

Godot 4
Game Development Projects

Second Edition

Build five cross-platform 2D and 3D games using
one of the most powerful open source game engines

Chris Bradfield

BIRMINGHAM—MUMBAI

Godot 4 Game Development Projects
Second Edition

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar
Publishing Product Manager: Kaustubh Manglurkar
Senior Content Development Editor: Feza Shaikh
Technical Editor: Simran Ali
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Ponraj Dhandapani
Marketing Coordinators: Anamika Singh, Namita Velgekar, and Nivedita Pandey

First published: June 2018

Second edition: August 2023

Production reference: 1110723

Packt Publishing Ltd
Grosvenor House
11 St Paul's Square
Birmingham
B3 1RB UK.

ISBN 978-1-80461-040-4

www.packtpub.com

http://www.packtpub.com

To Priya, for being a constant source of support and encouragement.

To my students at the Science Academy STEM Magnet for being my guinea pigs, and for teaching me
how to be a better teacher.

-Chris Bradfield

Contributors

About the author
Chris Bradfield has worked in the internet technology space for more than 25 years. He has worked
in the online gaming space for a number of successful MMOs and social gaming publishers in South
Korea and the United States. Throughout his game industry career, he has served as a game designer,
developer, product manager, and business development executive.

In 2012, he discovered a love for teaching and founded KidsCanCode to provide programming
instruction and curricula to middle- and high-school students. He also produces video- and text-based
tutorials and other learning resources for game development students around the world.

I would like to express my gratitude to Kenney Vleugels (@kenneyNL) for the 3D Minigolf tiles,
skorpio for the spaceship art, Luis Zuno (@ansimuz), and for Sunny Land art for their work.

About the reviewer
In the land of Indonesia, Isaiah Jamiel stands as a masterful artisan skilled in the realms of .NET and
Godot. Leading NTC Studios alongside Izra, Hansen, Sachio, Shannon, Della, and Yesika, he aspires
to achieve success in the realm of game development. Jamiel’s artistic talents extend beyond coding, as
he breathes new life into traditional Indonesian music with his arrangements. Yet amidst his passion
for code and music, his heart finds solace in the unwavering love he holds for his beloved Valerie and
his cherished family. Isaiah Jamiel’s unwavering commitment to blending innovation, artistry, and
profound connections serves as the driving force behind his remarkable endeavors in both the realm
of technology and the world of music.

Preface� xiii

1
Introduction to Godot 4.0� 1

General advice� 2
The secret to learning effectively� 3

What is a game engine?� 3
What is Godot?� 4
Downloading Godot� 5
Alternate installation methods� 6

Overview of the Godot UI� 7

Project Manager� 7
Editor window� 9

Learning about nodes and scenes� 11
Scripting in Godot� 12
About GDScript� 12

Summary� 13

2
 Coin Dash – Build Your First 2D Game� 15

Technical requirements � 16
Setting up the project� 16
Vectors and 2D coordinate systems� 18
Part 1 – the player scene� 20
Creating the scene� 20
Sprite animation� 21
Collision shape� 24
Scripting the player� 25
Moving the player� 26
Choosing animations� 28
Starting and ending the player’s movement� 28

Preparing for collisions� 29

Part 2 – the coin scene� 31
The node setup� 32
Coin script� 32

Part 3 – the Main scene� 33
Node setup� 33
Main script� 34
Starting a new game� 35

Part 4 – the user interface� 36
Node setup� 37

Table of Contents

Table of Contentsviii

Message label� 37
Score and time display� 38
Score and time display� 39
Updating the UI via GDScript� 39
Game over� 40
Adding HUD to Main� 41

Part 5 – finishing up� 42

Visual effects� 42
Sound� 43
Powerups� 43
Coin animation� 45
Obstacles� 46

Summary� 47

3
Space Rocks: Build a 2D Arcade Classic with Physics� 49

Technical requirements � 50
Setting up the project� 50
Rigid body physics� 51

The player’s ship� 53
Body and physics setup� 53
State machines� 55
Adding player controls� 57
Screen wrap� 59
Shooting� 60

Adding the rocks� 63
Scene setup� 63
Variable size rocks� 64
Instantiating rocks� 65
Exploding rocks� 67

Creating the UI� 71
Layout� 72
Scripting the UI� 73

The Main scene’s UI code� 75
Player code� 76

Ending the game� 78
Detecting collisions between rigid bodies� 79

Pausing the game� 79
Enemies� 80
Following a path� 81
Enemy scene� 83
Moving the enemy� 83
Spawning enemies� 84
Shooting and collisions� 84

Player shield� 87
Sound and visual effects� 91
Sound and music� 91
Particles� 92
Enemy trail� 94

Summary� 94

4
Jungle Jump – Running and Jumping in a 2D Platformer� 97

Technical requirements� 98
Setting up the project� 98

Introducing kinematic bodies� 100
Collision response� 100

Table of Contents ix

Creating the player scene� 101
Collision layers and masks� 101
About AnimationPlayer� 102
Animations� 102
Collision shape� 104
Finishing the player scene� 105
Player states� 105
Player script� 106
Player movement� 107
Player health� 109

Collectible items� 110
Scene setup� 110
Collectible script� 111

Designing the level� 112
Using TileMaps� 113
Designing the first level� 116
Adding dangerous objects� 118
Scrolling background� 119

Adding enemies� 121
Scene setup� 121
Scripting the enemy� 122

Damaging the enemy� 123
Player script� 125

Game UI� 127
Scene setup� 127
Scripting the HUD� 128
Attaching the HUD� 129

Title screen� 130
Scene setup� 130

Setting up the main scene� 131
Transitioning between levels� 133
Door scene� 133
Screen settings� 134

Finishing touches� 135
Sound effects� 135
Double jumping� 135
Dust particles� 136
Ladders� 138
Moving platforms� 140

Summary� 142

5
3D Minigolf: Dive into 3D by Building a Minigolf Course� 143

Technical requirements� 144
Introduction to 3D� 144
Orienting in 3D space� 144
Godot’s 3D editor� 145
Adding 3D objects� 146
Global versus local space� 147
Transforms� 147
Meshes� 148
Cameras� 150

Project setup� 151
Creating the course� 152

Understanding GridMaps� 152
Drawing the first hole� 153
Environment and lighting� 154
Adding the hole� 155

Making the ball� 157
Testing the ball� 157
Improving ball collisions� 157

Adding UI� 159
Aiming the arrow� 159
UI display� 161

Table of Contentsx

Scripting the game� 162
UI code� 163
Main script� 164
Ball script� 166
Testing it out� 167
Option 1 for improving aiming� 167
Option 2 for improving aiming� 168

Camera improvements� 170
Designing a full course� 172

Visual effects� 173
Adding materials� 174

Lighting and Environment� 176
Summary� 178

6
Infinite Flyer� 179

Technical requirements� 180
Project setup� 180
Inputs� 180

Airplane scene� 181
Collision shapes� 182
Scripting the plane� 183

Building the world� 185
World objects� 185
Chunks� 188

Main scene� 192
Spawning new chunks� 194

Increasing difficulty� 195
Collisions� 197
Fuel and score� 199

Title screen� 202
Audio� 203
Saving a high score� 203
About file locations� 204
Accessing files� 204

Suggestions for additional features� 206
Summary� 206

7
Next Steps and Additional Resources� 207

Using Godot’s documentation� 208
Reading the API documentation� 209

Version control – using Git with
Godot� 210
Using Blender with Godot� 211
Import hints� 211
Using blend files� 212

Exporting projects� 212

Getting the export templates� 213
Export presets� 214
Exporting� 215
Exporting for specific platforms� 215

Introduction to shaders� 216
Creating a 2D shader� 218
3D shaders� 222
Learning more� 225

Table of Contents xi

Using other programming languages
in Godot� 225
C#� 225
Other languages – GDExtension� 227

Getting help – community resources� 228
Godot Recipes� 229

Contributing to Godot� 229
Contributing to the engine� 230
Writing documentation� 230
Donations� 230

Summary� 231
Final words� 231

Index� 233

Other Books You May Enjoy� 242

Preface

This book is an introduction to the Godot game engine and its new version, 4. Godot 4 has a large
number of new features and capabilities that make it a strong alternative to expensive commercial
game engines. For beginners, it offers a friendly way to learn game development techniques. For more
experienced developers, Godot is a powerful, customizable tool for bringing visions to life.

This book takes a project-based approach to learning how to use Godot. It consists of five projects,
along with additional resources, that will help developers achieve a sound understanding of how to
use Godot to build games.

Who this book is for
This book is for anyone who wants to learn how to make games using a modern game engine. New
users and experienced developers alike will find it a helpful resource. Some programming experience
is recommended.

What this book covers
This book is a project-based introduction to using the Godot game engine. Each of the five game
projects builds on the concepts learned in the previous projects.

Chapter 1, Introduction to Godot 4.0 introduces the concept of game engines in general and Godot
specifically, including how to download Godot and how to effectively use this book.

Chapter 2, Coin Dash – Build Your First 2D Game, is a small 2D game that demonstrates how to create
scenes and work with Godot’s node system. You’ll learn how to navigate the Godot editor and write
your first scripts in GDScript.

Chapter 3, Space Rocks: Build a 2D Arcade Classic with Physics, demonstrates working with physics
bodies to create an Asteroids-style space game.

Chapter 4, Jungle Jump – Running and Jumping in a 2D Platformer, involves a side-scrolling platform
game in the spirit of Super Mario Bros. You’ll learn about kinematic bodies, animation states, and
level design using tile maps.

Chapter 5, 3D Minigolf: Dive into 3D by Building a Minigolf Course, extends the previous concepts into
three dimensions. You’ll work with meshes, lighting, and camera control.

Prefacexiv

Chapter 6, Infinite Flyer, continues exploring 3D development, covering dynamic content, procedural
generation, and more 3D techniques.

Chapter 7, Next Steps and Additional Resources, covers even more topics to explore once you’ve
mastered the material in the five game projects. Look here for links and tips to further expand your
game development skills.

To get the most out of this book
To best understand the example code in this book, you should have a general knowledge of programming,
preferably with a modern, dynamically-typed language such as Python or JavaScript. If you’re new
to programming entirely, you may wish to review a beginner tutorial before diving into the game
projects here.

Godot will run on any relatively modern PC running Windows, MacOS, or Linux operating systems.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition. If
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/lY2hq.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “With
Godot 4, you have an additional option: importing .blend files directly into your Godot project.”

https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/lY2hq

Preface xv

A block of code is set as follows:

shader_type canvas_item;

void fragment() {
	 // Place fragment code here.
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “The first property is Shader, where
you can choose New Shader. When you do, a Create Shader panel appears.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xvi

Share Your Thoughts
Once you’ve read Godot 4 Game Development Projects, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1804610402
https://packt.link/r/1804610402

xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610404

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804610404

1
Introduction to Godot 4.0

Whether it’s a career goal or a recreational hobby, game development is a fun and rewarding endeavor.
There’s never been a better time to get started in game development. Modern programming languages
and tools have made it easier than ever to build high-quality games and distribute them to the world. If
you’re reading this book, then you’ve set your feet on the path to making the game(s) of your dreams.

This book is an introduction to the Godot Game Engine and its new 4.0 version, which was released in
2023. Godot 4.0 has a large number of new features and capabilities that make it a strong alternative to
expensive commercial game engines. For beginners, it offers a friendly way to learn game development
fundamentals. For more experienced developers, Godot is a powerful, customizable, and open toolkit
for bringing your visions to life.

This book takes a project-based approach that will introduce you to the fundamentals of the engine.
It consists of five game projects that are designed to help you achieve a sound understanding of game
development concepts and how they’re applied in Godot. Along the way, you will learn how Godot
works and absorb important techniques that you can apply to your own projects.

In this chapter, we’ll cover the following topics:

•	 General advice for getting started

•	 What is a game engine?

•	 What is Godot?

•	 Downloading Godot

•	 Overview of the Godot UI

•	 Nodes and scenes

•	 Scripting in Godot

Introduction to Godot 4.02

General advice
This section contains some general advice to readers, based on the author’s experience as a teacher
and lecturer. Keep these tips in mind as you work through the book, especially if you’re very new
to programming.

Try to follow the projects in the book in order. Later chapters may build on topics that were introduced
in earlier chapters, where they are explained in more detail. When you encounter something that you
don’t remember, go back and review that topic in the earlier chapter. No one is timing you, and there’s
no prize for finishing the book quickly.

There is a lot of material to absorb here. Don’t feel discouraged if you don’t get it at first. The goal is
not to become an expert in game development overnight – that’s just not possible. Just like with any
other skill – carpentry or a musical instrument, for example – it takes years of practice and study to
develop proficiency. Repetition is the key to learning complex topics; the more you work with Godot’s
features, the more familiar and easier they will start to seem. Try repeating one of the earlier chapters
after you reach the end. You’ll be surprised at how much more you’ll understand compared to the
first time you read it.

If you’re reading this as an e-book, resist the temptation to copy and paste the code. Typing the code
yourself will engage your brain more actively. It’s similar to how taking notes during a lecture helps you
learn better than just listening, even if you never look back at the notes. If you’re a slow typist, it will
also help you work on your typing speed. In a nutshell: you’re a programmer, so get used to typing code!

One of the biggest mistakes that new game developers make is taking on a bigger project than they
can handle. It is very important to keep the scope of your project as small as possible when starting
out. You will be much more successful (and learn more) if you finish two or three small games than
if you have a large, incomplete project that has grown beyond your ability to manage.

You’ll notice that the five games in the book follow this strategy very strictly. They are all small in scope,
both for practical reasons – to fit reasonably into book-sized lessons – but also to remain focused
on practicing the basics. As you build the game, you will likely find yourself thinking of additional
features and gameplay elements right away. What if the spaceship had upgrades? What if the character
could do wall jumps?

Ideas are great, but if you haven’t finished the basic project yet, write them down and save them for
later. Don’t let yourself be sidetracked by one “cool idea” after another. Developers call this feature creep,
meaning a list of features that never stops growing, and it’s a trap that has led to many an unfinished
project. Don’t fall victim to it.

Finally, don’t forget to take a break now and again. You shouldn’t try and power through the whole
book, or even one project, in just a few sittings. After each new concept, and especially after each
chapter, give yourself time to absorb the new information before you dive into the next one. You’ll
find that you not only retain more information, but you’ll probably enjoy the process more.

What is a game engine? 3

The secret to learning effectively

Here’s the secret to getting the most out of these projects and increasing your skills in a way that makes
them stick: at the end of each chapter, once you’ve finished building the game project, immediately
delete it and start over. This time, try and re-create it without looking at the book. If you get stuck, just
look at that part in the chapter, and then close the book again. If you really feel confident, try adding
your own spin to the game – change some parts of the gameplay or add a new twist.

If you do this multiple times with each of the games, you’ll be amazed at how less often you’ll need
to check the book. If you can make the projects in this book on your own without help, then you’re
surely ready to branch out and take on your original concepts.

Keep these tips in mind as you read through the following sections. In the next section, you’ll learn
what a game engine is and why game developers might want to choose to use one.

What is a game engine?
Game development is complex and involves a wide variety of knowledge and skills. To build a modern
game, you need a great deal of underlying technology before you can make the actual game itself.
Imagine that you had to build your computer and write your own operating system before you could
even start programming. Game development would be a lot like that if you truly had to start from
scratch and make everything that you need.

There are also a number of common needs that every game has. For example, no matter what the
game is, it’s going to need to draw things on the screen. If the code to do that has already been written,
it makes more sense to reuse it than to create it all over again for every game. That’s where game
frameworks and engines come in.

A game framework is a set of libraries with helper code that assists in building the foundational parts
of a game. It doesn’t necessarily provide all the pieces, and you may still have to write a great deal of
code to tie everything together. Because of this, building a game with a game framework can take
more time than one built with a full game engine.

A game engine is a collection of tools and technologies designed to ease the process of game-making
by removing the need to reinvent the wheel for each new game project. It provides a collection of
commonly needed functionality that often would require a significant investment in time and effort
to develop.

Here are some of the main features a typical game engine will provide:

•	 Rendering (2D and 3D): Rendering is the process of displaying the game on the player’s screen.
A good rendering pipeline must take into account modern GPU support, high-resolution
displays, and effects such as lighting, perspective, and viewports, all while maintaining a very
high framerate.

Introduction to Godot 4.04

•	 Physics: While a very common requirement, building a robust and accurate physics engine is
a monumental task. Most games require some sort of collision detection and response system,
and many need physics simulations, but few developers want to take on the task of writing
one - especially if they have never tried to do so before!

•	 Platform support: In today’s market, most developers want to be able to release their games
on multiple platforms, such as desktops, consoles, mobile, and/or the web. A game engine
provides a unified exporting process to publish games on multiple platforms without needing
to rewrite game code or support multiple versions.

•	 Common development environment: By using the same unified interface to make multiple
games, the developer doesn’t have to re-learn a new workflow every time they start a new project.

In addition to these, there will be tools to assist with features such as networking, easing the process of
managing images and sound, animations, debugging, and many more. Often, game engines will include
the ability to import content from other tools, such as those used to create animations or 3D models.

Using a game engine allows the developer to focus on building their game rather than creating the
underlying framework needed to make it work. For small or independent developers, this can mean the
difference between releasing a game after one year of development instead of three, or even never at all.

There are dozens of popular game engines on the market today, such as Unity, Unreal Engine, and
GameMaker Studio, just to name a few. An important fact to be aware of is that the majority of popular
game engines are commercial products. They may or may not require any financial investment to
get started, but they will require some kind of licensing and/or royalty payments if your game makes
money. Whatever engine you choose, you need to carefully read the user agreement and make sure
you understand what you are and are not allowed to do with the engine, and what hidden costs, if
any, you may be responsible for.

On the other hand, some engines are non-commercial and open source, such as the Godot game
engine, which is what this book is all about.

What is Godot?
Godot is a fully featured modern game engine, providing all of the features described in the previous
section and more. It is also completely free and open source, released under the very permissive
MIT license. This means there are no fees, no hidden costs, and no royalties to pay on your game’s
revenue. Everything you make with Godot 100% belongs to you, which is not the case with many
commercial game engines that require an ongoing contractual relationship. For many developers,
this is very appealing.

If you’re not familiar with the concept of open source, community-driven development, this may seem
strange to you. However, much like the Linux kernel, Firefox browser, and many other very well-known
pieces of software, Godot is not developed by a company as a commercial product. Instead, a dedicated

Downloading Godot 5

community of passionate developers donates their time and expertise to building the engine, testing
and fixing bugs, producing documentation, and more.

As a game developer, the benefits of using Godot are many. Because it is unencumbered by commercial
licensing, you have complete control over exactly how and where your game is distributed. Many
commercial game engines restrict the types of projects you can make or require a much more expensive
license to build games in certain categories, such as gambling.

Godot’s open source nature also means there is a level of transparency that doesn’t exist with commercial
game engines. For example, if you find that a particular engine feature doesn’t quite meet your needs,
you are free to modify the engine itself and add the new features you need, with no permission
required. This can also be very helpful when debugging a large project because you have full access
to the engine’s internal workings.

It also means that you can directly contribute to Godot’s future. See additional topics in Chapter 7 for
more information about how you can get involved with Godot development.

Now that you have an understanding of what Godot is and how it can help you build a game, it’s time
to get started. In the next section, you’ll see how to download Godot and set it up for use on your
own computer.

Downloading Godot
You can download the latest version of Godot by visiting https:/​/​godotengine.​org/​ and
clicking Download Latest. This book is written for version 4.0. If the version you download has another
number at the end (such as 4.0.3), that’s fine – this just means that it includes updates to version 4.0
that fix bugs or other issues.

On the download page, you will also see a standard version and a .NET version. The .NET version is
specially built to be used with the C# programming language. Don’t download this one unless you
plan to use C# with Godot. The projects in this book do not use C#.

Figure 1.1: The Godot download page

https://godotengine.org/

Introduction to Godot 4.06

Unzip the downloaded file, and you’ll have the Godot application. Optionally, you can drag it to your
Programs or Applications folder, if you have one. Double-click the application to launch it and
you’ll see Godot’s Project Manager window, which you’ll learn about in the next section.

Alternate installation methods

There are a few other ways to get Godot on your computer besides downloading it from the Godot
website. Note that there is no difference in functionality when installed this way. The following are
merely alternatives for downloading the application:

•	 Steam: If you have an account on Steam, you can install Godot via the Steam desktop application.
Search for Godot in the Steam store and follow the instructions to install it. You can launch
Godot from the Steam application:

Figure 1.2: The Godot engine on Steam

•	 Itch.io: You can also download Godot from the popular itch.io website. Itch is a marketplace
for independent game developers and creators. Search for Godot and download it from the
provided links.

•	 Package Managers: If you’re using one of the following operating system package managers, you
can install Godot via its normal installation process. See the documentation for your package
manager for details. Godot is available in these package managers:

	� Homebrew (macOS)

	� Scoop (Windows)

	� Snap (Linux)

Overview of the Godot UI 7

Android and web versions
You will also see downloads available for Godot versions that run on Android and in your web
browser. At the time of this writing, these versions are listed as “experimental” and may not
be stable or fully functional. It is recommended that you use the desktop version of Godot,
especially while you’re learning.

Congratulations, you have successfully installed Godot on your computer. In the next section, you
will see an overview of Godot’s editor interface – the purposes of the various windows and buttons
you’ll use when working with the editor.

Overview of the Godot UI
Like most game engines, Godot has a unified development environment. This means that you use
the same interface to work on all of the aspects of your game – code, visuals, audio, and so on. This
section is an introduction to the interface and its parts. Take note of the terminology used here; it will
be used throughout this book when referring to actions you’ll take in the editor window.

Project Manager

The Project Manager window is the first window you’ll see when you open Godot:

Figure 1.3: Project Manager

Opening Godot for the first time
The first time you open Godot, you won’t have any projects yet. You’ll see a pop-up window
asking if you want to explore official example projects in the Asset Library. Select Cancel, and
you’ll see the Project Manager as it appears in the preceding screenshot.

Introduction to Godot 4.08

In this window, you can see a list of your existing Godot projects. You can choose an existing project
and click Run to play the game or Edit to work on it in the Godot editor. You can also create a new
project by clicking New Project:

Figure 1.4: New project settings

Here, you can give the project a name and create a folder to store it in. Note the warning message – a
Godot project is stored as a separate folder on the computer. All the files that the project uses must
be located in this folder. This makes it convenient to share Godot projects because you only need to
zip the project folder and you can be confident that another Godot user will be able to open it and
not be missing any necessary data.

Renderer

When creating a new project, you also have the choice of Renderer. The three options represent the
balance between advanced, high-performance graphics that require a modern desktop GPU, and
compatibility with less-capable platforms such as mobile and older desktops. You can change this option
later if you need, so it’s OK to leave it as the default setting. If you later decide to build games for the
mobile platform, the Godot documentation has a great deal of information regarding performance
and rendering options. See Chapter 7 for links and more information.

Choosing filenames

When you’re naming your new project, there are a few simple rules you should try and follow that may
save you some trouble in the future. Give your project a name that describes what it is – Wizard Battle
Arena is a much better project name than Game #2. In the future, you’ll never be able to remember
which game number two was, so be as descriptive as possible.

Overview of the Godot UI 9

You should also think about how you name your project folder and the files in it. Some operating
systems are case-sensitive and distinguish between My_Game and my_game, while others do not.
This can lead to problems if you move your project from one computer to another. For this reason,
many programmers develop a standardized naming scheme for their projects, such as not using spaces
in filenames and using _ between words. Regardless of what naming scheme you adopt, the most
important thing is to be consistent.

Once you’ve created the project folder, the Create Edit button will open the new project in the editor
window. Try it now: create a project called test_project.

Console window
If you’re using a version of the Windows operating system, you’ll also see a console window
open when you run Godot. In this window, you can see warnings and errors produced by the
engine and/or your project. This window doesn’t appear on macOS or Linux, but you can see the
console output if you launch the application from the command line using a Terminal program

Editor window

The following figure is a screenshot of the main Godot editor window. This is where you will spend most
of your time when building projects in Godot. The editor interface is divided into several sections, each
offering different functionality. The specific terminology for each section is described after Figure 1.5:

Figure 1.5: The Godot editor window

The main portion of the editor window is the Viewport. This is where you’ll see the parts of your game
as you’re working on them.

Introduction to Godot 4.010

In the top center of the window is a list of the Workspaces you can switch between when working on
different parts of your game. You can switch between 2D and 3D mode, as well as Script mode, where
you’ll edit your game’s code. AssetLib is a place where you can download add-ons and example projects
contributed by the Godot community. See Chapter 7 for more information about using the asset library.

Figure 1.6 shows the toolbar for the current workspace you’re using. The icons here will change based
on what kind of object you’re working with:

Figure 1.6: Toolbar icons

The buttons in the upper-right playtest area are for launching the game and interacting with it when
it’s running:

Figure 1.7: Playtest buttons

On the left and right sides are the Docks or Tabs you can use to view and select game items and set
their properties. On the bottom of the left-hand dock, you’ll find the FileSystem tab. All the files in the
project folder are shown here, and you can click on folders to open them and see what they contain.
All resources in your project will be located relative to the res:// path, which is the project’s root
folder. For example, a file path might look like this: res://player/player.tscn. This refers
to a file in the player folder:

Figure 1.8: The FileSystem tab

Learning about nodes and scenes 11

At the top of the left-hand dock is the Scene tab, which shows the current scene you are working on
in the viewport (more about scenes after Figure 1.9):

Figure 1.9: The Scene tab

On the right-hand side, you’ll find a box labeled Inspector, where you can see and adjust the properties
of your game objects.

As you work through the game projects in this book, you’ll learn about the functionality of these items
and become familiar with navigating the editor interface.

After reading this section, you should feel comfortable with the layout of the Godot editor window
and the names of the elements you’ll be seeing throughout the book. You’re one step closer to finishing
this introduction and getting started on a game. First, though, did you notice those items in Figure 1.9?
Those are called nodes, and you’ll find out what they’re all about in the next section.

Learning about nodes and scenes
Nodes are the basic building blocks for creating games in Godot. A node is an object that can give
you a variety of specialized game functions. A given type of node might display an image, play an
animation, or represent a 3D model. The node contains a collection of properties, allowing you to
customize its behavior. Which nodes you add to your project depends on what functionality you need.
It’s a modular system designed to give you flexibility in building your game objects.

The nodes you add are organized into a tree structure. In a tree, nodes are added as children of other
nodes. A particular node can have any number of children, but only one parent node. When a group
of nodes is collected into a tree, it is called a scene:

Figure 1.10: Nodes arranged in a tree

Introduction to Godot 4.012

Scenes in Godot are typically used to create and organize the various game objects in your project.
You might have a player scene that contains all the nodes and scripts that make the player’s character
work. Then, you might create another scene that defines the game’s map: the obstacles and items that
the player must navigate through. You can then combine these various scenes into the final game.

While nodes come with a variety of properties and functions, any node’s behavior and capabilities
can be extended by attaching a script to the node. This allows you to write code that makes the node
do more than it can do in its default state. For example, you can add a Sprite2D node to display
an image, but if you want that image to move or disappear when clicked, you’ll need to add a script
to create that behavior.

Nodes are powerful tools, and understanding them is the key to effectively building game objects
in Godot. However, on their own, they can only do so much. It’s still up to you to provide the game
logic – the rules that objects in your game will follow. In the next section, you can see how that’s done
by writing code using Godot’s scripting language.

Scripting in Godot
Godot provides two official languages for scripting nodes: GDScript and C#. GDScript is the dedicated
built-in language, providing the tightest integration with the engine, and is the most straightforward
to use. For those that are already familiar or proficient with C#, you can download a version that
supports that language.

In addition to the two supported languages, Godot itself is written in C++, and you can get even
more performance and control by extending the engine’s functionality directly. See Additional topics
in Chapter 7 for information on using other languages and extending the engine.

All the games in this book will use GDScript. For the majority of projects, GDScript is the best choice
of language. It is tightly integrated with Godot’s Application Programming Interface (API) and is
designed for rapid development.

About GDScript

GDScript’s syntax is very closely modeled on the Python language. If you are familiar with Python
already, you will find GDScript very familiar. If you are comfortable with another dynamic language,
such as JavaScript, you should find it relatively easy to learn. Python is very often recommended as a
good beginner language, and GDScript shares that user-friendliness.

This book assumes you have at least some programming experience already. If you’ve never coded
before, you may find it a little more difficult. Learning a game engine is a large task on its own; learning
to code at the same time means you’ve taken on a major challenge. If you find yourself struggling with
the code in this book, you may find that working through an introductory programming lesson in a
language such as Python or Javascript will help you grasp the basics.

Summary 13

Like Python, GDScript is a dynamically typed language, meaning you do not need to declare a variable’s
type when creating it, and it uses whitespace (indentation) to denote code blocks. Overall, the advantage
of using GDScript for your game’s logic is that, due to its tight integration with the engine, you write
less code, which means faster development and fewer mistakes to fix.

To give you an idea of what GDScript looks like, here is a small script that causes a sprite to move
from left to right across the screen at a given speed:

extends Sprite2D
var speed = 200

func _ready():
    position = Vector2(100, 100)

func_process(delta):
    position.x += speed * delta

If you’ve used other high-level languages such as Python before, this will look very familiar, but don’t
worry if this code doesn’t make much sense to you yet. In the following chapters, you’ll be writing
lots of code, which will be accompanied by explanations of how it all works.

Summary
In this chapter, you were introduced to the concept of a game engine in general and to Godot in
particular. Most importantly, you downloaded Godot and launched it!

You learned some important vocabulary that will be used throughout this book when referring to
various parts of the Godot editor window. You also learned about the concepts of nodes and scenes,
which are the fundamental building blocks of Godot.

You also received some advice on how to approach the projects in this book and game development
in general. If you ever find yourself getting frustrated as you are working through this book, go back
and reread the General advice section. There’s a lot to learn, and it’s OK if it doesn’t all make sense
the first time. You’ll make five different games throughout this book, and each one will help you
understand things a little bit more.

You’re ready to move on to the next chapter, where you’ll start building your first game in Godot.

2
 Coin Dash – Build Your First

2D Game

This first project will guide you through making your first Godot Engine game. You will learn how
the Godot editor works, how to structure a project, and how to build a small 2D game using some of
Godot’s most commonly used nodes.

Why start with 2D?
In a nutshell, 3D games are much more complex than 2D ones. However, many of the underlying
game engine features you’ll need to know are the same. You should stick to 2D until you have
a good understanding of Godot’s workflow. At that point, the jump to 3D will feel much easier.
You’ll get a chance to work in 3D in this book’s later chapters.

Don’t skip this chapter, even if you aren’t a complete newcomer to game development. While you
may already understand many of the concepts, this project will introduce Godot’s features and design
paradigms – things you’ll need to know going forward.

The game in this chapter is called Coin Dash. Your character must move around the screen, collecting as
many coins as possible while racing against the clock. When you’re finished, the game will look like this:

Figure 2.1: The completed game

 Coin Dash – Build Your First 2D Game16

In this chapter, we’ll cover the following topics:

•	 Setting up a new project

•	 Creating character animations

•	 Moving a character

•	 Using Area2D to detect when objects touch

•	 Using Control nodes to display information

•	 Communicating between game objects using signals

Technical requirements
Download the game assets from the following link below and unzip them into your new project
folder: https://github.com/PacktPublishing/Godot-4-Game-Development-
Projects-Second-Edition/tree/main/Downloads

You can also find the complete code for this chapter on GitHub at: https://github.com/
PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/
tree/main/Chapter02%20-%20Coin%20Dash

Setting up the project
Launch Godot, and in the Project Manager, click the + New Project button.

You first need to create a project folder. Type Coin Dash in the Project Name box and click Create
Folder. Creating a folder for your project is important to keep all your project files separate from
any other projects on your computer. Next, you can click Create & Edit to open the new project in
the Godot editor.

Figure 2.2: The new project window

https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter02%20-%20Coin%20Dash
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter02%20-%20Coin%20Dash
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter02%20-%20Coin%20Dash

Setting up the project 17

In this project, you’ll make three independent scenes – the player character, the coin, and a display
to show the score and clock – all of which will be combined into the game’s “main” scene (see
Chapter 1). In a larger project, it might be useful to create separate folders to organize each scene’s
assets and scripts, but for this relatively small game, you can save all of your scenes and scripts in the
root folder, which is referred to as res:// (res is short for resources). All resources in your project
will be located relative to the res:// folder. You can see the project’s files in the FileSystem dock in
the lower-left corner. Because it’s a new project, it will be empty except for a file called icon.svg,
which is the Godot icon.

You can download a ZIP file of the art and sounds (collectively known as assets) for the game here:
https://github.com/PacktPublishing/Godot-Engine-Game-Development-
Projects-Second-Edition/tree/main/Downloads. Unzip this file in the new project
folder you created.

Figure 2.3: The FileSystem tab

For example, the images for the coin are located in res://assets/coin/.

Since this game will be in portrait mode (taller than it is wide), we’ll start by setting up the game window.

https://github.com/PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition/tree/main/Downloads

 Coin Dash – Build Your First 2D Game18

Click Project -> Project Settings from the menu at the top. The settings window looks like this:

Figure 2.4: The Project Settings window

Look for the Display -> Window section and set Viewport Width to 480 and Viewport Height to
720, as shown in the preceding figure. Also in this section, under Stretch, set Mode to canvas_items
and Aspect to keep. This will ensure that if a user resizes the game window, everything will scale
appropriately and not become stretched or deformed. You can also uncheck the Resizable box under
Size to prevent the window from being resized at all.

Congratulations! You’ve set up your new project, and you’re ready to start making your first game.
In this game, you’ll make objects that move around in 2D space, so it’s important to understand how
objects are positioned and moved using 2D coordinates. In the next section, you’ll learn how that
works and how to apply it to your game.

Vectors and 2D coordinate systems
This section is a very brief overview of 2D coordinate systems and vector math as it’s used in game
development. Vector math is an essential tool in game development, so if you need a broader understanding
of the topic, see Khan Academy’s linear algebra series (https://www.khanacademy.org/
math/linear-algebra).

When working in 2D, you’ll use Cartesian coordinates to identify locations in the 2D plane. A particular
position in 2D space is written as a pair of values, such as (4, 3), representing the position along
the x and y axes, respectively. Any position in the 2D plane can be described in this way.

https://www.khanacademy.org/math/linear-algebra
https://www.khanacademy.org/math/linear-algebra

Vectors and 2D coordinate systems 19

In 2D space, Godot follows the common computer graphics practice of orienting the x axis to the
right and the y axis downward:

Figure 2.5: A 2D coordinate system

That’s not what my math teacher taught me!
If you’re new to computer graphics or game development, it might seem odd that the positive
y axis points downward instead of upward, which you likely learned in math class. However,
this orientation is very common in computer graphics applications.

Vectors

You can also think of the (4, 3) position as an offset from the (0, 0) point, or origin. Imagine
an arrow pointing from the origin to the point:

Figure 2.6: A 2D vector

 Coin Dash – Build Your First 2D Game20

This arrow is a vector. It represents a great deal of useful information, including the point’s location,
its distance or length (m), and its angle from the x axis (θ). More specifically, this type of vector is
referred to as a position vector – that is, one that describes a position in space. Vectors can also represent
movement, acceleration, or any other quantity that has a size and a direction.

In Godot, vectors have a wide array of uses, and you’ll use them in every project in this book.

You should now have an understanding of how the 2D coordinate space works and how vectors can
help to position and move objects. In the next section, you’ll create the player object and use this
knowledge to control its movement.

Part 1 – the player scene
The first scene you’ll make is the player object. One of the benefits of creating a separate scene for
the player (and other objects) is that you can test it independently, even before you’ve created other
parts of a game. This separation of game objects will become more and more helpful as your projects
grow in size and complexity. Keeping individual game objects separate from each other makes them
easier to troubleshoot, modify, and even replace entirely without affecting other parts of the game.
It also means your player can be reusable – you can drop this player scene into an entirely different
game and it will work just the same.

Your player scene needs to do the following things:

•	 Display your character and its animations

•	 Respond to user input by moving the character

•	 Detect collisions with other game objects such as coins or obstacles

Creating the scene

Start by clicking the Add/Create a New Node button (the keyboard shortcut is Ctrl + A) and selecting
an Area2D. Then, click on the node’s name and change it to Player. Click Scene -> Save Scene
(Ctrl + S) to save the scene.

Figure 2.7: Adding a node

Part 1 – the player scene 21

Take a look at the FileSystem tab and note that the player.tscn file now appears. Whenever you
save a scene in Godot, it will use the .tscn extension – this is the file format for Godot’s scenes.
The “t” in the name stands for “text” because these are text files. Feel free to take a look at it in an
external text editor if you’re curious, but you shouldn’t edit one by hand; otherwise, you run the risk
of accidentally corrupting the file.

You’ve now created the scene’s root or top-level node. This node defines the overall functionality
of the object. We’ve chosen Area2D because it’s a 2D node, so it can move in 2D space, and it can
detect overlap with other nodes, so we’ll be able to detect the coins and other game objects. Choosing
which node to use for a particular game object is your first important decision when designing your
game objects.

Before adding any child nodes, it’s a good idea to make sure you don’t accidentally move or resize
them by clicking on them. Select the Player node and hover your mouse on the icon next to the
lock, Group Selected Node(s):

Figure 2.8: Toggle the node grouping

The tooltip says Make selected node’s children not selectable., and that’s good – it will help avoid
mistakes. Click the button, and you’ll see the same icon appear next to the player node’s name:

Figure 2.9: The node grouping icon

It’s a good idea to always do this when creating a new scene. If an object’s child nodes become offset
or scaled, it can cause unexpected errors and be difficult to troubleshoot.

Sprite animation

With Area2D, you can detect when other objects overlap or run into a player, but Area2D doesn’t
have an appearance on its own. You’ll also need a node that can display an image. Since the character
has animations, select the player node and add an AnimatedSprite2D node. This node will handle
the appearance and animations for the player. Note that there’s a warning symbol next to the node.

 Coin Dash – Build Your First 2D Game22

AnimatedSprite2D requires a SpriteFrames resource, which contains the animation(s) it
can display. To create one, find the Frames property in the Inspector window and click on <empty>
to see the dropdown. Select New SpriteFrames:

Figure 2.10: Adding a SpriteFrames resource

Next, in the same location, click the SpriteFrames label that appeared there to open a new panel
at the bottom of the screen:

Figure 2.11: The SpriteFrames panel

On the left is the list of animations. Click the default one and rename it run. Then, click the Add
Animation button, and create a second animation named idle and a third named hurt.

In the FileSystem dock on the left, find the run, idle, and hurt images in the res://assets/
player/ folder and drag them into the corresponding animations:

Figure 2.12: Setting up player animations

Part 1 – the player scene 23

Each new animation has a default speed setting of 5 frames per second. This is a little too slow, so
select each of the animations and set Speed to 8.

To see the animations in action, click the Play button (). Your animations will appear in the Inspector
window in the dropdown for the Animation property. Choose one to see it in action:

Figure 2.13: The Animation property

You can also choose an animation to play by default. Select the idle animation and click the Autoplay
on Load button.

Figure 2.14: Setting animation to autoplay

Later, you’ll write code to select between these animations, depending on what the player is doing.
However, first, you need to finish setting up the player’s nodes.

The player image is a bit small, so set the Scale property of AnimatedSprite2D to (2, 2) in order
to increase it in scale. You can find this property under the Transform section in the Inspector window.

Figure 2.15: Setting the Scale property

 Coin Dash – Build Your First 2D Game24

Collision shape

When using Area2D or one of the other collision objects, you need to tell Godot what the shape
of the object is. Its collision shape defines the region it occupies and is used to detect overlaps and/
or collisions. Shapes are defined by the various Shape2D types and include rectangles, circles, and
polygons. In game development, this is sometimes referred to as a hitbox.

For convenience, when you need to add a shape to an area or physics body, you can add
CollisionShape2D as a child. Then, you can select the type of shape you want and edit its size
in the editor.

Add CollisionShape2D as a child of the Player node (make sure you don’t add it as a child
of AnimatedSprite2D). In the Inspector window, find the Shape property and click <empty>
to select New RectangleShape2D.

Figure 2.16: Adding a collision shape

Drag the orange handles to adjust the shape’s size to cover the sprite. Hint – if you hold the Alt key
while dragging a handle, the shape will size symmetrically. You may have noticed that the collision
shape is not centered on the sprite. That is because the sprite images themselves are not centered
vertically. You can fix this by adding a small offset to AnimatedSprite2D. Select the node and
look for the Offset property in the Inspector window. Set it to (0, -5).

Figure 2.17: Sizing the collision shape

Part 1 – the player scene 25

When you’re finished, your Player scene should look like this:

Figure 2.18: The Player node setup

Scripting the player

Now, you’re ready to add some code to the player. Attaching a script to a node allows you to add
additional functionality that isn’t provided by the node itself. Select the Player node and click the
new script button:

Figure 2.19: The new script button

In the Attach Node Script window, you can leave the default settings as they are. If you’ve remembered
to save the scene, the script will be automatically named to match the scene’s name. Click Create,
and you’ll be taken to the script window. Your script will contain some default comments and hints.

The first line of every script describes what type of node it is attached to. Just after that, you can start
defining your variables:

extends Area2D

@export var speed = 350
var velocity = Vector2.ZERO
var screensize = Vector2(480, 720)

Using the @export annotation on the speed variable allows you to set its value in the Inspector
window, just like any other node property. This can be very handy for values that you want to be
able to adjust easily. Select the Player node, and you’ll see the Speed property now appears in the

 Coin Dash – Build Your First 2D Game26

Inspector window. Any value you set in the Inspector window will override the 350 speed value
you wrote in the script.

Figure 2.20: The exported variable in the Inspector window

As for the other variables, velocity will contain the character’s movement speed and direction,
while screensize will help set the limits of the character’s movement. Later, you’ll set this value
automatically from the game’s main scene, but for now, setting it manually will allow you to test that
everything is working.

Moving the player

Next, you’ll use the _process() function to define what the player will do. The _process()
function is called on every frame, so you can use it to update elements of your game that you expect
to change often. In each frame, you need the player to do three things:

•	 Check for keyboard input

•	 Move in the given direction

•	 Play the appropriate animation

First, you need to check the inputs. For this game, you have four directional inputs to check (the four
arrow keys). Input actions are defined in Project Settings under the Input Map tab. In this tab, you
can define custom events and assign keys, mouse actions, or other inputs to them. By default, Godot
has events assigned to the keyboard arrows, so you can use them for this project.

You can detect whether an input action is pressed using Input.is_action_pressed(), which
returns true if a key is held down and false if it is not. Combining the states of all four keys will
give you the resulting direction of movement.

You can do this by checking all four keys separately using multiple if statements, but since this is such
a common need, Godot provides a useful function called Input.get_vector() that will handle
this for you – you just have to tell it which four inputs to use. Note the order that the input actions
are listed in; get_vector() expects them in this order. The result of this function is a direction
vector – a vector pointing in one of the eight possible directions resulting from the pressed inputs:

Part 1 – the player scene 27

func _process(delta):
    velocity = Input.get_vector("ui_left", "ui_right",
        "ui_up", "ui_down")
    position += velocity * speed * delta

After that, you’ll have a velocity vector indicating which direction to move in, so the next step
will be to actually update the player’s position using that velocity.

Click Run Current Scene (F6) at the top right, and check that you can move the player around using
all four arrow keys.

You may notice that the player continues running off the side of the screen. You can use the clamp()
function to limit the player’s position to minimum and maximum values, preventing them from
leaving the screen. Add these two lines next, immediately after the previous line:

    position.x = clamp(position.x, 0, screensize.x)
    position.y = clamp(position.y, 0, screensize.y)

About delta

The _process() function includes a parameter called delta that is then multiplied by velocity.
What is delta?

The game engine attempts to run at a constant 60 frames per second. However, this can change due
to computer slowdowns, either in Godot or from other programs running on your computer at the
same time. If the frame rate is not consistent, then it will affect the movement of objects in your
game. For example, consider an object that you want to move at 10 pixels every frame. If everything
runs smoothly, this will mean the object moves 600 pixels in one second. However, if some of those
frames take a bit longer, then there may have been only 50 frames in that second, so the object only
moved 500 pixels.

Godot, like many game engines and frameworks, solves this by passing you a value called delta,
which is the elapsed time since the previous frame. Most of the time, this will be very close to 0.016
seconds (around 16 milliseconds). If you then take your desired speed of 600 px/second and multiply
it by delta, you’ll get a movement of exactly 10 pixels. If, however, delta increased to 0.3
seconds, then the object would move 18 pixels. Overall, the movement speed remains consistent and
independent of the frame rate.

As a side benefit, you can express your movement in units of pixels per second rather than pixels per
frame, which is easier to visualize.

 Coin Dash – Build Your First 2D Game28

Choosing animations

Now that the player can move, you need to change which animation AnimatedSprite2D is
playing, based on whether the player moves or stands still. The art for the run animation faces to the
right, which means it needs to be flipped horizontally (using the Flip H property, which you can see
in the Inspector window – go ahead and try toggling it) when moving to the left. Add this code to
your _process() function after the movement code:

if velocity.length() > 0:
    $AnimatedSprite2D.animation = "run"
else:
    $AnimatedSprite2D.animation = "idle"
if velocity.x != 0:
    $AnimatedSprite2D.flip_h = velocity.x < 0

Getting nodes
When using the $ notation, the node name is relative to the node running the script. For
example, $Node1/Node2 would refer to a node (Node2) that is a child of Node1, which is
itself a child of the node that runs the script. Godot’s autocomplete will suggest node names
as you type. Note that if the name contains spaces, you must put quote marks around it – for
example, $"My Node".

Note that this code takes a little shortcut. flip_h is a Boolean property, which means it can be
true or false. A Boolean value is also the result of a comparison, such as <. Because of this, you
can directly set the property equal to the result of the comparison.

Play the scene again and check that the animations are correct in each case.

Starting and ending the player’s movement

The main scene will need to inform the player when the game has started and ended. To do that, add
a start() function to the player, which will set the player’s starting position and animation:

func start():
    set_process(true)
    position = screensize / 2
    $AnimatedSprite2D.animation = "idle"

Also, add a die() function to be called when the player hits an obstacle or runs out of time:

func die():
    $AnimatedSprite2D.animation = "hurt"
    set_process(false)

Part 1 – the player scene 29

Using set_process(false) tells Godot to stop calling the _process() function every frame.
Since the movement code is in that function, you’ll no longer be able to move when the game is over.

Preparing for collisions

The player should detect when it hits a coin or an obstacle, but you haven’t made those objects yet.
That’s OK because you can use Godot’s signal functionality to make it work. Signals are a way for nodes
to send out messages that other nodes can detect and react to. Many nodes have built-in signals to
alert you when events occur, such as a body colliding or a button being pressed. You can also define
custom signals for your own purposes.

Signals are used by connecting them to the node(s) that you want to listen for them. This connection
can be made in the Inspector window or in code. Later in the project, you’ll learn how to connect
signals in both ways.

Add the following lines to the top of the script (after extends Area2D):

signal pickup
signal hurt

These lines declare custom signals that your player will emit when they touch a coin or obstacle. The
touches will be detected by Area2D itself. Select the Player node, and click the Node tab next to
the Inspector tab to see a list of signals the player can emit:

Figure 2.21: The node’s list of signals

 Coin Dash – Build Your First 2D Game30

Note your custom signals there as well. Since the other objects will also be Area2D nodes, you’ll
want to use the area_entered signal. Select it and click Connect. In the window that pops up,
click Connect again – you don’t need to change any of those settings. Godot will automatically create
a new function called _on_area_entered() in your script.

When connecting a signal, instead of having Godot create the function for you, you can also give the
name of an existing function that you want to use instead. Toggle the Make Function switch off if
you don’t want Godot to create the function for you.

Add the following code to this new function:

func _on_area_entered(area):
    if area.is_in_group("coins"):
        area.pickup()
        pickup.emit()
    if area.is_in_group("obstacles"):
        hurt.emit()
        die()

Whenever another area object overlaps with the player, this function will be called, and that overlapping
area will be passed in with the area parameter. The coin object will have a pickup() function
that defines what the coin does when picked up (playing an animation or sound, for example). When
you create the coins and obstacles, you’ll assign them to the appropriate group so that they can be
detected correctly.

To summarize, here is the complete player script so far:

extends Area2D

signal pickup
signal hurt

@export var speed = 350

var velocity = Vector2.ZERO
var screensize = Vector2(480, 720)

func _process(delta):
    # Get a vector representing the player's input
    # Then move and clamp the position inside the screen
    velocity = Input.get_vector("ui_left", "ui_right",
        "ui_up", "ui_down")
    position += velocity * speed * delta
    position.x = clamp(position.x, 0, screensize.x)

Part 2 – the coin scene 31

    position.y = clamp(position.y, 0, screensize.y)

    # Choose which animation to play
    if velocity.length() > 0:
        $AnimatedSprite2D.animation = "run"
    else:
        $AnimatedSprite2D.animation = "idle"

    if velocity.x != 0:
        $AnimatedSprite2D.flip_h = velocity.x < 0

func start():
    # This function resets the player for a new game
    set_process(true)
    position = screensize / 2
    $AnimatedSprite2D.animation = "idle"

func die():
    # We call this function when the player dies
    $AnimatedSprite2D.animation = "hurt"
    set_process(false)

func _on_area_entered(area):
    # When we hit an object, decide what to do
    if area.is_in_group("coins"):
        area.pickup()
        pickup.emit()
    if area.is_in_group("obstacles"):
        hurt.emit()
        die()

You’ve completed setting up the player object, and you’ve tested that the movement and animations
work correctly. Before you move on to the next step, review the player scene setup and the script, and
make sure you understand what you’ve done and why. In the next section, you’ll make some objects
for the player to collect.

Part 2 – the coin scene
In this part, you’ll make coins for the player to collect. This will be a separate scene, describing all
the properties and behavior of a single coin. Once saved, the main scene will load this one and create
multiple instances (that is, copies) of it.

 Coin Dash – Build Your First 2D Game32

The node setup

Click Scene -> New Scene and add the following nodes. Don’t forget to set the children to not be
selectable, as you did with the Player scene:

•	 Area2D (named Coin):

	� AnimatedSprite2D

	� CollisionShape2D

Make sure to save the scene once you’ve added the nodes.

Set up AnimatedSprite2D as you did in the player scene. This time, you only have one animation
– a shine/sparkle effect that makes the coin look dynamic and interesting. Add all the frames and
set the animation speed to 12 FPS. The images are also a little too large, so set the Scale value of
AnimatedSprite2D to (0.4, 0.4). In CollisionShape2D, use CircleShape2D and
resize it to cover the coin image.

Using groups

Groups provide a tagging system for nodes, allowing you to identify similar nodes. A node can belong
to any number of groups. In order for the player script to correctly detect a coin, you need to ensure
that all coins will be in a group called coins. Select the Coin node, click the Node tab (the same tab
where you found the signals), and choose Groups. Type coins in the box and click Add:

Figure 2.22: The Groups tab

Coin script

Your next step is to add a script to the Coin node. Select the node and click the new script button,
just like you did with the Player node. If you uncheck the Template option, you’ll get an empty
script without any comments or suggestions. The code for the coin is much shorter than the code
for the player:

extends Area2D

var screensize = Vector2.ZERO

Part 3 – the Main scene 33

func pickup():
    queue_free()

Recall that the pickup() function is called by the player script. It defines what the coin will do when
collected. queue_free() is Godot’s method for removing nodes. It safely removes the node from
the tree and deletes it from memory, along with all its children. Later, you’ll add visual and audio
effects here, but for now, just having the coin disappear is good enough.

Removing nodes
queue_free() doesn’t delete the object immediately, but rather adds it to a queue to be
deleted at the end of the current frame. This is safer than immediately deleting the node because
other code running in the game may still need the node to exist. By waiting until the end of the
frame, Godot can be sure that all code that can access the node has completed and the node
can be removed safely.

You’ve now completed the second of the two objects needed for this game. The coin object is ready
to be placed randomly on the screen, and it can detect when it’s touched by the player, so it can be
collected. The remaining piece of the puzzle is how to put it all together. In the next section, you’ll
create a third scene to randomly create coins and allow the player to interact with them.

Part 3 – the Main scene
The Main scene is what ties all the pieces of the game together. It will manage the player, the coins,
the clock, and all the other pieces of the game.

Node setup

Create a new scene and add a Node named Main. The simplest type of node is Node – it doesn’t do
much at all on its own, but you’ll use it as the parent for all the game objects and add a script that will
give it the functionality you need. Save the scene.

Add the player as a child of Main by clicking the Instantiate Child Scene button and choosing your
saved player.tscn:

Figure 2.23: Instantiating a scene

 Coin Dash – Build Your First 2D Game34

Add the following nodes as children of Main:

•	 A TextureRect node named Background – for the background image

•	 A Timer node named GameTimer – for the countdown timer

Make sure Background is the first child node by dragging it above the player in the node list. Nodes
are drawn in the order shown in the tree, so if Background is first, that ensures it’s drawn behind
the player. Add an image to the Background node by dragging the grass.png image from the
assets folder into the Texture property. Change Stretch Mode to Tile, and then set the size to Full
Rect by clicking the layout button at the top of the editor window:

Figure 2.24: Layout options

Main script

Add a script to the Main node and add the following variables:

extends Node

@export var coin_scene : PackedScene
@export var playtime = 30

var level = 1
var score = 0
var time_left = 0
var screensize = Vector2.ZERO
var playing = false

The Coin Scene and Playtime properties now appear in the Inspector window when you select the
Main node. Drag coin.tscn from the FileSystem panel and drop it into the Coin Scene property.

Part 3 – the Main scene 35

Initializing

To start things off, add the _ready() function:

func _ready():
    screensize = get_viewport().get_visible_rect().size
    $Player.screensize = screensize
    $Player.hide()

Godot automatically calls _ready() on every node when it’s added. This is a good place to put code
that you want to happen at the beginning of a node’s lifetime.

Note that you’re referring to the Player node by name using the $ syntax, allowing you to find the
size of the game screen and set the player’s screensize variable. hide() makes a node invisible,
so you won’t see the player before the game starts.

Starting a new game

The new_game() function will initialize everything for a new game:

func new_game():
    playing = true
    level = 1
    score = 0
    time_left = playtime
    $Player.start()
    $Player.show()
    $GameTimer.start()
    spawn_coins()

In addition to setting the variables to their starting values, this function calls the player’s start()
function that you wrote earlier. Starting GameTimer will start counting down the remaining time
in the game.

You also need a function that will create a number of coins based on the current level:

func spawn_coins():
    for i in level + 4:
        var c = coin_scene.instantiate()
        add_child(c)
        c.screensize = screensize
        c.position = Vector2(randi_range(0, screensize.x),
            randi_range(0, screensize.y))

 Coin Dash – Build Your First 2D Game36

In this function, you create multiple instances of the Coin object and add them as children of Main
(in code this time, rather than by manually clicking on the Instantiate Child Scene button). Whenever
you instantiate a new node, it must be added to the scene tree using add_child(). Lastly, you choose
a random position for the coin, using the screensize variable so that they won’t appear off screen.
You’ll call this function at the start of every level, generating more coins each time.

Eventually, you’ll want new_game() to be called when the player clicks the start button on the
menu. For now, to test that everything is working, add new_game() to the end of your _ready()
function and click Run Project (F5). When you are prompted to choose a main scene, select main.
tscn. Now, whenever you play the project, the Main scene will be started.

At this point, you should see your player and five coins appear on the screen. When the player touches
a coin, it disappears.

Once you’re done testing, remove new_game() from the _ready() function.

Checking for remaining coins

The main script needs to detect whether the player has picked up all the coins. Since the coins are
all in the coins group, you can check the size of the group to see how many remain. Since it needs
to be checked continuously, put it in the _process() function:

func _process(delta):
    if playing and
    get_tree().get_nodes_in_group("coins").size() == 0:
        level += 1
        time_left += 5
        spawn_coins()

If no more coins remain, then the player advances to the next level.

This completes the main scene. The most important thing you learned in this step was how to dynamically
create new objects in code using instantiate(). This is something that you will use again and
again in building many types of game systems. In the last step, you’ll create one more scene to handle
displaying game information, such as the player’s score and the time remaining.

Part 4 – the user interface
The final element your game needs is a user interface (UI). This will display information that the
player needs to see during gameplay, which is often referred to as a heads-up display (HUD) because
the information appears as an overlay on top of the game view. You’ll also use this scene to display a
start button after the game ends.

Part 4 – the user interface 37

Your HUD will display the following information:

•	 The score

•	 The time remaining

•	 A message, such as Game Over

•	 A start button

Node setup

Create a new scene and add a CanvasLayer node named HUD. A CanvasLayer node creates a
new drawing layer, which will allow you to draw your UI elements above the rest of the game so that
it doesn’t get covered up by game objects, such as the player or coins.

Godot provides a variety of UI elements that can be used to create anything from indicators, such
as health bars, to complex interfaces, such as inventories. In fact, the Godot editor that you use to
make this game is built using the Godot UI elements. The basic nodes for a UI are all extended from
Control and appear with green icons in the node list. To create your UI, you’ll use various Control
nodes to position, format, and display information. Here’s what the HUD will look like when complete:

Figure 2.25: The HUD layout

Message label

Add a Label node to the scene and change its name to Message. This label will display the game’s
title as well as Game Over when the game ends. This label should be centered on the game screen.
You can drag it with the mouse, or set the values directly in the Inspector window, but it’s easiest to
use the shortcuts provided in the layout menu, which will set the values for you.

 Coin Dash – Build Your First 2D Game38

Select HCenter Wide from the layout menu:

Figure 2.26: Positioning the message

The label now spans the width of the screen and is centered vertically. The Text property sets what
text the label displays. Set it to Coin Dash!, and set Horizontal Alignment and Vertical Alignment
both to Center.

The default font for Label nodes is very small and unattractive, so the next step is to assign a custom
font. In the Label Settings property, select New LabelSettings and then click it to expand.

From the FileSystem tab, drag the Kenney Bold.ttf font file and drop it into the Font property,
and then set Size to 48. You can also improve the appearance by adding a shadow – try the settings
shown in the following screenshot, or experiment with your own:

Figure 2.27: Font settings

Score and time display

The top of the HUD will display the player’s score and the time remaining on the clock. Both of these
will be Label nodes, arranged at opposite sides of the game screen. Rather than position them
separately, you’ll use a container node to manage their positions.

Part 4 – the user interface 39

Containers

Godot’s Container nodes automatically arrange the positions and sizes of their child Control
nodes (including other containers). You can use them to add padding around elements, keep them
centered, or arrange them in rows and columns. Each type of Container has special properties
that control how they arrange their children.

Remember that containers automatically arrange their children. If you try to move or resize a Control
that’s inside a Container node, you’ll get a warning from the editor. You can manually arrange
controls or arrange them with a container, but not both.

Score and time display

To manage the score and time labels, add a MarginContainer node to the HUD. Use the layout
menu to set the anchors to Top Wide. In the Theme Overrides/Constants section of the Inspector
window, set the four Margin properties to 10. This will add some padding so that the text isn’t against
the edge of the screen.

Since the score and time labels will use the same font settings as Message, you can save time by
duplicating it. Select Message and press Ctrl + D twice to create two duplicate labels. Drag them
both and drop them onto MarginContainer to make them its children. Name one child Score
and the other Time, and set the Text property to 0 for both. Set Vertical Alignment to Center on
both, and Horizontal Alignment to Right on Score but Left on Time.

Updating the UI via GDScript

Add a script to the HUD node. This script will update the UI elements when their properties need to
change, such as updating the Score text whenever a coin is collected. See the following code:

extends CanvasLayer

signal start_game

func update_score(value):
    $MarginContainer/Score.text = str(value)

func update_timer(value):
    $MarginContainer/Time.text = str(value)

The Main scene’s script will call these two functions to update the display whenever there is a change
in a value. For the Message label, you also need a timer to make it disappear after a brief period.

 Coin Dash – Build Your First 2D Game40

Add a Timer node as a child of HUD, and set Wait Time to 2 seconds and One Shot to On. This
ensures that, when started, the timer will only run once, rather than repeating. Add the following code:

func show_message(text):
    $Message.text = text
    $Message.show()
    $Timer.start()

In this function, you will display the message and start the timer. To hide the message, connect the
timeout signal of Timer (remember that it will automatically create the new function):

func _on_timer_timeout():
    $Message.hide()

Using buttons

Add a Button node to HUD and change its name to StartButton. This button will be displayed
before the game starts, and when clicked, it will hide itself and send a signal to the Main scene to
start the game. Set the Text property to Start, then scroll down to Theme Overrides/Fonts, and set
the font as you did with Message.

In the layout menu, choose Center Bottom to center the button at the bottom of the screen.

When a button is pressed, it emits a signal. In the Node tab for StartButton, connect the
pressed signal:

func _on_start_button_pressed():
    $StartButton.hide()
    $Message.hide()
    start_game.emit()

Game over

The final task for your UI script is to react to the game ending:

func show_game_over():
    show_message("Game Over")
    await $Timer.timeout
    $StartButton.show()
    $Message.text = "Coin Dash!"
    $Message.show()

In this function, you need the Game Over message to be displayed for two seconds and then disappear,
which is what show_message("Game Over") does. However, you then want to show the start
button and game title once the message has disappeared. The await command pauses the execution of
a function until the given node (Timer) emits a given signal (timeout). Once the signal is received,
the function continues, and everything will be returned to its initial state so that you can play again.

Part 4 – the user interface 41

Adding HUD to Main

The next task is to set up the communication between Main and HUD. Add an instance of HUD to
Main. In Main, connect the timeout signal of GameTimer and add the following so that every
time GameTimer times out (every second), the remaining time is reduced:

func _on_game_timer_timeout():
    time_left -= 1
    $HUD.update_timer(time_left)
    if time_left <= 0:
        game_over()

Next, select the instance of Player in Main and connect its pickup and hurt signals:

func _on_player_hurt():
    game_over()

func _on_player_pickup():
    score += 1
    $HUD.update_score(score)

Several things need to happen when the game ends, so add the following function:

func game_over():
    playing = false
    $GameTimer.stop()
    get_tree().call_group("coins", "queue_free")
    $HUD.show_game_over()
    $Player.die()

This function halts the game and also uses call_group() to remove all remaining coins by calling
queue_free() on each of them.

Finally, pressing StartButton needs to activate Main’s new_game() function. Select the instance
of HUD and connect its start_game signal:

func _on_hud_start_game():
    new_game()

Make sure you’ve removed new_game() from Main’s _ready() function (remember, that was
only there to test), and add these two lines to new_game():

$HUD.update_score(score)
$HUD.update_timer(time_left)

 Coin Dash – Build Your First 2D Game42

Now, you can play the game! Confirm that all parts are working as intended – the score, the countdown,
the game ending and restarting, and so on. If you find a part that’s not working, go back and check
the step where you created it, as well as the step(s) where it may have been connected to the rest of
the game. A common mistake is to forget to connect one of the many signals you used in different
parts of the game.

Once you’ve played the game and confirmed that everything works correctly, you can move on to the
next section, where you can add a few additional features to round out the game experience.

Part 5 – finishing up
Congratulations on creating a complete, working game! In this section, you’ll add a few extra things to
the game to make it a little more exciting. Game developers use the term juice to describe the things
that make a game feel good to play. Juice can include things such as sound, visual effects, or any other
addition that adds to the player’s enjoyment, without necessarily changing the nature of the gameplay.

Visual effects

When you pick up the coins, they just disappear, which is not very appealing. Adding a visual effect
will make it much more satisfying to collect lots of coins.

What is a tween?

A tween is a way to interpolate (change gradually) some value over time using a particular mathematical
function. For example, you might choose a function that steadily changes a value or one that starts
slow but ramps up in speed. Tweening is also sometimes referred to as easing. You can see animated
examples of lots of tweening functions at https://easings.net/.

When using a tween in Godot, you can assign it to alter one or more properties of a node. In this
case, you’re going to increase the scale of the coin and also cause it to fade out using the Modulate
property. Once the tween has finished its job, the coin will be deleted.

However, there’s a problem. If we don’t remove the coin immediately, then it’s possible for the player
to move onto the coin again – triggering the area_entered signal a second time and registering
it as a second pickup. To prevent this, you can disable the collision shape so that the coin can’t trigger
any further collisions.

Your new pickup() function should look like this:

func pickup():
    $CollisionShape2d.set_deferred("disabled", true)
    var tw = create_tween().set_parallel().
        set_trans(Tween.TRANS_QUAD)
    tw.tween_property(self, "scale", scale * 3, 0.3)
    tw.tween_property(self, "modulate:a", 0.0, 0.3)

Part 5 – finishing up 43

    await tw.finished
    queue_free()

That’s a lot of new code, so let’s break it down:

First, CollisionShape2D’s disabled property needs to be set to true. However, if you try setting
it directly, Godot will complain. You’re not allowed to change physics properties while collisions are being
processed; you have to wait until the end of the current frame. That’s what set_deferred() does.

Next, create_tween() creates a tween object, set_parallel() says that any following tweens
should happen at the same time, instead of one after another, and set_trans() sets the transition
function to the “quadratic” curve.

After that come two lines that set up the tweening of the properties. tween_property() takes
four parameters – the object to affect (self), the property to change, the ending value, and the
duration (in seconds).

Now, when you run the game, you should see the coins playing the effect when they’re picked up.

Sound

Sound is an important but often neglected piece of game design. Good sound design can add a huge
amount of juice to your game for a very small amount of effort. Sounds can give a player feedback,
connect them emotionally to the characters, or even be a direct part of gameplay (“you hear footsteps
behind you”).

For this game, you’re going to add three sound effects. In the Main scene, add three
AudioStreamPlayer nodes and name them CoinSound, LevelSound, and EndSound. Drag
each sound from the res://assets/audio/ folder into the corresponding node’s Stream property.

To play a sound, you call the play() function on the node. Add each of the following lines to play
the sounds at the appropriate times:

•	 $CoinSound.play() to _on_player_pickup()

•	 $EndSound.play() to game_over()

•	 $LevelSound.play() to spawn_coins() (but not inside the loop!)

Powerups

There are many possibilities for objects that give the player a small advantage or powerup. In this
section, you’ll add a powerup item that gives the player a small time bonus when collected. It will
appear occasionally for a short time, and then disappear.

 Coin Dash – Build Your First 2D Game44

The new scene will be very similar to the Coin scene you already created, so click on your Coin
scene and choose Scene -> Save Scene As and save it as powerup.tscn. Change the name of the
root node to Powerup and remove the script by clicking the Detach script button – .

In the Groups tab, remove the coins group by clicking the trash can button and add a new group
called powerups instead.

In AnimatedSprite2D, change the images from the coin to the powerup, which you can find in
the res://assets/pow/ folder.

Click to add a new script and copy the code from the coin.gd script.

Next, add a Timer node named Lifetime. This will limit the amount of time the object remains
on the screen. Set its Wait Time value to 2 and both One Shot and Autostart to On. Connect its
timeout signal so that the powerup can be removed at the end of the time period:

func _on_lifetime_timout():
    queue_free()

Now, go to your Main scene and add another Timer node called PowerupTimer. Set its One Shot
property to On. There is also a Powerup.wav sound in the audio folder that you can add with
another AudioStreamPlayer. Connect the timeout signal and add the following to spawn
a powerup:

func _on_powerup_timer_timeout():
    var p = powerup_scene.instantiate()
    add_child(p)
    p.screensize = screensize
    p.position = Vector2(randi_range(0, screensize.x),
        randi_range(0, screensize.y))

The Powerup scene needs to be linked to a variable, as you did with the Coin scene, so add the
following line at the top of main.gd and then drag powerup.tscn into the new property:

@export var powerup_scene : PackedScene

The powerups should appear unpredictably, so the wait time of PowerupTimer needs to be set
whenever you begin a new level. Add this to the _process() function after the new coins are
spawned with spawn_coins():

Now, you will have powerups appearing; the last step is to give the player the ability to collect them.
Currently, the player script assumes that anything it runs into is either a coin or an obstacle. Change
the code in player.gd to check what kind of object has been hit:

func _on_area_entered(area):
    if area.is_in_group("coins"):
        area.pickup()
        pickup.emit("coin")

Part 5 – finishing up 45

    if area.is_in_group("powerups"):
        area.pickup()
        pickup.emit("powerup")
    if area.is_in_group("obstacles"):
        hurt.emit()
        die()

Note that now you emit the pickup signal with an additional argument that names the type of
object. The corresponding function in main.gd must now be changed to accept that argument and
decide what action to take:

func _on_player_pickup(type):
    match type:
        "coin":
            $CoinSound.play()
            score += 1
            $HUD.update_score(score)
        "powerup":
            $PowerupSound.play()
            time_left += 5
            $HUD.update_timer(time_left)

The match statement is a useful alternative to if statements, especially when you have a large number
of possible values to test.

Try running the game and collecting the powerup (remember, it won’t appear on level 1). Make sure
the sound plays and the timer increases by five seconds.

Coin animation

When you created the coin, you used AnimatedSprite2D, but it isn’t playing yet. The coin
animation displays a “shimmer” effect, traveling across the face of the coin. If all the coins display this
at the same time, it will look too regular, so each coin needs a small random delay in its animation.

First, click on AnimatedSprite2D and then on the SpriteFrames resource. Make sure
Animation Looping is set to Off and Speed is set to 12 FPS.

Figure 2.28: Animation settings

 Coin Dash – Build Your First 2D Game46

Add a Timer node to the Coin scene and then add this to the coin’s script:

func _ready():
    $Timer.start(randf_range(3, 8))

Then, connect the Timer’s timeout signal and add this:

func _on_timer_timeout():
    $AnimatedSprite2d.frame = 0
    $AnimatedSprite2d.play()

Try running the game and watching the coins animate. It’s a nice visual effect for a very small amount
of effort, at least on the part of the programmer –the artist had to draw all those frames! You’ll notice
a lot of effects like this in professional games. Although subtle, the visual appeal makes for a much
more pleasing experience.

Obstacles

Finally, the game can be made more challenging by introducing an obstacle that the player must avoid.
Touching the obstacle will end the game.

Figure 2.29: Example game with obstacles

Create a new Area2D scene and name it Cactus. Give it Sprite2D and CollisionShape2D
children. Drag the cactus texture from FileSystem into the Texture property of Sprite2D. Add
RectangleShape2D to the collision shape and size it so that it covers the image. Remember when
you added if area.is_in_group("obstacles"?) to the player code? Add Cactus to
the obstacles group using the Node tab. Play the game and see what happens when you run into
the cactus.

Summary 47

You may have spotted a problem – coins can spawn on top of the cactus, making them impossible to
pick up. When the coin is placed, it needs to move if it detects that it’s overlapping with the obstacle.
In the Coin scene, connect its area_entered signal and add the following:

func _on_area_entered(area):
    if area.is_in_group("obstacles"):
        position = Vector2(randi_range(0, screensize.x),
            randi_range(0, screensize.y))

If you added the Powerup object from the previous section, you’ll need to do the same in its script.

Play the game, and test that the objects all spawn correctly and that they don’t overlap with an obstacle.
Running into an obstacle should end the game.

Do you find the game challenging or easy? Before moving on to the next chapter, take some time to
think about other things you might add to this game. Go ahead and see whether you can add them,
using what you’ve learned so far. If not, write them down and come back later, after you’ve learned
some more techniques in the following chapters.

Summary
In this chapter, you learned the basics of the Godot Engine by creating a small 2D game. You set up
a project and created multiple scenes, worked with sprites and animations, captured user input, used
signals to communicate between nodes, and created a UI. The things you learned in this chapter are
important skills that you’ll use in any Godot project.

Before moving to the next chapter, look through the project. Do you know what each node does? Are
there any bits of code that you don’t understand? If so, go back and review that section of the chapter.

Also, feel free to experiment with the game and change things around. One of the best ways to get a
good feel for what different parts of the game do is to change them and see what happens.

Remember the tip from Chapter 1? If you really want to advance your skills quickly, close this book,
start a new Godot project, and try to make Coin Dash again without peeking. If you have to look in
the book, it’s OK, but try to only look for things once you’ve tried to figure out how to do it yourself.

In the next chapter, you’ll explore more of Godot’s features and learn how to use more node types by
building a more complex game.

3
Space Rocks: Build a 2D Arcade

Classic with Physics

By now, you should be getting more comfortable with working in Godot: adding nodes, creating scripts,
modifying properties in the Inspector, and so on. If you find yourself stuck or feeling like you don’t
remember how something is done, you can jump back to a project where it was first explained. As you
repeat the more common actions in Godot, they’ll start to feel more and more familiar. At the same
time, each chapter will introduce you to more nodes and techniques to expand your understanding
of Godot’s features.

In this project, you’ll make a space shooter game similar to the arcade classic Asteroids. The player will
control a ship that can rotate and move in any direction. The goal will be to avoid the floating “space
rocks” and shoot them with the ship’s laser. Here’s a screenshot of the final game:

Figure 3.1: Space Rocks screenshot

Space Rocks: Build a 2D Arcade Classic with Physics50

You’ll learn about the following key topics in this project:

•	 Using custom input actions

•	 Physics using RigidBody2D

•	 Organizing game logic with finite state machines

•	 Building a dynamic, scalable UI

•	 Sound and music

•	 Particle effects

Technical requirements
Download the game assets from the following link below and unzip them into your new project
folder: https://github.com/PacktPublishing/Godot-4-Game-Development-
Projects-Second-Edition/tree/main/Downloads

You can also find the complete code for this chapter on GitHub at: https://github.com/
PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/

tree/main/Chapter03%20-%20Space%20Rocks

Setting up the project
Create a new project and download the project assets from the following URL: https://github.
com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/
tree/main/Downloads.

For this project, you’ll set up custom input actions in the Input Map. Using this feature, you can define
custom input events and assign different keys, mouse events, or other inputs to them. This allows
more flexibility in designing your game, as your code can be written to respond to the “jump” input,
for example, without needing to know exactly what key and/or button the user pressed to make that
event happen. This allows you to make the same code work on different devices, even if they have
different hardware. In addition, since many gamers expect to be able to customize a game’s inputs,
this enables you to provide that option to the user as well.

To set up the inputs for this game, open Project | Project Settings and select the Input Map tab.

You’ll need to create four new input actions: rotate_left, rotate_right, thrust, and
shoot. Type the name of each action into the Add New Action box and hit Enter or click the Add
button. Make sure you type the names exactly as shown since they’ll be used in code later.

Then, for each action, click the + button to its right. In the pop-up window, you can manually select
a specific type of input, or you can press the physical button and Godot will detect it. You can add

https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter03%20-%20Space%20Rocks
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter03%20-%20Space%20Rocks
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter03%20-%20Space%20Rocks
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition/tree/main/Downloads

Setting up the project 51

multiple inputs to each action. For example, to allow players to use both the arrow keys and the WASD
keys, the setup will look like this:

Figure 3.2: Input actions

If you have a gamepad or other controller connected to your computer, you can also add its inputs
to the actions in the same way.

Note
We’re only considering button-style inputs at this stage, so while you’ll be able to use a D-pad
for this project, using an analog joystick would require changes to the project’s code.

Rigid body physics

In game development, you often need to know when two objects in the game space intersect or come
into contact. This is known as collision detection. When a collision is detected, you typically want
something to happen. This is known as collision response.

Godot offers three kinds of physics bodies, grouped under the PhysicsBody2D node type:

•	 StaticBody2D: A static body is one that is not moved by the physics engine. It participates
in collision detection but does not move in response. This type of body is most often used for
objects that are part of the environment or do not need to have any dynamic behavior, such
as walls or the ground.

•	 RigidBody2D: This is the physics body that provides simulated physics. This means that
you don’t control a RigidBody2D physics body’s position directly. Instead, you apply forces
to it (gravity, impulses, and so on) and Godot’s built-in physics engine calculates the resultant
movement, including collisions, bouncing, rotating, and other effects.

Space Rocks: Build a 2D Arcade Classic with Physics52

•	 CharacterBody2D: This body type provides collision detection but no physics. All
movement must be implemented in code, and you must implement any collision response
yourself. Kinematic bodies are most often used for player characters or other actors that require
arcade-style physics rather than realistic simulation, or when you need more precise control
over how the body moves.

Understanding when to use a particular physics body type is a big part of building your game. Using
the right type can simplify your development, while trying to force the wrong node to do the job can
lead to frustration and poor results. As you work with each type of body, you’ll come to learn their
pros and cons and get a feel for when they can help build what you need.

In this project, you’ll be using the RigidBody2D node for the ship as well as the rocks themselves.
You’ll learn about the other body types in later chapters.

Individual RigidBody2D nodes have many properties you can use to customize their behavior,
such as Mass, Friction, or Bounce. These properties can be set in the Inspector.

Rigid bodies are also affected by global properties, which can be set in Project Settings under Physics
| 2D. These settings apply to all bodies in the world.

Figure 3.3: Project physics settings

In most cases, you won’t need to modify these settings. However, note that by default, gravity has a
value of 980 and a direction of (0, 1), or downward. If you want to change the world’s gravity,
you can do that here.

If you click the Advanced Settings toggle in the upper right of the Project Settings window, you’ll
see many advanced configuration values for the physics engine. You should be aware of two of them
in particular: Default Linear Damp and Default Angular Damp. These properties control how
quickly a body will lose forward speed and rotation speed, respectively. Setting them to lower values
will make the world feel frictionless, while using larger values will make it feel like your objects are
moving through mud. This can be a great way to apply different movement styles to suit various game
objects and environments.

The player’s ship 53

Area physics override
Area2D nodes can also be used to influence rigid body physics by using their Space Override
property. Custom gravity and damping values will then be applied to any bodies that enter
the area.

Since this game will be taking place in outer space, gravity won’t be needed, so set Default Gravity
to 0. You can leave the other settings as they are.

That completes the project setup tasks. It’s a good idea to look back through this section and make
sure you didn’t miss anything, since the changes you’ve made here will affect the behavior of many
game objects. You’ll see this in the next section, where you’ll make the player’s ship.

The player’s ship
The player’s ship is the heart of this game. Most of the code you’ll write for this project will be about
making the ship work. It will be controlled in the classic “Asteroids style, with left/right rotation and
forward thrust. The player will also be able to fire the laser and destroy floating rocks.

Figure 3.4: The player’s ship

Body and physics setup

Create a new scene and add a RigidBody2D named Player as the root node, with Sprite2D
and CollisionShape2D children. Add the res://assets/player_ship.png image to
the Texture property of the Sprite2D. The ship image is quite large, so set the Scale property of
the Sprite2D to (0.5, 0.5) and Rotation to 90.

Space Rocks: Build a 2D Arcade Classic with Physics54

Figure 3.5: Player sprite settings

Sprite orientation
The image for the ship is drawn pointing upward. In Godot, a rotation of 0 degrees points to
the right (along the x-axis). This means that you need to rotate the sprite so that it will match
the body’s direction. If you use art that is drawn in the correct orientation, you can avoid this
step. However, it’s very common to find art that’s drawn in an upward orientation, so you
should know what to do.

In the Shape property of the CollisionShape2D, add a CircleShape2D and scale it to cover
the image as closely as possible.

Figure 3.6: Player collision shape

The player’s ship 55

The player ship is drawn in a pixel art style, but if you zoom in, you may notice it looks vary blurred
and “smoothed out.” Godot’s default filter setting for drawing textures uses this smoothing technique,
which looks good with some art, but typically isn’t wanted for pixel art. You can set the filtering
individually on each sprite (in the CanvasItem section), or you can set it globally in Project Settings.

Open Project Settings and check the Advanced Settings toggle, and then find the rendering/textures
section. Near the bottom, you’ll see two settings for Canvas Textures. Set Default Texture Filter
to Nearest.

Figure 3.7: Default Texture Filter settings

Save the scene. When working on larger-scale projects, it is recommended to organize your scenes and
scripts into folders based on each game object rather than saving them all in the root project folder.
For example, if you make a “player” folder, you can save all player-related files there. This makes it
easier to find and modify your various game objects. While this project is relatively small – you’ll only
have a few scenes – it’s a good habit to adopt as your projects grow in size and complexity.

State machines

The player’s ship can be in a number of different states during gameplay. For example, when alive, the
ship is visible and can be controlled by the player, but it is vulnerable to being hit by rocks. On the
other hand, when invulnerable, the ship should appear semi-transparent, and it is immune to damage.

One way that programmers often handle situations like this is to add Boolean variables, or flags, to the
code. For example, the invulnerable flag is set to true when the player first spawns, or alive
is set to false when the player is dead. However, this can lead to errors and strange situations
when, for some reason, both alive and invulnerable are set to false at the same time. What
happens when a rock hits the player in this situation? It would be better if the ship could only be in
one clearly defined state at a time.

Space Rocks: Build a 2D Arcade Classic with Physics56

A solution to this problem is to use a finite state machine (FSM). When using an FSM, an entity
can only be in one state at a given time. To design your FSM, you define a number of states and what
events or actions can cause a transition from one state to another.

The following diagram depicts the FSM for the player’s ship:

Figure 3.8: State machine diagram

There are four states, shown by the ovals, and the arrows indicate what transitions can occur between
states, as well as what triggers the transition. By checking the current state, you can decide what the
player is allowed to do. For example, in the DEAD state, don’t allow input, or in the INVULNERABLE
state, allow movement but don’t allow shooting.

Advanced FSM implementations can become quite complex, and the details are beyond the scope
of this book (see the Appendix for further reading). In the purest sense, you won’t be creating a true
FSM here, but for the purposes of this project, it will be sufficient to illustrate the concept and keep
you from running into the Boolean flag problem.

Add a script to the Player node and start by creating the skeleton of the FSM implementation:

extends RigidBody2D

enum {INIT, ALIVE, INVULNERABLE, DEAD}
var state = INIT

The player’s ship 57

An enum (short for “enumeration”) is a convenient way to create a set of constants. The enum statement
in the preceding code is equivalent to writing the following code:

const INIT = 0
const ALIVE = 1
const INVULNERABLE = 2
const DEAD = 3

Next, create the change_state() function to handle state transitions:

func _ready():
    change_state(ALIVE)

func change_state(new_state):
    match new_state:
        INIT:
            $CollisionShape2D.set_deferred("disabled",
                true)
        ALIVE:
            $CollisionShape2D.set_deferred("disabled",
                false)
        INVULNERABLE:
            $CollisionShape2D.set_deferred("disabled",
                true)
        DEAD:
            $CollisionShape2D.set_deferred("disabled",
                true)
    state = new_state

Whenever you need to change the state of the player, you’ll call the change_state() function and
pass it the value of the new state. Then, by using a match statement, you can execute whatever code
should accompany the transition to the new state or disallow it if you don’t want that transition to
happen. To illustrate this, the CollisionShape2D node is being enabled/disabled by the new state.
In _ready(), we set ALIVE as the initial state – this is for testing, but we’ll change it to INIT later.

Adding player controls

Add the following variables at the top of the script:

@export var engine_power = 500
@export var spin_power = 8000

var thrust = Vector2.ZERO
var rotation_dir = 0

Space Rocks: Build a 2D Arcade Classic with Physics58

engine_power and spin_power control how fast the ship can accelerate and turn. thrust
represents the force being applied by the engine: either (0, 0) when coasting or a vector pointing
forward when the engine is on. rotation_dir represents in which direction the ship is turning
so that you can apply a torque or rotational force.

As we saw earlier in Project Settings, the physics engine provides some damping, which reduces a
body’s velocity and spin. In space, there’s no friction, so for realism, there shouldn’t be any damping
at all. However, for the classic arcade feel, it’s preferable that the ship should stop when you let go of
the keys. In the Inspector, set Linear/Damp to 1 and Angular/Damp to 5. You can adjust these later
to change how the ship handles.

The next step is to detect the input and move the ship:

func _process(delta):
    get_input()

func get_input():
    thrust = Vector2.ZERO
    if state in [DEAD, INIT]:
        return
    if Input.is_action_pressed("thrust"):
        thrust = transform.x * engine_power
    rotation_dir = Input.get_axis("rotate_left",
        "rotate_right")

func _physics_process(delta):
    constant_force = thrust
    constant_torque = rotation_dir * spin_power

The get_input() function captures the key actions and sets the ship’s thrust on or off. Note that
the direction of the thrust is based on the body’s transform.x, which always represents the body’s
“forward” direction (see the Appendix for an overview of transforms).

Input.get_axis() returns a value based on two inputs, representing negative and positive
values. So, rotation_dir will be clockwise, counter-clockwise, or zero, depending on the state
of the two input actions.

Finally, when using physics bodies, their movement and related functions should always be called in
_physics_process(). Here, you can apply the forces set by the inputs to actually move the body.

Play the scene, and you should be able to fly around freely.

The player’s ship 59

Screen wrap

Another feature of classic 2D arcade games is screen wrap. If the player goes off one side of the screen,
they appear on the other side. In practice, you teleport the ship to the other side by instantly changing
its position. You’ll need to know the size of the screen, so add the following variable to the top of
the script:

var screensize = Vector.ZERO

And add this to _ready():

screensize = get_viewport_rect().size

Later, you can have the game’s main script handle setting screensize for all the game’s objects, but
for now, this will allow you to test the screen wrapping with just the player’s scene.

When first approaching this problem, you might think you could use the body’s position property
and, if it exceeds the bounds of the screen, set it to the opposite side. And if you were using any other
node type, that would work just fine; however, when using RigidBody2D, you can’t directly set
position because that would conflict with the movement that the physics engine is calculating. A
common mistake is to try adding something like this:

func _physics_process(delta):
    if position.x > screensize.x:
        position.x = 0
    if position.x < 0:
        position.x = screensize.x
    if position.y > screensize.y:
        position.y = 0
    if position.y < 0:
        position.y = screensize.y

And if you wanted to try this with the Area2D in Coin Dash, it would work perfectly fine. Here, it
will fail, trapping the player on the edge of the screen and glitching unpredictably at the corners. So,
what is the answer?

To quote the RigidBody2D documentation:

Note: You should not change a RigidBody2D’s position or linear_velocity
every frame or even very often. If you need to directly affect the body’s state, use
_integrate_forces, which allows you to directly access the physics state.

And in the description for _integrate_forces():

(It) Allows you to read and safely modify the simulation state for the object. Use
this instead of _physics_process if you need to directly change the body’s

position or other physics properties.

Space Rocks: Build a 2D Arcade Classic with Physics60

So, the answer is to use this separate function when you want to directly affect the rigid body’s position.
Using _integrate_forces() gives you access to the body’s PhysicsDirectBodyState2D
– a Godot object containing a great deal of useful information about the current state of the body.
Since you want to change the body’s location, that means you need to modify its Transform2D.

A transform is a matrix representing one or more transformations in space, such as translation,
rotation, and/or scaling. The translation (i.e., position) information is found by accessing the origin
property of the Transform2D.

Using this information, you can implement the wrap-around effect by adding the following code:

func _integrate_forces(physics_state):
    var xform = physics_state.transform
    xform.origin.x = wrapf(xform.origin.x, 0, screensize.x)
    xform.origin.y = wrapf(xform.origin.y, 0, screensize.y)
    physics_state.transform = xform

The wrapf() function takes a value (the first argument) and “wraps” it between any min/max values
you choose. So, if the value goes below 0, it becomes screensize.x, and vice versa.

Note that you’re using physics_state for the parameter name rather than the default of state.
This is to avoid confusion since state is already being used to track the player’s state.

Run the scene again and check that everything is working as expected. Make sure you try wrapping
around in all four directions.

Shooting

Now it’s time to give your ship some weapons. When pressing the shoot action, a bullet/laser should
be spawned at the front of the ship and then travel in a straight line until it exits the screen. The player
isn’t allowed to shoot again until a small amount of time has passed (also known as a cooldown).

Bullet scene

This is the node setup for the bullet:

•	 Area2D named Bullet

	� Sprite2D

	� CollisionShape2D

	� VisibleOnScreenNotifier2D

Use res://assets/laser.png from the assets folder for the Texture property of the Sprite2D
and a CapsuleShape2D for the collision shape. You’ll need to set Rotation of CollisionShape2D
to 90 so that it is oriented correctly. You should also scale Sprite2D down to about half the size:
(0.5, 0.5).

The player’s ship 61

Add the following script to the Bullet node:

extends Area2D

@export var speed = 1000

var velocity = Vector2.ZERO

func start(_transform):
    transform = _transform
    velocity = transform.x * speed

func _process(delta):
    position += velocity * delta

You’ll call the start() function whenever you spawn a new bullet. By passing it a transform, you
can give it the correct position and rotation – typically that of the ship’s gun (more about this later).

The VisibleOnScreenNotifier2D is a node that informs you (via a signal) whenever a node
becomes visible/invisible. You can use this to automatically delete a bullet that goes offscreen. Connect
the node’s screen_exited signal and add this:

func _on_visible_on_screen_notifier_2d_screen_exited():
    queue_free()

Finally, connect the bullet’s body_entered signal so that it can detect when it hits a rock. The bullet
doesn’t need to know anything about rocks, just that it has hit something. When you create the rock,
you’ll add it to a group called rocks and give it an explode() method:

func _on_bullet_body_entered(body):
    if body.is_in_group("rocks"):
        body.explode()
        queue_free()

Firing bullets

The next step is to create instances of the Bullet scene whenever the player presses the shoot action.
However, if you make the bullet a child of the player, then it will move and rotate along with the player
instead of moving independently. You could add the bullet to the main scene using get_parent().
add_child(), since the Main scene will be the parent of the player when the game is running.
However, this would mean that you could no longer run and test the Player scene by itself. Or, if
you decided to rearrange your Main scene, making the player a child of some other node, the bullet
wouldn’t be added where you expect.

Space Rocks: Build a 2D Arcade Classic with Physics62

In general, it is a bad idea to write code that assumes a fixed tree layout. Especially try to avoid situations
where you use get_parent() if at all possible. You may find it difficult to think this way at first,
but it will result in a much more modular design and prevent some common mistakes.

In any case, the SceneTree will always exist, and for this game, it will be fine to make the bullet a
child of the tree’s root, which is the Window containing the game.

Add a Marker2D node to the player and name it Muzzle. This will mark the muzzle of the gun – the
location where the bullet will spawn. Set Position to (50, 0) to place it directly in front of the ship.

Next, add a Timer node and name it GunCooldown. This will provide a cooldown to the gun,
preventing a new bullet from firing until a certain amount of time has passed. Check the One Shot
and Autostart boxes to “on.”

Add these new variables to the player’s script:

@export var bullet_scene : PackedScene
@export var fire_rate = 0.25

var can_shoot = true

Drag the bullet.tscn file onto the new Bullet property in the Inspector.

Add this line to _ready():

$GunCooldown.wait_time = fire_rate

And this to get_input():

if Input.is_action_pressed("shoot") and can_shoot:
    shoot()

Now create the shoot() function, which will handle creating the bullet(s):

func shoot():
    if state == INVULNERABLE:
        return
    can_shoot = false
    $GunCooldown.start()
    var b = bullet_scene.instantiate()
    get_tree().root.add_child(b)
    b.start($Muzzle.global_transform)

When shooting, you first set can_shoot to false so that the action no longer calls shoot().
Then you add the new bullet as a child of whatever node is the root of the scene tree. Finally, you call
the bullet’s start() function and give it the muzzle node’s global transform. Note that if you used
transform here, you’d be giving it the muzzle’s position relative to the player (which is (50, 0),

Adding the rocks 63

remember?), and so the bullet would spawn in entirely the wrong place. This is another example of
how important it is to understand the distinction between local and global coordinates.

To allow the gun to shoot again, connect the timeout signal of GunCooldown:

func _on_gun_cooldown_timeout():
    can_shoot = true

Testing the player’s ship

Create a new scene using a Node named Main and add a Sprite2D named Background as a
child. Use res://assets/space_background.png in the Texture property. Add an instance
of the Player to the scene.

Play the main scene and test that you can fly and shoot.

Now that your player’s ship works, it’s a good time to pause and check your understanding. Working
with rigid bodies can be tricky; take a few minutes to experiment with some of the settings and code
from this section. Just make sure to change them back before moving on to the next section, where
you’ll add the asteroids to the game.

Adding the rocks
The goal of the game is to destroy the floating space rocks, so now that you can shoot, it’s time to add
them. Like the ship, the rocks will use RigidBody2D, which will make them travel in a straight line
at a steady speed unless disturbed. They’ll also bounce off each other in a realistic fashion. To make
things more interesting, rocks will start out large and, when you shoot them, break into multiple
smaller rocks.

Scene setup

Start a new scene with a RigidBody2D node named Rock, and add a Sprite2D child using the
res://assets/rock.png texture. Add a CollisionShape2D, but don’t set its shape yet.
Because you’ll be spawning different-sized rocks, the collision shape will need to be set in code and
adjusted to the correct size.

You don’t want the rocks coasting to a stop, so they need to ignore the default linear and angular
damping. Set both Linear/Damp and Angular/Damp to 0 and Damp Mode for both to Replace. The
rocks also need to bounce off each other. You can do that in the Physics Material property. Select
New PhysicsMaterial and then click on it to expand. Set the displayed Bounce property to 1.

Space Rocks: Build a 2D Arcade Classic with Physics64

Variable size rocks

Attach a script to Rock and define the member variables:

extends RigidBody2D

var screensize = Vector2.ZERO
var size
var radius
var scale_factor = 0.2

The Main script will handle spawning new rocks, both at the beginning of a level as well as the
smaller rocks that will appear after a large one explodes. A large rock will have a size of 3, break into
rocks of size 2, and so on. The scale_factor is multiplied by size to set the Sprite2D scale,
the collision radius, and so on. You can adjust this later to change how big each category of rock is.

All of this will be set by the start() method:

func start(_position, _velocity, _size):
    position = _position
    size = _size
    mass = 1.5 * size
    $Sprite2D.scale = Vector2.ONE * scale_factor * size
    radius = int($Sprite2D.texture.get_size().x / 2 *
        $Sprite2D.scale.x)
    var shape = CircleShape2D.new()
    shape.radius = radius
    $CollisionShape2d.shape = shape
    linear_velocity = _velocity
    angular_velocity = randf_range(-PI, PI)

This is where you calculate the correct collision size based on the rock’s size. Note that since
position and size are already in use as class variables, you can use an underscore for the function’s
arguments to prevent conflict.

The rocks also need to wrap around the screen like the player, so use the same technique with
_integrate_forces():

func _integrate_forces(physics_state):
    var xform = physics_state.transform
    xform.origin.x = wrapf(xform.origin.x, 0 - radius,
        screensize.x + radius)
    xform.origin.y = wrapf(xform.origin.y, 0 - radius,
        screensize.y + radius)
    physics_state.transform = xform

Adding the rocks 65

The one difference here is that including the rock’s radius in the calculation results in smoother-
looking teleportation. The rock will appear to fully exit the screen before entering the opposite side.
You may want to do the same thing with the player’s ship. Try it and see which you like better.

Instantiating rocks

When new rocks are spawned, the main scene will need to pick a random starting location. To do
this, you could use some math to pick a random point along the perimeter of the screen, but instead,
you can take advantage of another Godot node type. You’ll draw a path around the edge of the screen,
and the script will pick a random location along that path.

In the Main scene, add a Path2D node and name it RockPath. When you select the node, you
will see some new buttons appear at the top of the editor window:

Figure 3.9: Path drawing tools

Select the middle one (Add Point) to draw the path by clicking the points shown in the following
screenshot. To make the points align, make sure Use Grid Snap is checked. This option is found in
the icon bar at the top of the editor window:

Figure 3.10: Enabling grid snapping

Draw the points in the order shown in the following screenshot. After clicking the fourth point, click
the Close Curve button (marked 5 in the screenshot) and your path will be complete:

Figure 3.11: Path drawing order

Space Rocks: Build a 2D Arcade Classic with Physics66

Don’t click in the editor window again if you have RockPath selected! If you do, you’ll add additional
points to the curve, and your rocks may not spawn where you want them to. You can press Ctrl + Z
to undo any extra points you may have added.

Now that the path is defined, add a PathFollow2D as a child of RockPath and name it RockSpawn.
This node’s purpose is to automatically move along its parent path using its Progress property, which
represents an offset along the path. The higher the offset, the further along the path it goes. Since our
path is closed, it will also loop if the offset value is bigger than the path’s length.

Add the following script to Main.gd:

extends Node

@export var rock_scene : PackedScene

var screensize = Vector2.ZERO

func _ready():
    screensize = get_viewport().get_visible_rect().size
    for i in 3:
        spawn_rock(3)

You start by getting the screensize so that you can pass it to the rocks when they’re spawned.
Then, you spawn three rocks of size 3. Don’t forget to drag rock.tscn onto the Rock property.

Here is the spawn_rock() function:

func spawn_rock(size, pos=null, vel=null):
    if pos == null:
        $RockPath/RockSpawn.progress = randi()
        pos = $RockPath/RockSpawn.position
    if vel == null:
        vel = Vector2.RIGHT.rotated(randf_range(0, TAU)) *
            randf_range(50, 125)
    var r = rock_scene.instantiate()
    r.screensize = screensize
    r.start(pos, vel, size)
    call_deferred("add_child", r)

This function serves two purposes. When called with only a size parameter, it picks a random
position along the RockPath and a random velocity. However, if those values are provided, it will use
them instead. This will let you spawn the smaller rocks at the location of the explosion by specifying
their properties.

Adding the rocks 67

Run the game and you should see three rocks floating around, but your bullets don’t affect them.

Exploding rocks

The bullet checks for bodies in the rocks group, so in the Rock scene, select the Node tab and
choose Groups. Type rocks and click Add:

Figure 3.12: Adding a “rocks” group

Now, if you run the game and shoot a rock, you’ll see an error message because the bullet is trying to call
the rock’s explode() method, which you haven’t defined yet. This method needs to do three things:

•	 Remove the rock

•	 Play an explosion animation

•	 Notify Main to spawn new, smaller rocks

Explosion scene

The explosion will be a separate scene, which you can add to the Rock and later to the Player. It
will contain two nodes:

•	 Sprite2D named Explosion

•	 AnimationPlayer

For the Sprite2D node’s Texture property, use res://assets/explosion.png. You’ll notice
this is a sprite sheet – an image made up of 64 smaller images laid out in a grid pattern. These images
are the individual frames of the animation. You’ll often find animations packaged this way, and Godot’s
Sprite2D node supports using them.

In the Inspector, find the sprite’s Animation section. Set Vframes and Hframes both to 8. This will
slice the sprite sheet into its 64 individual images. You can verify this by changing the Frame property
to different values between 0 and 63. Make sure to set it back to 0 before you continue.

Space Rocks: Build a 2D Arcade Classic with Physics68

Figure 3.13: Sprite Animation settings

The AnimationPlayer node can be used to animate any property of any node. You’ll use it to
change the Frame property over time. Start by selecting the node and you’ll see the Animation panel
open at the bottom:

Figure 3.14: Animation panel

Click the Animation button and choose New. Name the animation explosion. Set Animation
Length to 0.64 and Snap to 0.01. Select the Sprite2D node and you’ll notice that each property
in the Inspector now has a key symbol next to it. Clicking on a key will create a keyframe in the
current animation.

Figure 3.15: Animation time settings

Click the key next to the Explosion node’s Frame property and confirm that you want to create
a new animation track. Deselect Create RESET Track(s). You’ve now created a keyframe telling the
AnimationPlayer that at time 0, you want the sprite’s Frame to be 0.

Adding the rocks 69

Slide the scrubber to time 0.64 (you can adjust the zoom using the slider if you can’t see it). Set
Frame to 63 and click the key again. Now the animation knows to use the last image at the animation’s
final time. However, you also need to let the AnimationPlayer know that you want to use all the
intermediate values in the times between those two points. At the right side of the animation track is
an Update Mode dropdown. It’s currently set to Discrete, and you need to change it to Continuous:

Figure 3.16: Setting Update Mode

Click the Play button in the Animation panel to see the animation.

You can now add the explosion to the rock. In the Rock scene, add an instance of Explosion and
click the eye icon next to the node to make it hidden. Add this line to start():

$Explosion.scale = Vector2.ONE * 0.75 * size

This will ensure the explosion is scaled to match the rock’s size.

Add a signal called exploded at the top of the script, then add the explode() function, which
will be called when the bullet hits the rock:

func explode():
    $CollisionShape2D.set_deferred("disabled", true)
    $Sprite2d.hide()
    $Explosion/AnimationPlayer.play("explosion")
    $Explosion.show()
    exploded.emit(size, radius, position, linear_velocity)
    linear_velocity = Vector2.ZERO
    angular_velocity = 0
    await $Explosion/AnimationPlayer.animation_finished
    queue_free()

Here, you hide the rock and play the explosion, waiting for it to finish before removing the rock. When
you emit the exploded signal, you also include all the rock’s information, so that spawn_rock()
in Main will be able to spawn the smaller rocks at the same location.

Test the game and check that you can see explosions when you shoot the rocks.

Space Rocks: Build a 2D Arcade Classic with Physics70

Spawning smaller rocks

The Rock scene is emitting the signal, but Main isn’t listening for it yet. You can’t connect the signal
in the Node tab because the rocks are being instanced in the code. They won’t exist until later, when
the game is running. Add this line to the end of spawn_rock():

r.exploded.connect(self._on_rock_exploded)

This connects the rock’s signal to a function in Main, which you also need to create:

func _on_rock_exploded(size, radius, pos, vel):
    if size <= 1:
        return
    for offset in [-1, 1]:
        var dir = $Player.position.direction_to(pos)
            .orthogonal() * offset
        var newpos = pos + dir * radius
        var newvel = dir * vel.length() * 1.1
        spawn_rock(size - 1, newpos, newvel)

In this function, you create two new rocks unless the rock that was just destroyed was of size 1 (the
smallest size). The offset loop variable ensures that the two new rocks travel in opposite directions
(that is, one’s velocity will be negative). The dir variable finds the vector between the player and the
rock, then uses orthogonal() to get a vector that’s perpendicular. This ensures that the new rocks
don’t fly straight toward the player.

Figure 3.17: Explosion diagram

Creating the UI 71

Play the game once again and check that everything is working as expected.

This is a good place to stop and review what you’ve done so far. You’ve completed all the basic
functionality of the game: the player can fly around and shoot; the rocks float, bounce, and explode;
and new rocks are spawned. You should be feeling more comfortable using rigid bodies at this point.
In the next section, you’ll start building the interface to allow the player to start the game and see
important information during gameplay.

Creating the UI
Creating a UI for your game can be very complex, or at least time-consuming. Precisely placing
individual elements and ensuring they work across different-sized screens and devices is the least
interesting part of game development for many programmers. Godot provides a wide variety of
Control nodes to assist in this process. Learning how to use the various Control nodes will help
lessen the pain of creating a polished UI.

For this game, you don’t need a very complex UI. The game needs to provide the following information
and interactions:

•	 Start button

•	 Status message (such as “Get Ready” or “Game Over”)

•	 Score

•	 Lives counter

Here is a preview of what you will make:

Figure 3.18: UI layout

Create a new scene and add a CanvasLayer node with the name HUD as the root node. You’ll build
the UI on this layer using the Control node’s layout features.

Space Rocks: Build a 2D Arcade Classic with Physics72

Layout

Godot’s Control nodes include a number of specialized containers. These nodes can be nested inside
each other to create the exact layout you need. For example, a MarginContainer automatically
adds padding around its contents, while HBoxContainer and VBoxContainer organize their
contents in rows or columns, respectively.

Follow these steps to build the layout:

1.	 Start by adding Timer and MarginContainer children, which will hold the score
and life counters. In the Layout dropdown, select Top Wide.

Figure 3.19: Top Wide control alignment

2.	 In the Inspector, set the four margins in Theme Overrides/Constants to 20.

3.	 Set the One Shot property of Timer to on and its Wait Time to 2.

4.	 As a child of the container, add an HBoxContainer, which will position the score counter
on the left and the lives counter on the right. Under this container, add a Label (name it
ScoreLabel) and another HBoxContainer (named LivesCounter).

Set the ScoreLabel's Text to 0, and under Layout/Container Sizing/Horizontal, check the
Expand box. In Label Settings, add a font as you did in Chapter 2, using res://assets/
kenvector_future_thin.ttf and setting the font size to 64.

5.	 Select LivesCounter and set Theme Overrides/Constants/Separation to 20, then add a
child TextureRect and name it L1. Drag res://assets/player_small.png to
the Texture property and set Stretch Mode to Keep Aspect Centered. Make sure you have the
L1 node selected and press duplicate (Ctrl + D) twice to create L2 and L3 (they’ll be named
automatically). During the game, the HUD will show or hide these three textures to indicate
how many lives the player has left.

Creating the UI 73

6.	 In a larger, more complex UI, you might save this section as its own scene and embed it in
other section(s) of the UI. However, this game only needs a few more elements, so it’s fine to
combine them all in one scene.

7.	 As a child of HUD, add a VBoxContainer, and inside it, add a Label named Message
and a TextureButton named StartButton. Set the layout of the VBoxContainer
to Center Wide and Theme Overrides/ Constants/ Separation to 100.

8.	 In the res://assets folder, there are two textures for StartButton, one normal (play_
button.png) and one to show when the mouse is hovering over it ('play_button_h.
png). Drag these to Textures/Normal and Textures/Hover in the Inspector. Set the button’s
Layout/Container Sizing/Horizontal to Shrink Center so that it will be centered horizontally.

9.	 Set the Message text to “Space Rocks!” and set its font using the same settings as ScoreLabel.
Set Horizontal Alignment to Center.

When finished, your scene tree should look like this:

Figure 3.20: HUD node layout

Scripting the UI

You’ve completed the UI layout, now add a script to HUD. Since the nodes you’ll need to reference are
located under containers, you can store references to them in variables at the start. Since this needs to
happen after nodes are added to the tree, you can use the @onready decorator to cause the variable’s
value to be set at the same time as the _ready() function runs.

extends CanvasLayer

signal start_game

Space Rocks: Build a 2D Arcade Classic with Physics74

@onready var lives_counter = $MarginContainer/HBoxContainer/
LivesCounter.get_children()
@onready var score_label = $MarginContainer/HBoxContainer/ScoreLabel
@onready var message = $VBoxContainer/Message
@onready var start_button = $VBoxContainer/StartButton

You’ll emit the start_game signal when the player clicks the StartButton. The lives_counter
variable is an array holding references to the three life-counter images so they can be hidden/shown
as needed.

Next, you need functions to handle updating the displayed information:

func show_message(text):
    message.text = text
    message.show()
    $Timer.start()

func update_score(value):
    score_label.text = str(value)

func update_lives(value):
    for item in 3:
        lives_counter[item].visible = value > item

Main will call these functions whenever the relevant value changes. Now add a function to handle
the end of the game:

func game_over():
    show_message("Game Over")
    await $Timer.timeout
    start_button.show()

Connect the pressed signal of StartButton and the timeout signal of Timer:

func _on_start_button_pressed():
    start_button.hide()
    start_game.emit()

func _on_timer_timeout():
    message.hide()
    message.text = ""

Creating the UI 75

The Main scene’s UI code

Add an instance of the HUD scene to the Main scene. Add these variables to main.gd:

var level = 0
var score = 0
var playing = false

And a function to handle starting a new game:

func new_game():
    # remove any old rocks from previous game
    get_tree().call_group("rocks", "queue_free")
    level = 0
    score = 0
    $HUD.update_score(score)
    $HUD.show_message("Get Ready!")
    $Player.reset()
    await $HUD/Timer.timeout
    playing = true

Note the $Player.reset() line – don’t worry, you’ll add that soon.

When the player destroys all the rocks, they’ll advance to the next level:

func new_level():
    level += 1
    $HUD.show_message("Wave %s" % level)
    for i in level:
        spawn_rock(3)

You’ll call this function every time the level changes. It announces the level number and spawns a
number of rocks to match. Note that since you initialized level to 0, this will set it to 1 for the
first level. You should also remove the code that’s spawning rocks in _ready() – you don’t need
that anymore.

To detect when the level has ended, you need to check how many rocks are left:

func _process(delta):
    if not playing:
        return
    if get_tree().get_nodes_in_group("rocks").size() == 0:
        new_level()

Next, you need to connect the HUD’s start_game signal to the new_game() function of Main.

Space Rocks: Build a 2D Arcade Classic with Physics76

Select the HUD instance in Main and find its start_game signal in the Node tab. Click Connect,
but in the popup, click the Pick button next to Receiver Method. You’ll see a list of the functions in
Main, and you can select the new_game() function:

Figure 3.21: Connecting a signal to an existing function

Add this function to handle what happens when the game ends:

func game_over():
    playing = false
    $HUD.game_over()

Player code

Add the new signals and a new variable to player.gd:

signal lives_changed
signal dead

var reset_pos = false
var lives = 0: set = set_lives

func set_lives(value):
    lives = value
    lives_changed.emit(lives)
    if lives <= 0:
        change_state(DEAD)
    else:
        change_state(INVULNERABLE)

Creating the UI 77

For the lives variable, you’ve added something called a setter. This means that whenever the value
of lives changes, the set_lives() function will be called. This lets you automatically emit the
signal as well as checking when it reaches 0.

The reset() function is called by Main when a new game starts:

func reset():
    reset_pos = true
    $Sprite2d.show()
    lives = 3
    change_state(ALIVE)

Resetting the player means setting its position back to the center of the screen. As we saw before, that
needs to be done in _integrate_forces() in order to work. Add this to that function:

if reset_pos:
    physics_state.transform.origin = screensize / 2
    reset_pos = false

Back in the Main scene, select the Player instance and find its lives_changed signal in the Node
tab. Click Connect, and under Connect to Script, choose the HUD node and type update_lives
in Receiver Method.

Figure 3.22: Connecting the player signal to HUD

In this section, you made a much more complex UI than in previous projects, including some new
Control nodes such as TextureProgressBar, and used signals to connect everything together.
In the next section, you’ll handle the end of the game: what should happen when the player dies.

Space Rocks: Build a 2D Arcade Classic with Physics78

Ending the game
In this section, you’ll make the player detect when it is hit by rocks, add an invulnerability feature,
and end the game when the player runs out of lives.

Add an instance of the Explosion scene to the Player scene and uncheck its Visibility property.
Also add a Timer node named InvulnerabilityTimer and set Wait Time to 2 and One Shot
to “on.”

You’ll emit the dead signal to notify Main that the game should end. Before that, however, you need
to update the state machine to do a little more with each state:

func change_state(new_state):
    match new_state:
        INIT:
            $CollisionShape2D.set_deferred("disabled",
                true)
            $Sprite2D.modulate.a = 0.5
        ALIVE:
            $CollisionShape2d.set_deferred("disabled",
                false)
            $Sprite2d.modulate.a = 1.0
        INVULNERABLE:
            $CollisionShape2d.set_deferred("disabled",
                true)
            $Sprite2d.modulate.a = 0.5
            $InvulnerabilityTimer.start()
        DEAD:
            $CollisionShape2d.set_deferred("disabled",
                true)
            $Sprite2d.hide()
            linear_velocity = Vector2.ZERO
            dead.emit()
    state = new_state

The modulate.a property of a sprite sets its alpha channel (transparency). Setting it to 0.5 makes
it semi-transparent, while 1.0 is solid.

After entering the INVULNERABLE state, you start the timer. Connect its timeout signal:

func _on_invulnerability_timer_timeout():
    change_state(ALIVE)

Pausing the game 79

Detecting collisions between rigid bodies

When you fly around, the ship bounces off rocks because both are rigid bodies. However, if you want
to make something happen when two rigid bodies collide, you need to enable contact monitoring.
In the Player scene, select the Player node, and in the Inspector, set Contact Monitor to on.
By default, no contacts are reported, so set Max Contacts Reported to 1. Now the player will emit
a signal when it comes into contact with another body. Click on the Node tab and connect the
body_entered signal:

func _on_body_entered(body):
    if body.is_in_group("rocks"):
        body.explode()
        lives -= 1
        explode()

func explode():
    $Explosion.show()
    $Explosion/AnimationPlayer.play("explosion")
    await $Explosion/AnimationPlayer.animation_finished
    $Explosion.hide()

Now go to the Main scene and connect the Player instance’s dead signal to the game_over()
method. Play the game and try running into a rock. Your ship should explode, become invulnerable
for two seconds, and lose one life. Also check that the game ends if you get hit three times.

In this section, you learned about rigid body collisions and used them to handle the ship colliding
with rocks. The full game cycle is now complete: the start screen leads to gameplay, which ends with
a game over display. In the remaining sections of the chapter, you’ll add some additional features to
the game, such as a pause function.

Pausing the game
Many games require some sort of pause mode to allow the player to take a break from the action. In
Godot, pausing is a function of the SceneTree and can be set using its paused property. When
the SceneTree is paused, three things happen:

•	 The physics thread stops running

•	 _process() and _physics_process() are no longer called on any nodes

•	 The _input() and _input_event() methods are also not called for inputs

When pause mode is triggered, every node in the running game reacts accordingly, based on how
you’ve configured it. This behavior is set via the node’s Process/Mode property, which you’ll find near
the bottom of the Inspector list.

Space Rocks: Build a 2D Arcade Classic with Physics80

The pause mode can be set to the following values:

•	 Inherit – The node uses the same mode as its parent

•	 Pausable – The node pauses when the scene tree is paused

•	 When Paused – The node only runs when the tree is paused

•	 Always – The node always runs, ignoring the tree’s paused state

•	 Disabled – The node never runs, ignoring the tree’s paused state

Open the Input Map tab and create a new input action called pause. Assign a key you’d like to use
to toggle pause mode. P is a good choice.

Add the following function to Main.gd:

func _input(event):
    if event.is_action_pressed("pause"):
        if not playing:
            return
        get_tree().paused = not get_tree().paused
        var message = $HUD/VBoxContainer/Message
        if get_tree().paused:
            message.text = "Paused"
            message.show()
        else:
            message.text = ""
            message.hide()

This code detects pressing the key and toggles the tree’s paused state to the opposite of its current
state. It also displays Paused on the screen so that it doesn’t just appear that the game has frozen.

If you were to run the game now, you’d have a problem – all nodes are paused, including Main. That
means it’s not processing _input() anymore, so it can’t detect the input again to unpause the game!
To fix this, set Process/Mode of the Main node to Always.

The pause function is a very useful one to know about. You can use this technique in any game you
make, so review it to make sure you understand how it works. You can even try going back and adding
it to Coin Dash. Our next section adds to the action by adding enemies to the game.

Enemies
Space is filled with more dangers than just rocks. In this section, you’ll create an enemy spaceship that
will periodically appear and shoot at the player.

Enemies 81

Following a path

When the enemy appears, it should follow a path across the screen. It’ll also look better if it’s not just
a straight line. To keep it from looking too repetitive, you can create multiple paths and randomly
choose one when the enemy appears.

Create a new scene and add a Node. Name it EnemyPaths and save it. To draw the path, add a
Path2D node. As you saw earlier, this node allows you to draw a series of connected points. Selecting
this node displays a new menu bar:

Figure 3.23: Path drawing options

These buttons let you draw and modify the path’s points. Click the one with the green + symbol to
add points. Click to start the path somewhere just outside the game window, and then click a few
more points to make a curve. Note that the arrows indicate the direction of the path. Don’t worry
about making it smooth yet:

Figure 3.24: An example path

When the enemy follows the path, it will not look very smooth when it hits the sharp corners. To
smooth the curve, click the second button in the path toolbar (its tooltip says Select Control Points).
Now, if you click and drag any of the curve’s points, you will add a control point that allows you to
curve the line at that point. Smoothing the line above results in something like this:

Space Rocks: Build a 2D Arcade Classic with Physics82

Figure 3.25: Using control points

Add two or three more Path2D nodes to the scene and draw the paths however you like. Adding
loops and curves rather than straight lines will make the enemy look more dynamic (and make it
harder to hit). Remember that the first point you click will be the start of the path, so make sure to
start them on different sides of the screen for variety. Here are three example paths:

Figure 3.26: Adding multiple paths

Enemies 83

Save the scene. You’ll add this to the enemy’s scene to give it the paths it can follow.

Enemy scene

Create a new scene for the enemy, using an Area2D as its root node. Add a Sprite2D child and
use res://assets/enemy_saucer.png as its Texture property. Set Animation/HFrames to
3 so that you can choose between the different colored saucers:

1.	 As you’ve done before, add a CollisionShape2D and give it a CircleShape2D scaled to
cover the image. Add an instance of the EnemyPaths scene and an AnimationPlayer. In
the AnimationPlayer, you’ll add an animation to create a flash effect when the saucer is hit.

2.	 Add an animation named flash. Set Length to 0.25 and Snap to 0.01. The property you’ll
be animating is the Sprite2D’s Modulate property (found under Visibility). Add a keyframe
for Modulate to create the track, then move the scrubber to 0.04 and change the Modulate
color to red. Move forward another 0.04 and change the color back to white.

3.	 Repeat this process two more times so that you have three flashes in total.

4.	 Add an instance of the Explosion scene and hide it. Add a Timer node named GunCooldown
to control how often the enemy will shoot. Set Wait Time to 1.5 and Autostart to on.

5.	 Add a script to the enemy and connect the timer’s timeout. Don’t add anything to the
function yet.

6.	 In the Node tab of Area2D, add it to a group called enemies. As with the rocks, this will give
you a way to identify the object, even if there are multiple enemies on the screen at the same time.

Moving the enemy

To begin, you’ll write the code to select a path and move the enemy along it:

extends Area2D

@export var bullet_scene : PackedScene
@export var speed = 150
@export var rotation_speed = 120
@export var health = 3

var follow = PathFollow2D.new()
var target = null

func _ready():
    $Sprite2D.frame = randi() % 3
    var path = $EnemyPaths.get_children()[randi() %
        $EnemyPaths.get_child_count()]

Space Rocks: Build a 2D Arcade Classic with Physics84

    path.add_child(follow)
    follow.loop = false

Recall that the PathFollow2D node automatically moves along a parent Path2D. By default, it
loops around the path when it reaches the end, so you need to set that to false to disable it.

The next step is to move along the path and remove the enemy when it reaches the end of the path:

func _physics_process(delta):
    rotation += deg_to_rad(rotation_speed) * delta
    follow.progress += speed * delta
    position = follow.global_position
    if follow.progress_ratio >= 1:
        queue_free()

You can detect the end of the path when progress is greater than the total path length. However,
it’s more straightforward to use progress_ratio, which varies from zero to one over the length
of the path, so you don’t need to know how long each path is.

Spawning enemies

In the Main scene, add a new Timer node called EnemyTimer. Set its One Shot property to on.
Then, in main.gd, add a variable to reference the enemy scene:

@export var enemy_scene : PackedScene

Add this line to new_level():

$EnemyTimer.start(randf_range(5, 10))

Connect the EnemyTimer’s timeout signal:

func _on_enemy_timer_timeout():
    var e = enemy_scene.instantiate()
    add_child(e)
    e.target = $Player
    $EnemyTimer.start(randf_range(20, 40))

This code instances the enemy whenever EnemyTimer times out. You don’t want another enemy
for a while, so the timer is restarted with a longer delay.

Play the game, and you should see a saucer appear and fly along its path.

Shooting and collisions

The enemy needs to shoot at the player as well as react when hit by the player or the player’s bullets.

Enemies 85

The enemy’s bullet will be similar to the player’s, but we’ll use a different texture. You can create it
again from scratch or use the following process to reuse the node setup.

Open the Bullet scene and choose Scene | Save Scene As to save it as enemy_bullet.tscn
(afterward, don’t forget to rename the root node as well). Remove the script by clicking the Detach the
script button. Disconnect the signal connections by clicking the Node tab and choosing Disconnect.
You can see which nodes have their signals connected by looking for the icon next to the node name.

Replace the sprite’s texture with the laser_green.png image, and add a new script to the root node.

The script for the enemy bullet will be very similar to the regular bullet. Connect the area’s body_
entered signal and the screen_exited signal of VisibleOnScreenNotifier2D:

extends Area2D

@export var speed = 1000

func start(_pos, _dir):
    position = _pos
    rotation = _dir.angle()

func _process(delta):
    position += transform.x * speed * delta

func _on_body_entered(body):
    queue_free()

func _on_visible_on_screen_notifier_2d_screen_exited():
    queue_free()

Note that you’ll need to specify a position and direction for the bullet. That’s because, unlike the player,
who always shoots forward, the enemy will always shoot toward the player.

For now, the bullet won’t do any damage to the player. You’ll be adding a shield to the player in the
next section, so you can add it at that time.

Save the scene and drag it into the Bullet property of the Enemy.

In enemy.gd, add a variable for some random variation to the bullet, and the shoot() function:

@export var bullet_spread = 0.2

func shoot():
    var dir =
       global_position.direction_to(target.global_position)
    dir = dir.rotated(randf_range(-bullet_spread,

Space Rocks: Build a 2D Arcade Classic with Physics86

       bullet_spread))
    var b = bullet_scene.instantiate()
    get_tree().root.add_child(b)
    b.start(global_position, dir)

First, you find the vector pointing to the player’s position, then add a little bit of randomness so that
it can “miss.”

Call the shoot() function whenever GunCooldown times out:

func _on_gun_cooldown_timeout():
    shoot()

For an extra challenge, you can make the enemy shoot in pulses or multiple rapid shots:

func shoot_pulse(n, delay):
    for i in n:
        shoot()
        await get_tree().create_timer(delay).timeout

This will shoot a given number of bullets, n, with delay seconds between them. You can call this
instead when the cooldown triggers:

func _on_gun_cooldown_timeout():
    shoot_pulse(3, 0.15)

This will shoot a pulse of 3 bullets with 0.15 seconds between them. Tough to dodge!

Next, the enemy needs to take damage when it’s hit by a shot from the player. It will flash using the
animation you made and then explode when its health reaches 0.

Add these functions to enemy.gd:

func take_damage(amount):
    health -= amount
    $AnimationPlayer.play("flash")
    if health <= 0:
        explode()

func explode():
    speed = 0
    $GunCooldown.stop()
    $CollisionShape2D.set_deferred("disabled", true)
    $Sprite2D.hide()
    $Explosion.show()
    $Explosion/AnimationPlayer.play("explosion")

Player shield 87

    await $Explosion/AnimationPlayer.animation_finished
    queue_free()

Also, connect the enemy’s body_entered signal so that the enemy will explode if the player runs
into it:

func _on_body_entered(body):
    if body.is_in_group("rocks"):
        return
    explode()

Again, you’re waiting for the player shield to be implemented before doing damage to the player, so
for now, this collision only destroys the enemy.

Currently, the player’s bullet is only detecting rocks because its body_entered signal isn’t triggered
by the enemy, which is an Area2D. To detect the enemy, go to the Bullet scene and connect the
area_entered signal:

func _on_area_entered(area):
    if area.is_in_group("enemies"):
        area.take_damage(1)

Try playing the game again and you’ll be doing battle with an aggressive alien opponent! Verify that
all the collision combinations are being handled (except for the enemy shooting the player). Also
note that the enemy’s bullets can be blocked by rocks – maybe you can hide behind them for cover!

Now that the game has enemies, it’s a lot more challenging. If you still find it too easy, try increasing
the enemy’s properties: how often it appears, how much damage it does, and how many shots it takes
to destroy it. It’s OK if you make it too hard because, in the next section, you’ll give the player a little
help by adding a shield to absorb damage.

Player shield
In this section, you’ll add a shield to the player and a display element to the HUD showing the current
shield level.

First, add the following to the top of the player.gd script:

signal shield_changed

@export var max_shield = 100.0
@export var shield_regen = 5.0

var shield = 0: set = set_shield

Space Rocks: Build a 2D Arcade Classic with Physics88

func set_shield(value):
    value = min(value, max_shield)
    shield = value
    shield_changed.emit(shield / max_shield)
    if shield <= 0:
        lives -= 1
        explode()

The shield variable works similarly to lives, emitting a signal whenever it changes. Since the
value will be added to by the shield’s regeneration, you need to make sure it doesn’t go above the
max_shield value. Then, when you emit the shield_changed signal, you pass the ratio of
shield / max_shield rather than the actual value. This way, the HUD’s display doesn’t need to
know anything about how big the shield actually is, just its percentage.

You should also remove the explode() line from _on_body_entered(), since you now don’t
want just hitting a rock to blow up the ship – that will now only happen when the shield runs out.

Hitting a rock will damage the shield, and bigger rocks should do more damage:

func _on_body_entered(body):
    if body.is_in_group("rocks"):
        shield -= body.size * 25
        body.explode()

The enemy’s bullets should also do damage, so make this change to enemy_bullet.gd:

@export var damage = 15

func _on_body_entered(body):
    if body.name == "Player":
        body.shield -= damage
    queue_free()

Also, running into the enemy should damage the player, so update this in enemy.gd:

func _on_body_entered(body):
    if body.is_in_group("rocks"):
        return
    explode()
    body.shield -= 50

If the player’s shield runs out and they lose a life, you should reset the shield to its maximum. Add
this line to set_lives():

shield = max_shield

Player shield 89

The last addition to the player script is to regenerate the shield each frame. Add this line to _process()
in player.gd:

shield += shield_regen * delta

Now that the code is complete, you need to add a new display element to the HUD scene. Rather than
display the shield’s value as a number, you’ll make a progress bar. TextureProgressBar is a
Control node that displays a given value as a filled bar. It also allows you to assign a texture to be
used for the bar.

Go to the HUD scene and add two new nodes as children of the existing HBoxContainer:
TextureRect and TextureProgressBar. Rename TextureProgressBar to ShieldBar.
Place them after the Score label and before LivesCounter. Your node setup should look like this:

Figure 3.27: Updated HUD node layout

Drag res://assets/shield_gold.png into the Texture property of TextureRect. This
will be an icon indicating that this bar shows the shield value. Change Stretch Mode to Keep Centered
so that the texture won’t be distorted.

The ShieldBar has three Texture properties: Under, Over, and Progress. Progress is the texture
that will be used for the bar’s value. Drag res://assets/bar_green_200.png into this
property. The other two texture properties let you customize the appearance by setting an image to
be drawn above or below the progress texture. Drag res://assets/bar_glass_200.png
into the Over property.

In the Range section, you can set the numerical properties of the bar. Min Value and Max Value
should be set to 0 and 1, as this bar will show the ratio of the shield to its maximum, not its numerical
value. This means Step must also be smaller – set it to 0.01. Value is the property that controls how
much of the bar should be “full.” Change it to .75 to see the bar partly filled. Also, in the Layout/
Container Sizing section, check the Expand box and set Vertical to Shrink Center.

Space Rocks: Build a 2D Arcade Classic with Physics90

The HUD should look like this when you’re done:

Figure 3.28: Updated HUD with shield bar

You can now update the script to set the value of the shield bar, as well as to make it change color as
it gets closer to zero. Add these variables to hud.gd:

@onready var shield_bar =
    $MarginContainer/HBoxContainer/ShieldBar

var bar_textures = {
    "green": preload("res://assets/bar_green_200.png"),
    "yellow": preload("res://assets/bar_yellow_200.png"),
    "red": preload("res://assets/bar_red_200.png")
}

In addition to the green bar, you also have red and yellow bars in the assets folder. This allows you
to change the shield bar’s color as the value decreases. Loading the textures in this way makes them
easier to access later in the script when you want to assign the appropriate image to the bar:

func update_shield(value):
    shield_bar.texture_progress = bar_textures["green"]
    if value < 0.4:
        shield_bar.texture_progress = bar_textures["red"]
    elif value < 0.7:
        shield_bar.texture_progress = bar_textures["yellow"]
    shield_bar.value = value

Finally, click on the Main scene’s Player node and connect the shield_changed signal to the
HUD’s update_shield() function.

Sound and visual effects 91

Run the game and verify that the shield is working. You may want to increase or decrease the shield
regeneration rate to give it a speed you’re happy with. When you’re ready to move on, in the next
section, you’ll add some sound to the game.

Sound and visual effects
The structure and gameplay of the game is complete. In this section, you’ll add some additional effects
to the game to improve the game experience.

Sound and music

In the res://assets/sounds folder are several audio effects for the game. To play a sound, it
needs to be loaded by an AudioStreamPlayer node. Add two of these nodes to the Player
scene, naming them LaserSound and EngineSound. Drag the respective sound files into each
node’s Stream property in the Inspector. To play the sound when shooting, add this line to shoot()
in player.gd:

$LaserSound.play()

Play the game and try shooting. If you find the sound too loud, you can adjust the Volume dB property.
Try a value of -10 to start.

The engine sounds works a little differently. It needs to play when the thrust is on, but if you just try
to call play() on the sound in the get_input() function when the player presses the key, it will
restart the sound every frame. This doesn’t sound good, so you only want to start playing the sound
if it isn’t already playing. Here is the relevant section of the get_input() function:

if Input.is_action_pressed("thrust"):
    thrust = transform.x * engine_power
    if not $EngineSound.playing:
        $EngineSound.play()
else:
    $EngineSound.stop()

Note that a problem can occur: if the player dies while holding down the thrust key, the engine sound
will remain stuck playing because, in the DEAD state, you ignore player input. This can be solved by
adding $EngineSound.stop() to the DEAD state in change_state().

In the Main scene, add three more AudioStreamPlayer nodes: ExplosionSound,
LevelupSound, and Music. In their Stream properties, drop explosion.wav, levelup.
ogg, and Funky-Gameplay_Looping.ogg.

Add $ExplosionSound.play() as the first line of _on_rock_exploded(), and add
$LevelupSound.play() to new_level().

Space Rocks: Build a 2D Arcade Classic with Physics92

To start and stop the background music, add $Music.play() to new_game() and $Music.
stop() to game_over().

The enemy also needs ExplosionSound and ShootSound nodes. You can use enemy_laser.
wav for their shooting sound.

Particles

The player ship’s thrust is a perfect use of particle effects, creating a streaming flame from the engine.

Add a CPUParticles2D node and name it Exhaust. You might want to zoom in on the ship
while you’re doing this part.

Particle node types
Godot offers two types of particle nodes: one that uses the CPU and one that uses the GPU
for rendering. Since not all platforms, especially mobile or older desktops, support hardware
acceleration for particles, you can use the CPU version for wider compatibility. If you know
your game will be running on more powerful systems, you can use the GPU version.

You’ll see a line of white dots streaming down from the center of the ship. Your challenge now is to
turn those dots into an exhaust flame.

There are a very large number of properties to choose from when configuring particles. As you go
through the process of setting up this effect, feel free to experiment with them to see how they affect
the result.

Set these properties of the Exhaust node:

•	 Amount: 25

•	 Drawing/Local Coords: On

•	 Transform/Position: (-28, 0)

•	 Transform/Rotation: 180

•	 Visibility/Show Behind Parent: On

The remaining properties you’ll change will affect the behavior of the particles. Start with Emission
Shape: change it to Rectangle. This will reveal Rect Extents, which you can set to (1, 5). The
particles are now emitted over a small area instead of a single point.

Next, set Direction/Spread to 0 and Gravity to (0, 0). Note that the particles are not falling or
spreading out, although they are moving very slowly.

Set Initial Velocity/Velocity Max to 400, then scroll down to Scale/Scale Amount Max and set it to 8.

Sound and visual effects 93

To make the size change over time, you can set Scale Amount Curve. Select New Curve and then
click to open it. In the small graph that shows, right-click to add two points – one on the left and one
on the right. Drag the right-hand dot down until the curve looks like this:

Figure 3.29: Adding a particle scale curve

You should now see the particles shrinking as they stream out from the back of the ship.

The last section to adjust is Color. To make the particles appear like a flame, they should start out
bright orange-yellow and shift to red as they fade out. In the Color Ramp property, click on New
Gradient, and you’ll see a gradient editor that looks like this:

Figure 3.30: Color Ramp settings

The two rectangular sliders labeled 1 and 2 set the starting and ending colors of the gradient. Clicking
on either of them will show its color in the box labeled 3. Select slider 1 and then click box 3 to open
a color picker. Choose an orange color, and then do the same for slider 2, choosing a dark red.

Now that the particles have the correct appearance, they’re lasting far too long. In the node’s Time
section, set Lifetime to 0.1.

Space Rocks: Build a 2D Arcade Classic with Physics94

Hopefully, your ship’s exhaust looks somewhat like a flame. If it doesn’t, feel free to adjust the properties
until you are happy with how it looks.

Once the flame is looking good, it needs to be turned on and off based on the player’s input. Go to
player.gd and add $Exhaust.emitting = false at the beginning of get_input().
Then, under the if statement that checks for thrust input, add $Exhaust.emitting = true.

Enemy trail

You can also use particles to give the enemy saucer a sparkling trail. Add a CPUParticles2D to
the enemy scene and configure these settings:

•	 Amount: 20

•	 Visibility/Show Behind Parent: On

•	 Emission Shape/Shape: Sphere

•	 Emission Shape/Sphere Radius: 25

•	 Gravity: (0, 0)

You should now have particles appearing all across the radius of the saucer (you can hide the
Sprite2D during this part if you want to see them better). The default shape for particles is a square,
but you can also use a texture for even more visual appeal. Add res://assets/corona.png
to Drawing/Texture.

This image gives a nice glowing effect, but it’s quite large compared to the saucer, so set Scale/Scale
Amount Max to 0.1. You’ll also notice that this image is white on a black background. In order to
look correct, it needs its blend mode changed. To do this, find the Material property and select New
CanvasItemMaterial. There, you can change Blend Mode from Mix to Add.

Finally, you can make the particles fade away by using Scale Amount Curve in the Scale section, just
as you did with the player particles.

Play your game and admire the effects. What else could you add with particles?

Summary
In this chapter, you learned how to work with RigidBody2D nodes and learned more about how
Godot’s physics works. You also implemented a basic finite state machine – something you’ll find useful
as your projects grow larger and that you’ll use again in future chapters. You saw how Container
nodes help organize and keep UI nodes aligned. Finally, you added sound effects and got your first
taste of advanced visual effects by using the Animation and CPUParticles2D nodes.

Summary 95

You also continued to create game objects using standard Godot hierarchies, such as CollisionShapes
attached to CollisionObjects and signals being used to handle communication between nodes.
At this point, these practices should be starting to look familiar to you.

Are you prepared to try and remake this project on your own? Try repeating all, or even part, of this
chapter without looking at the book. It’s a good way to check what information you absorbed and
what you need to review again. You can also try remaking it with your own variations rather than
making an exact copy.

When you’re ready to move on, in the next chapter, you’ll make another style of game that’s very
popular: a platformer in the tradition of Super Mario Bros.

4
Jungle Jump – Running and
Jumping in a 2D Platformer

In this chapter, you’ll build a platformer game in the tradition of classics such as Super Mario Bros.
Platform games are a very popular genre, and understanding how they work can help you make a
variety of different game styles. If you’ve never attempted making one before, the player movement in
platformers can be surprisingly complex to implement, and you’ll see how Godot’s CharacterBody2D
node has features to help you in that process.

In this project, you will learn about the following:

•	 Using the CharacterBody2D node

•	 Using the Camera2D node

•	 Combining animations and user input to produce complex character behavior

•	 Designing levels using TileMap

•	 Creating an infinitely scrolling background using ParallaxLayer

•	 Transitioning between scenes

•	 Organizing your project and planning for expansion

Jungle Jump – Running and Jumping in a 2D Platformer98

Here is a screenshot of the completed game:

Figure 4.1: Completed game screenshot

Technical requirements
As with the previous projects, you’ll start by downloading the art assets for the game, which can
be found here: https://github.com/PacktPublishing/Godot-Engine-Game-
Development-Projects-Second-Edition/tree/main/Downloads

You can also find the complete code for this chapter on GitHub at: https://github.com/
PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/
tree/main/Chapter04%20-%20Jungle%20Jump

Setting up the project
To create a new project, start by opening Project Settings so that you can configure the defaults that
you’ll need.

The art assets for this game use a pixel art style, which means they look best when the images are not
smoothed, which is Godot’s default setting for texture filtering:

Figure 4.2: Texture filtering

https://github.com/PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter04%20-%20Jungle%20Jump
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter04%20-%20Jungle%20Jump
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter04%20-%20Jungle%20Jump

Setting up the project 99

While it’s possible to set this on each Sprite2D, it’s more convenient to specify the default setting.
Click the Advanced toggle in the top right and find the Rendering/Textures section on the left. In
the settings list, scroll to the bottom and find the Canvas Textures/Default Texture Filter setting.
Change it from Linear to Nearest.

Then, under Display/Window, change Stretch/Mode to canvas items and Aspect to expand. These
settings will allow the user to resize the game window while preserving the image’s quality. Once the
project is complete, you’ll be able to see the effects of this setting.

Next, you can set up the collision layers. Because this game will have several different types of collision
objects that need to interact in different ways, you’ll use Godot’s collision layer system to help organize
them. The layers will be more convenient to use if they’re assigned names, so go to the Layer Names
| 2D Physics section and name the first four layers like this (by typing directly in the box next to the
layer number):

Figure 4.3: Setting physics layer names

Finally, add the following actions for the player controls to the Input Map area:

Action name Key(s)

right D, →

left A, ←

jump Space

up S, ↑

down W, ↓

Jungle Jump – Running and Jumping in a 2D Platformer100

Make sure you use the exact names for the input actions since you’ll be referencing them in code later.

That’s all you need to set in Project Settings. But before you start making the player scene, you need
to learn about a different type of physics node.

Introducing kinematic bodies
A platformer requires gravity, collisions, jumping, and other physics behavior, so you might think that
RigidBody2D would be the perfect choice to implement the character’s movement. In practice, you’ll
find that the more realistic physics of the rigid body are not desirable for a platform character. To the
player, realism is less important than responsive control and an action feel. So, as the developer, you
want to have precise control over the character’s movements and collision response. For this reason,
a kinematic style of physics is usually the better choice for a platform character.

The CharacterBody2D node is designed for implementing physics bodies that are to be controlled
directly via code. These nodes detect collisions with other bodies when they move but are not affected
by global physics properties such as gravity or friction. This doesn’t mean that they can’t be affected
by gravity and other forces – just that you must calculate those forces and their effects in code; the
physics engine will not move a CharacterBody2D node automatically.

When moving a CharacterBody2D node as with RigidBody2D, you should not set its position
property directly. Instead, you must use the move_and_collide() or move_and_slide()
methods provided by the body. These methods move the body along a given vector and instantly stop
it if a collision is detected with another body. It’s then up to you to decide on any collision response.

Collision response

After a collision, you may want the body to bounce, slide along a wall, or alter the properties of the object
it hit. The way you handle collision response depends on which method you use to move the body:

move_and_collide()

When using this method, the function returns a KinematicCollision2D object upon collision.
This object contains information about the collision and the colliding body. You can use this information
to determine the response. Note that the function returns null when movement is completed
successfully with no collision.

For example, if you want the body to bounce off the colliding object, you could use the following script:

extends CharacterBody2D
velocity = Vector2(250, 250)
func _physics_process(delta):
    var collision = move_and_collide(velocity * delta)
    if collision:
        velocity = velocity.bounce(collision.get_normal())

Creating the player scene 101

move_and_slide()

Sliding is a very common option for collision response. Imagine a player moving along a wall in a
top-down game, or running along the ground in a platformer. While it’s possible to code the response
yourself after using move_and_collide(), move_and_slide() provides a convenient way
to implement sliding movement. When using this method, the body will automatically slide along
the surface of a colliding object. In addition, sliding collisions will allow you to detect the orientation
of the surface using methods such as is_on_floor().

Since this project will require you to allow the player character to run along the ground and up/down
slopes, move_and_slide() is going to play a large role in your player’s movement.

Now that you have an understanding of what kinematic bodies are, you’ll use one to make the character
for this game.

Creating the player scene
The Godot node that implements kinematic movement and collision is called CharacterBody 2D.

Open a new scene and add a CharacterBody2D node named Player as the root and save the
scene. Don’t forget to click the Group Selected Node(s) button. When saving the Player scene,
you should also create a new folder to contain it. This will help keep your project folder organized as
you add more scenes and scripts.

Look at the properties of CharacterBody2D in the Inspector. Notice the default values of Motion
Mode and Up Direction. “Grounded” mode means the body will consider one collision direction as
the “floor,” the opposite wall as the “ceiling,” and any others as “walls” – which one is determined by
Up Direction.

As you’ve done in previous projects, you’ll include all the nodes the player character needs to function
in the Player scene. For this game, that means handling collisions with various game objects, including
platforms, enemies, and collectibles; displaying animations for actions, such as running or jumping;
and attaching a camera to follow the player around the level.

Scripting the various animations can quickly become unmanageable, so you’ll need to use a finite-
state machine (FSM) to manage and track the player’s state. See Chapter 3 to review how a simplified
FSM can be built. You’ll follow a similar pattern for this project.

Collision layers and masks

A body’s Collision/Layer property sets what layer(s) in the physics world the body is found on.
Player needs to be assigned to the “player” layer (which you named in Project Settings). Similarly,
Collision/Mask sets which layers the body can “see” or interact with. If an object is on a layer that is
not in the player’s Mask, then the player won’t interact with it at all.

Jungle Jump – Running and Jumping in a 2D Platformer102

Set the player’s Layer to player and Mask to environment, enemies, and items. Click the three dots
to the right to open a list of checkboxes showing the names you’ve assigned to the layers:

Figure 4.4: Setting collision layers

This will ensure that the player is on the “player” layer so that other objects can be configured to detect
the player or not. Setting the Mask value to all three layers means the player will be able to interact
with objects on any of those layers.

About AnimationPlayer

Earlier in this book, you used AnimatedSprite2D to display the frame-based animations of your
characters. This is a great tool, but it’s only useful for animating the visual texture of a node. What if
you want to also animate any of a node’s other properties?

This is where AnimationPlayer comes in. This node is a very powerful tool for creating animations
that can affect multiple nodes at once; you can modify any of their properties.

Animations

To set up the character’s animations, follow these steps:

1.	 Add a Sprite2D node to Player. Drag the res://assets/player_sheet.png file
from the FileSystem dock and drop it into the Texture property. The player animation will be
saved in the form of a sprite sheet:

Figure 4.5: Sprite sheet

Creating the player scene 103

2.	 You’ll use AnimationPlayer to handle the animations, so, in the Animation properties
of Sprite2D, set HFrames to 19. Then, set Frame to 7 to see the player standing. Finally,
move Sprite2D upward until its feet are standing on the ground by setting Position to (0,
-16). This will make it easier to code the player’s interactions later because you will know that
the player’s position property represents the location of its feet.

3.	 Add an AnimationPlayer node to the scene. You’ll use this node to change the Frame
property of Sprite2D to the appropriate values for each animation.

4.	 Before you start, review the different parts of the Animation panel:

Figure 4.6: The Animation panel

5.	 Click the Animation button and select New. Name the new animation idle.

6.	 Set its Length to 0.4 seconds. Click the Loop icon to make the animation loop, and set the
track’s Update Mode to Continuous.

Change the Frame property of Sprite2D to 7, which is the first frame of the idle animation,
and click the keyframe icon next to the property to add an animation track with a new keyframe:

Figure 4.7: Adding a keyframe

7.	 Slide the play scrubber to 0.3 (you can adjust the zoom slider in the bottom right to make it
easier to find). Add a keyframe for frame 10, which is the last frame of idle.

8.	 Press the Play button to see the animation play. If it doesn’t look correct, go back to the previous
paragraph and make sure you’ve followed the steps exactly, especially the fact that you start on
frame 7 and ended on frame 10.

Jungle Jump – Running and Jumping in a 2D Platformer104

Now, repeat this process for the other animations. See the following table for a list of their settings:

Name Length Frames Looping

idle 0.4 7 → 10 On

run 0.5 13 → 18 On

hurt 0.2 5 → 6 On

jump_up 0.1 11 Off

jump_down 0.1 12 Off

There are also animations in the sprite sheet for crouching and climbing, but you can add those later,
once the basic movement is completed.

Collision shape

As with other bodies, CharacterBody2D needs a shape assigned to define its collision bounds.
Add a CollisionShape2D node and create a new RectangleShape2D inside it. When sizing
the shape, you want it to reach the bottom of the image (the player’s feet) but be a little bit narrower
than the player’s image. In general, making the shape a bit smaller than the image will result in a better
feel when playing, avoiding the experience of hitting something that looks like it wouldn’t result in
a collision.

You’ll also need to offset the shape a small amount to make it fit. Setting the CollisionShape2D
node’s Position to (0, -10) works well. When you’re done, it should look approximately like this:

Figure 4.8: Player collision shape

Multiple shapes
In some cases, depending on the complexity of your character and its interactions with other
objects, you may want to add multiple shapes to the same object. You might have one shape
at the player’s feet to detect ground collisions, another on its body to detect damage, and yet
another covering the player’s front to detect contact with walls.

Creating the player scene 105

Finishing the player scene

Add a Camera2D node to the Player scene. This node will keep the game window centered on
the player as it moves around the level. You can also use it to zoom in on the player since pixel art is
relatively small compared to the game window’s size. Remember, since you set the filtering option in
Project Settings, the player’s texture will remain pixelated and blocky when zoomed in.

To enable the camera, set the Enabled property to On, then set Zoom to (2.5, 2.5). Values
smaller than 1 zoom the camera out, while larger values zoom it in.

You’ll see a pinkish-purple rectangle surrounding the player. That’s the camera’s screen rectangle and
it shows what the camera will see. You can adjust the Zoom property to increase or decrease its size
to see more or less of the world around the player.

Player states

The player character has a wide variety of behaviors, such as jumping, running, and crouching. Coding
such behaviors can become very complex and hard to manage. One solution is to use Boolean variables
(is_jumping or is_running, for example), but this leads to possibly confusing states (what if
is_crouching and is_jumping are both true?) and quickly leads to _spaghetti_ code.

A better solution to this problem is to use a state machine to handle the player’s current state and
control the transition to other states. This concept was introduced in Chapter 3, and you’ll expand
on it in this project.

Here is a diagram of the player’s states and the transitions between them:

Figure 4.9: Player state diagram

Jungle Jump – Running and Jumping in a 2D Platformer106

As you can see, state diagrams can become quite complex, even with a relatively small number of states.

Other states
Note that while the sprite sheet contains animations for them, the CROUCH and CLIMB states
are not included here. This is to keep the number of states manageable at the beginning of the
project. Later, you’ll have the opportunity to add them.

Player script

Attach a new script to the Player node. Note that the dialog shows a Template property with
Godot’s default Basic Movement for this node type. Uncheck the Template box – you won’t need
that example code for this project.

Add the following code to start setting up the player’s state machine. As in the Space Rocks game,
you can use an enum type to define the allowed states for the system. When you want to change the
player’s state, you can call change_state():

extends CharacterBody2D

@export var gravity = 750
@export var run_speed = 150
@export var jump_speed = -300

enum {IDLE, RUN, JUMP, HURT, DEAD}
var state = IDLE

func _ready():
    change_state(IDLE)

func change_state(new_state):
    state = new_state
    match state:
        IDLE:
            $AnimationPlayer.play("idle")
        RUN:
            $AnimationPlayer.play("run")
        HURT:
            $AnimationPlayer.play("hurt")
        JUMP:
            $AnimationPlayer.play("jump_up")
        DEAD:
            hide()

Creating the player scene 107

For now, the script only changes which animation is playing, but you’ll add more state functionality later.

Player movement

The player needs three controls: left, right, and jump. Comparing the current state to which keys are
pressed will trigger a state change if the transition is allowed by the state diagram’s rules. Add the
get_input() function to process the inputs and determine the result. Each if condition represents
one of the transitions in the state diagram:

func get_input():
    var right = Input.is_action_pressed("right")
    var left = Input.is_action_pressed("left")
    var jump = Input.is_action_just_pressed("jump")

    # movement occurs in all states
    velocity.x = 0
    if right:
        velocity.x += run_speed
        $Sprite2D.flip_h = false
    if left:
        velocity.x -= run_speed
        $Sprite2D.flip_h = true
    # only allow jumping when on the ground
    if jump and is_on_floor():
        change_state(JUMP)
        velocity.y = jump_speed
    # IDLE transitions to RUN when moving
    if state == IDLE and velocity.x != 0:
        change_state(RUN)
    # RUN transitions to IDLE when standing still
    if state == RUN and velocity.x == 0:
        change_state(IDLE)
    # transition to JUMP when in the air
    if state in [IDLE, RUN] and !is_on_floor():
        change_state(JUMP)

Note that the jump check is using is_action_just_pressed() rather than is_action_
pressed(). While the latter returns true so long as the key is held down, the former is only true
in the frame after the key was pressed. This means that the player must press the jump key each time
they want to jump.

Jungle Jump – Running and Jumping in a 2D Platformer108

Call this function from _physics_process(), add the pull of gravity to the player’s velocity,
and call the move_and_slide() method to move:

func _physics_process(delta):
    velocity.y += gravity * delta
    get_input()

    move_and_slide()

Remember, since the Up Direction property is set to (0, -1), any collision below the player’s feet
will be considered the “floor,” and is_on_floor() will be set to true by move_and_slide().
You can use this fact to detect when the jump ends by adding this right after move_and_slide():

if state == JUMP and is_on_floor():
    change_state(IDLE)

The jump will look better if the animation switches from jump_up to jump_down when falling:

if state == JUMP and velocity.y > 0:
    $AnimationPlayer.play("jump_down")

Later, once the level is complete, the player will be passed a spawn location. To handle this, add this
function to the script:

func reset(_position):
    position = _position
    show()
    change_state(IDLE)

With that, you have finished adding movement, and the correct animation should play for each situation.
This would be a good point to stop and test the player to make sure everything is working. You can’t
just run the scene, though, because the player will just start falling without any surface to stand on.

Testing the movement

Create a new scene and add a Node object called Main (later, this will become your main scene).
Add an instance of Player, then add a StaticBody2D node with a rectangular collision shape.
Stretch the collision shape horizontally so that it’s wide enough to walk back and forth on, and place
it below the character:

Figure 4.10: Test scene with a platform

Creating the player scene 109

Since it doesn’t have a Sprite2D node, the static body will be invisible if you run the game. In
the menu, choose Debug > Visible Collision Shapes. This is a useful debug setting that will draw
the collision shapes while the game is running. You can turn it on whenever you need to test or
troubleshoot collisions.

Press Play Scene; you should see the player stop falling and run the idle animation when it hits
the static body.

Before moving on, make sure that all the movements and animations are working correctly. Run and
jump in all directions and check that the correct animations are playing whenever the state changes.
If you find any problems, review the previous sections and make sure you didn’t miss a step.

Player health

Eventually, the player is going to encounter danger, so you should add a damage system. The player
will start with three hearts and lose one each time they are damaged.

Add the following to the top of the script (just after the extends line):

signal life_changed
signal died

var life = 3: set = set_life

func set_life(value):
    life = value
    life_changed.emit(life)
    if life <= 0:
        change_state(DEAD)

You’ll emit the life_changed signal whenever the value of life changes, notifying the display
to update. dead will be emitted when life reaches 0.

Add life = 3 to the reset() function.

There are two possible ways for the player to be hurt: running into a spike object in the environment
or being hit by an enemy. In either event, the following function can be called:

func hurt():
    if state != HURT:
        change_state(HURT)

This code is being nice to the player: if they’re already hurt, they can’t get hurt again (at least for a brief
time until the hurt animation has stopped playing). Without this, it’s easy to get stuck in a loop of
getting hurt, resulting in a quick death.

Jungle Jump – Running and Jumping in a 2D Platformer110

There are a few things to do when the state changes to HURT in the change_state() function
you created earlier:

HURT:
    $AnimationPlayer.play("hurt")
    velocity.y = -200
    velocity.x = -100 * sign(velocity.x)
    life -= 1
    await get_tree().create_timer(0.5).timeout
    change_state(IDLE)
DEAD:
    died.emit()
    hide()

When they’re hurt, not only do they lose one life, but they are also bounced up and away from the
damaging object. After a short time, the state changes back to IDLE.

Also, the input should be disabled during the HURT state. Add this to the beginning of get_input():

if state == HURT:
    return

Now, the player is ready to take damage once the rest of the game has been set up. Next, you will create
the objects that the player will collect in the game.

Collectible items
Before you start making the level, you need to create some items that the player can collect, since
those will be part of the level as well. The assets/sprites folder contains sprite sheets for two
types of collectibles: cherries and gems.

Rather than make a separate scene for each type of item, you can use a single scene and swap out
the texture property in the script. Both objects have the same behavior: animating in place and
disappearing when collected by the player. You can also add a tween effect for the collection (see
Chapter 2).

Scene setup

Start the new scene with Area2D and name it Item. Save the scene in a new items folder.

An area is a good choice for these objects because you want to detect when the player contacts
them, but you don’t need a collision response from them. In the Inspector, set Collision/Layer to
collectibles (layer 4) and Collision/Mask to player (layer 2). This will ensure that only the
Player node will be able to collect them, while the enemies will pass right through.

Collectible items 111

Add three child nodes: Sprite2D, CollisionShape2D, and AnimationPlayer. Drag
res://assets/sprites/cherry.png into the Sprite2D node’s Texture. Set HFrames to
5. Then, add a circle shape to CollisionShape2D and size it appropriately:

Figure 4.11: Item with collision

Choosing a collision size
As a general rule, you should size your collision shapes so that they benefit the player. This
means that enemy hitboxes should be a little smaller than the image, while the hitboxes of
beneficial items should be slightly oversized. This reduces player frustration and results in a
better gameplay experience.

Add a new animation to AnimationPlayer (you only need one, so you can name it anything you
like). Set Length to 1.6 seconds, Snap to 0.2 seconds, and Looping to on. Click the Autoplay on
Load button so that the animation will start automatically.

Set the Sprite2D node’s Frame property to 0 and click the key button to create the track. This sprite
sheet only contains half the animation, so the animation needs to play the frames in the following order:

0 -> 1 -> 2 -> 3 -> 4 -> 3 -> 2 -> 1

Drag the scrubber to time 0.8 and key Frame at 4. Then, key Frame 1 at time 1.4. Set Update
Mode to Continuous and press the Play button. You will have a nicely animated cherry! Note that
you can also drag the res://assets/sprites/coin.png image into Texture and it will work
just the same since it has the same number of frames. This will make it easy to spawn both cherries
and gems in your game.

Collectible script

The Item script needs to do two things:

•	 Set the start conditions (which texture and position)

•	 Detect when the player overlaps

Jungle Jump – Running and Jumping in a 2D Platformer112

For the first part, add the following code to your new item script:

extends Area2D

signal picked_up

var textures = {
    "cherry": "res://assets/sprites/cherry.png",
    "gem": "res://assets/sprites/gem.png"
}

func init(type, _position):
    $Sprite2D.texture = load(textures[type])
    position = _position

You’ll emit the picked_up signal when the player collects the item. In the textures dictionary,
you will find a list of the item types and their corresponding image files. Note that you can quickly paste
those paths into the script by dragging the file from FileSystem and dropping it into the script editor.

Next, the init() function sets texture and position. Your level script will use this to spawn
all the items that you’ve placed in your level map.

Finally, connect the body_entered signal of Item and add this code:

func _on_item_body_entered(body):
    picked_up.emit()
    queue_free()

This signal will allow the game’s main script to react to the item being picked up. It can add to the
score, increase the player’s health, or any other effect you want the item to apply.

You might have noticed that these collectible items are set up very much like the coins from Coin Dash
were. Areas are very useful for any type of item where you need to know when it’s been touched. In
the next section, you’ll start laying out the level scene so that you can place these collectibles.

Designing the level
For most of you, this section will take up the largest chunk of your time. Once you start designing
a level, you’ll find it’s a lot of fun to lay out all the pieces and create challenging jumps, secret paths,
and dangerous encounters.

First, you’ll create a generic Level scene containing all the nodes and code that is common to all
levels. You can then create any number of Level scenes that inherit from this master level.

Designing the level 113

Using TileMaps

Create a new scene and add a Node2D node named LevelBase. Save the scene in a new folder
called levels. This is where you’ll save all the levels you create, and they will all inherit functionality
from this level_base.tscn scene. They’ll all have the same node hierarchy – only the layout
will be different.

A tilemap is a common tool for designing game environments using a grid of tiles. They allow you to
draw a level layout by painting the tiles onto the grid rather than placing many individual nodes one
at a time. They are also more efficient because they batch all the individual tile textures and collision
shapes into a single game object.

Add a TileMap node; a new TileMap panel will appear at the bottom of the editor window. Note
that it says The edited TileMap has no TileSet resource.

About TileSets

To draw a map using TileMap, it must have TileSet assigned. This TileSet contains all the
individual tile textures, along with any collision shapes they may have.

Depending on how many tiles you may have, it can be time-consuming to create TileSet, especially
for the first time. For that reason, some pre-generated tilesets have been included in the assets
folder. Feel free to use those instead, but do read through the following section. It contains useful
information to help you understand how TileSet works. If you’d rather use the provided tilesets,
skip to the Using the provided TileSets section.

Creating a TileSet

In Godot, TileSet is a type of Resource. Examples of other resources include Texture,
Animation, and RectangleShape2D. They are not nodes; instead, they are containers that hold
a certain type of data and are usually saved as .tres files.

These are the steps for creating a TileSet container:

1.	 Click New TileSet in the Tile Set area of TileMap. You’ll see that you now have a TileSet
panel available, which you can select at the bottom of the editor window. You can click the two
upward arrows, , to make the panel fill the editor screen. Click it again to shrink the panel.

2.	 The Tiles tab on the left-hand side of the TileSet panel is where you can place the textures
that you want to slice up into tiles. Drag res://assets/environment/tileset.png
into this box. A popup will appear, asking if you’d like to automatically create tiles. Select Yes.
You’ll see that boxes have been drawn around all the 16x16 pixel tiles in the image:

Jungle Jump – Running and Jumping in a 2D Platformer114

Figure 4.12: Adding a TileSet

3.	 Try selecting the TileMap panel at the bottom and then select the grass block image in the
top left of the tiles. Then, click in the editor window to draw some tiles by left-clicking in the
editor window. You can right-click on a tile to clear it:

Figure 4.13: Drawing with TileMaps

If all you wanted to do was draw a background, you’d be done. However, you also need to add
collisions to these tiles so that the player can stand on them.

Designing the level 115

4.	 Open the TileSet panel again and, in the Inspector, find the PhysicsLayers property and click
Add Element:

Figure 4.14: Adding a physics layer to TileSet

Since these tiles will be in the environment layer, you don’t need to change the
layer/mask settings.

5.	 Click Paint in the TileSet panel and, under Paint Properties, choose Physics Layer 0:

Figure 4.15: Adding collisions to tiles

6.	 Start clicking on the tiles to add the default square collision shape to them. If you want to edit
a tile’s collision shape, you can do so – click the tile again to apply the changes. If you get stuck
with a shape you don’t like, click the three dots and choose Reset to default tile shape.

Jungle Jump – Running and Jumping in a 2D Platformer116

You can also drag the props.png image into the texture list for some decorative items to spice up
your level.

Using the provided TileSets

Pre-configured tilesets have been included in the assets download for this project. There are three
to be added to three different TileMap nodes:

•	 World – tiles_world.tres: Ground and platform tiles

•	 Items – tiles_items.tres: Markers for spawning collectibles

•	 Danger – tiles_spikes.tres: Items that cause damage on collision

Create the Items and Danger tilemaps and add the associated tileset to the Tile Set property.

Add an instance of the Player scene and a Marker2D node named SpawnPoint. You can use
this node to mark where in your level you want the player to start.

Attach a script to the Level node:

extends Node2D

func _ready():
    $Items.hide()
    $Player.reset($SpawnPoint.position)

Later, you’ll be scanning the Items map to spawn collectibles in the designated locations. This map
layer shouldn’t be seen, so you could set it as hidden in the scene. However, this is easy to forget, so
_ready() ensures that it’s not visible during gameplay.

Designing the first level

Now, you’re ready to start drawing the level! Click Scene > New Inherited Scene and choose level_
base.tscn. Name the root node Level01 and save it (in the levels folder). Notice that the
child nodes are colored yellow, indicating that they are inherited from the original level_base.
tscn. If you make changes to that original scene, those changes will also appear in this scene.

Start with the World map and be creative. Do you like lots of jumps, or twisty tunnels to explore?
Long runs or careful upward climbs?

Before going too far with your level design, make sure you experiment with jump distance. You can
change the player’s jump_speed, run_speed, and gravity properties to alter how high and
how far they can jump. Set up some different gap sizes and run the scene to try them out. Don’t forget
to drag the SpawnPoint node to the place you want the player to start.

Designing the level 117

How you set the player’s movement properties will have a big impact on how your level should be laid
out. Make sure you’re happy with your settings before spending too much time on the full design.

Once you have the World map set up, use the Items map to mark the locations where you’d like
to spawn the cherries and gems. The tiles that mark the spawn locations are drawn with a magenta
background to make them stand out. Remember, they’ll be replaced at runtime and the tiles themselves
won’t be seen.

Once you have your level laid out, you can limit the horizontal scrolling of the player camera to match
the size of the map (plus a small buffer on each end). Add this code to level_base.gd:

func _ready():
    $Items.hide()
    $Player.reset($SpawnPoint.position)
    set_camera_limits()

func set_camera_limits():
    var map_size = $World.get_used_rect()
    var cell_size = $World.tile_set.tile_size
    $Player/Camera2D.limit_left = (map_size.position.x - 5)
        * cell_size.x
    $Player/Camera2D.limit_right = (map_size.end.x + 5) *
        cell_size.x

The script also needs to scan the Items map and look for the item markers. Collecting items will
add to the player’s score, so you can add a variable to track that as well:

signal score_changed

var item_scene = load("res://items/item.tscn")

var score = 0: set = set_score

func spawn_items():
    var item_cells = $Items.get_used_cells(0)
    for cell in item_cells:
        var data = $Items.get_cell_tile_data(0, cell)
        var type = data.get_custom_data("type")
        var item = item_scene.instantiate()
        add_child(item)
        item.init(type, $Items.map_to_local(cell))
        item.picked_up.connect(self._on_item_picked_up)

func _on_item_picked_up():
    score += 1

Jungle Jump – Running and Jumping in a 2D Platformer118

func set_score(value):
    score = value
    score_changed.emit(score)

The spawn_items() function uses get_used_cells() to get a list of which cells in TileMap
are not empty. These cells are in _map coordinates_, not pixel coordinates, so later, when you
spawn the item, you can use map_to_local() to convert the values.

The marker tiles have a custom data layer attached to them (similar to the physics layer you added
to the world tiles) that specifies what type they are: gem or cherry. That’s then used to tell the new
instance which type of item it should be.

The score variable is there to keep track of how many items the player has collected. You could have
this trigger completion of the level, give a bonus, and so on.

Add spawn_items() to _ready() and try running the level. You should see gems and cherries
appear wherever you’ve added them. Also, check that they disappear when you collect them.

Adding dangerous objects

The Danger map layer is designed to hold the spike objects that will harm the player when touched.
Any tile on this TileMap will cause damage to the player! Try placing a few of them where you can
easily test running into them.

In the Node tab, add the Danger tilemap to a group called danger so that you can easily identify
it when colliding. This will also allow you to make other harmful objects upon adding them to the
same group.

About slide collisions

When a CharacterBody2D node is moved with move_and_slide(), it may collide with more
than one object in the same frame’s movement. For example, when running into a corner, the body may
hit the wall and the floor at the same time. You can use the get_slide_collision_count()
function to find out how many collisions occurred; then, you can get information about each collision
using get_slide_collision().

In the case of Player, you want to detect when a collision occurs against the Danger tilemap. You
can do this just after using move_and_slide() in player.gd:

if state == HURT:
    return
for i in get_slide_collision_count():
    var collision = get_slide_collision(i)
    if collision.get_collider().is_in_group("danger"):
        hurt()

Designing the level 119

Note that before checking for a collision with the danger group, you can first check if the player
is already in the HURT state. If they are, you can skip checking to see if they are colliding with a
dangerous object.

The for loop iterates through the number of collisions given by get_slide_collision_count()
to check each one for an object in the danger group.

Play your scene and try running into one of the spikes. You should see the player change to the HURT
state (playing the animation) for a brief time before returning to IDLE. After three hits, the player
will enter the DEAD state, which currently only hides the player.

Scrolling background

There are two background images in the res://assets/environment/ folder: back.png
and middle.png, for the far and near background, respectively. By placing these images behind
the tilemap and scrolling them at different speeds relative to the camera, you can create an attractive
illusion of depth in the background:

1.	 Add a ParallaxBackground node to the LevelBase scene (so that it will be present
on all inherited levels). This node works with the camera to create a scrolling effect. Drag this
node to the top of the scene tree so that it will be drawn behind the rest of the nodes. Next,
add a ParallaxLayer node as its child. ParallaxBackground can have any number
of ParallaxLayer children, allowing you to make multiple independently scrolling layers.

2.	 Add a Sprite2D node as a child of ParallaxLayer and drag the back.png image into
its Texture area. Uncheck the Offset/Centered property so that it will be positioned relative to
the screen origin. It’s also a little small, so set the Sprite2D node’s Scale to (1.5, 1.5).

3.	 On ParallaxLayer, set Motion/Scale to (0.2, 1) (you’ll need to click the link icon to
allow the x and y values to be set separately). This setting controls how fast the background
scrolls concerning the camera movement. By setting it to a number less than 1, the image will
only move a small amount as the player moves left and right.

4.	 You need to be sure the image repeats if your level is wider than the size of the image, so set
Motion/Mirroring to (576, 0). This is exactly the width of the image (384 times 1.5), so
the image will be repeated when it has moved by that number of pixels.

5.	 Note that this background image is designed for levels that are wide rather than tall. If you
jump too high, you’ll see the top of the image. You can fix this by setting the top limit of the
camera. If you haven’t moved the background’s position, its top-left corner will still be at (0,
0), so you can set the Top limit on the camera to 0. If you have moved ParallaxLayer
or its Sprite2D node, you can find the correct value to use by looking at the y value of the
node’s Position.

6.	 Try playing the level and running left and right. You should see the background moving by a
small amount compared to how far you run.

Jungle Jump – Running and Jumping in a 2D Platformer120

7.	 Add another ParallaxLayer (also as a child of ParallaxBackground) and give it a
Sprite2D child. This time, use the middle.png image. This image is much narrower than
the sky image, so you’ll need to adjust some settings to make it repeat properly. This is because
ParallaxBackground needs to have images that are at least as big as the viewport area.

8.	 Find the Sprite2D node’s Texture/Repeat property in the CanvasItem section and set it to
Mirror. Then, expand the Region section and check the Enabled box. Under Rect, set the
width and height to (880, 368). 880 is the width of the image (176) multiplied by 5, so
you will now see five repetitions of the image, each one a mirror of the last.

9.	 Move the Sprite2D node so that the image overlaps the bottom half of the ocean/sky image:

Figure 4.16: Parallax background setup

10.	 Set the second ParallaxLayer node’s Motion/Scale to (0.6, 1) and Motion/Mirroring
to (880, 0). Using a higher scale factor means that this layer will scroll a little bit faster than
the cloud layer behind it. Play the scene to test the effect.

Your Level scene’s node tree should now look like this:

Figure 4.17: Level scene nodes

Adding enemies 121

Your level scene now has all the pieces you need to create your level design. Do you want your player
to have to make very precise jumps (a parkour level), run through a series of winding passages trying
to find all the items (a maze level), or some combination of the two? This is your chance to try out
some creative ideas, but make sure you leave some room for the next object you’ll make: enemies.

Adding enemies
There are many different behaviors you could add for an enemy. For this game, the enemy will walk
along a platform in a straight line and change direction when hitting an obstacle.

Scene setup

As before, you’ll need to create a new scene to represent the enemy:

1.	 Start with a CharacterBody2D node named Enemy and give it three children: Sprite2D,
CollisionShape2D, and AnimationPlayer.

2.	 Save the scene in a folder called enemies. If you decide to add more enemy types to the game,
you can save them all here.

3.	 Set the body’s collision Layer to enemies and its Mask to environment, player, and enemies.
As with the player, this determines which types of objects the enemy will collide with.

4.	 It’s also useful to group enemies together, so click the Node tab and add the body to a group
called enemies.

5.	 Add res://assets/sprites/opossum.png to Texture and set Animation/Hframes
to 6.

6.	 Add a rectangular collision shape that covers most (but not all) of the image, making sure that
the bottom of the collision shape is aligned with the bottom of the opossum’s feet:

Figure 4.18: Enemy collision shape

7.	 Add a new animation to AnimationPlayer called walk. Set Length to 0.6 seconds and
turn Looping and Autoplay on Load on.

Jungle Jump – Running and Jumping in a 2D Platformer122

8.	 The walk animation needs to have two tracks: one that sets the Texture property of the
Sprite2D node and one that changes its Frame property. Click the key icon next to Texture
to add the first track, then add keyframes for Frame 0 at time zero, and Frame 5 at time 0.5.
Don’t forget to change Update Mode to Continuous.

When finished, your animation should look like this:

Figure 4.19: Enemy animations

Scripting the enemy

By now, moving a CharacterBody2D node be familiar to you. Look at this script and try to
understand what it’s doing before reading the explanation provided after:

extends CharacterBody2D

@export var speed = 50
@export var gravity = 900

var facing = 1

func _physics_process(delta):
    velocity.y += gravity * delta
    velocity.x = facing * speed
    $Sprite2D.flip_h = velocity.x > 0

    move_and_slide()
    for i in get_slide_collision_count():
        var collision = get_slide_collision(i)
        if collision.get_collider().name == "Player":
            collision.get_collider().hurt()
        if collision.get_normal().x != 0:
            facing = sign(collision.get_normal().x)
            velocity.y = -100

    if position.y > 10000:
        queue_free()

Adding enemies 123

In this script, the facing variable keeps track of the movement in the x direction, either 1 or -1. As
with the player, after moving, you must check the slide collisions. If the colliding object is the player,
you must call its hurt() function.

Next, you must check whether the colliding body’s normal vector has an x component that isn’t 0.
This means it points to the left or right, which means it is a wall or other obstacle. The direction of
the normal is then used to set the new facing. Giving the body a small upward velocity will give the
enemy a small bounce effect when turning around, which will look more appealing.

Lastly, if for some reason the enemy falls off a platform, you don’t want the game to have to track it
falling forever, so you must delete any enemy whose y coordinate becomes too large.

Add an instance of Enemy to your level scene. Make sure it has some obstacles on either side and play
the scene. Check that the enemy walks back and forth between the obstacles. Try putting the player
in its path and verify that the player’s hurt() function is called.

You may notice that if you jump on top of the enemy, nothing happens. We will handle that part next.

Damaging the enemy

It’s not fair if the player can’t hit back, so in the tradition of Mario, jumping on top of the enemy will
defeat it.

Start by adding a new animation to the enemy’s AnimationPlayer node called death. Set Length
to 0.3 and Snap to 0.05. Don’t turn on looping for this animation.

The death animation will also set both Texture and Frame. Drag the res://assets/sprites/
enemy_death.png image into the sprite’s Texture area and then click the key to add a keyframe for
it. As before, keyframe the 0 and 5 values of Frame at the start and end of the animation. Remember
to set Update Mode to Continuous.

Add the following code to enemy.gd so that you have a way to trigger the death animation on
the enemy:

func take_damage():
    $AnimationPlayer.play("death")
    $CollisionShape2D.set_deferred("disabled", true)
    set_physics_process(false)

When the player hits the enemy under the right conditions, it will call take_damage(), which
plays the death animation, disables collision, and halts movement.

Jungle Jump – Running and Jumping in a 2D Platformer124

When the death animation finishes playing, it’s OK to remove the enemy, so connect the animation_
finished signal of AnimationPlayer:

Figure 4.20: AnimationPlayer’s signals

This signal is called every time any animation finishes, so you need to check if it’s the correct one:

func _on_animation_player_animation_finished(anim_name):
    if anim_name == "death":
        queue_free()

To complete this process, go to the player.gd script and add the following code to the section
of _physics_process() where you check the collisions. This code will check if the player hit
an enemy from above:

for i in get_slide_collision_count():
    var collision = get_slide_collision(i)
    if collision.get_collider().is_in_group("danger"):
        hurt()
    if collision.get_collider().is_in_group("enemies"):
        if position.y < collision.get_collider().position.y:
            collision.get_collider().take_damage()
            velocity.y = -200
        else:
            hurt()

This code compares the y position of the player’s feet to the enemy’s y position to see if the player is
above the enemy. If they are, the enemy should be hurt; otherwise, the player should be.

Run the level again and try jumping on the enemy to check that everything is working as expected.

Adding enemies 125

Player script

You’ve made several additions to the player’s script. Here’s what the full script should look like now:

extends CharacterBody2D

signal life_changed
signal died

@export var gravity = 750
@export var run_speed = 150
@export var jump_speed = -300

enum {IDLE, RUN, JUMP, HURT, DEAD}
var state = IDLE
var life = 3: set = set_life

func _ready():
    change_state(IDLE)

func change_state(new_state):
    state = new_state
    match state:
        IDLE:
            $AnimationPlayer.play("idle")
        RUN:
            $AnimationPlayer.play("run")
        HURT:
            $AnimationPlayer.play("hurt")
            velocity.y = -200
            velocity.x = -100 * sign(velocity.x)
            life -= 1
            await get_tree().create_timer(0.5).timeout
            change_state(IDLE)

        JUMP:
            $AnimationPlayer.play("jump_up")
        DEAD:
            died.emit()
            hide()

func get_input():
    if state == HURT:
        return

Jungle Jump – Running and Jumping in a 2D Platformer126

    var right = Input.is_action_pressed("right")
    var left = Input.is_action_pressed("left")
    var jump = Input.is_action_just_pressed("jump")

    # movement occurs in all states
    velocity.x = 0
    if right:
        velocity.x += run_speed
        $Sprite2D.flip_h = false
    if left:
        velocity.x -= run_speed
        $Sprite2D.flip_h = true
    # only allow jumping when on the ground
    if jump and is_on_floor():
        change_state(JUMP)
        velocity.y = jump_speed
    # IDLE transitions to RUN when moving
    if state == IDLE and velocity.x != 0:
        change_state(RUN)
    # RUN transitions to IDLE when standing still
    if state == RUN and velocity.x == 0:
        change_state(IDLE)
    # transition to JUMP when in the air
    if state in [IDLE, RUN] and !is_on_floor():
        change_state(JUMP)

func _physics_process(delta):
    velocity.y += gravity * delta
    get_input()
    move_and_slide()
    if state == HURT:
        return
    for i in get_slide_collision_count():
        var collision = get_slide_collision(i)
        if collision.get_collider().is_in_group("danger"):
            hurt()
        if collision.get_collider().is_in_group("enemies"):
            if position.y <
            collision.get_collider().position.y:
                collision.get_collider().take_damage()
                velocity.y = -200
            else:
                hurt()

Game UI 127

    if state == JUMP and is_on_floor():
        change_state(IDLE)
    if state == JUMP and velocity.y > 0:
        $AnimationPlayer.play("jump_down")

func reset(_position):
    position = _position
    show()
    change_state(IDLE)
    life = 3

func set_life(value):
    life = value
    life_changed.emit(life)
    if life <= 0:
        change_state(DEAD)

func hurt():
    if state != HURT:
        change_state(HURT)

If you’re having any trouble with the player code, try to think about what part could be the problem.
Is it the movement? The hit detection when running into an enemy? If you can narrow down the
problem, it’ll help you determine which part of the script you should be focusing on.

Make sure you’re satisfied with how the player is behaving before moving on to the next section.

Game UI
As in the previous projects you’ve worked on, you’ll need a HUD to display information during
gameplay. Collecting items will increase the player’s score, so that number should be displayed, as
well as the player’s remaining life value, which will be shown as a series of hearts.

Scene setup

Create a new scene with a MarginContainer root node named HUD and save it in a new ui folder.
Set Layout to Top Wide and, in the Theme Overrides/Constants section of the Inspector, set the
right and left margins to 50 and the top/bottom margins to 20.

Add an HBoxContainer node to keep things aligned and give it two children, Label and
HBoxContainer, named Score and LifeCounter, respectively.

Jungle Jump – Running and Jumping in a 2D Platformer128

On the Score label, set the Text property to 100 and in the Inspector, under Layout/Container
Sizing, check the Expand box. In Label Settings, add a new settings object to configure the font.
Drag res://assets/Kenney Thick.ttf into the Font property and set Size to 48. Under
Outline, set Size to 16 and Color to black. You should see 100 displayed in white with a black outline.

For LifeCounter, add a TextureRect child and name it L1. Drag res://assets/heart.
png into its Texture area and set Stretch Mode to Keep Aspect Centered. Select L1 and duplicate
(Ctrl + D) it four times so that you have a row of five hearts:

Figure 4.21: HUD node setup

When you’re finished, your HUD should look like this:

Figure 4.22: HUD preview

The next step will be to add a script so that the HUD can update during the game.

Scripting the HUD

This script needs two functions that can be called to update the two values being displayed:

extends MarginContainer

@onready var life_counter = $HBoxContainer/LifeCounter.get_children()

func update_life(value):
    for heart in life_counter.size():
        life_counter[heart].visible = value > heart

Game UI 129

func update_score(value):
    $HBoxContainer/Score.text = str(value)

Note that, in update_life(), you calculate how many hearts to display by setting visible to
false if the number of that heart is less than the life amount.

Attaching the HUD

Open level_base.tscn (the base level scene, not your Level01 scene) and add CanvasLayer.
Add an instance of HUD as a child of this Canvaslayer.

Select the level’s Player instance and connect its life_changed signal to the HUD’s update_
life() method:

Figure 4.23: Connecting a signal

Do the same with the score_changed signal of the Level node, connecting it to the HUD’s
update_score() method.

Note that if you don’t want to use the scene tree to connect the signals, or if you find the signal
connection window confusing or difficult to use, you can accomplish the same thing in your script
by adding these lines to the _ready() function of level.gd:

$Player.life_changed.connect($CanvasLayer/HUD.update_life)
score_changed.connect($CanvasLayer/HUD.update_score)

Jungle Jump – Running and Jumping in a 2D Platformer130

Play the game and verify that you can see the HUD and that it updates correctly. Make sure you
collect some items and let the enemy hit you. Is your score increasing? When you’re hit, do you lose
one heart? Once you’ve checked this, you can continue to the next section and make the title screen.

Title screen
The title screen is the first thing the player will see, and the game will return to this screen when the
player dies and the game ends.

Scene setup

Start with a Control node and set Layout to Full Rect. Add a TextureRect node using the
back.png image. Set Layout to Full Rect and Stretch Mode to Keep Aspect Covered.

Add another TextureRect, this time using middle.png and setting Stretch Mode to Tile. Drag
the width of the rectangle until it’s wider than the screen and arrange it so that it covers the bottom half.

Add two Label nodes named Title and Message and set their Text properties to Jungle Jump
and Press Space to Play, respectively. Add the font to each one as you’ve done before, setting
the title to size 72 and the message to size 48. Set the title’s layout to Centered and the message’s
layout to Center Bottom.

When you’re finished, the scene should look like this:

Figure 4.24: Title screen

To make the title screen more interesting, add an AnimationPlayer node to it. Create a new
animation named intro and set it to autoplay. In this animation, you can animate the elements of
the screen to make them move, appear, fade in, or any other effect you like.

Setting up the main scene 131

For example, keyframe the current Position of Title at time 0.5. Then, at time 0, drag Title off
the top of the screen and add another keyframe. Now, the title will drop onto the screen when you
play the scene.

Feel free to add tracks that animate the other nodes’ properties. For example, here is an animation
that drops the title down, fades in the two textures, and then makes the message appear:

Figure 4.25: Title screen animations

This title screen has been kept simple, but you should feel free to add to it if you’d like. You could
show an example of some platforms, add an animation of the character running across the screen, or
some other game art. But what happens when the player hits “start”? For this, you need to load the
first level in the main scene.

Setting up the main scene
You’ve made some level scenes, but eventually, you’re going to want to make more than one. How does
the game know which one to load? Your Main scene is going to take care of that.

Delete any extra nodes you added to main.tscn when you were testing the player’s movement.
This scene will now be responsible for loading the current level. Before it can do that, however, you
need a way to keep track of the current level. You can’t keep track of that variable in the level scene
because that will be replaced with a newly loaded level when it ends. To keep track of data that needs
to be carried from scene to scene, you can use an autoload.

About autoloads
In Godot, you can configure a script or scene as an autoload. This means that the engine will
automatically load it at all times. Even if you change the current scene in SceneTree, the
autoloaded node will remain. You can also refer to that autoloaded scene by name from any
other node in your game.

Jungle Jump – Running and Jumping in a 2D Platformer132

In the Script editor, create a new script named game_state.gd and add the following code:

extends Node

var num_levels = 2
var current_level = 0

var game_scene = "res://main.tscn"
var title_screen = "res://ui/title.tscn"

func restart():
    current_level = 0
    get_tree().change_scene_to_file(title_screen)

func next_level():
    current_level += 1
    if current_level <= num_levels:
        get_tree().change_scene_to_file(game_scene)

You should set num_levels to the number of levels you’ve created in the levels folder. Make
sure you name them consistently as level_01.tscn, level_02.tscn, and so on so that they
can be found easily.

To add this script as an autoload, open Project Settings and find the Autoload tab. Click the folder
icon to choose game_state.gd and then click the Add button.

Next, add this script to your Main scene:

extends Node

func _ready():
    var level_num = str(GameState.current_level).pad_zeros(2)
    var path = "res://levels/level_%s.tscn" % level_num
    var level = load(path).instantiate()
    add_child(level)

Now, whenever the Main scene is loaded, it will include the level scene that corresponds to the
current level.

The title screen needs to transition to the game scene, so attach this script to the Title node:

extends Control

func _input(event):
    if event.is_action_pressed("ui_select"):

Transitioning between levels 133

        GameState.next_level()

Finally, you can call the restart() function when the player dies by adding it to level.gd. In
the Level scene, connect the Player instance’s died signal:

func _on_player_died():
    GameState.restart()

You should now be able to play through the game fully. Make sure title.tscn is set as the game’s
main scene (that is, the one that runs first). If you’ve previously set a different scene to be the “main”
scene, you can change this in Projects Settings under Application/Run:

Figure 4.26: Choosing a main scene

Transitioning between levels
Your levels now need a way to transition from one to the next. In the res://assets/environment/
props.png sprite sheet, there is an image of a door that you can use for your level’s exit. Finding
and walking into the door will take the player to the next level.

Door scene

Make a new scene with an Area2D node named Door and save it in the items folder. Add a
Sprite2D node and use the props.png image as Texture. Under Region, click Enabled, and then
click the Edit Region button to select the door image from the sprite sheet. Then, in Offset/Offset, set
y to -8. This will ensure that when the door is placed at the tile location, it will be positioned correctly.

Jungle Jump – Running and Jumping in a 2D Platformer134

Add a CollisionShape2D node and give it a rectangular shape that covers the door. Put the door
on the items layer and set its mask so that it only scans the player layer.

This scene doesn’t need a script because you’re just going to use its body_entered signal in the
level script.

To place the door in the level, you can use the door object from the tiles_items tileset, which
you are using in your Items tilemap to place the cherries and gems. Place a door in your level and
open level.gd.

At the top of level.gd, define the door scene:

var door_scene = load("res://items/door.tscn")

Then, update spawn_items() so that it also instantiates doors:

func spawn_items():
    var item_cells = $Items.get_used_cells(0)
    for cell in item_cells:
        var data = $Items.get_cell_tile_data(0, cell)
        var type = data.get_custom_data("type")
        if type == "door":
            var door = door_scene.instantiate()
            add_child(door)
            door.position = $Items.map_to_local(cell)
            door.body_entered.connect(_on_door_entered)
        else:
            var item = item_scene.instantiate()
            add_child(item)
            item.init(type, $Items.map_to_local(cell))
            item.picked_up.connect(self._on_item_picked_up)

Add the function that will be called when the player touches the door:

func _on_door_entered(body):
    GameState.next_level()

Play the game and try walking into the door. If you’ve set num_levels in game_state.gd to a
number greater than 1, the game will attempt to load level_02.tscn when you touch the door.

Screen settings

Recall that at the beginning of this chapter, you set Stretch/Mode and Aspect in Project Settings to
canvas_items and expand, respectively. Run the game, and then try resizing the game window.
Notice that if you make the window wider, you can see more of the game world to the player’s left/
right. This is what the expand value is doing.

Finishing touches 135

If you want to prevent this, you can set it to keep instead, which will always show the same amount
of the game world as shown by the camera. However, it also means that if you make your window a
different shape than the game, you’ll get black bars to fill in the extra space.

Alternatively, setting ignore will not display the black bars, but the game content will be stretched
to fill the space, distorting the image.

Take some time to experiment with the various settings and decide which one you prefer.

Finishing touches
Now that you’ve completed the main structure of the game, and hopefully designed a few levels for
the player to enjoy, you can consider making some additions to improve the gameplay. In this section,
you’ll find a few more suggested features – add them as-is or adjust them to your liking.

Sound effects

As with the previous projects, you can add audio effects and music to improve the experience. In
res://assets/audio/, you’ll find audio files you can use for different game events, such as
player jump, enemy hit, and item pickup. There are also two music files: Intro Theme for the title
screen and Grasslands Theme for the level scene.

Adding these to the game will be left to you, but here are a few tips:

•	 You may find it helpful to adjust the volume of individual sounds. This can be set with the
Volume dB property. Setting a negative value will reduce the sound’s volume.

•	 You can attach the music to the master level.tscn scene; that music will be used for all
levels. You could also attach separate music to individual levels if you want to set a certain mood.

•	 Your first thought might be to put AudioStreamPlayer on the Item scene to play the
pickup sound. However, since the pickup is deleted when the player touches it, that won’t work
well. Instead, put the audio player in the Level scene, since that’s where the result of the pickup
is handled (increasing the score).

Double jumping

Double jumps are a popular platforming feature. The player gets a second, usually smaller, upwards
boost if they press the jump key a second time while in the air. To implement this feature, you need
to add a few things to the player script.

First, you will need variables to track the number of jumps and determine how big the second boost
will be:

@export var max_jumps = 2
@export var double_jump_factor = 1.5

Jungle Jump – Running and Jumping in a 2D Platformer136

var jump_count = 0

When entering the JUMP state, reset the number of jumps:

JUMP:
    $AnimationPlayer.play("jump_up")
    jump_count = 1

In get_input(), allow the jump if it meets the conditions that have been. Put this before the if
statement where you check if the player is on the floor:

if jump and state == JUMP and jump_count < max_jumps and jump_count >
0:
    $JumpSound.play()
    $AnimationPlayer.play("jump_up")
    velocity.y = jump_speed / double_jump_factor
    jump_count += 1

In _physics_process(), when you land on the ground, reset the jump count:

if state == JUMP and is_on_floor():
    change_state(IDLE)
    jump_count = 0

Play your game and try out the double jumps. Note that this code makes the second jump 2/3rds the
size of the upward speed of the initial jump. You can adjust this according to your preferences.

Dust particles

Spawning dust particles at the character’s feet is a low-effort effect that can add a lot of character to your
player’s movements. In this section, you’ll add a small puff of dust to the player’s feet that is emitted
whenever they land on the ground. This adds a sense of weight and impact to the player’s jumps.

Add a CPUParticles2D node to the Player scene and name it Dust. Set the following properties:

Property Value

Amount 20

Lifetime 0.45

One Shot On

Speed Scale 2

Explosiveness 0.7

Finishing touches 137

Emission Shape Rectangle

Rect Extents 1, 6

Initial Velocity Max 10

Scale Amount Max 3

Position -2, 0

Rotation -90

The default particle color is white, but the dust effect will look better in a tan shade. It should also
fade away so that it appears to dissipate. This can be accomplished with Gradient. In the Color/
Color Ramp area, select New Gradient.

Gradient has two colors: a start color on the left and an end color on the right. These can be selected
using the small rectangles at either end of the gradient. Clicking on the large square on the right allows
you to set the color for the selected rectangle:

Figure 4.27: Color Ramp

Set the start color to a tan shade, and set the end to the same color, but with the alpha value set to 0.
You should see a continuously puffing smoke effect. In the Inspector, set One Shot to on. Now, the
particles will only emit once, each time you check the Emitting box.

Feel free to alter the properties that have been provided here. Experimenting with particle effects can
be great fun, and often, you’ll stumble upon a very nice effect just by tinkering.

Once you’re happy with its appearance, add the following to the player’s _physics_process() code:

if state == JUMP and is_on_floor():
    change_state(IDLE)
    $Dust.emitting = true

Run the game and observe the puff of dust every time your character lands on the ground.

Jungle Jump – Running and Jumping in a 2D Platformer138

Ladders

The player sprite sheet includes frames for a climbing animation, and the tileset contains ladder images.
Currently, the ladder tiles do nothing – in TileSet, they do not have any collision shape assigned.
That’s OK because you don’t want the player to collide with the ladders – you want them to be able
to move up and down on them.

Player code

Start by selecting the player’s AnimationPlayer node and adding a new animation called climb.
Its Length should be 0.4 and it should be set to loop. The Frame values for Sprite2D are 0 -> 1
-> 0 -> 2.

Go to player.gd and add a new state, CLIMB, to the state enum. In addition, add two new
variable declarations at the top of the script:

@export var climb_speed = 50

var is_on_ladder = false

You’ll use is_on_ladder to keep track of whether the player is on a ladder or not. Using this, you
can decide whether the up and down actions should have any effect.

In change_state(), add a condition for the new state:

CLIMB:
    $AnimationPlayer.play("climb")

In get_input(), you need to check for the input actions and then determine if they change the state:

var up = Input.is_action_pressed("climb")
var down = Input.is_action_pressed("crouch")

if up and state != CLIMB and is_on_ladder:
    change_state(CLIMB)
if state == CLIMB:
    if up:
        velocity.y = -climb_speed
        $AnimationPlayer.play("climb")
    elif down:
        velocity.y = climb_speed
        $AnimationPlayer.play("climb")
    else:
        velocity.y = 0
        $AnimationPlayer.stop()
if state == CLIMB and not is_on_ladder:
    change_state(IDLE)

Finishing touches 139

Here, you have three new conditions to check. First, if the player is not in the CLIMB state but is on
a ladder, then pressing up should make the player start climbing. Second, if the player is currently
climbing, then the up and down inputs should make them move up and down the ladder, but stop the
animation from playing if no action is pressed. Finally, if the player leaves the ladder while climbing,
they leave the CLIMB state.

You also need to make sure that gravity doesn’t pull the player downward while they’re on a ladder.
Add a condition to the gravity code in _physics_process():

if state != CLIMB:
    velocity.y += gravity * delta

Now, the player is ready to climb, which means you can add some ladders to your level.

Level setup

Add an Area2D node named Ladders to the Level scene, but don’t add a collision shape to it
yet. Connect its body_entered and body_exited signals and set its collision Layer to items
and Mask to player. This ensures that only the player can interact with the ladder. These signals
are how you’ll let the player know they are or aren’t on a ladder:

func _on_ladders_body_entered(body):
    body.is_on_ladder = true

func _on_ladders_body_exited(body):
    body.is_on_ladder = false

Now, the level needs to look for any ladder tiles and add collision shapes to the Ladders area whenever
it finds one. Add the following function to level.gd and call it in _ready():

func create_ladders():
    var cells = $World.get_used_cells(0)
    for cell in cells:
        var data = $World.get_cell_tile_data(0, cell)
        if data.get_custom_data("special") == "ladder":
            var c = CollisionShape2D.new()
            $Ladders.add_child(c)
            c.position = $World.map_to_local(cell)
            var s = RectangleShape2D.new()
            s.size = Vector2(8, 16)
            c.shape = s

Note that the collision shapes you’re adding are only 8 pixels wide. If you make the shape the full
width of the ladder tile, then the player will still look as though they’re climbing even when they’re
hanging off the side, which looks a bit odd.

Jungle Jump – Running and Jumping in a 2D Platformer140

Try it out – go to one of your level scenes and place some ladder tiles anywhere you’d like on your
World tile map. Play the scene and try climbing the ladders.

Note that if you’re at the top of a ladder and step on it, you’ll fall to the bottom rather than climb down
(although pressing up as you fall will cause you to grab the ladder). If you prefer to automatically
transition to the climbing state, you can add an additional falling check in _physics_process().

Moving platforms

Moving platforms are a fun addition to your level design toolkit. In this section, you’ll make a moving
platform that you can place anywhere on your level and set its movement and speed.

Start with a new scene using a Node2D node and name it MovingPlatform. Save the scene and
add TileMap as a child. Since your platform art is all in sprite sheets and they’ve already been sliced
into tiles and had collisions added, this will make your platform easy to draw. Add tiles_world.
tres as Tile Set. You’ll also need to check the Collision Animatable box, which will make sure the
collisions work properly even while moving.

Draw a few tiles into TileMap, but make sure to start at the origin, (0, 0), so that things will line
up cleanly. These tiles work well for a floating platform:

Figure 4.28: Floating platform

Add a script to the root node and start with these variables:

@export var offset = Vector2(320, 0)
@export var duration = 10.0

These will allow you to set the movement amount and speed. offset is relative to the starting
point, and since it’s a Vector2 node, you can have platforms that move horizontally, vertically, or
diagonally. duration is measured in seconds and represents how long the complete cycle will take.

The platform will always be moving, so you can start the animation in _ready(). It will use a tween
method to animate the position in two steps: from the start position to the offset position and vice versa:

func _ready():
    var tween = create_tween().set_process_mode(
        Tween.TWEEN_PROCESS_PHYSICS)

Finishing touches 141

    tween.set_loops().set_parallel(false)
    tween.tween_property($TileMap, "position", offset,
        duration / 2.0).from_current()
    tween.tween_property($TileMap, "position",
        Vector2.ZERO, duration / 2.0)

Here are a few notes about tween usage:

•	 You need to set the process mode so that the movement will be synced to physics and the player
will be able to collide properly with the platform (that is, stand on it).

•	 set_loops() tells tween to repeat once finished.

•	 set_parallel(false) tells tween to perform the two property tweens sequentially
rather than at the same time.

•	 You can also experiment with other tween curves. Adding tween.set_trans(Tween.
TRANS_SINE), for example, will make the platform slow down at the ends of the movement
for a more natural look. Try experimenting with the other transition types.

Now, you can add instances of MovingPlatform to the level scene. To make sure things line up
properly, make sure you turn on grid snapping:

Figure 4.29: Enabling grid snapping

The default value is (8, 8), but you can change it by clicking the three dots next to the icon and
choosing Configure Snap.

When you run the game now, you will have a lot more to interact with. The ladders and moving
platforms give you a lot more possibilities for your level designs. But you don’t have to stop there!
Considering everything you’ve done in this chapter, there are many other features that you could
still add. The player animation includes a “crouching” animation – what if the enemies could throw
things at the player that could be ducked under? Many platformer games include additional movement
mechanics such as sliding down slopes, wall jumps, changing gravity, and many more. Choose one
and see if you can add it.

Jungle Jump – Running and Jumping in a 2D Platformer142

Summary
In this chapter, you learned how to use the CharacterBody2D node to create arcade-style physics
for player movement. This is a powerful node that can be used for a wide variety of game objects – not
just platform characters.

You learned about the TileMap node for level design – a powerful tool with even more features than
you used in this project. An entire chapter could be written on all of the different things you can do with
it. For more information, see the Using TileMaps page on the Godot documentation website: https://
docs.godotengine.org/en/latest/tutorials/2d/using_tilemaps.html.

Camera2D and ParallaxBackground are also key tools for any game where you want to move
around in a world that’s bigger than the size of the screen. The camera node in particular will be a
node that you’ll use in most 2D projects.

You also made extensive use of what you learned in earlier projects to tie everything together. Hopefully,
at this point, you have a good grasp of the scene system and how a Godot project is structured.

Once again, before moving on, take a few moments to play your game and look through its various
scenes and scripts to review how you built it. Review any sections of this chapter that you found
particularly tricky. And most importantly, before moving on, try to make some changes to the project.

In the next chapter, you’ll make the jump to 3D!

5
3D Minigolf: Dive into 3D by

Building a Minigolf Course

The previous projects in this book have been designed in 2D space. This is intentional to introduce
the features and concepts of Godot while keeping the projects’ scopes limited. In this chapter, you’ll
venture into the 3D side of game development. For some, 3D development feels significantly more
difficult to manage. For others, it is more straightforward. In either case, there is certainly an additional
layer of complexity for you to understand.

If you’ve never worked with any kind of 3D software before, you may find yourself encountering many
new concepts. This chapter will explain them as much as possible, but remember to refer to the Godot
documentation whenever you need a more in-depth understanding of a particular topic.

The game you’ll make in this chapter is called 3D Minigolf. In it, you’ll build a small minigolf course,
a ball, and an interface for aiming and shooting the ball toward the hole.

Here are some of the things you’ll learn in this chapter:

•	 Navigating Godot’s 3D editor

•	 Node3D and its properties

•	 Importing 3D meshes and using 3D collision shapes

•	 How to use 3D cameras

•	 Setting up lighting and environment

•	 An introduction to PBR and materials

Before diving in, a brief introduction to 3D in Godot.

3D Minigolf: Dive into 3D by Building a Minigolf Course144

Technical requirements
Download the game assets from the following link and unzip them into your new project folder:

https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-
Second-Edition/tree/main/Downloads

You can also find the complete code for this chapter on GitHub at: https://github.com/
PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/
tree/main/Chapter05%20-%203D%20Minigolf

Introduction to 3D
One of the strengths of Godot is its ability to handle both 2D and 3D games. Much of what you’ve
learned earlier in this book will apply equally well in 3D – nodes, scenes, signals, etc. But changing
from 2D to 3D also brings with it a whole new layer of complexity and capabilities. First, you’ll find
that there are some additional features available in the 3D editor window, and it’s a good idea to
familiarize yourself with how to navigate.

Orienting in 3D space

Open a new project and click on the 3D button at the top of the editor window to see the 3D project view:

Figure 5.1: The 3D workspace

https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter05%20-%203D%20Minigolf
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter05%20-%203D%20Minigolf
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter05%20-%203D%20Minigolf

Introduction to 3D 145

The first things you should notice are the three colored lines in the center. These are the x (red), y
(green), and z (blue) axes. The point where they meet is the origin, with coordinates of (0, 0, 0).

3D coordinates
Just as you used Vector2(x, y) to indicate a position in 2D space, you’ll use Vector3(x,
y, z) to describe a position in three dimensions.

One issue that often arises when working in 3D is that different applications use different conventions
for orientation. Godot uses the Y-UP orientation, so when looking at the axes, if x is pointing to the
left/right, then y is up/down and z is forward/back. If you use other popular 3D software, you may
find that some of them use Z-Up. It’s good to be aware of this, as it can lead to confusion when moving
between different programs.

Another important thing to be aware of is the unit of measure. In 2D, Godot measures everything in
pixels, which makes sense as the natural basis for measurement when drawing on the screen. However,
when working in 3D space, pixels aren’t really useful. Two objects of the same size will occupy different
areas on the screen depending on how far away they are from the camera (more about cameras soon).
For this reason, in 3D space, all objects in Godot are measured in generic units. While it’s most common
to refer to them as “meters,” you’re free to call these units whatever you like: inches, millimeters, or
even light years, depending on the scale of your game world.

Godot’s 3D editor

Before moving too deeply into building a game, it will be useful to review how to navigate in 3D space.
The view camera is controlled using the mouse and keyboard:

•	 Mouse wheel up/down: Zoom in/out on the current target

•	 Middle button + drag: Orbit the camera around the current target

•	 Shift + middle button + drag: Pan the camera up/down/left/right

•	 Right button + drag: Rotate the camera in place

Note that some of these movements are based on a camera target, or focus. To focus on an object in
space, you can select it and press F.

Freelook navigation
If you’re familiar with popular 3D games such as Minecraft, you can press Shift + F to switch
to FreeLook mode. In this mode, you can use the W/A/S/D keys to fly around the scene while
aiming with the mouse. Press Shift + F again to exit FreeLook mode.

3D Minigolf: Dive into 3D by Building a Minigolf Course146

You can also affect the camera’s view by clicking on the Perspective label in the upper-left corner of the
viewport. Here, you can snap the camera to a particular orientation such as Top View or Front View:

Figure 5.2: Perspective menu

This can be especially useful on large displays when combined with the use of multiple viewports.
Click the View menu and you can split the screen into multiple views, allowing you to see an object
from all sides simultaneously.

Keyboard shortcuts
Note that each of these menu options has a keyboard shortcut associated with it. You can click
on Editor -> Editor Settings -> 3D to see and adjust the keyboard shortcuts to your liking.

Adding 3D objects

It’s time to add your first 3D node. Just as all 2D nodes inherit from Node2D, which provides properties
such as Position and Rotation, 3D nodes inherit from Node3D, which provides spatial properties.
Add one to the scene and you’ll see the following:

Figure 5.3: Node3D with a gizmo

Introduction to 3D 147

That colorful object you see is not the node, but rather a 3D gizmo. The gizmo is a tool that allows
you to move and rotate objects in space. The three rings control rotation, while the three arrows move
the object along the three axes. Notice that the rings and arrows are color-coded to match the axis
colors. The arrows move the object along the corresponding axis, while the rings rotate the object
around a particular axis. There are also three small squares that lock one axis and allow you to move
along the object in a plane.

Take a few minutes to experiment and get familiar with the gizmo. Delete the node and add another
if you find yourself getting lost.

Sometimes the gizmo gets in the way. You can click on the mode icons to restrict yourself to only one
type of transformation: Movement, Rotation, or Scaling:

Figure 5.4: Select mode icons

The Q/W/E/R keys are shortcuts for these buttons, allowing you to quickly change between modes.

Global versus local space

By default, the gizmo control operates in a global space. Try rotating the object – no matter how you
turn it, the gizmo’s movement arrows still point along the global axes. Now try this: put the Node3D
node back into its original position and orientation (or delete it and add a new one). Rotate the object
around one axis and then click the Use Local Space button (note the T shortcut):

Figure 5.5: Toggling Local Space mode

Observe what happens to the gizmo arrows. They now point along the object’s local axes and not the
world’s axes. When you click and drag the arrows, they move the object relative to its own rotation.
You can toggle back to global space by clicking the button again. Switching back and forth between
these two modes can make it much easier to place an object exactly where you want it.

Transforms

Look at the Inspector for Node3D. Under the Transform section, you’ll see the node’s Position,
Rotation, and Scale properties. As you move the object around, you’ll see these values change. Just
as in 2D, these values are relative to the node’s parent.

3D Minigolf: Dive into 3D by Building a Minigolf Course148

Together, these three quantities make up the node’s transform property. When changing the node’s spatial
properties in code, you have access to its transform property, which is a Godot Transform3D
object. Transform3D has two sub-properties: origin and basis. The origin property represents
the body’s position, while the basis property contains three vectors that define the body’s local
coordinate axes. Think of the three axis arrows in the gizmo when you were in Local Space mode.

You’ll see how to use these properties later in this section.

Meshes

Just like Node2D, a Node3D node has no size or appearance of its own. In 2D, you added Sprite2D to
display a texture attached to a node. In 3D, you’ll typically want to add a mesh. A mesh is a mathematical
description of a three-dimensional shape. It consists of a collection of points called vertices. These
vertices are connected by lines, called edges, and multiple edges (at least three) together make a face.

A cube, for example, is composed of eight vertices, twelve edges, and six faces:

Figure 5.6: Vertices, edges, and faces

If you’ve ever used 3D design software, this may already be familiar to you. If you haven’t, and you’re
interested in learning about 3D modeling, Blender is a very popular open source tool for designing 3D
objects. You can find many tutorials and lessons on the internet to help you get started with Blender.

Primitives

If you haven’t already created or downloaded a 3D model, or if you just need a simple shape quickly,
Godot has the ability to create certain 3D meshes directly. Add a MeshInstance3D node as a child
of your Node3D node, and in the Inspector, look for the Mesh property:

Introduction to 3D 149

Figure 5.7: Adding a new mesh

These predefined shapes are called primitives, and they represent a handy collection of common
useful shapes. Select New BoxMesh and you’ll see a cube appear on the screen.

Importing meshes

Whatever modeling software you may use, you will need to export your models in a format that is
readable by Godot. Godot supports a number of file formats for importing:

•	 glTF – supported in both text (.gltf) and binary (.glb) versions

•	 DAE (COLLADA) – an old format that is still supported

•	 OBJ (Wavefront) – supported, but limited due to the format limitations

•	 ESCN – a Godot-specific file format that Blender can export

•	 FBX – a commercial format that has limited support

The recommended format is .gltf. It has the most features and is very well supported in Godot. See
the appendix for details about exporting .gltf files from Blender for use in Godot.

You’ll see how to import some pre-built .gltf scenes later in this chapter.

3D Minigolf: Dive into 3D by Building a Minigolf Course150

Cameras

Try running the scene with your cube mesh. Where is it? In 3D, you won’t see anything in the game
viewport unless you have a Camera3D camera in the scene. Add one, and you’ll see a new node that
looks like this:

Figure 5.8: Camera widget

Use the camera’s gizmo to position it a little bit above and point toward the cube:

Figure 5.9: Aiming the camera

Project setup 151

The pinkish-purple, pyramid-shaped object is called the camera’s frustum. It represents the camera’s
view and can be made narrow or wide to affect the camera’s field of view. The triangular shape at the
top of the frustum indicates the camera’s “up” direction.

As you’re moving the camera around, you can press the Preview button in the upper-right of the
viewport to check what the camera sees. Go ahead and experiment with positioning the camera and
adjusting its FOV.

Orientation

Note that the camera’s frustum faces along the -Zaxis. This is the forward direction in Godot’s 3D space.
For example, this is what you would do if you wanted to move a 3D object along its local forward axis
where transform.basis is the object’s local set of axes:

position += -transform.basis.z * speed * delta

These new concepts and editor functions will help you to navigate and work in 3D space. Refer back
to this section if you need a reminder of what a particular 3D-related term means. In the next section,
you’ll start setting up your first 3D project.

Project setup
Now that you’ve learned how to navigate in Godot’s 3D editor, you’re ready to start on the minigolf
game. As with the other projects, download the game assets from the following link and unzip them
into your project folder. The unzipped assets folder contains images, 3D models, and other items
you’ll need to complete the game.

Create a new project and download the project assets from https://github.com/
PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition.

You’ll notice a few different folders in assets. The courses folder has some pre-built minigolf
holes for you to try out and compare to the ones you make. Don’t look at them yet – try and follow
the steps to make your own first.

This game will use the left mouse click as an input. Open Project Settings and select the Input Map tab.
Add a new action called click and then click the plus sign to add the Left Mouse Button input to it:

Figure 5.10: Assigning a mouse button input

https://github.com/PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition
https://github.com/PacktPublishing/Godot-Engine-Game-Development-Projects-Second-Edition

3D Minigolf: Dive into 3D by Building a Minigolf Course152

While you’re in Project Settings, you can also set how the game behaves when the game window is
resized. During gameplay, the user may choose to resize the window, which could disrupt the layout
of your UI or show a distorted view of the game. To prevent this, navigate to the Display/Window
section and find the Stretch/Mode setting. Change it to viewport:

Figure 5.11: Setting window stretch mode

That completes the setup of the project. Now, you can move on to building the first part of the game:
the minigolf course.

Creating the course
For the first scene, add a Node3D node called Hole and save the scene. As you did in Jungle Jump,
you’re going to make a generic scene containing all the nodes and code that any hole will need, then
inherit from this scene to make as many individual holes as you want to have in the game.

Next, add a GridMap node to the scene.

Understanding GridMaps

GridMap is the 3D equivalent of the TileMap node you used earlier in the book. It allows you to
use a collection of meshes (contained in a MeshLibrary collection – similar to TileSet) and
lay them out in a grid. Because it operates in 3D, you can stack the meshes in any direction, although
for this project you’ll stick to one plane.

Making a MeshLibrary collection

In the res://assets/ folder, you’ll find a pre-generated MeshLibrary feature named golf_
tiles.tres containing all the necessary course parts along with their collision shapes.

Creating the course 153

To create your own MeshLibrary function, you’ll make a 3D scene containing the individual meshes
you want to use, add collisions to them, and then export that scene into a MeshLibrary collection. If
you open golf_tiles.tscn, you’ll see the original scene that was used to create golf_tiles.
tres.

In this scene, you’ll see all the individual golf course tile meshes, as they were imported from Blender,
where they were originally modeled. To add collision shapes to each one, Godot has a handy shortcut:
select a mesh and you’ll see a Mesh menu appear in the toolbar at the top of the viewport:

Figure 5.12: The Mesh menu

Select Create Trimesh Static Body and Godot will add a StaticBody3D node along with a
CollisionShape3D node using the mesh’s data.

Once all the collisions are added, you can choose Scene -> Export As -> Mesh Library to convert
the scene into a Resource that GridMap can use.

Drawing the first hole

Drag the MeshLibrary file into the Mesh Library property of the GridMap node. You’ll see a list
of the available tiles appear on the right side of the editor viewport.

To match the size of the tiles, set Cell/Size to (1, 1, 1).

To make sure the collisions with the ball will look good, find Physics Material and set its Rough
setting to On and Bounce to 0.5:

Figure 5.13: Working with Physics Material

Try drawing by selecting a tile piece from the list and placing it in the scene by left-clicking. You can
rotate a piece around the y axis by pressing S. To remove a tile, right-click on it.

3D Minigolf: Dive into 3D by Building a Minigolf Course154

For now, stick to a simple layout. You can get fancy later when everything is working:

Figure 5.14: Example course layout

You can check out what this will look like when the game runs. Add a Camera3D feature to the scene
and move it to a position where it can look down on the course. Remember, you can press Preview
to check what the camera sees.

Play the scene. You’ll notice that everything is very dark, unlike how it looks in the editor window.
By default, a 3D scene has no environment or lighting configured.

Environment and lighting

Lighting is a complex subject all on its own. Choosing where to place lights and how they’re configured
can dramatically affect how a scene looks.

Godot provides three lighting nodes in 3D:

•	 OmniLight3D: For light that is emitted in all directions, such as from a light bulb

•	 DirectionalLight3D: Light from a distant source, such as sunlight

•	 SpotLight3D: A cone-shaped light projected from a point, similar to a flashlight or lantern

In addition to placing individual lights, you can also set up ambient light – light that is produced by
the environment – using a WorldEnvironment node.

Creating the course 155

Rather than start from scratch, Godot will let you start with the default lighting setup that you see in
the editor window using the buttons in the toolbar:

Figure 5.15: Lighting and environment settings

The first two buttons allow you to toggle the preview sun (directional light) and environment. Note
that the environment doesn’t just affect lighting, it generates a sky texture as well.

If you click on the three dots, you can see the default settings for these. Click the Add buttons to
add them both as nodes in your scene. You’ll now have the WorldEnvironment node and a
DirectionalLight3D node in your scene.

If you zoom in on your mesh, you may notice that the shadows don’t look very good. The default
shadow settings need to be adjusted, so select DirectionalLight3D and change Max Distance
from 100 to 40.

Adding the hole

Now that you have the course laid out, you need a way to detect when the ball falls into the hole.

3D Minigolf: Dive into 3D by Building a Minigolf Course156

Add an Area3D node named Hole. This node works exactly like its 2D version – it can signal when a
body enters its defined shape. Add a CollisionShape3D child to the area. In the Shape property,
choose New CylinderShape3D and set its Height to 0.25 and Radius to 0.08.

Position Hole where you placed the hole tile for your course. Make sure the cylinder shape doesn’t
project above the top of the hole, or the ball will count as “in” when it hasn’t dropped in yet. You
might find it useful to use the Perspective button and change to Top View to make sure you’ve got
it centered properly:

Figure 5.16: Positioning the hole

You also need to mark the starting position for the ball, so add a Marker3D node named Tee to the
scene. Position it where you want the ball to start. Make sure you place it above the surface so that the
ball doesn’t spawn inside the ground.

With that, you’re finished making the first course. Take a few minutes to look around and make sure
you’re happy with the layout. Remember, this shouldn’t be a complex or challenging layout. It’s going
to introduce the player to the game, and you’ll be using it to test that everything is working correctly
later. To do that, you next need to create the golf ball.

Making the ball 157

Making the ball
Since the ball needs physics – gravity, friction, collision with walls, and so on – RigidBody3D
will be the best choice of node. Rigid bodies work similarly in 3D to the ones you’ve used before in
2D, and you’ll use the same methods to interact with them, such as _integrate_forces()
and apply_impulse().

Create a new scene with a RigidBody3D node named Ball and save it.

Since you need a simple sphere shape and Godot includes primitive shapes, there’s no need for a
fancy 3D model here. Add a MeshInstance3D child and choose New SphereMesh for the Mesh
property in the Inspector.

The default size is much too large, so click on the Mesh property to expand it and set Radius to 0.05
and Height to 0.1.

Add a CollisionShape3D node and give it a SphereShape3D. Set its Radius setting to 0.05
to match the mesh.

Testing the ball

Add an instance of the Ball scene to your course. Position it over one of the tiles and play the scene.
You should see the ball fall and land on the ground.

You can also temporarily give the ball some motion by setting the Linear/Velocity property. Try
setting it to different values and playing the scene. Remember that the yaxis is up. Don’t forget to set
it back to (0, 0, 0) before you move on.

Improving ball collisions

You may have noticed when adjusting the velocity that the ball sometimes goes through the wall and/
or bounces oddly, especially if you choose a high-velocity value. There are several things you can do
to improve the ball’s behavior.

First, you can use continuous collision detection (CCD). Using CCD alters the way the physics
engine calculates collisions. Normally, the engine operates by first moving the object and then testing
for and resolving collisions. This is fast and works for most common situations. When using CCD,
the engine projects the object’s movement along its path and attempts to predict where the collision
may occur. This is slower (computationally) than the default behavior, especially when simulating

3D Minigolf: Dive into 3D by Building a Minigolf Course158

many objects, but it is much more accurate. Since you only have one ball in a very small environment,
CCD is a good option because it won’t introduce any noticeable performance penalty. You can find it
in the Inspector as Continuous CD:

Figure 5.17: The CCD toggle

The ball also needs a little more action, so in the Physics Material property, choose New and set the
Bounce value to 0.25. This property determines how “bouncy” a collision will be. The value can
range from 0 (no bounce at all) to 1.0 (the bounciest):

Figure 5.18: Physics material bounce settings

You may also have noticed that the ball takes a long time to come to a complete stop. Set the Linear/
Damp property to 0.5 and Angular/Damp to 1. These values can be thought of as analogous to air
resistance – causing the object to slow down regardless of interaction with the surface. Increasing
these means the player won’t have to wait as long for the ball to stop moving, and it won’t appear to
be spinning in place after it stops rolling.

You’re finished setting up the ball, but here’s another good place to pause and make sure you have
everything the way you want it before moving on. Does the ball feel like it’s bouncing and rolling

Adding UI 159

convincingly? When it hits a wall, does it bounce too much or too little? When you’ve adjusted the ball’s
behavior to your satisfaction, move on to the next section, where you’ll set up how to launch the ball.

Adding UI
Now that the ball is on the course, you need a way to aim and hit it. There are many possible control
schemes for this type of game. For this project, you’ll use a two-step process:

1.	 Aim: An arrow appears, swinging back and forth. Clicking the mouse button sets the aim direction.

2.	 Shoot: A power bar moves up and down. Clicking the mouse sets the power and launches the ball.

Aiming the arrow

Drawing an object in 3D is not as easy as it is in 2D. In many cases, you’ll have to switch to a 3D modeling
program such as Blender to create your game’s objects. However, in this case, Godot’s primitives will
do fine. To make an arrow, you need two meshes: a long thin rectangle and a triangular prism.

Making your own model
If you’re comfortable using a separate 3D modeling program such as Blender, feel free to use that
to create the arrow mesh instead of following the following procedure. Just drop the exported
model into your Godot project folder and load it with a MeshInstance3D node. See the
last chapter for details about importing models directly from Blender.

Start a new scene by adding a Node3D node called Arrow and give it a MeshInstance3D child.
Give this mesh a BoxMesh function and set the box’s Size setting to (0.5, 0.2, 2). This will
be the body of the arrow, but before moving on, there is a problem. If you rotate the parent node, the
mesh rotates around its center. You need it to rotate around its end, so change the Position setting of
the MeshInstance3D node to (0, 0, -1). Remember, this property is measured relative to
the node’s parent, so this is offsetting the mesh from the Node3D node:

Figure 5.19: Offsetting the base

3D Minigolf: Dive into 3D by Building a Minigolf Course160

Try rotating the root node (Arrow) with the gizmo to confirm that the shape is now offset correctly.

When it’s viewed in the game, the arrow should be semi-transparent. You can also give it a color to
make it stand out more. To change a mesh’s visual properties, you need to use Material.

Under the mesh properties (where you set the size), you’ll see a Material property that’s currently
empty. Click the arrow to create a new StandardMaterial3D node in this box:

Figure 5.20: Offsetting the base

If you click this new material object to expand it, you’ll see a long list of new properties. Don’t worry,
there are only two that you need to change.

First, expand the Transparency section and set Transparency to Alpha. This property tells the
rendering engine that this object can allow light to pass through it.

Next, the color of an object is set in the Albedo section. Click the Color property and choose a yellowish
color. Make sure to set the Alpha value to something around the middle, such as 128.

Now, to create the pointy end of the arrow, add another MeshInstance3D node, and this time, choose
a PrismMesh mesh. Set its Size setting to (1.5, 1.5, 0.2) so that you have a flat triangular
shape. To place it at the end of the rectangle, change its Position setting to (0, 0, -2.75) and its
Rotation setting to (-90, 0, 0).

Finally, scale the whole arrow down by setting the root node’s Scale setting to (0.25, 0.25, 0.25).

Adding UI 161

You also need to set the prism’s material just as you did with the other section. To do this quickly,
select the box shape and find its material property again. In the dropdown for the material, choose
Copy. You can then go to the prism mesh and paste the same material onto it. Note that since they
have the same material, any change you make to one shape will apply to both shapes:

Figure 5.21: Positioning the arrow

Your aiming arrow is complete. Save the scene and instance it into your Hole scene.

UI display

Create a new scene using a CanvasLayer layer named UI. In this scene, you’ll show the power bar
as well as the shot count for the player’s score. Just as it did in 2D, this node will cause its contents to
be drawn above the main scene.

Add a Label node, then a MarginContainer node. In that, add a VboxContainer node, and
in that, two Label nodes and a TextureProgressBar node. Name them as shown:

Figure 5.22: The UI node layout

3D Minigolf: Dive into 3D by Building a Minigolf Course162

In the MarginContainer section, set Theme Overrides/Constants to 20. Add the Xolonium-
Regular.ttf font to both of the Label nodes and set their font sizes to 30. Set the Text setting
of Shots to Shots: 0 and PowerLabel to Power.

Add the font for the Message label, using a larger font size of 80, and set its text to Get Ready!.
Choose Center from the Anchor Presets menu, then click the eye symbol next to the message to hide it.

Drag one of the colored bar textures from res://assets into the Texture/Progress section of
PowerBar. By default, TextureProgressBar grows from left to right, so for a vertical orientation,
change Fill Mode to Bottom to Top. Change Value to a few different values to see the result.

The completed UI layout should look like this:

Figure 5.23: The UI preview

Add an instance of UI in the Hole scene. Because it’s CanvasLayer, it will be drawn on top of
the 3D camera view.

Now that you’ve finished drawing the course and you’ve added the UI, you have all of the visual
elements that the player will see while playing. Your next task will be to make these parts work together
by adding some code.

Scripting the game
In this section, you’ll create the scripts needed to make everything work together. The flow of the
game will be as follows:

1.	 Place the ball at the Tee.

2.	 Switch to Aim mode and animate the arrow until the player clicks.

Scripting the game 163

3.	 Switch to Power mode and animate the power bar until the player clicks.

4.	 Launch the ball.

5.	 Repeat the process from step 2 until the ball falls into the hole.

UI code

Add this script to the UI instance to update the UI elements:

extends CanvasLayer

@onready var power_bar = $MarginContainer/VBoxContainer/PowerBar
@onready var shots = $MarginContainer/VBoxContainer/Shots

var bar_textures = {
    "green": preload("res://assets/bar_green.png"),
    "yellow": preload("res://assets/bar_yellow.png"),
    "red": preload("res://assets/bar_red.png")
}

func update_shots(value):
    shots.text = "Shots: %s" % value

func update_power_bar(value):
    power_bar.texture_progress = bar_textures["green"]
    if value > 70:
        power_bar.texture_progress = bar_textures["red"]
    elif value > 40:
        power_bar.texture_progress = bar_textures["yellow"]
    power_bar.value = value
func show_message(text):
    $Message.text = text
    $Message.show()
    await get_tree().create_timer(2).timeout
    $Message.hide()

These functions provide a way to update the UI elements when they need to display a new value. As
you did in Space Rocks, changing the progress bar’s texture based on its value gives a nice low/medium/
high feel to the power level.

3D Minigolf: Dive into 3D by Building a Minigolf Course164

Main script

Add a script to the Hole scene and start with these variables:

extends Node3D

enum {AIM, SET_POWER, SHOOT, WIN}

@export var power_speed = 100
@export var angle_speed = 1.1

var angle_change = 1
var power = 0
var power_change = 1
var shots = 0
var state = AIM

The enum lists the states the game can be in, while the power and angle variables will be used
to set their respective values and change them over time. You can control the animation speed (and
therefore the difficulty) by adjusting the two exported variables.

Next, set the initial values before starting to play:

func _ready():
    $Arrow.hide()
    $Ball.position = $Tee.position
    change_state(AIM)
    $UI.show_message("Get Ready!")

The ball gets moved to the tee position, and you change to the AIM state to begin.

Here’s what needs to happen for each game state:

func change_state(new_state):
    state = new_state
    match state:
        AIM:
            $Arrow.position = $Ball.position
            $Arrow.show()
        SET_POWER:
            power = 0
        SHOOT:
            $Arrow.hide()
            $Ball.shoot($Arrow.rotation.y, power / 15)
            shots += 1
            $UI.update_shots(shots)

Scripting the game 165

        WIN:
            $Ball.hide()
            $Arrow.hide()
            $UI.show_message("Win!")

AIM places the aiming arrow at the ball’s position and makes it visible. Recall that you offset the arrow,
so it will appear to be pointing out from the ball. When you rotate the arrow, you’ll rotate it around
the y axis so that it remains parallel to the ground.

Also, note that when entering the SHOOT state, you call the shoot() function on the ball, which
you haven’t defined yet. You’ll add that in the next section.

The next step is to check for user input:

func _input(event):
    if event.is_action_pressed("click"):
        match state:
            AIM:
                change_state(SET_POWER)
            SET_POWER:
                change_state(SHOOT)

The only input for the game (so far) is clicking the left mouse button. Depending on what state you’re
currently in, clicking it will transition to the next state.

In _process(), you’ll determine what to animate based on the state. For now, it just calls the
function that animates the appropriate property:

func _process(delta):
    match state:
        AIM:
            animate_arrow(delta)
        SET_POWER:
            animate_power(delta)
        SHOOT:
            pass

Both of these functions are similar. They gradually change a value between two extremes, reversing
direction when the limit is reached. Note that the arrow is animating over a 180° range (+90° to -90°):

func animate_arrow(delta):
    $Arrow.rotation.y += angle_speed * angle_change * delta
    if $Arrow.rotation.y > PI / 2:
        angle_change = -1
    if $Arrow.rotation.y < -PI / 2:
        angle_change = 1

3D Minigolf: Dive into 3D by Building a Minigolf Course166

func animate_power(delta):
    power += power_speed * power_change * delta
    if power >= 100:
        power_change = -1
    if power <= 0:
        power_change = 1
    $UI.update_power_bar(power)

To detect when the ball drops into the hole, select the Area3D node that you positioned at the hole
and connect its body_entered signal:

func _on_hole_body_entered(body):
    if body.name == "Ball":
        print("win!")
        change_state(WIN)

Lastly, the player will need to be able to start the whole process again after the ball comes to a stop.

Ball script

In the ball’s script, there are two functions needed. First, an impulse must be applied to the ball to start
it moving. Second, when the ball stops moving, it needs to notify the main scene so that the player
can take the next shot.

Make sure you add this script to the Ball scene, not the instance of the ball in the Hole scene:

extends RigidBody3D

signal stopped

func shoot(angle, power):
    var force = Vector3.FORWARD.rotated(Vector3.UP, angle)
    apply_central_impulse(force * power)

func _integrate_forces(state):
    if state.linear_velocity.length() < 0.1:
        stopped.emit()
        state.linear_velocity = Vector3.ZERO
    if position.y < -20:
        get_tree().reload_current_scene()

As you saw in the Space Rocks game, you can use the physics state in _integrate_forces()
to safely stop the ball if the speed has gotten very low. Due to floating point issues, the velocity may
not slow to 0 on its own. Its linear_velocity value may be something like 0.00000001 for

Scripting the game 167

quite some time after it appears to stop. Rather than wait, you can just stop the ball if the speed falls
below 0.1.

There’s also the chance that the ball happens to bounce over the wall and fall off the course. If this
happens, you can reload the scene to let the player start over.

Go back to the Hole scene and connect the Ball instance’s stopped signal:

func _on_ball_stopped():
    if state == SHOOT:
        change_state(AIM)

Testing it out

Try playing the scene. You should see the arrow rotating at the ball’s position. When you click the
mouse button, the arrow stops, and the power bar starts moving up and down. When you click again,
the ball is launched.

If any of those steps don’t work, don’t go any further. Go back and try to find what you missed in the
previous section.

Once everything is working, you’ll notice some areas that need improvement. First, when the ball stops
moving, the arrow may not point in the direction you want. The reason for this is that the starting
angle is always 0, which points along the zaxis, and then the arrow swings +/-90° from there. In the
next two sections, you’ll have a choice of two options for how to improve the aiming.

Option 1 for improving aiming

Aiming can be improved by pointing the 180° arc directly toward the hole at the beginning.

Add a variable called hole_dir to the top of the script. You can find this direction by using some
vector math:

func set_start_angle():
    var hole_position = Vector2($Hole.position.z,
        $Hole.position.x)
    var ball_position = Vector2($Ball.position.z,
        $Ball.position.x)
    hole_dir = (ball_position - hole_position).angle()
    $Arrow.rotation.y = hole_dir

Remember that the ball’s position is its center, so it’s slightly above the surface, while the hole’s center
is a bit below it. Because of this, a vector pointing from the ball to the hole would also point at a
downward angle into the ground. To prevent this and keep the arrow level, you can use only the x
and z values from the position to produce Vector2.

3D Minigolf: Dive into 3D by Building a Minigolf Course168

Now, the initial angle can be set when starting the AIM state:

func change_state(new_state):
    state = new_state
    match state:
        AIM:
            $Arrow.position = $Ball.position
            $Arrow.show()
            set_start_angle()

And the animation of the arrow can use that initial direction as the basis for the +/-90° swing:

func animate_arrow(delta):
    $Arrow.rotation.y += angle_speed * angle_change * delta
    if $Arrow.rotation.y > hole_dir + PI / 2:
        angle_change = -1
    if $Arrow.rotation.y < hole_dir - PI / 2:
        angle_change = 1

Try playing again. The arrow should now always point in the general direction of the hole. This is
better, but you still may have a difficult time aiming.

Option 2 for improving aiming

If you’d prefer to have more control over your aiming, then instead of animating the arrow and clicking
to set the aim, you could directly control the arrow by moving the mouse side-to-side.

To accomplish this, you can make use of one of Godot’s I n p u t E v e n t types:
InputEventMouseMotion. This event occurs whenever the mouse moves, and it includes a
relative property representing how far the mouse moved in the previous frame. You can use this
value to rotate that arrow by a small amount.

First, disable the arrow animation by removing the AIM section from _process().

Add a variable so that you can control how much the arrow will rotate based on the mouse movement:

@export var mouse_sensitivity = 150

Then, write the following code to _input() to check for mouse movement and rotate the arrow:

func _input(event):
    if event is InputEventMouseMotion:
        if state == AIM:
            $Arrow.rotation.y -= event.relative.x / mouse_sensitivity

Scripting the game 169

Capturing the mouse

You may have noticed that as you’re moving the mouse, it can leave the game window, and when
you click, you don’t interact with the game anymore. Most 3D games solve this problem by capturing
the mouse – locking the mouse to the window. When you do this, you also need to give the player
a way to free the mouse so that they can close the program or click on other windows, and a way to
re-capture it to come back to the game.

For this game, you’ll capture the mouse at first, and then if the player presses Esc, free it and pause
the game. Clicking in the game window will un-pause and resume.

All of this functionality is controlled through the Input.mouse_mode property. Then, mouse_mode
can be set to one of the following values:

•	 MOUSE_MODE_VISIBLE: This is the default mode. The mouse is visible and free to move in
and out of the window.

•	 MOUSE_MODE_HIDDEN: The mouse cursor is hidden.

•	 MOUSE_MODE_CAPTURED: The mouse is hidden and its position is locked to the window.

•	 MOUSE_MODE_CONFINED: The mouse is visible, but confined to the window.

Start by capturing the mouse in _ready():

Input.mouse_mode = Input.MOUSE_MODE_CAPTURED

In _process(), you don’t want to animate things while the mouse is released:

func _process(delta):
    if Input.mouse_mode == Input.MOUSE_MODE_VISIBLE:
        return

To release the mouse, add this condition to _input():

if event.is_action_pressed("ui_cancel") and Input.mouse_mode == Input.
MOUSE_MODE_CAPTURED:
    Input.mouse_mode = Input.MOUSE_MODE_VISIBLE

Then, to re-capture the mouse when the window is clicked, add this right before match_state:

if event.is_action_pressed("click"):
    if Input.mouse_mode == Input.MOUSE_MODE_VISIBLE:
        Input.mouse_mode = Input.MOUSE_MODE_CAPTURED
        return

Play the scene to try it out.

3D Minigolf: Dive into 3D by Building a Minigolf Course170

Camera improvements

Another problem, especially if you have laid out a relatively large course, is that if you place your
camera near the tee, it won’t show the other parts of the course well, or at all. You need your camera
to move, showing other parts of the course so the player can aim comfortably.

There are two main ways you could address this problem:

1.	 Multiple cameras: place several cameras at different locations around the course. Attach Area3D
nodes to them, and when the ball enters a camera’s area, make that camera active by setting its
current property to true.

2.	 Moving camera: stick to having one camera, but make it move along with the ball, so the player’s
perspective is always based on the ball’s location.

Both of these schemes have pros and cons. Option 1 requires more planning, deciding exactly where
to position the cameras, and how many to use. For that reason, this section will focus on option 2.

In many 3D games, the player can control a camera that rotates and moves. Typically, this control
scheme uses a combination of mouse and keyboard. Since you’re already using mouse movement for
aiming (if you chose that option), the W/A/S/D keys are a good choice. The mouse wheel can be used
to control the camera’s zoom.

Add these new actions in the Input Map property:

Figure 5.24: Input map

Scripting the game 171

Creating a gimbal

The camera movement needs to have some restrictions. For one, it should always remain level and not
become tilted side to side. Try this: take a camera and rotate it a small amount around y (the gizmo’s
green ring), then a small amount around x (the red ring). Now, reverse the y rotation and click the
Preview button. See how the camera has become tilted?

The solution to this problem is to place the camera on a gimbal – a device designed to keep an object
level during movement. You can create a gimbal using two Node3D nodes, which will control the
camera’s left/right and up/down movement respectively.

First, make sure to remove any other Camera3D nodes in the scene, so that you don’t have any conflict
over which camera is being used.

Create a new scene and add two Node3D nodes and a Camera3D node, naming them as shown in
Figure 5.25:

Figure 5.25: Camera gimbal node setup

Set the Position setting of Camera3D to (0, 0, 10) so that it’s offset and looking toward the origin.

Here’s how the gimbal works: the outer node is allowed to rotate only in y, while the inner one rotates
only in x. You can try it yourself, but make sure to turn on Use Local Space (see the Introduction to
3D space section). Remember to only move the green ring of the outer gimbal node, and only the
red ring of the inner one. Don’t change the camera at all. Reset all rotations back to zero once you’ve
finished experimenting.

To control this motion in the game, attach a script to the root node and add the following:

extends Node3D

@export var cam_speed = PI / 2
@export var zoom_speed = 0.1

var zoom = 0.2

func _input(event):
    if event.is_action_pressed("cam_zoom_in"):
        zoom -= zoom_speed
    if event.is_action_pressed("cam_zoom_out"):
        zoom += zoom_speed

3D Minigolf: Dive into 3D by Building a Minigolf Course172

func _process(delta):
    zoom = clamp(zoom, 0.1, 2.0)
    scale = Vector3.ONE * zoom
    var y = Input.get_axis("cam_left", "cam_right")
    rotate_y(y * cam_speed * delta)
    var x = Input.get_axis("cam_up", "cam_down")
    $GimbalInner.rotate_x(x * cam_speed * delta)
    $GimbalInner.rotation.x = clamp($GimbalInner.rotation.x,
        -PI / 2, -0.2)

As you can see, the right/left actions rotate the root Node3D node around its yaxis, while the up/
down actions rotate GimbalInner on its xaxis. The entire gimbal system’s scale property is used
to handle zooming. Finally, the rotation and zoom are limited by using clamp(), preventing the
user from flipping the camera upside down or zooming too close or far away.

Add an instance of CameraGimbal to the Hole scene.

The next step is to make the camera follow the ball. You can do this in _process() by setting the
camera’s position to the ball’s:

if state != WIN:
    $CameraGimbal.position = $Ball.position

Play the scene and test that you can rotate and zoom the camera and that it moves when the ball
when you make a shot.

Designing a full course

Once the ball falls into the hole, the player should advance to play the next hole. Add this variable at
the top of hole.gd:

@export var next_hole : PackedScene

This will let you set the next hole that will be loaded. In the Inspector, select the Next Hole property
to choose what scene to load next.

Add the loading code in the WIN state:

WIN:
$Ball.hide()
$Arrow.hide()
    await get_tree().create_timer(1).timeout
    if next_hole:
        get_tree().change_scene_to_packed(next_hole)

Visual effects 173

Your Hole scene is intended to be the generic scaffold for building multiple holes the player can play
through. Now that you have it working, you can use it to make multiple scenes using Scene -> New
Inherited Scene.

Using this technique, you can make as many holes as you want and chain them together into the full
golf course. Here’s the second hole in the example project:

Figure 5.26: Example course layout

Visual effects
The appearance of the ball and the other meshes in your scene have been intentionally left very plain.
You can think of the flat, white ball as a blank canvas, ready to be painted. First, a bit of vocabulary:

•	 Textures: Textures are flat, 2D images that are wrapped around 3D objects. Imagine wrapping
a gift: the flat paper is folded around the package, conforming to its shape. Textures can be
simple or complex, depending on the shape they’re designed to be applied to.

•	 Shaders: While textures determine what is drawn on an object’s surface, shaders determine
how it is drawn. Imagine a wall with a texture that shows a pattern of bricks. How would it
look if it were wet? The mesh and texture would be the same, but the way the light reflects
from it would be quite different. This is the function of shaders – to alter the appearance of
an object by altering how light interacts with it. Shaders are typically written in a specialized
programming language and can use a great deal of advanced math, the details of which are
beyond the scope of this book. However, Godot provides an alternative method of creating
a shader for your objects that allows a great deal of customization without needing to write
shader code: StandardMaterial3D.

3D Minigolf: Dive into 3D by Building a Minigolf Course174

•	 Materials: Godot uses a graphics rendering model called Physically Based Rendering (PBR).
The goal of PBR is to render graphics in a way that accurately models the way light works in
the real world. These effects are applied to meshes using their material property. Materials
are essentially containers for textures and shaders. The material’s properties determine how
the texture and shader effects are applied. Using Godot’s built-in material properties, you can
simulate a wide range of physical materials, such as stone, cloth, or metal. If the built-in properties
aren’t enough for your purposes, you can write your own shader code to add even more effects.

Adding materials

In the Ball scene, select MeshInstance and in its Mesh properties find Material and add a new
StandardMaterial3D node.

Expand the material and you’ll see a large number of properties, far more than can be covered here.
This section will focus on some of the most useful ones for making the ball look more appealing. You
are encouraged to visit https://docs.godotengine.org/en/latest/tutorials/3d/
standard_material_3d.html for a full explanation of all the settings.

To begin, try experimenting with these parameters:

•	 Albedo: This property sets the base color of the material. Change this to make the ball whatever
color you’d like. If you’re working with an object that needs a texture, this is where you’d add
it as well.

•	 Metallic and Roughness: These parameters control how the surface reflects light. Both can be
set to values between 0 and 1. The Metallic value controls shininess. Higher values will reflect
more light, as with metallic substances. The Roughness value applies an amount of blur to the
reflection. Lower values are more reflective, such as the polished surface of a mirror. You can
simulate a wide variety of materials by adjusting these two properties. Figure 5.27 is a guide to
how the Roughness and Metallic properties affect the appearance of an object. Keep in mind
that lighting and other factors will alter the appearance as well. Understanding how light and
reflections interact with surface properties is a big part of designing effective 3D objects:

https://docs.godotengine.org/en/latest/tutorials/3d/standard_material_3d.html
https://docs.godotengine.org/en/latest/tutorials/3d/standard_material_3d.html

Visual effects 175

Figure 5.27: Metallic and Roughness values

•	 Normal Map: Normal mapping is a 3D graphics technique for simulating the appearance of
bumps and dents on a surface. Modeling these in the mesh itself would result in a large increase
in the number of polygons, or faces, making up the object, leading to reduced performance.
Instead, a 2D texture is used that maps the pattern of light and shadow that would result
from these small surface features. The lighting engine then uses that information to alter the
reflection as if those details were actually there. A properly constructed normal map can add
a great amount of detail to an otherwise bland-looking object.

The ball is a perfect example of a good use case for normal mapping because a real golf ball has
hundreds of dimples on its surface, but the sphere primitive you’re using is a smooth surface. Using
a regular texture could add spots, but they would look flat as if they were painted on the surface. A
normal map to simulate those dimples would look like this:

Figure 5.28: A normal map

3D Minigolf: Dive into 3D by Building a Minigolf Course176

The pattern of red and blue contains information telling the engine which direction it should assume
the surface is facing at that point, and therefore which direction the light should bounce in that
position. Note the stretching along the top and bottom – that’s because this image is made to be
wrapped around a sphere shape.

Enable the Normal Map property and drag res://assets/ball_normal_map.png into the
Texture field. Try this with the Albedo color set to white at first, so you can best see the effect. Adjust
the Depth parameter to increase or decrease the strength of the effect. A negative value will make the
dimples look inset. Something between -0.5 and -1.0 works best:

Figure 5.29: A ball with a normal map

Take some time to experiment with these settings and find a combination you like. Don’t forget to
try playing the scene as well, as the ambient lighting of the WorldEnvironment feature will affect
the final result.

In the next section, you’ll learn how to adjust the WorldEnvironment settings to change the look
of the scene.

Lighting and Environment
You’ve been using the default lighting setup, which you added to your scene back in the first section.
While you may be happy with this lighting setup, you can also adjust it to dramatically change the
appearance of your game.

The WorldEnvironment node contains an Environment property that controls the background,
sky, ambient light, and other aspects of the scene’s appearance. Select the node and click the property
to expand it:

Lighting and Environment 177

Figure 5.30: Environment properties

There are a lot of settings here, some of which are only really useful in specific advanced situations.
However, these are the ones you’ll find yourself using the most often:

•	 Background and Sky: Here, you can configure the background appearance of the 3D scene. You
can choose a solid color or a Sky material. Sky materials can either be special textures that wrap
around the scene (see the next game for an example) or one that’s automatically generated by the
engine. The default sky that you’re using now is the latter: ProceduralSkyMaterial. Expand
it to take a look at the properties – you can configure the sky’s colors and the sun’s appearance.

•	 Ambient Light: This is global light that affects all meshes with the same intensity. You can set
its color and how much of it is generated by the sky. To see the effect, try setting the color to
white and reducing the Sky Contribution a bit.

•	 Screen Space Reflection (SSR), Screen Space Ambient Occlusion (SSAO), Screen Space
Indirect Lighting (SSIL), and Signed Distance Field Global Illumination (SDFGI).

These options provide more advanced control over how lighting and shadows are processed. An entire
book could be written about the art of good lighting, but for the purposes of this section, you should
know that each of these features introduces a tradeoff between realistic rendering and performance.
Most advanced lighting features are not available at all for low-end devices, such as mobile or older
PC hardware. If you’d like to learn more, the Godot documentation has an extensive introduction to
the usage of these lighting features.

3D Minigolf: Dive into 3D by Building a Minigolf Course178

The Glow lighting feature simulates the filmic effect of light that “bleeds” into its surroundings, making
objects appear to be emitting light. Note that this is different from the Emission property of materials,
which causes objects to actually emit light. Glow is enabled by default, but at a very subtle setting that
may not be apparent in bright lighting.

Feel free to experiment with the various environment settings. If you get completely lost and want to
return to the default, delete the WorldEnvironment node, and you’ll be able to add the default
version back again from the menu.

Summary
This chapter introduced you to 3D development. One of Godot’s great strengths is that the same tools
and workflow are used in both 2D and 3D. Everything you learned about the process of creating scenes,
instancing, and using signals works in the same way. For example, an interface you build with control
nodes for a 2D game can be dropped into a 3D game and will work just the same.

In this chapter, you learned how to navigate the 3D editor to view and place nodes using gizmos. You
learned about meshes and how to quickly make your own objects using Godot’s primitives. You used
GridMap to lay out your minigolf course. You learned about using cameras, lighting, and the world
environment to design how your game will appear on the screen. Finally, you got a taste of using PBR
rendering via Godot’s SpatialMaterial resource.

In the next project, you’ll continue working in 3D and extend your understanding of transforms
and meshes.

6
Infinite Flyer

In this chapter, you’ll build a 3D infinite runner (or more accurately, infinite flyer) in the vein of Temple
Run or Subway Surfers. The player’s goal is to fly as far as possible, passing through floating rings to
collect points, while avoiding obstacles. By building this game, you’ll get a feel for how to make 3D
objects interact and how to generate a 3D world automatically, rather than building it piece-by-piece
as you did in earlier games such as Minigolf or Jungle Jump.

Here are some of the new things you’ll learn in this chapter:

•	 Using transforms to rotate and move in 3D space

•	 Load and unload “chunks” of your game world

•	 How to randomly generate the game environment and game objects

•	 Saving and loading files for persistent data storage

•	 Using CharacterBody3D and detecting collisions

When completed, the game will look like this:

Figure 6.1: Finished game screenshot

Infinite Flyer180

Technical requirements
Download the game assets from the following link and unzip them into your new project folder:

https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-
Second-Edition/tree/main/Downloads

You can also find the complete code for this chapter on GitHub at: https://github.com/
PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/
tree/main/Chapter06%20-%20Infinite%20Flyer

Project setup
Create a new project in Godot to get started. As you’ve done before, download the project assets and
unzip them in the new project folder. Once you’ve created the project, you’ll start by configuring the
inputs and Godot settings needed for the game.

Inputs

You’ll control the plane with up, down, left, and right inputs. You can add them in Input Map in
the same way you’ve done with other projects. Name the four inputs pitch_up, pitch_down,
roll_left, and roll_right. You can add the arrow keys and/or the W, A, S, and D keys to
these, but if you have a game controller, you can also use a joystick for more precise control. To add
joystick inputs, you can select Joypad Axes after pressing the + button. The values are labeled, such
as Left Stick Up, so you can easily keep track of them:

Figure 6.2: Input configuration

https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Downloads
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter06%20-%20Infinite%20Flyer
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter06%20-%20Infinite%20Flyer
https://github.com/PacktPublishing/Godot-4-Game-Development-Projects-Second-Edition/tree/main/Chapter06%20-%20Infinite%20Flyer

Airplane scene 181

The nice part about this setup is that your code won’t have to be any different for the different types
of input. By using Input.get_axis() and passing in the four input events, you’ll get a result
whether the player pressed a key or moved the stick. Pressing the keys is equivalent to pushing the
stick all the way in one direction.

Now that the project is set up, you can start making your game objects, starting with the
player-controlled airplane.

Airplane scene
In this section, you’ll create the airplane that the player will control. It will fly forward while the player
can move it up, down, left, and right.

Start your new plane scene with a CharacterBody3D node named Plane and save it.

You can find the 3D model for the airplane in the assets folder, named cartoon_plane.glb.
The name indicates the model is stored as a binary .gltf file (exported from Blender). Godot imports
.gltf files as scenes containing meshes, animations, materials, and other objects that may have been
exported in the file. Click the Instance a Child Scene button and choose the plane model. You’ll see
it appears as Node3D, but it’s facing the wrong direction. Select it and set the Rotation/Y function to
180 in the Inspector feature, so that it points along the z axis, which is Godot’s “forward” direction.
Note that typing the value directly is easier than trying to rotate the node exactly using the mouse.

Model orientation
As mentioned in the previous chapter, the various 3D design programs use different axis
orientations. It’s very common to import your model and have its forward direction not match
Godot’s. If you’re making the model yourself, you can correct this when you export it, but
when you’re using a model made by someone else, it’s common to need to reorient it in Godot.

If you right-click on the cartoon_plane node and choose Editable Children, you’ll see all of the
meshes that make up the plane, plus AnimationPlayer:

Figure 6.3: Airplane meshes

Infinite Flyer182

AnimationPlayer contains an animation for making the propeller spin, so select it and set the
prop_spin animation for the Autoplay on Load function:

Figure 6.4: Autoplay animation

Collision shapes

Add a CollisionShape3D node to Plane and choose New CylinderShape3D for its Shape
setting. You can size a cylinder with the two orange size handles, but you’ll need to rotate it around
the x axis by 90 to align it with the plane’s fuselage. You can do this with the gizmo (don’t forget to
turn on snapping using the “Use Smart Snap” icon to get it perfectly aligned) or by typing the value
directly into Inspector.

The wings also need to be covered, so add a second CollisionShape3D node. This time, use
BoxShape3D. Size it to cover the wings:

Figure 6.5: Airplane collision shapes

Airplane scene 183

Scripting the plane

You can begin with the airplane’s controls. There are two axes of movement: “pitch up” and “pitch
down” will raise or lower the nose of the plane (rotating around its x axis), causing it to move up or
down. The roll_left and roll_right functions will rotate the plane around its z axis, which
causes it to go left or right.

For either input, you’ll want smooth rotation, and when the player lets go of the button or returns the
stick to the center, the plane should smoothly rotate back to its original position. You can do this by
interpolating the rotation rather than setting it directly when rotating.

About interpolation
Linear interpolation, typically abbreviated to lerp, is a term that you’ll encounter often in
game development. It means to calculate an intermediate value between two given values,
using a straight-line function. In practice, it can be used to smoothly change a value from one
value to another over time.

To begin, attach a script to the Plane node and define some variables:

extends CharacterBody3D

@export var pitch_speed = 1.1
@export var roll_speed = 2.5
@export var level_speed = 4.0

var roll_input = 0
var pitch_input = 0

The exported variables let you set the speed of the plane’s rotation in either direction, as well as the
speed of its automatic return to level flight.

In your get_input() function, you’ll check the values of the inputs from Input Map to determine
which way to rotate:

func get_input(delta):
    pitch_input = Input.get_axis("pitch_down", "pitch_up")
    roll_input = Input.get_axis("roll_left", "roll_right")

The Input.get_axis() function returns a value between -1 and 1 based on the two inputs. When
using keys, which can only be pressed or not pressed, that will mean you’ll only get -1 when one key
is pressed, 1 for the other, and 0 when neither or both are pressed. However, when using an analog
input such as a joystick axis, you can get the full range of values. This allows more precise control, as
tilting the joystick only slightly to the right will give a small roll_input value of 0.25, for example.

Infinite Flyer184

In _physics_process(), you can then rotate the plane on its x axis based on the pitch input:

func _physics_process(delta):
    get_input(delta)

    rotation.x = lerpf(rotation.x, pitch_input,
        pitch_speed * delta)
    rotation.x = clamp(rotation.x, deg_to_rad(-45),
        deg_to_rad(45))

It’s also important to use clamp() to limit the rotation so the plane doesn’t flip completely upside down.

You can test this out by making a new test scene and adding the plane and Camera3D, like this:

Figure 6.6: Test scene

Position the camera behind the plane and run the scene to test that pressing the pitch up and pitch
down inputs correctly tilts the plane up and down.

For the roll, you could rotate the body in the z axis as well, but then the two rotations would add
together, and you’d find it very difficult to get the plane back to level flight. Since for this game, you
want the plane to continue going forward, it will be easier to rotate the child mesh instead. Add this
line next in _physics_process():

$cartoon_plane.rotation.z = lerpf($cartoon_plane.rotation.z,
roll_input, roll_speed * delta)

Test it again in your test scene and make sure that the controls all work as expected.

To finish up the movement, add two more variables at the top of the script. Your plane’s flying speed
will be forward_speed. You’ll adjust this later to change the difficulty of the game. You can use
max_altitude to keep the plane from climbing offscreen:

@export var forward_speed = 25

var max_altitude = 20

In get_input(), after checking the inputs, add this to cause the plane to level out if it reaches the
maximum altitude:

if position.y >= max_altitude and pitch_input > 0:
    position.y = max_altitude
    pitch_input = 0

Building the world 185

Then, add this to _physics_process() to handle the movement. The forward velocity will be
the forward_speed amount:

velocity = -transform.basis.z * forward_speed

For the side-to-side movement (in the x direction), you can multiply by the amount of rotation to
make it faster or slower depending on how much the plane has rolled. Then, scale the speed based on
the forward speed (dividing by two to make it a little bit slower – experiment here to change the feel):

velocity += transform.basis.x * $cartoon_plane.rotation.z / deg_to_
rad(45) * forward_speed / 2.0

move_and_slide()

Your plane should now be flying forward and the controls should be working as expected. Don’t move
on to the next step until you’ve checked that the plane behaves correctly. In the next section, you will
build the environment for the plane to fly around in.

Building the world
Because this is an infinite-style game, the player will continue to fly through the world as long as
possible. That means you will need to continuously create more of the world for them to see – random
buildings, items to collect, and so on. It would be impractical to create this all ahead of time both
because you don’t know how far the player will go, and because you don’t want the game to be the
same every time you play. It would also be inefficient to load a huge game world if the player isn’t
going to see most of it.

For that reason, it makes more sense to use a chunking strategy. You’ll randomly generate the world in
smaller pieces, or chunks. You can then create these as they’re needed – as the player moves forward.
You can also remove them once they’ve been passed when the game doesn’t need to keep track of
them anymore.

World objects

Each time you generate a new chunk of the world, it’s going to contain a number of different world
objects. You can begin with two: buildings, which will be obstacles, and rings that the player tries to
collect by flying through them.

Buildings

For the first building, start a new scene with a StaticBody3D node and name it Building1. Add
a MeshInstance3D node and drag res://assets/building_meshes/Build_01.obj
into the Mesh property. Rather than a .glTF file, the building’s mesh is stored in the OBJ format.
There is also a separate .mtl file that contains the mesh’s material – Godot hides it in the FileSystem
panel, but it will be used for the texture in the mesh instance.

Infinite Flyer186

You’ll notice that the building is centered on the origin. Since your buildings are going to be of different
sizes, this will make it difficult to place them all on the ground – they’ll all have different offsets. If
your buildings are all consistently offset ahead of time, then they can be more easily placed.

To position the building mesh, change the Position property of the MeshInstance3D node to (0,
6, -8), which moves it up and places its edge on the origin. Add a collision shape by selecting the
mesh and choosing Mesh -> Create Trimesh Collision Sibling.

Save the scene in a new folder called res://buildings/ and repeat the process with the other
buildings, starting each scene with a StaticBody3D node, adding the mesh, offsetting it, and
then creating the collision shape. Since each building is a different size, here are the offsets that will
position them perfectly:

Building Offset

1 (0, 6, -8)

2 (0, 8, -4)

3 (0, 10, -6)

4 (0, 10, -6)

5 (0, 11, -4)

The chunk can now load and instance these buildings randomly to create a varied city skyline.

Rings

Rings will appear ahead of the player, and the plane needs to fly through them to score. If the plane is
very close to the center of the ring, the player will get a score bonus. As the game progresses, the rings
can become more difficult to catch – changing size, moving back and forth, and so on.

Before starting, and without looking ahead, think about which type of node would be best for the
ring object.

Did you select Area3D? Since you want to detect when the plane flies through the ring, but not collide
with it, an area’s body_entered detection will be the ideal solution.

Start the new Ring scene with Area3D and add a MeshInstance3D child. For Mesh, choose
TorusMesh, and in the mesh properties, set Inner Radius to 3.5 and Outer Radius to 4, so that
you have a narrow ring.

Add a CollisionShape3D node and choose New CylinderShape3D for its Shape. This time, set
the Height property to .5 and Radius to 3.

Building the world 187

Later, you’ll want to animate the ring moving up and down. An easy way to do this will be to move
the collision shape relative to the root node’s position. Since you’ll want the mesh to move as well,
drag the mesh to make it a child of CollisionShape3D. Rotate the collision shape 90 degrees
around x to make it stand up.

A plain white ring is not very exciting, so you can add texture. In the Mesh property of MeshInstance3D,
add New StandardMaterial3D and click to expand it. Under Albedo/Texture, add res://assets/
textures/texture_09.png. You’ll notice that the texture, which is a grid of alternating light
and dark squares, looks very stretched around the torus. You can adjust how a texture is wrapped
around the mesh by changing the UV1/Scale values. Try (12, 1, 1) for a beginning value and
adjust it to your liking. Under Shading, set Shading Mode to Unshaded – this will ensure that the
ring ignores lighting and shadows, keeping it bright and visible at all times.

Next, add a Label3D node to the Ring node. You’ll use this to show the player how many points
they scored for the ring and whether or not they got the center bonus. Set the Text/Text field to 100 so
you can see something to test. Under Text/Font, add Baloo2-Medium.ttf from the assets folder
and set the font size to 720. To make the text always face the camera, set Flags/Billboard to Enabled.

Add a script to the ring and connect the body_entered signal. The Label3D function should
be hidden at first, and the ring will be hidden when the plane touches it. There’s a problem, though:
what if a ring spawns and overlaps a building? The body_entered signal will still be triggered, but
you don’t want the building to collect the ring!

You can solve this by setting collision layers. On the Plane scene, change its Collision/Layer value
to 2 (removing 1), then come back to the Ring node and set its Collision/Mask setting to only layer
2. Now, you can be sure that if the ring sees a body enter, it can only be the plane:

extends Area3D

func _ready():
    $Label3D.hide()

After that, you need to find the distance from the plane to the center of the ring to see if the player
scored the bonus and set the text property to the correct value. If the plane hits the ring directly in
the center (closer than 2.0 units), you can also color the text yellow to indicate the perfect hit:

func _on_body_entered(body):
    $CollisionShape3D/MeshInstance3D.hide()
    var d = global_position.distance_to(body.global_position)
    if d < 2.0:
        $Label3D.text = "200"
        $Label3D.modulate = Color(1, 1, 0)
    elif d > 3.5:
        $Label3D.text = "50"

Infinite Flyer188

    else:
        $Label3D.text = "100"
    $Label3D.show()

Continuing the _on_body_entered() function, add some animation to the label to make it
move and fade out:

var tween = create_tween().set_parallel()
tween.tween_property($Label3D, "position",
    Vector3(0, 10, 0), 1.0)
tween.tween_property($Label3D, "modulate:a", 0.0, 0.5)

Lastly, give the ring a nice rotation effect:

func _process(delta):
    $CollisionShape3D/MeshInstance3D.rotate_y(deg_to_rad(50) * delta)

Chunks

Now that you’ve got the building blocks of your chunk, you can make the chunk scene itself. This
is the scene that the game will instance whenever there needs to be more of the world ahead of the
player. When you instantiate a new chunk, it will randomly place buildings along the left and right
sides, as well as spawning rings at random points along its length.

Start the Chunk scene with a Node3D node and a MeshInstance3D child named Ground.
Make the Mesh property a PlaneMesh and set its Size setting to (50, 200). This is the size of
a single chunk:

Figure 6.7: Plane size settings

Building the world 189

Position it to start at the origin by setting its Z position to -100:

Figure 6.8: Positioning the plane

Add material and use texture_01.png as the Albedo/Texture and set the UV1/Scale values to
(2, 10, 2). By default, Godot links the three scale values to keep them the same, so you’ll need
to uncheck the link button to allow them to be different:

Figure 6.9: Adjusting the UV scale

Select the Ground node and choose Mesh -> Create Trimesh Static Body to add a StaticBody3D
node and a CollisionShape3D node that matches the size of the ground.

As the plane moves toward the end of the chunk, you’ll spawn a new chunk ahead, and you can also remove
old chunks once they’ve passed by. To assist with the latter, add a VisibleOnScreenNotifier3D
node and set its Position property to (0, 0, -250), which places it past the end of the ground plane.

Infinite Flyer190

You can now add a script to the Chunk node and connect the notifier’s screen_exited signal so
that the chunk will be removed:

func _on_visible_on_screen_notifier_3d_screen_exited():
    queue_free()

At the top of the script, load the scenes that need to be instanced:

extends Node3D

var buildings = [
    preload("res://buildings/building_1.tscn"),
    preload("res://buildings/building_2.tscn"),
    preload("res://buildings/building_3.tscn"),
    preload("res://buildings/building_4.tscn"),
    preload("res://buildings/building_5.tscn"),
]
var ring = preload("res://ring.tscn")

var level = 0

Loading many scenes
In a bigger game, where you have a much larger number of buildings and possibly other scenes,
you wouldn’t want to write them all out individually in the script as you’ve done here. Another
solution would be to write code here that loads every scene file saved in a particular folder.

The level variable can be set by the main scene when the chunk is loaded to allow increasing
difficulty by spawning rings with different behaviors (more about that later).

In _ready(), the chunk needs to do three things:

•	 Spawn buildings along the sides of the ground plane

•	 Occasionally spawn buildings in the middle to act as obstacles

•	 Spawn rings

Each of these steps will involve some code, so you can keep it all organized by creating three
separate functions:

func _ready():
    add_buildings()
    add_center_buildings()
    add_rings()

Building the world 191

The first step is to spawn the side buildings. Since they need to be on both sides of the chunk, you
repeat the loop twice – once for the positive x direction and once for the negative direction. Each
time, you’ll move along the length of the chunk spawning random buildings:

func add_buildings():
    for side in [-1, 1]:
        var zpos = -10
        for i in 18:
            if randf() > 0.75:
                zpos -= randi_range(5, 10)
                continue
            var nb = buildings[randi_range(0,
                buildings.size()-1)].instantiate()
            add_child(nb)
            nb.transform.origin.z = zpos
            nb.transform.origin.x = 20 * side
            zpos -= nb.get_node("MeshInstance3D").mesh.get_aabb().size.z

The randf() function is a common random function that returns a floating point number between
0 and 1, making it easy to use to calculate percentages. Check here if the random number is greater
than 0.75 to have a 25% chance of there being no building at a particular spot.

By getting the size of the building mesh using get_aabb(), you can ensure that the buildings don’t
overlap each other. The position of the next building will be exactly at the edge of the previous one.

Next, spawning middle buildings won’t happen at the start, but later in the game, they’ll start appearing
with a 20% probability:

func add_center_buildings():
    if level > 0:
        for z in range(0, -200, -20):
            if randf() > 0.8:
                var nb = buildings[0].instantiate()
                add_child(nb)
                nb.position.z = z
                nb.position.x += 8
                nb.rotation.y = PI / 2

The third step is spawning the rings. Right now, it just positions some rings at random fixed positions.
Later, you’ll add some more variation here as the game progresses:

func add_rings():
    for z in range(0, -200, -10):
        if randf() > 0.76:
            var nr = ring.instantiate()

Infinite Flyer192

            nr.position.z = z
            nr.position.y = randf_range(3, 17)
            add_child(nr)

You’re finished setting up the chunk. When it loads, it takes care of populating itself with a random
assortment of buildings and rings, and it also removes itself when it later goes offscreen. In the next
section, you’ll bring it all together in a scene that instantiates chunks as the plane moves forward.

Main scene
In this section, you’ll make the main scene, which, in this game, will handle loading the world chunks,
displaying the game information, and starting and ending the game.

Start a new scene with a Node3D named Main. Add an instance of the Plane and an instance of
the Chunk to start with.

You’ll also need some lighting, so in the toolbar, choose the “Edit Sun and Environment settings”
dropdown and add the sun and environment to the scene:

Figure 6.10: Add environment and sun

Main scene 193

Rather than use the generated sky texture, you can use styled_sky.hdr found in the assets
folder. Select WorldEnvironment and then expand its Sky property. You’ll see that it’s set to
ProdeduralSkyMaterial. Click the down arrow and choose New PanoramaSkyMaterial. When
you expand that, you’ll see an empty Panorama property where you can drag and drop styled_sky.
hdr:

Figure 6.11: WorldEnvironment sky settings

Before you can test, you’ll also need a camera. Add a Camera3D and then add a script to it. Since it’s
a standalone node without any children, you don’t need to make it a separate saved scene:

extends Camera3D

@export var target_path : NodePath
@export var offset = Vector3.ZERO

var target = null

func _ready():
    if target_path:

Infinite Flyer194

        target = get_node(target_path)
        position = target.position + offset
        look_at(target.position)

func _physics_process(_delta):
    if !target:
        return
    position = target.position + offset

This camera script is generic and could be used in other projects where you want a camera to follow
a moving 3D object.

Select the Camera3D node and in Inspector, click Target Path and choose the Plane node. Set
Offset to (7, 7, 15), which will keep the camera behind, above, and to the right of the plane.

Figure 6.12: Camera follow settings

Play the Main scene and you should be able to fly along the chunk, collecting rings. If you run into the
buildings, nothing will happen, and when you reach the end of the chunk, you won’t see another one.

Spawning new chunks

The length of each chunk is 200, so when the plane has traveled half that distance, a new chunk
should spawn ahead at the end position of the previous chunk. The max_position setting will
keep track of the middle of the next chunk ahead, which is the position that the plane needs to reach
to spawn a new chunk.

You’ll also keep track of how many chunks have been spawned, so you can use that to determine when
the game should get harder.

Add a script to Main and add the following:

extends Node3D

var chunk = preload("res://chunk.tscn")

var num_chunks = 1
var chunk_size = 200
var max_position = -100

Main scene 195

Remember that everything is moving forward in the -z direction, so the position at the center of
the first chunk will have a z value of -100. The plane’s z coordinate will continue to decrease as it
moves forward.

In _process(), you’ll check the plane’s position, and if it goes past max_position, it’s time to
instantiate a new chunk and update max_position to the center of the next chunk:

func _process(delta):
    if $Plane.position.z  < max_position:
        num_chunks += 1
        var new_chunk = chunk.instantiate()
        new_chunk.position.z = max_position – chunk_size / 2
        new_chunk.level = num_chunks / 4
        add_child(new_chunk)
        max_position -= chunk_size

Here is where the chunk spawning happens. The new chunk gets placed at the end of the previous one.
Remember that max_position is the center of the chunk, so you also need to add chunk_size
/ 2.

Then, to get the level number, dividing by 4 results in integer division, meaning the fractional part
will be discarded. For example, on chunk number 5, 5/4 is just 1. The level will reach 2 at chunk
number 8, 3 at chunk number 12, and so on. This will give you a gradual increase in difficulty.

Play the scene. You should now see the new chunks appearing ahead of the plane as it moves forward.

Increasing difficulty

Now that you’re spawning chunks, they’re being given a level value that gradually increases. You can use
that to start making the rings more challenging to collect. For example, currently, they’re placed exactly
in the center, so the player doesn’t need to steer left or right at all. You could start randomizing the x
coordinate of the rings. You could also start making the rings move back and forth or up and down.

Add these variables to the top of ring.gd:

var move_x = false
var move_y = false

var move_amount = 2.5
var move_speed = 2.0

The two Boolean variables will let you turn on movement in the x or y direction, and move_amount
and move_speed will let you control how much movement you want.

Infinite Flyer196

When those values are set, you can check _ready(), start the movement, then use a tween:

func _ready():
    $Label3D.hide()
    var tween = create_tween().set_loops()
        .set_trans(Tween.TRANS_SINE)
    tween.stop()
    if move_y:
        tween.tween_property($CollisionShape3D,
            "position:y", -move_amount, move_speed)
        tween.tween_property($CollisionShape3D,
            "position:y", move_amount, move_speed)
        tween.play()
    if move_x:
        tween.tween_property($CollisionShape3D,
            "position:x", -move_amount, move_speed)
        tween.tween_property($CollisionShape3D,
            "position:x", move_amount, move_speed)
        tween.play()

Note that by default, a tween starts playing automatically. Since you may or may not be actually
animating a property, depending on what level the player is on, you can use stop() to stop the tween
initially and then use play() to start it once you’ve set up which property you want to affect. By using
set_loops(), you’re telling the tween to repeat the two moves endlessly, moving back and forth.

Now the ring is ready to move, your chunk can set these values when it spawns the ring. Go to chunk.
gd and update the section that spawns rings to use level:

func add_rings():
    for z in range(0, -200, -10):
        var n = randf()
        if n > 0.76:
            var nr = ring.instantiate()
            nr.position.z = z
            nr.position.y = randf_range(3, 17)
            match level:
                0: pass
                1:
                    nr.move_y = true
                2:
                    nr.position.x = randf_range(-10, 10)
                    nr.move_y = true
                3:
                    nr.position.x = randf_range(-10, 10)

Main scene 197

                    nr.move_x = true
            add_child(nr)

As you can see, once the level reaches 1, the rings will start moving up and down. At level 2, they’ll
start to have a random x position, and at level 3, they’ll start moving horizontally.

You should consider this an example of what’s possible. Feel free to create your own pattern of
increasing difficulty.

Collisions

The next step is to make the plane explode if it runs into anything, such as the ground or the buildings.
If it does, you’ll play an explosion animation, and that’s the end of the game.

Explosion

Go to your Plane scene and add an AnimatedSprite3D child. Name it Explosion.

The AnimatedSprite3D node works very much like the 2D version you used earlier in the book.
Add a new SpriteFrames resource in the Frames property, and click it to open the SpriteFrames
panel at the bottom of the screen. Drag the five images from res://assets/smoke/ into the
Animation Frames box, set Speed to 10 FPS, and turn off Loop:

Figure 6.13: Explosion sprite frames

You may notice that you can’t see the sprite in the viewport. When displaying a 2D image, which is
drawn in pixels, in 3D, the engine needs to know how big a pixel is in 3D space. To size the explosion
to match the size of the plane, set Pixel Size to 0.5 in Inspector. Under Flags, set Billboard to enabled.
This ensures that the sprite always faces the camera. You should now see a large cloud (the first frame
of the animation) superimposed on your plane.

Infinite Flyer198

Figure 6.14: Explosion sprite

You don’t want to see the explosion, so click the eye icon to hide Explosion.

Scripting the collisions

Add a new signal at the top of plane.gd, which will notify the game that the player has crashed:

signal dead

In _physics_process(), you’re using move_and_slide() to move the plane. Whenever
a CharacterBody3D node is moved with this method, it can check for slide collisions. Since it
doesn’t matter what the plane collided with, only that there was a collision, add this just after move_
and_slide():

if get_slide_collision_count() > 0:
    die()

Main scene 199

You can then define the die() function to handle what should happen when the plane crashes.
First, it will stop moving forward. Then, you can hide the plane and show the explosion, playing the
animation. Once the animation has ended, you can reset the game. Since you haven’t made the title
screen yet, you can just restart for now:

func die():
    set_physics_process(false)
    $cartoon_plane.hide()
    $Explosion.show()
    $Explosion.play("default")
    await $Explosion.animation_finished
    $Explosion.hide()
    dead.emit()
    get_tree().reload_current_scene()

You’ll remove that last line later once the rest of the game has been set up.

Play the Main scene now and try running into something to verify that the explosion plays and the
scene restarts.

Fuel and score

The next step is to keep track of the score earned when collecting the rings. You’ll also add a fuel
component to the plane. This value will steadily decrease, and the game will end if the fuel runs out.
The player gets fuel back based on collecting the rings.

Add two new signals at the top of plane.gd:

signal score_changed
signal fuel_changed

These will notify the UI to display the score and fuel values.

Then, add these new variables:

@export var fuel_burn = 1.0
var max_fuel = 10.0
var fuel = 10.0:
    set = set_fuel
var score = 0:
    set = set_score

The setter functions for these variables will update them and emit the signals:

func set_fuel(value):
    fuel = min(value, max_fuel)

Infinite Flyer200

    fuel_changed.emit(fuel)
    if fuel <= 0:
        die()

func set_score(value):
    score = value
    score_changed.emit(score)

To reduce the fuel over time, add this line to _physics_process():

fuel -= fuel_burn * delta

Try playing the main scene and you’ll see that you run out of fuel and explode after about 10 seconds.

Now, you can make the rings update the score and give some fuel back based on how close the player
was to the center of the ring. You’re already setting the ring’s label, and you can do the rest in the
same section of ring.gd:

if d < 2.0:
    $Label3D.text = "200"
    $Label3D.modulate = Color(1, 1, 0)
    body.fuel = 10
    body.score += 200
elif d > 3.5:
    $Label3D.text = "50"
    body.fuel += 1
    body.score += 50
else:
    $Label3D.text = "100"
    body.fuel += 2.5
    body.score += 100

If you test again, you should be able to fly longer as long as you keep collecting rings. It’s hard to tell how
much fuel you have left, though, so you should add a UI overlay that displays the fuel and the score.

UI

Create a new scene with a CanvasLayer layer called “UI”. Add two children: TextureProgressBar
(FuelBar) and Label (Score).

Set the text in the Score box Text property to 0 and add the font as you’ve done before, setting its
Size to 48. Use the toolbar menu to set the layout to Top Right.

Main scene 201

For FuelBar, you have two textures in the assets folder. You can use bar_red.png for the
Progress texture and bar_glass.png for the Over texture. Under Range, set Max Value to 10
and Step to 0.01.

You can position the bar in the bottom left, but if you want to resize it, you’ll need to change a few
more settings. Check the box labeled Nine Patch Stretch in Inspector. You can then resize the bar by
dragging its bounding box. However, you’ll notice that the outline becomes very distorted – scale it
very large to see the effect. To prevent this, keeping the borders unsized while stretching the interior,
is what nine patch stretch does. Under Stretch Margin, set all four values to 6. You’ll see that now,
no matter how you resize the bar, the borders remain unstretched:

Figure 6.15: Nine patch stretch settings

Make the bar a comfortable size and then add a script to UI:

extends CanvasLayer

func update_fuel(value):
    $FuelBar.value = value

func update_score(value):
    $Score.text = str(value)

Infinite Flyer202

Add an instance of the UI scene to Main. Connect the plane’s score_changed signal and the
fuel_changed signal to the functions you just made on the UI:

Figure 6.16: Connecting the plane’s signal to the UI

Play the scene once again and verify that the bar shows the fuel changing and that the score updates
correctly when rings are collected.

You are almost done! You have a mostly working game at this point. Take a moment to play it a few
times to make sure you’re not missing any of the interactions. Are the chunks increasing in difficulty
as you fly farther? You should see moving rings and then rings that spawn to the left and right of the
center. Make sure to review the previous sections if there’s anything you are unclear about. When
you’re ready, move on to making the title screen.

Title screen
The purpose of the title screen is to introduce the game and give a way to start it by pressing a button.
This section will not go into much detail on the styling – you should experiment with the settings
and try to make it look pleasing.

Start your TitleScreen scene with a Control node and add a Label and a TextureButton
plus a TextureRect for the background.

You can use styled_sky.hdr for the TextureRect’s Texture property. It’s a lot bigger than the
screen size, so feel free to scale and/or position it as you like.

Audio 203

For TextureButton, there are three images in the res://assets/buttons/ folder for the
Normal, Pressed, and Hover textures. The images are quite large to allow for sizing, so you can check
Ignore Texture Size and set Stretch Mode to Keep Aspect to allow you to resize it.

The Label node is there to display the game’s title. Set up the font with large font size, such as 128.
Arrange Label and TextureButton on the screen. Set both of their layouts to Center and then
move them up and down to position them.

The only code needed is to determine what to do when the button is pressed, so add a script to the scene
and connect the button’s pressed signal. When the button is pressed, it should load the main scene:

extends Control

func _on_texture_button_pressed():
    get_tree().change_scene_to_file("res://main.tscn")

To return to the title screen at the end of the game, remove get_tree().reload_current_
scene() from the plane’s die() function, and then go to the Main scene and connect the plane
instance’s dead signal:

var title_screen = "res://title_screen.tscn"
func _on_plane_dead():
    get_tree(). change_scene_to_file(title_screen)

Now when you crash, you should immediately return to the title screen, where you can press Play again.

Audio
There are two sound effect files located in the assets folder: impact.wav for the plane’s explosion
and three_tone.wav for the ring collection sound. You can add AudioStreamPlayer nodes
to the Plane and Ring scenes to play them at the appropriate time.

For the background music, which should be played in a loop during the game, add AudioStreamPlayer
to the Main scene, using Riverside Ride Short Loop.wav for Stream. Since it needs to
play automatically at the start, you can check the Autoplay box.

The audio for this game is intentionally kept simple and upbeat. While there’s a sound effect for each
major game event (flying through a ring, crashing), you could also try adding additional sounds for
the airplane engine, bonuses, or a warning when fuel is low. Experiment to see what works for you.

Saving a high score
Saving the player’s high score is another common feature in many games (and one that you can add to
the other games in this book as well). Since the score needs to be saved between sessions of the game,
you’ll need to save it in an external file that the game can read the next time you open it.

Infinite Flyer204

Here’s the process:

1.	 When the game launches, check for a save file.

2.	 If the save file exists, load the score from it, otherwise use 0.

3.	 When a game ends, check if the score is higher than the current high score. If it is, save it to
the file.

4.	 Show the high score on the title screen.

Since you’ll need to access the high score variable from different parts of your game, it makes sense
to use an autoload. In the Script editor, click File -> New Script and name it global.gd. To begin,
you’ll need two variables:

extends Node

var high_score = 0

var score_file = "user://hs.dat"

About file locations

You’ll notice that the path for the save file doesn’t begin with res:// like all of the other files you’ve
been working with. The res:// designation represents your game’s project folder – the place where
all the scripts, scenes, and assets are located. When you export your game, though, that folder becomes
read-only. To store persistent data, you use a location on the device that’s set aside for the game to write
to: user://. Where this folder is actually located depends on the operating system you’re using. For
example, in Windows, it would be %APPDATA%\Godot\app_userdata\[project_name].
You can find the paths for other supported operating systems here:

https://docs.godotengine.org/en/stable/tutorials/io/data_paths.html

Accessing files

Accessing files in Godot is done via the FileAccess object. This object handles opening, reading,
and writing files. Add these functions to global.gd:

func _ready():
    load_score()

func load_score():
    if FileAccess.file_exists(score_file):
        var file = FileAccess.open(score_file,
            FileAccess.READ)
        high_score = file.get_var()

Saving a high score 205

    else:
        high_score = 0

func save_score():
    var file = FileAccess.open(score_file, FileAccess.WRITE)
    file.store_var(high_score)

As you can see, the script calls load_score() in _ready(), so it’s done immediately when the
game is launched. The load_score() function uses FileAccess to check if the save file exists,
and if it does, it opens it and retrieves the data that was stored in it using get_var().

The save_score() function does the opposite. Note that you don’t have to check if the file exists
– if you try to write to a file that doesn’t exist, it will be created.

Save this script and add it as an autoload in Project Settings:

Figure 6.17: Adding a global script

Go to your Title scene and add another Label node to display the high score. Set its font and
arrange it on the screen – the bottom middle might be a good choice. Add this to the script, so that
the score will be displayed whenever the title screen loads:

func _ready():
    $Label2.text = "High Score: " + str(Global.high_score)

Finally, at the end of the game, you’ll need to check if there’s a new high score. The score variable is
kept on the plane, so open plane.gd and find the die() function, which is called when the game
ends. Add a score check and call save_score() if needed:

if score > Global.high_score:
    Global.high_score = score
    Global.save_score()

Run the game to test that the high score is being displayed, saved, and loaded again when you run
the game the next time.

Infinite Flyer206

This technique can be used for any type of data that you want to save between runs of your game. It’s a
useful technique, so be sure to try it out with your own projects in the future. Reusing code is a great
way to accelerate development, so once you’ve got a save system that you’re happy with, stick with it!

Suggestions for additional features
For an additional challenge, try to expand the game by adding more features. Here are some suggestions
to get you started:

•	 Track the distance the player flies in each game, and save the maximum value as a high score.

•	 Increase the speed incrementally as time goes on or include boost items that increase the
plane’s speed.

•	 Flying obstacles that need to be dodged, such as other planes or birds.

•	 (Advanced) Instead of only straight lines, add curved chunks as well. The player will have to
steer and the camera will have to move to stay behind them.

This would also be a great game for you to experiment with building a game for a mobile platform.
See the next chapter for information about exporting games.

Summary
In this chapter, you extended your 3D skills by learning about more of Godot’s 3D nodes, such as
the CharacterBody3D. You should have a good understanding of the 3D transform and how it
works to move and rotate an object in space. Randomly generating chunks, while relatively simple in
this game, is something that you can extend to much larger games and more complex environments.

Congratulations, you’ve made it to the end of the last project! But with these five games, your journey
to becoming a game developer has just begun.

In the next chapter, you can read about some other topics that didn’t quite fit into the example games,
as well as find some pointers for where to go next in building your game development skills.

7
Next Steps and Additional

Resources

Congratulations! The projects you’ve built in this book have started you on the road to becoming a
Godot expert. However, you’ve only just scratched the surface of what’s possible in Godot. As you
become more proficient and the sizes of your projects grow, you’ll need to know how to find solutions
to your problems, how to distribute your games so they can be played, and even how to extend the
engine yourself.

In this chapter, you’ll learn about the following topics:

•	 How to effectively use Godot’s built-in documentation

•	 Using Git to back up and manage your project files

•	 An overview of some of the vector math concepts you’ll encounter in most game projects

•	 Using Blender, an open source 3D modeling application, to make 3D objects you can use in Godot

•	 Exporting projects to run on other platforms

•	 An introduction to shaders

•	 Using other programming languages in Godot

•	 Community resources where you can get help

•	 Becoming a Godot contributor

This chapter will help you move on from the book’s projects and begin making your own games. You
can use the information here to find additional resources and guidance, as well as some more advanced
topics that didn’t fit in with the beginner projects covered earlier.

Next Steps and Additional Resources208

Using Godot’s documentation
Learning Godot’s API can seem overwhelming at first. How can you learn about all the different nodes
and the properties and methods each one contains? Fortunately, Godot’s built-in documentation is
there to help you. Develop the habit of using it often: it will help you find things when you’re learning,
but it’s also a great way to quickly look up a method or property for reference once you know your
way around.

Leveling up your skills
Learning to effectively use API documentation is the number one thing you can do to dramatically
boost your skill level. Keep a docs tab open in your web browser while you’re working and
reference it often, looking up the nodes and/or functions you’re using.

When you are in the Script tab of the editor, you’ll see the following buttons in the upper-right corner:

Figure 7.1: Documentation buttons

The Online Docs button will open the documentation website in your browser. If you have a multimonitor
setup, it can be very useful to keep the API reference open on one side for quick reference while you’re
working in Godot. For example, if you’re working with a node’s position, you can take a look at
the Vector2 document and see all of the functions available for that data type.

The other button allows you to view the documentation directly in the Godot editor. Clicking Search
Help lets you search for any method or property name. The search is smart, meaning you can type part
of a word and the results will be narrowed down as you type. Take a look at the following screenshot:

Figure 7.2: Searching for help

Using Godot’s documentation 209

When you find the property or method you’re looking for, click Open and the documentation reference
for that node will appear.

Reading the API documentation

When you’ve found the documentation for the node you want, you’ll see that it follows a common
format, with the name of the node at the top followed by several subsections of information, as shown
in the following screenshot:

Figure 7.3: API documentation

At the top of the page is a list called Inherits, which shows the chain of classes that a particular node
is built from, all the way back to Object, which is Godot’s base object class. For example, Area2D
has the following inheritance chain:

  CollisionObject2D < Node2D < CanvasItem < Node < Object

This lets you quickly see what other properties this type of object may have. For example, an Area2D
node has a position property because that property is defined by Node2D – any node that inherits
from Node2D will also have a position in 2D space. You can click on any of the node names to jump
to that node’s documentation.

You can also see a list of what node types, if any, inherit from that particular node, as well as a general
description of the node. Below that, you can see the member variables and methods of the node. The
names of most methods and types are links, so you can click on any item to read more about it. Note
that these names and descriptions are the same ones that show when you hover over a property in
the Inspector.

Develop the habit of consulting the API documentation regularly as you’re working. You’ll find that
you will quickly begin to develop a stronger understanding of how everything works together.

Next Steps and Additional Resources210

Version control – using Git with Godot
It happens to everyone – at a certain point, you’ll make a mistake. You’ll accidentally delete a file or
just change some code in a way that breaks everything, but you can’t figure out how to get back to
the working version.

The solution to this problem is version control software (VCS). The most popular VCS, used by
developers all over the world, is Git. When you use Git with your projects, every change you make is
tracked, allowing you to “rewind” time at any point and recover from unwanted changes.

Fortunately, Godot is very VCS-friendly. All the content of your game is kept in the project folder.
Scenes, scripts, and resources are all saved in a human-readable text format that is easy for Git to track.

Git is typically used via a command-line interface, but there are graphical clients you can use as well.
There is also a Git plugin available in Godot’s AssetLib that you can try.

In any case, the basic workflow can be broken down into two steps:

1.	 Add the files you want to track.

2.	 Commit the changes you have made.

In addition, you can use a website such as GitHub or GitLab to store and share your Git-based projects.
This is a common way that developers collaborate on projects – indeed, the entire Godot source code is
stored and managed on GitHub. If you’re doing this, you’ll have a third step: pushing your committed
changes to the remote repository.

Most developers use the command-line version of Git, which you can install from your OS package
manager or download directly from https://git-scm.com/downloads. There are also many
GUI interfaces, such as Git Kraken or GitHub Desktop.

The details of using Git are beyond the scope of this book, but here is an example of the most basic
usage: creating and updating a repository to save your changes. All of these steps will be done using
your computer’s terminal or command-line interface:

1.	 Create a new Git repository in your project folder. Navigate to the folder and type the following:

~/project_folder/$ git init

2.	 After working on your project, add the new and/or updated files to the repository by typing
the following:

~/project_folder/$ git add *

3.	 Commit your changes, creating a “checkpoint” in time that you can rewind to if necessary:

~/project_folder/$ git commit -m "short description"

https://git-scm.com/downloads

Using Blender with Godot 211

Repeat steps 2 and 3 every time you add a new feature or make changes to your project.

Make sure to type something descriptive in the commit message. If you need to rewind to a certain
point in your project’s history, it will help you identify the change you are looking for.

There’s a lot more to Git than just the above. You can create branches – multiple versions of your
game’s code, collaborate with others making changes at the same time, and much more. Here are some
suggestions of where you can learn more about how to use Git with your projects:

•	 https://docs.github.com/en/get-started/quickstart/git-and-
github-learning-resources

•	 Mastering Git (book) by Jakub Narębski

It may seem hard at first – Git has a difficult learning curve – but it is a skill that will serve you well,
and you’ll really appreciate it the first time it saves you from a disaster! You may even find that Git is
helpful with your non-game projects as well.

In the next section, you’ll see how to use the popular Blender modeling tool to create 3D objects and
use them in Godot.

Using Blender with Godot
Blender is a very popular open source 3D modeling and animation program (it does a lot of other
things too). If you’re planning on making a 3D game and you need to make items, characters, and
environments for your game, Blender is probably your best option for doing so.

The most common workflow is to export glTF files from Blender and import them into Godot. This
is a stable and reliable workflow and will work well in most situations.

When you export a glTF file, you have two options: glTF binary (.glb) and glTF text (.gltf).
The binary version is more compact and is therefore the preferred format, but either will work fine.

Import hints

It’s common to import meshes from Blender and then make modifications such as adding collisions
or removing unneeded nodes. To simplify this, you can add suffixes to the names of your objects to
give Godot a hint about how you want them to be processed on import. Here are some examples:

•	 -noimp – These objects will be removed from the imported scene.

•	 -col, -convcol, -colonly – These options tell Godot to make a collision shape from
the named mesh. The first two options make a child triangle mesh or convex polygon shape,
respectively. The -colonly option will remove the mesh entirely and replace it with a
StaticBody3D collision.

https://docs.github.com/en/get-started/quickstart/git-and-github-learning-resources
https://docs.github.com/en/get-started/quickstart/git-and-github-learning-resources
https://docs.github.com/en/get-started/quickstart/git-and-github-learning-resources

Next Steps and Additional Resources212

•	 -rigid – This object will be imported as a RigidBody3D.

•	 -loop – Blender animations with this suffix will be imported with the loop option enabled.

See the documentation for more details on all the possible import suffixes.

Using blend files

With Godot 4, you have an additional option: importing .blend files directly into your Godot
project. In order to use this feature, you need to have Blender installed on the same computer you’re
using for Godot.

To set it up, open Editor Settings and look under FileSystem | Import. Here, you can set the path
where you’ve installed Blender.

Figure 7.4: Setting up Blender support

Click the folder icon to browse to your Blender location. Once you’ve set this value, you can drop
your .blend files directly into your Godot project folder. This can make prototyping and iterating
your designs much faster. You can open Blender, save a change to the design, and then when you tab
back to Godot, you’ll instantly see it updated.

Blender is an important tool to learn if you plan on making 3D games. Because of its open source
nature, it’s a great fit for working with Godot. While its learning curve can be challenging, investing
time in learning it will give you a huge benefit when designing and building 3D games.

Now that you’ve explored how to import external content into your game project, the next section will
explain how you can export your game to run on other systems, such as mobile devices, PCs, or the web.

Exporting projects
Eventually, your project will reach the stage where you want to share it with the world. Exporting your
project means converting it into a package that can be run by someone who doesn’t have the Godot
editor. You can export your project to a number of popular platforms.

Exporting projects 213

Godot supports the following target platforms:

•	 Android (mobile)

•	 iOS (mobile)

•	 Linux

•	 macOS

•	 HTML5 (web)

•	 Windows Desktop

•	 UWP (Windows Universal)

The requirements for exporting a project vary depending on the platform you are targeting. For
example, to export to iOS, you must be running on a macOS computer with Xcode installed.

Each platform is unique, and some features of your game may not work on some platforms because
of hardware limitations, screen size, or other factors. As an example, if you wanted to export the Coin
Dash game for an Android phone, your player wouldn’t be able to move because the user wouldn’t
have a keyboard! For that platform, you would need to include touchscreen controls in your game’s
code (more about this later).

Every platform is unique, and there are many factors to consider when configuring your project for export.
Consult the official documentation for the latest instructions on exporting to your desired platform.

Exporting for consoles
While it’s perfectly possible for Godot games to run on consoles such as Switch or Xbox, the
process is more complex. Console companies such as Nintendo and Microsoft require the
developer to sign a contract that includes a secrecy clause. That means that, while you can make
your game run on the console, you can’t share the code you wrote to make it work publicly.
If you do plan to release your game on a console platform, you’ll either need to do that work
yourself or partner with a company that has already entered such an agreement.

Getting the export templates

Export templates are versions of Godot that are compiled for each target platform but don’t include the
editor. Your project will be combined with the target platform’s template to create a standalone application.

Next Steps and Additional Resources214

To begin, you must download the export templates. Select Manage Export Templates from the
Editor menu:

Figure 7.5: Manage Export Templates

In this window, you can click Download and Install to fetch the export templates matching the version
of Godot you are using. If you’re running multiple versions of Godot for some reason, you’ll see the
other versions listed in the window.

Export presets

When you’re ready to export your project, click on Project | Export.

Figure 7.6: Export settings

In this window, you can create presets for each platform by clicking Add… and selecting the platform
from the list. You can make as many presets for each platform as you wish. For example, you may
want to create both “debug” and “release” versions of your projects.

Each platform has its own settings and options – too many to describe here. The default values are
typically good, but you should test them thoroughly before distributing the project. Consult the official
documentation at https://docs.godotengine.org/ for details.

https://docs.godotengine.org/

Exporting projects 215

Exporting

There are two export buttons at the bottom of the export window. The first button, Export PCK/ZIP…,
will only create a PCK, or packed, version of your project’s data. This doesn’t include an executable,
so the game can’t be run on its own. This method is useful if you need to provide add-ons, updates,
or downloadable content (DLC) for your game.

The second button, Export Project…, will create an executable version of your game, such as an .exe
for Windows or an .apk for Android.

Figure 7.7: Export dialog

In the next dialog, you can choose where to save your exported project. Take note of the Export with
Debug checkbox, which is checked by default. You’ll want to disable this when it is time to export the
final, released version of your game.

Exporting for specific platforms

The exact steps and requirements for exporting vary depending on your target platform. For example,
exporting to desktop platforms (Windows, MacOS, Linux) is very straightforward and will work
without any additional configuration.

Exporting on mobile platforms, however, can be more complex. To export for Android, for example,
you’ll need to install Google’s Android Studio and configure it correctly. The detailed requirements
can change regularly as mobile platforms update, so you should check the Godot documentation at
this link for the most accurate information: https://docs.godotengine.org/en/latest/
tutorials/export/

https://docs.godotengine.org/en/latest/tutorials/export/
https://docs.godotengine.org/en/latest/tutorials/export/

Next Steps and Additional Resources216

Once you’ve configured the platforms you wish to export, the window will look like this:

Figure 7.8: Ready to export

Godot’s export system is comprehensive and robust. You can manage multiple versions, export different
features for different platforms, and many other options. While it may seem complex at first, remember
that the complexity mostly comes from the rules of a particular platform. It’s best if you practice with
desktop platforms first before attempting to work with mobile.

In the next section, you’ll learn about how visual effects are implemented using a special type of
program called a shader.

Introduction to shaders
A shader is a program that is designed to run on the GPU and alters the way that objects appear on
the screen. Shaders are used extensively in both 2D and 3D development to create a variety of visual
effects. They are called shaders because they were originally used for shading and lighting effects, but
today they are used for a wide variety of visual effects. Because they run in the GPU in parallel, they
are very fast but also come with some restrictions.

Learning more
This section is a very brief introduction to the concept of shaders. For a more in-depth
understanding, see https://thebookofshaders.com/​ and Godot’s shader documentation
at https://docs.godotengine.org/en/latest/tutorials/shaders/.

https://thebookofshaders.com/
https://thebookofshaders.com/
https://docs.godotengine.org/en/latest/tutorials/shaders/

Introduction to shaders 217

Earlier in this book, when you added a StandardMaterial3D to a mesh, you were actually adding
a shader – one that’s pre-configured and built into Godot. It’s great for many common situations, but
sometimes you need something more specific, and for that, you’ll need to write shader code.

In Godot, you’ll write shaders in a language very similar to GLSL ES 3.0. If you are familiar with C-style
languages, you’ll find the syntax very similar. If you are not, it may look strange to you at first. See the
end of this section for links to further resources where you can learn more.

Shaders in Godot come in several types:

•	 spatial (for 3D rendering)

•	 canvas_item (for 2D rendering)

•	 particles (for rendering particle effects)

•	 sky (for rendering 3D sky materials)

•	 fog (for rendering volumetric fog effects)

The first line of your shader must declare which of these types you are writing. Typically, this will be
automatically filled in for you when you add a shader to a particular type of node.

After determining the type of shader, you can then choose what phase(s) of the rendering process
you want to affect:

•	 Fragment shaders are used to set the color of all affected pixels

•	 Vertex shaders can modify the vertices of a shape or mesh, changing its apparent shape

•	 Light shaders are applied to alter the way light is processed for an object

For each of these three shader types, you will write code that will be run simultaneously on every
affected item. This is where the real power of shaders comes from. For example, when using a fragment
shader, the code is run on every pixel of the object at the same time. This is a very different process
than what you might be used to using a traditional language, where you would loop over each pixel
one at a time. That kind of sequential code just isn’t fast enough to handle the huge number of pixels
modern games need to process.

The importance of the GPU
Consider a game running at the relatively low resolution of 480 x 720 – a typical phone resolution.
The total number of pixels on the screen is almost 350,000. Any manipulation of those pixels
in code must happen in less than 1/60 of a second to avoid lag – even less when you consider
the rest of your code that also has to run on every frame: game logic, animation, networking,
and everything else. This is why GPUs are so important, especially for high-end games that
may be processing millions of pixels each and every frame.

Next Steps and Additional Resources218

Creating a 2D shader

To demonstrate some shader effects, create a scene with a Sprite2D node and choose any texture
you like. This demo will use the player image from Coin Dash:

Figure 7.9: Player sprite

A shader can be added to any CanvasItem derived node – in this case, Sprite2D, via its Material
property. In this property, select New ShaderMaterial and click on the newly created resource.

Figure 7.10: Adding a shader material

The first property is Shader, where you can choose New Shader. When you do, a Create Shader
panel appears.

Figure 7.11: Create Shader options

Introduction to shaders 219

Note that Mode is already showing the correct shader type, but you’ll need to supply a filename for
the shader. By default, Godot shader files end in .gdshader. Click Create and then you can click
your new shader to edit it in the bottom panel.

Your new shader has the following code by default:

shader_type canvas_item;

void fragment() {
    // Place fragment code here.
}

Shader functions have a number of built-ins, which are either input values or output values. For
example, the TEXTURE input built-in contains the pixel data of the object’s texture, while the COLOR
output built-in is used to set the pixel color. Remember, the code in the fragment shader will affect
the color of every processed pixel.

When working with shaders in the TEXTURE property, for example, coordinates are measured in
a normalized (that is, ranging from 0 to 1) coordinate space. This coordinate space is called UV to
distinguish it from the x/y coordinate space.

Figure 7.12: UV coordinate space

As a very small example, our first shader will change the color of each pixel in the image based on
its UV position.

Type the following code into the Shader Editor panel:

shader_type canvas_item;

void fragment() {
COLOR = vec4(UV.x, UV.y, 0.0, 1.0);
}

Next Steps and Additional Resources220

Figure 7.13: Color gradient

As soon as you do this, you’ll see the entire image change to a gradient of red and green. What
happened? Look at the preceding UV image – as we move from left to right, the red value increases
from 0 to 1, and the green does the same from bottom to top.

Let’s try another example. This time, to allow you to choose the color, you can use a uniform variable.

Uniforms allow you to pass data into the shader from outside. Declaring a uniform variable will
cause it to appear in the Inspector (similar to the way @export works in GDScript) and also allows
you to set it via code:

shader_type canvas_item;

uniform vec4 fill_color : source_color;

void fragment() {
    COLOR = fill_color;
}

You’ll see that Fill Color has appeared under Shader Parameters in the Inspector, and you can change
its value.

Introduction to shaders 221

Figure 7.14: Shader Parameters

Why did the entire rectangle of the image change color in these examples? Because the output COLOR
is applied to every pixel. Our player image has transparent pixels surrounding it, so we can ignore
those by not changing the pixel’s a value:

COLOR.rgb = fill_color.rgb;

Now we can change the color of the object. Let’s turn it into a “hit” effect so that we can make the
object flash whenever it’s hit:

shader_type canvas_item;

uniform vec4 fill_color : source_color;
uniform bool active = false;

void fragment() {
    if (active == true) {
        COLOR.rgb = fill_color.rgb;
    }
}

Note that now you can toggle the color on and off by clicking the Active property. Since both uniform
variables appear in the Inspector, you could now add a track to an AnimationPlayer that animates
these values for your visual effect.

Here’s another example. This time, we’ll create an outline around the image:

shader_type canvas_item;

uniform vec4 line_color : source_color;
uniform float line_thickness : hint_range(0, 10) = 0.5;

Next Steps and Additional Resources222

void fragment() {
    vec2 size = TEXTURE_PIXEL_SIZE * line_thickness;
    float outline = texture(TEXTURE, UV + vec2(-size.x,
        0)).a;
    outline += texture(TEXTURE, UV + vec2(0, size.y)).a;
    outline += texture(TEXTURE, UV + vec2(size.x, 0)).a;
    outline += texture(TEXTURE, UV + vec2(0, -size.y)).a;
    outline = min(outline, 1.0);

    vec4 color = texture(TEXTURE, UV);
    COLOR = mix(color, line_color, outline - color.a);
}

In this shader, we have a lot more going on. We’re using the built-in TEXTURE_PIXEL_SIZE to
get the normalized size of each pixel (its size compared to the size of the image). Then, we get a float
value that “adds up” how transparent the pixels on all four sides of the image are. Finally, we use the
mix() function to combine the original pixel’s color with the line color based on that outline value.

Figure 7.15: Outline shader

An important thing to note – did you notice that the outline did not go below the character’s feet? This
is because an object’s shader can only affect the pixels of that image. Since the character’s feet in this
image are on the edge, there are no pixels available below them that can be affected by the shader. It’s
important to keep this in mind when working on 2D shader effects. If you’re creating 2D art, leave a
border of a few pixels around the image to prevent clipping at the edges.

3D shaders

Let’s try one 3D shader so you can see how the vertex() shader works. In a new scene, add a
MeshInstance3D with a PlaneMesh shape. So that you can see the vertices better, select Display
Wireframe from the Perspective menu.

Introduction to shaders 223

Click the Mesh resource to expand it and add a new shader in the Material property, just like you
did previously.

Figure 7.16: Adding a shader to the plane

Since we’re using a plane shape, we have four vertices: the four corners of the shape. The vertex()
function will apply an effect to each of these vertices. For example, adding to their y value would
move them all upward.

Let’s start with this code:

shader_type spatial;

void vertex() {
    VERTEX.y += sin(10.0 * UV.x) * 0.5;
}

Note that we’re using a spatial type shader now, since our node is a Node3D.

Next Steps and Additional Resources224

Figure 7.17: Shifting the vertices

It doesn’t look like much changed – the two vertices in the +X direction moved down a little bit. But
UV.x is only either 0 or 1, so the sin() function doesn’t have much to do. To see more variation,
we need to add more vertices. In the mesh properties, change both Subdivide Width and Subdivide
Depth to 32.

Figure 7.18: Working with more vertices

Now we can see much more variation in the effect, as the different vertices along the x axis are moved
up or down in a smooth sine wave.

For one more fun effect, let’s use the TIME built-in to animate the effect. Change the code to this:

VERTEX.y += sin(TIME + 10.0 * UV.x) * 0.5;

Take some time to experiment with this. Don’t be afraid to try things – experimentation is a great way
to become more comfortable with how shaders work.

Using other programming languages in Godot 225

Learning more

Shaders are capable of an amazing range of effects. Experimenting with Godot’s shader language is a
great way to learn the basics. The best place to start is with the shader section of Godot’s documentation:

https://docs.godotengine.org/en/latest/tutorials/shaders/

There is also a wealth of resources on the internet for learning more. When learning about shaders,
you can use resources that aren’t specific to Godot, and you shouldn’t have much trouble getting them
to work in Godot. The concept is the same across all types of graphics applications.

In addition, Godot’s documentation includes a page on converting shaders from other popular sources
into Godot’s version of GLSL.

To see some examples of just how powerful shaders can be, visit https://www.shadertoy.com/​.

This section was only a brief introduction to the in-depth topic of shaders and shader effects. While
it can be a very challenging subject to master, the power it gives you makes it well worth the effort.

In the next section, you’ll see how it’s possible to use other programming languages with Godot.

Using other programming languages in Godot
The projects in this book have all been written using GDScript. GDScript has a number of advantages
that make it the best choice for building your games. It is very tightly integrated with Godot’s API, and
its Python-style syntax makes it useful for rapid development while also being very beginner-friendly.

It’s not the only option, however. Godot also supports two other “official” scripting languages and also
provides tools for integrating code using a variety of other languages.

C#

C# is very popular in game development, and the Godot version is based on the .NET 6.0 framework.
Because of its wide use, there are many resources available for learning C# and a great deal of existing
code in the language for accomplishing a variety of game-related functions.

At the time of writing, Godot version 4.0 is still relatively new. Features are being added and bugs are being
fixed continuously, so see the C# documentation at this link to get the latest information: https://
docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/index.html

If you want to try out the C# implementation, you’ll need to first make sure you have the .NET SDK
installed, which you can get from https://dotnet.microsoft.com/download. You must
also download the Godot version that has C# support included, which you can find at http://
godotengine.org/download, where it is labeled Godot Engine - .NET.

https://docs.godotengine.org/en/latest/tutorials/shaders/
https://www.shadertoy.com/
https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/index.html
https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/index.html
https://dotnet.microsoft.com/download
http://godotengine.org/download
http://godotengine.org/download

Next Steps and Additional Resources226

You’ll also need to use an external editor – such as Visual Studio Code or MonoDevelop – that provides
more debugging and language functionality than Godot’s built-in editor. You can set this in Editor
Settings under the Dotnet section.

To attach a C# script to a node, select the language from the Attach Node Script dialog:

Figure 7.19: Create script dialog

In general, scripting in C# works very much the same as what you’ve already done in GDScript. The
main difference is that the API functions are renamed in PascalCase to follow C# standards instead
of the snake_case that’s standard for GDScript.

There are also a number of existing C# libraries that you may find useful in building your game.
Things such as procedural generation, artificial intelligence, or other intensive topics may be easier
to implement using available C# libraries.

Here’s an example of CharacterBody2D movement in C#. Compare this with the movement script
in Jungle Jump:

using Godot;

public partial class MyCharacterBody2D : CharacterBody2D
{
    private float _speed = 100.0f;
    private float _jumpSpeed = -400.0f;

    // Get the gravity from the project settings so you can
       sync with rigid body nodes.
    public float Gravity = ProjectSettings.GetSetting(
        "physics/2d/default_gravity").AsSingle();

Using other programming languages in Godot 227

    public override void _PhysicsProcess(double delta)
    {
        Vector2 velocity = Velocity;

        // Add the gravity.
        velocity.Y += Gravity * (float)delta;

        // Handle jump.
        if (Input.IsActionJustPressed("jump") &&
        IsOnFloor())
            velocity.Y = _jumpSpeed;

        // Get the input direction.
        Vector2 direction = Input.GetAxis("ui_left",
            "ui_right");
        velocity.X = direction * _speed;

        Velocity = velocity;
        MoveAndSlide();
    }
}

For more details about setting up and using C#, see the Scripting section of the documentation
linked above.

Other languages – GDExtension

There are many programming languages to choose from. Each has its strengths and weaknesses, as
well as its fans who prefer to use it over other options. While it doesn’t make sense to support every
language directly in Godot, there are situations where GDScript is not sufficient to solve a particular
problem. Perhaps you want to use an existing external library, or you’re doing something computationally
intensive – such as AI or procedural world generation – that it doesn’t make sense to write in GDScript.

Because GDScript is an interpreted language, it trades performance for flexibility. This means that for
some processor-intensive code, it can run unacceptably slow. In this case, the highest performance
would be achieved by running native code written in a compiled language. In this situation, you can
move that code to GDExtension.

GDExtension is a technology that opens up the same API available to GDScript and C#, making it
possible to write code in other languages that talks to Godot. By default, it works directly with C and
C++, but by using third-party bindings, you can use it with many other languages.

Next Steps and Additional Resources228

At the time of writing, several projects are available that use GDExtension to allow you to use other
languages for scripting. These include C, C++, Rust, Python, Nim, and others. While these additional
language bindings are still relatively new at the time of writing, they each have a dedicated group of
developers working on them. If you’re interested in using a particular language with Godot, a Google
search of “godot + <language name>” will help you find what’s available.

Working with other programming languages is certainly not required for just about any game project
you may encounter, so don’t feel that it’s something you need to learn if it’s foreign to you. It’s presented
here for those to whom it might be useful, and it’s something to keep in mind if you have a preferred
language you’d like to work with.

In the next section, you can explore the community resources that are available for you to learn more
about how Godot works, find examples, and even get help with your own projects.

Getting help – community resources
Godot’s online community is one of its strengths. Because of its open source nature, there is a wide
variety of people working together to improve the engine, write documentation, and help each other
with issues.

You can find a list of official community resources at https://godotengine.org/community.
These links may change over time, but the following are the main community resources you should
be aware of:

•	 GitHub – https://github.com/godotengine/​

The Godot GitHub repository is where Godot’s developers work. You can find Godot’s source
code there if you find yourself needing to compile a custom version of the engine for your own
use or if you’re just curious how things work under the hood.

If you find any kind of problem with the engine itself – something that doesn’t work, a typo in
the documentation, and so on – this is the place where you should report it.

•	 Godot Q&A – https://godotengine.org/qa/​

This is Godot’s official help site. You can post questions here for the community to answer, as
well as searching the growing database of previously answered questions. If you happen to see
a question you know the answer to, you can help out as well.

•	 Discord – https://discord.gg/zH7NUgz

The Godot Engine Discord is a very active and welcoming community of Godot users where
you can get help, find answers to questions, and discuss your project with others. You may even
encounter the author of this book hanging out in the #beginner channel, answering questions!

https://godotengine.org/community
https://github.com/godotengine/
https://godotengine.org/qa/
https://godotengine.org/qa/
https://discord.gg/zH7NUgz
https://discord.gg/zH7NUgz

Contributing to Godot 229

Godot Recipes

I have also created the Godot Recipes website at https://godotrecipes.com/. This is a
collection of solutions and examples to help you make any game system you might need. You can see
how to make an FPS character, handle complex animation states, or add AI to your enemies.

There are also additional tutorials and examples of completed games that you can try out.

Figure 7.20: Godot Recipes website

As illustrated by this section, one of the great strengths of the Godot Engine is its community. The
resources listed here, along with many others, are built by the community of Godot users who are
passionate about the engine and about helping others. In the next section, you can find out how you
can contribute to Godot as well.

Contributing to Godot
Godot is an open source, community-driven project. All of the work that’s done to build, test, document,
and otherwise support Godot is done primarily by passionate individuals contributing their time and
skills. For the majority of contributors, it is a labor of love, and they take pride in helping to build
something of quality that people enjoy using.

https://godotrecipes.com/

Next Steps and Additional Resources230

In order for Godot to continue growing and improving, there is always a need for more members of
the community to step up and contribute. There are many ways you can help out, regardless of your
skill level or the amount of time you can commit.

Contributing to the engine

There are two main ways you can directly contribute to Godot’s development. If you visit https://
github.com/godotengine/godot, you can see Godot’s source code, as well as finding out
exactly what’s being worked on. Click the Clone or Download button, and you’ll have the up-to-the-
minute source code and can test out the latest features. You’ll need to build the engine, but don’t be
intimidated: Godot is one of the easiest open source projects to compile that you’ll find. See https://
docs.godotengine.org/en/latest/contributing/development/compiling/
index.html​​ for instructions.

If you’re not able to actually contribute to the C++ code, go to the Issues tab, where you can report
or read about bugs and suggestions for improvements. There is always a need for people to confirm
bug reports, test fixes, and give their opinions on new features.

Writing documentation

Godot’s official documentation is only as good as its community’s contributions. From something as
small as correcting a typo to writing an entire tutorial, all levels of help are very welcome. The home
of the official documentation is https://github.com/godotengine/godot-docs.

Hopefully, by now, you’ve taken some time to browse through the official documentation and get
an idea of what’s available. If you spot something wrong or something missing, open an issue at the
aforementioned GitHub link. If you’re comfortable with using GitHub, you can even go ahead and
submit a pull request yourself. Just make sure you read all the guidelines first so that your contribution
will be accepted. You can find the guidelines at https://docs.godotengine.org/en/
latest/contributing/ways_to_contribute.html.

If you speak a language other than English, translations are also very much needed and will be greatly
appreciated by Godot’s non-English-speaking users. See https://docs.godotengine.org/
en/latest/contributing/documentation/editor_and_docs_localization for
how to contribute in your language.

Donations

Godot is a not-for-profit project, and user donations go a long way to help pay for hosting costs and
development resources, such as hardware. Financial contributions also allow the project to pay core
developers, allowing them to dedicate themselves part- or full-time to working on the engine.

The easiest way to contribute to Godot is via the donation page at https://godotengine.
org/donate.

https://github.com/godotengine/godot
https://github.com/godotengine/godot
https://docs.godotengine.org/en/latest/contributing/development/compiling/index.html
https://docs.godotengine.org/en/latest/contributing/development/compiling/index.html
https://docs.godotengine.org/en/latest/contributing/development/compiling/index.html
https://github.com/godotengine/godot-docs
https://docs.godotengine.org/en/latest/contributing/ways_to_contribute.html
https://docs.godotengine.org/en/latest/contributing/ways_to_contribute.html
https://docs.godotengine.org/en/latest/contributing/documentation/editor_and_docs_localization
https://docs.godotengine.org/en/latest/contributing/documentation/editor_and_docs_localization
https://godotengine.org/donate
https://godotengine.org/donate

Summary 231

Summary
In this chapter, you learned about a few additional topics that will help you continue to level up your
Godot skills. Godot has a great many features in addition to those explored in this book. You’ll need
to know where to look and where to ask for help as you move on to working on projects of your own.

You also learned about some more advanced topics, such as working with other programming languages
and using shaders to enhance your game’s visual effects.

In addition, since Godot is built by its community, you learned how you could participate and become
part of the team that is making it one of the fastest-growing projects of its kind.

Final words
Thank you for taking the time to read this book. I hope you found it useful in starting your game
development journey with Godot. The goal of this book was not to give you a “copy-and-paste” solution
to making games but rather to help you develop an intuition for the process of game development.
As you’ll see when you explore other resources, there are often many ways to solve a problem, and
there may not be a single “right” answer. It’s up to you as a developer to evaluate and determine what
works for you in your situation. I wish you luck in your future game projects, and I hope to play them
sometime in the future!

Index

Symbols

2D coordinate systems 18, 19
2D shader

creating 218-222
3D 144

space orientation 144
workspace 145

3D editor 145, 146
3D gizmo 147
3D Minigolf

arrow, aiming 159-161
arrow, positioning 161
ball collisions, improving 157, 158
ball, creating 157
ball, testing 157
building 143
course, creating 152
environment settings 176-178
lighting setup 176, 177
project setup 151, 152
UI, adding 159
UI display 161, 162
visual effects 173

3D Minigolf, scripting 162
ball script 166, 167
camera improvements 170

course designing 172
gimbal, creating 171, 172
main script 164, 165
mouse, capturing 169
options, for improving aiming 167, 168
testing 167
UI code 163

3D objects
adding 146, 147

3D shaders 222-224

A
airplane scene, infinite flyer game 181

collision shapes 182
plane, scripting 183-185

alternate installation methods, Godot
Itch.io 6
package manager 6
Steam 6

API documentation
reading 209

AssetLib 210
autoload 131

Index234

B
Blender 211

blend files, using 212
hints, importing 211
using, with Godot 211

blend mode 94
built-in documentation

using 208

C
C# 12, 225

using 225-227
cameras 150, 151

field of view 151
frustum 151
orientation 151

chunking strategy
using 185

Coin Dash game 15
coin animation 45, 46
coin scene 31
Main scene 33
obstacles 46, 47
player scene 20
powerups 43-45
project, setting up 16-18
sound 43
user interface 36
visual effects 42

coin scene, Coin Dash game 31
coin script 32, 33
groups, for node setup 32
node setup 32

collectible items, Jungle Jump 110
collectible script 111, 112
scene setup 110, 111

collision response 100
collisions, infinite flyer game

explosion 197
scripting 198

community resources 228
Discord 228
GitHub 228
Godot Q&A 228

contact monitoring 79
continuous collision detection (CCD) 157
cooldown 60
custom data layer 118

D
DEAD state 56
delta parameter 27
direction vector 26
downloadable content (DLC) 215

E
easing 42
editor window, Godot UI 9-11
enemies, Jungle Jump

adding 121
damaging 123, 124
player script 125-127
representation, by creating scene 121, 122
scripting 122, 123

enemy spaceship, Space Rocks game
collisions 85-87
enemy, moving 83, 84
enemy scene, creating 83
enemy, spawning 84
path, following 81
shooting 84-87

enum statement 57

Index 235

F
finite state machine (FSM) 56, 101

G
game development 3
game engine 3

common development environment 4
features 3
physics 4
platform support 4
rendering (2D and 3D) 3
using 4

game framework 3
GDExtension 227
GDScript 12, 13
gimbal 171
Git

using, with Godot 210, 211
gizmo 147
global space

versus local space 147
Glow lighting feature 178
Godot 4, 5

alternate installation methods 6, 7
contributing to 230
documentation, writing 230
donation page 230
downloading 5, 6
download link 5
nodes 11
scenes 12
scripting 12

Godot 4.0 1
Godot Engine Discord 228
Godot Engine - .NET 225
Godot GitHub repository 228

Godot Q&A
reference link 228

Godot Recipes 229
reference link 229

Godot UI
editor window 9-11
filenames, selecting 8
overview 7
Project manager window 7, 8
Renderer 8

H
heads-up display (HUD) 36
hitbox 24

I
infinite flyer game

additional features 206
airplane scene 181
audio 203
building 179
chunk 188-192
file locations 204
files, accessing 204, 205
high score, saving 203
inputs, configuring 180, 181
main scene 192-194
project setup 180
title screen scene 202, 203
UI scene 200, 202
world objects, building 185

integer division 195
interpolation 183
INVULNERABLE state 56
itch.io 6

website 6

Index236

J
Jungle Jump

collectible items 110
door scene 133, 134
double jumping 135, 136
dust particles, spawning 136, 137
enemies, adding 121
finishing touches 135
game UI 127
HUD, attaching 129
HUD, scripting 128, 129
kinematic bodies 100
ladders 138
level, designing 112
levels, transitioning between 133
main scene, setting up 131-133
moving platforms 140, 141
player scene, creating 101
project setup 98-100
scene setup 127, 128
screen settings 134
sound effects 135
title screen 130
title screen, setting up 130, 131

K
kinematic bodies, Jungle Jump 100

collision response 100
move_and_slide(), using 101

L
ladders 138

level setup 139
player code 138, 139

level design, Jungle Jump 112
background, scrolling 119, 120
dangerous objects, adding 118
first level, designing 116-118
slide collisions 118
TileMaps, using 113
TileSets 113

lighting setup, 3D Minigolf
Ambient Light 177
Background and Sky 177
Screen Space Ambient Occlusion

(SSAO) 177
Screen Space Indirect Lighting (SSIL) 177
Screen Space Reflection (SSR) 177
Signed Distance Field Global

Illumination (SDFGI) 177
linear interpolation (lerp) 183
local space

versus global space 147

M
main scene, Coin Dash game 33

Main script 34
Main script, initializing 35
new game, starting 35
node setup 33, 34
remaining coins, checking 36

main scene, infinite flyer game 192-194
chunks, spawning 194, 195
collisions 197
difficulty level, increasing 195-197
fuel and score 199, 200

materials 174
mesh 148

edges 148
face 148
importing 149

Index 237

primitives 148, 149
vertices 148

minigolf course, 3D Minigolf
creating 152
environment 154, 155
GridMaps node, adding 152
hole, adding 155, 156
hole, drawing 153, 154
lighting 154
MeshLibrary collection, making 153

N
nine patch stretch 201
nodes 11

P
package managers 6
Physically Based Rendering (PBR) 174
pixel art style 98
player scene, Coin Dash game 20

animations, selecting 28
collision shape 24, 25
collisions, preparing for 29-31
creating 20, 21
player, moving 26
player, scripting 25, 26
player’s movement, ending 28
player’s movement, starting 28
root node 21
sprite animation 21-23

player scene, Jungle Jump
AnimationPlayer 102
character’s animations, setting up 102-104
collision layers 101, 102
collision shape 104

creating 101
finishing 105
masks 101, 102
movements 107, 108
movements, testing 108, 109
player health 109, 110
player states 105, 106
scripts 106, 107

player’s ship, Space Rocks game 53
body and physics setup 53-55
bullet scene 60, 61
bullets, firing 61, 62
explosion scene 67-69
player controls, adding 57, 58
rocks, adding 63
rock scene, setting up 63
rocks, exploding 67
rocks, instantiating 65, 66
screen wrap 59, 60
shooting 60
smaller rocks, spawning 70, 71
state machines 55-57
testing 63
variable size rocks 64, 65

primitives 149
Project Manager window, Godot UI 7, 8
projects

exporting 212-215
exporting, for specific platforms 215, 216
export templates 213
presets, exporting 214

S
scenes 11, 12
scripting 12
setter 77

Index238

shaders 173, 216, 217
2D shader, creating 218-222
3D shaders 222-224
canvas_item 217
examples 225
fog 217
fragment shaders 217
light shaders 217
particles 217
reference link 216, 225
sky 217
spatial 217
vertex shaders 217

slide collisions 198
sound and visual effects, Space Rocks game

enemy trail 94
music 91
particles 92, 93

Space Rocks game 49
collisions between rigid bodies, detecting 79
ending 78
enemy spaceship 80
pausing 79, 80
player shield 87-90
player’s ship 53
progress bar 89
project, setting up 50, 51
rigid body physics 51, 52
sound and visual effects 91
user interface, creating 71

sprite sheet 67
Steam 6

T
texture filtering 98
textures 173
third-party bindings 227

TileMaps
using 113

TileSets 113
creating 113-116
provided TileSets, using 116

transform 60, 147
tween 42, 43

U
user interface, Coin Dash game 36

buttons, using 40
containers 39
game over 40
HUD, adding to Main 41
message label 37, 38
node setup 37
score and time display 38, 39
updating, via GDScript 39

user interface, Space Rocks game
creating 71
layout 72, 73
Main scene UI code 75, 76
player code 76, 77
scripting 73, 74

V
vectors 19, 20
version control software (VCS) 210
visual effects, 3D Minigolf

materials 174
materials, adding 174-176
shaders 173
textures 173

Index 239

W
world objects, infinite flyer game 185

buildings 185, 186
rings 186-188

Y
Y-UP orientation 145

Z
Z-Up orientation 145

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Game Development with Blender and Godot

Kumsal Obuz

ISBN: 978-1-80181-602-1

•	 Discover what low-poly modeling is and why it matters

•	 Understand how to use materials, shaders, and textures in your models

•	 Explore how to render and animate a scene in Blender

•	 Focus on how to export Blender assets and import them into Godot

•	 Use 3D low-poly models in Godot to create fun games

•	 Design a dynamic and easy-to-navigate game world

•	 Explore how to interact with the game via interfaces

•	 Understand how to export your game for Windows

https://www.packtpub.com/product/game-development-with-blender-and-godot/9781801816021

243Other Books You May Enjoy

Godot 4 Game Development Cookbook

Jeff Johnson

ISBN: 978-1-83882-607-9

•	 Speed up 2D game development with new TileSet and TileMap updates

•	 Improve 2D and 3D rendering with the Vulkan Renderer

•	 Master the new animation editor in Godot 4 for advanced game development

•	 Enhance visuals and performance with visual shaders and the updated shader language

•	 Import Blender blend files into Godot to optimize your workflow

•	 Explore new physics system additions for improved realism and behavior of game objects

•	 Experience innovative features by building multiplayer games in Godot 4

https://www.packtpub.com/product/godot-4-game-development-cookbook/9781838826079

244

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Hi!

Hi, it’s Chris Bradfield, author of Godot 4 Game Development Projects. I really hope you enjoyed reading
this book and found it helpful to get started with Godot and game development.

It would really help us (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on how this book helped you get started with Godot.

Go to the link below to leave your review:

https://packt.link/r/1804610402

Your review will help us to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best wishes,

mailto:authors.packtpub.com?subject=
https://packt.link/r/1804610402

245

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610404

1.	 Submit your proof of purchase

2.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804610404

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Godot 4.0
	General advice
	The secret to learning effectively

	What is a game engine?
	What is Godot?
	Downloading Godot
	Alternate installation methods

	Overview of the Godot UI
	Project Manager
	Editor window

	Learning about nodes and scenes
	Scripting in Godot
	About GDScript

	Summary

	Chapter 2: Coin Dash – Build Your First
2D Game
	Technical requirements
	Setting up the project
	Vectors and 2D coordinate systems
	Part 1 – the player scene
	Creating the scene
	Sprite animation
	Collision shape
	Scripting the player
	Moving the player
	Choosing animations
	Starting and ending the player’s movement
	Preparing for collisions

	Part 2 – the coin scene
	The node setup
	Coin script

	Part 3 – the Main scene
	Node setup
	Main script
	Starting a new game

	Part 4 – the user interface
	Node setup
	Message label
	Score and time display
	Score and time display
	Updating the UI via GDScript
	Game over
	Adding HUD to Main

	Part 5 – finishing up
	Visual effects
	Sound
	Powerups
	Coin animation
	Obstacles

	Summary

	Chapter 3: Space Rocks: Build a 2D Arcade Classic with Physics
	Technical requirements
	Setting up the project
	Rigid body physics

	The player’s ship
	Body and physics setup
	State machines
	Adding player controls
	Screen wrap
	Shooting

	Adding the rocks
	Scene setup
	Variable size rocks
	Instantiating rocks
	Exploding rocks

	Creating the UI
	Layout
	Scripting the UI
	The Main scene’s UI code
	Player code

	Ending the game
	Detecting collisions between rigid bodies

	Pausing the game
	Enemies
	Following a path
	Enemy scene
	Moving the enemy
	Spawning enemies
	Shooting and collisions

	Player shield
	Sound and visual effects
	Sound and music
	Particles
	Enemy trail

	Summary

	Chapter 4: Jungle Jump – Running and Jumping in a 2D Platformer
	Technical requirements
	Setting up the project
	Introducing kinematic bodies
	Collision response

	Creating the player scene
	Collision layers and masks
	About AnimationPlayer
	Animations
	Collision shape
	Finishing the player scene
	Player states
	Player script
	Player movement
	Player health

	Collectible items
	Scene setup
	Collectible script

	Designing the level
	Using TileMaps
	Designing the first level
	Adding dangerous objects
	Scrolling background

	Adding enemies
	Scene setup
	Scripting the enemy
	Damaging the enemy
	Player script

	Game UI
	Scene setup
	Scripting the HUD
	Attaching the HUD

	Title screen
	Scene setup

	Setting up the main scene
	Transitioning between levels
	Door scene
	Screen settings

	Finishing touches
	Sound effects
	Double jumping
	Dust particles
	Ladders
	Moving platforms

	Summary

	Chapter 5: 3D Minigolf: Dive into 3D by Building a Minigolf Course
	Technical requirements
	Introduction to 3D
	Orienting in 3D space
	Godot’s 3D editor
	Adding 3D objects
	Global versus local space
	Transforms
	Meshes
	Cameras

	Project setup
	Creating the course
	Understanding GridMaps
	Drawing the first hole
	Environment and lighting
	Adding the hole

	Making the ball
	Testing the ball
	Improving ball collisions

	Adding UI
	Aiming the arrow
	UI display

	Scripting the game
	UI code
	Main script
	Ball script
	Testing it out
	Option 1 for improving aiming
	Option 2 for improving aiming
	Camera improvements
	Designing a full course

	Visual effects
	Adding materials

	Lighting and Environment
	Summary

	Chapter 6: Infinite Flyer
	Technical requirements
	Project setup
	Inputs

	Airplane scene
	Collision shapes
	Scripting the plane

	Building the world
	World objects
	Chunks

	Main scene
	Spawning new chunks
	Increasing difficulty
	Collisions
	Fuel and score

	Title screen
	Audio
	Saving a high score
	About file locations
	Accessing files

	Suggestions for additional features
	Summary

	Chapter 7: Next Steps and Additional Resources
	Using Godot’s documentation
	Reading the API documentation

	Version control – using Git with Godot
	Using Blender with Godot
	Import hints
	Using blend files

	Exporting projects
	Getting the export templates
	Export presets
	Exporting
	Exporting for specific platforms

	Introduction to shaders
	Creating a 2D shader
	3D shaders
	Learning more

	Using other programming languages in Godot
	C#
	Other languages – GDExtension

	Getting help – community resources
	Godot Recipes

	Contributing to Godot
	Contributing to the engine
	Writing documentation
	Donations

	Summary
	Final words

	Index
	Other Books You May Enjoy

