic := '0';
                      exponent_width : natural    := float_exponent_width;
                      fraction_width : natural    := float_fraction_width;
                      round_style    : round_type := float_round_style;
                      denormalize    : boolean    := float_denormalize;
                      nguard         : natural    := float_guard_bits)
                     return unresolved_float;

  function normalize (fract          : unresolved_ufixed;
                      expon          : unresolved_signed;
                      sign           : std_ulogic;



838 Appendix A — Standard Packages

                      sticky         : std_ulogic := '0';
                      exponent_width : natural    := float_exponent_width;
                      fraction_width : natural    := float_fraction_width;
                      round_style    : round_type := float_round_style;
                      denormalize    : boolean    := float_denormalize;
                      nguard         : natural    := float_guard_bits)
                     return unresolved_float;

  function normalize (fract       : unresolved_unsigned;
                      expon       : unresolved_signed;
                      sign        : std_ulogic;
                      sticky      : std_ulogic := '0';
                      size_res    : unresolved_float;
                      round_style : round_type := float_round_style;
                      denormalize : boolean    := float_denormalize;
                      nguard      : natural    := float_guard_bits)
                     return unresolved_float;

  function normalize (fract       : unresolved_ufixed;
                      expon       : unresolved_signed;
                      sign        : std_ulogic;
                      sticky      : std_ulogic := '0';
                      size_res    : unresolved_float;
                      round_style : round_type := float_round_style;
                      denormalize : boolean    := float_denormalize;
                      nguard      : natural    := float_guard_bits)
                     return unresolved_float;

  function Copysign (x, y : unresolved_float) return unresolved_float;

  function Scalb (y           : unresolved_float;
                  n           : integer;
                  round_style : round_type := float_round_style;
                  check_error : boolean    := float_check_error;
                  denormalize : boolean    := float_denormalize)
                 return unresolved_float;

  function Scalb (y           : unresolved_float;
                  n           : unresolved_signed;
                  round_style : round_type := float_round_style;
                  check_error : boolean    := float_check_error;
                  denormalize : boolean    := float_denormalize)
                 return unresolved_float;

  function Logb (x : unresolved_float) return integer;
  function Logb (x : unresolved_float) return unresolved_signed;

  function Nextafter (x, y        : unresolved_float;
                      check_error : boolean := float_check_error;
                      denormalize : boolean := float_denormalize)
                     return unresolved_float;

  function Unordered (x, y : unresolved_float) return boolean;
  function Finite    (x    : unresolved_float) return boolean;
  function Isnan     (x    : unresolved_float) return boolean;

  function zerofp (exponent_width : natural := float_exponent_width;
    fraction_width : natural := float_fraction_width)
    return unresolved_float;

  function nanfp (exponent_width : natural := float_exponent_width;
                  fraction_width : natural := float_fraction_width)
                 return unresolved_float;



A.8 Standard Floating-Point Packages 839

  function qnanfp (exponent_width : natural := float_exponent_width;
                   fraction_width : natural := float_fraction_width)
                  return unresolved_float;

  function pos_inffp (exponent_width : natural := float_exponent_width;
                      fraction_width : natural := float_fraction_width)
                     return unresolved_float;

  function neg_inffp (exponent_width : natural := float_exponent_width;
                      fraction_width : natural := float_fraction_width)
                     return unresolved_float;

  function neg_zerofp (exponent_width : natural := float_exponent_width;
                       fraction_width : natural := float_fraction_width)
                      return unresolved_float;

  function zerofp     (size_res : unresolved_float) return unresolved_float;
  function nanfp      (size_res : unresolved_float) return unresolved_float;
  function qnanfp     (size_res : unresolved_float) return unresolved_float;
  function pos_inffp  (size_res : unresolved_float) return unresolved_float;
  function neg_inffp  (size_res : unresolved_float) return unresolved_float;
  function neg_zerofp (size_res : unresolved_float) return unresolved_float;

  function to_string (value : unresolved_float) return string;

  alias to_bstring       is to_string [unresolved_float return string];
  alias to_binary_string is to_string [unresolved_float return string];

  function to_hstring (value : unresolved_float) return string;

  alias to_hex_string is to_hstring [unresolved_float return string];

  function to_ostring (value : unresolved_float) return string;

  alias to_octal_string is to_ostring [unresolved_float return string];

  function from_string (bstring        : string;
                        exponent_width : natural := float_exponent_width;
                        fraction_width : natural := float_fraction_width)
                       return unresolved_float;
  function from_string (bstring  : string;
                        size_res : unresolved_float) return unresolved_float;

  alias from_bstring is from_string [string, natural, natural
                                     return unresolved_float];
  alias from_bstring is from_string [string, unresolved_float
                                     return unresolved_float];

  alias from_binary_string is from_string [string, natural, natural
                                           return unresolved_float];
  alias from_binary_string is from_string [string, unresolved_float
                                           return unresolved_float];

  function from_ostring (ostring        : string;
                         exponent_width : natural := float_exponent_width;
                         fraction_width : natural := float_fraction_width)
                        return unresolved_float;
  function from_ostring (ostring  : string;
                         size_res : unresolved_float) return unresolved_float;

  alias from_octal_string is from_ostring [string, natural, natural
                                           return unresolved_float];
  alias from_octal_string is from_ostring [string, unresolved_float
                                           return unresolved_float];

  function from_hstring (hstring        : string;
                         exponent_width : natural := float_exponent_width;
                         fraction_width : natural := float_fraction_width)



840 Appendix A — Standard Packages

                        return unresolved_float;
  function from_hstring (hstring  : string;
                         size_res : unresolved_float) return unresolved_float;

  alias from_hex_string is from_hstring [string, natural, natural
                                         return unresolved_float];
  alias from_hex_string is from_hstring [string, unresolved_float
                                         return unresolved_float];

  procedure read (l : inout line; value : out unresolved_float; good : out boolean);
  procedure read (l : inout line; value : out unresolved_float);

  alias bread is read [line, unresolved_float, boolean];
  alias bread is read [line, unresolved_float];

  alias binary_read is read [line, unresolved_float, boolean];
  alias binary_read is read [line, unresolved_float];

  procedure oread (l : inout line; value : out unresolved_float; good : out boolean);
  procedure oread (l : inout line; value : out unresolved_float);

  alias octal_read is oread [line, unresolved_float, boolean];
  alias octal_read is oread [line, unresolved_float];

  procedure hread (l : inout line; value : out unresolved_float; good : out boolean);
  procedure hread (l : inout line; value : out unresolved_float);

  alias hex_read is hread [line, unresolved_float, boolean];
  alias hex_read is hread [line, unresolved_float];

  procedure write (l : inout line; value : in unresolved_float;
                   justified : in side := right; field : in width := 0);

  alias bwrite       is write [line, unresolved_float, side, width];
  alias binary_write is write [line, unresolved_float, side, width];

  procedure owrite (l : inout line; value : in unresolved_float;
                    justified : in side := right; field : in width := 0);

  alias octal_write is owrite [line, unresolved_float, side, width];

  procedure hwrite (l : inout line; value : in unresolved_float;
                    justified : in side := right; field : in width := 0);

  alias hex_write is hwrite [line, unresolved_float, side, width];

end package float_generic_pkg;

A.8.2 The float_pkg Package

library ieee;

package float_pkg is new ieee.float_generic_pkg
  generic map (
    float_exponent_width => 8,
    float_fraction_width => 23,
    float_round_style    => ieee.fixed_float_types.round_nearest,
    float_denormalize    => true,
    float_check_error    => true,
    float_guard_bits     => 3,
    no_warning           => false,
    fixed_pkg            => ieee.fixed_pkg
    );



841

Appendix B 

VHDL Syntax

In this appendix we present the full set of syntax rules for VHDL using the EBNF notation
introduced in Chapter 1. The form of EBNF used in this book differs from that of the VHDL
Language Reference Manual (LRM) in order to make the syntax rules more intelligible to
the VHDL user. The LRM includes a separate syntax rule for each minor syntactic category.
In this book, we condense the grammar into a smaller number of rules, each of which
defines a larger part of the grammar. We introduce the EBNF symbols “(”, “)” and “…” as
part of this simplification. Our aim is to avoid the large amount of searching required when
using the LRM rules to resolve a question of grammar.

Those parts of the syntax rules that were introduced in VHDL-2008 are underlined in
this appendix. A model written using earlier versions of the language may not use these
features. In addition, there are some entirely new rules introduced in VHDL-2008 that have
no predecessors in earlier versions. We identify these rules by underlining the rule name
on the left-hand side of the “⇐”symbol.

Some of the rules refer to the syntax rules for the PSL. Such references are identified
by the italicized prefix “PSL_”. The PSL syntax rules are not included here. The interested
reader should refer to the PSL standard or to books on PSL for details.

Index to Syntax Rules

absolute_pathname 858
access_type_definition 848
actual_part 856
aggregate 858
alias_declaration 847
architecture_body 844
array_type_definition 848
assertion_statement 853
association_list 856
attribute_declaration 847
attribute_name 857
attribute_specification 847

based_integer 858
based_literal 858
binding_indication 848
bit_string_literal 858
block_configuration 844
block_declarative_item 850
block_statement 850

case_generate_statement 852
case_statement 855
character_literal 858
choices 858
component_configuration 844



842 Appendix B — VHDL Syntax

component_declaration 847
component_instantiation_statement 852
component_specification 847
concurrent_assertion_statement 851
concurrent_conditional_signal_assignment 851
concurrent_procedure_call_statement 851
concurrent_selected_signal_assignment 851
concurrent_signal_assignment_statement 851
concurrent_simple_signal_assignment 851
concurrent_statement 850
condition 856
conditional_force_assignment 853
conditional_signal_assignment 853
conditional_variable_assignment 854
conditional_waveform_assignment 853
configuration_declaration 844
configuration_specification 847
constant_declaration 846
context_declaration 844
context_reference 843

decimal_literal 858
delay_mechanism 854
design_file 843
design_unit 843
disconnection_specification 848
discrete_range 850

entity_class 847
entity_declaration 843
entity_declarative_item 844
entity_name_list 847
enumeration_type_definition 848
exit_statement 855
expression 856
external_name 857
external_pathname 857

factor 857
file_declaration 847
file_type_definition 848
floating_type_definition 848
for_generate_statement 852
formal_part 856
function_call 857
function_specification 846

generate_statement 852
generate_statement_body 852
group_declaration 848
group_template_declaration 848

identifier 858
if_generate_statement 852
if_statement 854
integer 858
integer_type_definition 848

interface_constant_declaration 855
interface_file_declaration 855
interface_list 855
interface_package_declaration 856
interface_signal_declaration 855
interface_subprogram_declaration 856
interface_type_declaration 855
interface_variable_declaration 855

label 858
library_clause 843
library_unit 843
literal 858
logical_expression 856
loop_statement 855

mode 855

name 857
next_statement 855
null_statement 855

operator_symbol 857

package_body 845
package_body_declarative_item 845
package_declaration 845
package_declarative_item 845
package_instantiation_declaration 845
package_pathname 858
pathname_element 858
physical_literal 858
physical_type_definition 848
primary 857
procedure_call_statement 854
procedure_specification 846
process_declarative_item 851
process_statement 851
protected_type_body 849
protected_type_body_declarative_item 849
protected_type_declaration 849
protected_type_declarative_item 849

qualified_expression 857

record_type_definition 848
relation 856
relative_pathname 858
report_statement 853
return_statement 855

selected_name 857
selected_signal_assignment 853, 854
selected_variable_assignment 854
selected_waveform_assignment 853
sequential_statement 852
shift_expression 856
signal_assignment_statement 853



B.1 Design File 843

B.1 Design File

design_file ⇐ design_unit { … }

design_unit ⇐
{ library_clause I use_clause I context_reference }
library_unit

library_unit ⇐
entity_declaration I architecture_body
I package_declaration I package_body
I package_instantiation_declaration
I configuration_declaration I context_declaration
I PSL_Verification_Unit

library_clause ⇐ library identifier { , … } ;

context_reference ⇐ context selected_name { , … } ;

B.2 Library Unit Declarations

entity_declaration ⇐
entity identifier is

[ generic ( generic_interface_list ) ; ]
[ port ( port_interface_list ) ; ]
{ entity_declarative_item }

[ begin
{ concurrent_assertion_statement
I passive_concurrent_procedure_call_statement
I passive_process_statement } ]
I PSL_PSL_Directive

end [ entity ] [ identifier ] ;

signal_declaration 847
signature 857
simple_expression 857
simple_signal_assignment 853
simple_variable_assignment 854
string_literal 858
subprogram_body 846
subprogram_declaration 846
subprogram_declarative_item 846
subprogram_instantiation_declaration 846
subprogram_specification 845
subtype_declaration 849
subtype_indication 849

term 857
tool_directive 858
type_declaration 846
type_definition 846
type_mark 850

use_clause 848

variable_assignment_statement 854
variable_declaration 847

wait_statement 853
waveform 854



844 Appendix B — VHDL Syntax

entity_declarative_item ⇐
subprogram_declaration I subprogram_body
I subprogram_instantiation_declaration
I package_declaration I package_body
I package_instantiation_declaration
I type_declaration I subtype_declaration
I constant_declaration I signal_declaration
I shared_variable_declaration I file_declaration
I alias_declaration
I attribute_declaration I attribute_specification
I disconnection_specification I use_clause
I group_template_declaration I group_declaration
I PSL_Property_Declaration I PSL_Sequence_Declaration
I PSL_Clock_Declaration

architecture_body ⇐
architecture identifier of entity_name is

{ block_declarative_item }
begin

{ concurrent_statement }
end [ architecture ] [ identifier ] ;

configuration_declaration ⇐
configuration identifier of entity_name is

{ use_clause I attribute_specification I group_declaration }
{ use vunit verification_unit_name { , … } ; }
block_configuration

end [ configuration ] [ identifier ] ;

block_configuration ⇐
for ( architecture_name

I block_statement_label
I generate_statement_label

[ ( ( static_discrete_range I static_expression I alternative_label  ) ) ] )
{ use_clause }
{ block_configuration I component_configuration }

end for ;

component_configuration ⇐
for component_specification

[ binding_indication ; ]
{ use vunit verification_unit_name { , … } ; }
[ block_configuration ]

end for ;

context_declaration ⇐
context identifier is

{ library_clause I use_clause I context_reference }
end [ context ] [ identifier ] ;



B.3 Declarations and Specifications 845

B.3 Declarations and Specifications

package_declaration ⇐
package identifier is

[ generic ( generic_interface_list ) ;
[ generic map ( generic_association_list ) ; ] ]
{ package_declarative_item }

end [ package ] [ identifier ] ;

package_declarative_item ⇐
subprogram_declaration
I subprogram_instantiation_declaration
I package_declaration
I package_instantiation_declaration
I type_declaration I subtype_declaration
I constant_declaration I signal_declaration
I variable_declaration I file_declaration
I alias_declaration I component_declaration
I attribute_declaration I attribute_specification
I disconnection_specification I use_clause
I group_template_declaration I group_declaration
I PSL_Property_Declaration I PSL_Sequence_Declaration

package_body ⇐
package body identifier is

{ package_body_declarative_item }
end [ package body ] [ identifier ] ;

package_body_declarative_item ⇐
subprogram_declaration I subprogram_body
I subprogram_instantiation_declaration
I package_declaration I package_body
I package_instantiation_declaration
I type_declaration I subtype_declaration
I constant_declaration I variable_declaration
I file_declaration I alias_declaration
I attribute_declaration I attribute_specification
I use_clause
I group_template_declaration I group_declaration

package_instantiation_declaration ⇐
package identifier is new uninstantiated_package_name

[ generic map ( generic_association_list ) ] ;

subprogram_specification ⇐
procedure_specification I function_specification



846 Appendix B — VHDL Syntax

procedure_specification ⇐
procedure identifier

[ generic ( generic_interface_list )
[ generic map ( generic_association_list ) ] ]
[ [ parameter ] ( parameter_interface_list ) ]

function_specification ⇐
[ pure I impure ] function ( identifier I operator_symbol )

[ generic ( generic_interface_list )
[ generic map ( generic_association_list ) ] ]
[ [ parameter ] ( parameter_interface_list ) ] return type_mark

subprogram_declaration ⇐ subprogram_specification ;

subprogram_body ⇐
subprogram_specification is

{ subprogram_declarative_item }
begin

{ sequential_statement }
end [ procedure I function ] [ identifier I operator_symbol ] ;

subprogram_declarative_item ⇐
subprogram_declaration I subprogram_body
I subprogram_instantiation_declaration
I package_declaration I package_body
I package_instantiation_declaration
I type_declaration I subtype_declaration
I constant_declaration I variable_declaration
I file_declaration I alias_declaration
I attribute_declaration I attribute_specification
I use_clause
I group_template_declaration I group_declaration

subprogram_instantiation_declaration ⇐
( procedure I function ) identifier is

new uninstantiated_subprogram_name [ signature ]
[ generic map ( generic_association_list ) ] ;

type_declaration ⇐
type identifier is type_definition ;
I type identifier ;

type_definition ⇐
enumeration_type_definition I integer_type_definition
I floating_type_definition I physical_type_definition
I array_type_definition I record_type_definition
I access_type_definition I file_type_definition
I protected_type_declaration I protected_type_body

constant_declaration ⇐
constant identifier { , … } : subtype_indication [ := expression ] ;



B.3 Declarations and Specifications 847

signal_declaration ⇐
signal identifier { , … } : subtype_indication [ register I bus ]

[ := expression ] ;

variable_declaration ⇐
[ shared ] variable identifier { , … } : subtype_indication [ := expression ] ;

file_declaration ⇐
file identifier { , … } : subtype_indication

[ [ open file_open_kind_expression ] is string_expression ] ;

alias_declaration ⇐
alias ( identifier I character_literal I operator_symbol )

[ : subtype_indication] is name [ signature ] ;

component_declaration ⇐
component identifier [ is ]

[ generic ( generic_interface_list ) ; ]
[ port ( port_interface_list ) ; ]

end component [ identifier ] ;

attribute_declaration ⇐ attribute identifier : type_mark ;

attribute_specification ⇐
attribute identifier of entity_name_list : entity_class is expression ;

entity_name_list ⇐
( ( identifier I character_literal I operator_symbol ) [ signature ] ) { , … }
I others
I all

entity_class ⇐
entity I architecture I configuration I package
I procedure I function I type I subtype
I constant I signal I variable I file
I component I label I literal I units
I group I property I sequence

configuration_specification ⇐
for component_specification

binding_indication ;
{ use vunit verification_unit_name { , … } ; }

[ end for ; ]

component_specification ⇐
( instantiation_label { , … } I others I all ) : component_name



848 Appendix B — VHDL Syntax

binding_indication ⇐
use ( entity entity_name [ ( architecture_identifier ) ]

I configuration configuration_name
I open )

[ generic map ( generic_association_list ) ]
[ port map ( port_association_list ) ]

disconnection_specification ⇐
disconnect ( signal_name { , … } I others I all ) : type_mark

after time_expression ;

group_template_declaration ⇐
group identifier is ( ( entity_class [ <> ] ) { , … } ) ;

group_declaration ⇐
group identifier : group_template_name ( ( name I character_literal ) { , … } ) ;

use_clause ⇐ use selected_name { , … } ;

B.4 Type Definitions

enumeration_type_definition ⇐ ( ( identifier I character_literal ) { , … } )

integer_type_definition ⇐
range ( range_attribute_name

I simple_expression ( to I downto ) simple_expression )

floating_type_definition ⇐
range ( range_attribute_name

I simple_expression ( to I downto ) simple_expression )

physical_type_definition ⇐
range ( range_attribute_name

I simple_expression ( to I downto ) simple_expression )
units

identifier ;
{ identifier = physical_literal ; }

end units [ identifier ]

array_type_definition ⇐
array ( ( type_mark range <> ) { , … } ) of element_subtype_indication
I array ( discrete_range { , … } ) of element_subtype_indication

record_type_definition ⇐
record

( identifier { , … } : subtype_indication ; )
{ … }

end record [ identifier ]

access_type_definition ⇐ access subtype_indication

file_type_definition ⇐ file of type_mark



B.4 Type Definitions 849

protected_type_declaration ⇐
protected

{ protected_type_declarative_item }
end protected [ identifier ]

protected_type_declarative_item ⇐
subprogram_declaration I subprogram_instantiation_declaration
I attribute_specification I use_clause

protected_type_body ⇐
protected body

{ protected_type_body_declarative_item }
end protected body [ identifier ]

protected_type_body_declarative_item ⇐
subprogram_declaration I subprogram_body
I subprogram_instantiation_declaration
I package_declaration I package_body
I package_instantiation_declaration
I type_declaration I subtype_declaration
I constant_declaration I variable_declaration
I file_declaration I alias_declaration
I attribute_declaration I attribute_specification
I use_clause
I group_template_declaration I group_declaration

subtype_declaration ⇐ subtype identifier is subtype_indication ;

subtype_indication ⇐
[ resolution_indication ] type_mark [ constraint ]

resolution_indication ⇐
resolution_function_name
I ( resolution_indication

I ( record_element_identifier resolution_indication ) { , … } )

constraint ⇐
range ( range_attribute_name

I simple_expression ( to I downto ) simple_expression )
I array_constraint
I record_constraint

array_constraint ⇐
( discrete_range { , … } ) [ array_constraint I record_constraint ]
I ( open ) [ array_constraint I record_constraint ]

record_constraint ⇐
( ( record_element_identifier ( array_constraint I record_constraint ) ) { , … } )



850 Appendix B — VHDL Syntax

discrete_range ⇐
discrete_subtype_indication
I range_attribute_name
I simple_expression ( to I downto ) simple_expression

type_mark ⇐ type_name I subtype_name

B.5 Concurrent Statements

concurrent_statement ⇐
block_statement
I process_statement
I concurrent_procedure_call_statement
I concurrent_assertion_statement
I concurrent_signal_assignment_statement
I component_instantiation_statement
I generate_statement
I PSL_PSL_Directive

block_statement ⇐
block_label :
block [ ( guard_expression ) ] [ is ]

[ generic ( generic_interface_list ) ;
[ generic map ( generic_association_list ) ; ] ]
[ port ( port_interface_list ) ;
[ port map ( port_association_list ) ; ] ]
{ block_declarative_item }

begin
{ concurrent_statement }

end block [ block_label ] ;

block_declarative_item ⇐
subprogram_declaration I subprogram_body
I subprogram_instantiation_declaration
I package_declaration I package_body
I package_instantiation_declaration
I type_declaration I subtype_declaration
I constant_declaration I signal_declaration
I shared_variable_declaration I file_declaration
I alias_declaration I component_declaration
I attribute_declaration I attribute_specification
I configuration_specification I disconnection_specification
I use_clause
I group_template_declaration I group_declaration
I PSL_Property_Declaration I PSL_Sequence_Declaration
I PSL_Clock_Declaration



B.5 Concurrent Statements 851

process_statement ⇐
[ process_label : ]
[ postponed ] process [ ( ( signal_name { , … } ) I all ) ] [ is ]

{ process_declarative_item }
begin

{ sequential_statement }
end [ postponed ] process [ process_label ] ;

process_declarative_item ⇐
subprogram_declaration I subprogram_body
I subprogram_instantiation_declaration
I package_declaration I package_body
I package_instantiation_declaration
I type_declaration I subtype_declaration
I constant_declaration I variable_declaration
I file_declaration I alias_declaration
I attribute_declaration I attribute_specification
I use_clause
I group_template_declaration I group_declaration

concurrent_procedure_call_statement ⇐
[ label : ] [ postponed ] procedure_name [ ( parameter_association_list ) ] ;

concurrent_assertion_statement ⇐
[ label : ] [ postponed ] assert condition

[ report expression ] [ severity expression ] ;

concurrent_signal_assignment_statement ⇐
[ label : ] [ postponed ] concurrent_simple_signal_assignment
I [ label : ] [ postponed ] concurrent_conditional_signal_assignment
I [ label : ] [ postponed ] concurrent_selected_signal_assignment

concurrent_simple_signal_assignment ⇐
target <= [ guarded ] [ delay_mechanism ] waveform ;

concurrent_conditional_signal_assignment ⇐
target <= [ guarded ] [ delay_mechanism ]

waveform when condition
{ else waveform when condition }
[ else waveform ] ;

concurrent_selected_signal_assignment ⇐
with expression select [ ? ]

target <= [ guarded ] [ delay_mechanism ]
{ waveform when choices , }
waveform when choices ;



852 Appendix B — VHDL Syntax

component_instantiation_statement ⇐
instantiation_label :

( [ component ] component_name
I entity entity_name [ ( architecture_identifier ) ]
I configuration configuration_name )

[ generic map ( generic_association_list ) ]
[ port map ( port_association_list ) ] ;

generate_statement ⇐
for_generate_statement I if_generate_statement I case_generate_statement

for_generate_statement ⇐
generate_label :
for identifier in discrete_range generate

generate_statement_body
end generate [ generate_label ] ;

if_generate_statement ⇐
generate_label :
if [ alternative_label : ] condition generate

generate_statement_body
{ elsif [ alternative_label : ] condition generate

generate_statement_body }
[ else [ alternative_label : ] generate

generate_statement_body ]
end generate [ generate_label ] ;

case_generate_statement ⇐
generate_label :
case expression generate

( when [ alternative_label : ] choices =>
generate_statement_body )

{ … }
end generate [ generate_label ] ;

generate_statement_body ⇐
[ { block_declarative_item }

begin ]
{ concurrent_statement }

[ end [ alternative_label ] ; ]

B.6 Sequential Statements

sequential_statement ⇐
wait_statement I assertion_statement
I report_statement I signal_assignment_statement
I variable_assignment_statement I procedure_call_statement
I if_statement I case_statement
I loop_statement I next_statement



B.6 Sequential Statements 853

I exit_statement I return_statement
I null_statement

wait_statement ⇐
[ label : ] wait [ on signal_name { , … } ]

[ until condition ]
[ for time_expression ] ;

assertion_statement ⇐
[ label : ] assert condition

[ report expression ] [ severity expression ] ;

report_statement ⇐
[ label : ] report expression [ severity expression ] ;

signal_assignment_statement ⇐
[ label : ] simple_signal_assignment
I [ label : ] conditional_signal_assignment
I [ label : ] selected_signal_assignment

simple_signal_assignment ⇐
( name I aggregate ) <= [ delay_mechanism ] waveform ;
I name <= force [ in I out ] expression ;
I name <= release [ in I out ] ;

conditional_signal_assignment ⇐
conditional_waveform_assignment I conditional_force_assignment

conditional_waveform_assignment ⇐
[ label : ]
( name I aggregate ) <= [ delay_mechanism ]

waveform when condition
{ else waveform when condition }
[ else waveform ] ;

conditional_force_assignment ⇐
[ label : ]
name <= force [ in I out ]

expression when condition
{ else expression when condition }
[ else expression ] ;

selected_signal_assignment ⇐
selected_waveform_assignment I selected_force_assignment

selected_waveform_assignment ⇐
[ label : ]
with expression select [ ? ]

( name I aggregate ) <= [ delay_mechanism ]
{ waveform when choices , }
waveform when choices ;



854 Appendix B — VHDL Syntax

selected_signal_assignment ⇐
[ label : ]
with expression select [ ? ]

name <= force [ in I out ]
{ expression when choices , }
expression when choices ;

delay_mechanism ⇐ transport I [ reject time_expression ] inertial

waveform ⇐
( value_expression [ after time_expression ]

I null [ after time_expression ] ) { , … }
I unaffected

variable_assignment_statement ⇐
[ label : ] simple_variable_assignment
I [ label : ] conditional_variable_assignment
I [ label : ] selected_variable_assignment

simple_variable_assignment ⇐
( name I aggregate ) := expression ;

conditional_variable_assignment ⇐
( name I aggregate ) :=

expression when condition
{ else expression when condition }
[ else expression ] ;

selected_variable_assignment ⇐
with expression select [ ? ]

( name I aggregate ) :=
{ expression when choices , }
expression when choices ;

procedure_call_statement ⇐
[ label : ] procedure_name [ ( parameter_association_list ) ] ;

if_statement ⇐
[ if_label : ]
if condition then

{ sequential_statement }
{ elsif condition then

{ sequential_statement } }
[ else

{ sequential_statement } ]
end if [ if_label ] ;



B.7 Interfaces and Associations 855

case_statement ⇐
[ case_label : ]
case [ ? ] expression is

( when choices => { sequential_statement } )
{ … }

end case [ ? ] [ case_label ] ;

loop_statement ⇐
[ loop_label : ]
[ while condition I for identifier in discrete_range ] loop

{ sequential_statement }
end loop [ loop_label ] ;

next_statement ⇐ [ label : ] next [ loop_label ] [ when condition ] ;

exit_statement ⇐ [ label : ] exit [ loop_label ] [ when condition ] ;

return_statement ⇐ [ label : ] return [ expression ] ;

null_statement ⇐ [ label : ] null ;

B.7 Interfaces and Associations

interface_list ⇐
( interface_constant_declaration
I interface_signal_declaration
I interface_variable_declaration
I interface_file_declaration
I interface_type_declaration
I interface_subprogram_declaration
I interface_package_declaration ) { ; … }

interface_constant_declaration ⇐
[ constant ] identifier { , … } : [ in ] subtype_indication

[ := static_expression ]

interface_signal_declaration ⇐
[ signal ] identifier { , … } : [ mode ] subtype_indication [ bus ]

[ := static_expression ]

interface_variable_declaration ⇐
[ variable ] identifier { , … } : [ mode ] subtype_indication

[ := static_expression ]

mode ⇐ in I out I inout I buffer I linkage

interface_file_declaration ⇐
file identifier { , … } : subtype_indication

interface_type_declaration ⇐ type identifier



856 Appendix B — VHDL Syntax

interface_subprogram_declaration ⇐
( procedure identifier

[ [ parameter ] ( parameter_interface_list ) ]
I [ pure I impure ] function ( identifier I operator_symbol )

[ [ parameter ] ( parameter_interface_list ) ] return type_mark
) [ is ( subprogram_name I <> ) ]

interface_package_declaration ⇐
package identifier is new uninstantiated_package_name

 generic map ( ( generic_association_list I <> I default ) )

association_list ⇐ ( [ formal_part => ] actual_part ) { , … }

formal_part ⇐
generic_name
I port_name
I parameter_name
I function_name ( ( generic_name I port_name I parameter_name ) )
I type_mark ( ( generic_name I port_name I parameter_name ) )

actual_part ⇐
[ inertial ] expression
I signal_name
I variable_name
I file_name
I subtype_indication
I subprogram_name
I package_name
I open
I function_name ( ( signal_name I variable_name ) )
I type_mark ( ( signal_name I variable_name ) )

B.8 Expressions and Names

condition ⇐ expression

expression ⇐ ( ?? primary ) I logical_expression

logical_expression ⇐
relation { and relation } I relation [ nand relation ]
I relation { or relation } I relation [ nor relation ]
I relation { xor relation } I relation { xnor relation }

relation ⇐
shift_expression

[ ( = I /= I < I <= I > I >= I ?= I ?/= I ?< I ?<= I ?> I ?>= ) shift_expression ]

shift_expression ⇐
simple_expression [ ( sll I srl I sla I sra I rol I ror ) simple_expression ]



B.8 Expressions and Names 857

simple_expression ⇐ [ + I – ] term { ( + I – I & ) term }

term ⇐ factor { ( * I / I mod I rem ) factor }

factor ⇐
primary [ ** primary ]
I abs primary
I not primary
I and primary
I nand primary
I or primary
I nor primary
I xor primary
I xnor primary

primary ⇐
name I literal
I aggregate I function_call
I qualified_expression I type_mark ( expression )
I new subtype_indication I new qualified_expression
I ( expression )

function_call ⇐ function_name [ ( parameter_association_list ) ]

qualified_expression ⇐ type_mark ' ( expression ) I type_mark ' aggregate

name ⇐
identifier
I operator_symbol
I character_literal
I selected_name
I ( name I function_call ) ( expression { , … } )
I ( name I function_call ) ( discrete_range )
I attribute_name
I external_name

selected_name ⇐
( name I function_call ) . ( identifier I character_literal I operator_symbol I all )

operator_symbol ⇐ " { graphic_character } "

attribute_name ⇐
( name I function_call ) [ signature ] ' identifier [ ( expression ) ]

signature ⇐ [ [ type_mark { , … } ] [ return type_mark ] ]

external_name ⇐
  << constant external_pathname : subtype_indication >>
I << signal external_pathname : subtype_indication >>
I << variable external_pathname : subtype_indication >>

external_pathname ⇐
absolute_pathname I relative_pathname I package_pathname



858 Appendix B — VHDL Syntax

absolute_pathname ⇐ . { pathname_element . } object_identifier

relative_pathname ⇐ { ^ . } { pathname_element . } object_identifier

pathname_element ::=
  entity_identifier
I component_instantiation_label
I block_label
I generate_statement_label [ ( static_expression ) ]
I package_identifier

package_pathname ⇐ @ library_identifier . { package_identifier . } object_identifier

literal ⇐
decimal_literal I based_literal
I physical_literal I identifier
I character_literal I string_literal
I bit_string_literal I null

physical_literal ⇐ [ decimal_literal I based_literal ] unit_name

decimal_literal ⇐ integer [ . integer ] [ E [ + ] integer I E – integer ]

based_literal ⇐
integer # based_integer [ . based_integer ] # [ E [ + ] integer I E – integer ]

integer ⇐ digit { [ _ ] … }

based_integer ⇐ ( digit I letter ) { [ _ ] … }

character_literal ⇐ ' graphic_character '

string_literal ⇐ " { graphic_character } "

bit_string_literal ⇐
[ integer ] ( B I O I X I UB I UO I UX I SB I SO I SX I D )
" [ graphic_character { [ _ ] … } ] "

aggregate ⇐ ( ( [ choices => ] expression ) { , … } )

choices ⇐ ( simple_expression I discrete_range I identifier I others ) { | … }

label ⇐ identifier

identifier ⇐ letter { [ _ ] ( letter I digit ) } I \ graphic_character { … } \

tool_directive ⇐ ` identifier { graphic_character }



859

Appendix C 

Answers to Exercises

In this appendix, we provide sample answers to the quiz-style exercises marked with the
symbol “➊”. Readers are encouraged to test their answers to the other, more involved, ex-
ercises by running the models on a VHDL simulator.

Chapter 1

1. Entity declaration: defines the interface to a module, in terms of its ports, their data
transfer direction and their types. Behavioral architecture body: defines the function
of a module in terms of an algorithm. Structural architecture body: defines an imple-
mentation of a module in terms of an interconnected composition of sub-modules.
Process statement: encapsulates an algorithm in a behavioral description, contains se-
quential actions to be performed. Signal assignment statement: specifies values to be
applied to signals at some later time. Port map: specifies the interconnection between
signals and component instance ports in a structural architecture.

2. apply_transform : process is
begin
  d_out <= transform(d_in) after 200 ps;
  -- debug_test <= transform(d_in);
  wait on enable, d_in;
end process apply_transform;

3. Basic identifiers: last_item. Reserved words: buffer. Invalid: prev item, value–1 and
element#5 include characters that may not occur within identifiers; _control starts
with an underscore; 93_999 starts with a digit; entry_ ends with an underscore.

4. 16#1# 16#22# 16#100.0# 16#0.8#

5. 12 132 44 250000 32768 0.625

6. The literal 16#23DF# is an integer expressed in base 16, whereas the literal X"23DF"
is a string of 16 bits.



860 Appendix C — Answers to Exercises

7. O"747" = B"111_100_111"
O"377" = B"011_111_111"
O"1_345" = B"001_011_100_101"

X"F2" = B"1111_0010"
X"0014" = B"0000_0000_0001_0100"
X"0000_0001" = B"0000_0000_0000_0000_0000_0000_0000_0001"

8. 10UO"747" = B"0_111_100_111"
10UO"377" = B"0_011_111_111"
10UO"1_345" = B"1_011_100_101"

10SO"747" = B"1_111_100_111"
10SO"377" = B"0_011_111_111"
10SO"1_345" = B"1_011_100_101

12UX"F2" = B"0000_1111_0010"
12SX"F2" = B"1111_1111_0010"
10UX"F2" is illegal due to truncation of leading 1 bits
10SX"F2" = B"11_1111_0010"

9. D"24" = B"11000"
12D"24" = B"0000_0001_1000"
4D"24" is illegal due to truncation of a leading 1 bit

Chapter 2

1. constant bits_per_word : integer := 32;
constant pi : real := 3.14159;

2. variable counter : integer := 0;
variable busy_status : boolean;
variable temp_result : std_ulogic;

3. counter := counter + 1;
busy_status := true;
temp_result := 'W';

4. package misc_types is
  type small_int is range 0 to 255;
  type fraction is range -1.0 to +1.0;
  type current is range integer'low to integer'high
    units nA;
      uA = 1000 nA;
      mA = 1000 uA;
      A = 1000 mA;
    end units;
  type colors is (red, yellow, green);
end package misc_types;



Appendix C — Answers to Exercises 861

5. a. Legal

b. Illegal, should be: a = '1' and b = '0' and state = idle

c. Illegal, should be: a = '0' and b = '1' and state = idle

d. Legal

6. pulse_range'left =  pulse_range'low = 1 ms
pulse_range'right = pulse_range'high = 100 ms
pulse_range'ascending = true

word_index'left = 31word_index'right = 0
word_index'low = 0word_index'high  = 31
word_index'ascending = false

7. state'pos(standby) = 1              state'val(2) = active1
state'succ(active2) is undefined    state'pred(active1) = standby
state'leftof(off) is undefined      state'rightof(off) = standby

8. 2 * 3 + 6 / 4 = 7
3 + -4 is syntactically incorrect
"cat" & character'('0') = "cat0"
true and x and not y or z is syntactically incorrect
B"101110" sll 3 = B"110000"
(B"100010" sra 2) & X"2C"= B"11100000101100"

Chapter 3

1. if n mod 2 = 1 then
  odd := '1';
else
  odd := '0';
end if;

odd := '1' when n mod 2 = 1 else
       '0';

2. if year mod 400 = 0 then
  days_in_February := 29;
elsif year mod 100 = 0 then
  days_in_February := 28;
elsif year mod 4 = 0 then
  days_in_February := 29;
else
  days_in_February := 28;
end if;

days_in_February := 29 when year mod 400 = 0 else
                    28 when year mod 100 = 0 else



862 Appendix C — Answers to Exercises

                    29 when year mod 4 = 0 else
                    28;

3. case x is
  when '0' | 'L' => x := '0';
  when '1' | 'H' => x := '1';
  when others => x := 'X';
end case;

with x select
  x := '0' when '0' | 'L',
       '1' when '1' | 'H',
       'X' when others;

4. case ch is
  when 'A' to 'Z' | 'a' to 'z' |
       'À' to 'Ö' | 'Ø' to 'ß' | 'à' to 'ö' | 'ø' to 'ÿ' =>
    character_class := 1;
  when '0' to '9' =>  character_class := 2;
  when nul to usp | del | c128 to c159 =>  character_class := 4;
  when others => character_class := 3;
end case;

with ch select
  character_class := 
    1 when 'A' to 'Z' | 'a' to 'z' |
           'À' to 'Ö' | 'Ø' to 'ß' | 'à' to 'ö' | 'ø' to 'ÿ',
    2 when '0' to '9',
    4 when nul to usp | del | c128 to c159,
    3 when others;

5. loop
  wait until clk;
  exit when d;
end loop;

6. sum := 1.0;
term := 1.0;
n := 0;
while abs term > abs (sum / 1.0E5) loop
  n := n + 1;
  term := term * x / real(n);
  sum := sum + term;
end loop;

7. sum := 1.0;
term := 1.0;
for n in 1 to 7 loop
  term := term * x / real(n);



Appendix C — Answers to Exercises 863

  sum := sum + term;
end loop;

8. assert to_X01(q) = not to_X01(q_n)
  report "flipflop outputs are not complementary";

9. Insert the statement after the comment “-- at this point, reset = '1'”:

report "counter is reset";

Chapter 4

1. type num_vector is array (1 to 30) of integer;
variable numbers : num_vector;
...

sum := 0;
for i in numbers'range loop
  sum := sum + numbers(i);
end loop;
average := sum / numbers'length;

2. type std_ulogic_to_bit_array is array (std_ulogic) of bit;
constant std_ulogic_to_bit : std_ulogic_to_bit_array
  := ( 'U' => '0', 'X' => '0', '0' => '0', '1' => '1', 'Z' => '0',
       'W' => '0', 'L' => '0', 'H' => '1', '-' => '0' );
...

for index in 0 to 15 loop
  v2(index) := std_ulogic_to_bit(v1(index));
end loop;

3. type free_map_array is array (0 to 1, 0 to 79, 0 to 17) of bit;
variable free_map : free_map_array;
...

found := false;
search_loop : for side in 0 to 1 loop
  for track in 0 to 79 loop
    for sector in 0 to 17 loop
      if free_map(side, track, sector) then
        found := true;  free_side := side;
        free_track := track;  free_sector := sector;
        exit search_loop;
      end if;
    end loop;
  end loop;
end loop;



864 Appendix C — Answers to Exercises

4. subtype std_ulogic_byte is std_ulogic_vector(7 downto 0);
constant Z_byte : std_ulogic_byte := "ZZZZZZZZ";

5. type times_array is array (positive range <>) of time_vector;
subtype times4_array is times_array(1 to 4);
variable times4_10 : times4_array(open)(0 to 9);

6. count := 0;
for index in v'range loop
  if v(index) then
    count := count + 1;
  end if;
end loop;

7. Assuming the declarations

variable v1 : bit_vector(7 downto 0);
variable v2 : bit_vector(31 downto 0);
...

v2(31 downto 24) := v1;
v2 := v2 sra 24;

8. type test_record is record
    stimulus : bit_vector(0 to 2);
    delay : delay_length;
    expected_response : bit_vector(0 to 7);
  end record test_record;

Chapter 5

1. entity lookup_ROM is
  port ( address : in lookup_index;  data : out real );

  type lookup_table is array (lookup_index) of real;
  constant lookup_data : lookup_table
             := ( real'high, 1.0, 1.0/2.0, 1.0/3.0, 1.0/4.0, ... );

end entity lookup_ROM;

2. architecture functional of lookup_ROM is
begin
  data <= lookup_data(address) after 200 ps;
end architecture functional;

3. Transactions are ‘Z’ at 0 ns, ‘0’ at 10 ns, ‘1’ at 30 ns, ‘1’ at 55 ns, ‘H’ at 65 ns and ‘Z’ at
100 ns. The signal is active at all of these times. Events occur at each time except
55 ns, since the signal already has the value ‘1’ at that time.



Appendix C — Answers to Exercises 865

4. s’delayed(5 ns): ‘Z’ at 5 ns, ‘0’ at 15 ns, ‘1’ at 35 ns, ‘H’ at 70 ns, ‘Z’ at 105 ns.
s’stable(5 ns): false at 0 ns, true at 5 ns, false at 10 ns, true at 15 ns, false at 30 ns, true
at 35 ns, false at 65 ns, true at 70 ns, false at 100 ns, true at 105 ns. s’quiet(5 ns): false
at 0 ns, true at 5 ns, false at 10 ns, true at 15 ns, false at 30 ns, true at 35 ns, false at
55 ns, true at 60 ns, false at 65 ns, true at 70 ns, false at 100 ns, true at 105 ns.
s’transaction (assuming an initial value of ‘0’): ‘1’ at 0 ns, ‘0’ at 10 ns, ‘1’ at 30 ns, ‘0’
at 55 ns, ‘1’ at 65 ns, ‘0’ at 100 ns. At time 60 ns, s’last_event is 30 ns, s’last_active is
5 ns, and s’last_value is ‘0’.

5. wait on s until not s and en;

6. wait until ready for 5 ms;

7. The variable v1 is assigned false, since s is not updated until the next simulation cycle.
The variable v2 is assigned true, since the wait statement causes the process to resume
after s is updated with the value ‘1’.

8. At 0 ns: schedule ‘1’ for 6 ns. At 3 ns: schedule ‘0’ for 7 ns. At 8 ns: schedule ‘1’ for
14 ns. At 9 ns: delete transaction scheduled for 14 ns, schedule ‘0’ for 13 ns. The signal
z takes on the values ‘1’ at 6 ns and ‘0’ at 7 ns. The transaction scheduled for 13 ns
does not result in an event on z.

9. At 0 ns: schedule 1 for 7 ns, 23 for 9 ns, 5 for 10 ns, 23 for 12 ns and –5 for 15 ns. At
6 ns: schedule 23 for 13 ns, delete transactions scheduled for 15 ns, 10 ns and 9 ns.
The signal x takes on the values 1 at 7 ns and 23 at 12 ns.

10. The process is sensitive to current_state and in1, as these are the signals read by the
process.

11. mux_logic : process is
begin
  if enable and sel then
    z <= a and not b after 5 ns;
  elsif enable and sel then
    z <= x or y after 6 ns;
  else
    z <= '0' after 4 ns;
  end if;
  wait on a, b, enable, sel, x, y;
end process mux_logic;

12. process is
begin
  case bit_vector'(s, r) is
    when "00"        =>  q <= unaffected;
    when "01"        =>  q <= '0';
    when "10" | "11" =>  q <= '1';
  end case;
  wait on s, r;
end process;



866 Appendix C — Answers to Exercises

13. assert (not clk'event) or clk'delayed'last_event >= T_pw_clk
    report "interval between changes on clk is too small";

14. bit_0 : entity work.ttl_74x74(basic)
    port map ( pr_n => '1', d => q0_n, clk => clk, clr_n => reset,
               q => q0, q_n => q0_n );

bit_1 : entity work.ttl_74x74(basic)
  port map ( pr_n => '1', d => q1_n, clk => q0_n, clr_n => reset,
             q => q1, q_n => q1_n );

15.

16. One possible order is suggested: analyzing all entity declarations first, followed by all
architecture bodies:

entity edge_triggered_Dff
entity reg4
entity add_1
entity buf4
entity counter
architecture behav of edge_triggered_Dff
architecture struct of reg4
architecture boolean_eqn of add_1
architecture basic of buf
architecture registered of counter

An alternative is

decode_1

g1

g2a_n

g2b_n

c

b

a

y7_n
en_n(15)

en_n(14)

en_n(13)

en_n(12)

en_n(11)

en_n(10)

en_n(9)

en_n(8)

y6_n

y5_n

y4_n

y3_n

y2_n

y1_n

y0_n

ttl_74x138

decode_0

g1

g2a_n

g2b_n

c

b

a

y7_n
en_n(7)

en_n(6)

en_n(5)

en_n(4)

en_n(3)

en_n(2)

en_n(1)

en_n(0)

y6_n

y5_n

y4_n

y3_n

y2_n

y1_n

y0_n

ttl_74x138

a(3)

a(3)

a(2)

a(1)

a(0)

a(2)

a(1)

a(0)

'1'

'0'

en_n(15 downto 0)a(3 downto 0)

sel_n



Appendix C — Answers to Exercises 867

entity counter
entity buf4
entity add_1
entity reg4
architecture registered of counter
architecture basic of buf
architecture boolean_eqn of add_1
entity edge_triggered_Dff
architecture struct of reg4
architecture behav of edge_triggered_Dff

17. library company_lib, project_lib;
use company_lib.in_pad, company_lib.out_pad, project_lib.all;

18. context phantom_context is
  library ieee, IP_worx, phantom_lib;
  use ieee.std_logic_1164.all;
  use IP_worx.all, phantom_lib.all;
end context phantom_context;

Chapter 6

1. constant operand1 : in integer
operand1 : integer
constant tag : in bit_vector(31 downto 16)
tag : bit_vector(31 downto 16)
constant trace : in boolean := false
trace : boolean := false

2. variable average : out real
average : out real
variable identifier : inout string
identifier : inout string

3. signal clk : out bit
signal data_in : in std_ulogic_vector
signal data_in : std_ulogic_vector

4. Some alternatives are

stimulate ( s, 5 ns, 3 );
stimulate ( target => s, delay => 5 ns, cycles => 3 );

stimulate ( s, 10 ns, 1 );
stimulate ( s, 10 ns );
stimulate ( target => s, delay => 10 ns, cycles => open );
stimulate ( target => s, cycles => open, delay => 10 ns );
stimulate ( target => s, delay => 10 ns );



868 Appendix C — Answers to Exercises

stimulate ( s, 1 ns, 15 );
stimulate ( target => s, delay => open, cycles => 15 );
stimulate ( target => s, cycles => 15 );
stimulate ( s, cycles => 15 );

5. swapper : process is
begin
  shuffle_bytes ( ext_data, int_data, swap_control, Tpd_swap );
  wait on ext_data, swap_control;
end process swapper;

6. product_size := approx_log_2(multiplicand)
                + approx_log_2(multiplier);

7. assert now <= 20 ms
  report "simulation time has exceeded 20 ms";

8. The third, first, none and third, respectively.

9.

Chapter 7

1. package EMS_types is
  type engine_speed is range 0 to integer'high
    units rpm;
    end units engine_speed;
  constant peak_rpm : engine_speed := 6000 rpm;
  type gear is (first, second, third, fourth, reverse);
end package EMS_types;

work.EMS_types.engine_speed
work.EMS_types.rpm            work.EMS_types.peak_rpm
work.EMS_types.gear           work.EMS_types.first

architecture behavioral of computer system is

signal internal_data : bit_vector(31 downto 0);

interpreter : process is

variable opcode : bit_vector(5 downto 0);

procedure do_write is
variable aligned_address : natural;

begin
...

end procedure do_write;

begin
...
end process interpreter;

end architecture behavioral;



Appendix C — Answers to Exercises 869

work.EMS_types.second         work.EMS_types.third
work.EMS_types.fourth         work.EMS_types.reverse

2. procedure increment ( num : inout integer );

3. function odd ( num : integer ) return boolean;

4. constant e : real;

5. No. The package does not contain any subprogram declarations or deferred constant
declarations.

6. use work.EMS_types.engine_speed;

7. library DSP_lib;
use DSP_lib.systolic_FFT, DSP_lib.DSP_types.all;

Chapter 8

1. a. ‘1’.

b. ‘0’.

c. Either ‘1’ or ‘0’. The order of contributions within the array passed to the resolu-
tion function is not defined. This particular resolution function returns the leftmost
non-‘Z’ value in the array, so the result depends on the order in which the simu-
lator assembles the contributions.

2. subtype wired_and_logic is wired_and tri_state_logic;
signal synch_control : wired_and_logic := '0';

3. The initial value is ‘X’. The default initial value of type MVL4, ‘X’, is used as the initial
value of each driver of int_req. These contributions are passed to the resolution func-
tion, which returns the value ‘X’.

4. No, since the operation represented by the table in the resolution function is commu-
tative and associative, with ‘Z’ as its identity.

5. a. “ZZZZ0011”

b. “XXXX0011”

c. “0011XX11”

6. “XXXXZZZZ00111100”

7. a. ‘0’

b. ‘0’

c. ‘W’

d. ‘U’



870 Appendix C — Answers to Exercises

e. ‘X’

8.

9. The resolution function is invoked seven times: for the Mem port, the Cache port, the
CPU/Mem Section port, the Serial port, the DMA port, the I/O Section port and the
Data Bus signal.

10. We cannot simply invert the value read from the port, since the value may differ from
that driven by the process. Instead, we use the 'driving_value attribute:

synch_T <= not synch_T'driving_value;

Chapter 9

1. assert std.env.resolution_limit < 1.0E-9 sec;

2. to_hstring(B"ZZZZ_0100") = "Z4"
to_hstring(B"XX_L01H") = to_hstring(B"XXXX_L01H") = "X3"
to_hstring(B"01_00ZZ") = to_hstring(B"0001_00ZZ") = "1X"

3. use ieee.numeric_std.all;
...
signal a, b, s : unsigned(23 downto 0);
signal carry_in, carry_out : std_ulogic;
...

(carry_out, s) <= a + b + carry_in;

4. One approach, using implicit conversion of en to boolean, is

D_ff : process (clk) is
begin
  if rising_edge(clk) then

H

L
Z

1

0

H

L
Z

1

0

H

L
Z

1

0

driving value from
bus_module_1

Both bus modules proceed when
synch_control changes to ‘H’.

driving value from
bus_module_2

synch_control



Appendix C — Answers to Exercises 871

    if en then
      q <= To_X01(d);
    end if;
  end if;
end process D_ff;

Alternatively:

D_ff : process (clk) is
begin
  if rising_edge(clk) and To_X01(en) = '1' then
    q <= To_X01(d);
  end if;
end process D_ff;

5. signal a : sfixed(3 downto -6);
...

s <= resize(a*a, 7, -6);  -- resize using left and right bounds
s <= resize(a*a, s);      -- resize using bounds of s

6. signal x, y : float(7 downto -12)
...

y <= to_float(-1.0, y) when x < -1.0 else
     to_float(+1.0, y) when x > +1.0 else
     x;

Chapter 10

1. The variable partial_product is used to hold the results of the first pipeline stage com-
putation. It is also used as the source operand for the second pipeline stage compu-
tations. If computation is performed for the first stage first, the variable is overwritten
before being used for the second stage computation. The same argument applies for
the variables used to hold results for subsequent stages in the pipeline.

2. Since the real part and the imaginary part of the accumulator are each restricted to the
range –16.0 to +16.0, any sequence that causes either accumulator part to fall out of
this range results in an overflow. An example is the sequence

(–1.0, 0.0) × (–1.0, 0.0) + (–1.0, 0.0) × (–1.0, 0.0) + …

Each product is the complex value (1.0, 0.0), so after 16 terms, the real part of the
accumulator reaches the value 16.0 and overflows.

3. The values in successive clock cycles after the first rising clock-edge are shown in the
following table:



872 Appendix C — Answers to Exercises

4. The values +0.5 and –0.5 are represented as shown in the following table:

Chapter 11

1. alias received_source is received_packet.source;
alias received_dest is received_packet.dest;
alias received_flags is received_packet.flags;

Variable Value in successive clock cycles

input_x.re +0.50 +0.20 +0.10 +0.10

input_x.im +0.50 +0.20 –0.10 –0.10

input_y.re +0.50 +0.20 +0.10 +0.10

input_y.im +0.50 +0.20 +0.10 +0.10

real_part_product_1 ? +0.25 +0.04 +0.01 +0.01

real_part_product_2 ? +0.25 +0.04 –0.01 –0.01

imag_part_product_1 ? +0.25 +0.04 +0.01 +0.01

imag_part_product_2 ? +0.25 +0.04 –0.01 –0.01

product.re ? ? 0.00 0.00 +0.02 +0.02

product.im ? ? +0.50 +0.08 0.00 0.00

sum.re 0.00 0.00 0.00 0.00 0.00 +0.02 +0.04

sum.im 0.00 0.00 0.00 +0.50 +0.58 +0.58 +0.58

real_accumulator_ovf false false false false false false false

imag_accumulator_ovf false false false false false false false

Format +0.5 –0.5

inputs 0100 … 0 1100 … 0

partial products 00100 … 0 11100 … 0

products 000100 … 0 111100 … 0

pipelined products 000100 … 0 111100 … 0

accumulated sums 00000100 … 0 11111100 … 0

outputs 0100 … 0 1100 … 0



Appendix C — Answers to Exercises 873

alias received_payload is received_packet.payload;
alias received_checksum is received_packet.checksum;

2. alias received_AK is received_packet.flags(0);
alias received_ACKNO : bit_vector(2 downto 0)
        is received_packet.flags(1 to 3);
alias received_SEQNO : bit_vector(2 downto 0)
        is received_packet.flags(4 to 6);
alias received_UD is received_packet.flags(7);

3. alias cons is "&" [ character, string return string ];

report cons ( grade_char, "-grade" );

Chapter 12

1. entity flipflop is
  generic ( Tpw_clk_h, T_pw_clk_l : delay_length := 3 ns );
  port ( clk, d : in bit;  q, q_n : out bit );
end entity flipflop;

2. clk_gen : entity work.clock_generator
  generic map ( period => 10 ns )
  port map ( clk => master_clk );

3. entity adder is
  generic ( data_length : positive );
  port ( a, b : in std_ulogic_vector(data_length - 1 downto 0);
         sum : out std_ulogic_vector(data_length - 1 downto 0) );
end entity adder;

4. io_control_reg : entity work.reg
  generic map ( width => 4 )
  port map ( d => data_out(3 downto 0),
             q(0) => io_en, q(1) => io_int_en,
             q(2) => io_dir, q(3) => io_mode,
             clk => io_write, reset => io_reset );

5. bv_mux : entity work.generic_mux2(rtl)
  generic map ( data_type => bit_vector(7 downto 0) )
  port map ( sel => sel, a => d_in1, b => d_in2,
                         z => d_out );

6. The formal generic type is used as the type of the variable v, so the actual generic
type must be a fully constrained type. The type unsigned is unconstrained, and so
cannot be used as the type of a variable.

7. package int_stacks is new work.generic_stacks
  generic map ( size => 100, element_type => integer );



874 Appendix C — Answers to Exercises

use int_stacks.all;
variable int_stack : stack_type;
...

push(int_stack, -1);

8. The call with the actual parameter 1 is unambiguous, and calls the first overloaded
version (with formal parameter of type T1). The call with the actual parameter '1' is
ambiguous, since the literal '1' could be interpreted as a std_ulogic or a bit value. The
second overloaded version has a formal parameter of type T2, which represents
std_ulogic, and the third overloaded version has a formal parameter of type bit. So
the call could refer to either of these versions. The call with the actual parameter b is
unambiguous, and calls the third overloaded version.

9. while not is_full(test_buffer) loop
  write(test_buffer, "00000000");
end loop;

10. procedure check_bv_setup is new check_setup
  generic map ( signal_type => bit_vector,
                clk_type => bit, clk_active_value => '0',
                T_su => 100ps );
...

check_bv_setup(s, clk);

11. function bv_increment(bv : bit_vector) return bit_vector is
  use ieee.numeric_bit_unsigned.all;
begin
  return bv + 1;
end function bv_increment;
...

val_counter : work.generic_counter(rtl)
  generic map ( count_type => bit_vector(9 downto 0),
                reset_value => (others => '0'),
                increment => bv_increment )
  port map ( clk => clk, reset => reset, data => val_count );

12. use ieee.numeric_std.all;
package unsigned_dictionaries is new work.dictionaries
  generic map ( size => 1000,
                element_type => unsigned(63 downto 0),
                key_type => string,
                key_of => to_hstring,
                "<" => ">" );

13. package float_generic_math_ops is
  generic ( package float_pkg_for_math is
              new ieee.float_generic_pkg generic map (<>) );



Appendix C — Answers to Exercises 875

  use fixed_pkg_for_math.all;

  function exp ( x : float ) return float;
  function log ( x : float ) return float;
  ...

end package float_generic_math_ops;

package float_math_ops is new float_generic_math_ops
  generic map ( float_pkg_for_math => ieee.float_pkg );

Chapter 13

1. An entity declaration uses the keyword entity where a component declaration uses
the keyword component. An entity declaration is a design unit that is analyzed and
placed into a design library, whereas a component declaration is simply a declaration
in an architecture body or a package. An entity declaration has a declarative part and
a statement part, providing part of the implementation of the interface, whereas a
component declaration simply declares an interface with no implementation informa-
tion. An entity declaration represents the interface of a “real” electronic circuit, where-
as a component declaration represents a “virtual” or “template” interface.

2. component magnitude_comparator is
  generic ( width : positive;  Tpd : delay_length );
  port ( a, b : in std_ulogic_vector(width - 1 downto 0);
         a_equals_b, a_less_than_b : out std_ulogic );
end component magnitude_comparator;

3. position_comparator : component magnitude_comparator
  generic map ( width => current_position'length, Tpd => 12 ns )
  port map ( a => current_position, b => upper_limit,
             a_less_than_b => position_ok, a_equals_b => open );

4. package small_number_pkg is
  subtype small_number is natural range 0 to 255;
  component adder is
    port ( a, b : in small_number;  s : out small_number );
  end component adder;
end package small_number_pkg;

5. library dsp_lib;
configuration digital_filter_rtl of digital_filter is
  for register_transfer
    for coeff_1_multiplier : multiplier
      use entity dsp_lib.fixed_point_mult(algorithmic);
    end for;
  end for;
end configuration digital_filter_rtl;



876 Appendix C — Answers to Exercises

6. library dsp_lib;
configuration digital_filter_std_cell of digital_filter is
  for register_transfer
    for coeff_1_multiplier : multiplier
      use configuration dsp_lib.fixed_point_mult_std_cell;
    end for;
  end for;
end configuration digital_filter_std_cell;

7. library dsp_lib;
architecture register_transfer of digital_filter is
  ...
begin
  coeff_1_multiplier :
    configuration dsp_lib.fixed_point_mult_std_cell
      port map ( ... );
  ...
end architecture register_transfer;

8. use entity work.multiplexer
  generic map ( Tpd => 3.5 ns );

9.

prop_delay
in0in1

out0out1out2out3

decoder_2_to_4

Tpd_10

Tpd_01
s0

s1
s2

enable
y0

y1
y2

y3
y4

y5
y6

y7

decoder_3_to_8

interface_c_select

interface_b_select

interface_a_select

interface_d_select

4 ns

addr(4)

addr(5)

'0'
'1'



Appendix C — Answers to Exercises 877

10. generic map ( Tpd_01 => open, Tpd_10 => open )
port map ( a => a, b => b, c => c, d => open, y => y )

11. for interface_decoder : decoder_2_to_4
  use entity work.decoder_3_to_8(basic)
    generic map ( Tpd_01 => prop_delay, Tpd_10 => prop_delay )
    port map ( s0 => in0, s1 => in1, s2 => '0',
               enable => '1',
               y0 => out0, y1 => out1, y2 => out2, y3 => out3,
               y4 => open, y5 => open, y6 => open, y7 => open );
end for;

12. configuration rebound of computer_system is
  for structure
    for interface_decoder : decoder_2_to_4
      generic map ( Tpd_01 => 4.3 ns, Tpd_10 => 3.8 ns );
    end for;
  end for;
end configuration rebound;

Chapter 14

1.

2. inverter_array : for index in data_in'range generate
  inv : component inverter
    port map ( i => data_in(index), y_n => data_out_n(index) );
end generate inverter_array;

3. direct_clock : if positive_clock generate
  internal_clock <= external_clock;
else generate
  clock_inverter : component inverter
    port map ( i => external_clock, y => internal_clock );
end generate inverting_clock;

4. for synch_delay_line(1)
  for delay_ff : d_ff
    use entity parts_lib.d_flipflop(low_input_load);

d_ff

d

clk

q

d_ff

d

clk

q

d_ff

d

clk

q

d_ff

d

clk

q

delayed_
data(0)

sys_clk

delayed_
data(1)

delayed_
data(2)

delayed_
data(3)

delayed_
data(4)



878 Appendix C — Answers to Exercises

  end for;
end for;

for synch_delay_line(2 to 4)
  for delay_ff : d_ff
    use entity parts_lib.d_flipflop(standard_input_load);
  end for;
end for;

5. A block configuration is not required for the alternative that directly connects the sig-
nals, since the statement does not include any component instances. In order to write
a block configuration for the other alternative, we need to revise the generate state-
ment to include an alternative label:

direct_clock : if noninverting : positive_clock generate
  internal_clock <= external_clock;
else inverting : generate
  clock_inverter : component inverter
    port map ( i => external_clock, y => internal_clock );
end generate inverting_clock;

The required block configuration is:

for inverting_clock(inverting)
  for clock_inverter : inverter
    use entity parts_lib.inverter;
  end for;
end for;

This block configuration is only used if the generic positive_clock is false when the
design is elaborated.

Chapter 15

1. type character_ptr is access character;
variable char : character_ptr := new character'(ETX);
...

char.all := 'A';

2. The statement “r := r + 1.0;” should be “r.all := r.all + 1.0;”. The name r in the state-
ment denotes the pointer, rather than the value pointed to. It is an error to perform
an arithmetic operation on a pointer value.



Appendix C — Answers to Exercises 879

3.

4. a = b is true, a.all = b.all is true, c = d is false, c.all = d.all is true.

5. type string_ptr is access string;
variable str : string_ptr := new string'("    ");
...

str(1) := NUL;

6. z.re := x.re * y.re - x.im * y.im;
z.im := x.re * y.im + x.im * y.re;

7. type message_cell;
type message_ptr is access message_cell;
type message_cell is record
    source, destination : natural;
    data : bit_vector(0 to 255);
    next_cell : message_ptr;
  end record message_cell;
variable message_list : message_ptr;
...

message_list := new message_cell'( source => 1, destination => 5,
                                   data => (others => '0'),
                                   next_cell => message_list );

8. The first statement copies the pointer to the first cell to the access variable
cell_to_be_deleted and leaves value_list also pointing to that cell. The call to
deallocate reclaims the storage and sets cell_to_be_deleted to the null pointer, but
leaves value_list unchanged. The host computer system is free to reuse or remove the
reclaimed storage, so the access using value_list in the third statement may not be
valid.

Chapter 16

1. type real_file is file of real;
file sample_file : real_file open read_mode is "samples.dat";
...

read ( sample_file, x );

2. type bv_file is file of bit_vector;
file trace_file : bv_file open write_mode is "/tmp/trace.tmp";
...

a

1

b

2

c

4

d

4



880 Appendix C — Answers to Exercises

write ( trace_file, addr & d_bus );

3. file_open ( status => waveform_status, f => waveform_file,
            external_name => "waveform", open_kind => read_mode);
assert waveform_status = open_ok
  report file_open_status'image(waveform_status)
         & " occurred opening waveform file" severity error;

4. The first call returns the bit value ‘1’. The second call returns the integer value 23. The
third call returns the real value 4.5. The fourth call returns the three-character string
“ 67”.

5. use std.textio.all;
variable prompt_line, input_line : line;
variable number : integer;
...

write(prompt_line, string'("Enter a number:");
writeline(output, prompt_line);
readline(input, input_line);
read(input_line, number);

6. “   3500 ns 00111100 ok   ”

Chapter 17

1. package memories_support_1Kx24 is new work.memories_suppor
  generic map ( width => 24, depth => 10,
                fixed_pkg => ieee.fixed_pkg,
                float_pkg => ieee.float_pkg );

use memories_support_1Kx24.all;

package memories_1Kx24 is new work.memories
  generic map
    ( width => 24, depth => 10,
      control_type => bit,
      address_type => std_ulogic_vector(9 downto 0),
      data_type => std_ulogic_vector(23 downto 0) );

2. package memories_support_32x128 is new work.memories_suppor
  generic map ( width => 128, depth => 5,
                fixed_pkg => ieee.fixed_pkg,
                float_pkg => ieee.float_pkg );

use memories_support_32x128.all;

package memories_32x128 is new work.memories
  generic map
    ( width => 128, depth => 5,



Appendix C — Answers to Exercises 881

      control_type => std_ulogic,
      address_type => unsigned(4 downto 0),
      data_type => float128 );

Chapter 18

1. <<constant .test_bench.dp.d_width : positive>>
<<signal .test_bench.dp.d_bus : std_ulogic_vector(7 downto 0)>>
<<signal .test_bench.dp.adder(3).carry : std_ulogic>>

2. alias d_width is
   <<constant .test_bench.dp.d_width : positive>>;
alias d_bus is
  <<signal .test_bench.dp.d_bus : std_ulogic_vector(7 downto 0)>>;
alias carry is
  <<signal .test_bench.dp.adder(3).carry : std_ulogic>>;

3. <<constant dp.d_width : positive>>
<<signal dp.d_bus : std_ulogic_vector(7 downto 0)>>
<<signal dp.adder(3).carry : std_ulogic>>

4. reset <= force '1';
wait for 200 ns;
reset <= release;

5. alias mem_d is <<signal mem.d : std_logic_vector(7 downto 0)>>;
...

mem_d <= force out "ZZZZZZZZ";
mem_d <= force in "ZZZZZZZZ";
...

mem_d <= release out;
mem_d <= release in;

6. configuration verifying of bus_interface is
  use vunit verify_protocol;
  for behavior
  end for;
end configuration verifying;

7. for ext : ext_interface
  use entity bus_interface(behavior);
  use vunit verify_protocol;
end for;



882 Appendix C — Answers to Exercises

Chapter 19

1. If the host computer system has multiple processors, m1 and m2 may be resumed
concurrently on different processors. Suppose the variable starts with the value 0. A
possible sequence of events is the following: m1 reads the variable and gets the value
0, m2 reads the variable and gets the value 0, m1 updates the variable with the value
1, m1 updates the variable with the value 1. Thus, the final value of the variable is 1,
even though there were two increments performed.

2. type shared_integer is protected
  procedure set ( i : integer );
  impure function get return integer;
end protected shared_integer;

type shared_integer is protected body

  variable value : integer;

  procedure set ( i : integer ) is
  begin
    value := i;
  end procedure set;

  impure function get return integer is
  begin
    return value;
  end function get;

end protected body shared_integer;

Chapter 20

1. word'path_name = ":proj_lib:cpu_types:word"

mult_unsigned'path_name =
    ":proj_lib:bit_vector_signed_arithmetic:"
    & "mult_unsigned[bit_vector, bit_vector return bit_vector]:"

bv2'path_name =
    ":proj_lib:bit_vector_signed_arithmetic:"
    & "mult_unsigned[bit_vector, bit_vector return bit_vector]:bv2"

next_test_case'path_name =
    ":tes_tbench:stim_gen:next_test_case"
next_test_case'instance_name =
    ":test_bench(test_rtl):stim_gen:next_test_case"

get_ID'path_name =
    ":test_bench:stim_gen:ID_manager:"
    & "get_ID[return natural:"
get_ID'instance_name =



Appendix C — Answers to Exercises 883

    ":test_bench(test_rtl):stim_gen:ID_manager:"
    & "get_ID[return natural]:"

2. val0_reg'path_name = ":test_bench:dut:val0_reg:"
val0_reg'instance_name =
    ":test_bench(counter_test)"
    & ":dut@counter(registered):val0_reg@reg4(struct):"
bit0'path_name = ":test_bench:dut:val1_reg:bit0"
bit0'instance_name =
    ":test_bench(counter_test)"
    & ":dut@counter(registered):val1_reg@reg4(struct)"
    & ":bit0@edge_triggered_dff(behavioral):"
clr'path_name = ":test_bench:dut:val1_reg:bit0:clr"
clr'instance_name =
    ":test_bench(counter_test)"
    & ":dut@counter(registered):val1_reg@reg4(struct)"
    & ":bit0@edge_triggered_dff(behavioral):clr"

3. attribute load : capacitance;
attribute load of d_in : signal is 3 pF;

4. type area is range 0 to integer'high
  units um_2;
  end units area;
attribute cell_area : area;
attribute cell_area of library_cell : architecture is 15 um_2;

5. attribute optimization of
  test_empty [ list_ptr, boolean ] : procedure is "inline";

6. group statement_set is ( label, label <> );
group steps_1_and_2 : statement_set ( step_1, step_2 );
attribute resource_allocation of steps_1_and_2 : group is
            max_sharing;

Chapter 21

1. Temp is allowed, as it is an integer type. Temp_vec is allowed, as it is an array type
indexed by an integer type and has an integer element type. Location is allowed, as
it is an enumeration type. Local_temp_vec is not allowed, as its index type is not an
integer type. Location_vec is allowed, as it is an array type indexed by an integer type
and has an enumeration element type. Word_vec is allowed, as it is an array type in-
dexed by an integer type and has as its element type a one-dimensional array  of an
enumeration type representing bits.

2. A 2-to-1 multiplexer with sel as its select input, in0 and in1 as the data inputs, and z
as the data output. The tests for ‘U’ and other metalogical values would be ignored by
the synthesis tool.



884 Appendix C — Answers to Exercises

3. A synthesis tool might infer the hardware shown at the left below. This might subse-
quently be optimized as shown at the right.

4. logic_block : process (enable_n, adr, reg1, reg2) is
begin
  if std_match(enable_n, '0') then
    if std_match(adr, '0') then
      dat_o <= reg1;
    else
      dat_o <= reg2;
    end if;
    ack_o <= '1';
  else
    dat_o <= "ZZZZZZZZ";
    ack_o <= 'Z';
  end if;
end process logic_block;

5. The process makes no assignment to operand on the path in which sel is “11”. Hence,
the previous value of operand must be stored when sel changes to “11”. The storage
takes the form of a transparent latch enabled by sel being other than “11”. We can
eliminate this storage by adding an assignment of a default value to operand in the
others alternative of the case statement.

6. en_reg : process ( clk ) is
begin
  if rising_edge(clk) then
    if en = '1' then
      reg_out <= data_in;
    end if;
  end if;
end process en_reg;

7. type RAM_type is array (0 to 8191) of signed(15 downto 0);
signal RAM : RAM_type := (others => X"0000");

8. type decoder_array is array (0 to 15) of std_ulogic_vector(1 to 7);
constant decoder_ROM : decoder_array :=
  ( 0 => "0111111", 1 => "0000110",

0
1
2
3 0

1

0
1

+

–

a

b

z

fn

a

b z

fn(0)

fn(0)

fn(1)

±



Appendix C — Answers to Exercises 885

    2 => "1011011", 3 => "1001111",
    4 => "1100110", 5 => "1101101",
    6 => "1111101", 7 => "0000111",
    8 => "1111111", 9 => "1101111",
    others => "1000000" );
...

decoder : seg <= decoder_ROM(to_integer(bcd));

9. We can decorate the type state with the enum_encoding attribute as follows:

attribute enum_encoding of state : type is "00 01 11";

Alternatively, we could decorate state with the fsm_state attribute:

attribute fsm_state of state : type is "00 01 11";

or we could decorate the signals current_state and next_state:

attribute fsm_state of
  current_state, next_state : signal is "00 01 11";

Chapter 22

1. a. sub r2, r1, r0: 11 1001 0001 0000 0010 = 0x39102

b. and r4, r4, 0x30: 01 0010 0100 0011 0000 = 0x12430

c. ror r1, r1, 2: 11 0000 1001 0100 0011 = 0x30943

d. ldm r6, (r2)–1: 10 0011 0010 1111 1111 = 0x232FF

e. out r4, 0x10: 10 1110 0000 0000 1010 = 0x2E00A

f. bz +7: 11 1110 0000 0000 0111 = 3E007

g. jsb 0xD0: 11 1101 0000 1101 0000 = 3D0D0

2. a. 0DBC0 = 00 1101 1011 1100 0000: subc r3, r3, 0xC0

b. 38326 = 11 1000 0011 0010 0110: xor r0, r3, r1

c. 33D63 = 11 0011 1101 0110 0011: ror r7, r5, 3

d. 25906 = 10 0101 1001 0000 0110: stm r3, (r1)+6

e. 3EC11 = 11 1110 1100 0001 0001: bnc +17

f. 3DC70 = 11 1101 1100 0111 0000: jsb 0xC70

g. 3F200 = 11 1111 0010 0000 0000: enai



886 Appendix C — Answers to Exercises

Chapter 23

1. signal serial_bus : wired_or_bit bus;
signal d_node : unique_bit register;

2. When the resolution function for a standard-logic signal is passed an empty vector, it
returns the value ‘Z’. Thus, the values on rx_bus are ‘Z’, ‘0’ after 10 ns, ‘1’ after 20 ns,
‘0’ after 30 ns, ‘X’ after 35 ns, ‘1’ after 40 ns, ‘0’ after 45 ns and ‘Z’ after 55 ns.

3. ‘U’, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘0’ after 30 ns, ‘X’ after 35 ns, ‘1’ after 40 ns, ‘0’ after
45 ns.

4. vote <= 3 after 2 us, null after 5 us;

5. Initially false, true at 160 ns, false at 270 ns.

6. inverting_latch : block ( en ) is
begin
  q_out_n <= guarded not d_in;
end block inverting_latch;

7. disconnect source1 : wired_word after 3.5 ns;
disconnect others : wired_word after 3.2 ns;
disconnect all : wired_bit after 2.8 ns;

8. Initially 0, 3 at 51 ns, 5 at 81 ns, 0 at 102 ns.

9. inverting_ff : block is
  signal q_internal : bit;
begin
  the_dff : component dff
    port map ( clk => sys_clk, d => d_in, q => q_internal );
  the_inverter : component inverter
    port map ( i => q_internal, y => q_out_n );
end block inverting_ff;

10. for inverting_ff
  for the_dff : dff
    use entity work.d_flipflop(basic);
  end for;
  for the_inverter : inverter
    use entity work.inverter(basic);
  end for;
end for;

11. architecture rtl of ethernet_mac is
`protect data_keyowner = "IP_werx"
`protect data_keyname = "IP_werx_sim"
`protect data_method = "3des-cbc"
`protect begin



Appendix C — Answers to Exercises 887

  signal fifo_enable : std_ulogic;
  ...
begin
  rx_fifo : IP_werx_fifo
    port map ( ... );
  ...
`protect end
end architecture rtl;

12. architecture rtl of ethernet_mac is
`protect key_keyowner = "Aero Industries"
`protect key_keyname = "Aero Design"
`protect key_method = "pgp-rsa"
`protect key_block
`protect data_method = "aes192-cbc"
`protect encoding = (enctype="base64")
`protect begin
  signal fifo_enable : std_ulogic;
  ...
begin
  rx_fifo : IP_werx_fifo
    port map ( ... );
  ...
`protect end
end architecture rtl;

13. architecture vhpi_implementation of control is
  attribute foreign of vhpi_implementation : architecture is
    "VHPIDIRECT $VHPIUSERLIB/control.so control_elab control_exec";
begin
end architecture vhpi_implementation;

14. architecture vhpi_implementation of control is
  attribute foreign of vhpi_implementation : architecture is
    "VHPI control_lib control_model";
begin
end architecture vhpi_implementation;

The line in the tabular registry is

control_lib control_model vhpiArchF control_elab control_exe

This requires that the logical name control_lib be mapped to the object library.

15. The function To_bit has two parameters: the value to be converted and the parameter
xmap that indicates how an unknown logic level should be converted. A conversion
function in an association list must have only one parameter.

16. We need to define a conversion function from std_ulogic to bit:



888 Appendix C — Answers to Exercises

function cvt_to_bit ( s : std_ulogic ) return bit is
begin
  return To_bit(s);
end function cvt_to_bit;

We can use this function and the standard-logic conversion function To_stdulogic in
the association list:

gate1 : component nand2
  port map ( a => To_stdulogic(s1), b => To_stdulogic(s2),
             cvt_to_bit(y_n) => s3 );



889

References

[1] R. Airiau, J.-M. Bergé and V. Olive, Circuit Synthesis with VHDL, Kluwer, Dordrecht,
The Netherlands, 1994.

[2] P. J. Ashenden, Digital Design: An Embedded Systems Approach Using VHDL, Morgan
Kaufmann Publishers, Boston, MA, 2008.

[3] C. G. Bell and A. Newell, Computer Structures: Readings and Examples, McGraw-
Hill, New York, 1971.

[4] C. Eisner and D. Fisman, A Practical Introduction to PSL, Springer, 2006.

[5] Electronic Industries Association, Standard Data Transfer Format between Data
Preparation System and Programmable Logic Device Programmer, JEDEC Standard
JESD3-C, EIA, Washington, DC, 1994.

[6] M. B. Feldman, Data Structures with Ada, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[7] Harry D. Foster, Adam C. Krolnik, and David J. Lacey, Assertion-Based Design, Klu-
wer Academic Publishers, 2003.

[8] D. D. Gajski and R. H. Kuhn, “New VLSI Tools,” IEEE Computer, Vol. 16, no. 12 (De-
cember 1983), pp. 11–14.

[9] Institute for Electrical and Electronic Engineers, IEEE Standard for Binary Floating-
Point Arithmetic, ANSI/IEEE Std 754–1985, IEEE, New York, 1985.

[10] Institute for Electrical and Electronic Engineers, IEEE Standard for Radix-Indepen-
dent Floating-Point Arithmetic, ANSI/IEEE Std 854–1987, IEEE, New York, 1987.

[11] Institute for Electrical and Electronic Engineers, Information Technology—
Microprocessor Systems—Futurebus+—Logical Protocol Specification, ISO/IEC
10857, ANSI/IEEE Std. 896.1, IEEE, New York, 1994.

[12] R. Jain, The Art of Computer System Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation and Modeling, Wiley, New York, 1991.

[13] OpenCores Organization, WISHBONE System-on-Chip (SoC) Interconnection Archi-
tecture for Portable IP Cores, Revision B.3, 2002, www.opencores.org/projects.cgi/
web/wishbone/wbspec_b3.pdf.

[14] S. P. Smith and R. D. Acosta, “Value System for Switch-Level Modeling,” IEEE Design
& Test of Computers, Vol. 7, No. 3 ( June 1990), pp. 33–41.

[15] I. E. Sutherland, C. E. Molnar, R. F. Sproull and J. C. Mudge, “The TRIMOSBUS,” Pro-
ceedings of the Caltech Conference on VLSI, January 1979.

www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf
www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf


890 References

[16] A. S. Tanenbaum, Structured Computer Organization, 3rd edition, Prentice-Hall, En-
glewood Cliffs, NJ, 1990.

[17] S. A. Ward and R. H. Halstead Jr., Computation Structures, MIT Press, Cambridge,
MA, and McGraw-Hill, New York, 1990.

[18] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective,
Addison-Wesley, Reading, MA, 1985.



891

Index

Page numbers in bold face denote 
whole sections and subsections that 
address a topic.

Operators and Symbols

". See string literal; bit string literal
&. See concatenation operator (&)
'. See character literal; attribute name
**. See exponentiation operator (**)
*. See multiplication operator (*)
+. See identity operator (+); addition 

operator (+)
–. See negation operator (–); subtrac-

tion operator (–)
. (period). See selected name
/* */. See comment
/. See division operator (/)
/=. See inequality operator (/=)
:=. See variable assignment
<>. See box symbol (<>)
<. See less than operator (<)
<< >>. See external name
<=. See less than or equal operator 

(<=)
<=. See signal assignment
=. See equality operator (=)
=>. See choice
>. See greater than operator (>)
>=. See greater than or equal operator 

(>=)
?. See matching case statement; 

matching selected signal as-
signment; matching selected 
variable assignment

?/=. See matching inequality operator 
(?/=)

?<. See matching less than operator 
(?<)

?<=. See matching less than or equal 
operator (?<=)

?=. See matching equality operator 
(?=)

?>. See matching greater than opera-
tor (?>)

?>=. See matching greater than or 
equal operator (?>=)

??. See condition operator (??)
@. See package, pathname
[ ]. See signature
\. See extended identifier
^. See relative pathname
`. See tool directive
––. See comment

A

abs operator, 36, 38, 41, 58, 300, 306, 
324, 325

absolute pathname, 560, 563
abstract data type (ADT), 250, 384, 

407
abstraction, 3, 156
access type, 479

allocator, 479, 485, 487
array, 483
array attribute, 604
attribute declaration, 616
constant, 480
dangling pointer, 491, 518
deallocation, 490
declaration, 479
equality, 482
file element, 499
garbage, 483, 490
line deallocation, 517
linked data structure, 486

deletion, 490
search, 489
traversal, 488

null, 480, 483, 487, 489, 490
record, 483
signal, 480
synthesis, 636
variable assignment, 481, 482

access type (viewport), 765
accumulator, 338, 342, 346
action procedure

dictionary example, 403, 495
error reporting example, 397
exercise, 416

stimulus example, 599
active, 144, 571
active attribute, 149, 606
adder, 346

behavioral example, 141, 152
configuration example, 469
entity example, 138
exercise, 200, 202, 204, 414, 416, 

444, 446, 475, 790
function example, 358
functional example, 172, 307
generic example, 371
procedure example, 215
structural example, 457
synthesis example, 638

addition instruction, 671
addition operator (+), 36, 38, 41, 59, 

300, 306, 324, 325
generic subprogram, 400

address alignment, exercise, 242
address decoder

exercise, 201, 530
functional example, 118, 246

ADT. See abstract data type
Advanced Encryption Standard (AES) 

cipher, 751, 766
aggregate

array, 99, 106, 111, 172, 481, 485
memory initialization, 657
read only memory, 657
target of assignment, 102, 172, 

574
as a choice, 124
attribute value, 617
choice, 99, 131
multidimensional array, 100
record, 131, 481
sub-array, 101, 102, 103

alarm clock, 721
architecture example, 723
entity example, 723
structural example, 428
synthesis, 729
synthesis exercise, 732

alias, 355
array, 357
array attribute, 605, 627



892 Index

attribute, 626
data object, 355
declaration, 355, 360
example, 690
external name, 550, 561
non-data item, 360, 363
pathname attribute, 607
signal assignment, 571
slice, 357
subtype indication, 357, 360, 561
unconstrained array parameter, 

358, 359
all

access reference, 481, 483, 484
attribute specification, 625
configuration declaration, 423
disconnection specification, 743
process sensitivity list, 165, 220

synthesis, 641
use clause, 190, 258

allocator, 479, 485, 487
alternative

case generate, 460
case statement, 70

ALU. See arithmetic/logic unit
analysis, 14, 186, 424, 560

order, 187, 254
and gate

behavioral example, 11, 111, 162
functional example, 366
instantiation example, 181, 185, 

367
and operator, 46, 58, 60, 114, 235, 

302, 307, 323, 325
and-or-invert gate

behavioral example, 112
entity example, 139
exercise, 135, 632
instantiation example, 184
structural example, 142

append_mode literal, 500
application name, 775
arbiter

behavioral example, 126
exercise, 203, 290
functional example, 127, 148, 172

arccos function, 297
arccosh function, 298
architecture, 8, 137, 186

attribute specification, 618
component instantiation state-

ment, 177
configuration specification, 437
declarative part, 140, 208, 255, 

437, 576, 585
foreign, 770, 771, 773

most recently analyzed, 177, 423
in pathname, 563

arcsin function, 297
arcsinh function, 298
arctan function, 297
arctanh function, 298
arg function, 301
arithmetic instruction, 671, 693, 715, 

717
arithmetic operation, procedure ex-

ample, 209, 214
arithmetic operator, 36, 38, 41, 58, 

306
package example, 253

arithmetic/logic unit (ALU)
behavioral example, 209, 214
exercise, 63, 94
functional example, 69, 171
Gumnut, 690, 704, 715, 717
synthesis exercise, 668
test bench example, 298

array, 95
access type, 483
aggregate, 99, 106, 111, 172, 481, 

485
as a choice, 124
memory initialization, 657
read only memory, 657
target of assignment, 102, 172, 

574
alias, 357, 605, 627
alias for element, 356, 627
assigment, 123
attribute, 103, 222, 355, 604
case selector expressioon, 124
element indexing, 95, 97, 98, 180, 

561
file element, 499
fully constrained, 105, 109, 123
generic constant, 371
guarded signal, 737
index constraint, 105, 110, 133

open, 110, 133
index range, 95

alias, 357
allocator, 485
attribute, 103
attribute value, 617
case selector expression, 124
constant declaration, 111, 134
generic, 408, 553
multidimensional array, 98
operator result, 324
parameter, 221, 358, 359
port, 113, 181
record element, 132

slice, 120
synthesis, 636
type conversion, 123, 781, 

782, 783
unconstrained, 105, 109

index type, 96, 105, 106
initialization from file, 508

exercise, 531
multidimensional, 98, 360

aggregate, 100
object declaration, 96
operator, 114
partially constrained, 109, 123, 

357
partially constrained file element, 

502
partially constrained parameter, 

221
partially constrained port, 113, 

181, 185
port, 180, 369
predefined type, 106
resolved element, 274, 784
resolved, package example, 272
signal, 96, 103, 179

memory, 537, 549, 654
slice, 120, 180, 357, 627

null, 121
sparse, exercise, 498, 558
std_ulogic elements, 125, 324
sub-array in aggregate, 101, 102, 

103
synthesis, 634, 636
type conversion, 122
type definition, 95
unconstrained, 105, 123, 268, 357

resolved elements, 275
unconstrained constant, 106, 111
unconstrained element, 109
unconstrained file element, 502
unconstrained parameter, 221, 

358, 359
alias, 358, 359

unconstrained port, 111, 181, 
185, 369

ascending attribute, 55, 103, 604, 605
ascending range, 35, 53, 57
ASCII character set, 17, 45
assembler, 699, 703, 729
assertion statement, 87, 388, 607

ambiguity with PSL, 577
concurrent, 173, 175, 778

assertion violation, 87, 174, 309
assignment

signal. See signal assignment
variable. See variable assignment



Index 893

association list, 779
asymmetric cipher, 751
asynchronous assignment, 642
asynchronous control signal

behavioral example, 150
synthesis, 653, 660
synthesis example, 644, 645, 646, 

648
asynchronous memory, 654
asynchronous sequential circuit, 641, 

651
async_set_reset synthesis attribute, 

660
attribute, 58

alias, 605, 626, 627
array, 103, 222, 355, 604
declaration, 616
discrete type, 56
name

enumeration literal, 626
subprogram, 626
user-defined, 626

pathname, 607, 627
physical, 56
predefined, 603
scalar type, 54, 603
signal, 149, 606
specification, 616, 658

architecture, 618
component declaration, 621
component instance, 622
concurrent statement, 622
configuration declaration, 618
constant, 620
design unit, 618
entity, 618
enumeration literal, 623
file, 620
generic, 620
group, 625, 628
label, 622, 623
object, 620
operator, 619
package, 618
parameter, 621
port, 620
PSL property, 624
sequential statement, 623
signal, 620
signature, 618, 623
subprogram, 618
subtype, 620
type, 620
unit (physical type), 624
variable, 620

synthesis, 658

type, 603
user defined. See attribute, decla-

ration; attribute, name; at-
tribute specification

attribute specification
PSL sequence, 624

author of protected IP, 763, 768
average

exercise, 94
procedure example, 208

B

back annotation, 431, 440
Backus-Naur Form (BNF), 26
barrel shifter, exercise, 790
base attribute, 57, 605
base specifier, 24
base type, 52, 57, 84

alias, 357
base64 encoding method, 752, 766, 

767
based literal, 22
basic identifier, 19
behavior attribute, 603
behavioral modeling, 3, 8, 143, 451, 

479
mixed structural/behavioral, 12

behavioral synthesis, 633
binary base specifier, 24
binary search, 402
binary search tree, 491

exercise, 498
binary_read procedure, 519, 522, 528
binary_write procedure, 524, 527, 528
binding

component, 186
default, 423, 433, 442, 726
deferred, 435
incremental, 438
indirect (VHPI), 773
verification unit, 578

binding indication, 422, 422, 425, 
429, 433, 437

bit reverser, exercise, 364
bit string literal, 24, 108

attribute value, 617
case statement choice, 124

bit type, 47, 127, 294, 326
condition conversion, 49
synthesis, 634, 635

bit vector arithmetic, package exam-
ple, 253

bit vector I/O, exercise, 533
bit_vector type, 107, 127, 324, 326

numeric_bit_unsigned package, 
312

synthesis, 634
block configuration, 427, 470, 748

generate statement, 465, 469
block statement, 427, 465, 739, 744

declarative part, 437, 576, 585, 
745

external name, 747
generic, 748
in pathname, 563
port, 748

Blowfish cipher, 766
BNF (Backus-Naur Form), 26
boolean equation, 235, 362
boolean expression. See condition
boolean type, 46, 47, 294

condition conversion. See condi-
tion conversion

synthesis, 634, 635
boolean_vector type, 106, 294
borrow, 308
bounded buffer

ADT example, 385
exercise, 415, 602

box symbol (<>)
default subprogram, 399, 548
generic package, 407, 412
group template, 629
unconstrained array, 105

branch instruction, 672, 697, 711, 712
bread procedure, 519, 522, 528
buffer

functional example, 740
instantiation example, 729
synthesis, 663

buffered synthesis attribute, 662
burglar alarm, exercise, 204
bus function model, exercise, 731
bus interface, Gumnut, 674, 713, 719
bus kind port, 738
bus monitor, behavioral example, 

524
bus select, example, 115
bus signal, 734
bwrite procedure, 524, 527, 528
byte swapper

behavioral example, 121
exercise, 241

C

cache memory
behavioral example, 238, 506
instrumentation example, 592

capacitive strength, exercise, 292



894 Index

car park counter, exercise, 205
carry, 308

synthesis example, 638
case generate, 460

configuration, 468
VHDL-87, 462

case statement, 69, 75, 460
array selector expression, 124
choice, 70, 104, 124
equivalent to selected signal as-

signment, 147, 171
equivalent to selected variable as-

signment, 74
matching, 125, 149, 172

choice, 126, 149
read only memory, 657

CAST-128 cipher, 767
cbrt function, 297
ceil function, 297
certification authority (CA), 770
character literal, 23, 43, 360, 362
character type, 44

synthesis, 634, 635
check_error parameter, 327, 328, 331, 

332
choice

array aggregate, 99, 124
case generate, 460
case statement, 70, 104, 124
matching case statement, 126, 149
record aggregate, 131

cipher, 751, 763, 767
specification, 766

cipher text, 751
circular buffer, ADT example, 387
class

entity (item), 617, 628
object, 31, 499, 560
parameter. See parameter, class

clock buffer
entity example, 629
instantiation example, 729

clock distribution tree, structural ex-
ample, 462

clock divider, 723, 727
clock edge, 642
clock generator

behavioral example, 144, 153, 
154, 344

exercise, 63, 414
Gumnut, 702
procedure example, 227

clock signal
package example, 248
synthesis, 642

clock, gated, synthesis, 665

clocked logic, synthesis, 641
closely related type, 54, 122
cmplx function, 301
combinational logic, 165

synthesis, 638, 652, 666
combinational synthesis attribute, 666
comment, 17, 29

IP protection, 766, 768
comparator

exercise, 444
procedure example, 223

complex number, 299, 337
fixed-point example, 407, 410

complex type, 299
example, 342

complex_polar type, 299
complex_to_polar function, 301
component

configuration, 422
verification unit binding, 579

declaration, 186, 417, 437
attribute specification, 621
package, 420

instance, 12, 140, 176, 193, 419, 
433, 464, 564, 612, 747

attribute specification, 622
configuration, 422
direct, 111, 176, 186, 420, 422, 

428, 429
generic map, 366
pathname, 560
unbound, 423, 435
verification unit binding, 579

composite type, 95, 374
attribute value, 617
partially constrained, 782, 783
synthesis, 636
unconstrained, 782, 783
See also array; record

compressor, exercise, 336
computer system

behavioral example, 129, 156
configuration example, 459, 466, 

720
exercise, 203
instrumented example, 458, 466, 

592
register-transfer example, 784
structural example, 274, 284, 422, 

431, 435, 735
concatenation operator (&), 24, 59, 

119, 294
concurrent assertion statement, 173, 

175, 778
concurrent procedure call statement, 

175, 225, 540, 549, 778

example, 227
concurrent region, 561, 566
concurrent signal assignment, 166, 

230, 740, 778
synthesis, 638

concurrent statement, 12, 141, 164, 
193, 449, 739, 747

attribute specification, 622
configuration, 465
postponed, 778

condition, 78
assertion statement, 87
concurrent assertion statement, 

173
exit statement, 78
guard, 740, 744
if statement, 66
next statement, 80
wait statement, 151, 153, 154
while loop, 81

condition code, Gumnut, 669, 690, 
704, 713, 717

condition conversion, 49
exit statement, 80
guard expression, 740, 742
if statement, 68
memory control example, 537, 

540
next statement, 81
overloading, 236, 271
relational operators, 118
std_ulogic type, 302
wait statement, 155
while loop, 83

condition operator (??), 50, 60, 294
generic function, 537, 540, 556
guard expression, 740, 742
overloading, 236
overloading overloading

condition operator (??), 271
std_ulogic type, 302

conditional force assignment, 573
conditional signal assignment, 146, 

163, 167, 740, 778
synthesis, 639, 640

conditional variable assignment, 68, 
102

configuration
declaration, 422

attribute specification, 618
binding. See binding; binding 

indication
block configuration, 427, 470, 

748
direct instantiation, 428
generate statement, 465



Index 895

generic map, 429
Gumnut, 702, 720
hierarchical, 425
nested, 427
port map, 429
synthesis, 726
verification unit binding, 578

specification, 437, 438, 464
verification unit binding, 580

conforming profile, 253, 396, 399, 
405, 413

conj function, 301
constant, 31, 84

access type, 480
alias, 355
array, 96, 103

read only memory, 657
attribute specification, 620
declaration, 31, 139, 140, 207, 

245, 450, 745
deferred, 250, 252, 253, 635
external name, 560, 561
generic type, 373
generic. See generic constant
mathematical, 296, 300
parameter, 215
synthesis, 635
unconstrained array, 106, 111
unconstrained record, 134

constrained array. See array, fully 
constrained; array, partially 
constrained

constrained record. See record, fully 
constrained; record, partially 
constrained

constraint
index, 105, 110, 133

open, 110, 133
layout, 616
placement, 616
range, 35, 38, 39, 52, 53, 72, 84, 

96, 104
synthesis, 729
timing, 90, 149, 173, 232, 429

attribute example, 629
exercise, 242, 243, 415
generic example, 368
hold time example, 232
procedure example, 226
setup time example, 391

context clause, 261, 293
context declaration, 190

example, 191
standard, 312

context reference, 191
control character, 45

control section, 5
Gumnut, 704, 706, 708
structural example, 430, 439

control section, behavioral example, 
211

control structure, 65
conversion

subtype, 123, 124, 486
type, 54, 58, 373

array, 122
association list, 779

conversion function, 316, 322, 326, 
551

association list, 779
bit vector to number example, 

229
generic, 537
standard logic, 303

coordinate transformation, behavior-
al example, 98

cos function, 297, 301
cosh function, 298, 301
cosine

behavioral example, 82, 85
exercise, 243

counter
behavioral example, 76, 78
configuration example, 426, 427
elaboration example, 193
exercise, 63, 94, 199, 200, 202, 

205, 336, 415, 474, 475, 
583, 791

functional eample, 745
generic example, 375, 395, 399, 

405
instantiation example, 428
shared example, 586, 588, 589, 

592
structural example, 177, 187, 425
synthesis example, 644, 651
verification example, 747

CPU
behavioral example, 129, 156, 

210, 212, 251, 259, 356, 
687

entity example, 273, 676
functional example, 740
Gumnut case study, 669
instantiation example, 702
instrumented example, 504
monitor, 719
package example, 246, 251, 681
pipelined exercise, 732
register transfer example, 6, 211, 

704, 736

structural example, 181, 439, 441, 
678

create_hierarchy synthesis attribute, 
660

D

Data Encryption Standard (DES) ci-
pher, 751, 766

data memory, 669, 671, 674, 677, 
704, 719, 726

data path, 5
deadlock, 596
deallocate procedure, 490, 636
deallocation, 490
debugging, 367, 458, 702, 719
decimal base specifier, 24
declarative part, 237, 258, 500

architecture, 140, 208, 255, 437, 
576, 585

attribute specification, 620
block statement, 437, 576, 585, 

745
entity, 139, 174, 255, 576, 585
function, 228
generate statement, 576
package, 576
procedure, 207
process statement, 32, 164, 255
subprogram, 255

decoder
configuration example, 432
entity example, 432
exercise, 135, 199, 201, 202, 632, 

789
functional example, 246
instantiation example, 431
synthesis example, 657
synthesis exercise, 668

decoration. See attribute specification
decryption, 750
decryption envelope, 753, 763, 768
decryption license, 765, 768
decryption tool, 752

key exchange, 769
default binding, 423, 433, 442, 726
default clock declaration, 576
default generic, 412
default initial value, 37, 38, 41, 44, 

374, 480
signal, 196, 269

default subprogram, 397, 399, 548
default value

generic constant, 367, 376
parameter, 220, 224, 234, 405
port, 139, 184



896 Index

deferred binding, 435
deferred constant, 250, 252, 253, 635
delay

disconnection specification, 743
intertial, 158, 737
signal asignment, 143
transport, 158

delay element
behavioral example, 159
exercise, 201, 473
functional example, 169

delay line, exercise, 474
delay mechanism, 143, 158, 737

conditional signal assignment, 
146, 169, 170

null transaction, 737
selected signal assignment, 147, 

171, 173
delayed attribute, 149, 606
delay_length subtype, 53
delta cycle, 571
delta delay, 150, 155, 776, 781

example, 156
denormalize parameter, 328, 331
denormalize_in parameter, 332
denormalize_out parameter, 332
dependency, between library units, 

187
DES cipher, 751, 766
descending range, 35, 53, 57
design library

See library
design unit, 15, 186, 245, 254, 261, 

377, 424
attribute specification, 618
verification unit, 578

dictionary
ADT example, 400, 491
exercise, 415, 416, 497
traversal example, 403, 495

digest, 752, 764, 768, 769
digital alarm clock, 721

synthesis, 729
synthesis exercise, 732

digital envelope, 751, 767, 768
example, 755, 757

digital signature, 752, 768, 769
example, 758

direct binding (VHPI), 771
direct instantiation

configuration, 428, 429
entity, 111, 176, 186, 420, 422

direction, 35, 53, 57, 72
slice, 121

directive
protect, 750

PSL, 576
tool, 752, 762

directly visible. See visibility, directly 
visible

disable interrupt instruction, 672, 698, 
713

disassemble procedure, 683, 690
disconnection, 733, 740

specification, 743
discrete event simulation, 15, 144
discrete range, 71, 84, 95, 100, 102, 

106, 450, 465, 471
discrete type, 52, 70, 72, 84, 117, 119

attribute, 56
dissolve_hierarchy synthesis at-

tribute, 660
divider, 723, 727
division operator (/), 36, 38, 59, 300, 

306, 324, 325
DMA controller, package example, 

362
don’t care value, 25, 48, 125, 280

synthesis, 638
driver. See signal, driver
driving attribute, 606, 737
driving value, 185, 280, 284, 285, 572, 

573
driving_value attribute, 285, 606
dynamic storage, 734

E

EBNF (Extended Backus-Naur Form), 
26

edge checker, exercise, 243
edge triggered, 91, 150

synthesis, 642
effective value, 185, 284, 572, 573
elaboration, 15, 193, 424, 464, 560

generate statement, 455, 460
order, 562

elaboration function, 771, 773
element attribute, 104, 113, 359, 605
ElGamal cipher, 751, 767
enable interrupt instruction, 672, 698, 

713
encoder, exercise, 135
encoding, 752, 764, 768

specification, 766
encryption, 750
encryption envelope, 753, 762, 767
encryption tool, 752, 763, 768

key exchange, 769
endfile function, 501
endline function, 523

engine management system, exer-
cise, 264

entity, 8
attribute specification, 618
declaration, 8, 137, 186, 261, 365, 

418
declarative part, 139, 174, 255, 

576, 585
instantiation. See component in-

stance, direct
in pathname, 563
top-level, 560, 564

entity (item)
attribute specification, 617
group template declaration, 628

enum_encoding synthesis attribute, 
635, 653, 664

enumeration literal, 43, 247, 260, 360, 
361, 362

attribute name, 626
attribute specification, 623
overloading, 43
qualification, 53

enumeration type, 43, 52, 272, 361
relational operator, 60
synthesis, 634, 635, 664

env package, 293, 398, 797
equality operator (=), 46, 59, 117, 

294, 300, 306, 323, 373
generic type, 373
shared variable, 589
synthesis, 637

equality operator, matching (?=), 49, 
60, 117, 294, 302, 306, 323

matching case statement, 125
synthesis, 638

error checking, example, 745
error detector and corrector, exercise, 

204
error severity level, 88
event, 15, 144, 196, 373, 571
event attribute, 149, 606
exclusive nor operator. See xnor op-

erator
exclusive or operator. See xor opera-

tor
execution function, 771, 772, 773, 774
execution. See simulation
exit statement, 77, 81, 85

synthesis, 648
exp function, 297, 301
exponential function, exercise, 93, 94
exponential notation, 22
exponentiation operator (**), 36, 38, 

58, 297
exponent_width parameter, 331, 332



Index 897

expression, 57
actual generic constant, 366
actual parameter, 215
association with port, 176, 182, 

184, 186, 781
boolean. See condition
case generate selector, 460
case statement selector, 70, 124, 

149
external name, 561
function call, 228
generate parameter, 465, 471
guard, 740, 744
initial value, 31, 32, 106, 111, 134, 

253
synthesis, 635

parameter default value, 220, 224, 
234, 405

primary, 57, 480
qualified, 53, 58, 71, 124, 172, 

247, 373, 481, 486
return statement, 228
variable assignment, 33

Extended Backus Naur Form (EBNF), 
26

extended identifier, 19
external name, 559

alias, 550, 561
block statement, 747
generic constant, 565
port, 565
shared variable, 589
signal, 560, 563, 571

F

failure severity level, 88
falling_edge function, 61, 294, 304, 

310
synthesis, 642

FIFO
ADT example, 385
exercise, 474, 476

file, 480, 499
alias, 355
appending, 505
array element, 499
attribute declaration, 616
attribute specification, 620
buffer, 507
closing, 507, 509, 512, 542, 544
declaration, 499, 587

subprogram, 507
VHDL-87, 500

end of file test, 501
flushing, 507

logical name, 500, 509
multiple association, 508
opening, 500, 507, 509, 512, 541, 

544
status, 510

parameter, 512
VHDL-87, 513

partially constrained array, 502
portability, 514
reading, 303, 311, 317, 322, 501, 

544
type, 373

synthesis, 636
unconstrained array, 502
writing, 303, 311, 317, 322, 504, 

541
file_close procedure, 510
file_open procedure, 509, 510
file_open_kind type, 44, 500
file_open_status type, 44, 510
find_leftmost function, 309
find_rightmost function, 309
finish procedure, 295
finite-state machine

behavioral example, 100, 148, 165
external name example, 564, 567
force example, 571
functional example, 747
Gumnut, 708
state encoding, 653
state example, 664
synthesis, 652, 661, 662
transition matrix, 101

first bit set, procedure example, 222
first difference, function example, 

359
fixed-point number, 339

complex example, 407, 410
fixed-point package, 313, 319, 552
fixed_float_types package, 314, 319, 

816
fixed_generic_pkg package, 313, 322, 

326, 407, 410, 816
read and write operations, 528

fixed_guard_bits generic constant, 
314

fixed_overflow_style generic con-
stant, 314

fixed_overlow_style_type type, 314
fixed_pkg package, 313, 829

read and write operations, 528
fixed_round literal, 314
fixed_round_style generic constant, 

314
fixed_round_style_type type, 314
fixed_saturate literal, 314

fixed_truncate literal, 314
fixed_wrap literal, 314
flipflop

behavioral example, 11, 89, 150, 
368, 608

binding example, 423
component example, 418
configuration example, 472
dataflow example, 777
entity example, 175
exercise, 94, 200, 203, 414, 789
functional example, 173
instantiation example, 177, 368, 

419, 450, 456
RTL example, 167
timing example, 232

float type, 319, 324, 331
read and write operations, 528

float_check_error generic constant, 
319

float_denormalize generic constant, 
319

float_exponent_width generic con-
stant, 318

float_fraction_width generic constant, 
319

float_generic_pkg package, 318, 322, 
326, 829

read and write operations, 528
float_guard_bits generic constant, 

319
floating-point package, 318, 552
floating-point type, 38, 52

to_string function, 60
float_pkg package, 318, 319, 840

read and write operations, 528
float_round_style generic constant, 

319
floor function, 297
flush procedure, 507
for generate, 449

configuration, 467, 468
for loop, 83, 104
force assignment, 570

aggregate target, 574
conditional, 573
default mode, 572
mode, 572, 573
multiple, 575
selected, 573
in subprogram, 575

forcing strength, 48, 279
foreign application, 770

registration, 775
foreign architecture, 770, 771, 773
foreign attribute, 770, 771, 773, 774



898 Index

foreign model, 770
foreign subprogram, 770, 772, 774
FPGA, 722, 727, 729
fraction_width parameter, 331, 332
free sector map, exercise, 134
FSM. See finite-state machine
fsm_complete synthesis attribute, 662
fsm_state synthesis attribute, 661
fully constrained array, 105, 109, 123
fully constrained record, 131
fully constrained subtype, 485
function, 227, 360

call, 228, 233
conversion. See conversion func-

tion
declaration, 227
declarative part, 228
generic, 394
generic list, 389
impure, 230, 589
nested, 238
overloading, 233
parameter list, 228
pure, 230, 278
resolution. See resolution function
result type, 228, 250, 361, 405
synthesis, 664
See also subprogram

function code, Gumnut, 673, 683
functional modeling, 166, 230, 235

G

garbage, 483, 490
gasm assembler, 699, 703, 729
gate

behavioral example, 111, 160, 162
configuration example, 441, 443
entity example, 139, 437
exercise, 135, 445, 446, 632
functional example, 366
instantiation example, 181, 184, 

185, 367, 438, 441, 442
structural example, 142

gated clock, synthesis, 665
gated_clock synthesis attribute, 665
generate statement, 449, 585, 747

case generate, 460
configuration, 468
VHDL-87, 462

configuration, 465
declarative part, 576
for generate, 449

configuration, 467, 468
if generate, 455

configuration, 466, 468

VHDL-87, 459
nested, 453, 468
parameter, 360, 450, 456
in pathname, 563
recursive, 462

generic, 365
actual, 377, 419
attribute specification, 620
block statement, 748
default, 412
matching, 413

generic constant, 365, 374, 386, 429, 
449, 456, 457, 461

actual, 366, 433, 780
array, 371
default value, 367, 376
external name, 565
formal, 365, 433, 437, 780
local, 433, 437
matching, 413
package example, 535
size constrained by generic, 371, 

372
unassociated, 439
visibility, 366

generic list, 365, 381, 394
in package, 376
in subprogram, 389

generic map, 366, 377, 381, 390, 410, 
412, 419, 428, 433

block statement, 748
configuration declaration, 429
conversion function, 779
deferred binding, 435
incremental binding, 439

generic mapped package, 381
generic mapped subprogram, 393
generic package, 407

actual, 407, 412, 556
example, 409, 412

formal, 407, 412
example, 408, 410

matching, 413
generic subprogram, 394

actual, 394, 548
call, 394
default, 556
formal, 394
matching, 413

generic type, 372, 383, 386
actual, 372, 374, 380
constant, 373
default, 376
distinct, 380
equality operator (=), 373
formal, 372, 373

in signature, 393
in generic subprogram, 399
matching, 413
operation defined by generic sub-

program, 395
operations not defined, 375
package example, 535
signal, 373
variable, 373

get_principal_value function, 301
globally static, 183, 184
graphics transformation, behavioral 

example, 451
Gray code, 661
greater than operator (>), 46, 59, 117, 

294, 306, 323
greater than operator, matching (?>), 

49, 60, 294, 302, 306, 323
greater than or equal to operator 

(>=), 46, 59, 117, 294, 306, 323
greater than or equal to operator, 

matching (?>=), 49, 60, 294, 
302, 306, 323

group, 628
attribute specification, 625, 628
declaration, 628
template declaration, 628

guard expression, 740, 744
guard signal, 740, 742
guard_bits parameter, 328
guarded port, 738
guarded signal, 733, 737, 740

array, 737
guarded signal assignment, 739

disconnection specification, 743
guarded signal parameter, 739
Gumnut, 669

instantiation example, 702, 722, 
726

H

Hamming code generator, exercise, 
204

handshake assertion, example, 576
hash function, 752, 764, 768

specification, 766
hexadecimal base specifier, 24
hexadecimal string, 120
hexadecimal VMEM format, 540
hex_read procedure, 519, 522, 528
hex_write procedure, 524, 527, 528
hiding. See visibility, hiding
high attribute, 55, 103, 604, 605
high impedance, 25, 268, 279, 733

synthesis, 635, 637



Index 899

hold time, 232, 368
hread procedure, 519, 522, 528
hwrite procedure, 524, 527, 528
hypercube, exercise, 478

I

identification number, example, 255, 
382

identifier, 19, 57, 581
basic, 19
enumeration literal, 43
extended, 19

identifier table, exercise, 265
identity operator (+), 36, 38, 41, 59
ieee library, 248, 259, 296
ieee_bit_context context, 312
ieee_std_context context, 312
if generate, 455

configuration, 466, 468
VHDL-87, 459

if statement, 65, 70
equivalent to conditional signal 

assignment, 146, 167
equivalent to conditional variable 

assignment, 69
synthesis, 637, 642

image attribute, 55, 604
textual output, 527

implementation synthesis attribute, 
663

impure function, 230, 589
incomplete type declaration, 487, 636
incremental binding, 438
incrementer

behavioral example, 308
generic function example, 395
procedure example, 221

indefinite wait, 154, 226
index constraint, 105, 110, 133

open, 110, 133
index range. See  array, index range
index type, 96, 105, 106
indirect binding (VHPI), 773
inequality operator (/=), 46, 59, 117, 

294, 300, 306, 323, 373
shared variable, 589

inequality operator, matching (?/=), 
49, 60, 117, 294, 302, 306, 323

inertial delay, 158, 737
inertial, in port map, 781
infer_mux synthesis attribute, 663
inferred storage, 650

synthesis exercise, 668
infinite loop, 76
infinity, 321

information hiding, 250
initial value, 31, 32, 106, 111, 134, 

253, 375
default initial value, 37, 38, 41, 44, 

196, 269, 374, 480
signal, 142, 196, 269
synthesis, 635

initialization phase, 15, 196
input file, 518
input instruction, 671, 715, 718
input/output, 499

Gumnut, 671, 674, 704, 715, 717, 
718, 719

exercise, 732
user-defined type, 527

input/output controller
structural example, 248

input/output instruction, 671, 695
instance_name attribute, 355, 607
instantiation

component. See component, in-
stance

package, 377, 383, 407, 410, 412, 
547, 564

subprogram, 390
instruction fetch, 692

procedure example, 210
instruction memory, 669, 674, 677, 

713, 726
instruction register, Gumnut, 690, 

704, 713
instruction set

example, 129
Gumnut, 669, 681

instruction set interpreter
behavioral example, 210, 212, 

252, 259, 687
instrumentation, 458, 504

example, 458
integer literal, 22
integer type, 35, 52

synthesis, 634, 635
universal, 56

integer type, 35
synthesis, 634

integer_vector type, 106, 294
integrator, exercise, 63
Intel hex-format, exercise, 533
interrupt, 672, 674, 691, 711, 712, 

718, 723
Gumnut, 704

inverter
behavioral example, 160
exercise, 474

IP encryption, 750
ISO character set, 17, 44

is_X function, 304, 335

J

JEDEC format, exercise, 533
jump instruction, 672, 697, 712
jump to subroutine instruction, 672, 

697, 712, 714
justify function, 526, 527

K

keep synthesis attribute, 659
key, 751, 767

exchange, 769
method, 763
name, 763
owner, 763

keypad controller, exercise, 291

L

label, 360
assertion statement, 87
attribute specification, 622, 623
block statement, 563, 740, 744, 

749
case statement, 69
component instance, 419, 423
concurrent assertion statement, 

173
concurrent procedure call state-

ment, 225
exit statement, 77
generate alternative, 465, 469, 473
generate statement, 450, 456, 465, 

564
if statement, 65
loop statement, 79, 81, 85
next statement, 80
null statement, 75
procedure call statement, 208
process statement, 164
return statement, 212, 228
signal assignment statement, 143
variable assignment statement, 33
wait statement, 151

last_active attribute, 149, 606
last_event attribute, 149, 606
last_value attribute, 149, 151, 606
latch

exercise, 200, 202, 415
functional example, 741
synthesis example, 650, 651



900 Index

latching multiplexer, exercise, 788
layout constraint, 616
left attribute, 54, 103, 223, 604, 605
left_index parameter, 328, 332
leftof attribute, 56, 604
length attribute, 103, 224, 522, 605
length, physical type example, 40
less than operator (<), 46, 59, 117, 

119, 294, 306, 323
generic subprogram, 400, 492

less than operator, matching (?<), 49, 
60, 294, 302, 306, 323

less than or equal to operator (<=), 
46, 59, 117, 294, 306, 323

less than or equal to operator, match-
ing (?<=), 49, 60, 294, 302, 
306, 323

level sensitive logic, synthesis, 650
lexical element, 17, 17
library, 15, 186, 188, 423

ieee, 248, 296
name, 192, 246, 248, 258, 570
object, 771, 773, 774, 775, 776
registration, 775
resource, 188, 248
std, 293, 514
working, 177, 188, 193, 246, 293, 

424
library cell

synthesis, 663
library clause, 188, 261, 424

in context declaration, 190
example, 189

library unit, 187, 246, 257, 424
license, 768

decryption, 765
runtime, 766

limiter
behavioral example, 780
exercise, 94
function example, 228

line break, 92, 526
line feed character, 92, 526
line type, 517
linkage mode, 785
linked data structure. See access type, 

linked data structure
linked list

exercise, 497
linked list, exercise, 497
literal, 57

based, 22
bit string. See bit string literal
character, 23, 43, 360, 362
enumeration. See enumeration lit-

eral

integer, 22
numeric, 253
physical, 39
real, 22
string. See string literal

load instruction, 671, 715, 718
local declaration, 207, 228
local package, 255, 381

attribute specification, 618
use clause, 259

locally static, 36, 72, 125, 252
log file

exercise, 531
log file, exercise, 531
logarithm function, 297, 301

exercise, 241
logic block

functional example, 235, 272
generic example, 367
structural example, 437, 442
synthesis, 665
synthesis example, 640
synthesis exercise, 668

logical instruction, 671, 693, 715, 717
logical name, 500, 509
logical operator, 46, 47, 49, 58, 235, 

294, 323, 325
array operands, 114
array/scalar, 114
array/scalar operands, 294, 325
exercise, 243
reduction, 115
standard logic, 302

logic_block synthesis attribute, 665
loop statement, 76

for loop, 83, 104
infinite, 76
labelled, 79, 81, 85
nested, 79
parameter, 84, 104, 360
summary, 86
synthesis, 648
while loop, 81

low attribute, 54, 103, 604, 605

M

MAC. See multiplier accumulator
macro, 581
majority, exercise, 243, 447
matching case statement, 125, 149, 

172
choice, 126, 149

matching equality operator (?=), 49, 
60, 117, 294, 302, 306, 323

matching case statement, 125

synthesis, 638
matching generic, 413
matching greater than operator (?>), 

49, 60, 294, 302, 306, 323
matching greater than or equal to op-

erator (?>=), 49, 60, 294, 302, 
306, 323

matching inequality operator (?/=), 
49, 60, 117, 294, 302, 306, 323

matching less than operator (?<), 49, 
60, 294, 302, 306, 323

matching less than or equal to opera-
tor (?<=), 49, 60, 294, 302, 306, 
323

matching relational operator, 294, 
323

synthesis, 638
matching selected signal assignment, 

148, 172
matching selected variable assign-

ment, 127
math_complex package, 299, 801

example, 342
mathematical operation

example, 410
exercise, 415

mathematical packages, 296
math_real package, 296, 799
maximum

behavioral example, 89
exercise, 135, 243

maximum function, 37, 38, 41, 60, 
119, 294, 309, 324, 325

reduction, 119
MD2 hash function, 752, 767
MD5 hash function, 752, 766, 767
Mealy output, 652
memory

asynchronous, 539, 654
behavioral example, 97, 129, 156
configuration example, 468
data, 669, 671, 674, 677, 704, 719, 

726
dumping, 537, 540
entity example, 273, 277
exercise, 204, 416, 447, 531, 790
initialization, 537, 657
instantiation example, 549
instruction, 669, 674, 677, 713, 

726
loading, 537, 542, 657
package case study, 535
package example, 609
pipelined, 540

synthesis, 656
procedure example, 210, 212



Index 901

read only. See read only memory
structural example, 453
synchronous, 540, 546

synthesis, 655, 656
synthesis, 654, 665
synthesis exercise, 668
tristate example, 282

memory instruction, 671, 695, 715, 
717, 718

metacomment, 666
metalogical value, 637
metatability, 727
method, 586, 587, 588, 589

uninstantiated subprogram, 597
microprocessor. See CPU
minimum function, 37, 38, 41, 60, 

119, 294, 309, 324, 325
reduction, 119

minimum, exercise, 243
mod operator, 36, 41, 59, 294, 297, 

306, 324, 325
mode

force, 572, 573
parameter. See parameter, mode
port. See port, mode

mode_error literal, 510
model, 2
model name, 773, 774
modem, behavioral example, 100
monitor, example, 568
Moore output, 652
Motorola S-format, exercise, 533
Muller-C element, exercise, 201
multiplexer

behavioral example, 73, 145, 152
exercise, 30, 200, 290, 414, 416, 

444, 474, 475
functional example, 147, 167
generic example, 372
Gumnut, 704
instantiation example, 183
synthesis, 663
synthesis example, 639
synthesis exercise, 667

multiplication operator (*), 36, 38, 59, 
300, 306, 324, 325

multiplier, 346
alternative implementations ex-

ample, 460, 471
exercise, 336, 354, 444, 477
register transfer example, 12
synthesis example, 647

multiplier accumulator, 337
behavioral example, 340
exercise, 353
register transfer example, 346

test bench example, 342, 350
multivalued logic, 269, 275

package example, 269
mutual exclusion, 586, 596, 597

N

named association
array aggregate, 99, 106
generic map, 367
parameter, 224
port map, 177
record aggregate, 131

name_error literal, 510
NaN, 321
nand gate

configuration example, 443
entity example, 437
exercise, 445
instantiation example, 438, 442

nand operator, 46, 58, 60, 114, 235, 
302, 307, 323, 325

natural subtype, 53
synthesis, 634

negation operator (–), 22, 36, 38, 41, 
59, 300, 324, 325

negation, procedure example, 216
negative logic, 47
net, 193, 563
network interface, behavioral exam-

ple, 218, 231, 386, 503
new_size parameter, 332
next statement, 80, 81, 85

synthesis, 648
nor gate

configuration example, 441
instantiation example, 441

nor operator, 46, 58, 60, 114, 235, 
302, 307, 323, 325

not operator, 46, 58, 114, 302, 306, 
307, 323, 325

not-a-number (NaN), 321
note severity level, 88
now function, 90, 232
no_warning generic constant, 314, 

319
null access value, 480, 483, 487, 489, 

490
null range, 85
null slice, 121
null statement, 75, 145, 170
null transaction, 734, 737, 739, 740, 

743
numeric literal, 253
numeric_bit package, 304, 322, 326, 

806

read and write operations, 528
synthesis, 634, 636

numeric_bit_unsigned package, 312, 
322, 326, 813

numeric_std package, 304, 322, 326, 
637, 812

read and write operations, 528
synthesis, 635, 636

numeric_std_unsigned package, 312, 
322, 326, 815

synthesis, 636

O

object library, 771, 773, 774, 775, 776
object, attribute specification, 620
octal base specifier, 24
octal string, 120
octal_read procedure, 519, 522, 528
octal_write procedure, 524, 527, 528
one_cold synthesis attribute, 661
one_hot synthesis attribute, 661
opcode, Gumnut, 673
open

actual parameter, 220
binding indication, 435
file declaration, 500
generic map, 367
index constraint, 110, 133
parameter list, 224
port map, 176, 184, 433
See also unassociated

open collector, 280
exercise, 289

open drain, 280
open_ok literal, 510
OpenPGP cipher, 767
operation

mathematical
example, 410
exercise, 415

predefined, 260, 262, 399
See also operator

operator, 57, 58
alias, 360
arithmetic, 36, 38, 41, 58, 306

package example, 253
array, 114
attribute specification, 619
index range, 324
logical. See logical operator
overloading, 234, 362, 589
precedence, 58
relational. See relational operator
result size, 324
shift, 58, 116, 236, 306, 323, 325



902 Index

short circuit, 46, 235, 490
summary, 323

or operator, 46, 58, 60, 114, 235, 302, 
307, 323, 325

ordered collection, ADT example, 
400, 491

oread procedure, 519, 522, 528
others

array aggregate, 100
attribute specification, 625
case statement, 71, 124
configuration declaration, 423
disconnection specification, 744
matching case statement, 127
record aggregate, 131

output file, 518, 526
output instruction, 671, 715
overflow, 313, 339, 342, 346
overflow_style parameter, 317, 327, 

328, 331, 332
overloading, 240, 262, 323, 360, 361, 

380, 392
condition operator (??), 236
enumeration literal, 43
operator, 234, 362, 589
profile, 393
subprogram, 233

owrite procedure, 524, 527, 528

P

package, 34, 245, 355, 585
abstract data type, 384
attribute specification, 618
body, 245, 252, 376, 385

local package, 255
subprogram, 250, 390

component declaration, 420
declaration, 245, 252, 261, 384

subprogram, 250, 390
declarative part, 576
example, 362
generic list, 376
generic mapped, 381
generic. See generic package
IEEE standard, 296
instantiation, 377, 383, 407, 410, 

412, 547, 564
instantiation example, 386
local, 255, 381

attribute specification, 618
use clause, 259

memory case study, 535
pathname, 564, 569
read and write operations, 528
selected name, 246, 248, 257

uninstantiated, 376, 381, 407, 410, 
412, 564

meaning of names, 383
parameter, 213, 361

actual, 214, 215, 216, 217, 219, 
220, 221, 224, 225, 233, 
286, 739, 780

attribute specification, 627
file, 512

attribute specification, 621
class, 215, 216, 220, 224, 228, 230, 

405, 512, 621
constant, 215
default value, 220, 224, 234, 405
direction. See parameter, mode
file, 512

VHDL-87, 513
formal, 214, 216, 217, 219, 221, 

224, 233, 253, 739, 780, 782
generate, 360, 450, 456
guarded signal, 739
index range, 221, 358, 359
list, 213, 224, 228, 250
loop, 84, 104, 360
mode, 214, 215, 216, 217, 219, 

220, 224, 226, 228, 230, 405
partially constrained, 221
resolved signal, 286
shared variable, 588
signal, 215, 217, 537
subtype, 406
summary, 224
type, 214, 221, 224, 233, 405
unassociated, 220
unconstrained, 221, 358, 359

alias, 358, 359
variable, 215

parameter list, 390
parent, 230
parentheses, 58, 115
parity

example, 116
exercise, 202, 476

partially constrained array, 109, 123, 
357

partially constrained composite type, 
782, 783

partially constrained record, 131, 357
partially constrained subtype, 485

attribute value, 617
pass transistor, exercise, 290, 788
passive process, 174
pathname, 559, 747

absolute, 560, 563
attribute, 607, 627
package, 564, 569

relative, 566, 567
viewport, 765

path_name attribute, 355, 607
physical literal, 39
physical type, 39, 52, 361

attribute, 56
mixed dimensional arithmetic, 41, 

56
to_string function, 61

pipeline register, 338, 342, 346
pipeline, behavioral example, 451
pipelined CPU

exercise, 732
structural example, 441

pipelined memory, 540
synthesis, 656

pipelining, 338, 344
placement, 616
plain text, 751
pointer. See access type
polar_to_complex function, 301
polynomial function pipeline, exer-

cise, 353
port, 8, 137, 193, 268

actual, 433, 780
array, 113, 180, 181, 369
association, 176

with expression, 176, 182, 184, 
186, 781

with resolved signal, 280
attribute specification, 620
bidirectional, 138, 280
block statement, 748
buffer mode, 138, 140, 185, 285
bus kind, 738
composite, 180
default value, 139, 184
direction. See port, mode
driving value, 185, 572
effective value, 185, 572
external name, 565
force, 572
formal, 433, 437, 780, 782
guarded, 738
inout mode, 138, 185, 280, 285
linkage mode, 785
local, 433, 437
mode, 138, 572
out mode, 138, 140, 185, 285
partially constrained, 113, 181, 

185
record, 180
register kind, 738
release, 572
resolved, 282, 738
size constrained by generic, 369



Index 903

source, 282
type, 34, 137, 372
unassociated, 139, 176, 185, 433, 

435, 439
unconstrained, 185
unconstrained array, 111, 181, 

369
unused input, 183

port map, 12, 176, 419, 428, 433
block statement, 748
configuration declaration, 429
conversion function, 779
deferred binding, 435
external name, 561, 563
incremental binding, 439
non-static expression, 183, 185

pos attribute, 56, 604
position number, 56
positional association, 264

array aggregate, 99, 106
generic map, 367
parameter, 224
port map, 177
record aggregate, 131

positive logic, 47
positive subtype, 53

synthesis, 634
positive_real subtype, 299
postponed process, 776
power estimation, foreign application 

example, 775
precedence

EBNF, 28
operator, 58, 115

pred attribute, 56, 604
predefined operation, 260, 262, 399
primary binding. See binding, incre-

mental
primary expression, 57, 480
primary unit

design unit, 187, 254, 261, 424
physical type, 39

principal_value subtype, 299
priority encoder, exercise, 135
priority minimizer, exercise, 789
private key, 751
procedure, 207

abstraction of a process, 226
declaration, 207
declarative part, 207
generic, 394
generic list, 389
local, example, 686
nested, 238
overloading, 233
parameter list, 213

parameter. See parameter
return, 208, 212
See also subprogram

procedure call statement, 208, 211, 
224, 225, 233

concurrent, 175, 225, 540, 549, 
778

example, 227
example, 214, 216, 217

process statement, 8, 140, 141, 143, 
164, 193, 451

declarative part, 32, 164, 255
elaboration, 193
equivalent to concurrent assign-

ment, 167
equivalent to concurrent proce-

dure call, 225
example, 68
execution, 155
passive, 174
postponed, 776
resumption, 15, 151, 196, 776
sensitivity, 9, 15, 196, 218, 571, 

776
sensitivity list, 68, 77, 152, 165, 

646
synthesis, 641

suspension, 9, 15, 165, 196, 218, 
226, 776

synthesis, 640
timeout, 196

processor core, foreign model exam-
ple, 772, 774

processor. See CPU
producer/consumer, exercise, 201
profile, 393, 396, 399, 405, 413
program counter

Gumnut, 712
program counter, Gumnut, 690, 704, 

713
programmable logic device, exercise, 

532, 533
propagation delay, 143, 160, 163, 366, 

367, 368, 440, 743
functional example, 745, 749

property declaration, 576
attribute specification, 624

Property Specification Language
See PSL

protect directive, 750
protected type, 373, 480, 586, 597

attribute declaration, 616
body, 586, 587
declaration, 586
file element, 499
method, 589

uninstantiated subprogram, 
597

package declaration, 588
PSL, 575

declaration, 576
default clock declaration, 576
directive, 576
macro, 581
property declaration, 576

attribute specification, 624
reserved word, 581
sequence declaration, 576, 624
simple subset, 576
verification unit, 578

public key, 751
public key infrastructure (PKI), 770
pull-up, 734

exercise, 289
functional example, 280

pulse generator, exercise, 242
pulse rejection limit, 161, 164, 743
pulse-width check, 150

exercise, 199
pure function, 230, 278
push button, 722, 727

Q

qualified expression, 53, 58, 71, 124, 
172, 247, 373, 481, 486

queue ADT, exercise, 497
quiet attribute, 149, 606
quoted-printable encoding method, 

752, 767

R

RAM. See memory
ram_block synthesis attribute, 665
random number generator, 298

exercise, 336, 558, 583, 602
test bench example, 298, 782

range, 104
constraint, 35, 38, 39, 52, 53, 72, 

84, 96, 104
direction, 35, 53, 57, 72
discrete, 71, 84, 95, 100, 102, 106, 

450, 465, 471
null, 85

range attribute, 103, 112, 113, 222, 
223, 605

raw encoding method, 767
read only memory (ROM)

asynchronous example, 546
behavioral example, 229, 501



904 Index

entity example, 139, 277
exercise, 197, 533
synthesis, 657, 664
synthesis example, 657
verification example, 175

read procedure, 501, 502, 517, 518, 
522, 528

invalid input, 519
readline procedure, 517
read_mode literal, 500
real literal, 22
real number, 38, 52
real type, 38

VHDL-87 and VHDL-93, 39
realmax function, 297
realmin function, 297
real_vector type, 106, 294
record, 128

access type, 483
aggregate, 131, 481
alias for element, 356, 627
element selection, 129
fully constrained, 131
partially constrained, 131, 357
partially constrained port, 185
port, 180
resolved element, 276
selected name, 129
synthesis, 636
type definition, 128
unconstrained, 131, 357
unconstrained constant, 134
unconstrained port, 185

recursive structure, 462
VHDL-87, 464

reduction operator, 294, 323
register

behavioral example, 9, 91, 370
binding example, 425
configuration example, 424, 431, 

440, 467
elaboration example, 193
entity example, 8, 430, 440
exercise, 414, 583, 632, 788, 791
functional example, 146
generic example, 369
instantiation example, 178, 180, 

370, 430, 439
shared variable example, 591
structural example, 10, 177, 419, 

450
synthesis example, 643, 644, 646
synthesis exercise, 668
test bench example, 14

register file
exercise, 135

Gumnut, 690, 704, 714
register signal, 734
register transfer level, 5, 652
registration

foreign application or library, 775
tabular, 773

registration function, 775, 776
rejection. See pulse rejection limit
relational operator, 46, 58, 60, 294, 

306, 323
array operands, 117
function example, 293
matching, 294, 323

synthesis, 638
relative pathname, 566, 567
release assignment, 570

aggregate target, 574
default mode, 572
mode, 572
multiple, 575
in subprogram, 575

rem operator, 36, 41, 59, 294, 306, 
324, 325

report clause
assertion statement, 87
concurrent assertion statement, 

173
report statement, 87, 91, 367, 397, 

607
reserved word, 20, 234

PSL, 581
reset

functional example, 169
Gumnut, 690, 691
synthesis example, 643, 644

resistance, physical type example, 39
resize function, 309, 316, 332, 333
resolution function, 267, 268, 283, 

636, 734
summary, 278

resolution indication, 275
resolution limit, 43, 61, 220, 295
resolution_limit function, 295
resolved function, 279
resolved port, 282, 738
resolved signal parameter, 286
resolved signal. See signal, resolved
resolved subtype. See subtype, re-

solved
resumption.  See process statement, 

resumption
return from interrupt instruction, 672, 

698, 712, 713, 718
return instruction, 672, 698, 712, 714
return statement

function, 228

procedure, 208, 212
return_port_name synthesis attribute, 

663
reverse_range attribute, 103, 605
right attribute, 54, 103, 604, 605
right_index parameter, 328, 332
rightof attribute, 56, 604
RIPEMD hash function, 752, 767
rising_edge function, 61, 151, 294, 

304, 310
generic function, 537, 556
synthesis, 642, 650

rol operator, 59, 116, 236, 302, 306, 
323, 325

ROM. See read only memory
rom_block synthesis attribute, 664
ror operator, 59, 116, 236, 302, 306, 

323, 325
rotate instruction, 671, 694, 715, 717
rotate_left function, 309
rotate_right function, 309
round function, 297
round_inf literal, 319
rounding, 313
round_nearest literal, 319
round_neginf literal, 319
round_style parameter, 317, 327, 328, 

331, 332
round_type type, 319
round_zero literal, 319
RSA cipher, 751, 767
rtl_attributes package, 659
rtl_synthesis metacomment, 666
runtime license, 766, 768

S

scalar type, 34, 52, 374
attribute, 54, 603
synthesis, 635
to_string function, 60

scheduler, functional example, 169
search tree, 491
secondary unit

design unit, 187, 254, 262
physical type, 39, 40

secret key, 751
select logic, port map example, 183
selected force assignment, 573
selected name, 190, 239, 253, 362, 

377, 379, 589
package item, 246, 248, 257
predefined item, 293
record element, 129

selected signal assignment, 147, 163, 
171, 740, 778



Index 905

matching, 148, 172
synthesis, 639

selected variable assignment, 74, 102
matching, 127

selector expression, 124, 149
case statement, 70

self-timed logic, exercise, 292
semantics, 14, 17, 186

EBNF, 29
sensitivity, 9, 15, 196, 218, 571, 776

concurrent assertion statement, 
173

concurrent procedure call state-
ment, 225

concurrent signal assignment, 166
conditional signal assignment, 

168
selected signal assignment, 171
synthesis, 640, 651
wait statement, 151, 154, 169

sensitivity list, 68, 77, 152, 165, 646
synthesis, 641

sequence declaration, 576
attribute specification, 624

sequence number generator, function 
example, 231

sequencer, structural example, 249
sequential logic, synthesis, 641
sequential statement, 8, 65, 141, 164, 

196, 207, 224, 227
attribute specification, 623
synthesis, 642

serial bus, example, 573
serial interface

entity example, 421
exercise, 446
package example, 421

Serpent cipher, 767
session key, 751, 768
setup time, 149, 226, 368, 391
seven-segment decoder

exercise, 202
synthesis example, 657
synthesis exercise, 668

seven-segment display, 721, 722, 727
foreign subprogram example, 

772, 774
severity clause

assertion statement, 88
concurrent assertion statement, 

173
severity_level type, 44, 88
sfixed type, 315, 324, 328, 408, 411

read and write operations, 528
SHA1 hash function, 752, 766, 767
shared variable

See variable, shared
shift instruction, 671, 694, 715, 717
shift operator, 58, 116, 236, 306, 323, 

325
shift register

configuration example, 472
exercise, 446
structural example, 456
synthesis example, 645

shift_left function, 309
shift_right function, 309
short circuit operator, 46, 235, 490
sign extension, exercise, 135
sign function, 297
signal, 140, 193

access type, 480
active, 144, 571
alias, 355
array, 96, 103, 179

memory, 537, 549, 654
array of resolved elements, 275, 

784
assignment. See signal assignment
association with port, 176
attribute, 149, 606
attribute specification, 620, 627
bus kind, 734
declaration, 12, 139, 140, 141, 

245, 275, 450, 733, 745
package, 248, 253
resolved, 268

default initial value, 196, 269
disconnection, 733, 740
driver, 145, 158, 161, 193, 196, 

268, 280, 286, 373, 563, 
733, 734, 737, 739, 740

actual parameter, 219
driving value, 280, 284, 285, 573
effective value, 284, 573
event, 15, 144, 196, 373, 571
external name, 560, 563, 571
generic type, 373
global, 248
guard, 740, 742
guarded, 733, 737, 740

array, 737
guarded parameter, 739
initial value, 142, 196, 269
kind, 734, 739
memory, 537
net, 193, 563
null transaction, 734, 737, 739, 

740, 743
parameter, 215, 217, 537
record, 276
register kind, 734

resolved, 145, 267, 734
array of resolved elements, 

274, 784
associated with port, 280
composite, 272
declaration, 268
package example, 272
parameter, 286
record, 276
summary, 278

source, 145, 268, 740
synthesis, 635, 651
transaction, 15, 144, 158, 160, 161, 

196, 219, 268, 734, 737, 
739, 740, 743, 778

type, 142
update, 155, 196

signal assignment, 9, 143, 143, 155, 
158, 160, 161, 166, 175, 193, 
286, 373

aggregate target, 102, 172, 574
alias, 571
array, 123
asynchronous, 642
concurrent, 166, 230, 740, 778

synthesis, 638
conditional, 146, 163, 167, 740, 

778
synthesis, 639, 640

conditional force, 573
delay, 143
external name, 561
force. See force assignment
guarded, 739

disconnection specification, 
743

in a procedure, 219, 220
release, 570
resolved composite target, 574
selected, 147, 163, 171, 740, 778

matching, 148, 172
synthesis, 639

selected force, 573
synchronous, 642

signal generator, behavioral example, 
219

signal processing, behavioral exam-
ple, 82

signature, 393
alias, 361
attribute name, 626
attribute specification, 618, 623
pathname attribute, 609, 612, 615

signed magnitude number, exercise, 
336

signed type, 304, 324, 327, 636



906 Index

read and write operations, 528
synthesis, 634

simple_name attribute, 355, 607
simulation, 15, 87, 165, 186, 195, 278, 

295, 424, 435, 458
simulation cycle, 15, 144, 155, 196, 

776
simulation time, 144, 158, 196, 232
sin function, 297, 301
sinh function, 298, 301
size_res parameter, 332
sla operator, 59, 116, 236, 302, 306, 

323, 325
slice, 120, 180, 627

alias, 357
direction, 121
null, 121

sll operator, 59, 116, 236, 302, 306, 
323, 325

source
port, 282
signal, 145, 268, 740

sparse array, exercise, 498, 558
special symbol, 22
sqrt function, 297, 301
sra operator, 59, 116, 236, 302, 306, 

323, 325
sread procedure, 518, 522
srl operator, 59, 116, 236, 302, 306, 

323, 325
stable attribute, 149, 606
stack

exercise, 415, 416, 497
generic example, 377
Gumnut, 690, 714
instantiation example, 384

stack pointer, Gumnut, 690, 704, 714
standard logic I/O, exercise, 532
standard logic type. See std_ulogic 

type
standard logic, synthesis, 637
standard package, 293, 793
standby instruction, 672, 699
state machine. See finite-state ma-

chine
static, 36, 72, 125, 183, 184, 252, 460, 

636
status_error literal, 510
std library, 293, 514
STD_INPUT logical name, 518
std_logic subtype, 278, 301

synthesis, 634, 635, 637
std_logic_1164 package, 48, 108, 

235, 248, 258, 278, 301, 322, 
326, 802

read and write operations, 528

synthesis, 634
std_logic_arith package, 636
std_logic_signed package, 636
std_logic_unsigned package, 313, 636
std_logic_vector subtype, 279, 301, 

326, 784
read and write operations, 528
synthesis, 634

std_match function, 310, 637
STD_OUTPUT logical name, 518
std_ulogic type, 48, 125, 235, 278, 

301, 324, 326, 334
condition conversion, 49
synthesis, 634, 635, 637

std_ulogic_vector type, 108, 108, 126, 
235, 278, 301, 324, 326, 334, 
784

numeric_std_unsigned package, 
312

read and write operations, 528
synthesis, 634

stimulus file reader
behavioral example, 511
exercise, 531

stimulus generator, 344
example, 154, 298
exercise, 243

stimulus list, example, 486, 490, 599
stimulus, force example, 574
stimulus/response test, exercise, 135
stop procedure, 295, 398
stop watch, exercise, 447
store instruction, 671, 715
strength reduction function, 334
strength weakener, exercise, 242
string literal, 23, 108

attribute value, 617
case statement choice, 124
fixed-point, 316
floating-point, 322

string type, 106
assertion statement, 87
synthesis, 634
textio, 517

string_read procedure, 518, 522
string_write procedure, 524, 527
structural modeling, 10, 176, 417, 

429, 449, 455, 744
mixed structural/behavioral, 12

structure attribute, 603
subelement association, 180
subprogram, 207, 245

alias, 361
attribute name, 626
attribute specification, 618
body, 390

call, 390
conversion function, 779
generic subprogram, 394

declaration, 252, 390, 450, 745
declarative part, 255
default, 397, 399, 548
file declaration, 507
foreign, 770, 772, 774
generic list, 389
generic mapped, 393
generic. See generic subprogram
instantiation, 390
overloading, 233
in package declaration, 250, 390
uninstantiated, 389, 553

action procedure example, 
403

meaning of names, 495
method, 597

See also function; procedure
subtracter, 346
subtraction instruction, 671
subtraction operator (–), 36, 38, 41, 

59, 300, 306, 324, 325
subtype, 52

attribute specification, 620
conversion, 123, 124, 486
declaration, 52, 104, 105, 110, 133, 

207, 245, 450, 636, 745
external name, 560, 561
in external name, 566
fully constrained, 485
parameter, 406
partially constrained, 485

attribute value, 617
resolved, 269

composite, 272
composite signal assignment, 

574
package example, 272
summary, 278

resolved elements, 275
unconstrained, 485

attribute value, 617
subtype attribute, 223
subtype indication, 52, 72, 96, 105, 

110, 133, 268, 275, 479, 636, 
734

actual generic type, 372
alias, 357, 360, 561
allocator, 480

succ attribute, 56, 604
sum of squares procedure, exercise, 

242
suspension. See process statement, 

suspension



Index 907

swap, procedure example, 223, 390
switch, 722, 727
switch strength, exercise, 292
swrite procedure, 524, 527
symmetric cipher, 751

example, 754
synchronization

behavioral example, 280
example, 156
exercise, 292
procedure example, 286

synchronous assignment, 642
synchronous control, synthesis exam-

ple, 643, 645
synchronous logic, synthesis, 641
synchronous memory, synthesis, 655, 

656
synchronous reset

synthesis, 660
synthesis example, 649

synchronous set, synthesis, 660
sync_set_reset synthesis attribute, 

660
syntax, 14, 17, 26, 186
synthesis, 3, 48, 87, 183, 186, 278, 

458, 616, 633, 729
alarm clock example, 729
constraint, 729
subset, 633

systolic array, exercise, 478

T

tabular registration, 773
tan function, 297
tanh function, 298
tee procedure, 526, 527
terminal count, synthesis example, 

644
terminator

functional example, 280
test bench, 13, 559

Gumnut, 699, 720
memory example, 546, 550
multiplier accumulator example, 

342, 350
shared varaible example, 589

test case, example, 382
test pattern, example, 402
test vector, 344

example, 598
testing, 2
text file type, 518
textio package, 514, 797

deallocation, 517
thermostat

behavioral example, 67
test bench example, 520

time of day, exercise, 265
time type, 42, 294

to_string function, 61
timeout

process statement, 196
wait statement, 151, 154

timer, 723
time_vector type, 106, 294
timing constraint, 90, 149, 173, 232, 

429
attribute example, 629
exercise, 242, 243, 415
generic example, 368
hold time example, 232
procedure example, 226
setup time example, 391

to_01 function, 303, 310, 334
to_binary_string function, 120, 295, 

302, 310
to_bit function, 303, 326
to_bit_vector function, 303, 332
to_bitvector function, 303, 332, 781
to_bstring function, 120, 295, 302, 

310
to_bv function, 303, 326
to_float function, 322, 331
to_hex_string function, 120, 295, 302, 

310
to_hstring function, 120, 295, 302, 

310, 318, 322
to_integer function, 310, 332, 548, 

552
to_octal_string function, 120, 295, 

302, 310
tool directive, 752, 762
to_ostring function, 120, 295, 302, 

310, 318, 322
to_real function, 332
to_sfixed function, 316, 330
to_signed function, 310, 328
to_slv function, 303, 327
to_std_logic_vector function, 303, 332
to_stdlogicvector function, 303, 332
to_std_ulogic function, 326
to_stdulogic function, 303
to_std_ulogic_vector function, 303, 

332, 553
to_stdulogicvector function, 303, 332
to_string function, 60, 120, 295, 310, 

317, 322, 526, 527, 528
to_sulv function, 303, 326
to_ufixed function, 316, 329
to_unsigned function, 310, 327, 548
to_UX01 function, 303, 310, 334

to_X01 function, 93, 303, 310, 334
to_X01Z function, 303, 310, 334
trace write, 92, 719

exercise, 94
tracing, 458, 702
transaction attribute, 149, 606
transaction. See signal, transaction
transceiver, exercise, 289, 290, 445, 

446
transformation array initialization, 

procedure example, 512
transmission line, behavioral exam-

ple, 158
transport delay, 158
traversal, dictionary example, 403, 

495
tree structure, 462
TRIMOSBUS, exercise, 292
tristate, 267, 269

exercise, 416
synthesis, 637
synthesis example, 640
synthesis exercise, 668
timing verification example, 285

tristate buffer
behavioral example, 271
exercise, 64, 290, 788, 789
instantiation example, 450

trunc function, 297
truth table, functional example, 172
Twofish cipher, 766
type

alias, 360
attribute, 54, 603
attribute specification, 620
base type, 52, 57, 84

alias, 357
classification, 51
closely related, 54, 122
composite. See composite type
conversion, 54, 58, 373

array, 122
association list, 779

declaration, 34, 104, 139, 207, 
245, 450, 586, 745

incomplete, 487, 636
discrete, 52, 70, 72, 84, 117, 119

attribute, 56
distinct, 275, 379
enumeration. See enumeration 

type
floating-point, 38, 52

to_string function, 60
function result, 228, 250, 405
generic. See generic type
integer, 35, 52



908 Index

universal, 56
parameter, 214, 221, 224, 233, 405
physical, 39, 52, 361

attribute, 56
mixed dimensional arithmetic, 

41, 56
to_string function, 61

port, 34, 137, 372
qualification. See qualified expres-

sion
scalar, 34, 52, 374

to_string function, 60
signal, 142
in use clause, 260

U

UART, synthesis example, 648
ufixed type, 314, 324, 328, 408

read and write operations, 528
u_float type, 319
unaffected waveform, 145, 147, 148, 

169, 170, 171, 173
unassociated

generic constant, 439
parameter, 220
port, 139, 176, 185, 433, 435, 439

unbound, 423, 435
unconnected. See port, unassociated
unconstrained array. See array, un-

constrained
unconstrained composite type, 782, 

783
unconstrained record. See record, un-

constrained
unconstrained subtype, 485

attribute value, 617
uniform procedure, 298
uninitialized value, 48, 280
uninstantiated package, 376, 381, 

407, 410, 412, 564
meaning of names, 383

uninstantiated subprogram, 389, 553
action procedure example, 403
meaning of names, 495
method, 597

unit
design, See design unit
library. See library unit
physical type, 39, 40, 260, 361

attribute specification, 624
universal integer type, 56
unknown value, 25, 48, 269, 279, 335

synthesis, 635, 637
unresolved_float type, 319, 334

read and write operations, 528

unresolved_float128 type, 320
unresolved_float32 type, 320
unresolved_float64 type, 320
unresolved_sfixed type, 315, 334

read and write operations, 528
unresolved_signed type, 305, 334

read and write operations, 528
unresolved_ufixed type, 314, 334

read and write operations, 528
unresolved_unsigned type, 305, 334

read and write operations, 528
unsigned type, 304, 324, 327

read and write operations, 528
synthesis, 634, 636

use clause, 35, 189, 257, 379, 424
in context declaration, 190
visibility, 261

u_sfixed type, 315
u_signed type, 305
uuencode encoding method, 752, 

766, 767
u_ufixed type, 314
u_unsigned type, 305
UX01 subtype, 280, 302
UX01Z subtype, 280, 302

V

val attribute, 56, 604
value attribute, 55, 604

textual input, 527
variable, 9, 31, 164, 193

access type, 480, 482
actual parameter, 216
alias, 355
array, 96, 103
assignment. See variable assign-

ment
attribute specification, 620
declaration, 31, 207, 587

shared, 585
external name, 560
generic type, 373
in package, 255
parameter, 215
shared, 33, 256, 585, 599

external name, 561, 589
parameter, 588
pathname attribute, 610
VHDL-87, 596
VHDL-93, 597

synthesis, 635, 640, 651
variable assignment, 33, 216, 373

access type, 481, 482, 487
aggregate target, 102
array, 123

asynchronous, 642
conditional, 68, 102
selected, 74, 102

matching, 127
shared variable, 589
synchronous, 642

verification, 2, 87, 173, 285, 353, 559
example, 777
Gumnut, 699, 720

verification unit, 578
binding, 578
example, 578, 579, 580

Verilog memory format, 540
VHDL Procedural Interface (VHPI), 

770
viewport, 765, 768

example, 761
visibility, 142, 236, 257, 366, 383, 433, 

559, 587, 588, 740, 745, 747
abstract data type, 384
directly visible, 190, 239, 247, 257, 

261, 356, 424
generic subprogram default, 397, 

399
hiding, 85, 239, 384, 389
local package, 255
use clause, 261
visible by selection, 239

visitor. See action procedure
VMEM format, 540

W

wait instruction, 672, 699
wait statement, 9, 15, 77, 151, 165, 

196
condition conversion, 50, 155
in a procedure, 217
indefinite, 154, 226
protected type method, 589
synthesis, 646, 647, 650

warning severity level, 88
waveform, 143, 147, 148, 162, 164, 

166, 168, 734
unaffected, 170, 171, 173

waveform generation, example, 42
weak strength, 48, 279
when clause

case statement, 70
exit statement, 78
next statement, 80

while loop, 81
whitespace, 519, 528, 544
wired-and, behavioral example, 280
Wishbone bus, 674, 702
work library, 193



Index 909

write procedure, 504, 517, 523, 527, 
528

writeline procedure, 517
write_mode literal, 500

X

X detection, 335
X01 subtype, 280, 302
X01Z subtype, 280, 302
xnor operator, 46, 58, 60, 114, 236, 

302, 304, 307, 312, 323, 325

xor operator, 46, 58, 60, 114, 302, 
307, 323, 325

Z

zero, 321


	cover.jpg
	sdarticle.pdf
	Dedication

	sdarticle_001.pdf
	Preface
	Structure of the Book
	Changes in the Second and Third Editions
	Resources for Help and Information
	Acknowledgments


	sdarticle_002.pdf
	Chapter 1 Fundamental Concepts
	1.1 Modeling Digital Systems
	1.2 Domains and Levels of Modeling
	1.3 Modeling Languages
	1.4 VHDL Modeling Concepts
	1.5 Learning a New Language: Lexical Elements and Syntax
	Exercises


	sdarticle_003.pdf
	Chapter 2 Scalar Data Types and Operations
	2.1 Constants and Variables
	2.2 Scalar Types
	2.3 Type Classification
	2.4 Attributes of Scalar Types
	2.5 Expressions and Predefined Operations
	Exercises


	sdarticle_004.pdf
	Chapter 3 Sequential Statements
	3.1 If Statements
	3.2 Case Statements
	3.3 Null Statements
	3.4 Loop Statements
	3.5 Assertion and Report Statements
	Exercises


	sdarticle_005.pdf
	Chapter 4 Composite Data Types and Operations
	4.1 Arrays
	4.2 Unconstrained Array Types
	4.3 Array Operations and Referencing
	4.4 Records
	Exercises


	sdarticle_006.pdf
	Chapter 5 Basic Modeling Constructs
	5.1 Entity Declarations and Architecture Bodies
	5.2 Behavioral Descriptions
	5.3 Structural Descriptions
	5.4 Design Processing
	Exercises


	sdarticle_007.pdf
	Chapter 6 Subprograms
	6.1 Procedures
	6.2 Procedure Parameters
	6.3 Concurrent Procedure Call Statements
	6.4 Functions
	6.5 Overloading
	6.6 Visibility of Declarations
	Exercises


	sdarticle_008.pdf
	Chapter 7 Packages and Use Clauses
	7.1 Package Declarations
	7.2 Package Bodies
	7.3 Use Clauses
	Exercises


	sdarticle_009.pdf
	Chapter 8 Resolved Signals
	8.1 Basic Resolved Signals
	8.2 Resolved Signals, Ports, and Parameters
	Exercises


	sdarticle_010.pdf
	Chapter 9 Predefined and Standard Packages
	9.1 The Predefined Packages standard and env
	9.2 IEEE Standard Packages
	Exercises


	sdarticle_011.pdf
	Chapter 10 Case Study: A Pipelined Multiplier Accumulator
	10.1 Algorithm Outline
	10.2 A Behavioral Model
	10.3 A Register-Transfer-Level Model
	Exercises


	sdarticle_012.pdf
	Chapter 11 Aliases
	11.1 Aliases for Data Objects
	11.2 Aliases for Non-Data Items
	Exercises


	sdarticle_013.pdf
	Chapter 12 Generics
	12.1 Generic Constants
	12.2 Generic Types
	12.3 Generic Lists in Packages
	12.4 Generic Lists in Subprograms
	12.5 Generic Subprograms
	12.6 Generic Packages
	Exercises


	sdarticle_014.pdf
	Chapter 13 Components and Configurations
	13.1 Components
	13.2 Configuring Component Instances
	13.3 Configuration Specifications
	Exercises


	sdarticle_015.pdf
	Chapter 14 Generate Statements
	14.1 Generating Iterative Structures
	14.2 Conditionally Generating Structures
	14.3 Configuration of Generate Statements
	Exercises


	sdarticle_016.pdf
	Chapter 15 Access Types
	15.1 Access Types
	15.2 Linked Data Structures
	15.3 An Ordered-Dictionary ADT Using Access Types
	Exercises


	sdarticle_017.pdf
	Chapter 16 Files and Input/Output
	16.1 Files
	16.2 The Package Textio
	Exercises


	sdarticle_018.pdf
	Chapter 17 Case Study: A Package for Memories
	17.1 The Memories Package
	17.2 Using the Memories Package
	Exercises


	sdarticle_019.pdf
	Chapter 18 Test Bench and Verification Features
	18.1 External Names
	18.2 Force and Release Assignments
	18.3 Embedded PSL in VHDL
	Exercises


	sdarticle_020.pdf
	Chapter 19 Shared Variables and Protected Types
	19.1 Shared Variables and Mutual Exclusion
	19.2 Uninstantiated Methods in Protected Types
	Exercises


	sdarticle_021.pdf
	Chapter 20 Attributes and Groups
	20.1 Predefined Attributes
	20.2 User-Defined Attributes
	20.3 Groups
	Exercises


	sdarticle_022.pdf
	Chapter 21 Design for Synthesis
	21.1 Synthesizable Subsets
	21.2 Use of Data Types
	21.3 Interpretation of Standard Logic Values
	21.4 Modeling Combinational Logic
	21.5 Modeling Sequential Logic
	21.6 Modeling Memories
	21.7 Synthesis Attributes
	21.8 Metacomments
	Exercises


	sdarticle_023.pdf
	Chapter 22 Case Study: System Design Using the Gumnut Core
	22.1 Overview of the Gumnut
	22.2 A Behavioral Model
	22.3 A Register-Transfer-Level Model
	22.4 A Digital Alarm Clock
	Exercises


	sdarticle_024.pdf
	Chapter 23 Miscellaneous Topics
	23.1 Guards and Blocks
	23.2 IP Encryption
	23.3 VHDL Procedural Interface (VHPI)
	23.4 Postponed Processes
	23.5 Conversion Functions in Association Lists
	23.6 Linkage Ports
	Exercises


	sdarticle_025.pdf
	Appendix A: Standard Packages
	A.1 The Predefined Package standard
	A.2 The Predefined Package env
	A.3 The Predefined Package textio
	A.4 Standard VHDL Mathematical Packages
	A.5 The std_logic_1164 Multivalue Logic System Package
	A.6 Standard Integer Numeric Packages
	A.7 Standard Fixed-Point Packages
	A.8 Standard Floating-Point Packages


	sdarticle_026.pdf
	Appendix B: VHDL Syntax
	B.1 Design File
	B.2 Library Unit Declarations
	B.3 Declarations and Specifications
	B.4 Type Definitions
	B.5 Concurrent Statements
	B.6 Sequential Statements
	B.7 Interfaces and Associations
	B.8 Expressions and Names


	sdarticle_027.pdf
	Appendix C: Answers to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23


	sdarticle_028.pdf
	References

	sdarticle_029.pdf
	Index
	Operators and Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z





