
No

Foreword by Mandy Brown

GIT FOR HUMANS
David Demaree

Brief books for people who make websites

17

MORE FROM A BOOK APART

Going Responsive
Karen McGrane

Responsive Design: Patterns & Principles
Ethan Marcotte

Designing for Touch
Josh Clark

Responsible Responsive Design
Scott Jehl

You’re My Favorite Client
Mike Monteiro

On Web Typography
Jason Santa Maria

Sass for Web Designers
Dan Cederholm

Just Enough Research
Erika Hall

Content Strategy for Mobile
Karen McGrane

Design Is a Job
Mike Monteiro

Mobile First
Luke Wroblewski

Visit abookapart.com for our full list of titles.

http://abookapart.com

Copyright © 2016 David Demaree
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Managing Director: Katel LeDû
Editor: Caren Litherland
Technical Editor: David Yee
Copyeditor: Katel LeDû
Proofreader: Caren Litherland
Compositor: Rob Weychert
Ebook Producer: Ron Bilodeau

ISBN: 978-1-9375573-9-3

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://abookapart.com

TABLE OF CONTENTS

	 1 	 | Introduction

Chapter 1

	 5 	 | Thinking in Versions

Chapter 2

	 1 9 	 | Basics

Chapter 3

	 5 0 	 | Branches

Chapter 4

	 7 1 	 | Remotes

Chapter 5

	 9 2 	 | History

	 1 1 9 	 | Conclusion

	 1 2 0 	 | Resources

	 1 2 9 	 | Acknowledgments

	 1 3 1 	 | References

	 1 3 3 	 | Index

FOREWORD
LeT Me TeLL IT to you straight: Git is infuriating.

Wait! Don’t run off just yet. Because while Git is infuriating,
it’s also critical in two very different and equally compelling
ways: first, speaking practically, Git is a prerequisite for collabo-
rating on websites or applications, which, if you’re holding this
book, is probably something you are wont to do. And second,
Git is a kind of model for present-day collaboration—that is, col-
laboration among distributed teams, working asynchronously,
on a shared body of work.

So while you don’t have to love Git, you do have to know it.
Many Git tutorials bend over backwards to map Git’s arcane

practices on to real-world phenomena, often leaving readers
hanging from trees wondering which branch is about to snap.
Here, David Demaree dispenses with that nonsense, inviting
you to learn about Git on its own terms. Rather than extended,
creaking metaphors, Demaree patiently explains in plain lan-
guage the core principles underlying Git that every designer,
developer, content strategist, and product manager needs to
know. The result is a brisk, clear book you can read in a few
hours and then return to your terminal, ready to confidently
pull and merge.

But there’s more here, and you’d be wise not to miss it.
Along with the commands and syntax, there’s keen advice
in these pages about working on a team. Knowing when and
how to commit a change is more than just a means of updating
code—it’s also a practice for communicating and sharing work.
It’s a process, and a remarkably powerful one. So while Git’s
quirks often leave newcomers reaching for drink, its influence
on people who make websites is well deserved. By all means,
devour the following chapters in order to understand how to
manage merge conflicts and interpret a log. But don’t forget that
Git’s ultimate audience isn’t machines—it’s humans.

—Mandy Brown

1

INTRODUCTION
wHeN I STArTed making websites as a hobby in 1995, being
a web developer meant knowing HTML. That’s it. Neither
JavaScript nor CSS would ship in browsers for a year, and
Flash wouldn’t exist until later in the decade. The web was just
starting to become a rich medium full of engrossing content,
and anyone with a text editor who could remember a dozen or
so tags could participate. It was nice.

Twenty years later, web development is no longer so simple.
HTML, CSS, and JavaScript remain the foundation of our work,
but over their history—their recent history in particular—
they’ve evolved from languages for crafting documents, simple
enough that most designers could write them from memory,
into a platform for writing applications. It feels like we don’t
make web pages anymore; we make themes or templates or, if
we’re really ambitious, we make apps. We’re producing thou-
sands of lines of increasingly complex code, and we’re sharing
responsibility for managing that code with more people, in
more and more ways. We have the power to make truly amaz-
ing things for our users, things we never could have imagined
when the web was young—but at the cost of feeling like gerbils
running on a technology treadmill.

Frank Chimero put it well (http://bkaprt.com/gfh/00-01/):

Now is the time to come clean: GitHub is confusing, Git is con-
fusinger, pretty much everything in a modern web stack no lon-
ger makes sense to me, and no one explains it well, because they
assume I know some fundamental piece of information that
everyone takes for granted and no one documented, almost as
if it were a secret that spread around to most everyone some-
time in 2012, yet I somehow missed, because—you know—life
was happening to me, so I’ve given up on trying to understand,
even the parts where I try to comprehend what everyone else
is working on that warrants that kind of complexity, and now
I fear that this makes me irrelevant, so I nestle close to my
story that my value is my “ideas” and capability to “make
sense of things,” even though I can’t make sense of any of the

http://bkaprt.com/gfh/00-01/

GIT FOR HUMANS2

above—but really, maybe I’m doing okay, since it’s all too much
to know. Let the kids have it.

Git is hardly the most complicated new web technology, but
it’s a part of this new stack that all parts of the stack have in
common. You cannot escape Git if you want to participate in
the new platform-y web. At some point you’ll need to contend
with it, either directly or as a transport mechanism used by
some other tool. And that may very well be why Git is a poster
child for this sea change in how we make websites.

Plenty of books, blog posts, and other online materials have
cropped up to teach users at all levels how to use Git. Yet despite
this wealth of tutorials, some days it feels like you can’t turn
around without bumping into someone complaining that Git
makes no goddamned sense. And yet we use it. It seems like we
have to use it, despite fearing that we cannot confidently use
it, leaving us to feel like we’re running around the house with
a big pair of scissors.

And it’s not just designers like Frank Chimero. Folks who are
new to the web, or who want to work in fields only tangentially
related to web development (like writing or open data), are also
forced to live on a Git planet, as are tons of us who like the
engineered web just fine, but who still feel flummoxed by Git.

Having spent most of the last decade using Git on almost
every project, delving at times into some of the darkest, weird-
est corners of Git behavior, I can safely say that it’s not you,
it’s Git. Git isn’t difficult because you’re not smart enough,
or because you missed an important meeting. Git is difficult
because Git is difficult.

Git is difficult, in part, because it embodies what Joel Spolsky
calls a “leaky abstraction” (http://bkaprt.com/gfh/00-02/).
Abstractions, in the software sense, are things that make a task
conceptually easier to handle by covering up the elements that
make them hard. Interfaces are abstractions: there’s absolutely
no relationship between dragging a file to a trash can icon to
delete it and actually removing the file from your hard drive,
except that a designer thought it would make the concept of
deleting files easier to understand. And it works! Even though
I used computers for more than a decade without knowing

http://bkaprt.com/gfh/00-02/

3

how the shift key worked (seriously!), I never had trouble
understanding how to get rid of a file.

Abstractions are there to protect us from complexity. A leaky
abstraction fails at its job by letting some of the underlying
complexity peek through, the same way a leaky umbrella fails at
its job of keeping you dry. To quote one of Spolsky’s examples:

You can't drive as fast when it's raining, even though your car
has windshield wipers and headlights and a roof and a heater,
all of which protect you from caring about the fact that it's
raining (they abstract away the weather), but lo, you have to
worry about hydroplaning... and sometimes the rain is so strong
you can't see very far ahead so you go slower in the rain...

Git’s interface is “leaky” because its command-line interface
fails to protect you, the user, from knowing how it works under
the hood. And one reason why Git is so scary, is that it has
its own internal logic, which doesn’t always map to how we
humans are used to organizing information. So knowing how
it works is sometimes essential to getting it to work. To use Git
successfully, you sometimes need to be able to apply Git logic
to situations where human logic (and Git’s supposedly human-
friendly abstractions) fails. In other words, to master Git, you
have to think like Git.

I want to help you understand how Git thinks.
Believe it or not, Git’s challenging conceptual model is a

feature, not a bug. Using Git feels like running with scissors
because it’s a powerful tool that will let you bend time and space
to your will, which sounds like—and is—a lot of responsibility
to put in the hands of mere humans. But Git believes in your
ability to handle such might, and so do I.

Let’s get started.

5Thinking in Versions

IF YOU’VE BEEN AROUND FOR A WHILE, you may recall that it
was once common for authors to carve their words into stone.
Leaving aside the stamina this required, the size, weight, and
expense of the material made it somewhat inconvenient for
writers to make changes to their work once it was completed.
Fixing a typo, let alone clarifying one’s message or making the
language flow better, required cutting away sections of stone or
finding a different stretch of cave wall to write on. Even on the
rare occasion when it was truly necessary to change something,
it was hard—physically hard—to hold on to old revisions, mak-
ing it almost impossible to compare the finished version of a
poem, recipe, or cave painting with the version that preceded it,
or to experiment with alternate drafts. Writing anything down
at all seemed like magic.

Over the centuries, it became easier to put things in writ-
ing, which in turn made it much easier for writers to explore
different approaches or to change their minds, both during the
creative process and after the fact. This had the added perk of
making ideas and language easier to disseminate, which made
just about everyone (at least potentially) a writer.

THINKING
IN VERSIONS1

GIT FOR HUMANS6

But until the introduction of computers, the best way to
record or distribute an idea was still to inscribe it on a physical
object, like a piece of paper, which took time and cost money.
The expense of making additional versions made it so that cre-
ating a first draft of anything—a novel, a blueprint, a painting,
even a photograph—had an air of finality about it.

Many of us still think this way about how we produce our
work. Taking the time to clarify and improve something over
the course of multiple drafts feels like a luxury. Computers and
networks have made it infinitely cheaper to spread information,
but iteration still requires two things: time and discipline.

When I was in school, a few teachers attempted to show me
and my fellow students the value of iteration (not to mention
starting projects earlier than the night before they were due) by
asking us to turn in not only our final papers, but also the drafts
that preceded them. Rather than turn us into nimble iterative
thinkers, though, mostly this kept us up late scrambling to meet
deadlines a few times a semester instead of just once. Given the
choice between spending extra time making three versions of
an essay versus one—even though in doing so we’d make each
one better than the last—we’d much rather be lazy, settle for
flawed or mediocre work, and spend our time catching up on
old episodes of Fringe.

But there are at least two areas of our written culture where
making incremental changes, and tracking those changes across
multiple versions, is not just helpful but crucial: law and (more
important for our story) software source code.

Like other kinds of writing, source code went through
what might be called an analog phase. Early computers had
to be programmed by punching holes into cards, which were
fed individually into the machines, which in turn performed
the instructions encoded into the cards and returned a result.
(The computing words “bugs” and “debugging” are popularly
attributed to Grace Hopper, who traced problems in the opera-
tion of the Harvard Mark II computer to moths that had nested
among the data relays.)

Early coders endured some of the same problems that early
writers did: making changes on physical media like punch cards
was time-consuming and expensive. Their programs took hours

7THINkING IN VeRSIONS

or days to run, and an error in a program meant that the whole
sequence needed to be restarted from scratch, making it very
important to get it right the first time whenever possible.

Computing languages have to be understood by machines,
which—science fiction notwithstanding—remain much stu-
pider than we are. Where a human can read “their” instead of
“they’re” (or the code equivalent) and just sigh at an author’s
poor attention to detail, a computer will crash. A computer
system that crashes is not very useful, so software makers tried
to make things easier the best way they knew how: by building
more systems.

ELEMENTS OF VERSION CONTROL
What they came up with is a version control system. The basic
principle of version control is this: instead of keeping only
the latest copy of something, you hold on to each successive
revision as you work, so that you can refer or revert back to
an older version if you need to. Although you can use software
tools—one of which is the subject of this book—to help you,
version control is more importantly a practice. It’s something
we do—not just the tools we use to do it.

Many of us have had projects where we kept copies of old
versions of our work, saving new versions by using an app’s
Save As... command to give each new copy its own name.
Perhaps we marked the new filename with the current date
(project_2014-04-15.doc), or maybe we added a version num-
ber (mockup-1a.psd). Both are rudimentary, but entirely valid,
forms of version control.

Version control systems like Git work by keeping a copy of
each successive version of your project in something called a
repository, into which you commit versions of your work that
represent logical pauses, like save points in a video game. Every
commit includes helpful metadata like the name and email
address of the person who made it, so you can pinpoint whom
to praise (or blame) for a particular change. These commits are
organized into branches, each representing an evolutionary

GIT FOR HUMANS8

track in your project’s history, with one branch—the trunk,
or master branch—representing the official, primary version.
Having built up a history of past commits, it’s easy to retrieve
any previously committed version of your project, roll back
changes, or compare two or more versions to aid in debugging.

In order to save changes to your repository, there needs to
be one version of the project that you can safely make changes
to. Version control systems like Git usually call this the working
copy. Its job is to act as a scratch pad for any changes you may
want to make to the project; you’ll eventually commit these
changes to the repository as an official, saved version. From
our perspective, a working copy is usually easy to spot—it’s
the copy of the project that appears on our hard drives, as
regular files.

Version control can seem laborious, because in a regular
desktop workflow, we’re expected to save changes to our work
twice: once to the working copy, then also to the repository.
As a young web developer starting out, I found this annoy-
ing enough to avoid version control altogether. Eventually,
though, I came to appreciate the benefits of having every sig-
nificant version of my projects stored, annotated, and neatly
organized in a secure location. It also helped me to think of
commits as significant changes, as opposed to the hundreds
of little changes I might save in a given hour. The extra steps
involved in committing—the brief pause from coding, having
to write a descriptive message, occasionally having to stop and
address conflicts between my version and someone else’s—have
ultimately helped me develop a more thoughtful and judicious
way of working.

Although adopting a basic version control practice is a lit-
tle extra work, it’s not hard work. But like anything we do to
stay organized, version control works best when it’s practiced
consistently, so it can become what Getting Things Done author
David Allen calls a “trusted system.” On one hand, once you’ve
committed a version of your work to a repository, you should
be able to trust that when you look for that version later, you’ll
be able to find it in exactly the same state as when you com-
mitted it. (As we’ll see, Git has that part well covered.) But you

9THINkING IN VeRSIONS

should also be able to trust that the version you’re looking for
was committed to begin with, which means committing yourself
to committing your changes at regular intervals as you work.

COMPLEX PROJECTS
Versions of single files, like Photoshop documents, are easy
to manage: each represents a complete copy of the project as
it existed at a certain point in its history, and (if you’re using
numbers or dates to identify versions) it’s easy to tell when
that point was by just scanning the list of versioned file names.
But while some things we work on are neatly encapsulated in
single files, others—like websites and apps—consist of entire
directories of source files. How can we apply version control
to projects like that?

This is where software version control systems like Git really
earn their place in our toolbox—in managing more complex
projects like websites or the source code for an app, or when
coordinating changes from lots of collaborators.

The simplest version control method is the same one we’d
use for a Photoshop file: make a copy of the whole project
directory, appending dates or incremental version numbers as
we go along. The directory named our-website/versions/v12
is the twelfth revision to our project. Just as with a single file,
every time we make a significant change to the website, we’ll
create a new numbered copy of the whole project: the one
after v12 is v13, followed by v14, and so on. Here, the versions
directory acts as our repository, and each numbered directory
is a committed version. In simple cases, this works just fine.
Indeed, before I got into using version control systems, that’s
how I managed web projects for clients.

Because a website consists of many different kinds of files,
we need our working copy to be saved to the hard drive as its
own directory: our-website/working-copy. The process for
committing changes to this project is a bit more complicated
than for our hypothetical Photoshop file, but only a bit: we
make and test changes to the website in the working-copy
directory; then, when we’re ready to publish, we commit those

GIT FOR HUMANS10

changes by making a copy whose name includes the next ver-
sion number in sequence, such as versions/v13.

But what happens when we try to share this version control
system with other people?

These days, sharing files—such as our store of committed
versions—is the easy part. Your repository can be a shared
folder on a service like Dropbox or Google Drive, or a net-
worked hard drive or file server in your office. Inviting a new
collaborator to your project can be as simple as granting them
access to that folder. Everyone who has access to the shared
folder can potentially commit changes.

Where things get tricky is not simply in syncing changes
between teammates, but in coordinating those changes so that
your version control system remains trustworthy and viable.
This system of numbered, versioned directories and working
copies may seem straightforward, but you can never assume
that two people will interpret or follow simple rules the same
way. To sustain a trustworthy system, it’s essential that the
rules always be followed in exactly the same way. If you work
on a small team and are thinking, “Come on, it’s not that scary,”
imagine having to explain, let alone implement, a system like
this within a large corporation, or an open-source project like
Linux with thousands of contributors. This isn’t just a random
example: Git was invented by Linus Torvalds precisely to meet
the demanding needs of the Linux project, after a licensing
dispute about the commercial version control tool they were
using (http://bkaprt.com/gfh/01-01/).

For the sake of argument, though, let’s suppose that every-
one on your team understands the rules, and that any member
of the team can reliably commit a new version. Here’s where
things get really hairy: what happens when two people want to
commit new versions at the same time?

The difficulty here doesn’t involve following the rules so
much as communication. Once we reach the point where two
collaborators might need to work with the same files at the same
time, we run the risk of one person’s changes overwriting—or,
to use my preferred technical term, “clobbering”—another’s
person’s work.

http://bkaprt.com/gfh/01-01/

11THINkING IN VeRSIONS

Imagine you and I are collaborating on a website. You’re
exploring what it would look like if we changed all the links on
the site from blue to green, while I am considering changing
the link color to red. Under the rules of our version control
system, I should make and save my changes to the copy of the
stylesheet file in the directory. Unfortunately, the rules also say
you should make your change in the exact same place. Following
this method, whether the links are going to be green or red in
the next numbered version of the project depends entirely on
which of us made our change last. If I saved my file later than
you saved your file, my changes win.

The only way to avoid this clobbering is for individuals inter-
ested in submitting changes around the same time—you and
me, in this case—to work together to make sure that either our
changes don’t conflict or that our version control system some-
how automatically reconciles or rejects conflicting changes.

Some primitive version control systems solve this problem
by requiring people to “check out” a file, like a book from the
library. Checking a file out marks it as uneditable by anyone else
until the person who checked it out has both finished editing
and explicitly checked it back in. This addresses the risk of
unintended file-clobbering (by making accidental overwrites
impossible), but it also creates a new problem: if I’m the one
with the homepage file checked out, you’re stuck waiting on
me to finish before you can do your work.

DISTRIBUTED COLLABORATION
Instead of having one working copy shared by everyone, we
can require all team members to have their own working copies
stored on their own computers. In theory, at least, that allows
each of us to work independently until it’s time to save a new
official version.

There’s still a small risk of two people trying to commit
versions at the same time, but that happens less frequently
than just saving changes while working, and we can coordinate
those kinds of changes easily—“Hey, I’m going to push version

GIT FOR HUMANS12

34 of the website, everyone cool with that?”—via email or a
tool like Slack.

With this system, we haven’t done anything to try to merge
together different versions, with different changes, into a cohe-
sive whole. Rather, we’re just making named copies of folders
and assuming that our working copy is a trustworthy, canonical
source for the next version. The next big problem to solve is
what happens when that stops being true, and our working
copies drift out of sync.

In the diagram in FIG 1.1, your version of the site now has
green hyperlinks, while my copy has red links, and the latest
official version (v12) of the website has blue links. Both working
copies are newer than the shared master copy, but beyond that,

FIG 1.1: Three different copies of this web page have different link colors. How can we
know which one is the correct one?

That fact was perceptible to Mr.
Denham also, and increased the
awkwardness which inevitably
attends the entrance of a stranger
into a room full of people much at
their ease, and all launched upon
sentences. At the same time, it
seemed to Mr. Denham as if a
thousand softly padded doors had
closed between him and the

That fact was perceptible to Mr.
Denham also, and increased the
awkwardness which inevitably
attends the entrance of a stranger
into a room full of people much at
their ease, and all launched upon
sentences. At the same time, it
seemed to Mr. Denham as if a
thousand softly padded doors had
closed between him and the

That fact was perceptible to Mr.
Denham also, and increased the
awkwardness which inevitably
attends the entrance of a stranger
into a room full of people much at
their ease, and all launched upon
sentences. At the same time, it
seemed to Mr. Denham as if a
thousand softly padded doors had
closed between him and the

Master Copy

My Working Copy

Your Working Copy

13THINkING IN VeRSIONS

how can we know what color the links should be in the next
official version?

More importantly, how can we know what else might have
changed? What if, in addition to the changed link color, your
copy of the website includes a lovely new page explaining the
company’s mission that isn’t in my copy, and mine has a fix for
an annoying JavaScript bug that isn’t in your copy?

This is where our homegrown version control system com-
pletely breaks down. It’s not that we can’t work together to
combine our two working copies into a single version; it’s that
doing so takes up valuable time we’d much rather spend writ-
ing, designing, coding, making coffee, or browsing Tumblr for
cat GIFs. Auditing our work files for conflicting changes is no
fun; more importantly, it doesn’t scale. As we add more files,
more collaborators, and more changes, the risk of accidentally
introducing major problems increases.

Remember that version control is more than just the ver-
sions: it’s the rules and processes for managing versions. Once
you have a lot of files, a lot of collaborators, or both, it can be
exhausting to enforce those rules without a referee—and only
by enforcing the rules consistently can you trust your version
control system enough to get any value out of it.

Fortunately, all of these things—enforcing rules, keeping
track of versions in a repository of past work, shuttling changes
back and forth between the repository and your working copy,
even merging together two directories and policing conflicts—
are things that computers can do a lot faster and better than
we can. By learning and adopting an automated version control
system like Git, we can keep our work neatly organized and
our changes safely coordinated with one another, all without a
lot of effort—that is, once we adopt and learn how to use such
a system.

HUMANS, MEET GIT
Git does for version control what web standards have done for
our code or, for that matter, what Microsoft Word has done for
word-processing documents. Because Git is so ubiquitous, once

GIT FOR HUMANS14

you know it, you can send code almost anywhere. Git excels at
synchronizing changes between different computers, whether
servers like GitHub or your colleagues’ laptops. Far-flung mem-
bers of your team can use Git to combine efforts on a project,
pushing changes to a central hub where collaborators can pull
down their own copies or review work in progress, and then
use Git to push changes to a web server for deployment.

Git’s way of staging changes and managing branches gives
you unparalleled control and flexibility over how changes to
your projects are committed and organized. These attributes
make Git perfect for projects like the Linux operating system
kernel (http://bkaprt.com/gfh/01-02/), with thousands of con-
tributors and hundreds of thousands of commits. But Git also
scales down beautifully for smaller projects and teams. Whether
you’re looking to add version control to your personal site or
share code with your whole company, learning Git gives you a
seat at a very awesome table.

Note, though, that Git isn’t the only tool out there for auto-
mating version control or syncing files between collaborators.
People sometimes rely on simpler file-syncing services, such
as Dropbox, which offer shared folders and the ability to view
and restore old versions of a given file. If most of your work
involves single files—Word documents, spreadsheets, PSDs—
and something like a shared Dropbox folder is working for you,
you may not need Git.

HOW GIT WORKS
Git keeps your project in a local repository (usually a hidden
folder on your hard drive). This is an important distinction
between Git and older version-control systems like Subversion
or the Dropbox-based versioning scenario mentioned earlier.
These server-based processes are centralized, in the sense that
the only place you can get at your whole history of prior ver-
sions is a shared, remote space, and only your working copy
is accessible offline.

http://bkaprt.com/gfh/01-02/

15THINkING IN VeRSIONS

Git is a decentralized version control system. Both your work-
ing copy and a complete copy of the entire history of the project
reside on your machine, the server, and every other computer
that hosts a copy of the project. By default, Git’s hidden repos-
itory folders live inside a visible working copy folder. If you
browse that directory, you’ll see only the files and folders you
expect to see in a working copy of your project. This working
folder is where you’ll make your changes.

Whenever you’re ready, you can easily move changes into the
safe, stable repository by making a commit. In our semi-manual
process, we “committed” a new version by making a copy of
our working copy, naming it with the next sequential version
number. Committing changes in Git is, conceptually at least,
very similar. For each commit, Git records the precise state of
our files as they are right now in the repository for later access
and retrieval. Unlike in our manual example, where we had the
annoying (and potentially risky) responsibility of making sure
new versions were copied into place correctly without clobber-
ing anyone else’s efforts, Git automates all of that busywork.
Even better, Git copies new versions incrementally, making
references to existing copies of files that haven’t changed to
conserve disk space.

Git not only takes care of safely copying data back and forth
between the working copy and the repository (and between
the local and server repositories), but it also provides a robust
system for referring to different versions of the project. One of
the small costs of establishing a manual version control practice
is needing to decide, and then communicate to your teammates,
the correct way to identify single versions. Should you use a
number (like v12), or a date stamp (2014-07-28), or something
else? Git allows you to assign your own names or numbers to
versions if you need to, but it also gives you a reliable, unique
identifier for every single commit. If you don’t need to assign
custom names or numbers to versions, you can just sit back
and rely on Git to do that.

Finally, Git also offers powerful tools for safely merging
changes between different versions of a project—not just
between different collaborators, but also between multiple
variations of the project on one person’s computer.

GIT FOR HUMANS16

THE CHALLENGE OF GIT
Version control can be challenging for newcomers not (just)
because it makes things complicated, but because change is
legitimately complex. Using a tool like Git forces you to ques-
tion your own assumptions about how change works.

For example, one of the things version control demands of
us is a nuanced understanding of state. As humans working in
a virtual space, we’re used to applying physical metaphors as
handy cognitive shortcuts for understanding digital things. Let’s
go back to our scenario of changing the link colors on a web
page. Before our minds were trained in the philosophy of ver-
sions, we thought we had a file (like it was a physical object that
just happened to be on the wrong side of a computer screen),
and we were changing it. The CSS file remained constant, but
the link color changed.

In fact, from the computer’s (and Git’s) perspective, there
are at least three files: the saved copy from before we made the
change (with blue links), the working copy where we replaced
the line that controls link color, and then (finally) the new saved
copy that replaces the old one.

But nothing about the mechanics of how this one line is
updated changes the fact that styles.css appears to be one file
to us. Semantically, viewing the pile of bits named styles.css as
a single thing that changes is very valuable, because it helps us
understand where to find our data. Having to spend too much
time concerning ourselves with the difference between the
versions of this file is annoying: it’s better if we can rely on the
name to tell us what file this is, and have some other way of
understanding how it has evolved.

It’s more accurate to say that, rather than three different
files, we’re talking about the same file in three different states.
It’s the same file because even though its contents may change,
its name stays the same; logically, therefore, it’s the same file.

One potentially confusing difference between our numbered
file/directory names example and a true version control system
like Git is that there is no giant folder full of old versions to look
at. As Git users, we’re expected to know that behind each logical

17THINkING IN VeRSIONS

copy of a file in our working tree, Git is safely storing all the old
versions of the file, in each of its previous states.

We can comfortably understand a system where two files
or directories are copies of each other, where one is a little
newer or more evolved than the previous one, because there’s
an obvious real-world equivalent: manuscripts have second
drafts, books have second printings, and so on. The rudimen-
tary version control method I described earlier was relatively
easy to understand because we were simply moving files around
on a computer, something we've all done many times before.
This new model feels less like writing drafts and more like
time travel. It kind of is like time travel—and as anyone who
has seen Back to the Future Part II can attest, time travel is com-
plicated business.

For files saved on our hard disks, our apps and operating
systems do a fantastic job of hiding—abstracting—all of that
complexity from us. Instead of a flurry of versions moving
back and forth between hard disk and memory, we just see an
icon. Sometimes its contents change, and its “last saved” time
is incremented accordingly, but visually and semantically it acts
like the same file the whole time.

Not only does Git do a poor job of hiding that kind of com-
plexity, it barely even tries. Git suffers from what I like to call
an excess of simplicity.

Unlike many of the tools we use every day, Git doesn’t do
much to map the things it does to familiar metaphors or sym-
bols, the way OS X maps deleting a file to the act of dragging it
into the trash. Git’s design assumes that you not only know how
version control systems work, but specifically how Git works.
You’re meant to interact with Git on its own terms.

Git has more than seventy-five command-line functions,
every single one of which has a specific job, with specific inputs
and expected results. There is no single “Save new version”
command in Git. Instead, to make a new commit—which is sort
of, but not exactly, the same thing as saving a new version—you
need to perform two or three different actions. Each of those
actions has a legitimate purpose in Git-space, but none of them
maps to something you’d logically do to a file or document in
the real world.

GIT FOR HUMANS18

But Git is also one of the most matter-of-fact programs
around. It never does more than you tell it to do (though it can
be easy to accidentally tell Git to do more than you wanted it
to do). On one hand, this means that we might need to speak
to it in more laborious, stilted terms than we’re used to, which
is itself an almost radical notion in an age when software can
recommend a movie or summon you a taxi. On the other hand,
the fact that the scope of a given command is limited means
that there’s also a limit to how much damage you can do at any
one time. If you do get into Git's version of trouble—like if Git
can’t easily reconcile conflicting changes, or if it’s uncertain
about where to commit your work—there is always a command
that will get you out of it, often with whatever work you were
trying to save still intact.

As we’ve seen, a good argument can be made for even small
teams to use version control. But the internet has made it
easier than ever for people on opposite sides of the globe to
work together on all kinds of projects. The open source move-
ment has taken that even further by creating opportunities
for thousands of strangers to contribute changes to projects
seen and used by millions—collaboration on a wildly unprec-
edented scale. When you’re trying to accept contributions
from a community of thousands, version control becomes an
absolute necessity.

So although version control may have started out as a form of
insurance against mistakes, tools like Git have helped transform
it into something much more compelling. As both a practice and
a set of tools, version control offers us a common framework
for collaborating on and sharing all kinds of work with anyone,
anywhere—not to mention a new way of understanding and
managing change. Thinking and working in versions not only
helps us understand how projects evolve over time, but also
gives us more say in how that evolution happens.

Now, how can we begin to incorporate thinking in versions
into our workflow?

2

19BASIcS

IF yoU’re JUST STArTING To LeArN GIT, I recommend stick-
ing to the command line, at least at first. Git’s command-line
interface is its native tongue. Typing commands and seeing the
responses Git gives back is a great way to learn about how Git
actually works, which will pay off when you inevitably run
into a confusing situation down the road. The command line is
also consistent across the various platforms Git runs on. If you
know how to interact with Git via commands, you’ll be able to
use Git no matter what kind of computer you’re on.

The command-line interface gives you the fullest access to
all of Git’s powers, but there are also graphical Git apps out
there, some of which are very good. And although I recommend
starting out with the Terminal, you don’t have to choose one
over the other. You can in fact use the Terminal and a Git app
side by side, making commits and pushing changes in the app,
where it may be easier (or more your style), and relying on the
command line for everything else.

For now, let’s start with something relatively easy: getting
Git on to your computer.

BASICS2

GIT FOR HUMANS20

INSTALLING AND RUNNING GIT ON A MAC
Starting with version 10.9 (Mavericks), released in 2013, OS X
automatically downloads and installs command-line tools like
Git the first time you try to use them. If you simply open up the
Terminal app and type a Git command, your Mac will prompt
you to install a package called Apple Command Line Tools,
including Git and several other utilities. After installation, OS
X will automatically download and install updates to Git via the
Mac App Store app.

INSTALLING AND RUNNING GIT ON WINDOWS
The Git development team maintains an easy-to-use installer
package for Windows that you can download from the official
Git website (http://git-scm.org/). The install wizard will ask you
a bunch of questions about how you want to configure and use
Git; if you’re unsure how to answer any of them, just go with
the default settings.

FIG 2.1: If you open up a Terminal window and type git, your Mac will offer to
automatically install an Apple-maintained software package that includes Git.

http://git-scm.org/

21BASIcS

If you’re comfortable with either of Windows’ two standard
command-line environments, Command Prompt or Power-
Shell, the Git installer will give you the option of configuring
Git to work with those. By default, however, the Git installer
provides its own terminal application, called Git Bash, which
emulates (that is, works similarly to) a Unix-based system such
as OS X or Linux, with support for not just Git but all of the
commands we’ll be using in this chapter and throughout the
book. If you’re accustomed to using Git on one of those plat-
forms, or if you want the most consistent command-line expe-
rience across different computers, Git Bash is an awesome tool.

Although Windows and Linux/OS X both support the same
encodings for plain text files (ASCII and Unicode), they use
different line endings, that is, different characters for denoting
line breaks. Many Windows or cross-platform text editors,
including Atom and Sublime Text, already do a good job of
handling line endings correctly, but Git may not always know
which format it should use.

Git for Windows helps us out here by offering to automat-
ically convert Windows line endings to Unix ones when you

FIG 2.2: The Git Bash application that comes as part of Git distributions for Windows. It
emulates a complete Unix-style shell, with the same commands you’d find on Linux or OS X.

GIT FOR HUMANS22

commit, and vice versa when you check out. Even if all of your
teammates and servers run Windows today, it’s usually best and
most future-proof to commit Unix line endings to ensure that
your files can be checked out safely on non-Windows systems.

One more small difference: while Windows paths use back-
slashes and drive letters, as in C:\Users\David\myproject,
Unix paths use forward slashes. An equivalent path on my Mac
would be /Users/David/myproject (with no leading drive
letter, since Unix systems like OS X don’t use them). Here, too,
Git Bash helps us out: it automatically swaps slashes, present-
ing that Windows path as /c/Users/David/myproject. (The
leading /c/ indicates the C:/ drive, following Unix convention
of referring to mounted disks as directories at the topmost, or
root, level of your computer’s file system.)

COMMAND LINE BASICS
If this is your first time interacting with a command line, enter-
ing weird bits of jargon after a prompt may seem scary unless
you’re a programmer, sysadmin, or computer scientist. It’s an
understandable fear: the command line is a little scary. Your
computer will let you do things from the command line that it
would rightly stop you from doing from the Finder or Control
Panel—like delete your operating system, not to mention your
entire hard drive. Keep in mind, however, that although the
command line is powerful, on another level it’s also a little stu-
pid: it will only do what you tell it to do, and most commands
are set up to perform a single, simple task.

Before we dive into the specifics of using Git, I’ll go over how
command-line interfaces work, and how to read the examples
that appear throughout the book.

What the command line is for

The command line is a holdover from an era before fully graph-
ical operating systems like Windows and OS X were powerful
enough to govern every aspect of a computer. If you’re as old
as I am, you may remember having to bust out of the Windows

23BASIcS

environment back to MS-DOS for one reason or another. You
may also remember watching Back to the Future Part II as a
newly released VHS tape.

The command-line interpreter itself is called a shell. Like so
many other computing words, it’s a metaphor. Just as some
animals, like turtles, have shells that conceal their fragile or dan-
gerous bits, with openings left for the creatures to move around
and interact with their environments, a software shell covers
and protects the computer—and you, the user—from com-
mands that might cause it to behave erratically or stop working
altogether. Although we’re mostly talking about command-line
shells here, the visual interfaces we’re familiar with today are
also shells—they’re just shells made of images instead of text.

The opening in our metaphorical shell is the command-line
prompt, a string of characters signifying that the computer is
ready to receive a command from you. Most of the prompts in
this book will look like this:

$: _

The underscore (_) character here represents the cursor; the
$: is the prompt itself, which signals that the shell is waiting
for you to ask it something.

Although shells are our primary means of interacting with
some kinds of systems, they’re really just programs. The default
shell on OS X and many Linux systems, and the one included
in the Git package for Windows, is called bash. Bash is the
most widely used command shell for Unix-like computers,
and although it’s hardly the only one, it’s the one that, for the
purposes of this book, I’ll assume you’re using.

You’ve probably seen movies or TV shows where hackers in
dark sunglasses data-mine mainframes and infiltrate Gibsons, all
by typing what appears to be gibberish into computer screens
full of more gibberish. The one thing these movies often get
right is how a command prompt works. First, you type the
thing you want the computer to do in a language it understands:

$: whoami_

GIT FOR HUMANS24

Then you hit Enter to submit the command. In this case,
we’ve typed the name of another program we want the shell
to run for us. This one, whoami, is very basic: it just tells us
what username we’re logged in as. Once it has finished run-
ning, which is typically right away, the program will output (or
“print”) a response into the Terminal window below the line
where we entered the command, like so:

$: whoami
david

After that, it’ll print the prompt characters again, ready for
another question:

$: _

Command-line programs often lack ceremony. They’ll print
out the information you asked for but won’t try very hard to
make it pretty or put it into context. Where you might expect
to see a label or some contextual information—“Your user name
is: david”—the whoami command just tells it to you straight.
You asked whoami, it answers david, and then gives you a
fresh prompt to ask another question. Many commands (both
included in the operating system and included with Git) return
no response at all.

Although many commands, including several of Git’s, can be
almost too chatty with their responses, whoami is terse almost to
the point of rudeness. That’s not a sign that anything is wrong.
On the contrary: the lack of response indicates that the system
and shell trust you to know what you’re doing. A program fin-
ishing (or “exiting”) with no output almost always means that
the job you asked of it was done with no errors.

For example, here’s the mkdir command, which creates a
new directory:

$: mkdir javascripts
$:

25BASIcS

In case it’s not clear what just happened: mkdir didn’t pro-
vide any feedback at all, which could lead you to think that the
copy command didn’t work. But watch what happens if we
try it again:

$: mkdir javascripts
mkdir: javascripts: File exists
$:

In this case, the command fails for a simple reason: a directory
called javascripts can’t be created because it already exists.

Command-line navigation

The Terminal, like a single Finder window on a Mac, is always
looking at a single active directory or folder. This is called the
working directory. You can find your current location as an abso-
lute path using the pwd (“print working directory”) command:

$: pwd_
/Users/david

We can do that using the cd (“change directory”) command,
which sets a given path as our new working directory—the
command-line equivalent of double-clicking on the folder’s
icon. This will often be the first command you run in a new
Terminal session, to navigate from your shell’s default starting
point (typically your home directory) to the directory contain-
ing your Git project.

$: cd Projects/our-website
$: pwd
/Users/david/Projects/our-website

Here we’ve typed in the path to our project directory
(Projects/our-website), relative to my home directory, where
we started this Terminal session. Relative paths are distin-
guished from absolute ones by the absence of an initial slash

GIT FOR HUMANS26

(/), which here represents the root—or topmost—directory of
your local file system.

One handy tip to remember if this is your first experience
with the Terminal: you can use the tilde character (~) in paths
as an alias for your home directory. The absolute paths /Users/
david/Projects/our-website and ~/Projects/our-website
are equivalent, and you can use either one to jump to your
project directory from anywhere else on your hard drive.

To see a list of all the files and directories inside the current
directory, use the ls (“list”) command:

$: ls
css index.html

This particular directory has two things in it: a web page
(index.html) and a subdirectory containing our stylesheets
(css). Unlike in the Finder, there are no icons to differentiate
the different kinds of things we’re looking at, like whether
css is a directory or a file. But ls gives us a couple of options
for requesting more information. For instance, if you tack on
the -F option, ls will show trailing slashes to help distinguish
directories from regular files:

$: ls –F
css/ index.html

To look inside a directory without navigating into it, we
can pass the name of the directory to the ls command as
an argument:

$: ls css
styles.css

Of course, if we need to, we can navigate into a subdirectory
of our project using cd.

$: cd css
$: ls
styles.css

27BASIcS

As on the web, the double-dot (..) symbol represents the
current directory’s parent, and, as you might expect, it works
from a shell prompt

$: ls ..
css index.html

$: cd ..
$: pwd
/Users/david/Projects/our-website

It’s helpful to remember that the command line and graphical
tools like the Finder essentially do the same thing. They both
look at the same files on the same hard drive, which means that
you can use the Finder (or an app’s Save... dialog) to save files
or create directories if you prefer a graphical interface. If you're
handier with the command line, or don't like switching back
and forth from Git, it may be faster to do almost everything in
the Terminal. On the other hand, depending on your experi-
ence and preferences, you may find that you’re able to work
more quickly and efficiently using the Terminal and Finder in
tandem than by using either one alone.

The prompt

To keep things simple, the command prompts used for the
remainder of the book will look like this:

(master) $:

The current Git branch, in this case master, is listed here
in parentheses. Later on we’ll explore other branches, but
master is the branch we’ll be working on in this chapter and
the next one.

In our examples, an asterisk after the branch name will
indicate uncommitted changes in our working copy, like so:

(master *) $:

GIT FOR HUMANS28

Every operating system and shell has its own default prompt
format, and if you don’t like the default, you can customize
the prompt to look any way you want. It’s very likely that
your computer’s prompts and the ones in this book will not
look alike.

I bring this up mainly to reassure you that it’s fine if the
examples in this book and the prompts in your terminal app
don’t look exactly the same. The Git commands and their out-
put are what matter most, and those should be consistent no
matter what your prompt looks like.

TALKING TO GIT
Now that you know how to navigate the Terminal, it’s time to
start really interacting with Git by sending it commands, which
all look more or less like this:

(master) $: git commandname parameter1 parameter2 »
--option

The command name (commandname in the example) is one of
over 100 individual functions that Git can perform. Behind the
scenes, each of these commands is a separate program respon-
sible for its own specific job.

Though some Git functions work with just a command name
(like git status), most require some parameters to know how
to do their jobs, similar to passing input to functions in a pro-
gramming language like JavaScript or Ruby.

You can read a lot of Git commands as a kind of sentence: Git,
please do a thing to this other thing. For example, the command
git checkout master essentially means: “Git, please check out
the branch named master.”

Options are special parameters that are denoted by at least
one leading dash character. These are rarely required, and
usually change something about the default way Git handles
a particular task. Many options have both a long form, like
--global, and a shortcut form, like -g. There are also options

29BASIcS

that take values, like git commit --message="hello world".
As we go along I’ll call out important options, what they’re used
for, and the kinds of values they take.

CONFIGURING GIT
Git is a complex beast with hundreds of configuration options,
but there are two that it absolutely needs in order to function:
your name and email address. Git adds an Author attribute to
every commit you make that includes both your name and
email address, so that your collaborators on a project can know
who made a given change. The name you enter will be used
to identify you in change logs and any other place where Git
shows who made a particular change, while your email address
not only tells people how to reach you, but also tells a hosted
service like GitHub who you are on their service.

So let’s tell Git who you are, using the git config command.
Unlike most Git commands, which only work inside of a Git
project, these can be run from any directory.

Enter each of these lines at a command prompt, filling in
your own name and email address:

$: git config --global user.name "David Demaree"
$: git config --global user.email "david@demaree.me"

Here, we’re telling Git that a particular configuration prop-
erty (user.name) should be set to the value (David Demaree)
we’ve provided.

The --global option tells Git to set these values as a default
for all projects on this computer. You can, if you want to, use
the git config command to set configuration options like
user.name within specific projects by just omitting --global.
But we’re setting these globally for now because Git requires
them to be set somewhere, and this way you won’t have to do it
every time you start a new project.

A brief note here about privacy, because sharing personal
information such as this can be a sensitive topic. Git will use the
name and email address you give it to provide attribution for

GIT FOR HUMANS30

any commits you make. For local repositories, or commits that
haven't been pushed to any server, this information will reside
only on your computer. But commits are meant to be shared,
so be aware that commits you share with others (whether it's
within your team or on an open source project) will include
this information. What’s more, as you'll see, commits are not
really meant to be changed after the fact.

I mention this to alert you, not to scare you. While Git
requires you to provide a name and email address in order to
attribute commits, it doesn't know or care whether the values
you enter are your real name or email address. In fact, pairs
of programmers working on the same problem on the same
computer will often change their Git setup to claim joint credit
for any commits they make.

When you fill out these values, you are free—and expected—
to provide only as much information about yourself as you feel
comfortable providing.

STARTING A NEW PROJECT
Once you’ve adopted Git as your version control system of
choice, creating a new Git database using the git init com-
mand will usually be one of the first things you do. But it will
almost never be the very first thing, because most Git reposito-
ries are designed to live inside a folder on your hard drive—the
working directory—alongside your project files.

More simply: in order to track changes within a project
folder, first you need to have a project folder. This may be
something you’re already working on and are adding Git to, or
it may be something new, for which you want to use Git from
the get-go.

For the purposes of this chapter, we’ll start developing a
new website. First, let’s create a directory to work in. Though
we could do this from the Finder or Windows Explorer, in this
case we’ll do it from the command line.

31BASIcS

$: mkdir our-website

This creates a new folder called our-website inside of the
current directory. Next, let’s switch into our new directory
using the cd command:

$: cd our-website

Now let’s initialize a new Git repository within this new
project folder, using the git init command.

$: git init
Initialized empty Git repository in /Users/david/ »

work/our-website/.git/
(master) $:

Boom! We now have a fresh, new, empty Git project on our
computer. It’s empty both in the sense that it has no files yet—
remember, we just created this directory for the first time—and
that it has no commits.

CLONING AN EXISTING PROJECT
If you’re not the person responsible for initiating your project,
it’s more likely that your first step upon joining a Git project
will be to pull down a copy of the repository stored on a server
somewhere. This is called cloning, meaning that what gets saved
to your computer is a replica of everything that was stored on
the server.

Cloning a repo is a sequential process that Git helpfully
wraps in a single command: git clone. A sort of macro, git
clone is a single, convenient command that performs several
related commands at once: it creates a new working directory
(named after the repository on the server by default); initializes
a new Git repository; adds a remote called origin; and pulls
changes from the remote.

GIT FOR HUMANS32

$: git clone https://gitforhumans.info/ »
our-website.git

Cloning into our-website...
remote: Counting objects: 11, done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 11 (delta 1), reused 11 (delta 1)
Unpacking objects: 100% (11/11), done.
Checking connectivity... done
$: cd our-website
(master) $:

Following the default of automatically naming the working
directory after the repository name is almost always the sim-
plest way to proceed. But if you do want to give your directory a
different name—let’s say you want to prepend a client’s name—
you can simply pass a different folder name into git clone as
an argument. Here, instead of naming this copy of our client’s
project our-website, let’s call it clientco-website:

$: cd ~/Work
$: git clone https://clientco.co/our-website.git »

clientco-website
Cloning into 'gfh-website'...
remote: Counting objects: 11, done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 11 (delta 1), reused 11 (delta 1)
Unpacking objects: 100% (11/11), done.
Checking connectivity... done
$: cd clientco-website
(master) $:

Either way, once you’ve cloned the remote repo, everything
about Git works the same as if you had created the project
yourself. What’s more, since Git is generally concerned only
about what’s inside your project, not the folder containing it,

33BASIcS

no matter what name you give when cloning the project, you
can safely rename the folder anytime you like.

The clone we’ve just created comes with the full history of
this repository, including every change shared by every other
copy. This notion of being able to clone not just the working
state, but also the entire history of the project, will come in
handy later.

GETTING READY TO COMMIT
Git expects every change you make within a directory under its
care to be recorded and stored in the repository for safekeep-
ing—even the change that takes a project from nothingness
into being. The phrase commit or it didn’t happen sounds like a
joke, but it’s also literally true. As a practical matter, Git is more
concerned with managing your commits than with the files
whose changes you’re using commits to track. It’s not exactly
that Git is indifferent to the contents of your files; it’s just that
its model for organizing and managing your work is oriented
around commits.

Commits are a type of Git data called an object. Internally,
every piece of information Git knows about—the contents of
files, the structure of folders, and, most importantly, the com-
mits that mark the others as versions of a project—is stored as
an object, and each particular object has a unique name derived
from its contents. Really, the name—or identifier—of an object
is less a name than a short, machine-readable fingerprint that
reliably distinguishes objects from one another.

Commits are the only kind of object you’ll work with on a
daily basis. Semantically, each commit represents a complete
snapshot of the state of your project at a given moment in time;
its unique identifier serves to distinguish that state from the way
the files in your project looked at any other moment in time.

Git proceeds by addition. Even though files in your project
can be created, deleted, or changed, the commits tracking those

GIT FOR HUMANS34

changes are always added. When you remove a file, you’re
adding a commit. If you change a line of text or code, or even
change a file’s name, you’re changing the state of your project,
and you’ll add a commit to mark that change and propagate it
to the rest of your team.

This is part of the beauty of Git’s design: items in its database
are lossless, immutable: they can never truly be changed; only
added to. Git is a system of accumulation. It accumulates every
change you tell it about, so that you can go back and explore
that history later on.

When you commit a change to your work, some really cool
stuff happens behind the scenes, which we’ll look at in more
detail in the next chapter. For now, though, let’s make a commit
to see how that works.

UNDERSTANDING YOUR STATUS
So, we’ve created a directory to hold our website project. Next,
let’s add a new file to serve as our homepage. Start a new docu-
ment in your favorite HTML editor, and add this to it:

<!DOCTYPE html>
 <html>
 <head>
 <title>Our Website</title>
 </head>
 <body>
 <h1>Our Website</h1>
 </body>
</html>

Done. Save the file to your project directory as index.html.
Before we move on, let’s ask Git what it knows about the

state of our project using the git status command.

35BASIcS

(master *) $: git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will

be committed)
#
index.html
nothing added to commit but untracked files present
(use "git add" to track)

There’s a lot of interesting information here. First, we learn
that we’re on our project’s master branch; we’ll talk more about
that in Chapter 4. For now, rest assured that we’re in the right
place within the ridiculous multiverse that is Git. Because this
is a new, empty repository, our next commit will be the initial
commit—that is, the very first one on our timeline. Finally, and
most importantly, we have a list of “untracked” files, which
includes our index.html file.

ADDING FILES TO GIT
Before you can commit a file, it must be tracked; before a file can
be tracked, you have to add it to Git’s database. That confuses
a lot of people who are new to Git, because aren’t adding a file
and committing it the same thing?

No, they are not! A commit records changes to files in Git’s
database—to say that, for instance, a particular file went from
version A to version B (or, in the case of the initial commit
we’re working on, to define what version A is). Logically, before
Git can know how A has changed to become B, it has to know
about versions A or B individually. For the sake of—please don’t
laugh—simplicity, it’s normal for us humans to treat commits as
a shorthand to represent specific versions of files and folders.
But the commits themselves are just references, similar to the
way a street address references a house.

GIT FOR HUMANS36

When we add a file, we are building the house: the git add
command makes a snapshot of the given file and saves it to the
repository so that it can be referred to later in a commit.

This means that sometimes Git saves snapshots that will
never be committed, and that’s fine. These take up very little
disk space, and from time to time, Git will do something called
garbage collection wherein it finds objects that aren’t referenced
by any commit and deletes them. If that sounds harsh, think of
it this way: you haven’t committed to the versions of your work
represented by these stray objects. If they were worth saving,
Git assumes you would have committed them somewhere.

By now I’m sure you’re like: “That’s interesting and all, but
now how do we get this first version of our file into Git’s data-
base so we can commit it?”

As the git status message suggested, we’ll use the git
add command.

To add the homepage file, type this:

(master *) $: git add index.html

Git generally won’t give you any response to tell you any-
thing happened, and once you’ve done this a few times you
won’t need one. But since this is your first commit, let’s check
git status again:

(master *) $: git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: index.html
#

Now we see that our file is no longer listed under Untracked
files, but rather under Changes to be committed. We have
now staged our file, and we’re ready to commit.

37BASIcS

(master *) $: git commit --message "Initial commit"
[master (root-commit) 600df9f] Initial commit
1 file changed, 9 insertions(+)
create mode 100644 index.html
(master) $:

Boom. You just committed your first file.
If you look closely, on the first line of the response, right

before the commit message we gave, you’ll see this commit’s
unique ID: 600df9f. Most commit IDs you’ll see (and we’ll see
quite a few of them as the book goes on) will look a lot like
this one.

The email and name we added earlier tell Git who you are,
and the --message option tells your collaborators (or your
future self) the nature of the change we just made. While we’re
here, let me save you some typing with a little trick. Many Git
command options are available in a shorter (usually single-char-
acter) form, denoted by a single dash instead of double dashes.
For example, the --message argument can also be typed as -m.

(master *) $: git commit -m "Initial commit"

With that, we’ve made our first step along the long road of
the history of this project. Let’s move on to our next change,
and our second commit.

THE STAGING AREA
Before you can commit a new version of your files, that new
version must be added to Git’s database, something we do with
the git add command. Another name for this is staging; the
staging area is where these new versions live between when
you update your working files and when you commit them.

Staging a file causes two things to happen behind the scenes.
First, Git saves a snapshot of that file to its database, so that it
can be referred to in your next commit. The nature of Git refer-
ences is such that a file must already be in the repository for it
to be referred to, and it must be referred to in order to commit

GIT FOR HUMANS38

it. Until a version of a file is staged, Git doesn’t know how to
refer to that version, and therefore can’t commit it.

Git also starts a local draft of your next commit, with ref-
erences to all of the files and directories contained therein—
as it happens, including references to files that haven’t even
changed, copied over from the previous commit. Every commit
is self-contained: it doesn’t just reference the things that have
changed; it references everything that makes up the state of
your project at a given moment. Most of the time you won’t
need to know the mechanics of how this works, but I find that
understanding what’s going on helps me make better sense of
the commit workflow.

Unlike most of the data in your Git repository, the staging
area is not synced or shared with anyone else on your team—it
lives only on your computer.

OUR SECOND COMMIT
This first commit may have seemed like it took a long time,
what with me digressing to explain data stores and the semantic
nature of Git objects, but as we go on you’ll find that these three
commands—status, add, and commit—will make up the bulk
of your interaction with Git. You may use this basic commit
workflow dozens of times a day and, barring any especially
tricky situations, these three commands will be all you’ll need.

To illustrate this, let’s make our second commit, adding
a basic CSS file that we’ll link to from our home page. First,
within your project directory, use the mkdir command to create
a new subdirectory called “css”. Then fire up your text editor,
open a new file, and type:

body {
 font-family: 'source-sans-pro', Arial, sans-serif;
 font-size: 100%;
}

Call this file “styles.css” and add it to the css/ subdirectory.
Next, let’s link to this new stylesheet from our index.html file:

39BASIcS

<!DOCTYPE html>
<html>
 <head>
 <title>Hello World</title>
 <link href="css/styles.css" type="text/css" »

 media="all">
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>

To recap what just happened in the file system: first we
added a directory (css/) with one file in it (styles.css); then we
changed a file that already existed. Now let’s check git status:

(master *) $: git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be

committed)
(use "git checkout -- <file>..." to discard

changes in working directory)
#
modified: index.html
#
Untracked files:
(use "git add <file>..." to include in what will

be committed)
#
css/
no changes added to commit (use "git add" and/or

"git commit -a")

Under the heading Changes not staged for commit, we see
the HTML file Git already knows about (because we committed
it earlier), which Git now (correctly) says has been modified.
Below that, the Untracked files list is back; instead of the
styles.css file we added, we see the css/ directory that contains

GIT FOR HUMANS40

it. This is Git’s way of telling us that there’s an entire subdirec-
tory it doesn’t know about.

We can stage both of these changes with a single git add.
Here, we’re going to list both our HTML file and the whole css/
directory as arguments, separating them with a space to indicate
that we want to stage both of the things in this list. In English,
it’s like we’re saying, “Git, please add this and this.”

(master *) $: git add index.html css/

Let’s check git status again:

(master *) $: git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: css/styles.css
modified: index.html
#

Both files are staged and ready to commit, with Git now not-
ing that index.html has been modified from a previous version,
while styles.css (and the css/ directory it lives in) are new in
this commit. Let’s commit.

(master *) $: git commit -m "Add stylesheet"

With this second commit, your project now has history.
We’ll explore Git’s commit log more in the next chapter, but you
can already see a timeline taking shape when we run git log.

The process of adding files and then committing them will
cover a surprising amount of your version-control needs. And
so far, everything makes (relative) sense. The need to stage files
before committing them may seem a little strange but, as we’ll
see later, it can also be powerful. At any rate, right now it’s just
a small, extra hassle, not a fundamental change in the way we
manage files.

41BASIcS

But other common kinds of changes are less intuitive. We’ll
go over some of those next.

REMOVING FILES FROM GIT
When we delete a file in our working copy of a project, it fol-
lows that we should also be removing it from our repository.
To be sure, Git’s command for deleting files—git rm—does its
best to act like it’s simply deleting a file.

Having said that, let’s recall two things we’ve already learned:
that Git is a system of accumulation, and it only cares about
changes in the context of a commit. This brings us to our first
serious logical paradox in working with Git.

For those of you new to the command line, rm (short for
remove) is the standard Unix file-deletion command. From a
command-line prompt, typing rm path/to/my/file will delete
the file at that path. git rm behaves in a very similar way, with
one added benefit: in addition to deleting the file, it also stages
a new commit where the file has been deleted. In other words,
in order to remove a file, we have to add a commit.

That last statement may seem a little mind-boggling, so here’s
an example that illustrates how files are removed in Git.

Let’s say that since the last time we worked with our web
project, someone has added a robots.txt file telling search
engines not to index anything on our site. (We’ll go over how
other people’s changes get into our repos later. For now, imag-
ine that time has passed and that our project has picked up
changes.)

Now, though, we’ve changed our minds and have decided
we actually do want to be indexed, so we need to remove the
robots.txt file.

To do that, we’ll use git rm:

(master) $: git rm robots.txt
rm 'robots.txt'
[master *] $:

GIT FOR HUMANS42

If we run git status, we’ll see that the file’s deletion has
been staged for inclusion in the next commit:

[master *] $: git status
On branch master
Your branch is ahead of 'origin/master' by 1

commit.
(use "git push" to publish your local commits)
#
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: robots.txt
#

Git’s snapshots, upon which it bases commits, consist of
your files’ contents and the directory structures that contain
them. When we delete this file using git rm, Git creates a new
snapshot of the project minus robots.txt, and stages that version
as the next one to be committed. Now let’s commit it:

[master *] $: git commit -m "Remove robots.txt"
[master 983024f] Remove robots.txt
 1 file changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 robots.txt

Git vs. trash

Of course, you may be more accustomed to deleting a file by
simply dragging its icon into the Trash (or Recycle Bin). Or if
you use an all-in-one editing tool like Coda, maybe you delete
files by using its built-in file manager. Even when you know
Git has a “remove file” command, it’s hard to overcome years
of muscle memory when the delete command you’ve used for
so long is right there.

I sympathize with this because even I, a programmer who
has used command lines and Git for a really long time, almost
always delete files the old-fashioned way (that is, whatever

43BASIcS

way is most convenient), and then tell Git about the dele-
tion afterward.

As it happens, the command to do this is the exact same
one we just used, git rm. If you delete a file yourself, git rm’s
job is limited to staging a new change that removes it from the
Git index.

So, after deleting our robots.txt file the old-fashioned way,
we can just run:

[master *] $: git rm robots.txt
rm 'robots.txt'

Git still gives us a response letting us know it ran the rm
'robots.txt' command to delete the file from our hard drive,
even though it didn’t need to. That’s fine—the rm command
does nothing if the file has already been deleted.

RENAMING FILES, OR: GIT’S
ABSURD RELIANCE ON NAMES

Next, we want to rename our website’s main stylesheet from
styles.css to screen.css (to make space for a separate print.css we
might add later). Muscle memory being what it is, we’re liable
to use whatever file-renaming command is most familiar. So
let’s say we’ve renamed this file in the OS X Finder, and now
we check git status:

[master *] $: git status
On branch master
Your branch is ahead of 'origin/master' by 2

commits.
(use "git push" to publish your local commits)
#
Changes not staged for commit:
(use "git add/rm <file>..." to update what will

be committed)

GIT FOR HUMANS44

(use "git checkout -- <file>..." to discard
changes in working directory)

#
deleted: css/styles.css
#
Untracked files:
(use "git add <file>..." to include in what will

be committed)
#
css/screen. css
no changes added to commit (use "git add" and/or

"git commit -a")

We now have an unstaged change deleting our stylesheet
entirely. What? Where did it go?

If you look under Untracked files, you’ll see it there—but
Git is telling us that it thinks our renamed file is a totally new,
untracked file. This probably seems crazy to a human, but from
Git’s extremely literal, name-based perspective on the world
(and, more specifically, on your file system), it’s all too logical.

Git is saying that the file it was tracking named “css/styles.
css” is no longer present under that name. Meanwhile, it’s also
saying that it’s not tracking a file called “css/screen.css” because
we haven’t asked it to track a file by that name.

Of course, we know that these are just two names for the
same file. But Git doesn’t know that, because Git relies on
names to know whether a particular file is familiar to it or not.
It may seem simple or logical to us that this was just a name
change, but in order to avoid making a bad assumption about
a change that could result in an incorrect commit, Git makes
no assumptions when you change things via any method other
than a git command.

Because it just seems so easy for Git to take care of this for us,
this kind of thing might frustrate you when you first encounter
it. But I view it as Git’s simplicity at work. The job of Git is to
track changes and commits. Period. Git can figure out that the
deleted file styles.css and the untracked file screen.css have the

45BASIcS

exact same contents, but it has no idea what that means. It doesn’t
(can’t, really) make the leap required to assume that the two
paths are different names for the same file, because their being
the same file is semantic—it’s meaning that you have ascribed to
it, not something intrinsic to the data.

For instance, what if you wanted to create a second copy of
this file under a different name? Or what if you deleted styles.
css by accident? Git must allow for any of these possibilities,
no matter how silly they may seem to us.

But back to our git status: we’re left with one missing file
and one mysterious new file. We know they’re the same file,
but Git does not. Let’s first try the git mv (short for “move”)
command, which is Git’s typical renaming function. Here’s
what happens:

[master *] $: git mv css/styles.css css/screen.css
fatal: bad source, source=css/styles.css,
 destination=css/screen.css

Unlike git rm, which doesn’t care if the deleted file has been
deleted or not—and, as we saw, doesn’t even need for the file
to actually be deleted—git mv will only rename a file if it is
also allowed to move or rename the files in the working copy.
If we’d used git mv to do this initially, instead of the Finder, it
would have worked flawlessly. But we didn’t, so now we need
to figure out how to stage and commit this change another way.

Git sees two uncommitted changes—a deletion (css/styles.
css) and a new addition (css/screen.css)—and we need to
address each one individually before we can commit.

First, we’ll use git rm to stop tracking styles.css:

[master *] $: git rm css/styles.css

Then, we’ll use git add to tell it to start tracking the file
under its new name:

[master *] $: git add css/screen.css

GIT FOR HUMANS46

Once we do both of those, we check our status:

[master *] $: git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 renamed: css/styles.css -> css/screen.css
 modified: index.html

This is the exact same response we would have seen if we
had used git mv to begin with. Deleting, moving, or renaming
files with Git’s built-in commands can save you some typing,
but it isn’t necessary. This is an example of a scenario you may
encounter while using Git that seems like trouble, but really is
just annoying. Depending on how often you rename files, this
will either be an incentive to always do things Git’s way, or else
will make you feel comfortable doing things in a way you’re
familiar with, knowing that you can always explain yourself
to Git later.

THE WHAMMY: git add --all
When in doubt—or running short of time—there’s a nuclear
option for quickly staging anything and everything that has
changed in your local copy: git add --all (or git add -A, for
short). The --all option is great for moments when you need
to commit several changes at once. For example, we’ve started
to add some JavaScript behavior to our web page, adding a new
file (and directory) called js/site.js and linking to it from our
HTML document. Here’s our status:

[master *] $: git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be

committed)

47BASIcS

 (use "git checkout -- <file>..." to discard
changes in working directory)

 modified: index.html

Untracked files:
 (use "git add <file>..." to include in what will

be committed)

 js/

The js directory (containing our script file, site.js) is new
to the project, and thus shown as untracked. We also edited
index.html to add a script tag linking to the new file; it’s shown
here as modified but unstaged.

Normally we would notify Git of these changes one by one,
typing in the paths for each file and directory we need to stage.
Instead, let’s use git add --all, then check our status:

[master *] $: git add --all
[master *] $: git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: index.html
 new file: js/site.js

With that one command, everything we’ve done is ready
to commit.

That was a fairly straightforward example, but we can make
it more complicated. Before we commit, we decide to rename
the directory containing our scripts, from js to the more
descriptive scripts, using the mv (“move”) command, and
updating our HTML document to reference the JavaScript file
under its new name:

GIT FOR HUMANS48

[master *] $: mv js scripts
[master *] $: git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: index.html
 new file: js/site.js

Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be

committed)
 (use "git checkout -- <file>..." to discard

changes in working directory)

 modified: index.html
 deleted: js/site.js

Untracked files:
 (use "git add <file>..." to include in what will

be committed)

 scripts/

There’s a lot going on here, and to Git’s credit, this compli-
cated status is relatively easy to follow and explain. First, we
have the two changes we already staged—these remain staged,
even though other changes to the working copy appear to
have superseded them. If we committed right now, our scripts
directory would be named js in the repository even though its
name is scripts in our working copy.

In addition to the changes we’ve staged, Git also tells us
about the newer updates that aren’t yet staged. As before,
because it no longer sees the js/site.js file under that name,
it’s reported deleted, and the scripts/site.js file that replaces
it appears entirely new. We also see index.html listed twice,
in two different states at once: modified and staged, but also
modified and unstaged. git add saves a copy of the state of a
file in Git’s database for inclusion in a commit; here Git is trying

49BASIcS

to tell us that there’s an even newer version of index.html than
the one we previously staged.

But though this looks like a convoluted mess, git add --all
resolves it neatly and quickly:

[master *] $: git add --all
[master *] $: git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
`
 modified: index.html
 new file: scripts/site.js

All of those seemingly contradictory changes have been
condensed into just the two we want. Now we’ll finally commit:

[master *] $: git commit -m "Add JavaScript"
[master 4af326c] Add JavaScript
 2 files changed, 1 insertion(+)
 create mode 100644 scripts/site.js

That’s great, and much simpler, which begs the question:
why not always use git add --all? Frankly, most of the time
it’s not only acceptable to use --all, but you’re also almost
always better off doing so. Not only will it save you time, but
fewer commands means fewer opportunities to accidentally
give Git a wrong signal, leading to confusion and heartbreak.
With this option, you’re telling Git to trust that the version of
your project in the working copy is an accurate reflection of
what you’d like to commit.

Even so, the fact that you can, but don’t have to, commit
everything that has changed in your local copy is one of Git’s
most powerful features. This is the power of the staging area:
you can precisely control the scope of each commit, making
each one broader or more focused, as your working style or
the needs of your project demand.

GIT FOR HUMANS50

we’Ve TALKed A LoT So FAr about “versions”—but what is
a version, really? Webster defines it as “a particular form of
something, differing in certain respects from an earlier form
or other forms of the same type of thing.” That is, versions can
be sequential or iterative—representing the form of a thing as
it changes over time—or they can differ in, well, some other
way. The point is that a version isn’t just a copy of a thing, but
a copy that differs or has changed in some respect from some
other copy.

In Git, sequential versioning—tracking the difference
between a snapshot of your work and its earlier forms—is one
of a commit’s many jobs. Every commit includes a reference
to its immediate predecessor, or parent commit; from that ref-
erence, Git can work backward and explain the entire chain of
commits that came before it. In this sense, a commit represents
both your work in a particular form, and its change into that
form from a previous one.

That kind of version relationship is important for under-
standing where you’ve been, but not always helpful for under-
standing where you’re going, or why. This is where branches

BRANCHES3

51BRANcHeS

come in handy. A branch is a virtual copy of your project—a
project within your project—where you can make commits
freely, in isolation from whatever else may be happening in
your repository. Branches allow us to manage and work with
other kinds of versions in Git—experiments, alternate takes,
scratch pads—separately from the “official” copy of the work
represented by the master branch.

Many people have valiantly tried to explain Git branches by
comparing them to things, but no analogy does full justice to
these beautiful, powerful buckets of pure information. The best
way to understand branches is on their own terms, as a way of
organizing and describing work. And the best way to explain
that is for us to dive in and start growing some branches.

BRANCHING BASICS
Every Git repository starts out with a master branch, to which
Git assigns the name master by default. Technically speaking,
master is just a branch like any other; what makes it special is
its conventional role as the primary, stable version of whatever
project is stored in a repo. What “primary” or “stable” mean is
largely up to you, and teams use their master branches in any
number of ways. The only thing set in stone about master is
that it’s the first branch you’ll work with. It won’t be the last.

Before we create our first new branch, we’ll view a list
of all the branches on our local repository using the git
branch command:

(master) $: git branch
* master

Here there’s only one branch—master—and the asterisk tells
us it’s the current one.

Behind the scenes, a branch is little more than a human-
friendly name that points to a particular commit. The diagram
in FIG 3.1 shows our current commit, 18ee782, outlined in red,
with our current branch name (master) pointing to it. This
particular branch is just a stack of commits, with 18ee782 at

GIT FOR HUMANS52

the top, or head, of the stack. (In keeping with the arboreal
metaphor, a branch’s head commit is sometimes also referred to
as its “tip.”) The stack is formed by following the head commit’s
chain of parent commits as far back as Git can go, all the way
to the first commit in this repo.

When talking about branches, it’s tempting to allude to them
as places: when you add a commit, master is the “place” you’re
sending it to. As a working metaphor, this is fine most of the
time. Where did I commit the new footer links? is a reasonable ques-
tion that can often be answered with a branch name. There’s no
harm in treating branch names like folders in the metaphorical
Trapper Keeper of your project.

It’s not a perfect analogy, of course. While you can only put
a sheet of paper in one file folder at a time, Git commits can
belong to multiple branches—can be in multiple places—at the
same time. But that’s fine! Ultimately, a branch’s most important
role is as a signpost or bookmark, pointing you back to a par-
ticular version of your work, distinguishing master from, say,
another branch named new-homepage. In this respect, branch
names serve the same purpose as labels in Gmail. Just as an
email can be labeled as both “Inbox” and “Notes from Mom”
simultaneously, so too can a single commit be found in both
the master and new-homepage branches. Branch names aren’t
so much destinations as they are labels, or signposts, that help
you find certain commits.

FIG 3.1: Our current commit is outlined in red, with the current branch name pointing to it.

master

18ee782

53BRANcHeS

STARTING A NEW BRANCH
For our next project, we’ve been asked to do something pretty
significant: redesign our site’s homepage. It may take some time
and a lot of commits to get it right. But we don’t want to publish
our work before it’s done, nor do we want to prevent any of
our teammates from making changes to the site or the existing
homepage while we’re iterating.

We need a safe place to make potentially big changes without
disrupting everything else going on.

The natural place for us to do this work is on a separate
branch. In Git lingo, this is called a working branch or topic
branch. Topic branches are distinguished from the master
branch in that, well, they have a topic: the work that happens in
them has a particular focus or goal, which is typically described
by the branch name. Because we’re making a new homepage,
let’s create a branch called new-homepage.

To create a new branch, just pass a branch name into the git
branch command, like so:

(master) $: git branch new-homepage

This tells Git to create a new branch named new-
homepage, using whatever commit you’re currently on as a
starting point. It doesn’t matter which branch is set as the cur-
rent one; git branch only cares which commit is at the head
of that branch. Right now, commit 18ee782 is at the head of
master, so this freshly minted new-homepage branch will also
start out with 18ee782 at its head. But these two branches have
no relationship to each other, aside from both having 18ee782
as a member.

Annoyingly, Git doesn’t automatically switch you into the
new branch when running git branch <branchname>. It
creates a new branch, but leaves you with master set as the
current branch, or (in Git terms) checked out. Left in this state,
Git will have created your new branch, but your next commit
will be to master.

GIT FOR HUMANS54

Checking out a branch does two things. First, it resets your
working copy to match whatever state is represented by the
branch’s head commit. Then, it sets the branch as current so
that when you commit, any new commits you add will be added
to that particular branch.

To switch branches, you’ll use the git checkout command.

(master) $: git checkout new-homepage
Switched to branch 'new-homepage'
(new-homepage) $:

While you get used to working with branches, this two-com-
mand dance of creating and then switching into branches can
quickly grow tiresome, so Git offers a handy shortcut: you can
tell git checkout to create and switch to a new branch at the
same time by passing in the -b option, like so:

(master) $: git checkout -b new-homepage
Switched to a new branch 'new-homepage'
(new-homepage) $:

Either way, once you’ve created and switched into a new
branch, you should see it when you type git branch:

(new-homepage) $: git branch
 master
* new-homepage

The asterisk tells us that new-homepage has (correctly) been
set as the current branch, meaning that our next commits will
be sent here.

At the moment, because we haven’t added any commits to
either master or new-homepage, the two branches are literally
identical—they represent two different names for the exact
same commit.

55BRANcHeS

But part of the beauty in how Git handles branches is that,
most of the time, you don’t need to worry about that: these two
things may be literally identical, but they are logically separate.
Though master and new-homepage have identical contents, they
are nonetheless two different logical copies of your work, not
just two names for the same copy.

You do need to worry about knowing which branch is the
current one, because even though these two branches are iden-
tical right now, they probably won’t stay that way. By checking
out the new-homepage branch, we’re signaling our intention
to diverge from the official timeline and to do some work that
may or may not end up in the production version of our code.

Let’s take a moment to savor some semantic details. As I said,
the master and new-homepage branches are currently identical.
In practice, that means that 18ee782 is the head commit for both
branches. Therefore, it can be said that both branches contain
that commit, along with its immediate parent and every commit
that directly preceded it, all the way back to the initial commit
in this repo. Since one of the branches we’re talking about is
master (and so far we haven’t committed anywhere besides
master), the full history of our project is contained within either
or both of these branches.

I bring this up because we’re about to make our first com-
mit to a branch other than master. Having checked out the
new-homepage branch, whatever we do next will be part of our
topic branch, but not part of master.

Not yet.

FIG 3.2: In the absence of new commits, these two branches are literally identical.

master new-homepage

18ee782

GIT FOR HUMANS56

OUT ON A LIMB
However grand our plans may be for this new, redesigned
homepage, we have to start somewhere. For now, let’s start with
something easy: changing the background color on our website
header from a blue gradient to flat gray, because flat design.

Let’s make our CSS change and commit it:

(new-homepage *) $: git commit -am "Change
background color on header"

[new-homepage b26b038] Change background color on
header

 1 file changed, 1 insertion(+), 1 deletion(-)

Before we proceed, I’d like to call your attention to some-
thing. -am (as used in the preceding example) is actually a com-
bination of two other options we’ve seen many times before:
-a (to automatically add any changed files to this commit) and
-m (specifying the commit message). Most command-line tools
allow you to combine multiple options into a single one like
this, prepended by a single dash. The only restriction is that
just one of these options (m) can take an argument, and it needs
to come last. This particular combination of options is very
handy, as in many cases it allows you to commit some changes
with only one command.

Having now added this commit, our master and working
branches have diverged—the new-homepage branch has one
commit that the master doesn’t.

The diagram in FIG 3.3 is more or less how Git sees the
current state of our repo. The two branches perfectly overlap,
except for that one new commit on the new-homepage branch.

That’s how branches actually work: the new-homepage
branch points to b26b038, master points to 18ee782, and
b26b038 points to its parent commit, 18ee782.

Another way of looking at it is to see the two branches as
discrete logical copies of the whole timeline that just happen
to be mostly identical (FIG 3.4).

57BRANcHeS

In technical terms, Git not only creates the commit but also
moves the pointer for the current branch to the commit we
just made. Put a little more simply: when you add a commit on
a branch, that new commit supersedes the one that had been
there before as the branch’s head commit. Through the magic
of parent commits, we can look backward and trace the lineage
of a branch all the way back to the beginning, enabling us to
produce graphs showing our two branches’ shared histories.
In practice, though, what matters about a given branch most of
the time is which commit is on top of the stack.

It matters because the branch’s latest head commit is the one
your next commit will be based on. Working on Git branches is
a lot like contributing to an exquisite corpse (http://bkaprt.com/
gfh/03-01/), a kind of collaborative art project invented by the

FIG 3.3: These two branches perfectly overlap except for one new commit.

FIG 3.4: The two branches can be viewed as discrete logical copies that just happen to be
mostly identical.

master

18ee782 b26b038

new-homepage

18ee782 b26b038

new-homepage

master

18ee782

http://bkaprt.com/gfh/03-01/
http://bkaprt.com/gfh/03-01/

GIT FOR HUMANS58

Surrealists in the early 20th century, where each contributor
sees only the last bits of whatever the previous person added.
For example, one person might start a drawing, filling the first
third of a sheet of paper. Then they fold the paper over, cov-
ering almost all of their work, before handing it off to some-
one else, who fills the next section of the paper, and so on. A
modern version of exquisite corpse is Layer Tennis, where two
designers pass a Photoshop file back and forth, adding a new
layer with every turn (http://bkaprt.com/gfh/03-02/).

As you work and collaborate using Git, try not to worry
too much about the whole system of commits, branches, and
timelines. That stuff can be extremely valuable, and it’s there
for when you need it. But in the moment, feel free to focus on
just getting from your last commit to your next one, step by
incremental step.

NAMING BRANCHES
There truly are no hard and fast rules about what branches are
for; as I mentioned, different teams tend to use branching in
completely different ways.

There are some conventions, of course, but even those are
fraught with ambiguity. For example, every Git repository has
a master branch, and by convention master is meant to be the
“prime” or “default” branch in your project. But it’s up to you
to decide what “prime” or “default” means in the context of
your work.

Some projects, especially big open-source software projects
like Ruby on Rails, use the master branch for all of the bleed-
ing-edge work that’ll go into their next release, periodically
spinning off new “stable” branches to finalize and prepare
code that’ll end up in actual numbered versions of the Rails
framework. Another approach, more common for websites and
web-based applications, is for the master branch to represent
the release version of the project that’s deployed to your web
servers, possibly many times a day.

What these two kinds of projects often have in common is
how they use topic branches. There’s a basic workflow around

http://bkaprt.com/gfh/03-02/

59BRANcHeS

branching that, even though there is no single correct way to
do things, seems to be how teams use Git to get work done
most of the time.

First, someone checks out the latest version of master, and
from that commit spins off a new branch named after whatever
work they’re planning to do, like in the new-homepage branch
we created before. Our new-homepage branch is an example of
a topic branch; exploring a new homepage design is the topic,
and by branching off we’re able to explore it freely without
worrying about messing up the prime version in master.

Having branched off, we’ll go off and work on our new idea
or feature for a while, adding commits to the branch as we go.
While all of this is happening, master can continue to evolve
on its own, picking up new commits that aren’t in your new
branch. Nothing about the shared history of the new branch
or master will change as a result of work on either branch, and
all the new changes on one branch are isolated from changes
on the other.

For instance, perhaps a new year is approaching, and you
need to update the year in your site’s copyright statement while
you’re in the middle of the homepage redesign. After you’ve
committed your changes to the new-homepage branch, switch-
ing back to master is a git checkout away:

[new-homepage] $: git checkout master
Switched to branch 'master'

[master] $:

Once you’ve updated the year and committed that
change, you can switch back just as easily with git checkout
new-homepage.

The name you give to a branch should logically describe its
reason for existing. Come up with a pithy label that identifies
the work being done. A branch created to fix a problem with
Chrome 32 might be called fix-chrome32-bug; it could also be
named something more specific, like fix-chrome32-webfont-
bug, or something more generic like bugfix. Choose a level
of specificity that will distinguish this branch from others on

GIT FOR HUMANS60

your project without wasting space. Usable space in branch lists
is at even more of a premium than in commit logs (although
unlike with commits, it’s possible to delete and clean out old
branches that aren’t being used). It’s fine if branch names aren’t
completely descriptive—they just need to be descriptive enough.

MERGING
Sometimes, a branch will serve as a place to do work that
you plan to throw away. That’s one of the lovely things about
branching in version control systems generally, and it’s espe-
cially lovely in Git: branching is quick and cheap, and you’re
under no obligation to reconcile the version of your work in a
branch with the one in master.

Most of the time, though, people use branches to work on
things that they intend to fold back into the master copy even-
tually. Likewise, as master continues to evolve independently
of whatever topic branches you’re working on, you’ll want to
synchronize those changes (or at least some of them) with the
ones in your branch. This is so that the version of your website
saved in the branch is as fresh as possible—you wouldn’t want
to show off a version of your website where the homepage was
new but everything else was obviously six months old—but
also to ensure that your new work can merge easily back into
master when it’s ready.

Merging combines two (or more, but usually two) different
branches of your project into a unified version that contains the
unique attributes of both. On one side you have your master
branch, containing the version of your site that’s currently live
on the web. Someone on your team discovers an error in the
contact information, so they create a new topic branch named
update-contact-info where the error is fixed. What you want
now is a version of the master branch that includes the updated
contact info from update-contact-info.

To do that, first check out the master branch on your
local copy:

61BRANcHeS

[update-contact-info] $: git checkout master
Switching to branch 'master'

[master] $:

Then use the git merge command to pull in changes from
the other branch into your copy of master:

[master] $: git merge update-contact-info
Updating 286af1c..885e3ff
Fast-forward

Voilà! You now have a version of master that contains every-
thing it had before, plus the amended contact info. Let’s step
back and examine exactly what just happened under the hood.

What merges are made of

In terms of how Git manages your data, when we say we want
to end up with a version of our branch that includes all the stuff
from another branch, we have two criteria that need to be met.

First, we want all of the commits we made on the other
branch to be visible in our commit log (though their exact
order can be flexible). Basically, we need for the history that
led us to this moment to still have happened, and for the chain
of ancestry to point back through both branches to include all
of the work that was done so far.

Second, and more important, we need to end up with a
copy of our project’s files and folders that incorporates all of
the changes from both branches. It may not surprise you to
hear that the outcome of a merge is a commit and, as we’ve
seen, every commit represents a complete snapshot of the
whole project. The commit you end up with after a merge is
no exception, which means someone or something needs to
be responsible for constructing this new, unified version of
the project directory.

GIT FOR HUMANS62

Most of the time, the “something” responsible for construct-
ing a merged copy of your project is Git, and it has a few strat-
egies it uses to do that.

Fast-forwards

The simplest, easiest kind of merge is called a fast-forward,
which is exactly what it sounds like. In our example of the
updated contact page, nothing had changed in master since
we branched off; everything that was different in the update-
contact-info branch was stuff that was added after the last
commit on our master branch (FIG 3.5).

Here, git merge doesn’t have to do any work at all to figure
out what the post-merge state of the project should look like,
because only one side of the merger has changed. Therefore,
the merged state will be identical to what’s currently in the
update-contact-info branch. All Git needs to do is move the
master branch bookmark from its current commit to the head
commit of the other branch (FIG 3.6).

Following a fast-forward, the two branches simply point to
the same commit, making them once again identical in every
way except their names.

FIG 3.5: While the update-contact-info branch has a few more commits, master remains
unchanged. Because only one side of the merger has changed, the merged state will be
identical to what’s in the update-contact-info branch.

18ee782

master

18ee782

b26b038

update-contact-info

63BRANcHeS

Merge commits

As smooth and elegant as fast-forwards are, they’re not pos-
sible unless only one of the two branches has new commits,
which—depending on the size of your team and how quickly
things change in your project—may happen only rarely. The
rest of the time, Git falls back to a “true merge,” where it figures
out what the combined state of the project should look like,
creates a snapshot representing that new, merged version, and
finally adds a special kind of commit—a merge commit—to tie
everything together.

To return to our contact-info-updating example, let’s say
both master and update-contact-info have changed, each
picking up one new commit since they branched off.

Because both branches have changes, Git has to do a little
work to ensure the two branches can be merged safely. First, Git
identifies changes between the head commits of each branch
by looking for the first common ancestor of both versions,
before working backward to understand what changed and in
what order, using the common ancestor as a reference point.
Then, Git compares each changed file in both branches against
the reference point. When Git identifies a line that has changed
in either branch, that line is carried forward for inclusion in
the final, merged copy. As long as the branches don’t both

FIG 3.6: The master branch bookmark shifts from its current commit to the head commit
of the other branch.

master

18ee782 b26b038

update-contact-info

GIT FOR HUMANS64

contain changes to the same line, Git can still merge every-
thing automatically.

Once the merged snapshot has been automatically gener-
ated, by default Git seals the deal and commits it for you, with
an automatically generated commit message: “Merge branch
‘update-contact-info’ into master.”

This is only a default, of course: you can pass the
–no-commit option to git merge to ask Git just to generate and
stage the merged-together version of your work, but wait for
you to commit it yourself. One reason you might do this is to
craft your own commit message, although the automatically
generated one is almost always good enough. Another reason
might be that you want to make some other changes in the
same commit, or even to merge in several different branches in
a single commit by running git merge --no-commit more than
once. Doing so doesn’t save you any work, though, and you
lose the benefit of a merge commit marking when and where a
merge occurred. All of this is to say: use the regular, automatic
merge unless you have a reason not to.

Merge commits have a few unique properties. For example,
unlike a normal commit, which has only one parent, merge

FIG 3.7: In a simple merge, Git finds only the changed lines from two branches and
combines them to produce a third, merged snapshot.

Copy A Copy B Merged copy

65BRANcHeS

commits can have two (or more, but usually just two) parents
(FIG 3.8). In most respects, though, merge commits are like any
other commit, and subject to the same rules.

For a few reasons, it’s generally a bad idea for a topic branch
to drift too far away from the latest version of master. Presum-
ing here that topic branches are short-lived, and your ultimate
goal is to merge them into master, keeping branches relatively
up to date with master will make that eventual, final merge go
more smoothly, and reduce the risk of dreaded merge conflicts.

So, from time to time, you’ll want to merge new commits
from master into your branch to bring it back up to date:

FIG 3.8: Because both master and update-contact-info have added a commit since
their ancestor in common, 18ee782, Git creates a merge commit to tie them together,
referencing both previous commits as parents.

18ee782 b26b038

update-contact-info

18ee782 505a224

MERGE COMMIT18ee782

6b03828

b26b038

update-contact-info

18ee782 505a224

master

master
Before merge

After merge

GIT FOR HUMANS66

(new-homepage) $: git merge master
Updating c7038f8..1c4b16a
Fast-forward
 Makefile | 7 ++
 Rakefile | 15 ++--

Ideally, the final state of each working branch should differ
from master only in ways that are relevant to its topic. For
example, the new-homepage branch should have the changes
needed to produce the homepage, but not any unrelated
changes, and not any regressions to an older version of master.
The same is true of update-contact-info, add-web-fonts, or
any other topical branches you might work on.

HANDLING MERGE CONFLICTS
As we’ve seen, Git can often merge two branches together auto-
matically. But sometimes it’s not obvious how two branches
should be merged together, in which case Git will ask for your
help. This is one of the most annoying scenarios in Git, one
that can seem really scary the first time you encounter it, but
is actually not that bad: the dreaded merge conflict.

Most often, merge conflicts happen when two lines in a
merge happen to overlap—that is, if two different versions are
trying to change the same line of the same file. Under normal
circumstances, Git will not try to resolve conflicts itself. Instead,
it will do what it can, but after that it will stop and ask you to
finish the merge commit yourself.

The process for resolving a merge conflict is very similar to
the process for making a commit. To reinforce an earlier point,
merge commits are ultimately just commits. They do have
more than one parent, to reflect that they’re combining two
prior versions of your project into one unified whole. Other-
wise, though, they follow the same rules as any other commit,
including the process for creating them: first you need to stage
changes you want included; then you commit.

To the extent that merge commits are different, it’s in how
much Git will try to do for you automatically before asking

67BRANcHeS

you to get involved. This, perversely, is one of the ways merge
conflicts can throw off newcomers: by the time Git says it needs
your help, the merge commit is often already mostly staged. It’s
as if someone else has started a commit and then left it for you
to finish—and indeed, that’s exactly what’s happening.

Upon finding your branch in a conflicted state, if Git is able
to successfully merge any files that have changed since the last
commit on your current branch, those changes will be added
to the staging area automatically. You generally don’t need to
worry about or do anything with these changes; they’re good
to go.

This is the part where the doctor says you’ll feel a slight
pinch: when Git can’t automatically merge two copies of the
same file, it will mark up your working copy and ask you to go
through and manually choose which version of each change
is the correct one. And when I say “manually choose,” what I
really mean is: Git will fill each conflicting file with arcane-look-
ing gobbledygook called conflict markers, and your job is to go
through each one and swap out the marked-up text for the
version you want to end up with following the merge.

Let’s dive into an example. One of our colleagues, Meghan,
has recently been promoted from Director of Sales to Vice
President, and we’re working on a branch (promote-meghan)
to add her new title to the company’s About page. At the
same time, someone else on our team is tweaking the HTML
structure for the About page in their own branch
(about-page-class-names), using Meghan’s old title but chang-
ing all the markup around it. These two changes seem innocu-
ous enough, but they’re a recipe for a Git disaster.

Let’s presume that about-page-class-names is merged into
master first, so that the new HTML structure is now also part
of master. Then, being conscientious Git users, we try to update
our promote-meghan branch by running git merge master:

(promote-meghan) $: git merge master
Auto-merging about.html
CONFLICT (content): Merge conflict in about.html
Automatic merge failed; fix conflicts and then

commit the result.

GIT FOR HUMANS68

Oh, no! A merge conflict! Now, when we open up about.
html, it looks like this:

<div class="team-member">
 <h2>Meghan Somebody</h2>
<<<<<<< HEAD
 <p class="title">Vice President, Market

Development</p>
=======
 <p class="job-title">Director of Sales</p>
>>>>>>> master
</div>

The lines full of angle brackets are conflict markers, denoting
the two versions of the conflicting line, which are separated
here by the line full of equal signs. At the top of this conflict
section, we have the version of the file in our current branch,
identified here as HEAD. HEAD is Git’s name for the “branch head
pointer”; it’s an alias for “the commit at the top of this particular
branch,” which in this case means the same thing as “the com-
mit that is currently checked out in this working copy.” This
version reflects Meghan’s new title, but shows the old CSS class
name (class="title").

The bottom version is the one we’re trying to merge in,
identified here by its branch name (master). As you can see, the
class name is up to date (class="job-title"), but the actual
title is not. It’s a subtle difference, but big enough for Git not to
want to assume anything about which version is right, or how
to correctly combine the two. Git doesn’t know anything about
job titles, and can’t write HTML. It’s relying on you, its human
operator, to step in and craft the merged version.

To resolve this conflict, we need to replace all of this—every-
thing between and including the angle-bracketed lines—with
the version of the code that we want to wind up with following
the merge:

69BRANcHeS

<div class="team-member">
 <h2>Meghan Somebody</h2>
 <p class="job-title">Vice President, Market

Development</p>
</div>

This handcrafted merge incorporates both the new class
name and the new title. Next, we’ll officially resolve the con-
flict by adding the new version to the staging area. Staging this
change tells Git that we’ve officially signed off on this version
being, well, the official one.

(promote-meghan *) $: git add about.html

We’ll finish the merge by committing, with a message
explaining what we did:

(promote-meghan *) $: git commit -m "Merge branch »
master into promote-meghan, w/ resolved conflicts"

Although this commit also resolved a merge, it’s just a commit.
As mind-blowing as this may sound, you’re under no obligation
to use either of the two old versions of this line in this file.
You could decide to resolve the merge by changing Meghan’s
title to give her an even bigger promotion to “CEO.” (Don’t be
surprised to get a confused email from your actual CEO if you
do that.) Whatever version of the file is staged when you make
that last commit is the one that will “win” the merge.

As you can see, this mechanism for resolving conflicts is
simple—perhaps a little too simple. If you’re not thorough, it’s
possible to accidentally check in a file full of conflict markers,
because Git will expect you to know that it’s your job to find
and remove them all. (If you do accidentally check in conflict
markup, or anything else that shouldn’t be in a file, do not panic.
Just calmly fix whatever got messed up, stage your changes,

GIT FOR HUMANS70

and commit them. Git may be inscrutable, but at least it’s con-
sistent.)

Again, while merge conflicts are more annoying than truly
scary, you’re better off avoiding them whenever possible by
merging in master regularly. This may seem ridiculous given
that, in the last example, merging in master is precisely what
tripped us up. But that particular merge conflict was inevitable
given the nature of what had changed in the two branches. By
merging in master now, we were able to deal with this one-
line conflict when it was small and simple. Later on, we may
have picked up other conflicts in addition to this one, and we’d
have had to stop in our tracks while we painstakingly cleaned
everything up by hand.

The goal of keeping master and topic branches up to date
with each other isn’t to prevent conflicts, but rather to make
conflicts easier to manage by keeping the differences between
two branches small. Most of the time, if you’re judicious about
merging, this kind of thing will never come up. Still, despite
your best efforts, merge conflicts sometimes happen anyway.
This scenario, where two different members of your team
each make well-intentioned changes that happen to conflict
with each other, is always possible. So it can be comforting to
know that Git has a solution—and, as always, Git’s solution is
a commit.

4

71ReMOTeS

So FAr, ALL oF THe CHANGeS we’ve made and committed live
in one place: your computer. That’s actually pretty neat: unlike
some other version control systems that maintain their repos-
itory of committed versions exclusively on a server, requir-
ing you to be online to commit changes, Git works offline by
default. For solo projects, this means that you can benefit from
powerful version control without having access to a server or
needing to set up an account somewhere.

But working solo is not really why people come to Git.
People usually come to Git because they want to collaborate.

There’s an old saying (which, like the word “bug,” is popu-
larly attributed to Grace Hopper): A ship in port is safe, but that’s
not what ships were built for. Right now, all these commits you’ve
been making are safe in the proverbial harbor that is your com-
puter. Let’s send them on a voyage.

A remote repository—as opposed to a local one on your com-
puter—is a copy of a Git project that lives somewhere else:
another computer on your network, someone else’s computer
somewhere else, an online service like GitHub—anywhere
other than the directory you’re looking at right now. In fact,

REMOTES4

GIT FOR HUMANS72

strictly speaking, when I talk about your “local” repository, I’m
referring only to the one you happen to be working with right
now. You can even ask Git to push and pull changes to a second
local copy stored in a different folder on your own computer,
and that second copy would be considered a remote.

Remotes are one of Git’s most successful abstractions. Unlike
branches, which are wholly virtual copies of your project, each
remote corresponds to an actual, physical copy of your repos-
itory with which you can exchange data. Most of the things
you’ll need to do to send and receive changes with a remote
have been neatly wrapped up into two verbs: push and pull,
which do more or less what you’d expect.

YOUR GIT HUB
Git’s decentralized design allows you to push and pull changes
between any two computers: if you wanted to, you could push
commits from a branch on your computer directly to a branch
on your teammate’s computer, and vice versa. And while this
seems cool, for most teams it introduces a lot of complexity
without a lot of benefit.

Instead, many teams share code via Git through what I’ll
call the hub model. It’s centralized in a good way: you and your
team keep a shared copy of a project on a remote server (the
hub), where it’s accessible to everyone on the team. Each team
member who joins the project copies (or clones) the project
repository to their own computer, makes and commits changes
there, and then uses the git push and git pull commands
to synchronize their repo with the one stored on the server.

There’s nothing special about remote repositories: they’re
just instances of the project, stored somewhere accessible so
that you can push or pull commits to or from them. In theory,
Git doesn’t consider any one repository to be the canonical
one for a given project, although in practice most teams have a
single shared remote copy (often hosted on GitHub) that they
consider the primary one—what Git conventionally calls the
origin. As with master branches, what “primary” means is up
to you, and the origin remote is what you make of it.

73ReMOTeS

The hub model, though, views the origin remote as canon-
ical, and so from the perspective of your team members, your
changes aren’t truly checked in until they’re both committed
and pushed to the server for others to access (FIG 4.1).

The hub also serves as a reliable backup of the code in the
event that a contributor’s own copy of the project gets cor-
rupted or lost somehow, or if someone gets a new computer
and needs to pull down a copy of his or her work. Rather than
just copy files from one laptop to another, it’s often easiest to
re-clone the Git project from the hub to the new machine.

This of course presumes that the hub copy is never lost or
corrupted, but Git’s decentralized design helps us out here.
Although the hub is the most canonical backup copy of your
repo, every copy contains the complete history of your proj-
ect. For work to be truly lost, it would have to disappear from

FIG 4.1: Following the hub model, members of your team synchronize their local copies
with a shared, central copy, rather than with each other.

TEAMMATE’S
COPY

Central hub copy,
stored on the server

ORIGIN

github.com/ourteam
/our-website.git

TEAMMATE’S
COPY

MY COPY
on my computer

GIT FOR HUMANS74

everyone’s computers, which is unlikely to say the least. In the
improbable event that the hub becomes compromised, any local
repo can be used to spawn a new remote.

WHAT LIVES ON THE SERVER?
Server-side repos are what are called “bare” repos, consisting
only of the actual repository data (old versions, branches) and
no working copy (which also means no staging area). A direc-
tory containing a bare Git repo is usually marked by appending
.git to its name, as in our hypothetical our-website.git.
The insides of a bare Git repo directory are virtually identical
to what you’d find in the hidden .git directory in your local
working directory, with subdirectories for objects, branch
pointers, and other stuff Git needs.

Our server-side Git repo contains all of the commits that
have been pushed to it, as well as its own set of branches. It’s
this additional, remote set of branches that can confuse the
heck out of newcomers, because while it’s natural for us to
assume there’s always a one-to-one relationship between a
branch on our computer and one on the server, and while that’s
usually how it goes, Git doesn’t require such a relationship and
therefore doesn’t enforce it. True to form, the main way Git
compels you to deal with this loose coupling between local and
server-side branches is by requiring you to be more specific in
your commands.

For example, to push changes from one of your local
branches to its twin on the server, it’s often not enough to
say just git push. Git may prefer that you say git push
<remotename><branchname>, even if it seems to us like both the
remote name and branch name can be inferred from context.

WHERE’S THE REMOTE?
A repository’s location relative to your local repository is what
qualifies it as a remote. In other words, a remote is ... elsewhere.
Where is that, exactly?

75ReMOTeS

For most of you, most of the time, your remote repository
will live on GitHub. GitHub is the most popular hosting ser-
vice for Git repositories by such a wide margin that it seems
ridiculous to write this chapter as if there are alternatives. Even
if your team never hosts projects on GitHub, you’re certain to
interact with a repo hosted on GitHub at some point in your
work. To be sure, GitHub’s service is both very inexpensive—
free if your project is open source or at least browsable by the
public, with cheap paid plans available if you need private code
sharing—and very easy to use.

Many other options exist, however: both other hosted ser-
vices and ways to self-host Git repositories. If you’re not will-
ing or able to manage your own servers, a hosted service like
GitHub is the best choice—they do all the heavy lifting so you
can focus on your project. But depending on the kind of work
you’re doing, or the kind of organization you’re doing it for, you
may have to ensure that your source code is stored in-house.

Fortunately, although different services may have different
tools or interfaces for creating remote repositories, they all
function the same way once they’re set up.

ADDING YOUR FIRST REMOTE
You can pass a remote’s URL as a parameter to each of the Git
commands I just mentioned, which is fine if you only need to
push or pull changes once and never again. Most of the time,
though, you’ll work with the same remotes over and over again
during a project’s lifespan. Instead of referring to remotes by
their URLs, you can assign names to each remote you work
with, and refer to it by its name instead.

At this point, of course, we have our own local copy of the
project stored on our computer. But let’s say we also have a
remote Git repo (our-website.git) stored on our own server,
gitforhumans.info, which we’d like to set up as the origin for
our project. To do this, we’ll use the git remote add command.
Switch back to the Terminal and enter this command:

GIT FOR HUMANS76

(master) $: git remote add origin »
https://gitforhumans.info/our-website.git

I should point out that git remote is a new kind of com-
mand for us: one with subcommands. Whereas all the commands
we’ve used so far have had just a single, one-word command
name (e.g., git commit), all the commands related to configur-
ing remotes are namespaced; that is, they’re all two-word com-
mands starting with remote: remote add, remote rm, and so on.

Typing just git remote, with no subcommand, instructs Git
to show us a list of all the remotes we’ve added to this project,
similar to how git branch shows a list of branches. As you can
see, we only have one: origin:

$: git remote
origin

Note that if you started out by cloning the project to your
computer from a remote server, using the git clone command,
you’ll find this step is already done for you. Repositories you
clone from a remote always come preconfigured with that
remote set as its origin.

Just as your project’s primary branch has a conventional
name (master), so does its primary remote: origin. (Notice
how this simple yet effective naming convention reinforces the
“hub” role for the remote repository: semantically, the remote
is the origin for your project’s code, and all of your local repos
are just satellites orbiting the hub.)

Although origin is the conventional name, you can name
remotes anything you want. Unless you have a really compel-
ling reason, though, it’s best to stick with convention and go
with origin for your project’s primary remote home.

Understanding remote URLs

Git supports three different networking protocols for moving
commits and other data across networks: the Git protocol, SSH,

77ReMOTeS

and HTTP (FIG 4.2). In day-to-day practice, all three behave the
same way. Git’s protocols differ only in how you authenticate
yourself with the server (that is, how you identify yourself and
prove that you’re you) and whether it supports reading and
writing changes, or just reading.

SSH (Secure Shell)

Git’s SSH protocol is the exact same one many of us use to log
in to remote servers every day. In fact, any SSH server you have
access to can probably be used as a host for remote Git reposi-
tories. SSH remotes support both reading and writing, and you
can use any authentication method SSH supports.

While Git doesn’t have a default protocol, per se, SSH is so
widely used for securely sharing Git repositories online that
it has become a sort of default—a status Git reinforces by not
requiring a protocol prefix for SSH URLs. Put another way, if
you omit the protocol part of a URL, Git just assumes you mean
it’s SSH. GitHub’s longtime default URL format for private repo
access (e.g., git@github.com:username/reponame.git) uses SSH.

One drawback to the SSH protocol limits its usefulness
in today’s open-source ecosystem: it only works for private
repositories, because SSH has no way of allowing someone to
access resources without authentication. (It is a secure shell, after
all.) Therefore, you may have to rely on a different protocol if
you want to offer public access to some or all of your repos.

FIG 4.2: each of these example URLs refers to the same repo—hello.git, on the server
named gitforhumans.info—using each of Git’s three protocol options. Most Git hosting
services offer at least HTTPS and SSH.

Git protocol git://gitforhumans.info/hello.git

HTTPS https://gitforhumans.info/hello.git

SSH git@gitforhumans.info:hello.git

mailto:git@github.com

GIT FOR HUMANS78

Fortunately, most Git hosts offer support for multiple proto-
cols, so you can use HTTP to allow the public to download the
latest stuff from your hot new JavaScript framework’s master
branch, while using SSH within your team to push commits
to that branch.

SSH Git remotes, like many SSH servers, support logging
in with a username and password, but it’s more common to
identify yourself using public key authentication, whereby
you generate a unique, secure key pair and upload the public
key to your account on a Git server such as GitHub, keeping
the private key safe on your own computer. When you access
a remote from that server, Git (or rather, SSH, working on Git’s
behalf) securely sends your private key, which acts as a kind
of ID badge. (GitHub’s help docs have a good summary of the
process of creating key pairs: http://bkaprt.com/gfh/04-01/).

Git newcomers can find working with key pairs daunting
and unfamiliar, but in return for this added complexity we get
both security and (beyond the initial setup step) ease-of-use.
Because each user generates a unique key pair on their own
computer, it’s easy for server administrators to manage pre-
cisely who has access to which projects, especially when using
hosting services like GitHub or Bitbucket, which offer great
tools for managing users and keys.

HTTPS

This is, of course, the same HTTP we use to deliver content
over the web. These days, many Git hosts (notably including
GitHub) have made HTTPS URLs the default, partly because
they’re easier to use (you can authenticate HTTPS remotes with
a username and password, rather than a SSH key), and partly
because they’re more versatile. Whereas SSH must be private,
and must allow read and write access to your repositories,
HTTPS offers more flexibility. You can allow anyone on the
internet to pull down changes from your repo, while restricting
push access to members of your own team.

http://bkaprt.com/gfh/04-01/

79ReMOTeS

Git protocol

Only the Git protocol is unique to Git, but these days it’s rarely
used, largely because it’s read-only. This once made it a good
choice for serving up public repos (say, on GitHub), and it
paired nicely with SSH for projects that needed both public
and private access. Today, however, HTTPS is a better choice.

Which should you use?

On purely private projects—if you’re working on commercial
software, say, rather than on open-source code—SSH is an
excellent choice, and the most widely supported. That said, if
you want the simplest, most consistent experience, I recom-
mend using HTTPS whenever possible. Though SSH keys aren’t
hard to manage, they still aren’t as easy to use as a username and
password, and the fact that HTTPS URLs can be made public
makes them easier to share.

You can learn more about Git’s protocols and their pros and
cons in Scott Chacon’s excellent reference book Pro Git, which
is available for free online (http://bkaprt.com/gfh/04-02/).

WORKING WITH REMOTE BRANCHES
This may sound obvious, but the main difference between
working with branches and working with remotes is that
remotes are on another computer. When you’re working with
branches, you’re mainly concerned with managing different
versions of your work stored on your own computer, within
what I (and Git) call your local copy. With remotes, just as with
branches, you’re still managing different versions. In fact, your
interactions with remotes will almost always be in the context
of a branch. Once you’ve committed a change to a branch on
your local repository, you can use git push to submit your
copy of that branch—and all the new commits you’ve added—to

http://bkaprt.com/gfh/04-02

GIT FOR HUMANS80

the server. Whenever you need to refresh your copy of a branch
with everyone else’s latest changes, you use git pull.

Let’s look at some examples of how you’ll use these new
commands in practice, starting with pushing.

Pushing changes

Having worked on our new homepage design for a while, we’ve
discovered a bug in some JavaScript we’ve written. Someone
else on the team has offered to help fix the problem, but first we
need to get our changes into her copy of the project. To do this,
we need to push the new-homepage branch from our computer
to the server, where our teammate can find and pull from it.

The command we need here is git push <remote> <branch>.
Again, Git wants us to be explicit here, listing exactly which
remote we want to push to (origin), and which branch we
want pushed (new-homepage). This is our first time accessing
this particular remote, which is password-protected, so Git
will prompt us to enter our credentials when we try to push
or pull initially:

$: git push origin new-homepage
Username for 'https://gitforhumans.info': ddemaree
Password for 'https://ddemaree@gitforhumans.info':
Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (8/8), 743 bytes | 0 bytes/s,

done.
Total 8 (delta 1), reused 0 (delta 0)
To https://gitforhumans.info/our-website.git
 * [new branch] new-homepage -> new-homepage

Git does several things on our behalf when we push changes,
and this long, convoluted response tells us about each one.

First, in the initial lines after the password prompt, Git packs
up and sends our commits over the network:

81ReMOTeS

Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (8/8), 743 bytes | 0 bytes/s,

done.
Total 8 (delta 1), reused 0 (delta 0)

There’s nothing we need to know in this block of text; it’s
saying that Git was able to pack up and send our data to the
server successfully.

The next line is much more relevant for us:

* [new branch] new-homepage -> new-homepage

Here, Git tells us that the remote server received our branch
called new-homepage, and from it created a new branch on the
server, also called new-homepage. Git doesn’t require remote
branches to have the same names as their local counterparts.
However, for the sake of everyone’s sanity, it’s customary to
keep branch names consistent.

Pulling changes

It’s later in the day, and we’ve come back from getting a cof-
fee to find that our teammate has submitted her changes,
fixing the bugs in our JavaScript. Now it’s time to get the
changes she has committed to the new-homepage branch into
our copy of the branch, by updating our branch using git pull
<remote> <branch>.

Here again, Git asks us to be maddeningly explicit, specifying
the remote and branch names:

$: git pull origin new-homepage
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From https://gitforhumans.info/our-website.git
 * branch new-homepage -> FETCH_HEAD

GIT FOR HUMANS82

Updating fed3ac5..4f82376
Fast-forward
 carousel.js | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

As with git pull, the response includes several lines (begin-
ning with remote:) that explain how data is being transferred
between the two repos, which isn’t very interesting. Let’s skip
past that, to where there is an interesting detail:

From https://gitforhumans.info/our-website.git
 * branch new-homepage -> FETCH_HEAD

Here, where you might expect Git to say it has pulled changes
from the server’s copy of new-homepage to our local copy of the
same branch, the little ASCII arrow is instead pointing to some-
thing called FETCH_HEAD. To explain this, let me step back a bit
and show you how pushes and pulls work behind the scenes.

Whenever you push or pull a branch, two things need
to happen, both of which are reflected in this response from
git pull.

First, Git needs to transfer a bunch of objects (that is, your
commits and the files whose changes they’re tracking) to or
from the server. All those remote lines cover this part of the
process, and the reason I can confidently tell you to ignore
them is that it’s exceedingly rare to run into problems there.
The riskiest part of sending data between two computers is the
possibility of one machine’s data accidentally overwriting the
other’s without realizing it, resulting in data loss. One of the
most wonderful aspects of Git’s architecture is that it’s virtually
impossible for commits to conflict with each other, so sending
or receiving objects is extremely safe. The worst side effect is
that one copy ends up with too much data, but there’s almost
no risk of losing anything.

Once all the new commits are safe on your computer, we get
to the second part: a merge:

83ReMOTeS

Updating fed3ac5..4f82376
Fast-forward
 carousel.js | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

Because there weren’t any other commits on our side since
we handed this branch off to our colleague, Git is able to merge
it back in as a simple fast-forward.

Git does this elaborate, three-step, copy-and-merging dance
in order to ensure the safety of the work we’ve committed
to our copy of new-homepage. Although copying a bunch of
commits between computers is safe, as we’ve seen, merging
branches sometimes creates conflicts that Git can’t resolve on its
own. What’s more, even though with git pull we’re asking Git
to merge a server-side branch into one of our local ones, when
pulling Git actually does all of the merging work on the local
side, which means it needs to copy the server’s new-homepage
branch to somewhere on our computer before attempting to
merge it into our branch. FETCH_HEAD is that somewhere. It’s a
temporary branch Git has created as a buffer, for purposes of
merging in these newly fetched changes.

It’s important to remember that merging is implicitly part
of pulling (and, for that matter, pushing). Or, to flip it around,
it’s helpful to remember that both pushing and pulling are the
remote form of merging. Both commands do the exact same
job: they move a branch to another computer, then merge it
into another branch.

Having pulled in changes from the server, our copy of
new-homepage is now up to date, and we can get back to work.

Resolving merge conflicts: remote edition

As we’ve just seen, pulling in remote changes always ends in
a merge. And, as we also know, sometimes merges result in
conflicts. If anything, pushes and pulls are more conflict-prone
than other kinds of merges, because there are frequently more
people and changes involved over longer stretches of time.

GIT FOR HUMANS84

And the risk of conflict is perhaps never greater than with the
branch that, in most projects, changes most frequently: the
origin’s shared copy of master.

In the last chapter, I mentioned that it’s a good idea to keep
each branch you’re working on that you eventually plan to
merge into master updated with the latest changes in master.
Put more simply, while working you should pull in the server’s
master branch regularly, to reduce the risk of merge conflicts,
and to help keep any conflicts that do occur as minimal as
possible. The command for this, if you haven’t guessed, is git
pull origin master, which works similarly no matter which
branch you’re in. Here we’ll try to pull changes from origin/
master into our own copy of new-homepage:

(new-homepage) $: git pull origin master
From https://gitforhumans.info/our-homepage.git
 * branch master -> FETCH_HEAD
Auto-merging about.html
CONFLICT (content): Merge conflict in about.html
Automatic merge failed; fix conflicts and then

commit the result.

Oof! Once again, Git has been tripped up by a one-line differ-
ence on the About page. Just like when we changed Meghan’s
title, a commit on our branch changed some text in the head-
ing (from “About our site” to “Our Team”), while a commit
on master changed the surrounding markup. If we open up
about.html, we’ll see the conflicting change, surrounded by
conflict notation:

<<<<<<< HEAD
<h1 class=”big-heading”>About our site</h1>
=======
<h1>Our Team</h1>
>>>>>>> 4f2d3c939deaf8f2824d2be04cb59b3f8342aedb

The good news is that the process for resolving a merge
conflict is exactly the same whether it’s the result of a local
git merge, or an attempted git pull. Just like last time, we

85ReMOTeS

need to replace all of this with the version of the text we want
to end up with in this branch:

<h1 class="big-heading">Our Team</h1>

Next, stage and commit the change to resolve the conflict
in our local branch.

(new-homepage *) $: git add –A

(new-homepage *) $: git commit –m "Merge origin/ »
master into new-homepage, with resolved conflicts"

Once this commit is done, our branch is fully up to date with
the server’s master. You can now push these changes, including
the merge commit we just created, to the server’s copy of this
branch, or keep working.

While we’re here, let me draw your attention to some new
notation that I used in the commit message. Remote branch
names often take the form remotename/branchname, as in
origin/master (that is, the copy of master that lives on the
origin remote) or testserver/bugfix (the bugfix branch
on the testserver remote). Although remote branches almost
always correspond to (or track) a branch on your own computer,
they are technically separate branches, and this slash notation is
a good way of distinguishing between the two copies without
having to always say, as I did just now, “the copy of master on
the origin remote.”

Dealing with (push) rejection

While we’ve continued to work on the design for our new
homepage, the teammate who helped us fix some JavaScript
earlier has found and fixed another bug in our code. She com-
mitted and pushed her bug fix to the remote branch, but got
pulled into a meeting before she could let us know she added
some changes to our branch.

Meanwhile, we try to push some changes of our own to the
branch and this happens:

GIT FOR HUMANS86

(new-homepage) $: git push origin new-homepage
To https://gitforhumans.info/our-homepage.git
 ! [rejected] new-homepage -> new-homepage

(non-fast-forward)
error: failed to push some refs to ' https://

gitforhumans.info/our-homepage.git'
hint: Updates were rejected because the tip of your

current branch is behind
hint: its remote counterpart. Integrate the remote

changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git

push --help' for details.

Gulp. What causes Git to reject changes you’re trying to push?
Generally speaking, server-side Git repos don’t have working

copies, staging areas, or, for that matter, human users who could
help resolve merge conflicts. In fact, the lack of a working copy
means remotes generally can’t merge branches together at all if
they require more than a simple fast-forward to merge in. The
response from git push tells us as much:

! [rejected] new-homepage -> new-homepage
(non-fast-forward)

Fortunately, this situation is easily fixed by pulling changes
down from the server, and then trying to push again. Fast-for-
wards work by moving a branch’s HEAD pointer from the com-
mit it’s currently on to one of its direct descendants. When you
pull in changes, the result is a merge commit—which happens
to be a direct descendant of the remote branch’s current head
commit, and therefore qualifies for a fast-forward. Boom.

Long story short: if you want to avoid this kind of rejection,
or any kind of Git shenanigans, always pull before you push to
make sure your own local copy is up to date. There’s rarely any
harm to pulling changes, and frequently lots of benefit.

87ReMOTeS

TRACKING BRANCHES
By default, nothing connects local and remote copies of a
given branch. Even though they share the same name, and
we know they logically represent the same piece of work, Git
doesn’t yet know that our local new-homepage and the server’s
new-homepage are in any way related, which is why we always
have to tell git pull and git push which remote branches we
want to work with. As elsewhere in Git, this need to be explicit
can be annoying—but it’s also powerful. You can potentially pull
changes into new-homepage from any branch, on any remote.
You could run git pull maniks-computer new-homepage-
with-sass—where maniks-computer is your colleague Manik’s
laptop, and new-homepage-with-sass is a branch converting
your CSS styles to Sass—and it would totally work.

Having said that, there is value in telling Git when the local
and remote versions of a branch are related, by telling Git that
a local branch is tracking its remote counterpart. For instance,
when a branch is set up for tracking, you can push and pull
changes by typing just git push or git pull, with no other
arguments. Git will understand what you mean, and do the
right thing.

The simplest way to set up a tracking relationship is to
include the --set-upstream (or -u) option when invoking
git push.

(new-homepage) $: git push -u origin new-homepage
Branch new-homepage set up to track remote branch

new-homepage from origin.
Everything up-to-date

You only need to do this once per local branch, and if you
forget to do it the first time you push, that’s fine—you can do it
any time, even if you have no new changes to push (indicated
here by Git telling us everything is up to date).

GIT FOR HUMANS88

MAKING FETCH HAPPEN
Git has one other remote-related command that’s worth talking
about. On the surface, git fetch sounds maddeningly similar
to git pull. But whereas git pull works to pull down changes
for just a single branch, git fetch can pull down everything
from an entire remote repository at once.

You’ll notice that when we run git fetch origin, the output
is very familiar:

$: git fetch origin
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From https://gitforhumans.info/our-homepage.git
 9eb7cf6..fed3ac5 master -> origin/master

First we see the same object-copying gobbledygook we’ve
noticed several times already. However, at the bottom you can
see that something has happened other than just copying a bunch
of data from the server, something different from the merges or
fast-forwards we’ve gotten used to. Specifically, Git has saved
a copy of the server’s master branch to a special, read-only
branch on our local copy called origin/master.

Part of git fetch’s job is to allow you to work offline. When
I say git fetch works on whole repositories, I mean that: by
default, it pulls down a snapshot of every branch in a remote
so that you can compare, merge, or do any other sort of work
with those branches without needing to be online the whole
time. When Git was developed in 2005, before smartphones and
airplane Wi-Fi were ubiquitous, if you wanted to work from a
café or during a flight, you needed to have pulled down a copy
of everything on to your computer. But you would not necessar-
ily have wanted to take the extra step of merging every branch
on the server with every branch on your computer. (For one
thing, what if you had changes in a branch that weren’t ready
to merge in? What if some branches had conflicts?)

89ReMOTeS

Git’s solution is to keep track of the state of each branch in
your remote repositories using a system of read-only, name-
spaced branches on your local copy of the repo. I lied a little bit
when I said earlier that origin/* was just a notation for identi-
fying remote branches. origin/master is also an actual branch
saved in your local copy of the repository. After fetching, you
end up with copies of every single branch on the remote, even
those that don’t have a local equivalent on your copy of the
project, such as branches started by other people.

For safety and speed, Git tries only to use the network for
moving commits around, and does any real work on your com-
puter. So, instead of trying to compare data on your computer
with data on the server, Git instead makes a copy of what’s on
the server and lets you compare or merge against that. The
origin/master branch represents the origin remote’s master
branch, pointing to whatever commit was at the head of that
branch the last time you pulled it from the server.

Having these special offline copies of your remote branches
can complicate matters rather than simplify them. For instance,
we actually have three different branches called master: your
local master, the remote’s master, and your local origin/
master that’s supposed to—but isn’t guaranteed to be—in sync
with the remote master. Thankfully, branches like origin/
master are read-only, and are designed to only ever represent
a copy of what’s on the server. Once you run git fetch, you
can generally assume that each offline branch is an accurate
representation of its twin on the server, and go from there.

CHECKING OUT AN EXISTING BRANCH
In most of the teams I’ve worked on, most branches have been
owned by just one person, who was both the branch’s original
creator and usually also the one responsible for merging it into
master when the work was complete. However, many projects
are bigger than one person and take longer than a day to finish,
and you may not be the first to be asked to work on a particu-
lar branch. You may even join a branch while someone else is

GIT FOR HUMANS90

still working on it, and many people may be contributing all at
once. So how do you add a commit to someone else’s branch?

First, you need to check it out. To do that, we’ll use git
fetch to pull down copies of all of the branches currently on
the server:

[master] $: git fetch origin
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From https://gitforhumans.info/our-website.git
 9eb7cf6..fed3ac5 master -> origin/master
 9eb7cf6..fed3ac5 new-homepage -> origin/

 new-homepage

Having fetched the latest stuff from origin, all our server
branches are now available to us on our computer, even offline.
We’ll need to be online to push changes back up to the server,
but we can do almost anything else until then.

For instance, we can ask Git to give us a list of every branch
that existed on the server as of the last time we ran git fetch.
Although by default the git branch command will only tell
you what branches exist on your local copy, you can give it
the --remote (-r) flag to ask it to instead show you all of the
branches Git knows about from your remotes:

$: git branch --remote
origin/make-logo-bigger
origin/master
origin/new-homepage

Any of these can be checked out and worked on, or merged
into one of your branches. git pull origin master is, in
fact, just a shortcut for a git fetch, followed by git merge
origin/master.

Next, we’ll check out the branch we want to work on, help-
fully called make-logo-bigger. We don’t need to include the
origin/ prefix; if you’re checking out a remote branch for the

91ReMOTeS

first time, Git will first check to see if you have a local branch
by that name, and if not will automatically set up a new local
branch to track the remote one.

[master] $: git checkout make-logo-bigger
Branch make-logo-bigger set up to track remote

branch make-logo-bigger from origin.
Switched to a new branch 'make-logo-bigger'

[make-logo-bigger] $:

We’ve talked about where version control came from, and
how to practice it on our own projects using Git. We now
know how to make commits, create and merge branches, and
synchronize our changes with other computers—and, by exten-
sion, with other people. Along the way, we’ve started to build
up a history around our project.

Next, we’ll dig into what we can do with all those commits
now that we have them. Onward!

GIT FOR HUMANS92

GIT IS AN eXCeLLeNT TooL for synchronizing changes across
all our computers, and that’s how we almost always use it—to
keep each other in sync with what we’re doing right now. But
although most of the time all we care about is the current ver-
sion, or a few current ones, Git does a great job of storing and
tracking every version of our project, and those other thousands
of commits are still there, ripe for exploration.

Every commit you add to your repository contributes to the
historical record of your project, so it’s a good idea to make the
best, most meaningful commits you can. In this final chapter,
we’ll look at some of Git’s tools for inspecting your project's
history, and how useful this history can be.

READING THE LOG
The simplest way to inspect your project’s history is as an
ordered list of commits. Git’s primary tool for viewing such a
list is the git log command. Hosting services like GitHub offer

HISTORY5

93HISTORy

web-based tools for browsing your old commits; they do the
same job as git log with a little more user-friendly panache.
The advantage to learning git log is that, like the rest of Git’s
command-line interface, it works the same way no matter what
computer or hosting service you use. And, unlike GitHub’s
commit search, it works offline.

By default, invoking git log will show a list of every com-
mit in your project, from the current head commit all the way
back to the beginning, in reverse chronological order, like so:

$: git log
commit 45b1ec87cd2fde95a110dfe3028e93d25c9af186
Author: David Demaree <david@demaree.me>
Date: Fri Dec 26 16:28:41 2014 -0500

 Rename styles.css to main.css

commit bf8144d4690d3f6052dc7f42135e3e9944b96b5a
Author: David Demaree <david@demaree.me>
Date: Thu Dec 25 13:24:25 2014 -0600

 Initial commit

The lines starting with commit denote, well, a commit,
each of which takes up a few lines. The long string of letters
and numbers are each commit’s ID. Below that, we see the
Author who made this commit (me), and the Date on which it
was added. Finally, there’s the commit’s log message, shown
indented underneath the metadata.

This is the history we’ve been crafting as we make changes
and commits on the project. Logs like these are why commit
messages exist, and why it’s good for them to be short. Ideally,
you should get a sense of how this project has evolved over
time just from paging through git log’s output and scanning
the log messages.

The previous example shows the log’s default output. But
Git can tell you as much or as little about your commits as you
want, in virtually any format. The --pretty option allows

GIT FOR HUMANS94

you to select from a number of predefined formats, or specify
your own using a format string. Here’s the built-in oneline
format, which shows only the commit ID and log message on
a single line:

$: git log --pretty=oneline
45b1ec87cd2fde95a110dfe3028e93d25c9af186 Rename »

styles.css to main.css
bf8144d4690d3f6052dc7f42135e3e9944b96b5a Initial »

commit

A complete list of available log formatters, and the syntax for
defining your own as a format string, can be found in the Git
documentation (http://bkaprt.com/gfh/05-01/). And Atlassian
has published a thorough yet friendly tutorial showing all the
options for formatting log output, including some brief expla-
nations of why you would use certain formats (http://bkaprt.
com/gfh/05-02/).

Specifying your starting point

As we learned earlier in the book, Git’s concept of history is
based on lineage: a commit contains a reference to one or more
parent commits, which point to their parent commits, which
point to their parent commits, all the way back to the beginning.
git log appears to show a history of our project in reverse
chronological order, but the chronology is kind of a side effect.
What it’s really doing is following the chain of parent commits
to show you where your current commit comes from.

By default, the list it shows starts from the head commit on
your current branch. If you have master checked out, it’ll show
you the complete ancestry of the top commit on master. You
can, however, ask it to use any commit or branch as a starting
point. For example, here we’re asking it to show the history on
our new-homepage branch:

$: git log new-homepage

http://bkaprt.com/gfh/05-01/
http://bkaprt.com/gfh/05-02/
http://bkaprt.com/gfh/05-02/

95HISTORy

Viewing a range of commits

You can even specify commit ranges; that is, you can ask for
all log entries between two commit references so that you can
see only what has changed between any two points in your
project history.

This is best for seeing a list of what differs in a topic branch
since we branched off. Here, we’ll ask git log to show all the
commits that have been added to new-homepage that aren’t yet
merged into master, using the --oneline option to make the
log output easier to scan:

$: git log --oneline master..new-homepage
bce44eb Bigger navigation buttons
056c8fd Update hero area w/ new background image
7e53652 Make font loading async

Our range is listed here as start..end , or rather,
olderbranch..newerbranch , or to be really pedantic,
branch..branchwithdifferentcommits. You see, git log
doesn’t care about chronology and, as we know, there’s nothing
stopping master from having its own changes that aren’t yet
merged into a topic branch like new-homepage. The simplest
way to explain what git log branch-a..branch-b does is that
it shows you a list of all the commits in branch-b that aren’t in
branch-a. In the previous example, we see three commits from
new-homepage that aren’t yet merged into master.

What’s really cool is that we can ask git log to show us a
list the other way around—to give us a list of commits in master
that aren’t in new-homepage:

$: git log --oneline new-homepage..master
5514d53 Fix JavaScript bug on products page
4af326c Support for Microsoft Edge

This works with remote branches too, so you can find out
if your local copy of a branch is trailing behind the server’s

GIT FOR HUMANS96

copy. Here I’m asking git log to show me a list of commits on
the server that I haven’t pulled into my local branch yet, with
a custom format string so I can see who made each commit:

$: git log --pretty=’format:%h - %an: %s’ »
new-homepage..origin/new-homepage

635ce39 – Susan Oliver: Important legalese change
65ae00e – Stewart Colbert: Make many (JS) promises

If either side of the commit range is your current HEAD
commit—that is, the commit that’s currently checked out into
your working copy—you can leave it blank. Here we’ve got
new-homepage checked out, and we’re asking to see a list of new
commits from master:

[new-homepage] $: git log --oneline ..master
5514d53 Fix JavaScript bug on products page
4af326c Support for Microsoft Edge

This is exactly the same result as when we asked for a log
on new-homepage..master earlier. Because new-homepage is
checked out, Git infers that’s the other side of the comparison
we’re asking for, saving us a little typing.

Filtering the log

Finally, as if that weren’t enough, you can pass filtering options
to git log to limit the list of commits, to show only a certain
number of recent commits, or only those from within a certain
date range, or only those added by a certain member of the
team. For example, this command will show only commits in
one of my repos that were added by me, that include the word
“Heroku,” that are more than three years old, and that changed
the file called Gemfile:

$: git log --author=Demaree --grep=heroku »
--oneline Gemfile

94d8ecb Gemfile tweaks to remove heroku
ccc5266 Merged heroku prep into master

97HISTORy

This is just scratching the surface of what git log is capable
of. To learn more about this powerful tool, Atlassian’s git log
tutorial offers a great summary of what’s possible (http://bkaprt.
com/gfh/05-03/).

THE LONG AND SHORT OF COMMIT IDS
The unique ID of a given commit is among the most important
things you might use git log to look up. Git’s commit IDs serve
a few purposes, but the most important one is the most straight-
forward: we use them to identify a commit, as in, “that change
that messed up all the image tags happened in 65ae00e.” So far,
we’ve mostly seen commit IDs in a short form like that. Most
of the time, for reasons I’ll explain, the short form is fine, and
the only form you’ll need. Occasionally, though, you’re likely
to see commit IDs in their longer, unabridged form, like this:

65ae00edfe8a795199ed416a9d6df8c3cfe8bd0a

What’s the difference? And why does Git use these
weird-looking strings of letters and numbers to identify revi-
sions, instead of just a number?

As covered in the last chapter, even though many of us use
Git in a centralized way, Git is designed to be decentralized.
Every one of our computers has its own copy of the repository,
which can evolve independently from the others. You and I
can each make changes and commit them to a branch while
offline, and neither of us needs to know what the other is
doing until later, when we sync our local copies with a remote.
As we make those commits, Git needs to be able to assign an
identifying name or number to each one, but Git can’t know
ahead of time whether some other computer has already used
that name or number.

What’s more, Git’s design values stability and data integrity
above all else. In a 2007 presentation, Linus Torvalds talked
about the need for version control systems to look after the
veracity of the data under their care, and talked up Git’s features
for ensuring correct data (http://bkaprt.com/gfh/05-04/):

http://bkaprt.com/gfh/05-03/
http://bkaprt.com/gfh/05-03/
http://bkaprt.com/gfh/05-04/

GIT FOR HUMANS98

If you have disk corruption, if you have any kind of problems
at all, Git will notice them ... I guarantee you, if you put your
data in Git, you can trust the fact that five years later, after it
was converted from your hard disk to DVD to whatever new
technology and you copied it along, five years later you can
verify that the data you get back out is the exact same data
you put in.

Git solves both problems by creating and using IDs based on
the contents of each commit, rather than arbitrarily assigning
each one a name or number. Technically, commit IDs aren’t
identifiers so much as checksums, a kind of digital fingerprint,
typically used to validate data that has been transmitted over
a network. You’ll often see a list of checksums alongside soft-
ware builds, so people downloading, say, a prerelease build of
Windows can verify that the downloaded file is complete, and
hasn’t been tampered with.

When you make a commit, Git takes everything that consti-
tutes the body of the commit—your name and email address,
the current date and time, the commit message, references
to any parent commits and the current project snapshot—
and runs them through the hashing function to generate that
40-character string. The result is a value that’s virtually guar-
anteed to uniquely identify a given commit. That’s true even
if the same commit is made on two different computers. Two
identical commits will have identical hashes, and therefore
identical IDs, regardless of which computer added them to the
repo. Conversely, commits that differ in any way—even just
by having a different author—are guaranteed to have different
IDs; therefore, each hash is guaranteed to uniquely identify a
single commit.

While these long hashes help smooth collaboration, by mak-
ing it easier to swap commits between computers, they also
create a new problem for us. Because they are so long, reading
and writing them can be unwieldy. Fortunately, even if you pro-
vide only a fragment of the full commit ID, Git is smart enough

99HISTORy

to figure out what commit you want, as long as the short ID
is at least four characters long, and unique within your repo.

For instance, the commit ID I showed at the start of this
section could be shortened to as few as four characters (65ae)
without overlapping with any other commits in that project. In
fact, in most Git repositories, a seven-character ID like 65ae00e
is sufficient to uniquely identify any commit, even in reposi-
tories with tens of thousands of commits. For that reason, Git
will frequently use short IDs in its responses to you rather than
the longer form.

In the rare scenarios when two short IDs overlap, Git is
also smart enough to handle things gracefully by automatically
adding digits to the short IDs it prints out. In the Linux kernel
project (http://bkaprt.com/gfh/01-02/), for instance—perhaps
the oldest Git repository and certainly one of the biggest—it
turns out that seven characters are not enough to avoid over-
lapping IDs, but eleven digits do work, so Git automatically
switches its short ID format to use the fewest digits that will
still be unique across the whole project.

COMMIT MESSAGES
Git and tools like GitHub offer many ways (some of which we’ll
look at later in this chapter) to view what actually changed in a
commit. But a well-crafted commit message can save you from
having to use those tools by neatly (and succinctly) summariz-
ing what changed.

The log message is arguably the most important part of a
commit, because it’s the only place that captures not only what
was changed, but why.

What goes into a good message? First, it needs to be short,
and not just because brevity is the soul of wit. Most of the time,
you’ll be viewing commit messages in the context of Git’s com-
mit log, where there’s often not a lot of space to display text.

Think of the commit log as a newsfeed for your project, in
which the log message is the headline for each commit. Have

http://bkaprt.com/gfh/01-02/

GIT FOR HUMANS100

you ever skimmed the headlines in a newspaper (or, for a more
current example, BuzzFeed) and come away thinking you’d
gotten a summary of what was happening in the world? A good
headline doesn’t have to tell the whole story, but it should tell
you enough to know what the story is about before you read it.

If you’re working by yourself, or closely with one or two
collaborators, the log may seem interesting just for historical
purposes, because you would have been there for most of the
commits. But in Git repositories with a lot of collaborators, the
commit log can be more valuable as a way of knowing what
happened when you weren’t looking.

Commit messages can, strictly speaking, span multiple lines,
and can be as long or as detailed as you want. Git doesn’t place
any hard limit on what goes into a commit message, and in fact,
if a given commit does call for additional context, you can add
additional paragraphs to a message, like so:

Updated Ruby on Rails version because security

Bumped Rails version to 3.2.11 to fix JSON »
security bug.

See also http://weblog.rubyonrails.org/2013/1/8/ »
Rails-3-2-11-3-1-10-3-0-19-and-2-3-15-have-been- »
released/

Note that although this message contains a lot more context
than just one line, the first line is important because only the
first line will be shown in the log:

commit f0c8f185e677026f0832a9c13ab72322773ad9cf
Author: David Demaree <david@demaree.me>
Date: Sat Jan 3 15:49:03 2013 -0500

 Updated Ruby on Rails version because security

Like a good headline, the first line here summarizes the
reason for the commit; the rest of the message goes into
more detail.

http://weblog.rubyonrails.org/2013/1/8/Rails-3-2-11-3-1-10-3-0-19-and-2-3-15-have-been-released/
http://weblog.rubyonrails.org/2013/1/8/Rails-3-2-11-3-1-10-3-0-19-and-2-3-15-have-been-released/
http://weblog.rubyonrails.org/2013/1/8/Rails-3-2-11-3-1-10-3-0-19-and-2-3-15-have-been-released/

101HISTORy

Writing commit messages in your favorite text editor

Although the examples in this book all have you type your mes-
sage inline, using the --message or -m argument to git commit,
you may be more comfortable writing in your preferred text
editor. Git integrates nicely with many popular editors, both on
the command line (e.g., Vim, Emacs) or more modern, graphi-
cal apps like Atom, Sublime Text, or TextMate. With an editor
configured, you can omit the --message flag and Git will hand
off a draft commit message to that other program for authoring.
When you’re done, you can usually just close the window and
Git will automatically pick up the message you entered.

To take advantage of this sweet integration, first you’ll need
to configure Git to use your editor (specifically, your editor’s
command-line program, if it has one). Here, I’m telling Git to
hand off commit messages to Atom:

$: git config --global core.editor "atom --wait"

Every text editor has a slightly different set of arguments
or options to pass in to integrate nicely with Git. (As you can
see here, we had to pass the --wait option to Atom to get it to
work.) GitHub’s help documentation has a good, brief guide
to setting up several popular editors (http://bkaprt.com/gfh/
05-05/).

Elements of commit message style

There are few hard rules for crafting effective commit mes-
sages—just lots of guidelines and good practices, which, if you
were to try to follow all of them all of the time, would quickly
tie your mind in knots.

To ease the way, here are a few guidelines I’d recommend
always following.

Be useful

The purpose of a commit message is to summarize a change. But
the purpose of summarizing a change is to help you and your

http://bkaprt.com/gfh/05-05/
http://bkaprt.com/gfh/05-05/

GIT FOR HUMANS102

team understand what is going on in your project. The infor-
mation you put into a message, therefore, should be valuable
and useful to the people who will read it.

As fun as it is to use the commit message space for cursing—
at a bug, or Git, or your own clumsiness—avoid editorializing.
Avoid the temptation to write a commit message like “Aaaaahhh
stupid bugs.” Instead, take a deep breath, grab a coffee or some
herbal tea or do whatever you need to do to clear your head.
Then write a message that describes what changed in the commit,
as clearly and succinctly as you can.

In addition to a short, clear description, when a commit is
relevant to some piece of information in another system—for
instance, if it fixes a bug logged in your bug tracker—it’s also
common to include the issue or bug number, like so:

Replace jQuery onReady listener with plain JS; »
fixes #1357

Some bug trackers (including the one built into every GitHub
project) can even be hooked into Git so that commit messages
like this one will automatically mark the bug numbered 1357
as done as soon as the commit with this message is merged
into master.

Be detailed (enough)

As a recovering software engineer, I understand the temptation
to fill the commit message—and emails, and status reports, and
stand-up meetings—with nerdy details. I love nerdy details.
However, while some details are important for understanding
a change, there’s almost always a more general reason for a
change that can be explained more succinctly. Besides, there’s
often not enough room to list every single detail about a change
and still yield a commit log that’s easy to scan in a Terminal
window. Finding simpler ways to describe something doesn’t
just make the changes you’ve made more comprehensible to
your teammates; it’s also a great way to save space.

A good rule of thumb is to keep the “subject” portion of your
commit messages to one line, or about 70 characters. If there are

103HISTORy

important details worth including in the message, but that don’t
need to be in the subject line, remember you can still include
them as a separate paragraph.

Be consistent

However you and your colleagues decide to write commit
messages, your commit log will be more valuable if you all try
to follow a similar set of rules. Commit messages are too short
to require an elaborate style guide, but having a conversation to
establish some conventions, or making a short wiki page with
some examples of particularly good (or bad) commit messages,
will help things run more smoothly.

Use the active voice

The commit log isn’t a list of static things; it’s a list of changes. It’s
a list of actions you (or someone) have taken that have resulted
in versions of your work. Although it may be tempting to use a
commit message to label a version of the work—“Version 1.0,”
“Jan 24th deliverable”—there are other, better ways of doing
that. Besides, it’s all too easy to end up in an embarrassing
situation like this:

Making the last homepage update before releasing
the new site

$: git commit -m "Version 1.0"

Ten minutes later, after discovering a typo in
your CSS

$: git commit -m "Version 1.0 (really)"

Forty minutes later, after discovering another
typo

$: git commit -m "Version 1.0 (oh FFS)"

Describing changes is not only the most correct format for
a commit message, but it’s also one of the easiest rules to stick
to. Rather than concern yourself with abstract questions like

GIT FOR HUMANS104

whether a given commit is the release version of a thing, you
can focus on a much simpler story: I just did a thing, and this is
the thing I just did.

Those “Version 1.0” commits, therefore, could be described
much more simply and accurately:

$: git commit -m "Update homepage for launch"
$: git commit -m "Fix typo in screen.scss"
$: git commit -m "Fix misspelled name on about page"

I also recommend picking a tense and sticking with it, for
consistency’s sake. I tend to use the imperative present tense
to describe commits: Fix misspelled name on About page rather
than fixed or fixing. There’s nothing wrong with fixed or fixing,
except that they’re slightly longer. If another style works better
for you or your team, go for it—just try to go for it consistently.

What happens if your commit message style isn’t consistent?
Your Git repo will collapse into itself and all of your work will
be ruined. Kidding! People are fallible, lapses will happen, and
a little bit of nonsense in your logs is inevitable. Note, though,
that following style rules like these gets easier the more practice
you get. Aim to write the best commit messages you can, and
your logs will be better and more valuable for it.

For more on the art of writing commit messages, check
out Tim Pope’s “A Note About Git Commit Messages” (http://
bkaprt.com/gfh/05-06/) and Chris Beams’s “How To Write A Git
Commit Message” (http://bkaprt.com/gfh/05-07/).

MAKING GOOD COMMITS
On 24 Ways, Emma Jane Westby wrote that “commits should
really contain whole ideas of completed work” (http://bkaprt.
com/gfh/05-08/). For us humans, the job of a commit is to bun-
dle changes into logical chunks. Sometimes, the logic behind
a particular set of changes is as simple as: “This is when I, the
developer, felt it made sense to save my progress”. But some-
times there’s more of a story—more meaning—behind a change.

http://bkaprt.com/gfh/05-06/
http://bkaprt.com/gfh/05-06/
http://bkaprt.com/gfh/05-07/
http://bkaprt.com/gfh/05-08/
http://bkaprt.com/gfh/05-08/

105HISTORy

For a software tool so concerned with keeping your data
clean and consistent, Git is remarkably flexible about exactly
what you commit and when. One really cool (and potentially
confusing) thing about Git is that it doesn’t require you to stage
or commit everything you’ve changed all at once. Git lets you
move some changed files—or even changed parts of files—down
the path from working copy to committed, while leaving other
stuff unstaged or uncommitted. If you make three sort-of-unre-
lated changes to a single stylesheet file, you can commit each of
the changes separately, or together, as you see fit.

Let’s say you’re working on a project for which you’ve
changed both a JavaScript file and your project README, for
unrelated reasons. Here’s our status:

[master] $: git status
On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will

be committed)
#
README.md
site.js

The simplest thing would be to commit both files at the same
time, with a joint log message like “Add onReady event listener;
update README.” But if committing the two changes separately
is more meaningful, and provides more context for your logs,
Git makes it relatively easy to do that.

First, let’s stage and commit one of our two changes:

$ git add site.js
$ git commit -m "Add onReady event listener"
[master 591672e] Add onReady event listener
 1 file changed, 3 insertions(+)

GIT FOR HUMANS106

After we do that, our README is still modified and unstaged,
ready for us to commit separately:

$ git add README.md
$ git commit -m "Update README"
[master 96406dd] Update README
 1 file changed, 1 insertion(+)

Now, if we check the log, we’ll be at least a little more con-
fident that each entry in it—each commit—represents a single,
complete idea.

This is a hard thing to do perfectly all the time and, like a lot
of other best practices, commits that are perfect, single units of
work, wrapped up in a perfectly worded commit message, are
the exception rather than the rule. Don’t beat yourself up for a
big, messy commit with a vague label like “fixed the header”—
just know that better is possible and aim for it when you can.

COMPARING COMMITS
We’ve talked a lot about versions, states, and how changes
add up incrementally over time. When we deal with our work
one commit at a time, we’re encouraged to think beyond the
state of our work right now and consider the state it was in
yesterday, and the state it will be in tomorrow. From writing
commit messages and deciding what should go into a commit,
we’re prompted to think about how we describe the actions we
make as we make them, which eventually lends itself to a more
thoughtful, considered approach to work.

Most of all, Git asks us to treat changes to our projects—more
formally, the transitions between states represented by com-
mits—as actual events that occurred. Each commit represents
not only a snapshot of our whole project, but (except for the
first one, of course) also a change from a previous commit. Even-
tually, once you start thinking and working in versions, you will
want or need to compare the versions to see, specifically, what
has changed. A commit message can give you a summary, but

107HISTORy

Git also offers a handy way to actually inspect the differences
between two commits.

git diff (short for “difference”) shows the changes between
two versions of your project, or two versions of a given file
or files. In this way it’s a lot like git log, and in fact you can
choose to see diff information in your log output if you want.
In addition to comparing committed versions, if you’ve made
uncommitted changes, you can use git diff to show you
everything that’s different between your working tree and the
last commit.

Here, git diff shows us a simple change to the README
file we were looking at before:

$: git diff
diff --git a/README.md b/README.md
index 0c0a11f..48fb805 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,3 @@
-# My Project
\ No newline at end of file
+# My Project
+
+This is a project managed by Git.
\ No newline at end of file

Admittedly, this is not the easiest thing to read. git diff’s
default output is generated using a Unix comparison tool (itself
called “diff”) originally developed in the early 1970s, and dis-
played using a paging program called “less”, whose job it is to
display texts longer than your Terminal window. (I should point
out that this is a rather simple example. Most of the time, your
diffs will be longer and more complex.)

Here’s what’s going on in this diff: the lines starting with
dashes (-) are ones that we’ve deleted since the last commit; the
lines starting with plus signs (+) have been added.

Diffs (like Git generally) focus on changed lines in your files,
and changing even one character in a line will cause Git to con-
sider the line changed. Also, just as renaming a file is seen by

GIT FOR HUMANS108

Git as a combination of deleting the old file and adding a new
one, changing a line is seen as both a deletion and an addition.
You can see that in this diff: the main headline is present in
both versions, as a deletion and an addition. What changed? In
the committed version, the headline wasn’t followed by a line
break. (Yes, even adding a line break is enough for the line to
be marked as changed.)

Diffs can be incredibly useful, but unless you’re very com-
fortable with the Unix diff format, they’re also one of the few
things in Git for which I wholeheartedly endorse using a GUI
tool, either as an app on your computer or as part of a host-
ing service like GitHub. For projects hosted on GitHub or
GitHub Enterprise, every repo has a compare view (accessible
by appending /compare to your project’s URL) that does a

FIG 5.1: For projects hosted on GitHub, compare views are a great way to view—and
share—colorful, easy-to-read diffs between two commits.

109HISTORy

great job of summarizing changes in an easy-to-use visual
format (FIG 5.1).

Mac users might also consider Black Pixel’s app Kaleidoscope
(http://bkaprt.com/gfh/05-09/). Kaleidoscope is a general-pur-
pose file comparison tool that can be used to compare any two
files, regardless of whether they’re managed by Git. That said, it
offers great integration with Git, including an easy-to-use setup
tool that configures Git to open Kaleidoscope for diffs via the
git difftool command.

Git does offer a simpler diff format that is quite easy for
humans to read, if we return to the command line: the “diff stat,”
which reduces a whole diff to a list of the files that differ between
two versions, marked up to indicate how they’ve changed.

Here, I ask git diff to show stats for the difference between
the current HEAD commit on Typekit’s Web Font Loader repo
and the one before it (HEAD~1):

FIG 5.2: Git can integrate with visual file-comparison apps, like Black Pixel’s excellent
kaleidoscope, that display diffs in a colorful, easy to navigate format.

http://bkaprt.com/gfh/05-09/

GIT FOR HUMANS110

$ git diff --stat HEAD~1
 CHANGELOG | 3 +++
 lib/webfontloader.rb | 2 +-
 webfontloader.gemspec | 2 +-
 webfontloader.js | 4 ++--
 4 files changed, 7 insertions(+), 4 deletions(-)

While more concise than the full diff, the diff stats offer a
good summary of the changes in this commit. Each line shows a
file that was changed in this commit, like lib/webfontloader.
rb. Next to it, separated by a pipe (|) character, are the stats for
that file: two changes (one addition and one deletion). Knowing
Git as well as we do now, observing that this is just one com-
mit’s worth of changes, we can infer that it may have been a
one-line edit, such as a change in version number.

From here, if we need more information, we can request
a full diff of a particular file (using git diff HEAD~1
webfontloader.js), or a set of files (by passing in multiple file
names), or the whole project. We can also ask for stats covering
commits made over a much broader span of time:

$: git diff –stat HEAD~15
 .travis.yml | 5 +-
 CHANGELOG | 12 ++
 README.md | 24 +--
 lib/webfontloader.rb | 2 +-
 package.json | 5 +-
 spec/core/fontwatcher_spec.js | 3 -
 spec/core/fontwatchrunner_spec.js | 441 +++++++++--

 src/core/domhelper.js | 26 ++-
 src/core/fontruler.js | 2 +-
 src/core/fontwatcher.js | 22 +-
 src/core/fontwatchrunner.js | 33 +--
 webfontloader.gemspec | 6 +-
 webfontloader.js | 42 ++--
 13 files changed, 207 insertions(+), 416

deletions(-)

111HISTORy

While this seems to roll up fifty commits’ worth of changes
into a single summary, this is a good place to clarify that git
diff (including the stats view) only compares two commits at
a time. HEAD~50 doesn’t represent the last fifty commits, just
the one commit that’s fifty steps back in your chain of ancestry.
But let’s also remember that every commit is a full snapshot of
your project, and that every commit builds on the one before it.
Logically, seeing the differences between your current commit
and its fiftieth parent should be roughly the same—certainly the
same in spirit—as seeing a summary of your last fifty changes,
because those changes should all still be around in your cur-
rent commit.

If you find the stats valuable, you can even include them in
your git log output using the --stat option. Here, I’m asking
git log to show me a log that includes stats, plus a custom format
for the log entries, limited to the changes since the commit
before last.

$ git log --stat --pretty=format:"%h (%an) %s" »
HEAD~1..

d08a7f2 (Bram Stein) Release 1.5.10
 CHANGELOG | 3 +++
 lib/webfontloader.rb | 2 +-
 webfontloader.gemspec | 2 +-
 webfontloader.js | 4 ++--
4 files changed, 7 insertions(+), 4 deletions(-)

TAGGING COMMITS
In addition to all the other kinds of references we’ve seen—long
and short commit IDs, branch names, and the HEAD pointer—
commits can be given permanent, human-friendly names, called
tags. Tags are a lot like branches in that they assign human-read-
able names to a particular commit. But unlike branches, whose
names, though consistent, float as the HEAD commit on each
branch change, tags always reference a specific commit, to mark
moments in history that are interesting or significant.

GIT FOR HUMANS112

Depending on your project, you may never use tags, or
you may use them a lot. Unlike branches, which are central
to almost every Git workflow I’ve seen, tags have no intrinsic
meaning or intended use, so many projects never use them.
For web sites and applications, tags’ value may depend entirely
on how you release code to your production servers. Many
teams deploy by just updating the servers with the latest stuff
from master; they control what code goes out to the public
by laying down rules about when and how commits can be
merged in, and quality checks to ensure everything in master
is always production-ready. For most of us, branches are not
just simpler but more meaningful—the branch name master
doesn't just reference a commit, it references the latest commit
on a certain line of work. Branch names change less often, and
so involve less work.

Git tags are commonly used for software libraries or frame-
works that are shipped in numbered versions. For instance, the
code for version 4.2.0 of the Ruby on Rails framework matches
up with the rel-4.2.0 tag on their Git repo (http://bkaprt.com/
gfh/05-10/), which in turn points to commit 7847a19, whose
message, helpfully, is “Preparing for 4.2.0 release.” The offi-
cial 4.2.0 release is in the form of a Ruby package hosted on
rubygems.org; the tag serves to connect that package with the
commit used to produce it.

To tag a commit, you’ll use the aptly named git tag com-
mand. It always takes as its first parameter the tag name, which
can be any string. Here, we’ll tag the current commit on our
current branch with the name fhqwhgads. (If this seems like a
bizarre example, you should know I once worked on a team
that tagged our biweekly website releases after our favorite
stores, e.g., prada.0.)

$: git tag fhqwhgads

Having tagged the commit, we can now use the name
fhqwhgads anywhere Git takes a commit ID.

If the commit we want isn't checked out right now, we can
pass in a commit ID to tag:

http://bkaprt.com/gfh/05-10/
http://bkaprt.com/gfh/05-10/
http://rubygems.org

113HISTORy

$: git tag fhqwhgads 8891c37

Because nothing in Git can ever be simple, it turns out there
are two kinds of tags. The kind we just created is a lightweight
tag; it’s stored in the repository as just a name pointing to a
commit, similar to a branch.

The other kind is an annotated tag, which, in addition to a
name and commit reference, can also include a message, similar
to a commit message.

$: git tag fhqwhgads –a –m "Fhqwhgads release (22 »
Dec 2014)"

Tags, like, branches, can and should be shared on a remote,
and you can push them to your remote the same way, using
git push:

$: git push fhqwhgads

There aren't many rules surrounding tags, but the few rules
that do exist are strict, as we’ll see next.

Tag names must be unique

Just as it would be a huge problem if two different versions of
your project could have the same name, Git does not allow you
to create a tag if another tag by the same name already exists,
and will reject a pushed tag if it already exists on the server.

Git will, however, let you give a tag the same name as a
branch, or vice versa. But if you try to do anything ambiguous
with a tag or branch name, Git will give precedence to the
branch and will warn you that that may not have been the right
move. Here’s what happens when, in a repo that has both a
tag and branch named branch-2, I try to check out branch-2:

$ git checkout branch-2
warning: refname 'branch-2' is ambiguous.
Switched to branch 'branch-2'

GIT FOR HUMANS114

To make your life easier, avoid giving branches and tags the
same names. A lot of teams who use tags will prepend some-
thing to their tag names to disambiguate them from branches;
our fhqwhgads tag might instead be called rel-fhqwhgads to
distinguish it from any fhqwhgads branches that may be flying
around. This has the added benefit of saying what the tag refers
to; in this case, rel is short for “release.”

Tags are meant to be permanent

Git will let you change things like tags. More precisely, it will
allow you to delete a tag and replace it with a new one under
the same name. (To wit: if you do tag the wrong commit
by accident, which sometimes happens, you can use git
tag –d <tagname> to delete the bad tag and then create a new
one pointing at the right commit.)

Having said that, a tag’s purpose is to serve as a stable nick-
name for a specific commit—a job made more difficult if the
names or commits underneath tags can change. Once you’ve
pushed a tag to a remote—especially a remote you’ve shared
with other people, like a collaborative hub—try never to change
it. There may be times when you need to, or when re-creating
a tag is simpler than creating a new tag with a new name, but
I’ve found these situations to be exceptional, and not worth
the headache of having to message your entire team to explain
that rel-wombat.0 may or may not really be the commit it’s
supposed to be.

TIME TRAVELING WITH git checkout
Reviewing what we’ve done is nice, but Git allows you to truly
revisit the past by checking out old commits, using the same
git checkout command you use to switch branches. I don’t just
mean “checking out” in the colloquial sense—“Hey, check out
this cute panda video”—but in the version-control sense: when
you check out a commit (or, for that matter, a branch), you’re
not just seeing a previous version of your work; you’re resetting
your local copy of the project to match whatever version you

115HISTORy

asked for. “Checking out” is used here in the same sense as a
library book. And if it’s unclear in this metaphor where your
working tree fits in, remember that even if you’re working
progressively—adding new commits to a branch, rather than
revisiting old ones—you still always have a version of the proj-
ect checked out: the branch you’re working on, to which you
can add more commits.

Checking out a commit by itself differs from checking out a
branch only in that you’re not really expected to add any new
commits after you check it out. That’s not to say you can’t add
commits, though. To explain this distinction, let me give you
an example.

Let’s say you start getting reports from your users that some-
thing you know was working in a certain browser or device
when you first deployed your project a few weeks ago is now
no longer working. Let’s also say that when you made that first
production push, you also tagged the commit you pushed as
rel-v1.0.

The first thing to do is confirm that the code you deployed
originally actually did work, by checking out the old version
and opening it up in a browser. Here we’ll assume it’s a static
website that you can open directly in a browser, but if your
site has a build step—using Grunt, Middleman, or some other
tool—it should work here, too. Just run your build or server
task after checking out the old site.

To do this, run git checkout with the tag or commit ID you
want to return to:

$: git checkout rel-v1.0
Note: checking out 'rel-v1.0'.

This command did what we wanted it to do: Git has reset
the files and folders in our working tree to match the version
of our project we’re trying to return to, which was commit
591672e, also known by its tag, rel-v1.0. We can now open up
the website and confirm that, yes, it worked when we shipped
it. From here, we might continue our investigation by looking
at the log, reviewing the commits that have been added to
master since this one (git log rel-v.10..master), or look at

GIT FOR HUMANS116

the actual changes between this version and the latest one (git
diff rel-v.1.0..master). If a particular commit seems likely
to have introduced the bug, you can check it out to confirm (or
allay) your suspicions. Git even offers a tool (git bisect) that
performs this kind of binary search and automatically finds the
commit that caused a particular issue. Tobias Günther wrote a
great overview of using git bisect to squash bugs for A List
Apart (http://bkaprt.com/gfh/05-11/).

What is the detached HEAD state?

When you check out a commit, as opposed to a branch, Git
puts you into the “detached HEAD” state: your computer’s HEAD
pointer is pointed at a particular commit, but not at a branch.
You’re “detached” in the sense that you’re not working on any
branch. In practice, this means you can make new commits,
and they will be saved, but you won’t have a branch name to
refer back to them.

You’re not really supposed to add commits while detached.
Most of the time, Git expects you to check out an old commit
to review or test the old code, not to make changes. (That’s what
branches are for.)

But this can be a feature: commits made in the detached
state can be used as a scratch pad. While detached, you’re free
to make experimental changes and commit them, and discard
any commits you make in this state without impacting any
branches by performing another checkout. There’s even less
risk than usual that a bad change will find its way into everyone
else’s copy of the project, or out to production, because (unless
you move them into a branch with git branch or git check-
out -b) commits in the detached state are homeless, unless
you decide to create a branch to contain them. If you want to
create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command
again. For example:

$: git checkout -b new_branch_name
HEAD is now at 591672e... Release v1.0

http://bkaprt.com/gfh/05-11/

117HISTORy

Returning from the detached HEAD state (reattaching the
HEAD, so to speak) is as simple as checking out a branch—in this
case, returning to master:

$: git checkout master
Previous HEAD position was 591672e... Release v1.0
Switched to branch 'master'

git checkout handles any reference that isn’t a branch name
as if it’s just a commit, even if you’re asking for it using a ref
that includes the branch name, which can inadvertently lead
you into the detached state. As we saw in the last chapter, if you
use git checkout make-logo-bigger to check out the branch
named make-logo-bigger, then you’ve checked out a branch.
However, if you ask to check out origin/make-logo-bigger
(a remote branch reference), you’ve checked out the commit
that’s currently at the head of that branch, but not the branch.

WRAPPING UP
One phrase that I’ve barely used in this book, outside of a few
examples (where I’ve included it as an in-joke), is directed acyclic
graph (DAG). A directed acyclic graph is a kind of data structure
in which individual nodes point to other nodes, the references
building on one another to form chains of information, spread-
ing out like the roots of a tree, growing endlessly as we work,
adding to the graph with every commit.

These kinds of graphs are often used to visualize Git
branches, and it’s not uncommon to see even the most basic
Git tutorial include a bunch of branching diagrams.

To be fair, DAGs are a somewhat advanced concept, and
most Git tutorials don’t go so far down the rabbit hole as to
mention them by name, even if they employ them as visual aids.

I mention DAGs here, as we wrap up our time together, to
make a point about the philosophy of this book. When trying
to explain Git, it’s common to focus on the big picture: whole
networks of repositories pushing and pulling one another,
whole systems of branches flowing into and out of one another.

GIT FOR HUMANS118

I’m not disparaging such attempts: these things are real, and
they’re spectacular. As a work of information science, I find
Git incredibly beautiful.

But I also find that looking at these things as systems misses
Git’s most wonderful quality: people like you (and me, and
our teammates) each making changes, evolving our projects
one step at a time, crafting histories. The graph just isn’t that
important if what you’re trying to do is save the next version of
your project or share changes with your team. And although the
history we collaborate on via Git can be modeled as a graph, it
can also be a rendered as a list of incidents—as a story.

Admittedly, a Git repository is an odd place to tell a story;
Git’s command-line interface, not the most natural way to tell
one. Back at the very beginning of this book, I described Git’s
interface as a “leaky abstraction.” Git tries, but doesn’t always
succeed, to protect us from having to understand the many
complex things going on when we run a particular command.
In not succeeding, Git encourages us to learn about what’s
actually going on behind the scenes.

But the stories we tell together are just as real and beautiful
as the information structures the creators of Git have created
to contain them. And now, I hope, you’ll be armed with the
knowledge to tell these stories with a minimum of fear.

119cONcLUSION

CONCLUSION
IN THIS booK, we’ve covered everything from the difficulty
of revising writing carved in stone to tips for how best to take
advantage of a detached HEAD. Along the way, we’ve learned
a few things about Git: what commits are made of, how each
commit is a whole version of your work, and how commits,
along with remotes, branches, and other stuff, come together to
create a wild new landscape of things that—good news!—you
now need to worry about in your daily work. I’ll understand
if you’ve ended up here, at the end of not-the-shortest book in
the A Book Apart series, still harboring at least a few questions
about Git.

That’s okay! We’ve only scratched—by design—the surface
of what Git is capable of. It’s less important for you to come
away from this book knowing every single Git command than
it is for you to know how Git thinks and, from there, to under-
stand that Git is neither evil, nor magical, nor scary. It’s just a
tool and, if you use it properly, it will always serve you well.

More than that, though, you can use the commands and
functions we’ve covered in this book as building blocks for
finding your own satisfying Git workflows, and as jumping-off
points for learning new tricks. Depending on the kind of work
you do, you’ll either find that the knowledge imparted by this
book is more than enough to help you get the job done, or you’ll
feel equipped to ask more incisive questions about how Git can
better serve you in the future.

GIT FOR HUMANS120

RESOURCES

Command Reference

Here’s a quick list of every Git command referenced in this
book, plus a few others. Arguments in square brackets (e.g.,
[thing]) are optional.

git config [--global] <key> <value>

Updates Git’s settings, modifying the preference identified by
<key>, such as user.email, with the given <value>, such as
david@demaree.me. The --global flag saves preferences to
a file in your home directory, so Git will apply them to every
project on your computer. Otherwise they’re saved and applied
only within a specific project.

git init

Creates a new Git project inside the current working directory—
that is, if you’re inside a directory named my-awesome-project
that contains a website you’re working on, running git init
will turn the folder into a fresh Git repository, ready to use.

git clone <url> [directory]

Copies an existing Git project located at the given url to your
computer as a new directory. By default, the directory will be
named after the Git repository in the URL—the repo https://
gitforhumans.info/rails.git would be copied into a folder
named rails, but you can provide your own directory name
as an argument if you want.

git status [-s] [path/to/thing]

Outputs the status of your working copy: identifies which files
are modified but not staged, or added but not committed. The
optional --short or -s flag gives you a shorthand version of the
status readout. By default, git status will show you the status

mailto:david@demaree.me

121ReSOURceS

of everything in your project, but you can give it a directory or
file path to limit the results.

git add [--all] filename.txt

Adds a changed file to the staging area for inclusion in the
next commit.

git rm folder/filename.txt

A shortcut command that deletes the file at the given path, then
stages the deletion for your next commit. If you’ve already
deleted the file elsewhere (say, via the Finder), it just stages
the change.

git mv oldpath.txt newpath.txt

Another shortcut that moves the file at oldpath.txt to
newpath.txt, then stages that change.

git reset filename.txt

The opposite of git add: having staged a change to filename.
txt, you can use git reset to un-stage it.

git commit [-a] [-m “Your message”]

Adds a commit with any changes you’ve staged using git add.
The --all (or -a) option is a handy shortcut—it will automati-
cally stage any changes you’ve made to your working copy. You
can use the --message (-m) argument to specify your commit
message; if left blank, Git will open up your default text editor
(or whatever editor you’ve configured in Git’s settings).

git branch [-r|-a]

Shows a list of all your branches. By default, it shows you only
branches on your local copy of the repo. The -r option can

GIT FOR HUMANS122

show you all the branches you’ve fetched from remotes; -a
shows you both local and remote branches.

git branch <branchname> [<commit>]

If you give a branch name as an argument to git branch, it’ll
create a branch with that name, starting at the current commit
(or at any commit you specify, if you provide its ID).

git checkout [-b] <branchname-or-commit>

Updates your working copy to match the given branch or
commit—in essence, switching you into that branch/commit.
If you check out a branch, Git sets that as the current branch
so you can add commits to it. If you check out a commit or tag,
Git “detaches” from any branch—you can make commits, but
they will only be retrievable by their commit IDs.

git merge <otherbranch>

Merges otherbranch into the current branch, provided there
are no conflicts. If there are conflicts, Git copies over and stages
as much of what’s in the other branch as possible, marking
the conflicted files so you can resolve the problem yourself
before committing.

git remote add <name> <url>

Adds a remote with the given name and URL to your local Git
project settings.

git remote rm <name>

Removes the remote from your project settings along with
any remote tracking branches you may have fetched from
the server. Note that this only deletes the remote from your
local settings—everyone else’s computers, and the server, are
not affected.

123ReSOURceS

git push <remotename> <branchname>

Pushes the current state of branchname to the remote
named remotename.

git pull <remotename> <branchname>

Pulls down the current state of branchname from the remote
to your local copy, and attempts to merge it into your cur-
rent branch.

git fetch <remotename>

Copies everything from the remote to your local copy. When
you run git pull, a fetch happens automatically.

git log [—oneline] [—pretty] [<branchname-or-commit>]

Shows a reverse-ordered list of commits, starting from the
current head (or any one you specify by branch name or ID).
You can use the --pretty option to customize the output;
--oneline is a shortcut for the most used output format,
consisting of a short commit ID and the commit message on
each line.

git diff [—stat] [<branchname-or-commit>]

Generates a “diff ”—a visual representation of the differences
between two commits. The --stat option produces a summary
view showing a list of files changed, with how many lines were
added and deleted in each one.

git tag [-a] [-m] <tagname> [<commit>]

Tags a commit with the name you provide, which you can use
as a static, friendly name for that commit. The -a flag tells Git
to create an annotated tag, which includes information about
when the tag was created, by whom, and a message saying what
it’s about, just like a commit. (Otherwise, Git creates a “light-

GIT FOR HUMANS124

weight” tag, which references a commit but doesn’t create any
of that other info.) If you create an annotated tag, make sure to
include the --message/-m argument, again, just like a commit.

git tag -d <tagname>

You shouldn’t need to delete a tag, but if you do, you can do it
by passing the -d (for “delete”) option to git tag.

git tag -l

Outputs a list of all the tags in your repository.

git push --tags <remotename>

As a safeguard against accidentally sharing a tag that you might
not be ready to share, Git doesn’t push any of your tags unless
you include the --tags option.

For an exhaustive list of all Git’s commands and complete
details on how to use them, check out the documentation on
Git’s website (http://bkaprt.com/gfh/06-01/).

Recommended Git apps

In this book I’ve chosen to focus on Git’s command line inter-
face in order to best demonstrate how Git thinks, and I still
recommend that you start with the command line. However,
there are many excellent time-saving Windows and Mac apps
you can use once you’re up and running.

GitHub Desktop. Whether or not you host your code on
GitHub, their desktop apps for Mac and Windows are among
the very best— and they’re free. You can visually stage and
commit changes, create and switch between branches, push and
pull with remotes, and if you do host on GitHub, the desktop
app makes it easy to create pull requests or open a compare
view (http://bkaprt.com/gfh/06-02/).

http://bkaprt.com/gfh/06-01/
http://bkaprt.com/gfh/06-02/)

125ReSOURceS

Tower. For Mac power users willing to spend $70, Tower offers
many more options and features. Where GitHub Desktop
focuses on the basics, Tower can also handle resolving merge
conflicts, cherry-picking commits, and lots more (http://bkaprt.
com/gfh/06-03/).

SourceTree. More complex and powerful than GitHub’s apps,
but lacking some of Tower’s slickest features, SourceTree
(which is free) is a good choice for someone who wants a little
more power in a Git app, but doesn’t want to spend money
(http://bkaprt.com/gfh/06-04/).

Many popular coding tools also include built-in support for Git,
or allow you to add it via plugins, so you can commit changes
without leaving the app. Atom, Coda, Sublime Text, TextMate,
BBEdit, Xcode, and Visual Studio Code all work with Git out
of the box.

Git hosting services

GitHub. The biggest—and, at one time, kind of the only—name
in Git hosting. Chances are, if you work with code you’ve had
to do something on GitHub, because it’s what everyone uses.
Ubiquity aside, GitHub remains arguably the best choice for
most people: the company continues to invest in tools and
resources that make it easier to collaborate via Git (such as Pull
Requests), as well as new and interesting tools like GitHub Pages
(web hosting powered by a Git repo). GitHub charges money to
host private projects for yourself or your organization. Public
projects where anyone can pull or download your code, but
only you and your teammates can push changes, are always
free. There’s also an enterprise edition that costs lots of money,
but you can run it on your own servers for maximum control
over your data (github.com).

Bitbucket. Not as slick as GitHub, Bitbucket has one nice benefit
for hobbyists or small businesses: individuals and small teams

http://bkaprt.com/gfh/06-03/)
http://bkaprt.com/gfh/06-03/)
http://bkaprt.com/gfh/06-04/
https://github.com/

GIT FOR HUMANS126

can host unlimited private repos for free. Although Bitbucket
lacks GitHub’s vast community, I personally use both: GitHub
for public projects or collaborative work, Bitbucket for small
personal projects (bitbucket.org).

Beanstalk. Specializing in paid, private repos, Beanstalk has a
few nice features for web developers, most notably a built-in
deployment tool that automatically updates your web servers
after new code is pushed to your repository (beanstalkapp.com).

Finally, if you’re handy with the command line and either need
to have total control over your data or enjoy a bit of extra nerd-
ery, it's not that hard to roll your own hosting. Because Git’s
default protocol is SSH, any Linux server can conceivably be
set up to host Git repositories. The folks at DigitalOcean have
a handy guide to setting up a simple Git server on one of their
virtual servers (http://bkaprt.com/gfh/06-05/).

Even more Git

“Meet the Command Line”, Hosted by Dan Benjamin, these
screencasts are a great resource for command-line novices,
allowing them to quickly get comfortable talking to a computer
via the Terminal (http://bkaprt.com/gfh/06-06/). Speaking of
screencasts, Pluralsight’s Git tutorials by James Kovacs cover
everything from installing Git to more advanced branching and
rebasing topics (http://bkaprt.com/gfh/06-07/).

GitHub Training. This microsite offers two online “courses”
in slide-show format, one for command-line veterans and
another for graphical app users. It also offers a PDF quick ref-
erence covering many of the basic commands, and even a sweet
browser-based Git simulator to help practice typing commands
(http://bkaprt.com/gfh/06-08/).

Atlassian’s Git tutorials. An excellent resource for new and
veteran Git users alike, these tutorials cover a range of topics

http://bitbucket.org/
http://beanstalkapp.com/
http://bkaprt.com/gfh/06-05/)
http://bkaprt.com/gfh/06-06/)
http://bkaprt.com/gfh/06-07/
http://bkaprt.com/gfh/06-08/

127ReSOURceS

with clear writing and illustrations. In particular, their guide
comparing different Git workflows is a great, deeper dive into
the hub model I talk about in this book (http://bkaprt.com/
gfh/06-09/).

Git for Type Designers. Frank Grießhammer has put together
a great quick reference to basic Git workflows, with specific
notes for using Git with type design tools (http://bkaprt.com/
gfh/06-10/).

Pro Git. Scott Chacon’s open-source book is the definitive
reference for humans who want to truly understand how Git
works (http://bkaprt.com/gfh/06-11/).

Notable Git repos

A Git repo tracking the complete German legal code. As its
maintainers write, “all German citizens can easily find an up-to-
date version of their laws online. However, the legislation
process, the historic evolution, and the updates to laws are not
easily and freely trackable.” By publishing a copy of the laws
via Git, anyone can see how laws change over time by simply
reviewing the commit log (http://bkaprt.com/gfh/06-12/).

Vox Media’s Code of Conduct. Vox has open-sourced their code
of conduct, a living document that, Mandy Brown writes, “will
evolve and grow with our team as well as with input from the
community.” The source code for the code-of-conduct web-
site is hosted on GitHub; members of the community can file
issues, submit patches, or simply review the commit log to see
the code’s evolution over time (http://bkaprt.com/gfh/06-13/).

Tacofancy. A “community-driven, object-oriented taco recipe
repo” created and maintained by Dan Sinker, Tacofancy offers
complete recipes for tacos, as well as individual taco compo-
nents (http://bkaprt.com/gfh/06-14/).

http://bkaprt.com/gfh/06-09/
http://bkaprt.com/gfh/06-09/
http://bkaprt.com/gfh/06-10/
http://bkaprt.com/gfh/06-10/
http://bkaprt.com/gfh/06-11/
http://bkaprt.com/gfh/06-12/)
http://bkaprt.com/gfh/06-13/
http://bkaprt.com/gfh/06-14/

GIT FOR HUMANS128

What is Code? In 2015, writer, programmer, and prolific
GitHub user Paul Ford (http://bkaprt.com/gfh/06-15/) wrote a
Bloomberg Businessweek article titled “What is Code?” (http://
bkaprt.com/gfh/06-16/), an epic explainer covering, among other
things, GitHub and Git. The source code for the article’s play-
fully interactive web version is publicly viewable on GitHub
(http://bkaprt.com/gfh/06-17/).

http://bkaprt.com/gfh/06-15/)
http://bkaprt.com/gfh/06-16/)
http://bkaprt.com/gfh/06-16/)
http://bkaprt.com/gfh/06-17/

129AckNOWLeDGMeNTS

ACKNOWLEDGMENTS
This book wouldn’t exist without help and encouragement from
the incredible editorial and production team at A Book Apart.
Even as her author became a stressed, sleep-deprived new
parent, Katel LeDû kept things moving with remarkable poise.
Caren Litherland’s editorial guidance helped Git for Humans find
its shape, and helped turn a pile of nonsense into something
resembling a book. Jason Santa Maria, Rob Weychert, and Ron
Bilodeau made my words look beautiful and readable on pages
and screens. And, last but not least, thanks to Jeffrey Zeldman
for getting all of us into this mess.

High fives and whiskey to David Yee, our tech editor, who
asked questions and flagged confusing bits with smarts, empa-
thy, and just the right amount of pedantry.

My deepest thanks (and more whiskey) to Mandy Brown,
for seeing a book in me, offering me the chance to write this
one for A Book Apart, and, more than two years later when it
was finally finished, writing the foreword.

Thanks to friends and colleagues who offered great feedback
on early drafts and much-needed encouragement, like asking
“is the book done yet?”: Tim Brown, Paul Hammond, Morgan
Kelly, Sally Kerrigan, Liz Galle, Jake Giltsoff, Lucy Knisley, Bram
Stein, Kevin Stewart, and Elliot Jay Stocks.

To every designer whose complaints about Git in my Twitter
feed provided the inspiration for this book, particularly Ethan
Marcotte, Frank Chimero, Susan Robertson, and especially Mat
Marquis and Dave Rupert, who were the first to ask in so many
words for A Book Apart to publish a book like the one you’re
holding—I wrote this for all of you.

To the gits behind Git & GitHub: Linus Torvalds, Junio
Hamano, Scott Chacon, Chris Wanstrath, PJ Hyett, Tom Pres-
ton-Werner, and countless others who've contributed code,
words, or both, so that we can share our code and words with
each other: all of this is your fault. Thank you.

To Jeff Veen, Bryan Mason, Ryan Carver, Greg Veen, Mat-
thew Rechs, and the whole Typekit team, for showing me how

GIT FOR HUMANS130

to tackle the hard problems, and then putting up with me for
the last two years while I tackled this one.

Finally, my deepest love and gratitude to my wife Jody for
her love, patience, and support, and to our baby daughter June,
who is so looking forward to eating this book.

131ReFeReNceS

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Introduction

00-01 http://frankchimero.com/writing//two-sentences-about-getting-older-
and-working-on-the-web/

00-02 http://www.joelonsoftware.com/articles/LeakyAbstractions.html

Chapter 1

01-01 http://www.pcworld.idg.com.au/article/129776/after_controversy_
torvalds_begins_work_git_/

01-02 https://github.com/torvalds/linux

Chapter 3

03-01 https://en.wikipedia.org/wiki/exquisite_corpse

03-02 http://www.layertennis.com/

Chapter 4

04-01 https://help.github.com/articles/generating-ssh-keys/

04-02 https://git-scm.com/book/ch4-1.html

Chapter 5

05-01 http://git-scm.com/docs/pretty-formats

05-02 https://www.atlassian.com/git/tutorials/git-log/formatting-log-output

05-03 https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-log/

05-04 https://www.youtube.com/watch?v=4XpnkHJAok8&t=56m20s

05-05 https://help.github.com/articles/associating-text-editors-with-git/

05-06 http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

05-07 http://chris.beams.io/posts/git-commit/

05-08 http://24ways.org/2014/dealing-with-emergencies-in-git/

http://frankchimero.com/writing//two-sentences-about-getting-older-and-working-on-the-web/
http://frankchimero.com/writing//two-sentences-about-getting-older-and-working-on-the-web/
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/
http://www.pcworld.idg.com.au/article/129776/after_controversy_torvalds_begins_work_git_/
https://github.com/torvalds/linux
https://en.wikipedia.org/wiki/Exquisite_corpse
http://www.layertennis.com/
https://help.github.com/articles/generating-ssh-keys/
https://git-scm.com/book/ch4-1.html
http://git-scm.com/docs/pretty-formats
https://www.atlassian.com/git/tutorials/git-log/formatting-log-output
https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-log/
https://www.youtube.com/watch?v=4XpnKHJAok8&t=56m20s
https://help.github.com/articles/associating-text-editors-with-git/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://chris.beams.io/posts/git-commit/
http://24ways.org/2014/dealing-with-emergencies-in-git/

GIT FOR HUMANS132

05-09 http://www.kaleidoscopeapp.com/

05-10 https://github.com/rails/rails/tree/v4.2.0

05-11 http://alistapart.com/article/git-the-safety-net-for-your-projects

Resources

06-01 https://git-scm.com/docs

06-02 https://desktop.github.com

06-03 http://www.git-tower.com

06-04 http://sourcetreeapp.com/

06-05 https://www.digitalocean.com/community/tutorials/how-to-set-up-a-
private-git-server-on-a-vps

06-06 https://www.pluralsight.com/courses/meet-command-line

06-07 http://training.github.com/

06-08 https://www.atlassian.com/git/tutorials

06-09 http://git-scm.com/book

06-10 https://github.com/bundestag/gesetze

06-11 https://github.com/voxmedia/code-of-conduct

06-12 https://github.com/sinker/tacofancy

06-13 https://github.com/ftrain

06-14 http://www.bloomberg.com/whatiscode

06-15 https://github.com/BloombergMedia/whatiscode

http://www.kaleidoscopeapp.com/
https://github.com/rails/rails/tree/v4.2.0
http://alistapart.com/article/git-the-safety-net-for-your-projects
https://git-scm.com/docs
https://desktop.github.com
http://www.git-tower.com
http://sourcetreeapp.com/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-private-git-server-on-a-vps
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-private-git-server-on-a-vps
https://www.pluralsight.com/courses/meet-command-line
http://training.github.com/
https://www.atlassian.com/git/tutorials
http://git-scm.com/book
https://github.com/bundestag/gesetze
https://github.com/voxmedia/code-of-conduct
https://github.com/sinker/tacofancy
https://github.com/ftrain
http://www.bloomberg.com/whatiscode
https://github.com/BloombergMedia/whatiscode

133INDeX

INDEX

A

adding remote repositories 75
Allen, David 8
Atom 21, 101

B

Back to the Future 17, 23
Beams, Chris 104
Black Pixel 109
branching basics 51

C

Chacon, Scott 79
checking out branches 89
Chimero, Frank 1
cloning projects 31
command line interface 19
command-line navigation 25
commit IDs 97
commit messages 99
commits 33
comparing commits 106
configuring Git 29
conflict markers 67
coordinating changes 10

D

detached HEAD state 116
diffs 107
directed acyclic graphs 117
directory navigation 25
distributed collaboration 11
Dropbox 14

E

Emacs 101

F

fast-forwards 62

G

git add --all 46
Git Bash 21
git fetch 88
Git functions 28
GitHub 71, 75, 92, 108
Git protocol 79
git status 34, 36

H

head commits 57
Hopper, Grace 6, 71
HTTPS URLs 78
hub model 72

I

installing Git 20

K

Kaleidoscope 109

L

Layer Tennis 58
Linux 10, 14

M

merge commits 63
merge conflicts 66, 83
merging branches 60

N

naming branches 58
new projects 30

O

options 28

GIT FOR HUMANS134

P

parent commits 50
Pope, Tim 104
project history 92
pulling changes 81
pushing changes 80
push rejection 85

R

remote branches 79
remote repositories 71
removing files 41
renaming files 43
Ruby on Rails 112

S

sequential versioning 50
Spolsky, Joel 2
SSH protocols 77
staging 37
starting a new branch 53
Sublime Text 21, 101

T

tagging commits 111
text editors 101
TextMate 101
Torvalds, Linus 10, 97
tracking branches 87

V

version control systems 7
version control workflow 9
Vim 101

W

Westby, Emma Jane 104
working copies 8

ABOUT A BOOK APART
We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans,
both by Xavier Dupré. Headlines and cover are set in Titling
Gothic by David Berlow.

ABOUT THE AUTHOR

David Demaree is a web devel-
oper, designer, speaker, and
product person based just out-
side New York City. He’s a senior
product manager for Adobe
Typekit, working on ways to
make it easy for everyone to find
and use great fonts wherever
they need type. David has spo-
ken at design and tech events in

the United States, Europe, and Australia, and he writes about
software on Medium.

Photograph by Ryan Carver

	Cover
	Introduction
	Chapter 1. Thinking in Versions
	Chapter 2. Basics
	Chapter 3. Branches
	Chapter 4. Remotes
	Chapter 5. History
	Conclusion
	Resources
	Acknowledgments
	References
	Index

