
Version: v18.09 (6172afc) 1

The Docker Book

James Turnbull

December 2, 2018
Version: v18.09 (6172afc)
Website: The Docker Book

http://www.dockerbook.com

Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,

mechanical or photocopying, recording, or otherwise, for commercial purposes
without the prior permission of the publisher.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit here.
© Copyright 2015 - James Turnbull <james@lovedthanlost.net>

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+thedockerbook@lovedthanlost.net

Contents
Page

Foreword 1
Who is this book for? . 1
A note about versions . 1
Credits and Acknowledgments . 1
Technical Reviewers . 2
Scott Collier . 2
John Ferlito . 3
Pris Nasrat . 3

Technical Illustrator . 3
Proofreader . 4
Author . 4
Conventions in the book . 4
Code and Examples . 5
Colophon . 5
Errata . 5
Version . 5

Chapter 1 Introduction 6
Introducing Docker . 7
An easy and lightweight way to model reality 8
A logical segregation of duties . 8
Fast, efficient development life cycle 9
Encourages service oriented architecture 9

Docker components . 9
Docker client and server . 10

i

Contents

Docker images . 12
Registries . 12
Containers . 13
Compose, Swarm and Kubernetes . 14

What can you use Docker for? . 14
Docker with configuration management 15
Docker’s technical components . 16
What’s in the book? . 17
Docker resources . 18

Chapter 2 Installing Docker 19
Requirements . 21
Installing on Ubuntu and Debian . 21
Checking for prerequisites . 22
Installing Docker . 24
Docker and UFW . 26

Installing on Red Hat and family . 27
Checking for prerequisites . 28
Installing Docker . 28
Starting the Docker daemon on the Red Hat family 31

Docker for Mac . 32
Installing Docker for Mac . 33
Testing Docker for Mac . 34

Docker for Windows installation . 34
Installing Docker for Windows . 35
Testing Docker for Windows . 36

Using Docker on OSX and Windows with this book 36
Docker installation script . 37
Binary installation . 38
The Docker daemon . 39
Configuring the Docker daemon . 40
Checking that the Docker daemon is running 42

Upgrading Docker . 44
Docker user interfaces . 44
Summary . 45

Version: v18.09 (6172afc) ii

Contents

Chapter 3 Getting Started with Docker 46
Ensuring Docker is ready . 46
Running our first container . 48
Working with our first container . 51
Container naming . 54
Starting a stopped container . 55
Attaching to a container . 56
Creating daemonized containers . 57
Seeing what’s happening inside our container 58
Docker log drivers . 60
Inspecting the container’s processes . 61
Docker statistics . 62
Running a process inside an already running container 63
Stopping a daemonized container . 64
Automatic container restarts . 65
Finding out more about our container . 66
Deleting a container . 69
Summary . 70

Chapter 4 Working with Docker images and repositories 71
What is a Docker image? . 72
Listing Docker images . 74
Pulling images . 78
Searching for images . 80
Building our own images . 82
Creating a Docker Hub account . 82
Using Docker commit to create images 84
Building images with a Dockerfile . 87
Building the image from our Dockerfile 91
What happens if an instruction fails? 94
Dockerfiles and the build cache . 96
Using the build cache for templating 97
Viewing our new image . 98
Launching a container from our new image 99
Dockerfile instructions . 104

Version: v18.09 (6172afc) iii

Contents

Pushing images to the Docker Hub . 127
Automated Builds . 130

Deleting an image . 133
Running your own Docker registry . 135
Running a registry from a container 136
Testing the new registry . 136

Alternative Indexes . 138
Quay . 138

Summary . 138

Chapter 5 Testing with Docker 140
Using Docker to test a static website . 141
An initial Dockerfile for the Sample website 141
Building our Sample website and Nginx image 145
Building containers from our Sample website and Nginx image . . 147
Editing our website . 150

Using Docker to build and test a web application 152
Building our Sinatra application . 152
Creating our Sinatra container . 154
Extending our Sinatra application to use Redis 159
Connecting our Sinatra application to the Redis container 164
Docker internal networking . 165
Docker networking . 171
Connecting containers summary . 182

Using Docker for continuous integration 183
Build a Jenkins and Docker server . 184
Create a new Jenkins job . 190
Running our Jenkins job . 196
Next steps with our Jenkins job . 198
Summary of our Jenkins setup . 199

Multi-configuration Jenkins . 199
Create a multi-configuration job . 199
Testing our multi-configuration job 204
Summary of our multi-configuration Jenkins 206

Other alternatives . 207

Version: v18.09 (6172afc) iv

Contents

Drone . 207
Shippable . 207

Summary . 207

Chapter 6 Building services with Docker 208
Building our first application . 208
The Jekyll base image . 209
Building the Jekyll base image . 210
The Apache image . 212
Building the Jekyll Apache image . 214
Launching our Jekyll site . 215
Updating our Jekyll site . 218
Backing up our Jekyll volume . 220
Extending our Jekyll website example 222

Building a Java application server with Docker 222
A WAR file fetcher . 223
Fetching a WAR file . 225
Our Tomcat 7 application server . 226
Running our WAR file . 228
Building on top of our Tomcat application server 229

A multi-container application stack . 233
The Node.js image . 234
The Redis base image . 237
The Redis primary image . 239
The Redis replica image . 240
Creating our Redis back-end cluster 241
Creating our Node container . 248
Capturing our application logs . 249
Summary of our Node stack . 253

Managing Docker containers without SSH 254
Summary . 255

Chapter 7 Docker Orchestration and Service Discovery 256
Docker Compose . 257
Installing Docker Compose . 258

Version: v18.09 (6172afc) v

Contents

Getting our sample application . 259
The docker-compose.yml file . 263
Running Compose . 266
Using Compose . 268
Compose in summary . 272

Consul, Service Discovery and Docker . 272
Building a Consul image . 274
Testing a Consul container locally . 278
Running a Consul cluster in Docker 280
Starting the Consul bootstrap node . 283
Starting the remaining nodes . 286
Running a distributed service with Consul in Docker 294

Docker Swarm . 307
Understanding the Swarm . 308
Installing Swarm . 309
Setting up a Swarm . 309
Running a service on your Swarm . 314

Orchestration alternatives and components 319
Fleet and etcd . 320
Kubernetes . 320
Apache Mesos . 320
Helios . 320
Centurion . 321

Summary . 321

Chapter 8 Using the Docker API 322
The Docker APIs . 322
First steps with the Engine API . 323
Testing the Docker Engine API . 327
Managing images with the API . 328
Managing containers with the API . 330

Improving the TProv application . 335
Authenticating the Docker Engine API . 340
Create a Certificate Authority . 341
Create a server certificate signing request and key 343

Version: v18.09 (6172afc) vi

Contents

Configuring the Docker daemon . 347
Creating a client certificate and key 348
Configuring our Docker client for authentication 351

Summary . 353

Chapter 9 Getting help and extending Docker 354
Getting help . 355
The Docker forums . 355
Docker on IRC . 355
Docker on GitHub . 355

Reporting issues for Docker . 356
Setting up a build environment . 356
Install Docker . 357
Install source and build tools . 357
Check out the source . 357
Contributing to the documentation . 358
Build the environment . 358
Running the tests . 361
Use Docker inside our development environment 363
Submitting a pull request . 363
Merge approval and maintainers . 365

Summary . 366

List of Figures 368

List of Listings 382

Index 383

Version: v18.09 (6172afc) vii

Foreword

Who is this book for?
The Docker Book is for developers, sysadmins, and DevOps-minded folks who
want to implement Docker™ and container-based virtualization.
There is an expectation that the reader has basic Linux/Unix skills and is familiar
with the command line, editing files, installing packages, managing services, and
basic networking.

A note about versions
This books focuses on Docker Community Edition version v18.08 and later. It
is not generally backwards-compatible with earlier releases. Indeed, it is recom-
mended that for production purposes you use Docker version v18.08 or later.
In March 2017 Docker re-versioned and renamed their product lines. The Docker
Engine version went from Docker 1.13.1 to 17.03.0. The product was renamed to
become the Docker Community Edition or Docker CE. When we refer to Docker
in this book we’re generally referencing the Docker Community Edition.

Credits and Acknowledgments
• My partner and best friend, Ruth Brown, who continues to humor me despite
my continuing to write books.

1

Foreword

• The team at Docker Inc., for developing Docker and helping out during the
writing of the book.
• The folks in the #docker channel and the Docker mailing list.
• Royce Gilbert for not only creating the amazing technical illustrations, but
also the cover.
• Abhinav Ajgaonkar for his Node.js and Express example application.
• The technical review team for keeping me honest and pointing out all the
stupid mistakes.
• Robert P. J. Day - who provided amazingly detailed errata for the book after
release.

Images on pages 38, 45, 48, courtesy of Docker, Inc.
Docker™ is a registered trademark of Docker, Inc.

Technical Reviewers

Scott Collier
Scott Collier is a Senior Principal System Engineer for Red Hat’s Systems Design
and Engineering team. This team identifies and works on high-value solution
stacks based on input from Sales, Marketing, and Engineering teams and develops
reference architectures for consumption by internal and external customers. Scott
is a Red Hat Certified Architect (RHCA) with more than 15 years of IT experi-
ence, currently focused on Docker, OpenShift, and other products in the Red Hat
portfolio.
When he’s not tinkering with distributed architectures, he can be found running,
hiking, camping, and eating barbecue around the Austin, TX, area with his wife
and three children. His notes on technology and other things can be found at
http://colliernotes.com.

Version: v18.09 (6172afc) 2

http://colliernotes.com

Foreword

John Ferlito
John is a serial entrepreneur as well as an expert in highly available and scalable
infrastructure. John is currently a founder and CTO of Bulletproof, who provide
Mission Critical Cloud, and CTO of Vquence, a Video Metrics aggregator.
In his spare time, John is involved in the FOSS communities. He was a co-
organizer of linux.conf.au 2007 and a committee member of SLUG in 2007,
and he has worked on various open-source projects, including Debian, Ubuntu,
Puppet, and the Annodex suite. You can read more about John’s work on his
blog. John has a Bachelor of Engineering (Computing) with Honors from the
University of New South Wales.

Pris Nasrat
Pris Nasrat works as an Engineering Manager at Etsy and is a Docker contributor.
They have worked on a variety of open source tools in the systems engineering
space, including boot loaders, package management, and configuration manage-
ment.
Pris has worked in a variety of Systems Administration and Software Development
roles, including working as an SRE at Google, a Software Engineer at Red Hat and
as an Infrastructure Specialist Consultant at ThoughtWorks. Pris has spoken at
various conferences, from talking about Agile Infrastructure at Agile 2009 during
the early days of the DevOps movement to smaller meetups and conferences.

Technical Illustrator
Royce Gilbert has over 30 years’ experience in CAD design, computer support, net-
work technologies, project management, and business systems analysis for major
Fortune 500 companies, including Enron, Compaq, Koch Industries, and Amoco
Corp. He is currently employed as a Systems/Business Analyst at Kansas State Uni-
versity in Manhattan, KS. In his spare time he does Freelance Art and Technical
Illustration as sole proprietor of Royce Art. He and his wife of 38 years are living
in and restoring a 127-year-old stone house nestled in the Flinthills of Kansas.

Version: v18.09 (6172afc) 3

http://inodes.org
mailto:ksuroyce@yahoo.com

Foreword

Proofreader
Q grew up in the New York area and has been a high school teacher, cupcake icer,
scientist wrangler, forensic anthropologist, and catastrophic disaster response
planner. She now resides in San Francisco, making music, acting, putting together
ng-newsletter, and taking care of the fine folks at Stripe.

Author
James is an author and open-source geek. His most recent books are The Packer
Book, The Terraform Book about infrastructure management tool Terraform, The
Art of Monitoring about monitoring, The Docker Book about Docker, and The
Logstash Book about the popular open-source logging tool. James also authored
two books about Puppet (Pro Puppet and the earlier book about Puppet). He is
the author of three other books, including Pro Linux System Administration, Pro
Nagios 2.0, and Hardening Linux.
He was formerly CTO at Kickstarter, at Docker as VP of Services and Support,
Venmo as VP of Engineering, and Puppet as VP of Technical Operations. He likes
food, wine, books, photography, and cats. He is not overly keen on long walks on
the beach or holding hands.

Conventions in the book
This is an inline code statement.
This is a code block:

Listing 1: Sample code block

This is a code block

Version: v18.09 (6172afc) 4

https://packerbook.com
https://packerbook.com
https://www.terraformbook.com
http://www.artofmonitoring.com
http://www.artofmonitoring.com
https://www.dockerbook.com
http://www.logstashbook.com
http://www.logstashbook.com
http://www.amazon.com/gp/product/1430230576/ref=as_li_ss_tl?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=1430230576
http://www.amazon.com/gp/product/1590599780?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590599780
http://www.amazon.com/gp/product/1430219122?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430219122
http://www.amazon.com/gp/product/1590596099?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590596099
http://www.amazon.com/gp/product/1590596099?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590596099
http://www.amazon.com/gp/product/1590594444?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590594444

Foreword

Long code strings are broken.

Code and Examples
You can find all the code and examples from the book on GitHub https://github.
com/turnbullpress/dockerbook-code.

Colophon
This book was written in Markdown with a large dollop of LaTeX. It was then
converted to PDF and other formats using PanDoc (with some help from scripts
written by the excellent folks who wrote Backbone.js on Rails).

Errata
Please email any errata you find to james+errata@lovedthanlost.net.

Version
This is version v18.09 (6172afc) of The Docker Book.

Version: v18.09 (6172afc) 5

https://github.com/turnbullpress/dockerbook-code
https://github.com/turnbullpress/dockerbook-code
https://learn.thoughtbot.com/products/1-backbone-js-on-rails
mailto:james+errata@lovedthanlost.net

Chapter 1

Introduction

Containers have a long and storied history in computing. Unlike hypervisor vir-
tualization, where one or more independent machines run virtually on physical
hardware via an intermediation layer, containers instead run in user space on top
of an operating system’s kernel. As a result, container virtualization is often called
operating system-level virtualization. Container technology allows multiple iso-
lated user space instances to be run on a single host.
As a result of their status as guests of the operating system, containers are some-
times seen as less flexible: they can generally only run the same or a similar guest
operating system as the underlying host. For example, you can run Red Hat En-
terprise Linux on an Ubuntu server, but you can’t run Microsoft Windows on top
of an Ubuntu server.
Containers have also been seen as less secure than the full isolation of hypervisor
virtualization. Countering this argument is that lightweight containers lack the
larger attack surface of the full operating system needed by a virtual machine
combined with the potential exposures of the hypervisor layer itself.
Despite these limitations, containers have been deployed in a variety of use
cases. They are popular for hyperscale deployments of multi-tenant services, for
lightweight sandboxing, and, despite concerns about their security, as process
isolation environments. Indeed, one of the more common examples of a container
is a chroot jail, which creates an isolated directory environment for running

6

Chapter 1: Introduction

processes. Attackers, if they breach the running process in the jail, then find
themselves trapped in this environment and unable to further compromise a host.
More recent container technologies have included OpenVZ, Solaris Zones, and
Linux containers like lxc. Using these more recent technologies, containers can
now look like full-blown hosts in their own right rather than just execution envi-
ronments. In Docker’s case, having modern Linux kernel features, such as control
groups and namespaces, means that containers can have strong isolation, their
own network and storage stacks, as well as resource management capabilities to
allow friendly co-existence of multiple containers on a host.
Containers are generally considered a lean technology because they require lim-
ited overhead. Unlike traditional virtualization or paravirtualization technologies,
they do not require an emulation layer or a hypervisor layer to run and instead
use the operating system’s normal system call interface. This reduces the over-
head required to run containers and can allow a greater density of containers to
run on a host.
Despite their history containers haven’t achieved large-scale adoption. A large
part of this can be laid at the feet of their complexity: containers can be complex,
hard to set up, and difficult to manage and automate. Docker aims to change that.

Introducing Docker
Docker is an open-source engine that automates the deployment of applications
into containers. It was written by the team at Docker, Inc (formerly dotCloud Inc,
an early player in the Platform-as-a-Service (PAAS) market), and released by them
under the Apache 2.0 license.

 NOTE Disclaimer and disclosure: I am an advisor at Docker Inc.

So what is special about Docker? Docker adds an application deployment engine
on top of a virtualized container execution environment. It is designed to provide

Version: v18.09 (6172afc) 7

http://openvz.org/
http://lxc.sourceforge.net/
http://www.docker.com/

Chapter 1: Introduction

a lightweight and fast environment in which to run your code as well as an efficient
workflow to get that code from your laptop to your test environment and then into
production. Docker is incredibly simple. Indeed, you can get started with Docker
on a minimal host running nothing but a compatible Linux kernel and a Docker
binary. Docker’s mission is to provide:

 NOTE Docker’s underlying components are part of a project called Moby.
These are brought together and constructed into the end user tool.

An easy and lightweight way to model reality
Docker is fast. You can Dockerize your application in minutes. Docker relies on a
copy-on-write model so that making changes to your application is also incredibly
fast: only what you want to change gets changed.
You can then create containers running your applications. Most Docker contain-
ers take less than a second to launch. Removing the overhead of the hypervisor
also means containers are highly performant and you can pack more of them into
your hosts and make the best possible use of your resources.

A logical segregation of duties
With Docker, Developers care about their applications running inside containers,
and Operations cares about managing the containers. Docker is designed to en-
hance consistency by ensuring the environment in which your developers write
code matches the environments into which your applications are deployed. This
reduces the risk of “worked in dev, now an ops problem.”

Version: v18.09 (6172afc) 8

https://github.com/moby/moby
https://mobyproject.org/#moby-and-docker

Chapter 1: Introduction

Fast, efficient development life cycle
Docker aims to reduce the cycle time between code being written and code being
tested, deployed, and used. It aims to make your applications portable, easy to
build, and easy to collaborate on.

Encourages service oriented architecture
Docker also encourages service-oriented and microservices architectures. Docker
recommends that each container run a single application or process. This pro-
motes a distributed application model where an application or service is repre-
sented by a series of inter-connected containers. This makes it easy to distribute,
scale, debug and introspect your applications.

 NOTE You don’t need to build your applications this way if you don’t wish.
You can easily run a multi-process application inside a single container.

Docker components
Let’s look at the core components that compose the Docker Community Edition or
Docker CE:

• The Docker client and server, also called the Docker Engine.
• Docker Images
• Registries
• Docker Containers

Version: v18.09 (6172afc) 9

http://martinfowler.com/articles/microservices.html

Chapter 1: Introduction

Docker client and server
Docker is a client-server application. The Docker client talks to the Docker server
or daemon, which, in turn, does all the work. You’ll also sometimes see the Docker
daemon called the Docker Engine. Docker ships with a command line client binary,
docker, as well as a full RESTful API to interact with the daemon: dockerd. You
can run the Docker daemon and client on the same host or connect your local
Docker client to a remote daemon running on another host. You can see Docker’s
architecture depicted here:

Version: v18.09 (6172afc) 10

http://docs.docker.com/reference/api/docker_remote_api/

Chapter 1: Introduction

Figure 1.1: Docker architecture

Version: v18.09 (6172afc) 11

Chapter 1: Introduction

Docker images
Images are the building blocks of the Docker world. You launch your containers
from images. Images are the “build” part of Docker’s life cycle. They have a
layered format, using Union file systems, that are built step-by-step using a series
of instructions. For example:

• Add a file.
• Run a command.
• Open a port.

You can consider images to be the “source code” for your containers. They are
highly portable and can be shared, stored, and updated. In the book, we’ll learn
how to use existing images as well as build our own images.

Registries
Docker stores the images you build in registries. There are two types of registries:
public and private. Docker, Inc., operates the public registry for images, called
the Docker Hub. You can create an account on the Docker Hub and use it to share
and store your own images.
The Docker Hub also contains, at last count, over 10,000 images that other people
have built and shared. Want a Docker image for an Nginx web server, the Asterisk
open source PABX system, or a MySQL database? All of these are available, along
with a whole lot more.
You can also store images that you want to keep private on the Docker Hub. These
images might include source code or other proprietary information you want to
keep secure or only share with other members of your team or organization.
You can also run your own private registry, and we’ll show you how to do that in
Chapter 4. This allows you to store images behind your firewall, which may be a
requirement for some organizations.

Version: v18.09 (6172afc) 12

http://hub.docker.com
https://hub.docker.com/account/signup/
https://hub.docker.com/search?q=nginx
https://hub.docker.com/search?q=Asterisk
https://hub.docker.com/search?q=Asterisk
https://hub.docker.com/search?q=mysql

Chapter 1: Introduction

Containers
Docker helps you build and deploy containers inside of which you can package
your applications and services. As we’ve just learned, containers are launched
from images and can contain one or more running processes. You can think about
images as the building or packing aspect of Docker and the containers as the
running or execution aspect of Docker.
A Docker container is:

• An image format.
• A set of standard operations.
• An execution environment.

Docker borrows the concept of the standard shipping container, used to transport
goods globally, as a model for its containers. But instead of shipping goods, Docker
containers ship software.
Each container contains a software image – its ‘cargo’ – and, like its physical
counterpart, allows a set of operations to be performed. For example, it can be
created, started, stopped, restarted, and destroyed.
Like a shipping container, Docker doesn’t care about the contents of the container
when performing these actions; for example, whether a container is a web server,
a database, or an application server. Each container is loaded the same as any
other container.
Docker also doesn’t care where you ship your container: you can build on your
laptop, upload to a registry, then download to a physical or virtual server, test,
deploy to a cluster of a dozen Amazon EC2 hosts, and run. Like a normal shipping
container, it is interchangeable, stackable, portable, and as generic as possible.
With Docker, we can quickly build an application server, a message bus, a utility
appliance, a CI test bed for an application, or one of a thousand other possible ap-
plications, services, and tools. It can build local, self-contained test environments
or replicate complex application stacks for production or development purposes.
The possible use cases are endless.

Version: v18.09 (6172afc) 13

Chapter 1: Introduction

Compose, Swarm and Kubernetes
In addition to solitary containers we can also run Docker containers in stacks and
clusters, what Docker calls swarms. The Docker ecosystem contains two more
tools:

• Docker Compose - which allows you to run stacks of containers to represent
application stacks, for example web server, application server and database
server containers running together to serve a specific application.
• Docker Swarm - which allows you to create clusters of containers, called
swarms, that allow you to run scalable workloads.

We’ll look at Docker Compose and Swarm in Chapter 7.
In addition to Compose and Swarm, Docker provides the primary underlying com-
pute layer in the orchestration tool Kubernetes

What can you use Docker for?
So why should you care about Docker or containers in general? We’ve discussed
briefly the isolation that containers provide; as a result, they make excellent sand-
boxes for a variety of testing purposes. Additionally, because of their ‘standard’
nature, they also make excellent building blocks for services. Some of the exam-
ples of Docker running out in the wild include:

• Helping make your local development and build workflow faster, more ef-
ficient, and more lightweight. Local developers can build, run, and share
Docker containers. Containers can be built in development and promoted
to testing environments and, in turn, to production.
• Running stand-alone services and applications consistently across multiple
environments, a concept especially useful in service-oriented architectures
and deployments that rely heavily on micro-services.
• Using Docker to create isolated instances to run tests like, for example, those
launched by a Continuous Integration (CI) suite like Jenkins CI.

Version: v18.09 (6172afc) 14

https://kubernetes.io/

Chapter 1: Introduction

• Building and testing complex applications and architectures on a local host
prior to deployment into a production environment.
• Building a multi-user Platform-as-a-Service (PAAS) infrastructure.
• Providing lightweight stand-alone sandbox environments for developing,
testing, and teaching technologies, such as the Unix shell or a programming
language.
• Software as a Service applications;
• Highly performant, hyperscale deployments of hosts.

You can see a list of some of the early projects built on and around the Docker
ecosystem in the blog post here.

Docker with configuration management
Since Docker was announced, there have been a lot of discussions about where
Docker fits with configuration management tools like Puppet and Chef. Docker
includes an image-building and image-management solution. One of the drivers
for modern configuration management tools was the response to the ”golden im-
age” model. With golden images, you end up with massive and unmanageable
image sprawl: large numbers of (deployed) complex images in varying states of
versioning. You create randomness and exacerbate entropy in your environment
as your image use grows. Images also tend to be heavy and unwieldy. This often
forces manual change or layers of deviation and unmanaged configuration on top
of images, because the underlying images lack appropriate flexibility.
Compared to traditional image models, Docker is a lot more lightweight: images
are layered, and you can quickly iterate on them. There are some legitimate ar-
guments to suggest that these attributes alleviate many of the management prob-
lems traditional images present. It is not immediately clear, though, that this
alleviation represents the ability to totally replace or supplement configuration
management tools. There is amazing power and control to be gained through the
idempotence and introspection that configuration management tools can provide.
Docker itself still needs to be installed, managed, and deployed on a host. That
host also needs to be managed. In turn, Docker containers may need to be orches-
trated, managed, and deployed, often in conjunction with external services and

Version: v18.09 (6172afc) 15

http://blog.docker.com/2013/07/docker-projects-from-the-docker-community/
https://web.archive.org/web/20090207105003/http://madstop.com/2009/02/04/golden-image-or-foil-ball
https://web.archive.org/web/20090207105003/http://madstop.com/2009/02/04/golden-image-or-foil-ball

Chapter 1: Introduction

tools, which are all capabilities that configuration management tools are excellent
in providing.
It is also apparent that Docker represents (or, perhaps more accurately, encour-
ages) some different characteristics and architecture for hosts, applications, and
services: they can be short-lived, immutable, disposable, and service-oriented.
These behaviors do not lend themselves or resonate strongly with the need for
configuration management tools. With these behaviors, you are rarely concerned
with long-term management of state, entropy is less of a concern because contain-
ers rarely live long enough for it to be, and the recreation of state may often be
cheaper than the remediation of state.
Not all infrastructure can be represented with these behaviors, however. Docker’s
ideal workloads will likely exist alongside more traditional infrastructure deploy-
ment for a little while. The long-lived host, perhaps also the host that needs to
run on physical hardware, still has a role in many organizations. As a result of
these diverse management needs, combined with the need to manage Docker it-
self, both Docker and configuration management tools are likely to be deployed
in the majority of organizations.

Docker’s technical components
Docker can be run on any x64 host running a modern Linux kernel; we recommend
kernel version 3.10 and later. It has low overhead and can be used on servers,
desktops, or laptops. Run inside a virtual machine, you can also deploy Docker
on OS X and Microsoft Windows. It includes:

• A native Linux container format that Docker calls libcontainer.
• Linux kernel namespaces, which provide isolation for filesystems, processes,
and networks.

– Filesystem isolation: each container is its own root filesystem.
– Process isolation: each container runs in its own process environment.
– Network isolation: separate virtual interfaces and IP addressing be-
tween containers.

Version: v18.09 (6172afc) 16

http://lwn.net/Articles/531114/

Chapter 1: Introduction

• Resource isolation and grouping: resources like CPU and memory are allo-
cated individually to each Docker container using the cgroups, or control
groups, kernel feature.
• Copy-on-write: filesystems are created with copy-on-write, meaning they
are layered and fast and require limited disk usage.
• Logging: STDOUT, STDERR and STDIN from the container are collected, logged,
and available for analysis or trouble-shooting.
• Interactive shell: You can create a pseudo-tty and attach to STDIN to provide
an interactive shell to your container.

What’s in the book?
In this book, we walk you through installing, deploying, managing, and extending
Docker. We do that by first introducing you to the basics of Docker and its com-
ponents. Then we start to use Docker to build containers and services to perform
a variety of tasks.
We take you through the development life cycle, from testing to production, and
see where Docker fits in and how it can make your life easier. We make use of
Docker to build test environments for new projects, demonstrate how to integrate
Docker with continuous integration workflow, and then how to build application
services and platforms. Finally, we show you how to use Docker’s API and how
to extend Docker yourself.
We teach you how to:

• Install Docker.
• Take your first steps with a Docker container.
• Build Docker images.
• Manage and share Docker images.
• Run and manage more complex Docker containers and stacks of Docker con-
tainers.
• Deploy Docker containers as part of your testing pipeline.
• Build multi-container applications and environments.

Version: v18.09 (6172afc) 17

http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Copy-on-write

Chapter 1: Introduction

• Introduce the basics of Docker orchestration with Docker Compose, Consul,
and Swarm.
• Explore the Docker API.
• Getting Help and Extending Docker.

It is recommended that you read through every chapter. Each chapter builds
on your Docker knowledge and introduces new features and functionality. By
the end of the book you should have a solid understanding of how to work with
Docker to build standard containers and deploy applications, test environments,
and standalone services.

Docker resources
• Docker homepage
• Docker Hub
• Docker blog
• Docker documentation
• Docker Getting Started Guide
• Docker code on GitHub
• Docker Forge - collection of Docker tools, utilities, and services.
• Docker mailing list
• The Docker Forum
• Docker on IRC: irc.freenode.net and channel #docker
• Docker on Twitter
• Get Docker help on StackOverflow

In addition to these resources in Chapter 9 you’ll get a detailed explanation of
where and how to get help with Docker.

Version: v18.09 (6172afc) 18

http://www.docker.com/
http://hub.docker.com
http://blog.docker.com/
http://docs.docker.com/
https://docs.docker.com/docker-for-mac/
https://github.com/docker/docker
https://github.com/dockerforge
https://groups.google.com/forum/#!forum/docker-user
https://forums.docker.com/
http://twitter.com/docker
http://stackoverflow.com/search?q=docker

Chapter 2

Installing Docker

Installing Docker is quick and easy. Docker is currently supported on a wide
variety of Linux platforms, including shipping as part of Ubuntu and Red Hat En-
terprise Linux (RHEL). Also supported are various derivative and related distribu-
tions like Debian, CentOS, Fedora, Oracle Linux, and many others. Using a virtual
environment, you can install and run Docker on OS X and Microsoft Windows.
Currently, the Docker team recommends deploying Docker on Ubuntu, Debian or
the RHEL family (CentOS, Fedora, etc) hosts and makes available packages that
you can use to do this. In this chapter, I’m going to show you how to install Docker
in four different but complementary environments:

• On a host running Ubuntu.
• On a host running Red Hat Enterprise Linux or derivative distribution.
• On OS X using Docker for Mac.
• On Microsoft Windows using Docker for Windows.

 TIP Docker for Mac and Docker for Windows are a collection of components
that installs everything you need to get started with Docker. It includes a tiny
virtual machine shipped with a wrapper script to manage it. The virtual machine
runs the daemon and provides a local Docker daemon on OS X and Microsoft Win-
dows. The Docker client binary, docker, is installed natively on these platforms

19

https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/

Chapter 2: Installing Docker

and connected to the Docker daemon running in the virtual machine. It replaces
the legacy Docker Toolbox and Boot2Docker.

Docker runs on a number of other platforms, including Debian, SUSE, Arch Linux,
CentOS, and Gentoo. It’s also supported on several Cloud platforms including
Amazon EC2, Rackspace Cloud, and Google Compute Engine.

 TIP You can find a full list of installation targets in the Docker installation
guide.

I’ve chosen these four methods because they represent the environments that are
most commonly used in the Docker community. For example, your developers
and sysadmins may wish to start with building Docker containers on their OS X
or Windows workstations using Docker for Mac or Windows and then promote
these containers to a testing, staging, or production environment running one of
the other supported platforms.
I recommend you step through at least the Ubuntu or the RHEL installation to get
an idea of Docker’s prerequisites and an understanding of how to install it.

 TIP As with all installation processes, I also recommend you look at using
tools like Puppet or Chef to install Docker rather than using a manual process.
For example, you can find a Puppet module to install Docker here and a Chef
cookbook here.

Version: v18.09 (6172afc) 20

https://docs.docker.com/engine/installation/linux/suse/
https://docs.docker.com/engine/installation/linux/archlinux/
https://docs.docker.com/engine/installation/linux/centos/
https://docs.docker.com/engine/installation/linux/gentoolinux/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
http://www.puppetlabs.com
http://www.opscode.com
https://docs.docker.com/engine/admin/puppet/
https://supermarket.chef.io/cookbooks/docker

Chapter 2: Installing Docker

Requirements
For all of these installation types, Docker has some basic prerequisites. To use
Docker you must:

• Be running a 64-bit architecture (currently x86_64 and amd64 only). 32-bit
architectures are NOT currently supported.
• Be running a Linux 3.10 or later kernel. Some earlier kernels from 2.6.x and
later will run Docker successfully. Your results will greatly vary, though,
and if you need support you will often be asked to run on a more recent
kernel.
• The kernel must support an appropriate storage driver. For example,

– Device Mapper
– AUFS
– vfs
– btrfs
– ZFS (introduced in Docker 1.7)
– The default storage driver is usually Device Mapper or AUFS.

• cgroups and namespaces kernel features must be supported and enabled.

Installing on Ubuntu and Debian
Installing Docker on Ubuntu and Debian is currently officially supported on a
selection of releases:

• Ubuntu Yakkety 16.10 (64-bit)
• Ubuntu Xenial 16.04 (64-bit)
• Ubuntu Trusty 14.04 (LTS) (64-bit)
• Debian Stretch (64-bit)
• Debian 8.0 Jessie (64-bit)
• Debian 7.7 Wheezy (64-bit)

Version: v18.09 (6172afc) 21

http://en.wikipedia.org/wiki/Device_mapper
http://en.wikipedia.org/wiki/Aufs
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Btrfs
https://en.wikipedia.org/wiki/ZFS
http://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Cgroups#NAMESPACE-ISOLATION

Chapter 2: Installing Docker

 NOTE This is not to say Docker won’t work on other Ubuntu (or Debian)
versions that have appropriate kernel levels and the additional required support.
They just aren’t officially supported, so any bugs you encounter may result in a
WONTFIX.

To begin our installation, we first need to confirm we’ve got all the required pre-
requisites. I’ve created a brand new Ubuntu 16.04 LTS 64-bit host on which to
install Docker. We’re going to call that host darknight.example.com.

Checking for prerequisites
Docker has a small but necessary list of prerequisites required to install and run
on Ubuntu hosts.

Kernel

First, let’s confirm we’ve got a sufficiently recent Linux kernel. We can do this
using the uname command.

Listing 2.1: Checking for the Linux kernel version on Ubuntu

$ uname -a
Linux darknight.example.com 4.4.0-64-generic #85-Ubuntu SMP Mon

Feb 20 11:50:30 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux

We see that we’ve got a 4.4.0 x86_64 kernel installed. This is the default for
Ubuntu 16.04 and later.
We also want to install the linux-image-extra and linux-image-extra-virtual
packages that contain the aufs storage driver.

Version: v18.09 (6172afc) 22

Chapter 2: Installing Docker

Listing 2.2: Installing the linux-image-extra package

$ sudo apt-get install linux-image-extra-$(uname -r) linux-image-
extra-virtual

If we’re using an earlier release of Ubuntu we may have an earlier kernel. We
should be able to upgrade our Ubuntu to the later kernel via apt-get:

Listing 2.3: Installing a 3.10 or later kernel on Ubuntu

$ sudo apt-get update
$ sudo apt-get install linux-headers-3.16.0-34-generic linux-

image-3.16.0-34-generic linux-headers-3.16.0-34

 NOTE Throughout this book we’re going to use sudo to provide the re-
quired root privileges.

We can then update the Grub boot loader to load our new kernel.

Listing 2.4: Updating the boot loader on Ubuntu Precise

$ sudo update-grub

After installation, we’ll need to reboot our host to enable the new 3.10 or later
kernel.

Version: v18.09 (6172afc) 23

Chapter 2: Installing Docker

Listing 2.5: Reboot the Ubuntu host

$ sudo reboot

After the reboot, we can then check that our host is running the right version using
the same uname -a command we used above.

Installing Docker
Now we’ve got everything we need to add Docker to our host. To install Docker,
we’re going to use the Docker team’s DEB packages.
First, we need to install some prerequisite packages.

Listing 2.6: Adding prerequisite Ubuntu packages

sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common

Then add the official Docker GPG key.

Listing 2.7: Adding the Docker GPG key

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo
apt-key add -

Version: v18.09 (6172afc) 24

Chapter 2: Installing Docker

And then add the Docker APT repository. You may be prompted to confirm that
you wish to add the repository and have the repository’s GPG key automatically
added to your host.

Listing 2.8: Adding the Docker APT repository

$ sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"

The lsb_release command should populate the Ubuntu distribution version of
your host.
Now, we update our APT sources.

Listing 2.9: Updating APT sources

$ sudo apt-get update

We can now install the Docker package itself.

Listing 2.10: Installing the Docker packages on Ubuntu

$ sudo apt-get install docker-ce

This will install Docker and a number of additional required packages.

 TIP Prior to Docker 1.8.0 the package name was lxc-docker and between
Docker 1.8 and 1.13 the package name was docker-engine.

Version: v18.09 (6172afc) 25

Chapter 2: Installing Docker

We should now be able to confirm that Docker is installed and running using the
docker info command.

Listing 2.11: Checking Docker is installed on Ubuntu

$ sudo docker info
Containers: 0
Images: 0
. . .

Docker and UFW
If you use the UFW, or Uncomplicated Firewall, on Ubuntu, then you’ll need to
make a small change to get it to work with Docker. Docker uses a network bridge
to manage the networking on your containers. By default, UFW drops all for-
warded packets. You’ll need to enable forwarding in UFW for Docker to function
correctly. We can do this by editing the /etc/default/ufw file. Inside this file,
change:

Listing 2.12: Old UFW forwarding policy

DEFAULT_FORWARD_POLICY="DROP"

To:

Version: v18.09 (6172afc) 26

https://help.ubuntu.com/community/UFW

Chapter 2: Installing Docker

Listing 2.13: New UFW forwarding policy

DEFAULT_FORWARD_POLICY="ACCEPT"

Save the update and reload UFW.

Listing 2.14: Reload the UFW firewall

$ sudo ufw reload

Installing on Red Hat and family
Installing Docker on Red Hat Enterprise Linux (or CentOS or Fedora) is currently
only supported on a small selection of releases:

• Red Hat Enterprise Linux (and CentOS) 7 and later (64-bit)
• Fedora 24 and later (64-bit)
• Oracle Linux 6 or 7 with Unbreakable Enterprise Kernel Release 3 or higher
(64-bit)

 TIP Docker is shipped by Red Hat as a native package on Red Hat Enterprise
Linux 7 and later. Additionally, Red Hat Enterprise Linux 7 is the only release on
which Red Hat officially supports Docker.

Version: v18.09 (6172afc) 27

Chapter 2: Installing Docker

Checking for prerequisites
Docker has a small but necessary list of prerequisites required to install and run
on Red Hat and the Red Hat family of distributions.

Kernel

We need to confirm that we have a 3.10 or later kernel version. We can do this
using the uname command like so:

Listing 2.15: Checking the Red Hat or Fedora kernel

$ uname -a
Linux darknight.example.com 3.10.9-200.fc19.x86_64 #1 SMP Wed Aug

21 19:27:58 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

All of the currently supported Red Hat and the Red Hat family of platforms should
have a kernel that supports Docker.

Installing Docker
The process for installing differs slightly between Red Hat variants. On Red Hat
Enterprise Linux 6 and CentOS 6, we will need to add the EPEL package reposi-
tories first. On Fedora, we do not need the EPEL repositories enabled. There are
also some package-naming differences between platforms and versions.

Installing on Red Hat Enterprise Linux 6 and CentOS 6

For Red Hat Enterprise Linux 6 and CentOS 6, we install EPEL by adding the
following RPM.

Version: v18.09 (6172afc) 28

Chapter 2: Installing Docker

Listing 2.16: Installing EPEL on Red Hat Enterprise Linux 6 and CentOS 6

$ sudo rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386
/epel-release-6-8.noarch.rpm

Now we should be able to install the Docker package.

Listing 2.17: Installing the Docker package on RedHat Enterprise Linux 6 and CentOS
6

$ sudo yum -y install docker-io

Installing on Red Hat Enterprise Linux 7

With Red Hat Enterprise Linux 7 and later you can install Docker using these
instructions.

Listing 2.18: Installing Docker on RHEL 7

$ sudo subscription-manager repos --enable=rhel-7-server-extras-
rpms

$ sudo yum install -y docker

You’ll need to be a Red Hat customer with an appropriate RHEL Server subscrip-
tion entitlement to access the Red Hat Docker packages and documentation.

Installing on Fedora

There have been several package name changes across versions of Fedora. For
Fedora 19, we need to install the docker-io package.

Version: v18.09 (6172afc) 29

https://access.redhat.com/articles/881893
https://access.redhat.com/articles/881893

Chapter 2: Installing Docker

 TIP On newer Red Hat and family versions the yum command has been re-
placed with the dnf command. The syntax is otherwise unchanged.

Listing 2.19: Installing the Docker package on Fedora 19

$ sudo yum -y install docker-io

On Fedora 20, the package was renamed to docker.

Listing 2.20: Installing the Docker package on Fedora 20

$ sudo yum -y install docker

For Fedora 21 the package name reverted back to docker-io.

Listing 2.21: Installing the Docker package on Fedora 21

$ sudo yum -y install docker-io

Finally, on Fedora 22 the package name became docker again. Also on Fedora 22
the yum command was deprecated and replaced with the dnf command.

Listing 2.22: Installing the Docker package on Fedora 22

$ sudo dnf install docker

Version: v18.09 (6172afc) 30

Chapter 2: Installing Docker

 TIP For Oracle Linux you can find documentation on the Docker site.

Starting the Docker daemon on the Red Hat family
Once the package is installed, we can start the Docker daemon. On Red Hat En-
terprise Linux 6 and CentOS 6 you can use.

Listing 2.23: Starting the Docker daemon on Red Hat Enterprise Linux 6

$ sudo service docker start

If we want Docker to start at boot we should also:

Listing 2.24: Ensuring the Docker daemon starts at boot on Red Hat Enterprise Linux
6

$ sudo service docker enable

On Red Hat Enterprise Linux 7 and Fedora.

Listing 2.25: Starting the Docker daemon on Red Hat Enterprise Linux 7

$ sudo systemctl start docker

If we want Docker to start at boot we should also:

Version: v18.09 (6172afc) 31

https://docs.docker.com/engine/installation/linux/oracle/

Chapter 2: Installing Docker

Listing 2.26: Ensuring the Docker daemon starts at boot on Red Hat Enterprise Linux
7

$ sudo systemctl enable docker

We should now be able to confirm Docker is installed and running using the docker
info command.

Listing 2.27: Checking Docker is installed on the Red Hat family

$ sudo docker info
Containers: 0
Images: 0
. . .

 TIP Or you can directly download the latest RPMs from the Docker site for
RHEL, CentOS and Fedora.

Docker for Mac
If you’re using OS X, you can quickly get started with Docker using Docker for
Mac. Docker for Mac is a collection of Docker components including a tiny virtual
machine with a supporting command line tool that is installed on an OS X host
and provides you with a Docker environment.
Docker for Mac ships with a variety of components:

• Hyperkit.

Version: v18.09 (6172afc) 32

https://docs.docker.com/engine/installation/linux/rhel/
https://docs.docker.com/engine/installation/linux/centos/
https://docs.docker.com/engine/installation/linux/fedora/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/

Chapter 2: Installing Docker

• The Docker client and server.
• Docker Compose (see Chapter 7).
• Docker Machine - Which helps you create Docker hosts.
• Kitematic - is a GUI that helps you run Docker locally and interact with the
Docker Hub.

Installing Docker for Mac
To install Docker for Mac we need to download its installer. You can find it here.
Let’s grab the current release:

Listing 2.28: Downloading the Docker for Mac DMG file

$ wget https://download.docker.com/mac/stable/Docker.dmg

Launch the downloaded installer and follow the instructions to install Docker for
Mac.

Version: v18.09 (6172afc) 33

https://kitematic.com/
https://www.docker.com/community-edition#/mac

Chapter 2: Installing Docker

Figure 2.1: Installing Docker for Mac on OS X

Testing Docker for Mac
We can now test that our Docker for Mac installation is working by trying to
connect our local client to the Docker daemon running on the virtual machine.
Make sure the Docker.app is running and then open a terminal window and type:

Listing 2.29: Testing Docker for Mac on OS X

$ docker info
Containers: 2
Running: 0
Paused: 0
Stopped: 2
Images: 13
Server Version: 1.12.1
Storage Driver: aufs
. . .

And presto! We have Docker running locally on our OS X host.
There’s a lot more you can use and configure with Docker for Mac and you can
read its documentation on the Docker for Mac site.

Docker for Windows installation
If you’re using Microsoft Windows, you can quickly get started with Docker using
Docker for Windows. Docker for Windows is a collection of Docker components
including a tiny Hyper-V virtual machine with a supporting command line tool
that is installed on a Microsoft Windows host and provides you with a Docker
environment.

Version: v18.09 (6172afc) 34

https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/

Chapter 2: Installing Docker

Docker for Windows ships with a variety of components:

• The Docker client and server.
• Docker Compose (see Chapter 7).
• Docker Machine - Which helps you create Docker hosts.
• Kitematic - is a GUI that helps you run Docker locally and interact with the
Docker Hub.

Docker for Windows requires 64bit Windows 10 Pro, Enterprise or Education
(with the 1511 November update, Build 10586 or later) and Microsoft Hyper-V. If
your host does not satisfy these requirements, you can install the Docker Toolbox,
which uses Oracle Virtual Box instead of Hyper-V.

 TIP You can also install a Docker client via the Chocolatey package manager.

Installing Docker for Windows
To install Docker for Windows we need to download its installer. You can find it
here.
Let’s grab the current release:

Listing 2.30: Downloading the Docker for Windows .MSI file

https://download.docker.com/win/stable/InstallDocker.msi

Launch the downloaded installer and follow the instructions to install Docker for
Windows.

Version: v18.09 (6172afc) 35

https://kitematic.com/
https://docs.docker.com/toolbox/overview/
https://chocolatey.org/packages/docker
https://www.docker.com/community-edition#/windows

Chapter 2: Installing Docker

Testing Docker for Windows
We can now test that our Docker for Windows installation is working by trying
to connect our local client to the Docker daemon running on the virtual machine.
Ensure the Docker application is running and open a terminal window and run:

Listing 2.31: Testing Docker for Windows

$ docker info
Containers: 2
Running: 0
Paused: 0
Stopped: 2
Images: 13
Server Version: 1.12.1
Storage Driver: aufs
. . .

And presto! We have Docker running locally on our Windows host.
There’s a lot more you can use and configure with Docker for Windows and you
can read its documentation on the Docker for Windows site.

Using Docker on OSX and Windows with this book
If you are following the examples in this book you will sometimes be asked to use
volumes or the docker run command with the -v flag to mount a local directory
into a Docker container may not work on Windows. You can’t mount a local
directory on host into the Docker host running in the Docker virtual machine
because they don’t share a file system. If you want to use any examples with
volumes, such as those in Chapters 5 and 6, I recommend you run Docker on a
Linux-based host.

Version: v18.09 (6172afc) 36

https://docs.docker.com/docker-for-windows/

Chapter 2: Installing Docker

It’s also worth reading the Docker for Mac File Sharing section or Docker for Win-
dows Shared Drive section. This allows you enable volume usage by mounting
directories into the Docker for Mac and Docker for Windows client applications.

 TIP All the examples in the book assume you are using the latest Docker for
Mac or Docker for Windows versions.

Docker installation script
There is also an alternative method available to install Docker on an appropriate
host using a remote installation script. To use this script we need to curl it from
the get.docker.com website.

 NOTE The script currently only supports Ubuntu, Fedora, Debian, and
Gentoo installation. It may be updated shortly to include other distributions.

First, we’ll need to ensure the curl command is installed.

Listing 2.32: Testing for curl

$ whereis curl
curl: /usr/bin/curl /usr/bin/X11/curl /usr/share/man/man1/curl.1.

gz

We can use apt-get to install curl if necessary.

Version: v18.09 (6172afc) 37

https://docs.docker.com/docker-for-mac/#file-sharing
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://get.docker.com

Chapter 2: Installing Docker

Listing 2.33: Installing curl on Ubuntu

$ sudo apt-get -y install curl

Or we can use yum or the newer dnf command on Fedora.

Listing 2.34: Installing curl on Fedora

$ sudo yum -y install curl

Now we can use the script to install Docker.

Listing 2.35: Installing Docker from the installation script

$ curl https://get.docker.com/ | sudo sh

This will ensure that the required dependencies are installed and check that our
kernel is an appropriate version and that it supports an appropriate storage driver.
It will then install Docker and start the Docker daemon.

Binary installation
If we don’t wish to use any of the package-based installation methods, we can
download the latest binary version of Docker.

Version: v18.09 (6172afc) 38

Chapter 2: Installing Docker

Listing 2.36: Downloading the Docker binary

$ wget http://get.docker.com/builds/Linux/x86_64/docker-latest.
tgz

I recommend not taking this approach, as it reduces the maintainability of your
Docker installation. Using packages is simpler and easier to manage, especially if
using automation or configuration management tools.

The Docker daemon
After we’ve installed Docker, we need to confirm that the Docker daemon is run-
ning. Docker runs as a root-privileged daemon process to allow it to handle op-
erations that can’t be executed by normal users (e.g., mounting filesystems). The
docker binary runs as a client of this daemon and also requires root privileges to
run. You can control the Docker daemon via the dockerd binary.

 NOTE Prior to Docker 1.12 the daemon was controlled with the docker
daemon subcommand.

The Docker daemon should be started by default when the Docker package is
installed. By default, the daemon listens on a Unix socket at /var/run/docker.
sock for incoming Docker requests. If a group named docker exists on our system,
Docker will apply ownership of the socket to that group. Hence, any user that
belongs to the docker group can run Docker without needing to use the sudo
command.

WARNING Remember that although the docker group makes life easier,

Version: v18.09 (6172afc) 39

https://docs.docker.com/engine/reference/commandline/dockerd/

Chapter 2: Installing Docker

it is still a security exposure. The docker group is root-equivalent and should be
limited to those users and applications who absolutely need it.

Configuring the Docker daemon
We can change how the Docker daemon binds by adjusting the -H flag when the
daemon is run.
We can use the -H flag to specify different interface and port configuration; for
example, binding to the network:

Listing 2.37: Changing Docker daemon networking

$ sudo dockerd -H tcp://0.0.0.0:2375

This would bind the Docker daemon to all interfaces on the host. Docker isn’t
automatically aware of networking changes on the client side. We will need to
specify the -H option to point the docker client at the server; for example, docker
-H :4200 would be required if we had changed the port to 4200. Or, if we don’t
want to specify the -H on each client call, Docker will also honor the content of
the DOCKER_HOST environment variable.

Listing 2.38: Using the DOCKER_HOST environment variable

$ export DOCKER_HOST="tcp://0.0.0.0:2375"

 WARNING By default, Docker client-server communication is not au-
thenticated. This means that if you bind Docker to an exposed network interface,
anyone can connect to the daemon. There is, however, some TLS authentication

Version: v18.09 (6172afc) 40

Chapter 2: Installing Docker

available in Docker 0.9 and later. You’ll see how to enable it when we look at the
Docker API in Chapter 8.

We can also specify an alternative Unix socket path with the -H flag; for example,
to use unix:///home/docker.sock:

Listing 2.39: Binding the Docker daemon to a different socket

$ sudo dockerd -H unix:///home/docker.sock

Or we can specify multiple bindings like so:

Listing 2.40: Binding the Docker daemon to multiple places

$ sudo dockerd -H tcp://0.0.0.0:2375 -H unix:///home/docker.sock

 TIP If you’re running Docker behind a proxy or corporate firewall you can
also use the HTTPS_PROXY, HTTP_PROXY, NO_PROXY options to control how the dae-
mon connects.

We can also increase the verbosity of the Docker daemon by using the -D flag.

Listing 2.41: Turning on Docker daemon debug

$ sudo dockerd -D

If we want to make these changes permanent, we’ll need to edit the various startup

Version: v18.09 (6172afc) 41

Chapter 2: Installing Docker

configurations. On SystemV-enabled Ubuntu and Debian releases, this is done by
editing the /etc/default/docker file and changing the DOCKER_OPTS variable.
On systemd-enabled distributions we would add an override file at:
/etc/systemd/system/docker.service.d/override.conf

With content like:

Listing 2.42: The systemd override file

[Service]
ExecStart=
ExecStart=/usr/bin/dockerd -H ...

In earlier Red Hat and Fedora releases, we’d edit the /etc/sysconfig/docker file.

 NOTE On other platforms, you can manage and update the Docker dae-
mon’s starting configuration via the appropriate init mechanism.

Checking that the Docker daemon is running
On Ubuntu, if Docker has been installed via package, we can check if the daemon
is running with the Upstart status command:

Listing 2.43: Checking the status of the Docker daemon

$ sudo status docker
docker start/running, process 18147

Version: v18.09 (6172afc) 42

https://www.freedesktop.org/software/systemd/man/systemd.unit.html

Chapter 2: Installing Docker

We can then start or stop the Docker daemon with the Upstart start and stop
commands, respectively.

Listing 2.44: Starting and stopping Docker with Upstart

$ sudo stop docker
docker stop/waiting
$ sudo start docker
docker start/running, process 18192

On systemd-enabled Ubuntu and Debian releases, as well as Red Hat and Fedora,
we can do similarly using the service shortcuts.

Listing 2.45: Starting and stopping Docker on Red Hat and Fedora

$ sudo service docker stop
$ sudo service docker start

If the daemon isn’t running, then the docker binary client will fail with an error
message similar to this:

Listing 2.46: The Docker daemon isn’t running

2014/05/18 20:08:32 Cannot connect to the Docker daemon. Is '
dockerd' running on this host?

Version: v18.09 (6172afc) 43

Chapter 2: Installing Docker

Upgrading Docker
After you’ve installed Docker, it is also easy to upgrade it when required. If you
installed Docker using native packages via apt-get or yum, then you can also use
these channels to upgrade it.
For example, run the apt-get update command and then install the new ver-
sion of Docker. We’re using the apt-get install command because the docker-
engine (formerly lxc-docker) package is usually pinned.

Listing 2.47: Upgrade docker

$ sudo apt-get update
$ sudo apt-get install docker-engine

Docker user interfaces
You can also potentially use a graphical user interface to manage Docker once
you’ve got it installed. Currently, there are a small number of Docker user inter-
faces and web consoles available in various states of development, including:

• Shipyard - Shipyard gives you the ability to manage Docker resources, in-
cluding containers, images, hosts, and more from a single management in-
terface. It’s open source, and the code is available from https://github.
com/ehazlett/shipyard.
• Portainer - UI for Docker is a web interface that allows you to interact with
the Docker Remote API. It’s written in JavaScript using the AngularJS frame-
work.
• Kitematic - is a GUI for OS X and Windows that helps you run Docker locally
and interact with the Docker Hub. It’s a free product released by Docker Inc.

Version: v18.09 (6172afc) 44

http://shipyard-project.com/
https://github.com/ehazlett/shipyard
https://github.com/ehazlett/shipyard
https://github.com/portainer/portainer
https://kitematic.com/

Chapter 2: Installing Docker

Summary
In this chapter, we’ve seen how to install Docker on a variety of platforms. We’ve
also seen how to manage the Docker daemon.
In the next chapter, we’re going to start using Docker. We’ll begin with container
basics to give you an introduction to basic Docker operations. If you’re all set up
and ready to go then jump into Chapter 3.

Version: v18.09 (6172afc) 45

Chapter 3

Getting Started with Docker

In the last chapter, we saw how to install Docker and ensure the Docker daemon
is up and running. In this chapter we’re going to see how to take our first steps
with Docker and work with our first container. This chapter will provide you with
the basics of how to interact with Docker.

Ensuring Docker is ready
We’re going to start with checking that Docker is working correctly, and then
we’re going to take a look at the basic Docker workflow: creating and managing
containers. We’ll take a container through its typical lifecycle from creation to a
managed state and then stop and remove it.
Firstly, let’s check that the docker binary exists and is functional:

46

Chapter 3: Getting Started with Docker

Listing 3.1: Checking that the docker binary works

$ sudo docker info
Containers: 33
Running: 0
Paused: 0
Stopped: 33
Images: 217
Server Version: 1.12.0
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Backing Filesystem: extfs
Dirs: 284
Dirperm1 Supported: false
Logging Driver: json-file
Cgroup Driver: cgroupfs
. . .
Username: jamtur01
Registry: https://index.docker.io/v1/
WARNING: No swap limit support
Insecure Registries:
127.0.0.0/8

Here, we’ve passed the info command to the docker binary, which returns a list of
any containers, any images (the building blocks Docker uses to build containers),
the execution and storage drivers Docker is using, and its basic configuration.
As we’ve learned in previous chapters, Docker has a client-server architecture.
It has two binaries, the Docker server provided via the dockerd binary and the
docker binary, that acts as a client. As a client, the docker binary passes requests
to the Docker daemon (e.g., asking it to return information about itself), and then
processes those requests when they are returned.

Version: v18.09 (6172afc) 47

Chapter 3: Getting Started with Docker

 NOTE Prior to Docker 1.12 all of this functionality was provided by a
single binary: docker.

Running our first container
Now let’s try and launch our first container with Docker. We’re going to use the
docker run command to create a container. The docker run command provides
all of the “launch” capabilities for Docker. We’ll be using it a lot to create new
containers.

 TIP You can find a full list of the available Docker commands here or by typ-
ing docker help. You can also use the Docker man pages (e.g., man docker-run).
This will not work on Docker for Mac or Docker for OSX as no man pages are
shipped.

Version: v18.09 (6172afc) 48

https://docs.docker.com/engine/reference/commandline/cli/

Chapter 3: Getting Started with Docker

Listing 3.2: Running our first container

$ sudo docker run -i -t ubuntu /bin/bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
43db9dbdcb30: Pull complete
2dc64e8f8d4f: Pull complete
670a583e1b50: Pull complete
183b0bfcd10e: Pull complete
Digest: sha256:

c6674c44c6439673bf56536c1a15916639c47ea04c3d6296c5df938add67b54b

Status: Downloaded newer image for ubuntu:latest
root@fcd78e1a3569:/#

Wow. A bunch of stuff happened here when we ran this command. Let’s look at
each piece.

Listing 3.3: The docker run command

$ sudo docker run -i -t ubuntu /bin/bash

First, we told Docker to run a command using docker run. We passed it two
command line flags: -i and -t. The -i flag keeps STDIN open from the container,
even if we’re not attached to it. This persistent standard input is one half of what
we need for an interactive shell. The -t flag is the other half and tells Docker
to assign a pseudo-tty to the container we’re about to create. This provides us
with an interactive shell in the new container. This line is the base configuration
needed to create a container with which we plan to interact on the command line
rather than run as a daemonized service.

Version: v18.09 (6172afc) 49

Chapter 3: Getting Started with Docker

 TIP You can find a full list of the available Docker run flags here or by
typing docker help run. You can also use the Docker man pages (e.g., example
man docker-run.)

Next, we told Docker which image to use to create a container, in this case the
ubuntu image. The ubuntu image is a stock image, also known as a “base” image,
provided by Docker, Inc., on the Docker Hub registry. You can use base images
like the ubuntu base image (and the similar fedora, debian, centos, etc., images)
as the basis for building your own images on the operating system of your choice.
For now, we’re just running the base image as the basis for our container and not
adding anything to it.

 TIP We’ll hear a lot more about images in Chapter 4, including how to
build our own images. Throughout the book we use the ubuntu image. This is
a reasonably heavyweight image, measuring a couple of hundred megabytes in
size. If you’d prefer something smaller the Alpine Linux image is recommended
as extremely lightweight, generally 5Mb in size for the base image. Its image
name is alpine.

So what was happening in the background here? Firstly, Docker checked locally
for the ubuntu image. If it can’t find the image on our local Docker host, it will
reach out to the Docker Hub registry run by Docker, Inc., and look for it there.
Once Docker had found the image, it downloaded the image and stored it on the
local host.
Docker then used this image to create a new container inside a filesystem. The
container has a network, IP address, and a bridge interface to talk to the local
host. Finally, we told Docker which command to run in our new container, in this
case launching a Bash shell with the /bin/bash command.
When the container had been created, Docker ran the /bin/bash command inside
it; the container’s shell was presented to us like so:

Version: v18.09 (6172afc) 50

https://docs.docker.com/engine/reference/run/
http://hub.docker.com
https://hub.docker.com/_/alpine/
http://hub.docker.com

Chapter 3: Getting Started with Docker

Listing 3.4: Our first container’s shell

root@f7cbdac22a02:/#

Working with our first container
We are now logged into a new container, with the catchy ID of f7cbdac22a02, as
the root user. This is a fully fledged Ubuntu host, and we can do anything we like
in it. Let’s explore it a bit, starting with asking for its hostname.

Listing 3.5: Checking the container’s hostname

root@f7cbdac22a02:/# hostname
f7cbdac22a02

We see that our container’s hostname is the container ID. Let’s have a look at the
/etc/hosts file too.

Listing 3.6: Checking the container’s /etc/hosts

root@f7cbdac22a02:/# cat /etc/hosts
172.17.0.4 f7cbdac22a02
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Version: v18.09 (6172afc) 51

Chapter 3: Getting Started with Docker

Docker has also added a host entry for our container with its IP address.
Let’s also check out its networking configuration.

Listing 3.7: Checking the container’s interfaces

root@f7cbdac22a02:/# hostname -I
172.17.0.4

We see that we have an IP address of 172.17.0.4, just like any other host. We can
also check its running processes.

Listing 3.8: Checking container’s processes

root@f7cbdac22a02:/# ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME

COMMAND
root 1 0.0 0.0 18156 1936 ? Ss May30 0:00

/bin/bash
root 21 0.0 0.0 15568 1100 ? R+ 02:38 0:00

ps -aux

Now, how about we install a package?

Listing 3.9: Installing a package in our first container

root@f7cbdac22a02:/# apt-get update; apt-get install vim

We’ll now have Vim installed in our container.
You can keep playing with the container for as long as you like. When you’re
done, type exit, and you’ll return to the command prompt of your Ubuntu host.

Version: v18.09 (6172afc) 52

Chapter 3: Getting Started with Docker

So what’s happened to our container? Well, it has now stopped running. The
container only runs for as long as the command we specified, /bin/bash, is run-
ning. Once we exited the container, that command ended, and the container was
stopped.
The container still exists; we can show a list of current containers using the docker
ps -a command.

Listing 3.10: Listing Docker containers

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1cd57c2cdf7f ubuntu "/bin/bash" A minute Exited gray_cat

By default, when we run just docker ps, we will only see the running containers.
When we specify the -a flag, the docker ps command will show us all containers,
both stopped and running.

 TIP You can also use the docker ps command with the -l flag to show the
last container that was run, whether it is running or stopped. You can also use
the --format flag to further control what and how information is outputted.

We see quite a bit of information about our container: its ID, the image used to
create it, the command it last ran, when it was created, and its exit status (in our
case, 0, because it was exited normally using the exit command). We can also
see that each container has a name.

 NOTE There are three ways containers can be identified: a short UUID
(like f7cbdac22a02), a longer UUID (like f7cbdac22a02e03c9438c729345e54db9d
20cfa2ac1fc3494b6eb60872e74778), and a name (like gray_cat).

Version: v18.09 (6172afc) 53

Chapter 3: Getting Started with Docker

Container naming
Docker will automatically generate a name at random for each container we create.
We see that the container we’ve just created is called gray_cat. If we want to
specify a particular container name in place of the automatically generated name,
we can do so using the --name flag.

Listing 3.11: Naming a container

$ sudo docker run --name bob_the_container -i -t ubuntu /bin/bash
root@aa3f365f0f4e:/# exit

This would create a new container called bob_the_container. A valid container
name can contain the following characters: a to z, A to Z, the digits 0 to 9, the
underscore, period, and dash (or, expressed as a regular expression: [a-zA-Z0-9_
.-]).
We can use the container name in place of the container ID in most Docker com-
mands, as we’ll see. Container names are useful to help us identify and build
logical connections between containers and applications. It’s also much easier to
remember a specific container name (e.g., web or db) than a container ID or even
a random name. I recommend using container names to make managing your
containers easier.

 NOTE We’ll see more about how to connect Docker containers in Chapter
5.

Names are unique. If we try to create two containers with the same name, the
command will fail. We need to delete the previous container with the same name
before we can create a new one. We can do so with the docker rm command.

Version: v18.09 (6172afc) 54

Chapter 3: Getting Started with Docker

Starting a stopped container
So what to do with our now-stopped bob_the_container container? Well, if we
want, we can restart a stopped container like so:

Listing 3.12: Starting a stopped container

$ sudo docker start bob_the_container

We could also refer to the container by its container ID instead.

Listing 3.13: Starting a stopped container by ID

$ sudo docker start aa3f365f0f4e

 TIP We can also use the docker restart command.

Now if we run the docker ps command without the -a flag, we’ll see our running
container.

 NOTE In a similar vein there is also the docker create command which
creates a container but does not run it. This allows you more granular control
over your container workflow.

Version: v18.09 (6172afc) 55

https://docs.docker.com/engine/reference/commandline/create/

Chapter 3: Getting Started with Docker

Attaching to a container
Our container will restart with the same options we’d specified when we launched
it with the docker run command. So there is an interactive session waiting on
our running container. We can reattach to that session using the docker attach
command.

Listing 3.14: Attaching to a running container

$ sudo docker attach bob_the_container

or via its container ID:

Listing 3.15: Attaching to a running container via ID

$ sudo docker attach aa3f365f0f4e

and we’ll be brought back to our container’s Bash prompt:

 TIP You might need to hit Enter to bring up the prompt

Listing 3.16: Inside our re-attached container

root@aa3f365f0f4e:/#

If we exit this shell, our container will again be stopped.

Version: v18.09 (6172afc) 56

Chapter 3: Getting Started with Docker

Creating daemonized containers
In addition to these interactive containers, we can create longer-running contain-
ers. Daemonized containers don’t have the interactive session we’ve just used
and are ideal for running applications and services. Most of the containers you’re
likely to run will probably be daemonized. Let’s start a daemonized container
now.

Listing 3.17: Creating a long running container

$ sudo docker run --name daemon_dave -d ubuntu /bin/sh -c "while
true; do echo hello world; sleep 1; done"

1333bb1a66af402138485fe44a335b382c09a887aa9f95cb9725e309ce5b7db3

Here, we’ve used the docker run command with the -d flag to tell Docker to
detach the container to the background.
We’ve also specified a while loop as our container command. Our loop will echo
hello world over and over again until the container is stopped or the process
stops.
With this combination of flags, you’ll see that, instead of being attached to a shell
like our last container, the docker run command has instead returned a container
ID and returned us to our command prompt. Now if we run docker ps, we see a
running container.

Listing 3.18: Viewing our running daemon_dave container

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

1333bb1a66af ubuntu /bin/sh -c 'while tr 32 secs ago Up 27
daemon_dave

Version: v18.09 (6172afc) 57

Chapter 3: Getting Started with Docker

Seeing what’s happening inside our container
We now have a daemonized container running our while loop; let’s take a look
inside the container and see what’s happening. To do so, we can use the docker
logs command. The docker logs command fetches the logs of a container.

Listing 3.19: Fetching the logs of our daemonized container

$ sudo docker logs daemon_dave
hello world
hello world
hello world
hello world
hello world
hello world
hello world
. . .

Here we see the results of our while loop echoing hello world to the logs. Docker
will output the last few log entries and then return. We can also monitor the
container’s logs much like the tail -f binary operates using the -f flag.

Version: v18.09 (6172afc) 58

Chapter 3: Getting Started with Docker

Listing 3.20: Tailing the logs of our daemonized container

$ sudo docker logs -f daemon_dave
hello world
hello world
hello world
hello world
hello world
hello world
hello world
. . .

 TIP Use Ctrl-C to exit from the log tail.

You can also tail a portion of the logs of a container, again much like the tail
command with the -f and --tail flags. For example, you can get the last ten lines
of a log by using docker logs --tail 10 daemon_dave. You can also follow the
logs of a container without having to read the whole log file with docker logs -
-tail 0 -f daemon_dave.
To make debugging a little easier, we can also add the -t flag to prefix our log
entries with timestamps.

Version: v18.09 (6172afc) 59

Chapter 3: Getting Started with Docker

Listing 3.21: Tailing the logs of our daemonized container

$ sudo docker logs -ft daemon_dave
2016-08-02T03:31:16.743679596Z hello world
2016-08-02T03:31:17.744769494Z hello world
2016-08-02T03:31:18.745786252Z hello world
2016-08-02T03:31:19.746839926Z hello world
. . .

 TIP Again, use Ctrl-C to exit from the log tail.

Docker log drivers
Since Docker 1.6 you can also control the logging driver used by your daemon and
container. This is done using the --log-driver option. You can pass this option
to both the daemon and the docker run command.
There are a variety of options including the default json-file which provides the
behavior we’ve just seen using the docker logs command.
Also available is syslog which disables the docker logs command and redirects
all container log output to Syslog. You can specify this with the Docker daemon
to output all container logs to Syslog or override it using docker run to direct
output from individual containers.

Version: v18.09 (6172afc) 60

Chapter 3: Getting Started with Docker

Listing 3.22: Enabling Syslog at the container level

$ sudo docker run --log-driver="syslog" --name daemon_dwayne -d
ubuntu /bin/sh -c "while true; do echo hello world; sleep 1;
done"

. . .

This will cause the daemon_dwayne container to log to Syslog and result in the
docker logs command showing no output.
Lastly, also available is none, which disables all logging in containers and results
in the docker logs command being disabled.

 TIP Additional logging drivers continue to be added. Docker 1.8 introduced
support for Graylog’s GELF protocol, Fluentd and a log rotation driver.

Inspecting the container’s processes
In addition to the container’s logs we can also inspect the processes running inside
the container. To do this, we use the docker top command.

Listing 3.23: Inspecting the processes of the daemonized container

$ sudo docker top daemon_dave

We can then see each process (principally our while loop), the user it is running
as, and the process ID.

Version: v18.09 (6172afc) 61

https://www.graylog.org/centralize-your-docker-container-logging-with-graylog-native-integration/
http://blog.treasuredata.com/blog/2015/08/03/5-use-cases-docker-fluentd/

Chapter 3: Getting Started with Docker

Listing 3.24: The docker top output

PID USER COMMAND
977 root /bin/sh -c while true; do echo hello world; sleep 1;

done
1123 root sleep 1

Docker statistics
In addition to the docker top command you can also use the docker stats com-
mand. This shows statistics for one or more running Docker containers. Let’s see
what these look like. We’re going to look at the statistics for our daemon_dave and
daemon_dwayne containers.

Listing 3.25: The docker stats command

$ sudo docker stats daemon_dave daemon_dwayne
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O

BLOCK I/O
daemon_dave 0.14% 212 KiB/994 MiB 0.02% 5.062 KiB/648 B 1.69

MB / 0 B
daemon_dwayne 0.11% 216 KiB/994 MiB 0.02% 1.402 KiB/648 B

24.43 MB / 0 B

We see a list of daemonized containers and their CPU, memory and network and
storage I/O performance andmetrics. This is useful for quickly monitoring a group
of containers on a host.

Version: v18.09 (6172afc) 62

Chapter 3: Getting Started with Docker

 NOTE The docker stats command was introduced in Docker 1.5.0.

Running a process inside an already running con-
tainer
Since Docker 1.3 we can also run additional processes inside our containers using
the docker exec command. There are two types of commands we can run inside a
container: background and interactive. Background tasks run inside the container
without interaction and interactive tasks remain in the foreground. Interactive
tasks are useful for tasks like opening a shell inside a container. Let’s look at an
example of a background task.

Listing 3.26: Running a background task inside a container

$ sudo docker exec -d daemon_dave touch /etc/new_config_file

Here the -d flag indicates we’re running a background process. We then specify
the name of the container to run the command inside and the command to be
executed. In this case our command will create a new empty file called /etc/
new_config_file inside our daemon_dave container. We can use a docker exec
background command to run maintenance, monitoring or management tasks in-
side a running container.

 TIP Since Docker 1.7 you can use the -u flag to specify a new process owner
for docker exec launched processes.

We can also run interactive tasks like opening a shell inside our daemon_dave
container.

Version: v18.09 (6172afc) 63

Chapter 3: Getting Started with Docker

Listing 3.27: Running an interactive command inside a container

$ sudo docker exec -t -i daemon_dave /bin/bash

The -t and -i flags, like the flags used when running an interactive container,
create a TTY and capture STDIN for our executed process. We then specify the
name of the container to run the command inside and the command to be executed.
In this case our command will create a new bash session inside the container
daemon_dave. We could then use this session to issue other commands inside our
container.

 NOTE The docker exec command was introduced in Docker 1.3 and is
not available in earlier releases. For earlier Docker releases you should see the
nsenter command explained in Chapter 6.

Stopping a daemonized container
If we wish to stop our daemonized container, we can do it with the docker stop
command, like so:

Listing 3.28: Stopping the running Docker container

$ sudo docker stop daemon_dave

or again via its container ID.

Version: v18.09 (6172afc) 64

Chapter 3: Getting Started with Docker

Listing 3.29: Stopping the running Docker container by ID

$ sudo docker stop c2c4e57c12c4

 NOTE The docker stop command sends a SIGTERM signal to the Docker
container’s running process. If you want to stop a container a bit more enthusias-
tically, you can use the docker kill command, which will send a SIGKILL signal
to the container’s process.

Run docker ps to check the status of the now-stopped container. Useful here is
the docker ps -n x flag which shows the last x containers, running or stopped.

Automatic container restarts
If your container has stopped because of a failure you can configure Docker to
restart it using the --restart flag. The --restart flag checks for the container’s
exit code and makes a decision whether or not to restart it. The default behavior
is to not restart containers at all.
You specify the --restart flag with the docker run command.

Listing 3.30: Automatically restarting containers

$ sudo docker run --restart=always --name daemon_alice -d ubuntu
/bin/sh -c "while true; do echo hello world; sleep 1; done"

In this example the --restart flag has been set to always. Docker will try to
restart the container no matter what exit code is returned. Alternatively, we can

Version: v18.09 (6172afc) 65

Chapter 3: Getting Started with Docker

specify a value of on-failure which restarts the container if it exits with a non-
zero exit code. The on-failure flag also accepts an optional restart count.

Listing 3.31: On-failure restart count

--restart=on-failure:5

This will attempt to restart the container a maximum of five times if a non-zero
exit code is received.

 NOTE The --restart flag was introduced in Docker 1.2.0.

Finding out more about our container
In addition to the information we retrieved about our container using the docker
ps command, we can get a whole lot more information using the docker inspect
command.

Version: v18.09 (6172afc) 66

Chapter 3: Getting Started with Docker

Listing 3.32: Inspecting a container

$ sudo docker inspect daemon_alice
[{
"ID": "
c2c4e57c12c4c142271c031333823af95d64b20b5d607970c334784430bcbd0f
",

"Created": "2014-05-10T11:49:01.902029966Z",
"Path": "/bin/sh",
"Args": [
"-c",
"while true; do echo hello world; sleep 1; done"
],
"Config": {
"Hostname": "c2c4e57c12c4",

. . .

The docker inspect command will interrogate our container and return its con-
figuration information, including names, commands, networking configuration,
and a wide variety of other useful data.
We can also selectively query the inspect results hash using the -f or --format
flag.

Listing 3.33: Selectively inspecting a container

$ sudo docker inspect --format='{{ .State.Running }}'
daemon_alice

true

This will return the running state of the container, which in our case is true. We
can also get useful information like the container’s IP address.

Version: v18.09 (6172afc) 67

Chapter 3: Getting Started with Docker

Listing 3.34: Inspecting the container’s IP address

$ sudo docker inspect --format '{{ .NetworkSettings.IPAddress }}'
daemon_alice

172.17.0.2

 TIP The --format or -f flag is a bit more than it seems on the surface. It’s
actually a full Go template being exposed. You can make use of all the capabilities
of a Go template when querying it.

We can also list multiple containers and receive output for each.

Listing 3.35: Inspecting multiple containers

$ sudo docker inspect --format '{{.Name}} {{.State.Running}}' \
daemon_dave daemon_alice
/daemon_dave true
/daemon_alice true

We can select any portion of the inspect hash to query and return.

 NOTE In addition to inspecting containers, you can see a bit more about
how Docker works by exploring the /var/lib/docker directory. This directory
holds your images, containers, and container configuration. You’ll find all your
containers in the /var/lib/docker/containers directory.

Version: v18.09 (6172afc) 68

http://golang.org/pkg/text/template/
http://golang.org/pkg/text/template/

Chapter 3: Getting Started with Docker

Deleting a container
If you are finished with a container, you can delete it using the docker rm com-
mand.

 NOTE Since Docker 1.6.2 you can delete a running Docker container using
the -f flag to the docker rm command. Prior to this version you must stop the
container first using the docker stop command or docker kill command.

Listing 3.36: Deleting a container

$ sudo docker rm 80430f8d0921
80430f8d0921

There isn’t currently a way to delete all containers, but you can slightly cheat with
a command like the following:

Listing 3.37: Deleting all containers

$ sudo docker rm -f `sudo docker ps -a -q`

This command will list all of the current containers using the docker ps command.
The -a flag lists all containers, and the -q flag only returns the container IDs rather
than the rest of the information about your containers. This list is then passed to
the docker rm command, which deletes each container. The -f flag force removes
any running containers. If you’d prefer to protect those containers, omit the flag.

Version: v18.09 (6172afc) 69

Chapter 3: Getting Started with Docker

Summary
We’ve now been introduced to the basic mechanics of how Docker containers work.
This information will form the basis for how we’ll learn to use Docker in the rest
of the book.
In the next chapter, we’re going to explore building our own Docker images and
working with Docker repositories and registries.

Version: v18.09 (6172afc) 70

Chapter 4

Working with Docker images and
repositories

In Chapter 2, we learned how to install Docker. In Chapter 3, we learned how to
use a variety of commands to manage Docker containers, including the docker
run command.
Let’s see the docker run command again.

Listing 4.1: Revisiting running a basic Docker container

$ sudo docker run -i -t --name another_container_mum ubuntu \
/bin/bash
root@b415b317ac75:/#

This command will launch a new container called another_container_mum from
the ubuntu image and open a Bash shell.
In this chapter, we’re going to explore Docker images: the building blocks from
which we launch containers. We’ll learn a lot more about Docker images, what
they are, how to manage them, how to modify them, and how to create, store,
and share your own images. We’ll also examine the repositories that hold images
and the registries that store repositories.

71

Chapter 4: Working with Docker images and repositories

What is a Docker image?
Let’s continue our journey with Docker by learning a bit more about Docker im-
ages. A Docker image is made up of filesystems layered over each other. At the
base is a boot filesystem, bootfs, which resembles the typical Linux/Unix boot
filesystem. A Docker user will probably never interact with the boot filesystem.
Indeed, when a container has booted, it is moved into memory, and the boot
filesystem is unmounted to free up the RAM used by the initrd disk image.
So far this looks pretty much like a typical Linux virtualization stack. Indeed,
Docker next layers a root filesystem, rootfs, on top of the boot filesystem. This
rootfs can be one or more operating systems (e.g., a Debian or Ubuntu filesys-
tem).
In a more traditional Linux boot, the root filesystem is mounted read-only and
then switched to read-write after boot and an integrity check is conducted. In the
Docker world, however, the root filesystem stays in read-only mode, and Docker
takes advantage of a union mount to add more read-only filesystems onto the
root filesystem. A union mount is a mount that allows several filesystems to be
mounted at one time but appear to be one filesystem. The union mount overlays
the filesystems on top of one another so that the resulting filesystem may contain
files and subdirectories from any or all of the underlying filesystems.
Docker calls each of these filesystems images. Images can be layered on top of
one another. The image below is called the parent image and you can traverse
each layer until you reach the bottom of the image stack where the final image
is called the base image. Finally, when a container is launched from an image,
Docker mounts a read-write filesystem on top of any layers below. This is where
whatever processes we want our Docker container to run will execute.
This sounds confusing, so perhaps it is best represented by a diagram.

Version: v18.09 (6172afc) 72

http://en.wikipedia.org/wiki/Union_mount

Chapter 4: Working with Docker images and repositories

Figure 4.1: The Docker filesystem layers

When Docker first starts a container, the initial read-write layer is empty. As
changes occur, they are applied to this layer; for example, if you want to change
a file, then that file will be copied from the read-only layer below into the read-
write layer. The read-only version of the file will still exist but is now hidden
underneath the copy.

Version: v18.09 (6172afc) 73

Chapter 4: Working with Docker images and repositories

This pattern is traditionally called “copy on write” and is one of the features that
makes Docker so powerful. Each read-only image layer is read-only; this image
never changes. When a container is created, Docker builds from the stack of im-
ages and then adds the read-write layer on top. That layer, combined with the
knowledge of the image layers below it and some configuration data, form the con-
tainer. As we discovered in the last chapter, containers can be changed, they have
state, and they can be started and stopped. This, and the image-layering frame-
work, allows us to quickly build images and run containers with our applications
and services.

Listing Docker images
Let’s get started with Docker images by looking at what images are available to
us on our Docker host. We can do this using the docker images command.

Listing 4.2: Listing Docker images

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu latest c4ff7513909d 6 days ago 225.4 MB

We see that we’ve got an image, from a repository called ubuntu. So where does
this image come from? Remember in Chapter 3, when we ran the docker run
command, that part of the process was downloading an image? In our case, it’s
the ubuntu image.

 NOTE Local images live on our local Docker host in the /var/lib/docker
directory. Each image will be inside a directory named for your storage driver;
for example, aufs or devicemapper. You’ll also find all your containers in the
/var/lib/docker/containers directory.

Version: v18.09 (6172afc) 74

Chapter 4: Working with Docker images and repositories

That image was downloaded from a repository. Images live inside repositories,
and repositories live on registries. The default registry is the public registry man-
aged by Docker, Inc., Docker Hub.

 TIP The Docker registry code is open source. You can also run your own
registry, as we’ll see later in this chapter. The Docker Hub product is also available
as a commercial ”behind the firewall” product called Docker Trusted Registry,
formerly Docker Enterprise Hub.

Figure 4.2: Docker Hub

Inside Docker Hub (or on a Docker registry you run yourself), images are stored
in repositories. You can think of an image repository as being much like a Git
repository. It contains images, layers, and metadata about those images.
Each repository can contain multiple images (e.g., the ubuntu repository contains
images for Ubuntu 12.04, 12.10, 13.04, 13.10, 14.04, 16.04). Let’s get another
image from the ubuntu repository now.

Version: v18.09 (6172afc) 75

https://hub.docker.com
https://docs.docker.com/docker-trusted-registry/
https://hub.docker.com

Chapter 4: Working with Docker images and repositories

Listing 4.3: Pulling the Ubuntu 16.04 image

$ sudo docker pull ubuntu:16.04
16.04: Pulling from library/ubuntu
Digest: sha256:

c6674c44c6439673bf56536c1a15916639c47ea04c3d6296c5df938add67b54b

Status: Downloaded newer image for ubuntu:16.04

Here we’ve used the docker pull command to pull down the Ubuntu 16.04 image
from the ubuntu repository.
Let’s see what our docker images command reveals now.

Listing 4.4: Listing the ubuntu Docker images

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu latest 5506de2b643b 3 weeks ago 199.3 MB
ubuntu 16.04 0b310e6bf058 5 months ago 127.9 MB

 TIP Throughout the book we use the ubuntu image. This is a reasonably
heavyweight image, measuring a couple of hundred megabytes in size. If you’d
prefer something smaller the Alpine Linux image is recommended as extremely
lightweight, generally 5Mb in size for the base image. Its image name is alpine.

You can see we’ve now got the latest Ubuntu image and the 16.04 image. This
shows us that the ubuntu image is actually a series of images collected under a
single repository.

Version: v18.09 (6172afc) 76

https://hub.docker.com/_/alpine/

Chapter 4: Working with Docker images and repositories

 NOTE We call it the Ubuntu operating system, but really it is not the full
operating system. It’s a cut-down version with the bare runtime required to run
the distribution.

We identify each image inside that repository by what Docker calls tags. Each
image is being listed by the tags applied to it, so, for example, 12.04, 12.10,
quantal, or precise and so on. Each tag marks together a series of image layers
that represent a specific image (e.g., the 16.04 tag collects together all the layers
of the Ubuntu 16.04 image). This allows us to store more than one image inside
a repository.
We can refer to a specific image inside a repository by suffixing the repository
name with a colon and a tag name, for example:

Listing 4.5: Running a tagged Docker image

$ sudo docker run -t -i --name new_container ubuntu:16.04 /bin/
bash

root@79e36bff89b4:/#

This launches a container from the ubuntu:16.04 image, which is an Ubuntu 16.04
operating system.
It’s always a good idea to build a container from specific tags. That way we’ll know
exactly what the source of our container is. There are differences, for example,
between Ubuntu 14.04 and 16.04, so it would be useful to specifically state that
we’re using ubuntu:16.04 so we know exactly what we’re getting.
There are two types of repositories: user repositories, which contain images con-
tributed by Docker users, and top-level repositories, which are controlled by the
people behind Docker.
A user repository takes the form of a username and a repository name; for example,
jamtur01/puppet.

Version: v18.09 (6172afc) 77

Chapter 4: Working with Docker images and repositories

• Username: jamtur01
• Repository name: puppet

Alternatively, a top-level repository only has a repository name like ubuntu. The
top-level repositories are managed by Docker Inc and by selected vendors who pro-
vide curated base images that you can build upon (e.g., the Fedora team provides
a fedora image). The top-level repositories also represent a commitment from
vendors and Docker Inc that the images contained in them are well constructed,
secure, and up to date.
In Docker 1.8 support was also added for managing the content security of images,
essentially signed images. This is currently an optional feature and you can read
more about it on the Docker blog.

WARNING User-contributed images are built by members of the Docker
community. You should use them at your own risk: they are not validated or
verified in any way by Docker Inc.

Pulling images
When we run a container from images with the docker run command, if the image
isn’t present locally already then Docker will download it from the Docker Hub.
By default, if you don’t specify a specific tag, Docker will download the latest
tag, for example:

Listing 4.6: Docker run and the default latest tag

$ sudo docker run -t -i --name next_container ubuntu /bin/bash
root@23a42cee91c3:/#

Version: v18.09 (6172afc) 78

https://blog.docker.com/2015/08/content-trust-docker-1-8/

Chapter 4: Working with Docker images and repositories

Will download the ubuntu:latest image if it isn’t already present on the host.
Alternatively, we can use the docker pull command to pull images down our-
selves preemptively. Using docker pull saves us some time launching a container
from a new image. Let’s see that now by pulling down the ‘fedora:21 base image.

Listing 4.7: Pulling the fedora image

$ sudo docker pull fedora:21
21: Pulling from library/fedora
d60b4509ad7d: Pull complete
Digest: sha256:4328

c03e6cafef1676db038269fc9a4c3528700d04ca1572e706b4a0aa320000
Status: Downloaded newer image for fedora:21

Let’s see this new image on our Docker host using the docker images command.
This time, however, let’s narrow our review of the images to only the fedora im-
ages. To do so, we can specify the image name after the docker images command.

Listing 4.8: Viewing the fedora image

$ sudo docker images fedora
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedora 21 7d3f07f8de5f 6 weeks ago 374.1 MB

We see that the fedora:21 image has been downloaded. We could also download
another tagged image using the docker pull command.

Version: v18.09 (6172afc) 79

Chapter 4: Working with Docker images and repositories

Listing 4.9: Pulling a tagged fedora image

$ sudo docker pull fedora:20

This would have just pulled the fedora:20 image.

Searching for images
We can also search all of the publicly available images on Docker Hub using the
docker search command:

Listing 4.10: Searching for images

$ sudo docker search puppet
NAME DESCRIPTION STARS OFFICIAL

AUTOMATED
macadmins/puppetmaster Simple puppetmaster 21 [

OK]
devopsil/puppet Dockerfile for a 18 [

OK]
. . .

 TIP You can also browse the available images online at Docker Hub.

Here, we’ve searched the Docker Hub for the term puppet. It’ll search images and
return:

• Repository names

Version: v18.09 (6172afc) 80

https://hub.docker.com
https://hub.docker.com

Chapter 4: Working with Docker images and repositories

• Image descriptions
• Stars - these measure the popularity of an image
• Official - an image managed by the upstream developer (e.g., the fedora
image managed by the Fedora team)
• Automated - an image built by the Docker Hub’s Automated Build process

 NOTE We’ll see more about Automated Builds later in this chapter.

Let’s pull down an image.

Listing 4.11: Pulling down the jamtur01/puppetmaster image

$ sudo docker pull jamtur01/puppetmaster

This will pull down the jamtur01/puppetmaster image (which, by the way, con-
tains a pre-installed Puppet master server).
We can then use this image to build a new container. Let’s do that now using the
docker run command again.

Listing 4.12: Creating a Docker container from the puppetmaster image

$ sudo docker run -i -t jamtur01/puppetmaster /bin/bash
root@4655dee672d3:/# facter
architecture => amd64
augeasversion => 1.2.0
. . .
root@4655dee672d3:/# puppet --version
3.4.3

Version: v18.09 (6172afc) 81

Chapter 4: Working with Docker images and repositories

You can see we’ve launched a new container from our jamtur01/puppetmaster
image. We’ve launched the container interactively and told the container to
run the Bash shell. Once inside the container’s shell, we’ve run Facter (Puppet’s
inventory application), which was pre-installed on our image. From inside the
container, we’ve also run the puppet binary to confirm it is installed.

Building our own images
So we’ve seen that we can pull down pre-prepared images with custom contents.
How dowe go about modifying our own images and updating andmanaging them?
There are two ways to create a Docker image:

• Via the docker commit command
• Via the docker build command with a Dockerfile

The docker commit method is not currently recommended, as building with a
Dockerfile is far more flexible and powerful, but we’ll demonstrate it to you for
the sake of completeness. After that, we’ll focus on the recommended method
of building Docker images: writing a Dockerfile and using the docker build
command.

 NOTE We don’t generally actually ”create” new images; rather, we build
new images from existing base images, like the ubuntu or fedora images we’ve
already seen. If you want to build an entirely new base image, you can see some
information on this in this guide.

Creating a Docker Hub account
A big part of image building is sharing and distributing your images. We do this
by pushing them to the Docker Hub or your own registry. To facilitate this, let’s
start by creating an account on the Docker Hub. You can join Docker Hub here.

Version: v18.09 (6172afc) 82

https://docs.docker.com/engine/userguide/eng-image/baseimages/
https://hub.docker.com
https://hub.docker.com

Chapter 4: Working with Docker images and repositories

Figure 4.3: Creating a Docker Hub account.

Create an account and verify your email address from the email you’ll receive after
signing up.
Now let’s test our new account from Docker. To sign into the Docker Hub you can
use the docker login command.

Listing 4.13: Logging into the Docker Hub

$ sudo docker login
Login with your Docker ID to push and pull images from Docker Hub

. If you don't have a Docker ID, head over to https://hub.
docker.com to create one.

Username (jamtur01): jamtur01
Password:
Login Succeeded

This command will log you into the Docker Hub and store your credentials for
future use. You can use the docker logout command to log out from a registry
server.

Version: v18.09 (6172afc) 83

Chapter 4: Working with Docker images and repositories

 NOTE Your credentials will be stored in the $HOME/.dockercfg file. Since
Docker 1.7.0 this is now $HOME/.docker/config.json.

Using Docker commit to create images
The first method of creating images uses the docker commit command. You can
think about this method as much like making a commit in a version control system.
We create a container, make changes to that container as you would change code,
and then commit those changes to a new image.
Let’s start by creating a container from the ubuntu image we’ve used in the past.

Listing 4.14: Creating a custom container to modify

$ sudo docker run -i -t ubuntu /bin/bash
root@4aab3ce3cb76:/#

Next, we’ll install Apache into our container.

Listing 4.15: Adding the Apache package

root@4aab3ce3cb76:/# apt-get -yqq update
. . .
root@4aab3ce3cb76:/# apt-get -y install apache2
. . .

We’ve launched our container and then installed Apache within it. We’re going
to use this container as a web server, so we’ll want to save it in its current state.
That will save us from having to rebuild it with Apache every time we create a
new container. To do this we exit from the container, using the exit command,

Version: v18.09 (6172afc) 84

Chapter 4: Working with Docker images and repositories

and use the docker commit command.

Listing 4.16: Committing the custom container

$ sudo docker commit 4aab3ce3cb76 jamtur01/apache2
8ce0ea7a1528

You can see we’ve used the docker commit command and specified the ID of the
container we’ve just changed (to find that ID you could use the docker ps -l
-q command to return the ID of the last created container) as well as a target
repository and image name, here jamtur01/apache2. Of note is that the docker
commit command only commits the differences between the image the container
was created from and the current state of the container. This means updates are
lightweight.
Let’s look at our new image.

Listing 4.17: Reviewing our new image

$ sudo docker images jamtur01/apache2
. . .
jamtur01/apache2 latest 8ce0ea7a1528 13 seconds ago 90.63 MB

We can also provide some more data about our changes when committing our
image, including tags. For example:

Version: v18.09 (6172afc) 85

Chapter 4: Working with Docker images and repositories

Listing 4.18: Committing another custom container

$ sudo docker commit -m "A new custom image" -a "James Turnbull"
\

4aab3ce3cb76 jamtur01/apache2:webserver
f99ebb6fed1f559258840505a0f5d5b6173177623946815366f3e3acff01adef

Here, we’ve specified some more information while committing our new image.
We’ve added the -m option which allows us to provide a commit message explain-
ing our new image. We’ve also specified the -a option to list the author of the
image. We’ve then specified the ID of the container we’re committing. Finally,
we’ve specified the username and repository of the image, jamtur01/apache2, and
we’ve added a tag, webserver, to our image.
We can view this information about our image using the docker inspect com-
mand.

Listing 4.19: Inspecting our committed image

$ sudo docker inspect jamtur01/apache2:webserver
[{

"Architecture": "amd64",
"Author": "James Turnbull",
"Comment": "A new custom image",
. . .

}]

 TIP You can find a full list of the docker commit flags here.

If we want to run a container from our new image, we can do so using the docker

Version: v18.09 (6172afc) 86

https://docs.docker.com/engine/reference/commandline/commit/

Chapter 4: Working with Docker images and repositories

run command.

Listing 4.20: Running a container from our committed image

$ sudo docker run -t -i jamtur01/apache2:webserver /bin/bash
root@9c2d3a843b9e:/# service apache2 status
* apache2 is not running

You’ll note that we’ve specified our image with the full tag: jamtur01/apache2:
webserver.

Building images with a Dockerfile
We don’t recommend the docker commit approach. Instead, we recommend that
you build images using a definition file called a Dockerfile and the docker build
command. The Dockerfile uses a basic DSL (Domain Specific Language) with in-
structions for building Docker images. We recommend the Dockerfile approach
over docker commit because it provides a more repeatable, transparent, and idem-
potent mechanism for creating images.
Once we have a Dockerfile we then use the docker build command to build a
new image from the instructions in the Dockerfile.

Our first Dockerfile

Let’s now create a directory and an initial Dockerfile. We’re going to build a
Docker image that contains a simple web server.

Version: v18.09 (6172afc) 87

Chapter 4: Working with Docker images and repositories

Listing 4.21: Creating a sample repository

$ mkdir static_web
$ cd static_web
$ touch Dockerfile

We’ve created a directory called static_web to hold our Dockerfile. This di-
rectory is our build environment, which is what Docker calls a context or build
context. Docker will upload the build context, as well as any files and directories
contained in it, to our Docker daemon when the build is run. This provides the
Docker daemon with direct access to any code, files or other data you might want
to include in the image.
We’ve also created an empty Dockerfile file to get started. Now let’s look at an
example of a Dockerfile to create a Docker image that will act as a Web server.

Listing 4.22: Our first Dockerfile

Version: 0.0.1
FROM ubuntu:18.04
LABEL maintainer="james@example.com"
RUN apt-get update; apt-get install -y nginx
RUN echo 'Hi, I am in your container' \

>/var/www/html/index.html
EXPOSE 80

The Dockerfile contains a series of instructions paired with arguments. Each
instruction, for example FROM, should be in upper-case and be followed by an
argument: FROM ubuntu:18.04. Instructions in the Dockerfile are processed from
the top down, so you should order them accordingly.
Each instruction adds a new layer to the image and then commits the image.
Docker executing instructions roughly follow a workflow:

Version: v18.09 (6172afc) 88

Chapter 4: Working with Docker images and repositories

• Docker runs a container from the image.
• An instruction executes and makes a change to the container.
• Docker runs the equivalent of docker commit to commit a new layer.
• Docker then runs a new container from this new image.
• The next instruction in the file is executed, and the process repeats until all
instructions have been executed.

This means that if your Dockerfile stops for some reason (for example, if an
instruction fails to complete), you will be left with an image you can use. This is
highly useful for debugging: you can run a container from this image interactively
and then debug why your instruction failed using the last image created.

 NOTE The Dockerfile also supports comments. Any line that starts with
a # is considered a comment. You can see an example of this in the first line of
our Dockerfile.

The first instruction in a Dockerfile must be FROM. The FROM instruction specifies
an existing image that the following instructions will operate on; this image is
called the base image.
In our sample Dockerfile we’ve specified the ubuntu:16.04 image as our base
image. This specification will build an image on top of an Ubuntu 16.04 base
operating system. As with running a container, you should always be specific
about exactly from which base image you are building.
Next, we’ve specified the LABEL instruction with a value of ‘maintainer=“james@example.com”,
which tells Docker who the author of the image is and what their email address
is. This is useful for specifying an owner and contact for an image.

 NOTE This LABEL instructions replaces the MAINTAINER instruction which
was deprecated in Docker 1.13.0.

Version: v18.09 (6172afc) 89

Chapter 4: Working with Docker images and repositories

We’ve followed these instructions with two RUN instructions. The RUN instruction
executes commands on the current image. The commands in our example: up-
dating the installed APT repositories and installing the nginx package and then
creating the /var/www/html/index.html file containing some example text. As
we’ve discovered, each of these instructions will create a new layer and, if suc-
cessful, will commit that layer and then execute the next instruction.
By default, the RUN instruction executes inside a shell using the command wrapper
/bin/sh -c. If you are running the instruction on a platform without a shell or
you wish to execute without a shell (for example, to avoid shell string munging),
you can specify the instruction in exec format:

Listing 4.23: A RUN instruction in exec form

RUN ["apt-get", " install", "-y", "nginx"]

We use this format to specify an array containing the command to be executed
and then each parameter to pass to the command.
Next, we’ve specified the EXPOSE instruction, which tells Docker that the applica-
tion in this container will use this specific port on the container. That doesn’t mean
you can automatically access whatever service is running on that port (here, port
80) on the container. For security reasons, Docker doesn’t open the port automat-
ically, but waits for you to do it when you run the container using the docker run
command. We’ll see this shortly when we create a new container from this image.
You can specify multiple EXPOSE instructions to mark multiple ports to be exposed.

 NOTE Docker also uses the EXPOSE instruction to help link together con-
tainers, which we’ll see in Chapter 5. You can expose ports at run time with the
docker run command with the --expose option.

Version: v18.09 (6172afc) 90

Chapter 4: Working with Docker images and repositories

Building the image from our Dockerfile
All of the instructions will be executed and committed and a new image returned
when we run the docker build command. Let’s try that now:

Version: v18.09 (6172afc) 91

Chapter 4: Working with Docker images and repositories

Listing 4.24: Running the Dockerfile

$ cd static_web
$ sudo docker build -t="jamtur01/static_web" .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:18.04
---> ba5877dc9bec
Step 1 : LABEL maintainer="james@example.com"
---> Running in b8ffa06f9274
---> 4c66c9dcee35
Removing intermediate container b8ffa06f9274
Step 2 : RUN apt-get update
---> Running in f331636c84f7
---> 9d938b9e0090
Removing intermediate container f331636c84f7
Step 3 : RUN apt-get install -y nginx
---> Running in 4b989d4730dd
---> 93fb180f3bc9
Removing intermediate container 4b989d4730dd
Step 4 : RUN echo 'Hi, I am in your container'
>/var/www/html/index.html
---> Running in b51bacc46eb9
---> b584f4ac1def
Removing intermediate container b51bacc46eb9
Step 5 : EXPOSE 80
---> Running in 7ff423bd1f4d
---> 22d47c8cb6e5
Successfully built 22d47c8cb6e5

We’ve used the docker build command to build our new image. We’ve specified
the -t option to mark our resulting image with a repository and a name, here the
jamtur01 repository and the image name static_web. I strongly recommend you

Version: v18.09 (6172afc) 92

Chapter 4: Working with Docker images and repositories

always name your images to make it easier to track and manage them.
You can also tag images during the build process by suffixing the tag after the
image name with a colon, for example:

Listing 4.25: Tagging a build

$ sudo docker build -t="jamtur01/static_web:v1" .

 TIP If you don’t specify any tag, Docker will automatically tag your image
as latest.

The trailing . tells Docker to look in the local directory to find the Dockerfile.
You can also specify a Git repository as a source for the Dockerfile as we see
here:

Listing 4.26: Building from a Git repository

$ sudo docker build -t="jamtur01/static_web:v1" \
github.com/turnbullpress/docker-static_web

Here Docker assumes that there is a Dockerfile located in the root of the Git
repository.

 TIP Since Docker 1.5.0 and later you can also specify a path to a file
to use as a build source using the -f flag. For example, docker build -t
"jamtur01/static_web" -f /path/to/file. The file specified doesn’t need to
be called Dockerfile but must still be within the build context.

Version: v18.09 (6172afc) 93

Chapter 4: Working with Docker images and repositories

But back to our docker build process. You can see that the build context has
been uploaded to the Docker daemon.

Listing 4.27: Uploading the build context to the daemon

Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon

 TIP If a file named .dockerignore exists in the root of the build context
then it is interpreted as a newline-separated list of exclusion patterns. Much like
a .gitignore file it excludes the listed files from being treated as part of the build
context, and therefore prevents them from being uploaded to the Docker daemon.
Globbing can be done using Go’s filepath.

Next, you can see that each instruction in the Dockerfile has been executed with
the image ID, 22d47c8cb6e5, being returned as the final output of the build pro-
cess. Each step and its associated instruction are run individually, and Docker has
committed the result of each operation before outputting that final image ID.

What happens if an instruction fails?
Earlier, we talked about what happens if an instruction fails. Let’s look at an
example: let’s assume that in Step 4 we got the name of the required package
wrong and instead called it ngin.
Let’s run the build again and see what happens when it fails.

Version: v18.09 (6172afc) 94

http://golang.org/pkg/path/filepath/#Match

Chapter 4: Working with Docker images and repositories

Listing 4.28: Managing a failed instruction

$ cd static_web
$ sudo docker build -t="jamtur01/static_web" .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 1 : FROM ubuntu:18.04
---> 8dbd9e392a96

Step 2 : LABEL maintainer="james@example.com"
---> Running in d97e0c1cf6ea
---> 85130977028d

Step 3 : RUN apt-get update
---> Running in 85130977028d
---> 997485f46ec4

Step 4 : RUN apt-get install -y ngin
---> Running in ffca16d58fd8

Reading package lists...
Building dependency tree...
Reading state information...
E: Unable to locate package ngin
2014/06/04 18:41:11 The command [/bin/sh -c apt-get install -y

ngin] returned a non-zero code: 100

Let’s say I want to debug this failure. I can use the docker run command to create
a container from the last step that succeeded in my Docker build, in this example
using the image ID of 997485f46ec4.

Version: v18.09 (6172afc) 95

Chapter 4: Working with Docker images and repositories

Listing 4.29: Creating a container from the last successful step

$ sudo docker run -t -i 997485f46ec4 /bin/bash
dcge12e59fe8:/#

I can then try to run the apt-get install -y ngin step again with the right pack-
age name or conduct some other debugging to determine what went wrong. Once
I’ve identified the issue, I can exit the container, update my Dockerfile with the
right package name, and retry my build.

Dockerfiles and the build cache
As a result of each step being committed as an image, Docker is able to be really
clever about building images. It will treat previous layers as a cache. If, in our
debugging example, we did not need to change anything in Steps 1 to 3, then
Docker would use the previously built images as a cache and a starting point.
Essentially, it’d start the build process straight from Step 4. This can save you a
lot of time when building images if a previous step has not changed. If, however,
you did change something in Steps 1 to 3, then Docker would restart from the first
changed instruction.
Sometimes, though, you want to make sure you don’t use the cache. For example,
if you’d cached Step 3 above, apt-get update, then it wouldn’t refresh the APT
package cache. You might want it to do this to get a new version of a package. To
skip the cache, we can use the --no-cache flag with the docker build command..

Listing 4.30: Bypassing the Dockerfile build cache

$ sudo docker build --no-cache -t="jamtur01/static_web" .

Version: v18.09 (6172afc) 96

Chapter 4: Working with Docker images and repositories

Using the build cache for templating
As a result of the build cache, you can build your Dockerfiles in the form of
simple templates (e.g., adding a package repository or updating packages near
the top of the file to ensure the cache is hit). I generally have the same template
set of instructions in the top of my Dockerfile, for example for Ubuntu:

Listing 4.31: A template Ubuntu Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-07-01
RUN apt-get -qq update

Let’s step through this new Dockerfile. Firstly, I’ve used the FROM instruction
to specify a base image of ubuntu:16.04. Next, I’ve added my MAINTAINER in-
struction to provide my contact details. I’ve then specified a new instruction, ENV.
The ENV instruction sets environment variables in the image. In this case, I’ve
specified the ENV instruction to set an environment variable called REFRESHED_AT,
showing when the template was last updated. Lastly, I’ve specified the apt-get
-qq update command in a RUN instruction. This refreshes the APT package cache
when it’s run, ensuring that the latest packages are available to install.
With my template, when I want to refresh the build, I change the date in my ENV
instruction. Docker then resets the cache when it hits that ENV instruction and runs
every subsequent instruction anew without relying on the cache. This means my
RUN apt-get update instruction is rerun and my package cache is refreshed with
the latest content. You can extend this template example for your target platform
or to fit a variety of needs. For example, for a fedora image we might:

Version: v18.09 (6172afc) 97

Chapter 4: Working with Docker images and repositories

Listing 4.32: A template Fedora Dockerfile

FROM fedora:21
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-07-01
RUN yum -q makecache

Which performs a similar caching function for Fedora using Yum.

Viewing our new image
Now let’s take a look at our new image. We can do this using the docker images
command.

Listing 4.33: Listing our new Docker image

$ sudo docker images jamtur01/static_web
REPOSITORY TAG ID CREATED SIZE
jamtur01/static_web latest 22d47c8cb6e5 24 seconds ago 12.29 kB

(virtual 326 MB)

If we want to drill down into how our image was created, we can use the docker
history command.

Version: v18.09 (6172afc) 98

Chapter 4: Working with Docker images and repositories

Listing 4.34: Using the docker history command

$ sudo docker history 22d47c8cb6e5
IMAGE CREATED CREATED BY

SIZE
22d47c8cb6e5 6 minutes ago /bin/sh -c #(nop) EXPOSE map[80/tcp

:{}] 0 B
b584f4ac1def 6 minutes ago /bin/sh -c echo 'Hi, I am in your

container' 27 B
93fb180f3bc9 6 minutes ago /bin/sh -c apt-get install -y nginx

18.46 MB
9d938b9e0090 6 minutes ago /bin/sh -c apt-get update

20.02 MB
4c66c9dcee35 6 minutes ago /bin/sh -c #(nop) MAINTAINER James

Turnbull " 0 B
. . .

We see each of the image layers inside our new jamtur01/static_web image and
the Dockerfile instruction that created them.

Launching a container from our new image
Let’s launch a new container using our new image and see if what we’ve built has
worked.

Listing 4.35: Launching a container from our new image

$ sudo docker run -d -p 80 --name static_web jamtur01/static_web
nginx -g "daemon off;"

6751b94bb5c001a650c918e9a7f9683985c3eb2b026c2f1776e61190669494a8

Version: v18.09 (6172afc) 99

Chapter 4: Working with Docker images and repositories

Here I’ve launched a new container called static_web using the docker run com-
mand and the name of the image we’ve just created. We’ve specified the -d option,
which tells Docker to run detached in the background. This allows us to run long-
running processes like the Nginx daemon. We’ve also specified a command for
the container to run: nginx -g "daemon off;". This will launch Nginx in the
foreground to run our web server.
We’ve also specified a new flag, -p. The -p flag manages which network ports
Docker publishes at runtime. When you run a container, Docker has two methods
of assigning ports on the Docker host:

• Docker can randomly assign a high port from the range 32768 to 61000 on
the Docker host that maps to port 80 on the container.
• You can specify a specific port on the Docker host that maps to port 80 on
the container.

The docker run command will open a random port on the Docker host that will
connect to port 80 on the Docker container.
Let’s look at what port has been assigned using the docker ps command. The -l
flag tells Docker to show us the last container launched.

Listing 4.36: Viewing the Docker port mapping

$ sudo docker ps -l
CONTAINER ID IMAGE ... PORTS

NAMES
6751b94bb5c0 jamtur01/static_web:latest ... 0.0.0.0:49154->80/

tcp static_web

We see that port 49154 is mapped to the container port of 80. We can get the
same information with the docker port command.

Version: v18.09 (6172afc) 100

Chapter 4: Working with Docker images and repositories

Listing 4.37: The docker port command

$ sudo docker port 6751b94bb5c0 80
0.0.0.0:49154

We’ve specified the container ID and the container port for which we’d like to see
the mapping, 80, and it has returned the mapped port, 49154.
Or we could use the container name too.

Listing 4.38: The docker port command with container name

$ sudo docker port static_web 80
0.0.0.0:49154

The -p option also allows us to be flexible about how a port is published to the
host. For example, we can specify that Docker bind the port to a specific port:

Listing 4.39: Exposing a specific port with -p

$ sudo docker run -d -p 80:80 --name static_web_80 jamtur01/
static_web nginx -g "daemon off;"

This will bind port 80 on the container to port 80 on the local host. It’s impor-
tant to be wary of this direct binding: if you’re running multiple containers, only
one container can bind a specific port on the local host. This can limit Docker’s
flexibility.
To avoid this, we could bind to a different port.

Version: v18.09 (6172afc) 101

Chapter 4: Working with Docker images and repositories

Listing 4.40: Binding to a different port

$ sudo docker run -d -p 8080:80 --name static_web_8080 jamtur01/
static_web nginx -g "daemon off;"

This would bind port 80 on the container to port 8080 on the local host.
We can also bind to a specific interface.

Listing 4.41: Binding to a specific interface

$ sudo docker run -d -p 127.0.0.1:80:80 --name static_web_lb
jamtur01/static_web nginx -g "daemon off;"

Here we’ve bound port 80 of the container to port 80 on the 127.0.0.1 interface
on the local host. We can also bind to a random port using the same structure.

Listing 4.42: Binding to a random port on a specific interface

$ sudo docker run -d -p 127.0.0.1::80 --name static_web_random
jamtur01/static_web nginx -g "daemon off;"

Here we’ve removed the specific port to bind to on 127.0.0.1. We would now
use the docker inspect or docker port command to see which random port was
assigned to port 80 on the container.

 TIP You can bind UDP ports by adding the suffix /udp to the port binding.

Version: v18.09 (6172afc) 102

Chapter 4: Working with Docker images and repositories

Docker also has a shortcut, -P, that allows us to publish all ports we’ve exposed
via EXPOSE instructions in our Dockerfile.

Listing 4.43: Exposing a port with docker run

$ sudo docker run -d -P --name static_web_all jamtur01/static_web
nginx -g "daemon off;"

This would publish port 80 on a random port on our local host. It would also
publish any additional ports we had specified with other EXPOSE instructions in
the Dockerfile that built our image.

 TIP You can find more information on port redirection here.

With this port number, we can now view the web server on the running container
using the IP address of our host or the localhost on 127.0.0.1.

 NOTE You can find the IP address of your local host with the ifconfig or
ip addr command.

Listing 4.44: Connecting to the container via curl

$ curl localhost:49154
Hi, I am in your container

Now we’ve got a simple Docker-based web server.

Version: v18.09 (6172afc) 103

https://docs.docker.com/v1.4/userguide/dockerlinks/#netwo rk-port-mapping-refresher

Chapter 4: Working with Docker images and repositories

Dockerfile instructions
We’ve already seen some of the available Dockerfile instructions, like RUN and
EXPOSE. But there are also a variety of other instructions we can put in our
Dockerfile. These include CMD, ENTRYPOINT, ADD, COPY, VOLUME, WORKDIR, USER,
ONBUILD, LABEL, STOPSIGNAL, ARG, SHELL, HEALTHCHECK and ENV. You can see a full
list of the available Dockerfile instructions here.
We’ll also see a lot more Dockerfiles in the next few chapters and see how to
build some cool applications into Docker containers.

CMD

The CMD instruction specifies the command to run when a container is launched. It
is similar to the RUN instruction, but rather than running the command when the
container is being built, it will specify the command to run when the container
is launched, much like specifying a command to run when launching a container
with the docker run command, for example:

Listing 4.45: Specifying a specific command to run

$ sudo docker run -i -t jamtur01/static_web /bin/true

This would be articulated in the Dockerfile as:

Listing 4.46: Using the CMD instruction

CMD ["/bin/true"]

You can also specify parameters to the command, like so:

Version: v18.09 (6172afc) 104

http://docs.docker.com/reference/builder/

Chapter 4: Working with Docker images and repositories

Listing 4.47: Passing parameters to the CMD instruction

CMD ["/bin/bash", "-l"]

Here we’re passing the -l flag to the /bin/bash command.

 WARNING You’ll note that the command is contained in an array. This
tells Docker to run the command ’as-is’. You can also specify the CMD instruction
without an array, in which case Docker will prepend /bin/sh -c to the command.
This may result in unexpected behavior when the command is executed. As a
result, it is recommended that you always use the array syntax.

Lastly, it’s important to understand that we can override the CMD instruction using
the docker run command. If we specify a CMD in our Dockerfile and one on the
docker run command line, then the command line will override the Dockerfile’s
CMD instruction.

 NOTE It’s also important to understand the interaction between the CMD
instruction and the ENTRYPOINT instruction. We’ll see some more details of this
below.

Let’s look at this process a little more closely. Let’s say our Dockerfile contains
the CMD:

Version: v18.09 (6172afc) 105

Chapter 4: Working with Docker images and repositories

Listing 4.48: Overriding CMD instructions in the Dockerfile

CMD ["/bin/bash"]

We can build a new image (let’s call it jamtur01/test) using the docker build
command and then launch a new container from this image.

Listing 4.49: Launching a container with a CMD instruction

$ sudo docker run -t -i jamtur01/test
root@e643e6218589:/#

Notice something different? We didn’t specify the command to be executed at the
end of the docker run. Instead, Docker used the command specified by the CMD
instruction.
If, however, I did specify a command, what would happen?

Listing 4.50: Overriding a command locally

$ sudo docker run -i -t jamtur01/test /bin/ps
PID TTY TIME CMD
1 ? 00:00:00 ps
$

You can see here that we have specified the /bin/ps command to list running
processes. Instead of launching a shell, the container merely returned the list
of running processes and stopped, overriding the command specified in the CMD
instruction.

Version: v18.09 (6172afc) 106

Chapter 4: Working with Docker images and repositories

 TIP You can only specify one CMD instruction in a Dockerfile. If more than
one is specified, then the last CMD instruction will be used. If you need to run
multiple processes or commands as part of starting a container you should use a
service management tool like Supervisor.

ENTRYPOINT

Closely related to the CMD instruction, and often confused with it, is the ENTRYPOINT
instruction. So what’s the difference between the two, and why are they both
needed? As we’ve just discovered, we can override the CMD instruction on the
docker run command line. Sometimes this isn’t great when we want a container
to behave in a certain way. The ENTRYPOINT instruction provides a command
that isn’t as easily overridden. Instead, any arguments we specify on the docker
run command line will be passed as arguments to the command specified in the
ENTRYPOINT. Let’s see an example of an ENTRYPOINT instruction.

Listing 4.51: Specifying an ENTRYPOINT

ENTRYPOINT ["/usr/sbin/nginx"]

Like the CMD instruction, we also specify parameters by adding to the array. For
example:

Listing 4.52: Specifying an ENTRYPOINT parameter

ENTRYPOINT ["/usr/sbin/nginx", "-g", "daemon off;"]

Version: v18.09 (6172afc) 107

http://supervisord.org/

Chapter 4: Working with Docker images and repositories

 NOTE As with the CMD instruction above, you can see that we’ve specified
the ENTRYPOINT command in an array to avoid any issues with the command being
prepended with /bin/sh -c.

Now let’s rebuild our image with an ENTRYPOINT of ENTRYPOINT ["/usr/sbin/
nginx"].

Listing 4.53: Rebuilding static_web with a new ENTRYPOINT

$ sudo docker build -t="jamtur01/static_web" .

And then launch a new container from our jamtur01/static_web image.

Listing 4.54: Using docker run with ENTRYPOINT

$ sudo docker run -t -i jamtur01/static_web -g "daemon off;"

We’ve rebuilt our image and then launched an interactive container. We specified
the argument -g "daemon off;". This argument will be passed to the command
specified in the ENTRYPOINT instruction, which will thus become /usr/sbin/nginx
-g "daemon off;". This command would then launch the Nginx daemon in the
foreground and leave the container running as a web server.
We can also combine ENTRYPOINT and CMD to do some neat things. For example,
we might want to specify the following in our Dockerfile.

Version: v18.09 (6172afc) 108

Chapter 4: Working with Docker images and repositories

Listing 4.55: Using ENTRYPOINT and CMD together

ENTRYPOINT ["/usr/sbin/nginx"]
CMD ["-h"]

Now when we launch a container, any option we specify will be passed to the
Nginx daemon; for example, we could specify -g "daemon off"; as we did above
to run the daemon in the foreground. If we don’t specify anything to pass to the
container, then the -h is passed by the CMD instruction and returns the Nginx help
text: /usr/sbin/nginx -h.
This allows us to build in a default command to execute when our container is run
combined with overridable options and flags on the docker run command line.

 TIP If required at runtime, you can override the ENTRYPOINT instruction using
the docker run command with --entrypoint flag.

WORKDIR

The WORKDIR instruction provides a way to set the working directory for the con-
tainer and the ENTRYPOINT and/or CMD to be executed when a container is launched
from the image.
We can use it to set the working directory for a series of instructions or for the
final container. For example, to set the working directory for a specific instruction
we might:

Version: v18.09 (6172afc) 109

Chapter 4: Working with Docker images and repositories

Listing 4.56: Using the WORKDIR instruction

WORKDIR /opt/webapp/db
RUN bundle install
WORKDIR /opt/webapp
ENTRYPOINT ["rackup"]

Here we’ve changed into the /opt/webapp/db directory to run bundle install
and then changed into the /opt/webapp directory prior to specifying our
ENTRYPOINT instruction of rackup.
You can override the working directory at runtime with the -w flag, for example:

Listing 4.57: Overriding the working directory

$ sudo docker run -ti -w /var/log ubuntu pwd
/var/log

This will set the container’s working directory to /var/log.

ENV

The ENV instruction is used to set environment variables during the image build
process. For example:

Listing 4.58: Setting an environment variable in Dockerfile

ENV RVM_PATH /home/rvm/

Version: v18.09 (6172afc) 110

Chapter 4: Working with Docker images and repositories

This new environment variable will be used for any subsequent RUN instructions,
as if we had specified an environment variable prefix to a command like so:

Listing 4.59: Prefixing a RUN instruction

RUN gem install unicorn

would be executed as:

Listing 4.60: Executing with an ENV prefix

RVM_PATH=/home/rvm/ gem install unicorn

You can specify single environment variables in an ENV instruction or since Docker
1.4 you can specify multiple variables like so:

Listing 4.61: Setting multiple environment variables using ENV

ENV RVM_PATH=/home/rvm RVM_ARCHFLAGS="-arch i386"

We can also use these environment variables in other instructions.

Listing 4.62: Using an environment variable in other Dockerfile instructions

ENV TARGET_DIR /opt/app
WORKDIR $TARGET_DIR

Here we’ve specified a new environment variable, TARGET_DIR, and then used its
value in a WORKDIR instruction. Our WORKDIR instruction would now be set to /opt

Version: v18.09 (6172afc) 111

Chapter 4: Working with Docker images and repositories

/app.

 NOTE You can also escape environment variables when needed by prefix-
ing them with a backslash.

These environment variables will also be persisted into any containers created
from your image. So, if we were to run the env command in a container built
with the ENV RVM_PATH /home/rvm/ instruction we’d see:

Listing 4.63: Persistent environment variables in Docker containers

root@bf42aadc7f09:~# env
. . .
RVM_PATH=/home/rvm/
. . .

You can also pass environment variables on the docker run command line using
the -e flag. These variables will only apply at runtime, for example:

Listing 4.64: Runtime environment variables

$ sudo docker run -ti -e "WEB_PORT=8080" ubuntu env
HOME=/
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=792b171c5e9f
TERM=xterm
WEB_PORT=8080

Now our container has the WEB_PORT environment variable set to 8080.

Version: v18.09 (6172afc) 112

Chapter 4: Working with Docker images and repositories

USER

The USER instruction specifies a user that the image should be run as; for example:

Listing 4.65: Using the USER instruction

USER nginx

This will cause containers created from the image to be run by the nginx user. We
can specify a username or a UID and group or GID. Or even a combination thereof,
for example:

Listing 4.66: Specifying USER and GROUP variants

USER user
USER user:group
USER uid
USER uid:gid
USER user:gid
USER uid:group

You can also override this at runtime by specifying the -u flag with the docker run
command.

 TIP The default user if you don’t specify the USER instruction is root.

Version: v18.09 (6172afc) 113

Chapter 4: Working with Docker images and repositories

VOLUME

The VOLUME instruction adds volumes to any container created from the image.
A volume is a specially designated directory within one or more containers that
bypasses the Union File System to provide several useful features for persistent or
shared data:

• Volumes can be shared and reused between containers.
• A container doesn’t have to be running to share its volumes.
• Changes to a volume are made directly.
• Changes to a volume will not be included when you update an image.
• Volumes persist even if no containers use them.

This allows us to add data (like source code), a database, or other content into an
image without committing it to the image and allows us to share that data between
containers. This can be used to do testing with containers and an application’s
code, manage logs, or handle databases inside a container. We’ll see examples of
this in Chapters 5 and 6.
You can use the VOLUME instruction like so:

Listing 4.67: Using the VOLUME instruction

VOLUME ["/opt/project"]

This would attempt to create a mount point /opt/project to any container created
from the image.

 TIP Also useful and related is the docker cp command. This allows you
to copy files to and from your containers. You can read about it in the Docker
command line documentation.

Or we can specify multiple volumes by specifying an array:

Version: v18.09 (6172afc) 114

https://docs.docker.com/engine/reference/commandline/cp/
https://docs.docker.com/engine/reference/commandline/cp/

Chapter 4: Working with Docker images and repositories

Listing 4.68: Using multiple VOLUME instructions

VOLUME ["/opt/project", "/data"]

 TIP We’ll see a lot more about volumes and how to use them in Chapters 5
and 6. If you’re curious you can read more about volumes in the Docker volumes
documentation.

ADD

The ADD instruction adds files and directories from our build environment into our
image; for example, when installing an application. The ADD instruction specifies
a source and a destination for the files, like so:

Listing 4.69: Using the ADD instruction

ADD software.lic /opt/application/software.lic

This ADD instruction will copy the file software.lic from the build directory to /
opt/application/software.lic in the image. The source of the file can be a URL,
filename, or directory as long as it is inside the build context or environment. You
cannot ADD files from outside the build directory or context.
When ADD’ing files Docker uses the ending character of the destination to deter-
mine what the source is. If the destination ends in a /, then it considers the source
a directory. If it doesn’t end in a /, it considers the source a file.
The source of the file can also be a URL; for example:

Version: v18.09 (6172afc) 115

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/

Chapter 4: Working with Docker images and repositories

Listing 4.70: URL as the source of an ADD instruction

ADD http://wordpress.org/latest.zip /root/wordpress.zip

Lastly, the ADD instruction has some special magic for taking care of local tar
archives. If a tar archive (valid archive types include gzip, bzip2, xz) is specified
as the source file, then Docker will automatically unpack it for you:

Listing 4.71: Archive as the source of an ADD instruction

ADD latest.tar.gz /var/www/wordpress/

This will unpack the latest.tar.gz archive into the /var/www/wordpress/ direc-
tory. The archive is unpacked with the same behavior as running tar with the
-x option: the output is the union of whatever exists in the destination plus the
contents of the archive. If a file or directory with the same name already exists in
the destination, it will not be overwritten.

 WARNING Currently this will not work with a tar archive specified in a
URL. This is somewhat inconsistent behavior and may change in a future release.

Finally, if the destination doesn’t exist, Docker will create the full path for us,
including any directories. New files and directories will be created with a mode
of 0755 and a UID and GID of 0.

 NOTE It’s also important to note that the build cache can be invalidated
by ADD instructions. If the files or directories added by an ADD instruction change

Version: v18.09 (6172afc) 116

Chapter 4: Working with Docker images and repositories

then this will invalidate the cache for all following instructions in the Dockerfile.

COPY

The COPY instruction is closely related to the ADD instruction. The key difference
is that the COPY instruction is purely focused on copying local files from the build
context and does not have any extraction or decompression capabilities.

Listing 4.72: Using the COPY instruction

COPY conf.d/ /etc/apache2/

This will copy files from the conf.d directory to the /etc/apache2/ directory.
The source of the files must be the path to a file or directory relative to the build
context, the local source directory in which your Dockerfile resides. You cannot
copy anything that is outside of this directory, because the build context is up-
loaded to the Docker daemon, and the copy takes place there. Anything outside
of the build context is not available. The destination should be an absolute path
inside the container.
Any files and directories created by the copy will have a UID and GID of 0.
If the source is a directory, the entire directory is copied, including filesystem
metadata; if the source is any other kind of file, it is copied individually along
with its metadata. In our example, the destination ends with a trailing slash /, so
it will be considered a directory and copied to the destination directory.
If the destination doesn’t exist, it is created along with all missing directories in
its path, much like how the mkdir -p command works.

Version: v18.09 (6172afc) 117

Chapter 4: Working with Docker images and repositories

LABEL

The LABEL instruction adds metadata to a Docker image. The metadata is in the
form of key/value pairs. Let’s see an example.

Listing 4.73: Adding LABEL instructions

LABEL version="1.0"
LABEL location="New York" type="Data Center" role="Web Server"

The LABEL instruction is written in the form of label="value". You can specify
one item of metadata per label or multiple items separated with white space. We
recommend combining all your metadata in a single LABEL instruction to save
creating multiple layers with each piece of metadata. You can inspect the labels
on an image using the docker inspect command..

Listing 4.74: Using docker inspect to view labels

$ sudo docker inspect jamtur01/apache2
. . .

"Labels": {
"version": "1.0",
"location": "New York",
"type": "Data Center",
"role": "Web Server"

},

Here we see the metadata we just defined using the LABEL instruction.

 NOTE The LABEL instruction was introduced in Docker 1.6.

Version: v18.09 (6172afc) 118

Chapter 4: Working with Docker images and repositories

STOPSIGNAL

The STOPSIGNAL instruction sets the system call signal that will be sent to the
container when you tell it to stop. This signal can be a valid number from the
kernel syscall table, for instance 9, or a signal name in the format SIGNAME, for
instance SIGKILL.

 NOTE The STOPSIGNAL instruction was introduced in Docker 1.9.

ARG

The ARG instruction defines variables that can be passed at build-time via the
docker build command. This is done using the --build-arg flag. You can only
specify build-time arguments that have been defined in the Dockerfile.

Listing 4.75: Adding ARG instructions

ARG build
ARG webapp_user=user

The second ARG instruction sets a default, if no value is specified for the argument
at build-time then the default is used. Let’s use one of these arguments in a docker
build now.

Version: v18.09 (6172afc) 119

Chapter 4: Working with Docker images and repositories

Listing 4.76: Using an ARG instruction

$ docker build --build-arg build=1234 -t jamtur01/webapp .

As the jamtur01/webapp image is built the build variable will be set to 1234 and
the webapp_user variable will inherit the default value of user.

 WARNING At this point you’re probably thinking - this is a great way
to pass secrets like credentials or keys. Don’t do this. Your credentials will be
exposed during the build process and in the build history of the image.

Docker has a set of predefined ARG variables that you can use at build-time without
a corresponding ARG instruction in the Dockerfile.

Listing 4.77: The predefined ARG variables

HTTP_PROXY
http_proxy
HTTPS_PROXY
https_proxy
FTP_PROXY
ftp_proxy
NO_PROXY
no_proxy

To use these predefined variables, pass them using the --build-arg <variable
>=<value> flag to the docker build command.

Version: v18.09 (6172afc) 120

Chapter 4: Working with Docker images and repositories

 NOTE The ARG instruction was introduced in Docker 1.9 and you can read
more about it in the Docker documentation.

SHELL

The SHELL instruction allows the default shell used for the shell form of commands
to be overridden. The default shell on Linux is ‘["/bin/sh", "-c"] and on Win-
dows is ["cmd", "/S", "/C"].
The SHELL instruction is useful on platforms such as Windows where there are
multiple shells, for example running commands in the cmd or powershell environ-
ments. Or when need to run a command on Linux in a specific shell, for example
Bash.
The SHELL instruction can be used multiple times. Each new SHELL instruction
overrides all previous SHELL instructions, and affects any subsequent instructions.

HEALTHCHECK

The HEALTHCHECK instruction tells Docker how to test a container to check that it
is still working correctly. This allows you to check things like a web site being
served or an API endpoint responding with the correct data, allowing you to iden-
tify issues that appear, even if an underlying process still appears to be running
normally.
When a container has a health check specified, it has a health status in addition
to its normal status. You can specify a health check like:

Listing 4.78: Specifying a HEALTHCHECK instruction

HEALTHCHECK --interval=10s --timeout=1m --retries=5 CMD curl http
://localhost || exit 1

Version: v18.09 (6172afc) 121

http://docs.docker.com/engine/reference/builder/#arg

Chapter 4: Working with Docker images and repositories

The HEALTHCHECK instruction contains options and then the command you wish to
run itself, separated by a CMD keyword.
We’ve first specified three default options:

• --interval - defaults to 30 seconds. This is the period between health
checks. In this case the first health check will run 10 seconds after container
launch and subsequently every 10 seconds.
• --timeout - defaults to 30 seconds. If the health check takes longer the
timeout then it is deemed to have failed.
• --retries - defaults to 3. The number of failed checks before the container
is marked as unhealthy.

The command after the CMD keyword can be either a shell command or an exec
array, for example as we’ve seen in the ENTRYPOINT instruction. The command
should exit with 0 to indicate health or 1 to indicate an unhealthy state. In our
CMD we’re executing curl on the localhost. If the command fails we’re exiting
with an exit code of 1, indicating an unhealthy state.
We can see the state of the health check using the docker inspect command.

Listing 4.79: Docker inspect the health state

$ sudo docker inspect --format '{{.State.Health.Status}}'
static_web

healthy

The health check state and related data is stored in the .State.Health namespace
and includes current state as well as a history of previous checks and their output.
The output from each health check is also available via docker inspect.

Version: v18.09 (6172afc) 122

Chapter 4: Working with Docker images and repositories

Listing 4.80: Health log output

$ sudo docker inspect --format '{{range .State.Health.Log}} {{.
ExitCode}} {{.Output}} {{end}}' static_web

0 Hi, I am in your container

Here we’re iterating through the array of .Log entries in the docker inspect out-
put.
There can only be one HEALTHCHECK instruction in a Dockerfile. If you list more
than one then only the last will take effect.
You can also disable any health checks specified in any base images you may have
inherited with the instruction:

Listing 4.81: Disabling inherited health checks

HEALTHCHECK NONE

 NOTE This instruction was added in Docker 1.12.

ONBUILD

The ONBUILD instruction adds triggers to images. A trigger is executed when the
image is used as the basis of another image (e.g., if you have an image that needs
source code added from a specific location that might not yet be available, or if
you need to execute a build script that is specific to the environment in which the
image is built).
The trigger inserts a new instruction in the build process, as if it were specified

Version: v18.09 (6172afc) 123

Chapter 4: Working with Docker images and repositories

right after the FROM instruction. The trigger can be any build instruction. For
example:

Listing 4.82: Adding ONBUILD instructions

ONBUILD ADD . /app/src
ONBUILD RUN cd /app/src; make

This would add an ONBUILD trigger to the image being created, which we see when
we run docker inspect on the image.

Listing 4.83: Showing ONBUILD instructions with docker inspect

$ sudo docker inspect 508efa4e4bf8
...
"OnBuild": [

"ADD . /app/src",
"RUN cd /app/src/; make"

]
...

For example, we’ll build a new Dockerfile for an Apache2 image that we’ll call
jamtur01/apache2.

Version: v18.09 (6172afc) 124

Chapter 4: Working with Docker images and repositories

Listing 4.84: A new ONBUILD image Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
RUN apt-get update; apt-get install -y apache2
ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
ENV APACHE_PID_FILE /var/run/apache2.pid
ENV APACHE_RUN_DIR /var/run/apache2
ENV APACHE_LOCK_DIR /var/lock/apache2
ONBUILD ADD . /var/www/
EXPOSE 80
ENTRYPOINT ["/usr/sbin/apachectl"]
CMD ["-D", "FOREGROUND"]

Now we’ll build this image.

Listing 4.85: Building the apache2 image

$ sudo docker build -t="jamtur01/apache2" .
...
Step 7 : ONBUILD ADD . /var/www/
---> Running in 0e117f6ea4ba
---> a79983575b86
Successfully built a79983575b86

We now have an image with an ONBUILD instruction that uses the ADD instruction
to add the contents of the directory we’re building from to the /var/www/ directory
in our image. This could readily be our generic web application template from
which I build web applications.

Version: v18.09 (6172afc) 125

Chapter 4: Working with Docker images and repositories

Let’s try this now by building a new image called webapp from the following
Dockerfile:

Listing 4.86: The webapp Dockerfile

FROM jamtur01/apache2
LABEL maintainer="james@example.com"
ENV APPLICATION_NAME webapp
ENV ENVIRONMENT development

Let’s look at what happens when I build this image.

Listing 4.87: Building our webapp image

$ sudo docker build -t="jamtur01/webapp" .
...
Step 0 : FROM jamtur01/apache2
Executing 1 build triggers
Step onbuild-0 : ADD . /var/www/
---> 1a018213a59d
---> 1a018213a59d
Step 1 : LABEL maintainer="james@example.com"
...
Successfully built 04829a360d86

We see that straight after the FROM instruction, Docker has inserted the ADD in-
struction, specified by the ONBUILD trigger, and then proceeded to execute the
remaining steps. This would allow me to always add the local source and, as I’ve
done here, specify some configuration or build information for each application;
hence, this becomes a useful template image.
The ONBUILD triggers are executed in the order specified in the parent image and
are only inherited once (i.e., by children and not grandchildren). If we built an-

Version: v18.09 (6172afc) 126

Chapter 4: Working with Docker images and repositories

other image from this new image, a grandchild of the jamtur01/apache2 image,
then the triggers would not be executed when that image is built.

 NOTE There are several instructions you can’t ONBUILD: FROM, MAINTAINER,
and ONBUILD itself. This is done to prevent Inception-like recursion in Dockerfile
builds.

Pushing images to the Docker Hub
Once we’ve got an image, we can upload it to the Docker Hub. This allows us to
make it available for others to use. For example, we could share it with others in
our organization or make it publicly available.

 NOTE The Docker Hub also has the option of private repositories. These
are a paid-for feature that allows you to store an image in a private repository
that is only available to you or anyone with whom you share it. This allows you
to have private images containing proprietary information or code you might not
want to share publicly.

We push images to the Docker Hub using the docker push command.
Let’s build an image without a user prefix and try and push it now.

Version: v18.09 (6172afc) 127

https://hub.docker.com

Chapter 4: Working with Docker images and repositories

Listing 4.88: Trying to push a root image

$ cd static_web
$ sudo docker build --no-cache -t="static_web" .
. . .
Successfully built a312a2ed58c7
$ sudo docker push static_web
The push refers to a repository [docker.io/library/static_web]
c0121fc36460: Preparing
8591faa9900d: Preparing
9a39129ae0ac: Preparing
98305c1a8f5e: Preparing
0185b3091e8e: Preparing
ea9f151abb7e: Waiting
unauthorized: authentication required

What’s gone wrong here? We’ve tried to push our image to the repository
static_web, but Docker knows this is a root repository. Root repositories are
managed only by the Docker, Inc., team and will reject our attempt to write to
them as unauthorized. Let’s try again, rebuilding our image with a user prefix
and then pushing it.

Version: v18.09 (6172afc) 128

Chapter 4: Working with Docker images and repositories

Listing 4.89: Pushing a Docker image

$ sudo docker build --no-cache -t="jamtur01/static_web" .
$ sudo docker push jamtur01/static_web
The push refers to a repository [jamtur01/static_web] (len: 1)
Processing checksums
Sending image list
Pushing repository jamtur01/static_web to registry-1.docker.io (1

tags)
. . .

This time, our push has worked, and we’ve written to a user repository, jamtur01
/static_web. We would write to your own user ID, which we created earlier, and
to an appropriately named image (e.g., youruser/yourimage).
We can now see our uploaded image on the Docker Hub.

Figure 4.4: Your image on the Docker Hub.

Version: v18.09 (6172afc) 129

https://hub.docker.com/r/jamtur01/static_web/

Chapter 4: Working with Docker images and repositories

 TIP You can find documentation and more information on the features of
the Docker Hub here.

Automated Builds
In addition to being able to build and push our images from the command line,
the Docker Hub also allows us to define Automated Builds. We can do so by con-
necting a GitHub or BitBucket repository containing a Dockerfile to the Docker
Hub. When we push to this repository, an image build will be triggered and a new
image created. This was previously also known as a Trusted Build.

 NOTE Automated Builds also work for private GitHub and BitBucket repos-
itories.

The first step in adding an Automated Build to the Docker Hub is to connect your
GitHub account or BitBucket to your Docker Hub account. To do this, navigate to
Docker Hub, sign in, click on your profile link, then click the Create -> Create
Automated Build button.

Version: v18.09 (6172afc) 130

https://docs.docker.com/docker-hub/
https://www.github.com
https://bitbucket.com
https://hub.docker.com
https://hub.docker.com

Chapter 4: Working with Docker images and repositories

Figure 4.5: The Add Repository button.

You will see a page that shows your options for linking to either GitHub or Bit-
Bucket. Click the Select button under the GitHub logo to initiate the account
linkage. You will be taken to GitHub and asked to authorize access for Docker
Hub.
On Github you have two options: Public and Private (recommended) and
Limited. Select Public and Private (recommended), and click Allow Access
to complete the authorization. You may be prompted to input your GitHub
password to confirm the access.
From here, you will be prompted to select the organization and repository from
which you want to construct an Automated Build.

Version: v18.09 (6172afc) 131

Chapter 4: Working with Docker images and repositories

Figure 4.6: Selecting your repository.
Select the repository from which you wish to create an Automated Build and then
configure the build.

Figure 4.7: Configuring your Automated Build.
Specify the default branch you wish to use, and confirm the repository name.
Specify a tag you wish to apply to any resulting build, then specify the location of
the Dockerfile. The default is assumed to be the root of the repository, but you
can override this with any path.

Version: v18.09 (6172afc) 132

Chapter 4: Working with Docker images and repositories

Finally, click the Create button to add your Automated Build to the Docker Hub.
You will now see your Automated Build submitted. Click on the Build Details
link to see the status of the last build, including log output showing the build
process and any errors. A build status of Done indicates the Automated Build is
up to date. An Error status indicates a problem; you can click through to see the
log output.

 NOTE You can’t push to an Automated Build using the docker push com-
mand. You can only update it by pushing updates to your GitHub or BitBucket
repository.

Deleting an image
We can also delete images when we don’t need them anymore. To do this, we’ll
use the docker rmi command.

Listing 4.90: Deleting a Docker image

$ sudo docker rmi jamtur01/static_web
Untagged: 06c6c1f81534
Deleted: 06c6c1f81534
Deleted: 9f551a68e60f
Deleted: 997485f46ec4
Deleted: a101d806d694
Deleted: 85130977028d

Here we’ve deleted the jamtur01/static_web image. You can see Docker’s layer
filesystem at work here: each of the Deleted: lines represents an image layer
being deleted. If a running container is still using an image then you won’t be

Version: v18.09 (6172afc) 133

Chapter 4: Working with Docker images and repositories

able to delete it. You’ll need to stop all containers running that image, remove
them and then delete the image.

 NOTE This only deletes the image locally. If you’ve previously pushed
that image to the Docker Hub, it’ll still exist there.

If you want to delete an image’s repository on the Docker Hub, you’ll need to sign
in and delete it there using the Settings -> Delete button.

Figure 4.8: Deleting a repository.

We can also delete more than one image by specifying a list on the command line.

Version: v18.09 (6172afc) 134

https://hub.docker.com/r/jamtur01/static_web/

Chapter 4: Working with Docker images and repositories

Listing 4.91: Deleting multiple Docker images

$ sudo docker rmi jamtur01/apache2 jamtur01/puppetmaster

or, like the docker rm command cheat we saw in Chapter 3, we can do the same
with the docker rmi command:

Listing 4.92: Deleting all images

$ sudo docker rmi `docker images -a -q`

Running your own Docker registry
Having a public registry of Docker images is highly useful. Sometimes, however,
we are going to want to build and store images that contain information or data
that we don’t want to make public. There are two choices in this situation:

• Make use of private repositories on the Docker Hub.
• Run your own registry behind the firewall.

The team at Docker, Inc., have open-sourced the code they use to run a Docker
registry, thus allowing us to build our own internal registry. The registry does not
currently have a user interface and is only made available as an API service.

 TIP If you’re running Docker behind a proxy or corporate firewall you can
also use the HTTPS_PROXY, HTTP_PROXY, NO_PROXY options to control how Docker
connects.

Version: v18.09 (6172afc) 135

https://hub.docker.com
https://docs.docker.com/registry/

Chapter 4: Working with Docker images and repositories

Running a registry from a container
Installing a registry from a Docker container is simple. Just run the Docker-
provided container like so:

Listing 4.93: Running a container-based registry

$ docker run -d -p 5000:5000 --name registry registry:2

This will launch a container running version 2.0 of the registry application and
bind port 5000 to the local host.

 TIP If you’re running an older version of the Docker Registry, prior to 2.0,
you can use the Migrator tool to upgrade to a new registry.

Testing the new registry
So how can we make use of our new registry? Let’s see if we can upload one of
our existing images, the jamtur01/static_web image, to our new registry. First,
let’s identify the image’s ID using the docker images command.

Listing 4.94: Listing the jamtur01 static_web Docker image

$ sudo docker images jamtur01/static_web
REPOSITORY TAG ID CREATED SIZE
jamtur01/static_web latest 22d47c8cb6e5 24 seconds ago 12.29

kB (virtual 326 MB)

Next we take our image ID, 22d47c8cb6e5, and tag it for our new registry. To

Version: v18.09 (6172afc) 136

https://github.com/docker/migrator

Chapter 4: Working with Docker images and repositories

specify the new registry destination, we prefix the image name with the hostname
and port of our new registry. In our case, our new registry has a hostname of
docker.example.com.

Listing 4.95: Tagging our image for our new registry

$ sudo docker tag 22d47c8cb6e5 docker.example.com:5000/jamtur01/
static_web

After tagging our image, we can then push it to the new registry using the docker
push command:

Listing 4.96: Pushing an image to our new registry

$ sudo docker push docker.example.com:5000/jamtur01/static_web
The push refers to a repository [docker.example.com:5000/jamtur01

/static_web] (len: 1)
Processing checksums
Sending image list
Pushing repository docker.example.com:5000/jamtur01/static_web (1

tags)
Pushing 22

d47c8cb6e556420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c
Buffering to disk 58375952/? (n/a)
Pushing 58.38 MB/58.38 MB (100%)
. . .

The image is then posted in the local registry and available for us to build new
containers using the docker run command.

Version: v18.09 (6172afc) 137

Chapter 4: Working with Docker images and repositories

Listing 4.97: Building a container from our local registry

$ sudo docker run -t -i docker.example.com:5000/jamtur01/
static_web /bin/bash

This is the simplest deployment of the Docker registry behind your firewall. It
doesn’t explain how to configure the registry or manage it. To find out details
like configuring authentication, how to manage the backend storage for your im-
ages and how to manage your registry see the full configuration and deployments
details in the Docker Registry deployment documentation.

Alternative Indexes
There are a variety of other services and companies out there starting to provide
custom Docker registry services.

Quay
The Quay service provides a private hosted registry that allows you to upload both
public and private containers. Unlimited public repositories are currently free.
Private repositories are available in a series of scaled plans. The Quay product
has recently been acquired by CoreOS and will be integrated into that product.

Summary
In this chapter, we’ve seen how to use and interact with Docker images and the
basics of modifying, updating, and uploading images to the Docker Hub. We’ve
also learned about using a Dockerfile to construct our own custom images. Fi-
nally, we’ve discovered how to run our own local Docker registry and some hosted
alternatives. This gives us the basis for starting to build services with Docker.

Version: v18.09 (6172afc) 138

https://docs.docker.com/registry/deploying/
https://quay.io/
https://coreos.com/

Chapter 4: Working with Docker images and repositories

We’ll use this knowledge in the next chapter to see how we can integrate Docker
into a testing workflow and into a Continuous Integration lifecycle.

Version: v18.09 (6172afc) 139

Chapter 5

Testing with Docker

We’ve learned a lot about the basics of Docker in the previous chapters. We’ve
learned about images, the basics of launching, and working with containers. Now
that we’ve got those basics down, let’s try to use Docker in earnest. We’re going
to start by using Docker to help us make our development and testing processes a
bit more streamlined and efficient.
To demonstrate this, we’re going to look at three use cases:

• Using Docker to test a static website.
• Using Docker to build and test a web application.
• Using Docker for Continuous Integration.

 NOTE We’re using Jenkins for CI because it’s the platform I have the most
experience with, but you can adapt most of the ideas contained in those sections
to any CI platform.

In the first two use cases, we’re going to focus on local, developer-centric devel-
oping and testing, and in the last use case, we’ll see how Docker might be used in
a broader multi-developer lifecycle for build and test.

140

Chapter 5: Testing with Docker

This chapter will introduce you to using Docker as part of your daily life and work-
flow, including useful concepts like connecting Docker containers. The chapter
contains a lot of useful information on how to run and manage Docker in general,
and I recommend you read it even if these use cases aren’t immediately relevant
to you.

Using Docker to test a static website
One of the simplest use cases for Docker is as a local web development environ-
ment. Such an environment allows you to replicate your production environment
and ensure what you develop will also likely run in production. We’re going to
start with installing the Nginx web server into a container to run a simple website.
Our website is originally named Sample.

An initial Dockerfile for the Sample website
To do this, let’s start with creating some structure, some configuration files for our
container and a Dockerfile from which to build our image. We start by creating
a directory to hold our Dockerfile first.

Listing 5.1: Creating a directory for our Sample website Dockerfile

$ mkdir sample
$ cd sample

We’re also going to need some Nginx configuration files to run our website. We can
download some example files I’ve prepared earlier from GitHub into the sample
directory.

Version: v18.09 (6172afc) 141

Chapter 5: Testing with Docker

Listing 5.2: Getting our Nginx configuration files

$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code
/master/code/5/sample/nginx/global.conf

$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code
/master/code/5/sample/nginx/nginx.conf

Now let’s look at the Dockerfile you’re going to create for our Sample website.

Listing 5.3: The Dockerfile for the Sample website

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01
RUN apt-get -yqq update; apt-get -yqq install nginx
RUN mkdir -p /var/www/html/website
ADD global.conf /etc/nginx/conf.d/
ADD nginx.conf /etc/nginx/nginx.conf
EXPOSE 80

Here we’ve written a Dockerfile that:

• Installs Nginx.
• Creates a directory, /var/www/html/website/, in the container.
• Adds the Nginx configuration from the local files we downloaded to our
image.
• Exposes port 80 on the image.

Our two Nginx configuration files configure Nginx for running our Sample website.
The global.conf file is copied into the /etc/nginx/conf.d/ directory by the ADD
instruction. The global.conf configuration file specifies:

Version: v18.09 (6172afc) 142

Chapter 5: Testing with Docker

Listing 5.4: The global.conf file

server {
listen 0.0.0.0:80;
server_name _;

root /var/www/html/website;
index index.html index.htm;

access_log /var/log/nginx/default_access.log;
error_log /var/log/nginx/default_error.log;
}

This sets Nginx to listen on port 80 and sets the root of our webserver to /var/www
/html/website, the directory we just created with a RUN instruction.
We also need to configure Nginx to run non-daemonized in order to allow it to
work inside our Docker container. To do this, the nginx.conf file is copied into
the /etc/nginx/ directory and contains:

Version: v18.09 (6172afc) 143

Chapter 5: Testing with Docker

Listing 5.5: The nginx.conf configuration file

user www-data;
worker_processes 4;
pid /run/nginx.pid;
daemon off;

events { }

http {
sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 65;
types_hash_max_size 2048;
include /etc/nginx/mime.types;
default_type application/octet-stream;
access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;
gzip on;
gzip_disable "msie6";
include /etc/nginx/conf.d/*.conf;

}

In this configuration file, the daemon off; option stops Nginx from going into
the background and forces it to run in the foreground. This is because Docker
containers rely on the running process inside them to remain active. By default,
Nginx daemonizes itself when started, which would cause the container to run
briefly and then stop when the daemon was forked and launched and the original
process that forked it stopped.
This file is copied to /etc/nginx/nginx.conf by the ADD instruction.
You’ll also see a subtle difference between the destinations of the two ADD instruc-

Version: v18.09 (6172afc) 144

Chapter 5: Testing with Docker

tions. The first ends in the directory, /etc/nginx/conf.d/, and the second in a
specific file /etc/nginx/nginx.conf. Both styles are accepted ways of copying
files into a Docker image.

 NOTE You can find all the code and sample configuration files for this
on Docker Book GitHub site. You will need to specifically download or copy and
paste the nginx.conf and global.conf configuration files into the nginx directory
we created to make them available for the docker build.

Building our Sample website and Nginx image
From this Dockerfile, we can build ourselves a new image with the docker build
command; we’ll call it jamtur01/nginx.

Listing 5.6: Building our new Nginx image

$ sudo docker build -t jamtur01/nginx .

This will build and name our new image, and you should see the build steps
execute. We can take a look at the steps and layers that make up our new image
using the docker history command.

Version: v18.09 (6172afc) 145

https://github.com/turnbullpress/dockerbook-code

Chapter 5: Testing with Docker

Listing 5.7: Showing the history of the Nginx image

$ sudo docker history jamtur01/nginx
IMAGECREATED CREATED BY SIZE
f99cb0a6726d 7 secs ago /bin/sh -c #(nop) EXPOSE 80/tcp 0

B
d0741c80034e 7 secs ago /bin/sh -c #(nop) ADD file:

d6698a182fafaf3cb0 415 B
f1b8d3ab6b4f 8 secs ago /bin/sh -c #(nop) ADD file:9778

ae1b43896011cc 286 B
4e88da941d2b About a min /bin/sh -c mkdir -p /var/www/html/

website 0 B
1224c6db31b7 About a min /bin/sh -c apt-get -yqq update; apt-get

-yq 39.32 MB
2cfbed445367 About a min /bin/sh -c #(nop) ENV REFRESHED_AT=2016-

06-01 0 B
6b5e0485e5fa About a min /bin/sh -c #(nop) LABEL maintainer= " 0

B
91e54dfb1179 2 days ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0

B
d74508fb6632 2 days ago /bin/sh -c sed -i 's/^#\s*\(deb.*

universe\)$/ 1.895 kB
c22013c84729 2 days ago /bin/sh -c echo '#!/bin/sh' > /usr/sbin/

polic 194.5 kB
d3a1f33e8a5a 2 days ago /bin/sh -c #(nop) ADD file:5

a3f9e9ab88e725d60 188.2 MB

The history starts with the final layer, our new jamtur01/nginx image and works
backward to the original parent image, ubuntu:16.04. Each step in between shows
the new layer and the instruction from the Dockerfile that generated it.

Version: v18.09 (6172afc) 146

Chapter 5: Testing with Docker

Building containers from our Sample website and Nginx image
We can now take our jamtur01/nginx image and start to build containers from it,
which will allow us to test our Sample website. To do that we need to add the
Sample website’s code. Let’s download it now into the sample directory.

Listing 5.8: Downloading our Sample website

$ mkdir website; cd website
$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code

/master/code/5/sample/website/index.html
$ cd ..

This will create a directory called website inside the sample directory. We then
download an index.html file for our Sample website into that website directory.
Now let’s look at how we might run a container using the docker run command.

Listing 5.9: Running our first Nginx testing container

$ sudo docker run -d -p 80 --name website \
-v $PWD/website:/var/www/html/website \
jamtur01/nginx nginx

 NOTE You can see we’ve passed the nginx command to docker run. Nor-
mally this wouldn’t make Nginx run interactively. In the configuration we sup-
plied to Docker, though, we’ve added the directive daemon off. This directive
causes Nginx to run interactively in the foreground when launched.

You can see we’ve used the docker run command to build a container from our

Version: v18.09 (6172afc) 147

Chapter 5: Testing with Docker

jamtur01/nginx image called website. You will have seen most of the options
before, but the -v option is new. This new option allows us to create a volume in
our container from a directory on the host.
Let’s take a brief digression into volumes, as they are important and useful in
Docker. Volumes are specially designated directories within one or more contain-
ers that bypass the layered Union File System to provide persistent or shared data
for Docker. This means that changes to a volume are made directly and bypass
the image. They will not be included when we commit or build an image.

 TIP Volumes can also be shared between containers and can persist even
when containers are stopped. We’ll see how to make use of this for data manage-
ment in later chapters.

In our immediate case, we see the value of volumes when we don’t want to bake
our application or code into an image. For example:

• We want to work on and test it simultaneously.
• It changes frequently, and we don’t want to rebuild the image during our
development process.
• We want to share the code between multiple containers.

The -v option works by specifying a directory or mount on the local host separated
from the directory on the container with a :. If the container directory doesn’t
exist Docker will create it.
We can also specify the read/write status of the container directory by adding
either rw or ro after that directory, like so:

Version: v18.09 (6172afc) 148

Chapter 5: Testing with Docker

Listing 5.10: Controlling the write status of a volume

$ sudo docker run -d -p 80 --name website \
-v $PWD/website:/var/www/html/website:ro \
jamtur01/nginx nginx

This would make the container directory /var/www/html/website read-only.
In our Nginx website container, we’ve mounted a local website we’re developing.
To do this we’ve mounted, as a volume, the directory $PWD/website to /var/www
/html/website in our container. In our Nginx configuration (in the /etc/nginx
/conf.d/global.conf configuration file), we’ve specified this directory as the lo-
cation to be served out by the Nginx server.

 TIP The website directory we’re using is contained in the source code for
this book on GitHub here. You can see the index.html file we downloaded inside
that directory.

Now, if we look at our running container using the docker ps command, we see
that it is active, it is named website, and port 80 on the container is mapped to
port 49161 on the host.

Listing 5.11: Viewing the Sample website container

$ sudo docker ps -l
CONTAINER ID IMAGE ... PORTS NAMES
6751b94bb5c0 jamtur01/nginx:latest ... 0.0.0.0:49161->80/tcp

website

If we browse to port 49161 on our Docker host, we’ll be able to see our Sample

Version: v18.09 (6172afc) 149

https://github.com/turnbullpress/dockerbook-code/tree/master/code/5/sample

Chapter 5: Testing with Docker

website displayed.

Figure 5.1: Browsing the Sample website.

Editing our website
Neat! We’ve got a live site. Now what happens if we edit our website? Let’s open
up the index.html file in the sample/website folder on our local host and edit it.

Listing 5.12: Editing our Sample website

$ cd sample
$ vi $PWD/website/index.html

We’ll change the title from:

Version: v18.09 (6172afc) 150

Chapter 5: Testing with Docker

Listing 5.13: Old title

This is a test website

To:

Listing 5.14: New title

This is a test website for Docker

Let’s refresh our browser and see what we’ve got now.

Figure 5.2: Browsing the edited Sample website.

We see that our Sample website has been updated. This is a simple example
of editing a website, but you can see how you could easily do so much more.
More importantly, you’re testing a site that reflects production reality. You can
now have containers for each type of production web-serving environment (e.g.,
Apache, Nginx), for running varying versions of development frameworks like
PHP or Ruby on Rails, or for database back ends, etc.

Version: v18.09 (6172afc) 151

Chapter 5: Testing with Docker

Using Docker to build and test a web application
Now let’s look at a more complex example of testing a larger web application.
We’re going to test a Sinatra-based web application instead of a static website
and then develop that application whilst testing in Docker. Sinatra is a Ruby-
based web application framework. It contains a web application library and a
simple Domain Specific Language or DSL for creating web applications. Unlike
more complex web application frameworks, like Ruby on Rails, Sinatra does not
follow the model–view–controller pattern but rather allows you to create quick
and simple web applications.
As such it’s perfect for creating a small sample application to test. In our case our
new application is going to take incoming URL parameters and output them as a
JSON hash. We’re also going to take advantage of this application architecture to
show you how to link Docker containers together.

Building our Sinatra application
Let’s create a directory, sinatra, to hold our new application and any associated
files we’ll need for the build.

Listing 5.15: Create directory for web application testing

$ mkdir -p sinatra
$ cd sinatra

Inside the sinatra directory let’s start with a Dockerfile to build the basic image
that we will use to develop our Sinatra web application.

Version: v18.09 (6172afc) 152

http://www.sinatrarb.com/

Chapter 5: Testing with Docker

Listing 5.16: Dockerfile for our Sinatra container

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get update -yqq; apt-get -yqq install ruby ruby-dev build
-essential redis-tools

RUN gem install --no-rdoc --no-ri sinatra json redis

RUN mkdir -p /opt/webapp

EXPOSE 4567

CMD ["/opt/webapp/bin/webapp"]

You can see that we’ve created another Ubuntu-based image, installed Ruby and
RubyGems, and then used the gem binary to install the sinatra, json, and redis
gems. The sinatra and json gems contain Ruby’s Sinatra library and support for
JSON. The redis gem we’re going to use a little later on to provide integration to
a Redis database.
We’ve also created a directory to hold our new web application and exposed the
default WEBrick port of 4567.
Finally, we’ve specified a CMD of /opt/webapp/bin/webapp, which will be the bi-
nary that launches our web application.
Let’s build this new image now using the docker build command.

Listing 5.17: Building our new Sinatra image

$ sudo docker build -t jamtur01/sinatra .

Version: v18.09 (6172afc) 153

http://redis.io/

Chapter 5: Testing with Docker

Creating our Sinatra container
We’ve built our image. Let’s now download our Sinatra web application’s source
code. You can find the code for this Sinatra application at The Docker Book site.
The application is made up of the bin and lib directories from the webapp direc-
tory.
Let’s download it now into the sinatra directory.

Listing 5.18: Download our Sinatra web application

$ cd sinatra
$ wget --cut-dirs=7 -nH -r -e robots=off --reject="index.html","

Dockerfile" --no-parent https://github.com/turnbullpress/
dockerbook-code/tree/master/code/5/sinatra/webapp

Let’s quickly look at the core of the webapp source code contained in the webapp/
lib/app.rb file.

Version: v18.09 (6172afc) 154

https://github.com/turnbullpress/dockerbook-code

Chapter 5: Testing with Docker

Listing 5.19: The Sinatra app.rb source code

require "rubygems"
require "sinatra"
require "json"

class App < Sinatra::Application

set :bind, '0.0.0.0'

get '/' do
"<h1>DockerBook Test Sinatra app</h1>"

end

post '/json/?' do
params.to_json

end

end

This is a simple application that converts any parameters posted to the /json
endpoint to JSON and displays them.
We also need to ensure that the webapp/bin/webapp binary is executable prior to
using it using the chmod command.

Listing 5.20: Making the webapp/bin/webapp binary executable

$ chmod +x webapp/bin/webapp

Now let’s launch a new container from our image using the docker run command.
To launch we should be inside the sinatra directory because we’re going to mount

Version: v18.09 (6172afc) 155

Chapter 5: Testing with Docker

our source code into the container using a volume.

Listing 5.21: Launching our first Sinatra container

$ sudo docker run -d -p 4567 --name webapp \
-v $PWD/webapp:/opt/webapp jamtur01/sinatra

Here we’ve launched a new container from our jamtur01/sinatra image, called
webapp. We’ve specified a new volume, using the webapp directory that holds our
new Sinatra web application, and we’ve mounted it to the directory we created in
the Dockerfile: /opt/webapp.
We’ve not provided a command to run on the command line; instead, we’re using
the command we specified via the CMD instruction in the Dockerfile of the image.

Listing 5.22: The CMD instruction in our Dockerfile

. . .
CMD ["/opt/webapp/bin/webapp"]
. . .

This command will be executed when a container is launched from this image.
We can also use the docker logs command to see what happened when our com-
mand was executed.

Version: v18.09 (6172afc) 156

Chapter 5: Testing with Docker

Listing 5.23: Checking the logs of our Sinatra container

$ sudo docker logs webapp
[2016-08-03 17:34:46] INFO WEBrick 1.3.1
[2016-08-03 17:34:46] INFO ruby 2.3.1 (2016-04-26) [x86_64-linux

-gnu]
== Sinatra (v1.4.7) has taken the stage on 4567 for development

with backup from WEBrick
[2016-08-03 17:34:46] INFO WEBrick::HTTPServer#start: pid=1 port

=4567

By adding the -f flag to the docker logs command, you can get similar behavior
to the tail -f command and continuously stream new output from the STDERR
and STDOUT of the container.

Listing 5.24: Tailing the logs of our Sinatra container

$ sudo docker logs -f webapp
. . .

We can also see the running processes of our Sinatra Docker container using the
docker top command.

Listing 5.25: Using docker top to list our Sinatra processes

$ sudo docker top webapp
UID PID PPID C STIME TTY TIME CMD
root 21506 15332 0 20:26 ? 00:00:00 /usr/bin/ruby /opt/

webapp/bin/webapp

Version: v18.09 (6172afc) 157

Chapter 5: Testing with Docker

We see from the logs that Sinatra has been launched and the WEBrick server is
waiting on port 4567 in the container for us to test our application. Let’s check to
which port on our local host that port is mapped:

Listing 5.26: Checking the Sinatra port mapping

$ sudo docker port webapp 4567
0.0.0.0:49160

Right now, our basic Sinatra application doesn’t do much. It just takes incoming
parameters, turns them into JSON, and then outputs them. We can now use the
curl command to test our application.

Listing 5.27: Testing our Sinatra application

$ curl -i -H 'Accept: application/json' \
-d 'name=Foo&status=Bar' http://localhost:49160/json
HTTP/1.1 200 OK
Content-Type: text/html;charset=utf-8
Content-Length: 29
X-Xss-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
Server: WEBrick/1.3.1 (Ruby/2.3.1/2016-04-26)
Date: Wed, 03 Aug 2016 18:30:06 GMT
Connection: Keep-Alive
{"name":"Foo","status":"Bar"}

We see that we’ve passed some URL parameters to our Sinatra application and
returned to us as a JSON hash: {"name":"Foo","status":"Bar"}.
Neat! But let’s see if we can extend our example application container to an actual
application stack by connecting to a service running in another container.

Version: v18.09 (6172afc) 158

Chapter 5: Testing with Docker

Extending our Sinatra application to use Redis
We’re going to extend our Sinatra application now by adding a Redis back end
and storing our incoming URL parameters in a Redis database. To do this, we’re
going to download a new version of our Sinatra application. We’ll also create an
image and container that run a Redis database. We’ll then make use of Docker’s
capabilities to connect the two containers.

Updating our Sinatra application

Let’s start with downloading an updated Sinatra-based application with a con-
nection to Redis configured. From inside our sinatra directory let’s download a
Redis-enabled version of our application into a new directory: webapp_redis.

Listing 5.28: Download our updated Sinatra web application

$ cd sinatra
$ wget --cut-dirs=7 -nH -r -e robots=off --reject="index.html","

Dockerfile" --no-parent https://github.com/turnbullpress/
dockerbook-code/tree/master/code/5/sinatra/webapp_redis/

We see we’ve downloaded the new application. Let’s look at its core code in lib/
app.rb now.

Version: v18.09 (6172afc) 159

Chapter 5: Testing with Docker

Listing 5.29: The webapp_redis app.rb file

require "rubygems"
require "sinatra"
require "json"
require "redis"

class App < Sinatra::Application

redis = Redis.new(:host => 'db', :port => '6379')

set :bind, '0.0.0.0'

get '/' do
"<h1>DockerBook Test Redis-enabled Sinatra app</h1>"

end

get '/json' do
params = redis.get "params"
params.to_json

end

post '/json/?' do
redis.set "params", [params].to_json
params.to_json

end
end

 NOTE You can see the full source for our updated Redis-enabled Sinatra
application at The Docker Book site.

Version: v18.09 (6172afc) 160

https://github.com/turnbullpress/dockerbook-code

Chapter 5: Testing with Docker

Our new application is basically the same as our previous application with support
for Redis added. We now create a connection to a Redis database on a host called
db on port 6379. We also post our parameters to that Redis database and then get
them back from it when required.
We also need to ensure that the webapp_redis/bin/webapp binary is executable
prior to using it using the chmod command.

Listing 5.30: Making the webapp_redis/bin/webapp binary executable

$ chmod +x webapp_redis/bin/webapp

Building a Redis database image

To build our Redis database, we’re going to create a new image. Let’s create a
directory, redis inside our sinatra directory, to hold any associated files we’ll
need for the Redis container build.

Listing 5.31: Create directory for Redis container

$ mkdir redis
$ cd redis

Inside the sinatra/redis directory let’s start with another Dockerfile for our
Redis image.

Version: v18.09 (6172afc) 161

Chapter 5: Testing with Docker

Listing 5.32: Dockerfile for Redis image

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01
RUN apt-get -yqq update; apt-get -yqq install redis-server redis-

tools
EXPOSE 6379
ENTRYPOINT ["/usr/bin/redis-server"]
CMD []

We’ve specified the installation of the Redis server, exposed port 6379, and speci-
fied an ENTRYPOINT that will launch that Redis server. Let’s now build that image
and call it jamtur01/redis.

Listing 5.33: Building our Redis image

$ sudo docker build -t jamtur01/redis .

Now let’s create a container from our new image.

Listing 5.34: Launching a Redis container

$ sudo docker run -d -p 6379 --name redis jamtur01/redis
2df899db52baf469633459fa2abd34148ae4456a8c4a2343a0f372f2ee407756

We’ve launched a new container named redis from our jamtur01/redis image.
Note that we’ve specified the -p flag to publish port 6379. Let’s see what port it’s
running on.

Version: v18.09 (6172afc) 162

Chapter 5: Testing with Docker

Listing 5.35: Checking the Redis port

$ sudo docker port redis 6379
0.0.0.0:49161

Our Redis port is published on port 49161. Let’s try to connect to that Redis
instance now.
We’ll need to install the Redis client locally to do the test. This is usually the
redis-tools package on Ubuntu.

Listing 5.36: Installing the redis-tools package on Ubuntu

$ sudo apt-get -y install redis-tools

Or the redis package on Red Hat and related distributions.

Listing 5.37: Installing the redis package on Red Hat et al

$ sudo yum install -y -q redis

Then we can use the redis-cli command to check our Redis server.

Listing 5.38: Testing our Redis connection

$ redis-cli -h 127.0.0.1 -p 49161
redis 127.0.0.1:49161>

Here we’ve connected the Redis client to 127.0.0.1 on port 49161 and verified

Version: v18.09 (6172afc) 163

Chapter 5: Testing with Docker

that our Redis server is working. You can use the quit command to exit the Redis
CLI interface.

Connecting our Sinatra application to the Redis container
Let’s now update our Sinatra application to connect to Redis and store our incom-
ing parameters. In order to do that, we’re going to need to be able to talk to the
Redis server. There are two ways we could do this using:

• Docker’s own internal network.
• From Docker 1.9 and later, using Docker Networking and the docker
network command.

So which method should I choose? Well the first method, Docker’s internal net-
work, is not an overly flexible or powerful solution. We’re mostly going to discuss
it to introduce you to how Docker networking functions. We don’t recommend it
as a solution for connecting containers.
The more realistic method for connecting containers is Docker Networking.

• Docker Networking can connect containers to each other across different
hosts.
• Containers connected via Docker Networking can be stopped, started or
restarted without needing to update connections.
• With Docker Networking you don’t need to create a container before you can
connect to it. You also don’t need to worry about the order in which you
run containers and you get internal container name resolution and discovery
inside the network.

We’re going to look at Docker Networking for connecting Docker containers to-
gether in the following sections.

Version: v18.09 (6172afc) 164

Chapter 5: Testing with Docker

Docker internal networking
The first method involves Docker’s own network stack. So far, we’ve seen Docker
containers exposing ports and binding interfaces so that container services are
published on the local Docker host’s external network (e.g., binding port 80 inside
a container to a high port on the local host). In addition to this capability, Docker
has a facet we haven’t yet seen: internal networking.
Every Docker container is assigned an IP address, provided through an interface
created when we installed Docker. That interface is called docker0. Let’s look at
that interface on our Docker host now.

 TIP Since Docker 1.5.0 IPv6 addresses are also supported. To enable this run
the Docker daemon with the --ipv6 flag.

Listing 5.39: The docker0 interface

$ ip a show docker0
4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP
link/ether 06:41:69:71:00:ba brd ff:ff:ff:ff:ff:ff
inet 172.17.42.1/16 scope global docker0
inet6 fe80::1cb3:6eff:fee2:2df1/64 scope link
valid_lft forever preferred_lft forever

. . .

 NOTE Depending on your distribution, you may need the iproute2 pack-
age to run the ip command.

Version: v18.09 (6172afc) 165

Chapter 5: Testing with Docker

The docker0 interface has an RFC1918 private IP address in the 172.16-172.30
range. This address, 172.17.42.1, will be the gateway address for the Docker
network and all our Docker containers.

 TIP Docker will default to 172.17.x.x as a subnet unless that subnet is
already in use, in which case it will try to acquire another in the 172.16-172.30
ranges.

The docker0 interface is a virtual Ethernet bridge that connects our containers and
the local host network. If we look further at the other interfaces on our Docker
host, we’ll find a series of interfaces starting with veth.

Listing 5.40: The veth interfaces

vethec6a Link encap:Ethernet HWaddr 86:e1:95:da:e2:5a
inet6 addr: fe80::84e1:95ff:feda:e25a/64 Scope:Link

. . .

Every time Docker creates a container, it creates a pair of peer interfaces that are
like opposite ends of a pipe (i.e., a packet sent on one will be received on the
other). It gives one of the peers to the container to become its eth0 interface and
keeps the other peer, with a unique name like vethec6a, out on the host machine.
You can think of a veth interface as one end of a virtual network cable. One end is
plugged into the docker0 bridge, and the other end is plugged into the container.
By binding every veth* interface to the docker0 bridge, Docker creates a virtual
subnet shared between the host machine and every Docker container.
Let’s look inside a container now and see the other end of this pipe.

Version: v18.09 (6172afc) 166

Chapter 5: Testing with Docker

Listing 5.41: The eth0 interface in a container

$ sudo docker run -t -i ubuntu /bin/bash
root@b9107458f16a:/# hostname -I
172.17.0.29

We see that Docker has assigned an IP address, 172.17.0.29, for our container that
will be peered with a virtual interface on the host side, allowing communication
between the host network and the container.
Let’s trace a route out of our container and see this now.

Listing 5.42: Tracing a route out of our container

root@b9107458f16a:/# apt-get -yqq update; apt-get install -yqq
traceroute

. . .
root@b9107458f16a:/# traceroute google.com
traceroute to google.com (74.125.228.78), 30 hops max, 60 byte

packets
1 172.17.42.1 (172.17.42.1) 0.078 ms 0.026 ms 0.024 ms
. . .
15 iad23s07-in-f14.1e100.net (74.125.228.78) 32.272 ms 28.050

ms 25.662 ms

We see that the next hop from our container is the docker0 interface gateway IP
172.17.42.1 on the host network.
But there’s one other piece of Docker networking that enables this connectivity:
firewall rules and NAT configuration allow Docker to route between containers
and the host network.
Exit out of our container and let’s look at the IPTables NAT configuration on our

Version: v18.09 (6172afc) 167

Chapter 5: Testing with Docker

Docker host.

Listing 5.43: Docker iptables and NAT

$ sudo iptables -t nat -L -n
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 0.0.0.0/0 ADDRTYPE match dst-

type LOCAL

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 !127.0.0.0/8 ADDRTYPE match dst-

type LOCAL

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 172.17.0.0/16 !172.17.0.0/16

Chain DOCKER (2 references)
target prot opt source destination
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:49161 to

:172.17.0.18:6379

Here we have several interesting IPTables rules. Firstly, we can note that there
is no default access into our containers. We specifically have to open up ports to
communicate to them from the host network. We see one example of this in the
DNAT, or destination NAT, rule that routes traffic from our container to port 49161
on the Docker host.

 TIP To learn more about advanced networking configuration for Docker, this
guide is useful.

Version: v18.09 (6172afc) 168

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/

Chapter 5: Testing with Docker

Our Redis container’s network

Let’s examine our new Redis container and see its networking configuration using
the docker inspect command.

Listing 5.44: Redis container’s networking configuration

$ sudo docker inspect redis
. . .

"NetworkSettings": {
"Bridge": "",

. . .
"Ports": {

"6379/tcp": [
{

"HostIp": "0.0.0.0",
"HostPort": "49161"

}
]
},

. . .
"Gateway": "172.17.0.1",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"IPAddress": "172.17.0.18",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"MacAddress": "02:42:ac:11:00:08",

. . .

The docker inspect command shows the details of a Docker container, including

Version: v18.09 (6172afc) 169

Chapter 5: Testing with Docker

its configuration and networking. We’ve truncated much of this information in
the example above and only shown the networking configuration. We could also
use the -f flag to only acquire the IP address.

Listing 5.45: Finding the Redis container’s IP address

$ sudo docker inspect -f '{{ .NetworkSettings.IPAddress }}' redis
172.17.0.18

Using the results of the docker inspect command we see that the container has an
IP address of 172.17.0.18 and uses the gateway address of the docker0 interface.
We can also see that the 6379 port is mapped to port 49161 on the local host, but,
because we’re on the local Docker host, we don’t have to use that port mapping.
We can instead use the 172.17.0.18 address to communicate with the Redis server
on port 6379 directly.

Listing 5.46: Talking directly to the Redis container

$ redis-cli -h 172.17.0.18
redis 172.17.0.18:6379>

Once you’ve confirmed the connection is working you can exit the Redis interface
using the quit command.

 NOTE Docker binds exposed ports on all interfaces by default; therefore,
the Redis server will also be available on the localhost or 127.0.0.1.

So, while this initially looks like it might be a good solution for connecting our
containers together, sadly, this approach has two big rough edges: Firstly, we’d
need to hard-code the IP address of our Redis container into our applications.

Version: v18.09 (6172afc) 170

Chapter 5: Testing with Docker

Secondly, if we restart the container, Docker changes the IP address. Let’s see this
now using the docker restart command (we’ll get the same result if we kill our
container using the docker kill command).

Listing 5.47: Restarting our Redis container

$ sudo docker restart redis

Let’s inspect its IP address.

Listing 5.48: Finding the restarted Redis container’s IP address

$ sudo docker inspect -f '{{ .NetworkSettings.IPAddress }}' redis
172.17.0.19

We see that our new Redis container has a new IP address, 172.17.0.19, which
means that if we’d hard-coded our Sinatra application, it would no longer be able
to connect to the Redis database. That’s not helpful.
Since Docker 1.9, Docker’s networking has become a lot more flexible. Let’s look
at how we might connect our containers with this new networking framework.

Docker networking
Container connections are created using networks. This is called Docker Network-
ing and was introduced in the Docker 1.9 release. Docker Networking allows
you to setup your own networks through which containers can communicate. Es-
sentially this supplements the existing docker0 network with new, user managed
networks. Importantly, containers can now communicate with each across hosts
and your networking configuration can be highly customizable. Networking also
integrates with Docker Compose and Swarm, we’ll see more of both in Chapter 7.

Version: v18.09 (6172afc) 171

Chapter 5: Testing with Docker

 NOTE The networking support is also pluggable, meaning you can add
network drivers to support specific topologies and networking frameworks from
vendors like Cisco and VMware.

To use Docker networks we first need to create a network and then launch a
container inside that network.

Listing 5.49: Creating a Docker network

$ sudo docker network create app
ec8bc3a70094a1ac3179b232bc185fcda120dad85dec394e6b5b01f7006476d4

This uses the docker network command to create a bridge network called app. A
network ID is returned for the network.
We can then inspect this network using the docker network inspect command.

Version: v18.09 (6172afc) 172

http://docs.docker.com/engine/extend/plugins_network/
http://docs.docker.com/engine/extend/plugins_network/

Chapter 5: Testing with Docker

Listing 5.50: Inspecting the app network

$ sudo docker network inspect app
[
{
"Name": "app",
"Id": "ec8bc...",
"Scope": "local",
"Driver": "bridge",
"IPAM": {
"Driver": "default",
"Config": [{}]
},
"Containers": {},
"Options": {}
}
]

Our new network is a local, bridged network much like our docker0 network and
that currently no containers are running inside the network.

 TIP In addition to bridge networks, which exist on a single host, we can also
create overlay networks, which allow us to span multiple hosts. You can read
more about overlay networks in the Docker multi-host network documentation.

You can list all current networks using the docker network ls command.

Version: v18.09 (6172afc) 173

http://docs.docker.com/engine/userguide/networking/get-started-overlay/

Chapter 5: Testing with Docker

Listing 5.51: The docker network ls command

$ sudo docker network ls
NETWORK ID NAME DRIVER
a74047bace7e bridge bridge
ec8bc3a70094 app bridge
8f0d4282ca79 none null
7c8cd5d23ad5 host host

And you can remove a network using the docker network rm command.
Let’s add some containers to our network, starting with a Redis container.

Listing 5.52: Creating a Redis container inside our Docker network

$ sudo docker run -d --net=app --name db jamtur01/redis

Here we’ve run a new container called db using our jamtur01/redis image. We’ve
also specified a new flag: --net. The --net flag specifies a network to run our
container inside.
Now if we re-run our docker network inspect command we’ll see quite a lot
more information.

Version: v18.09 (6172afc) 174

Chapter 5: Testing with Docker

Listing 5.53: The updated app network

$ sudo docker network inspect app
[
{
"Name": "app",
"Id": "ec8bc3a...",
"Scope": "local",
"Driver": "bridge",
"IPAM": {
"Driver": "default",
"Config": [{}]

},
"Containers": { "9a5ac1...": {
"Name": "db"
"EndpointID": "21a90...",
"MacAddress": "02:42:ac:12:00:02",
"IPv4Address": "172.18.0.2/16",
"IPv6Address": "" }
},
"Options": {}
}
]

Now, inside our network, we see a container with aMAC address and an IP address,
172.18.0.2.
Now let’s add a container to the network we’ve created. To do this we need to be
back in the sinatra directory.

Version: v18.09 (6172afc) 175

Chapter 5: Testing with Docker

Listing 5.54: Linking our Redis container

$ cd sinatra
$ sudo docker run -p 4567 \
--net=app --name network_test -t -i \
jamtur01/sinatra /bin/bash
root@305c5f27dbd1:/#

We’ve launched a container named network_test inside the app network. We’ve
launched it interactively so we can peek inside to see what’s happening.
As the container has been started inside the app network, Docker will have taken
note of all other containers running inside that network and populated their ad-
dresses in local DNS. Let’s see this now in the network_test container.
We first need the dnsutils and iputils-ping packages to get the nslookup and
ping binaries respectively.

Listing 5.55: Installing nslookup

root@305c5f27dbd1:/# apt-get install -y dnsutils iputils-ping

Then let’s do the lookup.

Version: v18.09 (6172afc) 176

Chapter 5: Testing with Docker

Listing 5.56: DNS resolution in the network_test container

root@305c5f27dbd1:/# nslookup db
Server: 127.0.0.11
Address:127.0.0.11#53

Non-authoritative answer:
Name: db
Address: 172.18.0.2

We see that using the nslookup command to resolve the db container it returns
the IP address: 172.18.0.2. A Docker network will also add the app network as
a domain suffix for the network, any host in the app network can be resolved by
hostname.app, here db.app. Let’s try that now.

Listing 5.57: Pinging db.app in the network_test container

root@305c5f27dbd1:/# ping db.app
PING db.app (172.18.0.2) 56(84) bytes of data.
64 bytes from db (172.18.0.2): icmp_seq=1 ttl=64 time=0.290 ms
64 bytes from db (172.18.0.2): icmp_seq=2 ttl=64 time=0.082 ms
64 bytes from db (172.18.0.2): icmp_seq=3 ttl=64 time=0.111 ms
. . .

In our case we just need the db entry to make our application function. To make
that work our webapp’s Redis connection code already uses the db hostname.

Version: v18.09 (6172afc) 177

Chapter 5: Testing with Docker

Listing 5.58: The Redis DB hostname in code

redis = Redis.new(:host => 'db', :port => '6379')

We could now start our application and have our Sinatra application write its
variables into Redis via the connection between the db and webapp containers that
we’ve established via the app network.
Let’s try it now by exiting the network_test container and starting up a new con-
tainer running our Redis-enabled web application.

Listing 5.59: Starting the Redis-enabled Sinatra application

$ sudo docker run -d -p 4567 \
--net=app --name webapp_redis \
-v $PWD/webapp_redis:/opt/webapp jamtur01/sinatra

 NOTE This is the Redis-enabled Sinatra application we installed earlier in
the chapter. It’s available on GitHub here.

Here we’ve launched a new container called webapp_redis running our Redis-
enabled web application. Now let’s just check, on the Docker host, what port our
Sinatra container has bound the application.

Version: v18.09 (6172afc) 178

https://github.com/turnbullpress/dockerbook-code/tree/master/code/5/sinatra/webapp_redis

Chapter 5: Testing with Docker

Listing 5.60: Checking the Sinatra container’s port mapping

$ sudo docker port webapp_redis 4567
0.0.0.0:49162

Okay port 4567 in the container is bound to port 49162 on the Docker host. Let’s
use this information to test our application from the Docker host using the curl
command.

Listing 5.61: Testing our Redis-enabled Sinatra application

$ curl -i -H 'Accept: application/json' \
-d 'name=Foo&status=Bar' http://localhost:49162/json
HTTP/1.1 200 OK
Content-Type: text/html;charset=utf-8
Content-Length: 29
X-Xss-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
Server: WEBrick/1.3.1 (Ruby/2.3.1/2016-04-26)
Date: Wed, 03 Aug 2016 18:30:06 GMT
Connection: Keep-Alive
{"name":"Foo","status":"Bar"}

And now let’s confirm that our Redis instance has received the update by querying
the Sinatra web application in webapp_redis.

Version: v18.09 (6172afc) 179

Chapter 5: Testing with Docker

Listing 5.62: Confirming Redis contains data

$ curl -i http://localhost:49162/json
"[{\"name\":\"Foo\",\"status\":\"Bar\"}]"

Here we’ve connected to our application, which has connected to Redis, checked
a list of keys to find that we have a key called params, and then queried that key
to see that our parameters (name=Foo and status=Bar) have both been stored in
Redis. Our application works!

Connecting existing containers to the network

You can also add already running containers to existing networks using the docker
network connect command. So we can add an existing container to our app
network. Let’s say we have an existing container called db2 that also runs Redis.

Listing 5.63: Running the db2 container

$ sudo docker run -d --name db2 jamtur01/redis

Let’s add that to the app network (we could have also used the --net flag to
automatically add the container to the network at runtime).

Listing 5.64: Adding a new container to the app network

$ sudo docker network connect app db2

Now if we inspect the app network we should see three containers.

Version: v18.09 (6172afc) 180

Chapter 5: Testing with Docker

Listing 5.65: The app network after adding db2

$ sudo docker network inspect app
. . .
"Containers": {

"2
fa7477c58d7707ea14d147f0f12311bb1f77104e49db55ac346d0ae961ac401
": {

"Name": "webapp_redis"
"EndpointID": "

c510c78af496fb88f1b455573d4c4d7fdfc024d364689a057b98ea20287bfc0d
",

"MacAddress": "02:42:ac:12:00:02",
"IPv4Address": "172.18.0.2/16",
"IPv6Address": ""

},
"305
c5f27dbd11773378f93aa58e86b2f710dbfca9867320f82983fc6ba79e779
": {

. . .

"Name": "db2"
"EndpointID": "47

faec311dfac22f2ee8c1b874b87ce8987ee65505251366d4b9db422a749a1e
",

"MacAddress": "02:42:ac:12:00:04",
"IPv4Address": "172.18.0.4/16",
"IPv6Address": ""

}
},
. . .

Version: v18.09 (6172afc) 181

Chapter 5: Testing with Docker

We can also disconnect a container from a network using the docker network
disconnect command.

Listing 5.66: Disconnecting a host from a network

$ sudo docker network disconnect app db2

This would remove the db2 container from the app network.
Containers can belong to multiple networks at once so you can create quite com-
plex networking models.

 TIP Further information on Docker Networking is available in the Docker
documentation.

Connecting containers summary
We’ve now seen all the ways Docker can connect containers together. You can see
that it is easy to create a fully functional web application stack consisting of:

• A web server container running Sinatra.
• A Redis database container.
• A secure connection between the two containers.

You should also be able to see how easy it would be to extend this concept to pro-
vide any number of applications stacks and manage complex local development
with them, like:

• Wordpress, HTML, CSS, JavaScript.
• Ruby on Rails.

Version: v18.09 (6172afc) 182

http://docs.docker.com/engine/userguide/networking/
http://docs.docker.com/engine/userguide/networking/

Chapter 5: Testing with Docker

• Django and Flask.
• Node.js.
• Play!
• Or any other framework that you like!

This way you can build, replicate, and iterate on production applications, even
complex multi-tier applications, in your local environment.

Using Docker for continuous integration
Up until now, all our testing examples have been local, single developer-centric
examples (i.e., how a local developer might make use of Docker to test a local web-
site or application). Let’s look at using Docker’s capabilities in a multi-developer
continuous integration testing scenario.
Docker excels at quickly generating and disposing of one or multiple containers.
There’s an obvious synergy with Docker’s capabilities and the concept of contin-
uous integration testing. Often in a testing scenario you need to install software
or deploy multiple hosts frequently, run your tests, and then clean up the hosts to
be ready to run again.
In a continuous integration environment, you might need these installation steps
and hosts multiple times a day. This adds a considerable build and configuration
overhead to your testing lifecycle. Package and installation steps can also be time-
consuming and annoying, especially if requirements change frequently or steps
require complex or time-consuming processes to clean up or revert.
Docker makes the deployment and cleanup of these steps and hosts cheap. To
demonstrate this, we’re going to build a testing pipeline in stages using Jenkins
CI: Firstly, we’re going to build a Jenkins server in Docker that runs other Docker
containers.
Once we’ve got Jenkins running, we’ll demonstrate a basic single-container test
run. Finally, we’ll look at a multi-container test scenario.

Version: v18.09 (6172afc) 183

http://en.wikipedia.org/wiki/Continuous_integration
http://jenkins-ci.org/
http://jenkins-ci.org/

Chapter 5: Testing with Docker

 TIP There are a number of continuous integration tool alternatives to Jenkins,
including Strider and Drone, which actually make use of Docker.

Build a Jenkins and Docker server
To provide our Jenkins server, we’re going to build an image from a Dockerfile
that both installs Jenkins and Docker.

Listing 5.67: Jenkins and Docker Dockerfile

FROM jenkins
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

USER root
RUN apt-get -qqy update; apt-get install -qqy sudo
RUN echo "jenkins ALL=NOPASSWD: ALL" >> /etc/sudoers
RUN wget http://get.docker.com/builds/Linux/x86_64/docker-latest.

tgz
RUN tar -xvzf docker-latest.tgz
RUN mv docker/* /usr/bin/

USER jenkins
RUN /usr/local/bin/install-plugins.sh junit git git-client ssh-

slaves greenballs chucknorris ws-cleanup

We see that our Dockerfile inherits from the jenkins image. The jenkins image
is the official Jenkins image maintained by their community on the Docker Hub.
The Dockerfile then does a lot of other stuff. Indeed, it is probably the most
complex Dockerfile we’ve seen so far. Let’s walk through what it does.
We’ve first set the USER to root, installed the sudo package and allowed the

Version: v18.09 (6172afc) 184

https://strider-cd.github.io/
http://docs.drone.io/
https://hub.docker.com/_/jenkins/

Chapter 5: Testing with Docker

jenkins user to make use of sudo. We then installed the Docker binary. We’ll
use this to connect to our Docker host and run containers for our builds.
Next we switch back to the jenkins user. This user is the default for the jenkins
image and is required for containers launched from the image to run Jenkins
correctly. We then use a RUN instruction to execute the install-plugins.sh com-
mand to install a list of Jenkins plugins we’re going to use.
Next, let’s create a directory, /var/jenkins_home, to hold our Jenkin’s configura-
tion. This means every time we restart Jenkins we won’t lose our configuration.

 TIP Another approach would be to use Docker data volumes, which we’ll
discuss further in Chapter 6.

Listing 5.68: Create directory for Jenkins

$ sudo mkdir -p /var/jenkins_home
$ cd /var/jenkins_home
$ sudo chown -R 1000 /var/jenkins_home

 TIP If you’re running this example on OS X you might need to create the
directory at /private/var/jenkins_home.

We also set the ownership of the jenkins_home directory to 1000, which is the UID
of the jenkins user inside the image we’re about to build. This will allow Jenkins
to write into this directory and store our Jenkins configuration.
Now that we have our Dockerfile and our Jenkins home directory, let’s build a
new image using the docker build command.

Version: v18.09 (6172afc) 185

https://docs.docker.com/engine/admin/volumes/volumes/

Chapter 5: Testing with Docker

Listing 5.69: Building our Docker-Jenkins image

$ sudo docker build -t jamtur01/jenkins .

We’ve called our new image, somewhat unoriginally, jamtur01/jenkins. We can
now create a container from this image using the docker run command.

Listing 5.70: Running our Docker-Jenkins image

$ sudo docker run -d -p 8080:8080 -p 50000:50000 \
-v /var/jenkins_home:/var/jenkins_home \
-v /var/run/docker.sock:/var/run/docker.sock \
--name jenkins \
jamtur01/jenkins
cc130210491ee959a287f04b5e4c46340bbcb6a46971de15d3899699b7718656

We can see that we’ve used the -p flag to publish port 8080 on port 8080 on the
local host, which would normally be poor practice, but we’re only going to run
one Jenkins server. We’ve also bound port 50000 on port 50000which will be used
by the Jenkins build API.
Next, we bind two volumes using the -v flag. The first mounts our /var/
jenkins_home directory into the container at /var/jenkins_home. This will
contain Jenkin’s configuration data and allow us to perpetuate its state across
container launches.
The second volume mounts /var/run/docker.sock, the socket for Docker’s dae-
mon into the Docker container. This will allow us to run Docker containers from
inside our Jenkins container.

 WARNING This is a security risk. By binding the Docker socket inside

Version: v18.09 (6172afc) 186

Chapter 5: Testing with Docker

the Jenkins container you give the container access to the underlying Docker host.
This is not overly secure. I recommend you only do this if you are comfortable
that the Jenkins container, any other containers on that Docker host are at a
comparable security level.

We see that our new container, jenkins, has been started. Let’s check out its logs.

Version: v18.09 (6172afc) 187

Chapter 5: Testing with Docker

Listing 5.71: Checking the Docker Jenkins container logs

$ sudo docker logs jenkins
Running from: /usr/share/jenkins/jenkins.war
webroot: EnvVars.masterEnvVars.get("JENKINS_HOME")
Aug 04, 2016 3:11:50 AM org.eclipse.jetty.util.log.JavaUtilLog

info
INFO: Logging initialized @1760ms
Aug 04, 2016 3:11:51 AM winstone.Logger logInternal
INFO: Beginning extraction from war file

. . .

Jenkins initial setup is required. An admin user has been created
and a password generated.

Please use the following password to proceed to installation:

e9eef9d4a4e44741b0368877a9efb17c

This may also be found at: /var/jenkins_home/secrets/
initialAdminPassword

. . .

INFO: Jenkins is fully up and running

Version: v18.09 (6172afc) 188

Chapter 5: Testing with Docker

You can keep checking the logs, or run docker logs with the -f flag, until you
see a message similar to:

Listing 5.72: Checking that is Jenkins up and running

INFO: Jenkins is fully up and running

Take note of the initial admin password, in our case:
e9eef9d4a4e44741b0368877a9efb17c

This is also stored in a file in the jenkins_home directory at:
/var/jenkins_home/secrets/initialAdminPassword

Finally, our Jenkins server should now be available in your browser on port 8080,
as we see here:

Version: v18.09 (6172afc) 189

Chapter 5: Testing with Docker

Figure 5.3: Browsing the Jenkins server.
Put in the admin password generated during installation and click the Continue
button.

Figure 5.4: The Getting Started workflow
This will initiate the Jenkins Getting Started workflow. You can follow it or
cancel it by clicking the X in the top right of the dialogue.
If you cancel the Getting Started dialogue you’ll also skip creating any users. To
log into Jenkins again we would use a user name of admin and our initial admin
password.

Create a new Jenkins job
Now that we have a running Jenkins server, let’s continue by creating a Jenkins
job to run. To do this, we’ll click the create new jobs link, which will open up

Version: v18.09 (6172afc) 190

Chapter 5: Testing with Docker

the New Job wizard.

Figure 5.5: Creating a new Jenkins job.

Let’s name our new job Docker_test_job, select a job type of Freestyle project,
and click OK to continue to the next screen.
Now let’s fill in a few sections. We’ll start with a description of the job. Then
click the Advanced. . . button, tick the Use Custom workspace radio button, and
specify /var/jenkins_home/jobs/${JOB_NAME}/workspace as the Directory. This
is the workspace in which our Jenkins job is going to run. It’s also stored in our
Jenkins home directory to ensure we maintain state across builds.
Under Source Code Management, select Git and specify the following test reposi-
tory: https://github.com/turnbullpress/docker-jenkins-sample.git. This is
a simple repository containing some Ruby-based RSpec tests.

Version: v18.09 (6172afc) 191

Chapter 5: Testing with Docker

Figure 5.6: Jenkins job details part 1.

Now we’ll scroll down and update a few more fields. First, we’ll add a build step
by clicking the Add Build Step button and selecting Execute shell. Let’s specify
this shell script that will launch our tests and Docker.

Version: v18.09 (6172afc) 192

Chapter 5: Testing with Docker

Listing 5.73: The Docker shell script for Jenkins jobs

Build the image to be used for this job.
IMAGE=$(sudo docker build . | tail -1 | awk '{ print $NF }')

Build the directory to be mounted into Docker.
MNT="$WORKSPACE/.."

Execute the build inside Docker.
CONTAINER=$(sudo docker run -d -v $MNT:/opt/project/ $IMAGE /bin/

bash -c 'cd /opt/project/workspace; rake spec')

Attach to the container so that we can see the output.
sudo docker attach $CONTAINER

Get its exit code as soon as the container stops.
RC=$(sudo docker wait $CONTAINER)

Delete the container we've just used.
sudo docker rm $CONTAINER

Exit with the same value as that with which the process exited.
exit $RC

So what does this script do? Firstly, it will create a new Docker image using a
Dockerfile contained in the Git repository we’ve just specified. This Dockerfile
provides the test environment in which we wish to execute. Let’s take a quick
look at it now.

Version: v18.09 (6172afc) 193

Chapter 5: Testing with Docker

Listing 5.74: The Docker test job Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01
RUN apt-get update
RUN apt-get -y install ruby rake
RUN gem install --no-rdoc --no-ri rspec ci_reporter_rspec

 TIP If we add a new dependency or require another package to run our tests,
all we’ll need to do is update this Dockerfile with the new requirements, and the
image will be automatically rebuilt when the tests are run.

Here we’re building an Ubuntu host, installing Ruby and RubyGems, and then
installing two gems: rspec and ci_reporter_rspec. This will build an image that
we can test using a typical Ruby-based application that relies on the RSpec test
framework. The ci_reporter_rspec gem allows RSpec output to be converted
to JUnit-formatted XML that Jenkins can consume. We’ll see the results of this
conversion shortly.
Back to our script. We’re building an image from this Dockerfile. Next, we’re
creating a new environment variable called $MNT using the $WORKSPACE variable.
This is a variable, created by Jenkins, holding the workspace directory we defined
earlier in our job. This is where our Git repository containing the code we want
to test is going to be checked out to, and it is this directory we’re going to mount
into our Docker container. We can then execute our tests from this checkout.
Next we create a container from our image and run the tests. Inside this container,
we’ve mounted our workspace via a volume to the /opt/project directory. When
the container runs, we’re executing a command that changes into this directory
tree and executes the rake spec command, which actually runs our RSpec tests.

Version: v18.09 (6172afc) 194

Chapter 5: Testing with Docker

Now we’ve got a started container and we’ve grabbed the container ID.

 TIP Docker also comes with a command line option called --cidfile that
captures the container’s ID and stores it in a file specified in the --cidfile options,
like so: --cidfile=/tmp/containerid.txt

Whilst the container is running, we want to attach to that container to get the
output from it using the docker attach command. and then use the docker wait
command. This will echo the test output into our Jenkins job. Finally, the docker
wait command blocks until the command the container is executing finishes and
then returns the exit code of the container. The RC variable captures the exit code
from the container when it completes.
Finally, we clean up and delete the container we’ve just created and exit with the
container’s exit code. This should be the exit code of our test run. Jenkins relies
on this exit code to tell it if a job’s tests have run successfully or failed.
Next we click the Add post-build action and add Publish JUnit test result
report. In the Test report XMLs, we need to specify spec/reports/*.xml; this
is the location of the ci_reporter gem’s XML output, and locating it will allow
Jenkins to consume our test history and output.
Finally, we must click the Save button to save our new job.

Version: v18.09 (6172afc) 195

Chapter 5: Testing with Docker

Figure 5.7: Jenkins job details part 2.

Running our Jenkins job
We now have our Jenkins job, so let’s run it. We’ll do this by clicking the Build
Now button; a job will appear in the Build History box.

Figure 5.8: Running the Jenkins job.

Version: v18.09 (6172afc) 196

Chapter 5: Testing with Docker

 NOTE The first time the tests run, it’ll take a little longer because Docker
is building our new image. The next time you run the tests, however, it’ll be much
faster, as Docker will already have the required image prepared.

We’ll click on this job to get details of the test run we’re executing.

Figure 5.9: The Jenkins job details.

We can click on Console Output to see the commands that have been executed as
part of the job.

Version: v18.09 (6172afc) 197

Chapter 5: Testing with Docker

Figure 5.10: The Jenkins job console output.

We see that Jenkins has downloaded our Git repository to the workspace. We can
then execute our Shell script and build a Docker image using the docker build
command. Then, we’ll capture the image ID and use it to build a new container
using the docker run command. Running this new container executes the RSpec
tests and captures the results of the tests and the exit code. If the job exits with
an exit code of 0, then the job will be marked as successful.
You can also view the precise test results by clicking the Test Result link. This
will have captured the RSpec output of our tests in JUnit form. This is the output
that the ci_reporter gem produces and our After Build step captures.

Next steps with our Jenkins job
We can also automate our Jenkins job further by enabling SCM polling, which
triggers automatic builds when new commits are made to the repository. Similar
automation can be achieved with a post-commit hook or via a GitHub or Bitbucket
repository hook.

Version: v18.09 (6172afc) 198

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Configuringautomaticbuilds

Chapter 5: Testing with Docker

Summary of our Jenkins setup
We’ve achieved a lot so far: we’ve installed Jenkins, run it, and created our first
job. This Jenkins job uses Docker to create an image that we can manage and
keep updated using the Dockerfile contained in our repository. In this scenario,
not only does our infrastructure configuration live with our code, but managing
that configuration becomes a simple process. Containers are then created (from
that image) in which we then run our tests. When we’re done with the tests, we
can dispose of the containers, which makes our testing fast and lightweight. It is
also easy to adapt this example to test on different platforms or using different
test frameworks for numerous languages.

 TIP You could also use parameterized builds to make this job and the shell
script step more generic to suit multiple frameworks and languages.

Multi-configuration Jenkins
We’ve now seen a simple, single container build using Jenkins. What if we wanted
to test our application on multiple platforms? Let’s say we’d like to test it on
Ubuntu, Debian, and CentOS. To do that, we can take advantage of a Jenkins job
type called a “multi-configuration job” that allows a matrix of test jobs to be run.
When the Jenkins multi-configuration job is run, it will spawn multiple sub-jobs
that will test varying configurations.

Create a multi-configuration job
Let’s look at creating our new multi-configuration job. Click on the New Item link
from the Jenkins console. We’re going to name our new job Docker_matrix_job,
select Multi-configuration project, and click OK.

Version: v18.09 (6172afc) 199

https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Build

Chapter 5: Testing with Docker

Figure 5.11: Creating a multi-configuration job.

We’ll see a screen that is similar to the job creation screen we saw earlier. Let’s
add a description for our job, select Git as our repository type, and specify our
sample application repository: https://github.com/turnbullpress/docker-
jenkins-sample.git.
Next, let’s scroll down and configure our multi-configuration axis. The axis is
the list of matrix elements that we’re going to execute as part of the job. We’ll
click the Add Axis button and select User-defined Axis. We’re going to specify
an axis named OS (which will be short for operating system) and specify three
values: centos, debian, and ubuntu. When we execute our multi-configuration
job, Jenkins will look at this axis and spawn three jobs: one for each point on the
axis.
Then, in the Build Environment section, we click Delete workspace before
build starts. This option cleans up our build environment by deleting the
checked-out repository prior to initiating a new set of jobs.

Version: v18.09 (6172afc) 200

Chapter 5: Testing with Docker

Figure 5.12: Configuring a multi-configuration job Part 2.

Lastly, we’ve specified another shell build step with a simple shell script. It’s a
modification of the shell script we used earlier.

Version: v18.09 (6172afc) 201

Chapter 5: Testing with Docker

Listing 5.75: Jenkins multi-configuration shell step

Build the image to be used for this run.
cd $OS; IMAGE=$(sudo docker build . | tail -1 | awk '{ print $NF

}')

Build the directory to be mounted into Docker.
MNT="$WORKSPACE/.."

Execute the build inside Docker.
CONTAINER=$(sudo docker run -d -v "$MNT:/opt/project" $IMAGE /bin

/bash -c "cd /opt/project/$OS; rake spec")

Attach to the container's streams so that we can see the output
.

sudo docker attach $CONTAINER

As soon as the process exits, get its return value.
RC=$(sudo docker wait $CONTAINER)

Delete the container we've just used.
sudo docker rm $CONTAINER

Exit with the same value as that with which the process exited.
exit $RC

We see that this script has a modification: we’re changing into directories named
for each operating system for which we’re executing a job. Inside our test repos-
itory that we have three directories: centos, debian, and ubuntu. Inside each
directory is a different Dockerfile containing the build instructions for a CentOS,
Debian, or Ubuntu image, respectively. This means that each job that is started
will change into the appropriate directory for the required operating system, build
an image based on that operating system, install any required prerequisites, and

Version: v18.09 (6172afc) 202

Chapter 5: Testing with Docker

launch a container based on that image in which to run our tests.
Let’s look at one of these new Dockerfile examples.

Listing 5.76: Our CentOS-based Dockerfile

FROM centos:latest
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01
RUN yum -y install ruby rubygems rubygem-rake
RUN gem install --no-rdoc --no-ri rspec ci_reporter_rspec

This is a CentOS-based variant of the Dockerfile we were using as a basis of our
previous job. It basically performs the same tasks as that previous Dockerfile
did, but uses the CentOS-appropriate commands like yum to install packages.
We’re also going to add a post-build action of Publish JUnit test result
report and specify the location of our XML output: spec/reports/*.xml. This
will allow us to check the test result output.
Finally, we’ll click Save to create our new job and save our proposed configuration.
We can now see our freshly created job and note that it includes a section called
Configurations that contains sub-jobs for each element of our axis.

Version: v18.09 (6172afc) 203

Chapter 5: Testing with Docker

Figure 5.13: Our Jenkins multi-configuration job

Testing our multi-configuration job
Now let’s test this new job. We can launch our new multi-configuration job by
clicking the Build Now button. When Jenkins runs, it will create a master job.
This master job will, in turn, generate three sub-jobs that execute our tests on
each of the three platforms we’ve chosen.

 NOTE Like our previous job, it may take a little time to run the first time,
as it builds the required images in which we’ll test. Once they are built, though,
the next runs should be much faster. Docker will only change the image if you
update the Dockerfile.

We see that the master job executes first, and then each sub-job executes. Let’s
look at the output of one of these sub-jobs, our new centos job.

Version: v18.09 (6172afc) 204

Chapter 5: Testing with Docker

Figure 5.14: The centos sub-job.

We see that it has executed: the green ball tells us it executed successfully. We
can drill down into its execution to see more. To do so, click on the #1 entry in
the Build History.

Figure 5.15: The centos sub-job details.

Here we see some more details of the executed centos job. We see that the job has
been Started by upstream project Docker_matrix_job and is build number 1.
To see the exact details of what happened during the run, we can check the console
output by clicking the Console Output link.

Version: v18.09 (6172afc) 205

Chapter 5: Testing with Docker

Figure 5.16: The centos sub-job console output.

We see that the job cloned the repository, built the required Docker image,
spawned a container from that image, and then ran the required tests. All of
the tests passed successfully (we can also check the Test Result link for the
uploaded JUnit test results if required).
We’ve now successfully completed a simple, but powerful example of a multi-
platform testing job for an application.

Summary of our multi-configuration Jenkins
These examples show simplistic implementations of Jenkins CI working with
Docker. You can enhance both of the examples shown with a lot of additional
capabilities ranging from automated, triggered builds to multi-level job matrices
using combinations of platform, architecture, and versions. Our simple Shell
build step could also be rewritten in a number of ways to make it more sophisti-
cated or to further support multi-container execution (e.g., to provide separate
containers for web, database, or application layers to better simulate an actual
multi-tier production application).

Version: v18.09 (6172afc) 206

Chapter 5: Testing with Docker

Other alternatives
One of the more interesting parts of the Docker ecosystem is continuous integra-
tion and continuous deployment (CI/CD). Beyond integration with existing tools
like Jenkins, we’re also seeing people build their own tools and integrations on
top of Docker.

Drone
One of the more promising CI/CD tools being developed on top of Docker is Drone.
Drone is a SAAS continuous integration platform that connects to GitHub, Bit-
bucket, and Google Code repositories written in a wide variety of languages, in-
cluding Python, Node.js, Ruby, Go, and numerous others. It runs the test suites
of repositories added to it inside a Docker container.

Shippable
Shippable is a free, hosted continuous integration and deployment service for
GitHub and Bitbucket. It is blazing fast and lightweight, and it supports Docker
natively.

Summary
In this chapter, we’ve seen how to use Docker as a core part of our development
and testing workflow. We’ve looked at developer-centric testing with Docker on a
local workstation or virtual machine. We’ve also explored scaling that testing up
to a continuous integration model using Jenkins CI as our tool. We’ve seen how
to use Docker for both point testing and how to build distributed matrix jobs.
In the next chapter, we’ll start to see how we can use Docker in production to
provide containerized, stackable, scalable, and resilient services.

Version: v18.09 (6172afc) 207

http://docs.drone.io/
https://www.shippable.com/

Chapter 6

Building services with Docker

In Chapter 5, we saw how to use Docker to facilitate better testing by using con-
tainers in our local development workflow and in a continuous integration envi-
ronment. In this chapter, we’re going to explore using Docker to run production
services.
We’re going to build a simple application first and then build some more complex
multi-container applications. We’ll explore how to make use of Docker features
like networking and volumes to combine and manage applications running in
Docker.

Building our first application
The first application we’re going to build is an on-demand website using the Jekyll
framework. We’re going to build two images:

• An image that both installs Jekyll and the prerequisites we’ll need and builds
our Jekyll site.
• An image that serves our Jekyll site via Apache.

We’re going to make it on demand by creating a new Jekyll site when a new
container is launched. Our workflow is going to be:

208

http://jekyllrb.com/
http://jekyllrb.com/

Chapter 6: Building services with Docker

• Create the Jekyll base image and the Apache image (once-off).
• Create a container from our Jekyll image that holds our website source
mounted via a volume.
• Create a Docker container from our Apache image that uses the volume
containing the compiled site and serve that out.
• Rinse and repeat as the site needs to be updated.

You could consider this a simple way to create multiple hosted website instances.
Our implementation is simple, but you will see how we extend it beyond this
simple premise later in the chapter.

The Jekyll base image
Let’s start creating a new Dockerfile for our first image: the Jekyll base image.
Let’s create a new directory first and an empty Dockerfile.

Listing 6.1: Creating our Jekyll Dockerfile

$ mkdir jekyll
$ cd jekyll
$ vi Dockerfile

Now let’s populate our Dockerfile.

Version: v18.09 (6172afc) 209

Chapter 6: Building services with Docker

Listing 6.2: Jekyll Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install ruby ruby-dev build-essential nodejs
RUN gem install jekyll -v 2.5.3

VOLUME /data
VOLUME /var/www/html
WORKDIR /data

ENTRYPOINT ["jekyll", "build", "--destination=/var/www/html"]

Our Dockerfile uses the template we saw in Chapter 3 as its basis. Our image
is based on Ubuntu 16.04 and installs Ruby and the prerequisites necessary to
support Jekyll. It creates two volumes using the VOLUME instruction:

• /data/, which is going to hold our new website source code.
• /var/www/html/, which is going to hold our compiled Jekyll site.

We also need to set the working directory to /data/ and specify an ENTRYPOINT
instruction that will automatically build any Jekyll site it finds in the /data/
working directory into the /var/www/html/ directory.

Building the Jekyll base image
With this Dockerfile, we will now build an image from which we will launch
containers. We’ll do this using the docker build command.

Version: v18.09 (6172afc) 210

Chapter 6: Building services with Docker

Listing 6.3: Building our Jekyll image

$ sudo docker build -t jamtur01/jekyll .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:18.04
---> 99ec81b80c55
Step 1 : LABEL maintainer="james@example.com"
. . .
Step 7 : ENTRYPOINT ["jekyll", "build" "--destination=/var/www/

html"]
---> Running in 542e2de2029d
---> 79009691f408
Removing intermediate container 542e2de2029d
Successfully built 79009691f408

We see that we’ve built a new image with an ID of 79009691f408 named jamtur01
/jekyll that is our new Jekyll image. We view our new image using the docker
images command.

Listing 6.4: Viewing our new Jekyll Base image

$ sudo docker images
REPOSITORY TAG ID CREATED SIZE
jamtur01/jekyll latest 79009691f408 6 seconds ago 12.29 kB (

virtual 671 MB)
. . .

Version: v18.09 (6172afc) 211

Chapter 6: Building services with Docker

The Apache image
Finally, let’s build our second image, an Apache server to serve out our new site.
Let’s create a new directory first and an empty Dockerfile.

Listing 6.5: Creating our Apache Dockerfile

$ mkdir apache
$ cd apache
$ vi Dockerfile

Now let’s populate our Dockerfile.

Version: v18.09 (6172afc) 212

Chapter 6: Building services with Docker

Listing 6.6: Jekyll Apache Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install apache2

VOLUME ["/var/www/html"]
WORKDIR /var/www/html

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
ENV APACHE_PID_FILE /var/run/apache2.pid
ENV APACHE_RUN_DIR /var/run/apache2
ENV APACHE_LOCK_DIR /var/lock/apache2

RUN mkdir -p $APACHE_RUN_DIR $APACHE_LOCK_DIR $APACHE_LOG_DIR

EXPOSE 80

ENTRYPOINT ["/usr/sbin/apachectl"]
CMD ["-D", "FOREGROUND"]

This final image is again based on Ubuntu 16.04 and installs Apache. It creates a
volume using the VOLUME instruction, /var/www/html/, which is going to hold our
compiled Jekyll website. We also set /var/www/html to be our working directory.
We’ll then use some ENV instructions to set some required environment variables,
create some required directories, and EXPOSE port 80. We’ve also specified an
ENTRYPOINT and CMD combination to run Apache by default when the container

Version: v18.09 (6172afc) 213

Chapter 6: Building services with Docker

starts.

Building the Jekyll Apache image
With this Dockerfile, we will now build an image from which we will launch
containers. We do this using the docker build command.

Listing 6.7: Building our Jekyll Apache image

$ sudo docker build -t jamtur01/apache .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:18.04
---> 99ec81b80c55
Step 1 : LABEL maintainer="james@example.com"
---> Using cache
---> c444e8ee0058
. . .
Step 11 : CMD ["-D", "FOREGROUND"]
---> Running in 7aa5c127b41e
---> fc8e9135212d
Removing intermediate container 7aa5c127b41e
Successfully built fc8e9135212d

We see that we’ve built a new image with an ID of fc8e9135212d named jamtur01
/apache that is our new Apache image. We view our new image using the docker
images command.

Version: v18.09 (6172afc) 214

Chapter 6: Building services with Docker

Listing 6.8: Viewing our new Jekyll Apache image

$ sudo docker images
REPOSITORY TAG ID CREATED SIZE
jamtur01/apache latest fc8e9135212d 6 seconds ago 12.29 kB (

virtual 671 MB)
. . .

Launching our Jekyll site
Now we’ve got two images:

• Jekyll - Our Jekyll image with Ruby and the prerequisites installed.
• Apache - The image that will serve our compiled website via the Apache
web server.

Let’s get started on our new site by creating a new Jekyll container using the
docker run command. We’re going to launch a container and build our site.
We’re going to need some source code for our blog. Let’s clone a sample Jekyll
blog into our $HOME directory (in my case /home/james).

Listing 6.9: Getting a sample Jekyll blog

$ cd $HOME
$ git clone https://github.com/turnbullpress/james_blog.git

You can see a basic Twitter Bootstrap-enabled Jekyll blog inside this directory. If
you want to use it, you can easily update the _config.yml file and the theme to
suit your purposes.

Version: v18.09 (6172afc) 215

http://getbootstrap.com/

Chapter 6: Building services with Docker

Now let’s use this sample data inside our Jekyll container.

Listing 6.10: Creating a Jekyll container

$ sudo docker run -v /home/james/james_blog:/data/ \
--name james_blog jamtur01/jekyll
Configuration file: none

Source: /data
Destination: /var/www/html
Generating...

done.
Auto-regeneration: disabled. Use --watch to enable.

We’ve started a new container called james_blog and mounted our james_blog
directory inside the container as the /data/ volume. The container has taken
this source code and built it into a compiled site stored in the /var/www/html/
directory.
So we’ve got a completed site, now how do we use it? This is where volumes
become a lot more interesting. When we briefly introduced volumes in Chapter
4, we discovered a bit about them. Let’s revisit that.
A volume is a specially designated directory within one or more containers that
bypasses the Union File System to provide several useful features for persistent or
shared data:

• Volumes can be shared and reused between containers.
• A container doesn’t have to be running to share its volumes.
• Changes to a volume are made directly.
• Changes to a volume will not be included when you update an image.
• Volumes persist even when no containers use them.

This allows you to add data (e.g., source code, a database, or other content) into
an image without committing it to the image and allows you to share that data
between containers.

Version: v18.09 (6172afc) 216

Chapter 6: Building services with Docker

Volumes live on your Docker host, in the /var/lib/docker/volumes directory.
You can identify the location of specific volumes using the docker inspect com-
mand; for example:
docker inspect -f "{{ range .Mounts }}{{.}}{{end}}" james_blog

 TIP In Docker 1.9 volumes have been expanded to also support third-party
storage systems like Ceph, Flocker and EMC via plugins. You can read about them
in the volume plugins documentation and the docker volume create command
documentation.

So if we want to use our compiled site in the /var/www/html/ volume from another
container, we can do so. To do this, we’ll create a new container that links to this
volume.

Listing 6.11: Creating an Apache container

$ sudo docker run -d -P --volumes-from james_blog jamtur01/apache
09a570cc2267019352525079fbba9927806f782acb88213bd38dde7e2795407d

This looks like a typical docker run, except that we’ve used a new flag: --volumes
-from. The --volumes-from flag adds any volumes in the named container to the
newly created container. This means our Apache container has access to the com-
piled Jekyll site in the /var/www/html volume within the james_blog container
we created earlier. It has that access even though the james_blog container is not
running. As you’ll recall, that is one of the special properties of volumes. The
container does have to exist, though.

 NOTE Even if you delete the last container that uses a volume, the volume
will still persist.

Version: v18.09 (6172afc) 217

https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/

Chapter 6: Building services with Docker

What is the end result of building our Jekyll website? Let’s see onto what port our
container has mapped our exposed port 80:

Listing 6.12: Resolving the Apache container’s port

$ sudo docker port 09a570cc2267 80
0.0.0.0:49160

Now let’s browse to that site on our Docker host.

Figure 6.1: Our Jekyll website.

We have a running Jekyll website!

Updating our Jekyll site
Things get even more interesting when we want to update our site. Let’s say we’d
like to make some changes to our Jekyll website. We’re going to rename our blog
by editing the james_blog/_config.yml file.

Version: v18.09 (6172afc) 218

Chapter 6: Building services with Docker

Listing 6.13: Editing our Jekyll blog

$ vi james_blog/_config.yml

And update the title field to James' Dynamic Docker-driven Blog.
So how do we update our blog? All we need to do is start our Docker container
again with the docker start command..

Listing 6.14: Restarting our james_blog container

$ sudo docker start james_blog
james_blog

It looks like nothing happened. Let’s check the container’s logs.

Listing 6.15: Checking the james_blog container logs

$ sudo docker logs james_blog
Configuration file: /data/_config.yml

Source: /data
Destination: /var/www/html
Generating...

done.
Configuration file: /data/_config.yml

Source: /data
Destination: /var/www/html
Generating...

done.

Version: v18.09 (6172afc) 219

Chapter 6: Building services with Docker

We see that the Jekyll build process has been run a second time and our site has
been updated. The update has been written to our volume. Now if we browse to
the Jekyll website, we should see our update.

Figure 6.2: Our updated Jekyll website.

This all happened without having to update or restart our Apache container, be-
cause the volume it was sharing was updated automatically. You can see how easy
this workflow is and how you could expand it for more complicated deployments.

Backing up our Jekyll volume
You’re probably a little worried about accidentally deleting your volume (although
we can prettily easily rebuild our site using the existing process). One of the
advantages of volumes is that because they can be mounted into any container,
we can easily create backups of them. Let’s create a new container now that backs
up the /var/www/html volume.

Version: v18.09 (6172afc) 220

Chapter 6: Building services with Docker

Listing 6.16: Backing up the /var/www/html volume

$ sudo docker run --rm --volumes-from james_blog \
-v $(pwd):/backup ubuntu \
tar cvf /backup/james_blog_backup.tar /var/www/html
tar: Removing leading '/' from member names
/var/www/html/
/var/www/html/assets/
/var/www/html/assets/themes/
. . .
$ ls james_blog_backup.tar
james_blog_backup.tar

Here we’ve run a stock Ubuntu container and mounted the volume from
james_blog into that container. That will create the directory /var/www/html
inside the container. We’ve then used the -v flag to mount our current directory,
using the $(pwd) command, inside the container at /backup. Our container then
runs the command.

 TIP We’ve also specified the --rm flag, which is useful for single-use or throw-
away containers. It automatically deletes the container after the process running
in it is ended. This is a neat way of tidying up after ourselves for containers we
only need once.

Listing 6.17: Backup command

tar cvf /backup/james_blog_backup.tar /var/www/html

Version: v18.09 (6172afc) 221

Chapter 6: Building services with Docker

This will create a tarfile called james_blog_backup.tar containing the contents of
the /var/www/html directory and then exit. This process creates a backup of our
volume.
This is a simple example of a backup process. You could easily extend this to back
up to storage locally or in the cloud (e.g., to Amazon S3 or to more traditional
backup software like Amanda).

 TIP This example could also work for a database stored in a volume or similar
data. Simply mount the volume in a fresh container, perform your backup, and
discard the container you created for the backup.

Extending our Jekyll website example
Here are some ways we could expand on our simple Jekyll website service:

• Run multiple Apache containers, all which use the same volume from the
james_blog container. Put a load balancer in front of it, and we have a web
cluster.
• Build a further image that cloned or copied a user-provided source (e.g., a
git clone) into a volume. Mount this volume into a container created from
our jamtur01/jeykll image. This would make the solution portable and
generic and would not require any local source on a host.
• With the previous expansion, you could easily build a web front end for our
service that built and deployed sites automatically from a specified source.
Then you would have your own variant of GitHub Pages.

Building a Java application server with Docker
Now let’s take a slightly different tack and think about Docker as an application
server and build pipeline. This time we’re serving a more “enterprisey” and tra-

Version: v18.09 (6172afc) 222

http://aws.amazon.com/s3/
http://www.amanda.org/

Chapter 6: Building services with Docker

ditional workload: fetching and running a Java application from a WAR file in a
Tomcat server. To do this, we’re going to build a two-stage Docker pipeline:

• An image that pulls down specified WAR files from a URL and stores them
in a volume.
• An image with a Tomcat server installed that runs those downloaded WAR
files.

A WAR file fetcher
Let’s start by building an image to download a WAR file for us and mount it in a
volume.

Listing 6.18: Creating our fetcher Dockerfile

$ mkdir fetcher
$ cd fetcher
$ touch Dockerfile

Now let’s populate our Dockerfile.

Version: v18.09 (6172afc) 223

Chapter 6: Building services with Docker

Listing 6.19: Our war file fetcher

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install wget

VOLUME ["/var/lib/tomcat8/webapps/"]
WORKDIR /var/lib/tomcat8/webapps/

ENTRYPOINT ["wget"]
CMD ["-?"]

This incredibly simple image does one thing: it wgets whatever file from a URL
that is specified when a container is run from it and stores the file in the /var/lib
/tomcat8/webapps/ directory. This directory is also a volume and the working
directory for any containers. We’re going to share this volume with our Tomcat
server and run its contents.
Finally, the ENTRYPOINT and CMD instructions allow our container to run when no
URL is specified; they do so by returning the wget help output when the container
is run without a URL.
Let’s build this image now.

Listing 6.20: Building our fetcher image

$ sudo docker build -t jamtur01/fetcher .

Version: v18.09 (6172afc) 224

Chapter 6: Building services with Docker

Fetching a WAR file
Let’s fetch an example file as a way to get started with our new image. We’re
going to download the sample Apache Tomcat application from https://tomcat.
apache.org/tomcat-7.0-doc/appdev/sample/.

Listing 6.21: Fetching a war file

$ sudo docker run -t -i --name sample jamtur01/fetcher \
https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/sample.war
--2014-06-21 06:05:19-- https://tomcat.apache.org/tomcat-7.0-doc

/appdev/sample/sample.war
Resolving tomcat.apache.org (tomcat.apache.org)...

140.211.11.131, 192.87.106.229, 2001:610:1:80bc
:192:87:106:229

Connecting to tomcat.apache.org (tomcat.apache.org)
|140.211.11.131|:443... connected.

HTTP request sent, awaiting response... 200 OK
Length: 4606 (4.5K)
Saving to: 'sample.war'

100%[=================================>] 4,606 --.-K/s in
0s

2014-06-21 06:05:19 (14.4 MB/s) - 'sample.war' saved [4606/4606]

We see that our container has taken the provided URL and downloaded the sample
.war file. We can’t see it here, but because we set the working directory in the con-
tainer, that sample.war file will have ended up in our /var/lib/tomcat8/webapps
/ directory.
Our WAR file is in the /var/lib/docker directory. Let’s first establish where the
volume is located using the docker inspect command.

Version: v18.09 (6172afc) 225

https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/
https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/

Chapter 6: Building services with Docker

Listing 6.22: Inspecting our Sample volume

$ sudo docker inspect -f "{{ range .Mounts }}{{.}}{{end}}" sample
{c20a0567145677ed46938825f285402566e821462632e1842e82bc51b47fe4dc

/var/lib/docker/volumes/
c20a0567145677ed46938825f285402566e821462632e1842e82bc51b47fe4dc
/_data /var/lib/tomcat8/webapps local true}

We then list this directory.

Listing 6.23: Listing the volume directory

$ sudo ls -l /var/lib/docker/volumes/
c20a0567145677ed46938825f285402566e821462632e1842e82bc51b47fe4dc
/_data

total 8
-rw-r--r-- 1 root root 4606 Mar 31 2012 sample.war

Our Tomcat 7 application server
We have an image that will get us WAR files, and we have a sampleWAR file down-
loaded into a container. Let’s build an image that will be the Tomcat application
server that will run our WAR file.

Version: v18.09 (6172afc) 226

Chapter 6: Building services with Docker

Listing 6.24: Creating our Tomcat 7 Dockerfile

$ mkdir tomcat8
$ cd tomcat8
$ touch Dockerfile

Now let’s populate our Dockerfile.

Listing 6.25: Our Tomcat 7 Application server

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install tomcat8 default-jdk

ENV CATALINA_HOME /usr/share/tomcat8
ENV CATALINA_BASE /var/lib/tomcat8
ENV CATALINA_PID /var/run/tomcat8.pid
ENV CATALINA_SH /usr/share/tomcat8/bin/catalina.sh
ENV CATALINA_TMPDIR /tmp/tomcat8-tomcat8-tmp

RUN mkdir -p $CATALINA_TMPDIR

VOLUME ["/var/lib/tomcat8/webapps/"]

EXPOSE 8080

ENTRYPOINT ["/usr/share/tomcat8/bin/catalina.sh", "run"]

Version: v18.09 (6172afc) 227

Chapter 6: Building services with Docker

Our image is pretty simple. We need to install a Java JDK and the Tomcat server.
We’ll specify some environment variables Tomcat needs in order to get started,
then create a temporary directory. We’ll also create a volume called /var/lib
/tomcat8/webapps/, expose port 8080 (the Tomcat default), and finally use an
ENTRYPOINT instruction to launch Tomcat.
Now let’s build our Tomcat 7 image.

Listing 6.26: Building our Tomcat 7 image

$ sudo docker build -t jamtur01/tomcat8 .

Running our WAR file
Now let’s see our Tomcat server in action by creating a new Tomcat instance
running our sample application.

Listing 6.27: Creating our first Tomcat instance

$ sudo docker run --name sample_app --volumes-from sample \
-d -P jamtur01/tomcat8

This will create a new container named sample_app that reuses the volumes from
the sample container. This means our WAR file, stored in the /var/lib/tomcat8/
webapps/ volume, will be mounted from the sample container into the sample_app
container and then loaded by Tomcat and executed.
Let’s look at our sample application in the web browser. First, we must identify
the port being exposed using the docker port command.

Version: v18.09 (6172afc) 228

Chapter 6: Building services with Docker

Listing 6.28: Identifying the Tomcat application port

$ sudo docker port sample_app 8080
0.0.0.0:49154

Now let’s browse to our application (using the URL and port and adding the /
sample suffix) and see what’s there.

Figure 6.3: Our Tomcat sample application.

We should see our running Tomcat application.

Building on top of our Tomcat application server
Now we have the building blocks of a simple on-demand web service. Let’s look
at how we might expand on this. To do so, we’ve built a simple Sinatra-based
web application to automatically provision Tomcat applications via a web page.
We’ve called this application TProv. You can see its source code on GitHub.
Let’s install it as a demo of how you might extend this or similar examples. First,
we’ll need to ensure Ruby is installed. We’re going to install our TProv application
on our Docker host because our application is going to be directly interacting with
our Docker daemon, so that’s where we need to install Ruby.

Version: v18.09 (6172afc) 229

https://github.com/turnbullpress/dockerbook-code/tree/master/code/6/tomcat/tprov

Chapter 6: Building services with Docker

 NOTE We could also install the TProv application inside a Docker container.

Listing 6.29: Installing Ruby

$ sudo apt-get -qqy install ruby make ruby-dev build-essential

We then install our application from a Ruby gem.

Listing 6.30: Installing the TProv application

$ sudo gem install --no-rdoc --no-ri tprov
. . .
Successfully installed tprov-0.0.6

This will install the TProv application and some supporting gems.
We then launch the application using the tprov binary.

Listing 6.31: Launching the TProv application

$ sudo tprov
[2014-06-21 16:17:24] INFO WEBrick 1.3.1
[2014-06-21 16:17:24] INFO ruby 1.8.7 (2011-06-30) [x86_64-linux

]
== Sinatra/1.4.5 has taken the stage on 4567 for development with

backup from WEBrick
[2014-06-21 16:17:24] INFO WEBrick::HTTPServer#start: pid=14209

port=4567

Version: v18.09 (6172afc) 230

Chapter 6: Building services with Docker

This command has launched our application; now we can browse to the TProv
website on port 4567 of the Docker host.

Figure 6.4: Our TProv web application.

We specify a Tomcat application name and the URL to a Tomcat WAR file. Let’s
download a sample calendar application from:
https://storage.googleapis.com/google-code-archive-downloads/v2/code.
google.com/gwt-examples/Calendar.war

And call it Calendar.

Version: v18.09 (6172afc) 231

https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/gwt-examples/Calendar.war
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/gwt-examples/Calendar.war

Chapter 6: Building services with Docker

Figure 6.5: Downloading a sample application.

We click Submit to download the WAR file, place it into a volume, run a Tomcat
server, and serve the WAR file in that volume. We see our instance by clicking on
the List instances link.
This shows us:

• The container ID.
• The container’s internal IP address.
• The interface and port it is mapped to.

Figure 6.6: Listing the Tomcat instances.

Version: v18.09 (6172afc) 232

Chapter 6: Building services with Docker

Using this information, we check the status of our application by browsing to the
mapped port. We can also use the Delete? checkbox to remove an instance.
You can see how we achieved this by looking at the TProv application code. It’s a
pretty simple application that shells out to the docker binary and captures output
to run and remove containers.
You’re welcome to use the TProv code or adapt or write your own 1, but its primary
purpose is to show you how easy it is to extend a simple application deployment
pipeline built with Docker.

 WARNING The TProv application is pretty simple and lacks some error
handling and tests. It’s simple code, built in an hour to demonstrate how powerful
Docker can be as a tool for building applications and services. If you find a bug
with the application (or want to make it better), please let me know with an issue
or PR here.

A multi-container application stack
In our last service example, we’re going full hipster by Dockerizing a Node.js
application that makes use of the Express framework with a Redis back end. We’re
going to demonstrate a combination of all the Docker features we’ve learned over
the last two chapters, including networking and volumes.
In our sample application, we’re going to build a series of images that will allow
us to deploy a multi-container application:

• A Node container to serve our Node application, linked to:
• A Redis primary container to hold and cluster our state, linked to:
• Two Redis replica containers to cluster our state.
• A logging container to capture our application logs.
1Really write your own - no one but me loves my code.

Version: v18.09 (6172afc) 233

https://github.com/turnbullpress/dockerbook-code/blob/master/code/6/tomcat/tprov/lib/tprov/app.rb
https://github.com/turnbullpress/dockerbook-code
https://github.com/turnbullpress/dockerbook-code
https://expressjs.com/

Chapter 6: Building services with Docker

We’re then going to run our Node application in a container with Redis in primary-
replica configuration in multiple containers behind it.

The Node.js image
Let’s start with an image that installs Node.js, our Express application, and the
associated prerequisites.

Listing 6.32: Creating our Node.js Dockerfile

$ mkdir -p nodejs/nodeapp
$ cd nodejs/nodeapp
$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code

/master/code/6/node/nodejs/nodeapp/package.json
$ wget https://raw.githubusercontent.com/jamtur01/dockerbook-code

/master/code/6/node/nodejs/nodeapp/server.js
$ cd ..
$ vi Dockerfile

We’ve created a new directory called nodejs and a sub-directory, nodeapp, to hold
our application code. We’ve then changed into this directory and downloaded the
source code for our Node.JS application.

 NOTE You can get our Node application’s source code on GitHub here.

Finally, we’ve changed back to the nodejs directory and now we populate our
Dockerfile.

Version: v18.09 (6172afc) 234

https://github.com/turnbullpress/dockerbook-code/tree/master/code/6/node/

Chapter 6: Building services with Docker

Listing 6.33: Our Node.js image

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install nodejs npm
RUN ln -s /usr/bin/nodejs /usr/bin/node
RUN mkdir -p /var/log/nodeapp

ADD nodeapp /opt/nodeapp/

WORKDIR /opt/nodeapp
RUN npm install

VOLUME ["/var/log/nodeapp"]

EXPOSE 3000

ENTRYPOINT ["nodejs", "server.js"]

Our Node.js image installs Node and makes a simple workaround of linking the
binary nodejs to node to address some backwards compatibility issues on Ubuntu.
We then add our nodeapp code into the /opt/nodeapp directory using an ADD in-
struction. Our Node.js application is a simple Express server and contains both
a package.json file holding the application’s dependency information and the
server.js file that contains our actual application. Let’s look at a subset of that
application.

Version: v18.09 (6172afc) 235

Chapter 6: Building services with Docker

Listing 6.34: Our Node.js server.js application

. . .

var logFile = fs.createWriteStream('/var/log/nodeapp/nodeapp.log
', {flags: 'a'});

app.configure(function() {

. . .

app.use(express.session({
store: new RedisStore({

host: process.env.REDIS_HOST || 'redis_primary',
port: process.env.REDIS_PORT || 6379,
db: process.env.REDIS_DB || 0

}),
cookie: {

. . .

app.get('/', function(req, res) {
res.json({
status: "ok"

});
});

. . .

var port = process.env.HTTP_PORT || 3000;
server.listen(port);
console.log('Listening on port ' + port);

Version: v18.09 (6172afc) 236

Chapter 6: Building services with Docker

The server.js file pulls in all the dependencies and starts an Express application.
The Express app is configured to store its session information in Redis and exposes
a single endpoint that returns a status message as JSON. We’ve configured its
connection to Redis to use a host called redis_primary with an option to override
this with an environment variable if needed.
The application will also log to the /var/log/nodeapp/nodeapp.log file and will
listen on port 3000.

 NOTE You can get our Node application’s source code on GitHub here.

We’ve then set the working directory to /opt/nodeapp and installed the prereq-
uisites for our Node application. We’ve also created a volume that will hold our
Node application’s logs, /var/log/nodeapp.
We expose port 3000 and finally specify an ENTRYPOINT of nodejs server.js that
will run our Node application.
Let’s build our image now.

Listing 6.35: Building our Node.js image

$ sudo docker build -t jamtur01/nodejs .

The Redis base image
Let’s continue with our first Redis image: a base image that will install Redis. It
is on top of this base image that we’ll build our Redis primary and replica images.

Version: v18.09 (6172afc) 237

https://github.com/turnbullpress/dockerbook-code/tree/master/code/6/node/

Chapter 6: Building services with Docker

Listing 6.36: Creating our Redis base Dockerfile

$ mkdir redis_base
$ cd redis_base
$ vi Dockerfile

Now let’s populate our Dockerfile.

Listing 6.37: Our Redis base image

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2017-06-01

RUN apt-get -yqq update
RUN apt-get install -yqq software-properties-common python-

software-properties
RUN add-apt-repository ppa:chris-lea/redis-server
RUN apt-get -yqq update
RUN apt-get -yqq install redis-server redis-tools

VOLUME ["/var/lib/redis", "/var/log/redis"]

EXPOSE 6379
CMD []

Our Redis base image installs the latest version of Redis (from a PPA rather than
using the older packages shipped with Ubuntu), specifies two VOLUMEs (/var/lib
/redis and /var/log/redis), and exposes the Redis default port 6379. It doesn’t
have an ENTRYPOINT or CMD because we’re not actually going to run this image.
We’re just going to build on top of it.

Version: v18.09 (6172afc) 238

Chapter 6: Building services with Docker

Let’s build our Redis primary image now.

Listing 6.38: Building our Redis base image

$ sudo docker build -t jamtur01/redis .

The Redis primary image
Let’s continue with our first Redis image: a Redis primary server.

Listing 6.39: Creating our Redis primary Dockerfile

$ mkdir redis_primary
$ cd redis_primary
$ vi Dockerfile

Now let’s populate our Dockerfile.

Listing 6.40: Our Redis primary image

FROM jamtur01/redis
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

ENTRYPOINT ["redis-server", "--protected-mode no", "--logfile /
var/log/redis/redis-server.log"]

Our Redis primary image is based on our jamtur01/redis image and has an
ENTRYPOINT that runs the default Redis server with logging directed to /var/log/

Version: v18.09 (6172afc) 239

Chapter 6: Building services with Docker

redis/redis-server.log.
Let’s build our Redis primary image now.

Listing 6.41: Building our Redis primary image

$ sudo docker build -t jamtur01/redis_primary .

The Redis replica image
As a complement to our Redis primary image, we’re going to create an image
that runs a Redis replica to allow us to provide some redundancy to our Node.js
application.

Listing 6.42: Creating our Redis replica Dockerfile

$ mkdir redis_replica
$ cd redis_replica
$ touch Dockerfile

Now let’s populate our Dockerfile.

Version: v18.09 (6172afc) 240

Chapter 6: Building services with Docker

Listing 6.43: Our Redis replica image

FROM jamtur01/redis
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

ENTRYPOINT ["redis-server", "--protected-mode no", "--logfile /
var/log/redis/redis-replica.log", "--slaveof redis_primary
6379"]

Again, we base our image on jamtur01/redis and specify an ENTRYPOINT that runs
the default Redis server with our logfile and the slaveof option. This configures
our primary-replica relationship and tells any containers built from this image
that they are a replica of the redis_primary host and should attempt replication
on port 6379.
Let’s build our Redis replica image now.

Listing 6.44: Building our Redis replica image

$ sudo docker build -t jamtur01/redis_replica .

Creating our Redis back-end cluster
Now that we have both a Redis primary and replica image, we build our own Redis
replication environment. Let’s start by creating a network to hold our Express
application. We’ll call it express.

Version: v18.09 (6172afc) 241

Chapter 6: Building services with Docker

Listing 6.45: Creating the express network

$ sudo docker network create express
dfe9fe7ee5c9bfa035b7cf10266f29a701634442903ed9732dfdba2b509680c2

Now let’s run the Redis primary container inside this network.

Listing 6.46: Running the Redis primary container

$ sudo docker run -d -h redis_primary \
--net express --name redis_primary jamtur01/redis_primary
d21659697baf56346cc5bbe8d4631f670364ffddf4863ec32ab0576e85a73d27

Here we’ve created a container with the docker run command from the jamtur01
/redis_primary image. We’ve used a new flag that we’ve not seen before, -h,
which sets the hostname of the container. This overrides the default behavior
(setting the hostname of the container to the short container ID) and allows us to
specify our own hostname. We’ll use this to ensure that our container is given a
hostname of redis_primary and will thus be resolved that way with local DNS.
We’ve specified the --name flag to ensure that our container’s name is
redis_primary and we’ve specified the --net flag to run the container in
the express network. We’re going to use this network for our container
connectivity, as we’ll see shortly.
Let’s see what the docker logs command can tell us about our Redis primary
container.

Listing 6.47: Our Redis primary logs

$ sudo docker logs redis_primary

Version: v18.09 (6172afc) 242

Chapter 6: Building services with Docker

Nothing? Why is that? Our Redis server is logging to a file rather than to standard
out, so we see nothing in the Docker logs. So how can we tell what’s happening
to our Redis server? To do that, we use the /var/log/redis volume we created
earlier. Let’s use this volume and read some log files now.

Listing 6.48: Reading our Redis primary logs

$ sudo docker run -ti --rm --volumes-from redis_primary \
ubuntu cat /var/log/redis/redis-server.log
. . .
1:M 05 Aug 15:22:21.697 # Server started, Redis version 3.2.9
. . .
1:M 05 Aug 15:22:21.698 * The server is now ready to accept

connections on port 6379

Here we’ve run another container interactively. We’ve specified the --rm flag,
which automatically deletes a container after the process it runs stops. We’ve
also specified the --volumes-from flag and told it to mount the volumes from our
redis_primary container. Then we’ve specified a base ubuntu image and told it to
cat the /var/log/redis/redis-server.log log file. This takes advantage of vol-
umes to allow us to mount the /var/log/redis directory from the redis_primary
container and read the log file inside it. We’re going to see more about how we
use this shortly.
Looking at our Redis logs, we see some general warnings, but everything is looking
pretty good. Our Redis server is ready to receive data on port 6379.
So next, let’s create our first Redis replica.

Version: v18.09 (6172afc) 243

Chapter 6: Building services with Docker

Listing 6.49: Running our first Redis replica container

$ sudo docker run -d -h redis_replica1 \
--name redis_replica1 \
--net express \
jamtur01/redis_replica
0ae440b5c56f48f3190332b4151c40f775615016bf781fc817f631db5af34ef8

We’ve run another container: this one from the jamtur01/redis_replica image.
We’ve again specified a hostname (with the -h flag) of redis_replica1 and a
name (with --name) of redis_replica1. We’ve also used the --net flag to run our
Redis replica container inside the express network.
Let’s check this new container’s logs.

Version: v18.09 (6172afc) 244

Chapter 6: Building services with Docker

Listing 6.50: Reading our Redis replica logs

$ sudo docker run -ti --rm --volumes-from redis_replica1 \
ubuntu cat /var/log/redis/redis-replica.log
...
1:S 05 Aug 15:23:57.733 # Server started, Redis version 3.2.9
1:S 05 Aug 15:23:57.733 * The server is now ready to accept

connections on port 6379
1:S 05 Aug 15:23:57.733 * Connecting to MASTER redis_primary:6379
1:S 05 Aug 15:23:57.743 * MASTER <-> SLAVE sync started
1:S 05 Aug 15:23:57.743 * Non blocking connect for SYNC fired the

event.
1:S 05 Aug 15:23:57.743 * Master replied to PING, replication can

continue...
1:S 05 Aug 15:23:57.744 * Partial resynchronization not possible

(no cached master)
1:S 05 Aug 15:23:57.751 * Full resync from master: 692

b4d19978a2d6add881944a079ab8b8dae6653:1
1:S 05 Aug 15:23:57.841 * MASTER <-> SLAVE sync: receiving 18

bytes from master
1:S 05 Aug 15:23:57.841 * MASTER <-> SLAVE sync: Flushing old

data
1:S 05 Aug 15:23:57.841 * MASTER <-> SLAVE sync: Loading DB in

memory
1:S 05 Aug 15:23:57.841 * MASTER <-> SLAVE sync: Finished with

success

We’ve run another container to query our logs interactively. We’ve again specified
the --rm flag, which automatically deletes a container after the process it runs
stops. We’ve specified the --volumes-from flag and told it to mount the volumes
from our redis_replica1 container this time. Then we’ve specified a base ubuntu
image and told it to cat the /var/log/redis/redis-replica.log log file.

Version: v18.09 (6172afc) 245

Chapter 6: Building services with Docker

Woot! We’re off and replicating between our redis_primary container and our
redis_replica1 container.
Let’s add another replica, redis_replica2, just to be sure.

Listing 6.51: Running our second Redis replica container

$ sudo docker run -d -h redis_replica2 \
--name redis_replica2 \
--net express \
jamtur01/redis_replica
72267cd74c412c7b168d87bba70f3aaa3b96d17d6e9682663095a492bc260357

Let’s see a sampling of the logs from our new container.

Version: v18.09 (6172afc) 246

Chapter 6: Building services with Docker

Listing 6.52: Our Redis replica2 logs

$ sudo docker run -ti --rm --volumes-from redis_replica2 ubuntu \
cat /var/log/redis/redis-replica.log
. . .
1:S 05 Aug 15:27:38.355 # Server started, Redis version 3.2.9
1:S 05 Aug 15:27:38.355 * The server is now ready to accept

connections on port 6379
1:S 05 Aug 15:27:38.355 * Connecting to MASTER redis_primary:6379
1:S 05 Aug 15:27:38.366 * MASTER <-> SLAVE sync started
1:S 05 Aug 15:27:38.366 * Non blocking connect for SYNC fired the

event.
1:S 05 Aug 15:27:38.366 * Master replied to PING, replication can

continue...
1:S 05 Aug 15:27:38.366 * Partial resynchronization not possible

(no cached master)
1:S 05 Aug 15:27:38.372 * Full resync from master: 692

b4d19978a2d6add881944a079ab8b8dae6653:309
1:S 05 Aug 15:27:38.465 * MASTER <-> SLAVE sync: receiving 18

bytes from master
1:S 05 Aug 15:27:38.465 * MASTER <-> SLAVE sync: Flushing old

data
1:S 05 Aug 15:27:38.465 * MASTER <-> SLAVE sync: Loading DB in

memory
1:S 05 Aug 15:27:38.465 * MASTER <-> SLAVE sync: Finished with

success

And again, we’re off and away replicating!

Version: v18.09 (6172afc) 247

Chapter 6: Building services with Docker

Creating our Node container
Now that we’ve got our Redis cluster running, we launch a container for our
Node.js application.

Listing 6.53: Running our Node.js container

$ sudo docker run -d \
--name nodeapp -p 3000:3000 \
--net express \
jamtur01/nodejs
9a9dd33957c136e98295de7405386ed2c452e8ad263a6ec1a2a08b24f80fd175

We’ve created a new container from our jamtur01/nodejs image, specified a name
of nodeapp, and mapped port 3000 inside the container to port 3000 outside. We’ve
also run our new nodeapp container in the express network.
We use the docker logs command to see what’s going on in our nodeapp con-
tainer.

Listing 6.54: The nodeapp console log

$ sudo docker logs nodeapp
Listening on port 3000

Here we see that our Node application is bound and listening at port 3000.
Let’s browse to our Docker host and see the application at work.

Version: v18.09 (6172afc) 248

Chapter 6: Building services with Docker

Figure 6.7: Our Node application.

We see that our simple Node application returns an OK status.

Listing 6.55: Node application output

{
"status": "ok"

}

That tells us it’s working. Our session state will also be recorded and stored in
our primary Redis container, redis_primary, then replicated to our Redis replicas:
redis_replica1 and redis_replica2.

Capturing our application logs
Now that our application is up and running, we’ll want to put it into production,
which involves ensuring that we capture its log output and put it into our logging
servers. We are going to use Logstash to do so. We’re going to start by creating
an image that installs Logstash.

Version: v18.09 (6172afc) 249

http://logstash.net/

Chapter 6: Building services with Docker

Listing 6.56: Creating our Logstash Dockerfile

$ mkdir logstash
$ cd logstash
$ touch Dockerfile

Now let’s populate our Dockerfile.

Listing 6.57: Our Logstash image

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01
RUN apt-get -qq update
RUN apt-get -qq install wget gnupg2 openjdk-8-jdk
RUN wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch

| apt-key add -
RUN echo "deb https://artifacts.elastic.co/packages/5.x/apt

stable main" | tee -a /etc/apt/sources.list.d/elastic-5.x.li
st
RUN apt-get -qq update
RUN apt-get -qq install logstash
WORKDIR /usr/share/logstash
ADD logstash.conf /usr/share/logstash/
ENTRYPOINT ["bin/logstash"]
CMD ["-f", "logstash.conf", "--config.reload.automatic"]

We’ve created an image that installs Logstash and adds a logstash.conf file to
the /etc/ directory using the ADD instruction. Let’s quickly create this file in the
logstash directory. Add a file called logstash.conf and populate it like so:

Version: v18.09 (6172afc) 250

Chapter 6: Building services with Docker

Listing 6.58: Our Logstash configuration

input {
file {
type => "syslog"
path => ["/var/log/nodeapp/nodeapp.log", "/var/log/redis/
redis-server.log"]

}
}
output {
stdout {
codec => rubydebug

}
}

This is a simple Logstash configuration that monitors two files: /var/log/nodeapp
/nodeapp.log and /var/log/redis/redis-server.log. Logstash will watch these
files and send any new data inside of them into Logstash. The second part of our
configuration, the output stanza, takes any events Logstash receives and outputs
them to standard out. In a real world Logstash configuration we would output to
an Elasticsearch cluster or other destination, but we’re just using this as a demo,
so we’re going to skip that.

 NOTE If you don’t know much about Logstash, you can learn more from
my book or the Logstash documentation.

We’ve specified a working directory of /opt/logstash. Finally, we have specified
an ENTRYPOINT of bin/logstash and a CMD of --config=/etc/logstash.conf to
pass in our command flags. This will launch Logstash and load our /etc/logstash
.conf configuration file.

Version: v18.09 (6172afc) 251

http://www.logstashbook.com
http://www.logstashbook.com
http://logstash.net

Chapter 6: Building services with Docker

Let’s build our Logstash image now.

Listing 6.59: Building our Logstash image

$ sudo docker build -t jamtur01/logstash .

Now that we’ve built our Logstash image, we launch a container from it.

Listing 6.60: Launching a Logstash container

$ sudo docker run -d --name logstash \
--volumes-from redis_primary \
--volumes-from nodeapp \
jamtur01/logstash

We’ve launched a new container called logstash and specified the --volumes-
from flag twice to get the volumes from the redis_primary and nodeapp. This
gives us access to the Node and Redis log files. Any events added to those files
will be reflected in the volumes in the logstash container and passed to Logstash
for processing.
Let’s browse to our web application again and refresh it to generate an event. We
should see that event reflected in the logstash container’s docker logs output.

Version: v18.09 (6172afc) 252

Chapter 6: Building services with Docker

Listing 6.61: A Node event in Logstash

{
"message" => "::ffff:198.179.69.250 - - [Fri, 05 Aug 2016

16:39:25 GMT] \"GET / HTTP/1.1\" 200 20 \"-\" \"Mozilla/5.0 (
Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/51.0.2704.103 Safari/537.36\"",
"@version" => "1",

"@timestamp" => "2016-08-05T16:39:25.945Z",
"host" => "1bbc26b1ed7d",
"path" => "/var/log/nodeapp/nodeapp.log",
"type" => "syslog"

}

And now we have our Node and Redis containers logging to Logstash. In a produc-
tion environment, we’d be sending these events to a Logstash server and storing
them in Elasticsearch. We could also easily add our Redis replica containers or
other components of the solution to our logging environment.

 NOTE We could also do Redis backups via volumes if we wanted to.

Summary of our Node stack
We’ve now seen a multi-container application stack. We’ve used Docker network-
ing to connect our application together and Docker volumes to help manage a
variety of aspects of our application. We can build on this foundation to produce
more complex applications and architectures.

Version: v18.09 (6172afc) 253

Chapter 6: Building services with Docker

Managing Docker containers without SSH
Lastly, before we wrap up our chapter on running services with Docker, it’s im-
portant to understand some of the ways we can manage Docker containers and
how those differ from some more traditional management techniques.
Traditionally, when managing services, we’re used to SSHing into our environ-
ment or virtual machines to manage them. In the Docker world, where most
containers run a single process, this access isn’t available. As we’ve seen much of
the time, this access isn’t needed: we will use volumes or networking to perform
a lot of the same actions. For example, if our service is managed via a network
interface, we expose that on a container; if our service is managed through a Unix
socket, we expose that with a volume. If we need to send a signal to a Docker
container, we use the docker kill command, like so:

Listing 6.62: Using docker kill to send signals

$ sudo docker kill -s <signal> <container>

This will send the specific signal you want (e.g., a HUP) to the container in question
rather than killing the container.
Sometimes, however, we do need to sign into a container. To do that, though, we
don’t need to run an SSH service or open up any access. We can use the docker
exec command

 NOTE The docker exec command introduced in Docker 1.3 replaces the
previous tool, nsenter.

Version: v18.09 (6172afc) 254

Chapter 6: Building services with Docker

Listing 6.63: Running docker exec

$ sudo docker exec -ti nodeapp /bin/bash

This will launch an interactive Bash shell inside our nodeapp container.

Summary
In this chapter, we’ve seen how to build some example production services using
Docker containers. We’ve seen a bit more about how we build multi-container
services and manage those stacks. We’ve combined features like Docker network-
ing and volumes and learned how to potentially extend those features to provide
us with capabilities like logging and backups.
In the next chapter, we’ll look at orchestration with Docker using the Docker
Compose, Docker Swarm and Consul tools.

Version: v18.09 (6172afc) 255

Chapter 7

Docker Orchestration and Service
Discovery

Orchestration is a pretty loosely defined term. It’s broadly the process of auto-
mated configuration, coordination, and management of services. In the Docker
world we use it to describe the set of practices around managing applications run-
ning in multiple Docker containers and potentially across multiple Docker hosts.
Native orchestration is in its infancy in the Docker community but an exciting
ecosystem of tools is being integrated and developed.
In the current ecosystem there are a variety of tools being built and integrated
with Docker. Some of these tools are simply designed to elegantly “wire” together
multiple containers and build application stacks using simple composition. Other
tools provide larger scale coordination between multiple Docker hosts as well as
complex service discovery, scheduling and execution capabilities.
Each of these areas really deserves its own book but we’ve focused on a few useful
tools that give you some insight into what you can achieve when orchestrating
containers. They provide some useful building blocks upon which you can grow
your Docker-enabled environment.
In this chapter we will focus on three areas:

• Simple container orchestration. Here we’ll look at Docker Compose. Docker
Compose (previously Fig) is an open source Docker orchestration tool devel-

256

https://docs.docker.com/compose/

Chapter 7: Docker Orchestration and Service Discovery

oped by the Orchard team and then acquired by Docker Inc in 2014. It’s
written in Python and licensed with the Apache 2.0 license.
• Distributed service discovery. Here we’ll introduce Consul. Consul is also
open source, licensed with the Mozilla Public License 2.0, and written in Go.
It provides distributed, highly available service discovery. We’re going to
look at how you might use Consul and Docker to manage application service
discovery.
• Orchestration and clustering of Docker. Here we’re looking at Swarm.
Swarm is open source, licensed with the Apache 2.0 license. It’s written in
Go and developed by the Docker Inc team. As of Docker 1.12 the Docker
Engine now has a Swarm-mode built in and we’ll be covering that later in
this chapter.

 TIP We’ll also talk about many of the other orchestration tools available to
you later in this chapter.

Docker Compose
Now let’s get familiar with Docker Compose. With Docker Compose, we define a
set of containers to boot up, and their runtime properties, all defined in a YAML
file. Docker Compose calls each of these containers “services” which it defines as:

A container that interacts with other containers in some way and that
has specific runtime properties.

We’re going to take you through installing Docker Compose and then using it to
build a simple, multi-container application stack.

Version: v18.09 (6172afc) 257

http://www.consul.io/
http://docs.docker.com/swarm/

Chapter 7: Docker Orchestration and Service Discovery

Installing Docker Compose
We start by installing Docker Compose. Docker Compose is currently available for
Linux, Windows, and OS X. It can be installed directly as a binary and via Docker
for Mac or Windows.
To install Docker Compose on Linux we can grab the Docker Compose binary from
GitHub and make it executable. Like Docker, Docker Compose is currently only
supported on 64-bit Linux installations. We’ll need the curl command available
to do this.

Listing 7.1: Installing Docker Compose on Linux

$ sudo curl -L "https://github.com/docker/compose/releases/
download/$(curl -sL https://api.github.com/repos/docker/
compose/releases/latest | grep tag_name | cut -d'"' -f 4)/
docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/
docker-compose

$ sudo chmod +x /usr/local/bin/docker-compose

This will download the docker-compose binary from GitHub and install it into
the /usr/local/bin directory. We’ve also used the chmod command to make the
docker-compose binary executable so we can run it.
If we’re on OS X Docker Compose comes bundled with Docker for Mac or we can
install it like so:

Listing 7.2: Installing Docker Compose on OS X

$ sudo bash -c "curl -L https://github.com/docker/compose/
releases/download/1.17.1/docker-compose-Darwin-x86_64 > /usr/
local/bin/docker-compose"

$ sudo chmod +x /usr/local/bin/docker-compose

Version: v18.09 (6172afc) 258

Chapter 7: Docker Orchestration and Service Discovery

 TIP Replace the 1.17.1 with the release number of the current Docker Com-
pose release.

If we’re on Windows Docker Compose comes bundled inside Docker for Windows.
Once you have installed the docker-compose binary you can test it’s working using
the docker-compose command with the --version flag:

Listing 7.3: Testing Docker Compose is working

$ docker-compose --version
docker-compose version 1.17.1, build f3628c7

 NOTE If you’re upgrading from a pre-1.3.0 release you’ll need to mi-
grate any existing container to the new 1.3.0 format using the docker-compose
migrate-to-labels command.

Getting our sample application
To demonstrate how Compose works we’re going to use a sample Python Flask
application that combines two containers:

• An application container running our sample Python application.
• A container running the Redis database.

Let’s start with building our sample application. Firstly, we create a directory and
a Dockerfile.

Version: v18.09 (6172afc) 259

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.4: Creating the composeapp directory

$ mkdir composeapp
$ cd composeapp

Here we’ve created a directory to hold our sample application, which we’re calling
composeapp.
Next, we need to add our application code. Let’s create a file called app.py in the
composeapp directory and add the following Python code to it.

Listing 7.5: The app.py file

from flask import Flask
from redis import Redis
import os

app = Flask(__name__)
redis = Redis(host="redis", port=6379)

@app.route('/')
def hello():

redis.incr('hits')
return 'Hello Docker Book reader! I have been seen {0} times'
.format(redis.get('hits'))

if __name__ == "__main__":
app.run(host="0.0.0.0", debug=True)

 TIP You can find this source code on GitHub.

Version: v18.09 (6172afc) 260

https://github.com/turnbullpress/dockerbook-code/tree/master/code/7/composeapp

Chapter 7: Docker Orchestration and Service Discovery

This simple Flask application tracks a counter stored in Redis. The counter is
incremented each time the root URL, /, is hit.
We also need to create a requirements.txt file to store our application’s depen-
dencies. Let’s create that file now and add the following dependencies.

Listing 7.6: The requirements.txt file

flask
redis

Now let’s populate our Compose Dockerfile.

Listing 7.7: The composeapp Dockerfile

Compose Sample application image
FROM python:2.7
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

ADD . /composeapp

WORKDIR /composeapp

RUN pip install -r requirements.txt

Our Dockerfile is simple. It is based on the python:2.7 image. We add our app
.py and requirements.txt files into a directory in the image called /composeapp.
The Dockerfile then sets the working directory to /composeapp and runs the pip
installation process to install our application’s dependencies: flask and redis.

Version: v18.09 (6172afc) 261

Chapter 7: Docker Orchestration and Service Discovery

Let’s build that image now using the docker build command.

Listing 7.8: Building the composeapp application

$ sudo docker build -t jamtur01/composeapp .
Sending build context to Docker daemon 16.9 kB
Sending build context to Docker daemon
Step 0 : FROM python:2.7
---> 1c8df2f0c10b
Step 1 : LABEL maintainer="james@example.com"
---> Using cache
---> aa564fe8be5a
Step 2 : ADD . /composeapp
---> c33aa147e19f
Removing intermediate container 0097bc79d37b
Step 3 : WORKDIR /composeapp
---> Running in 76e5ee8544b3
---> d9da3105746d
Removing intermediate container 76e5ee8544b3
Step 4 : RUN pip install -r requirements.txt
---> Running in e71d4bb33fd2
Downloading/unpacking flask (from -r requirements.txt (line 1))
. . .
Successfully installed flask redis Werkzeug Jinja2 itsdangerous

markupsafe
Cleaning up...
---> bf0fe6a69835
Removing intermediate container e71d4bb33fd2
Successfully built bf0fe6a69835

This will build a new image called jamtur01/composeapp containing our sample
application and its required dependencies. We can now use Compose to deploy
our application.

Version: v18.09 (6172afc) 262

Chapter 7: Docker Orchestration and Service Discovery

 NOTE We’ll be using a Redis container created from the default Redis
image on the Docker Hub so we don’t need to build or customize that.

The docker-compose.yml file
Now we’ve got our application image built we can configure Compose to create
both the services we require. With Compose, we define a set of services (in the
form of Docker containers) to launch. We also define the runtime properties we
want these services to start with, much as you would do with the docker run
command. We define all of this in a YAML file. We then run the docker-compose
up command. Compose launches the containers, executes the appropriate runtime
configuration, and multiplexes the log output together for us.
Let’s create a docker-compose.yml file for our application inside our composeapp
directory.

Listing 7.9: Creating the docker-compose.yml file

$ touch docker-compose.yml

Let’s populate our docker-compose.yml file. The docker-compose.yml file is a
YAML file that contains instructions for running one or more Docker containers.
Let’s look at the instructions for our example application.

Version: v18.09 (6172afc) 263

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.10: The docker-compose.yml file

version: '3'
services:
web:
image: jamtur01/composeapp
command: python app.py
ports:
- "5000:5000"
volumes:
- .:/composeapp

redis:
image: redis

Each service we wish to launch is specified as a YAML hash inside a hash called
services. Here our two services are: web and redis.

 TIP The version tag tells Docker Compose what configuration version of use.
The Docker Compose API has evolved over the years and each change has been
marked by incrementing the version.

For our web service we’ve specified some runtime options. Firstly, we’ve specified
the image we’re using: the jamtur01/composeapp image. Compose can also build
Docker images. You can use the build instruction and provide the path to a
Dockerfile to have Compose build an image and then create services from it.

Version: v18.09 (6172afc) 264

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.11: An example of the build instruction

web:
build: /home/james/composeapp

. . .

This build instruction would build a Docker image from a Dockerfile found in
the /home/james/composeapp directory.
We’ve also specified the command to run when launching the service. Next we
specify the ports and volumes as a list of the port mappings and volumes we want
for our service. We’ve specified that we’re mapping port 5000 inside our service
to port 5000 on the host. We’re also creating /composeapp as a volume.
If we were executing the same configuration on the command line using docker
run we’d do it like so:

Listing 7.12: The docker run equivalent command

$ sudo docker run -d -p 5000:5000 -v .:/composeapp \
--name jamtur01/composeapp python app.py

Next we’ve specified another service called redis. For this service we’re not set-
ting any runtime defaults at all. We’re just going to use the base redis image. By
default, containers run from this image launches a Redis database on the standard
port. So we don’t need to configure or customize it.

 TIP You can see a full list of the available instructions you can use in the
docker-compose.yml file in the Docker Compose documentation.

Version: v18.09 (6172afc) 265

https://docs.docker.com/compose/compose-file/

Chapter 7: Docker Orchestration and Service Discovery

Running Compose
Once we’ve specified our services in docker-compose.yml we use the docker-
compose up command to execute them both.

Listing 7.13: Running docker-compose up with our sample application

$ cd composeapp
$ sudo docker-compose up
Creating network "composeapp_default" with the default driver
Recreating composeapp_web_1 ...
Recreating composeapp_web_1
Recreating composeapp_redis_1 ...
Recreating composeapp_web_1 ... done
Attaching to composeapp_redis_1, composeapp_web_1
web_1 | * Running on http://0.0.0.0:5000/ (Press CTRL+C to

quit)
. . .

 TIP You must be inside the directory with the docker-compose.yml file in
order to execute most Compose commands.

Compose has created two new services: composeapp_redis_1 and composeapp_web_1
. So where did these names come from? Well, to ensure our services are unique,
Compose has prefixed and suffixed the names specified in the docker-compose.
yml file with the directory and a number respectively.
Compose then attaches to the logs of each service, each line of log output is pre-
fixed with the abbreviated name of the service it comes from, and outputs them
multiplexed:

Version: v18.09 (6172afc) 266

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.14: Compose service log output

redis_1 | 1:M 05 Aug 17:49:17.839 * The server is now ready to
accept connections on port 6379

The services (and Compose) are being run interactively. That means if you use
Ctrl-C or the like to cancel Compose then it’ll stop the running services. We
could also run Compose with -d flag to run our services daemonized (similar to
the docker run -d flag).

Listing 7.15: Running Compose daemonized

$ sudo docker-compose up -d

Let’s look at the sample application that’s now running on the host. The applica-
tion is bound to all interfaces on the Docker host on port 5000. So we can browse
to that site on the host’s IP address or via localhost.

Figure 7.1: Sample Compose application.

We see a message displaying the current counter value. We can increment the
counter by refreshing the site. Each refresh stores the increment in Redis. The

Version: v18.09 (6172afc) 267

Chapter 7: Docker Orchestration and Service Discovery

Redis update is done via the link between the Docker containers controlled by
Compose.

 TIP By default, Compose tries to connect to a local Docker daemon but it’ll
also honor the DOCKER_HOST environment variable to connect to a remote Docker
host.

Using Compose
Now let’s explore some of Compose’s other options. Firstly, let’s use Ctrl-C to
cancel our running services and then restart them as daemonized services.
Press Ctrl-C inside the composeapp directory and then re-run the docker-compose
up command, this time with the -d flag.

Listing 7.16: Restarting Compose as daemonized

$ sudo docker-compose up -d
Starting composeapp_web_1 ...
Starting composeapp_redis_1 ...
Starting composeapp_redis_1
Starting composeapp_web_1 ... done
$. . .

We see that Compose has recreated our services, launched them and returned to
the command line.
Our Compose-managed services are now running daemonized on the host. Let’s
look at them now using the docker-compose ps command; a close cousin of the
docker ps command.

Version: v18.09 (6172afc) 268

Chapter 7: Docker Orchestration and Service Discovery

 TIP You can get help on Compose commands by running docker-compose
help and the command you wish to get help on, for example docker-compose
help ps.

The docker-compose ps command lists all of the currently running services from
our local docker-compose.yml file.

Listing 7.17: Running the docker-compose ps command

$ cd composeapp
$ sudo docker-compose ps
Name Command State Ports

-
composeapp_redis_1 docker-entrypoint.sh redis Up 6379/tcp
composeapp_web_1 python app.py Up 0.0.0.0:5000

->5000/tcp

This shows some basic information about our running Compose services. The
name of each service, what command we used to start the service, and the ports
that are mapped on each service.
We can also drill down further using the docker-compose logs command to show
us the log events from our services.

Version: v18.09 (6172afc) 269

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.18: Showing a Compose services logs

$ sudo docker-compose logs
docker-compose logs
Attaching to composeapp_redis_1, composeapp_web_1
redis_1 | (' , .-` | `,) Running in

stand alone mode
redis_1 | |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
redis_1 | | `-._ `._ / _.-' | PID: 1
. . .

This will tail the log files of your services, much as the tail -f command. Like
the tail -f command you’ll need to use Ctrl-C or the like to exit from it.
We can also stop our running services with the docker-compose stop command.

Listing 7.19: Stopping running services

$ sudo docker-compose stop
Stopping composeapp_web_1...
Stopping composeapp_redis_1...

This will stop both services. If the services don’t stop you can use the docker-
compose kill command to force kill the services.
We can verify this with the docker-compose ps command again.

Version: v18.09 (6172afc) 270

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.20: Verifying our Compose services have been stopped

$ sudo docker-compose ps
Name Command State Ports

composeapp_redis_1 redis-server Exit 0
composeapp_web_1 python app.py Exit 0

If you’ve stopped services using docker-compose stop or docker-compose kill
you can also restart them again with the docker-compose start command. This
is much like using the docker start command and will restart these services.
Finally, we can remove services using the docker-compose rm command.

Listing 7.21: Removing Compose services

$ sudo docker-compose rm
Going to remove composeapp_redis_1, composeapp_web_1
Are you sure? [yN] y
Removing composeapp_redis_1...
Removing composeapp_web_1...

You’ll be prompted to confirm you wish to remove the services and then both
services will be deleted. The docker-compose ps command will now show no
running or stopped services.

Version: v18.09 (6172afc) 271

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.22: Showing no Compose services

$ sudo docker-compose ps
Name Command State Ports

Compose in summary
Now in one file we have a simple Python-Redis stack built! You can see how much
easier this can make constructing applications from multiple Docker containers.
It’s especially a great tool for building local development stacks. This, however,
just scratches the surface of what you can do with Compose. There are some
more examples using Rails, Django and Wordpress on the Compose website that
introduce some more advanced concepts.

 TIP You can see a full command line reference in the Docker Compose Ref-
erence documentation.

Consul, Service Discovery and Docker
Service discovery is the mechanism by which distributed applications manage
their relationships. A distributed application is usually made up of multiple com-
ponents. These components can be located together locally or distributed across
data centers or geographic regions. Each of these components usually provides or
consumes services to or from other components.
Service discovery allows these components to find each other when they want
to interact. Due to the distributed nature of these applications, service discovery

Version: v18.09 (6172afc) 272

https://docs.docker.com/compose/rails/
https://docs.docker.com/compose/django/
https://docs.docker.com/compose/wordpress/
https://docs.docker.com/compose/reference/
https://docs.docker.com/compose/reference/

Chapter 7: Docker Orchestration and Service Discovery

mechanisms also need to be distributed. As they are usually the “glue” between
components of distributed applications they also need to be dynamic, reliable,
resilient and able to quickly and consistently share data about these services.
Docker, with its focus on distributed applications and service-oriented and mi-
croservices architectures, is an ideal candidate for integration with a service dis-
covery tool. Each Docker container can register its running service or services
with the tool. This provides the information needed, for example an IP address or
port or both, to allow interaction between services.
Our example service discovery tool, Consul, is a specialized datastore that uses
consensus algorithms. Consul specifically uses the Raft consensus algorithm to
require a quorum for writes. It also exposes a key value store and service catalog
that is highly available, fault-tolerant, and maintains strong consistency guaran-
tees. Services can register themselves with Consul and share that registration
information in a highly available and distributed manner.
Consul is also interesting because it provides:

• A service catalog with an API instead of the traditional key=value store of
most service discovery tools.
• Both a DNS-based query interface through an inbuilt DNS server and a HTTP-
based REST API to query the information. The choice of interfaces, espe-
cially the DNS-based interface, allows you to easily drop Consul into your
existing environment.
• Service monitoring AKA health checks. Consul has powerful service moni-
toring built into the tool.

To get a better understanding of how Consul works, we’re going to see how to
run distributed Consul inside Docker containers. We’re then going to register
services from Docker containers to Consul and query that data from other Docker
containers. To make it more interesting we’re going to do this across multiple
Docker hosts.
To do this we’re going to:

• Create a Docker image for the Consul service.

Version: v18.09 (6172afc) 273

http://www.consul.io/
http://en.wikipedia.org/wiki/Raft_(computer_science)

Chapter 7: Docker Orchestration and Service Discovery

• Build three hosts running Docker and then run Consul on each. The three
hosts will provide us with a distributed environment to see how resiliency
and failover works with Consul.
• Build services that we’ll register with Consul and then query that data from
another service.

 NOTE You can see a more generic introduction to Consul in their docu-
mentation.

Building a Consul image
We’re going to start with creating a Dockerfile to build our Consul image. Let’s
create a directory to hold our Consul image first.

Listing 7.23: Creating a Consul Dockerfile directory

$ mkdir consul
$ cd consul
$ touch Dockerfile

Now let’s look at the Dockerfile for our Consul image.

Version: v18.09 (6172afc) 274

http://www.consul.io/intro/index.html
http://www.consul.io/intro/index.html

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.24: The Consul Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2014-08-01

RUN apt-get -qqy update
RUN apt-get -qqy install curl unzip

ADD https://releases.hashicorp.com/consul/0.6.4/consul_0.6.4
_linux_amd64.zip /tmp/consul.zip

RUN cd /usr/sbin; unzip /tmp/consul.zip; chmod +x /usr/sbin/
consul; rm /tmp/consul.zip

ADD consul.json /config/

EXPOSE 53/udp 8300 8301 8301/udp 8302 8302/udp 8400 8500

VOLUME ["/data"]

ENTRYPOINT ["/usr/sbin/consul", "agent", "-config-dir=/config"]
CMD []

Our Dockerfile is pretty simple. It’s based on an Ubuntu 16.04 image. It installs
curl and unzip. We then download the Consul zip file containing the consul
binary. We move that binary to /usr/sbin/ and make it executable.
We then add a configuration file for Consul, consul.json, to the /config directory.
Let’s create and look at that file now.

Version: v18.09 (6172afc) 275

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.25: The consul.json configuration file

{
"data_dir": "/data",
"client_addr": "0.0.0.0",
"ports": {
"dns": 53

},
"recursor": "8.8.8.8"

}

The consul.json configuration file is JSON formatted and provides Consul with
the information needed to get running. We’ve specified a data directory, /data
, to hold Consul’s data. We use the client_addr variable to bind Consul to all
interfaces inside our container.
We also use the ports block to configure on which ports various Consul services
run. In this case we’re specifying that Consul’s DNS service should run on port
53. Lastly, we’ve used the recursor option to specify a DNS server to use for
resolution if Consul can’t resolve a DNS request. We’ve specified 8.8.8.8 which
is one of the IP addresses of Google’s public DNS service.

 TIP You can find the full list of available Consul configuration options in the
Consul documentation.

Back in our Dockerfile we’ve used the EXPOSE instruction to open up a series of
ports that Consul requires to operate. I’ve added a table showing each of these
ports and what they do.

Version: v18.09 (6172afc) 276

https://developers.google.com/speed/public-dns/
http://www.consul.io/docs/agent/options.html
http://www.consul.io/docs/agent/options.html

Chapter 7: Docker Orchestration and Service Discovery

Table 7.1: Consul’s default ports.

Port Purpose
53/udp DNS server
8300 Server RPC
8301 + udp Serf LAN port
8302 + udp Serf WAN port
8400 RPC endpoint
8500 HTTP API

You don’t need to worry about most of them for the purposes of this chapter. The
important ones for us are 53/udp which is the port Consul is going to be running
DNS on. We’re going to use DNS to query service information. We’re also going to
use Consul’s HTTP API and its web interface, both of which are bound to port 8500.
The rest of the ports handle the backend communication and clustering between
Consul nodes. We’ll configure them in our Docker container but we don’t do
anything specific with them.

 NOTE You can find more details of what each port does in the Consul
documentation.

Next, we’ve also made our /data directory a volume using the VOLUME instruction.
This is useful if we want to manage or work with this data as we saw in Chapter
6.
Finally, we’ve specified an ENTRYPOINT instruction to launch Consul using the
consul binary when a container is launched from our image.
Let’s step through the command line options we’ve used. We’ve specified the
consul binary in /usr/sbin/. We’ve passed it the agent command which tells
Consul to run as an agent and the -config-dir flag and specified the location of
our consul.json file in the /config directory.
Let’s build our image now.

Version: v18.09 (6172afc) 277

http://www.consul.io/docs/agent/options.html
http://www.consul.io/docs/agent/options.html

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.26: Building our Consul image

$ sudo docker build -t="jamtur01/consul" .

 NOTE You can get our Consul Dockerfile and configuration file on GitHub.
If you don’t want to use a home grown image there is also an officially sanctioned
Consul image on the Docker Hub.

Testing a Consul container locally
Before we run Consul on multiple hosts, let’s see it working locally on a single
host. To do this we’ll run a container from our new jamtur01/consul image.

Version: v18.09 (6172afc) 278

https://github.com/turnbullpress/dockerbook-code/tree/master/code/7/consul/
https://hub.docker.com/_/consul/

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.27: Running a local Consul node

$ sudo docker run -p 8500:8500 -p 53:53/udp \
-h node1 jamtur01/consul -server -bootstrap
==> WARNING: Bootstrap mode enabled! Do not enable unless

necessary
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Consul agent running!

Node name: 'node1'
Datacenter: 'dc1'
Server: true (bootstrap: true)
Client Addr: 0.0.0.0 (HTTP: 8500, HTTPS: -1, DNS: 53, RPC:
8400)
Cluster Addr: 172.17.0.8 (LAN: 8301, WAN: 8302)
Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false
Atlas: <disabled>

==> Log data will now stream in as it occurs:

. . .

2016/08/05 17:59:38 [INFO] consul: cluster leadership acquired
2016/08/05 17:59:38 [INFO] consul: New leader elected: node1
2016/08/05 17:59:38 [INFO] raft: Disabling EnableSingleNode (

bootstrap)
2016/08/05 17:59:38 [INFO] consul: member 'node1' joined, marking

health alive
2016/08/05 17:59:40 [INFO] agent: Synced service 'consul'

We’ve used the docker run command to create a new container. We’ve mapped
two ports, port 8500 in the container to 8500 on the host and port 53 in the con-
tainer to 53 on the host. We’ve also used the -h flag to specify the hostname of

Version: v18.09 (6172afc) 279

Chapter 7: Docker Orchestration and Service Discovery

the container, here node1. This is going to be both the hostname of the container
and the name of the Consul node. We’ve then specified the name of our Consul
image, jamtur01/consul.
Lastly, we’ve passed two flags to the consul binary: -server and -bootstrap. The
-server flag tells the Consul agent to operate in server mode. The -bootstrap flag
tells Consul that this node is allowed to self-elect as a leader. This allows us to
see a Consul agent in server mode doing a Raft leadership election.

 WARNING It is important that no more than one server per datacenter
be running in bootstrap mode. Otherwise consistency cannot be guaranteed if
multiple nodes are able to self-elect. We’ll see some more on this when we add
other nodes to the cluster.

We see that Consul has started node1 and done a local leader election. As we’ve
got no other Consul nodes running it is not connected to anything else.
We can also see this via the Consul web interface if we browse to our local host’s
IP address on port 8500.

Figure 7.2: The Consul web interface.

Running a Consul cluster in Docker
As Consul is distributed we’d normally create three (or more) hosts to run in sep-
arate data centers, clouds or regions. Or even add an agent to every application
server. This will provide us with sufficient distributed resilience. We’re going to

Version: v18.09 (6172afc) 280

Chapter 7: Docker Orchestration and Service Discovery

mimic this required distribution by creating three new hosts each with a Docker
daemon to run Consul. We will create three new Ubuntu 16.04 hosts: larry,
curly, and moe. On each host we’ll install a Docker daemon. We’ll also pull down
the jamtur01/consul image.

 TIP Create the hosts using whatever means you run up new hosts and to
install Docker you can use the installation instructions in Chapter 2.

Listing 7.28: Pulling down the Consul image

$ sudo docker pull jamtur01/consul

On each host we’re going to run a Docker container with the jamtur01/consul
image. To do this we need to choose a network to run Consul over. In most cases
this would be a private network but as we’re just simulating a Consul cluster I
am going to use the public interfaces of each host. To start Consul on this public
network I am going to need the public IP address of each host. This is the address
to which we’re going to bind each Consul agent.
Let’s grab that now on larry and assign it to an environment variable, $PUBLIC_IP.

Listing 7.29: Getting public IP on larry

larry$ PUBLIC_IP="$(ifconfig eth0 | awk -F ' *|:' '/inet addr/{
print $4}')"

larry$ echo $PUBLIC_IP
162.243.167.159

And then create the same $PUBLIC_IP variable on curly and moe too.

Version: v18.09 (6172afc) 281

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.30: Assigning public IP on curly and moe

curly$ PUBLIC_IP="$(ifconfig eth0 | awk -F ' *|:' '/inet addr/{
print $4}')"

curly$ echo $PUBLIC_IP
162.243.170.66
moe$ PUBLIC_IP="$(ifconfig eth0 | awk -F ' *|:' '/inet addr/{

print $4}')"
moe$ echo $PUBLIC_IP
159.203.191.16

We see we’ve got three hosts and three IP addresses, each assigned to the
$PUBLIC_IP environmental variable.

Table 7.2: Consul host IP addresses

Host IP Address
larry 162.243.167.159
curly 162.243.170.66
moe 159.203.191.16

We’re also going to need to nominate a host to bootstrap to start the cluster. We’re
going to choose larry. This means we’ll need larry’s IP address on curly and moe
to tell them which Consul node’s cluster to join. Let’s set that up now by adding
larry’s IP address of 162.243.167.159 to curly and moe as the environment vari-
able, $JOIN_IP.

Version: v18.09 (6172afc) 282

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.31: Adding the cluster IP address

curly$ JOIN_IP=162.243.167.159
moe$ JOIN_IP=162.243.167.159

Starting the Consul bootstrap node
Let’s start our initial bootstrap node on larry. Our docker run command is going
to be a little complex because we’re mapping a lot of ports. Indeed, we need to
map all the ports listed in Table 7.1 above. And, as we’re both running Consul in
a container and connecting to containers on other hosts, we’re going to map each
port to the corresponding port on the local host. This will allow both internal and
external access to Consul.
Let’s see our docker run command now.

Listing 7.32: Start the Consul bootstrap node

larry$ sudo docker run -d -h $HOSTNAME \
-p 8300:8300 -p 8301:8301 \
-p 8301:8301/udp -p 8302:8302 \
-p 8302:8302/udp -p 8400:8400 \
-p 8500:8500 -p 53:53/udp \
--name larry_agent jamtur01/consul \
-server -advertise $PUBLIC_IP -bootstrap-expect 3

Here we’ve launched a daemonized container using the jamtur01/consul image
to run our Consul agent. We’ve set the -h flag to set the hostname of the container
to the value of the $HOSTNAME environment variable. This sets our Consul agent’s
name to be the local hostname, here larry. We’re also mapped a series of eight
ports from inside the container to the respective ports on the local host.

Version: v18.09 (6172afc) 283

Chapter 7: Docker Orchestration and Service Discovery

We’ve also specified some command line options for the Consul agent.

Listing 7.33: Consul agent command line arguments

-server -advertise $PUBLIC_IP -bootstrap-expect 3

The -server flag tell the agent to run in server mode. The -advertise flag tells
that server to advertise itself on the IP address specified in the $PUBLIC_IP environ-
ment variable. Lastly, the -bootstrap-expect flag tells Consul how many agents
to expect in this cluster. In this case, 3 agents. It also bootstraps the cluster.
Let’s look at the logs of our initial Consul container with the docker logs com-
mand.

Version: v18.09 (6172afc) 284

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.34: Starting bootstrap Consul node

larry$ sudo docker logs larry_agent
==> WARNING: Expect Mode enabled, expecting 3 servers
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Consul agent running!

Node name: 'larry'
Datacenter: 'dc1'

Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, HTTPS: -1, DNS: 53, RPC:

8400)
Cluster Addr: 162.243.167.159 (LAN: 8301, WAN: 8302)

Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false
Atlas: <disabled>

==> Log data will now stream in as it occurs:

. . .

2016/08/06 12:35:11 [INFO] serf: EventMemberJoin: larry.dc1
162.243.167.159

2016/08/06 12:35:11 [INFO] consul: adding LAN server larry (Addr:
162.243.167.159:8300) (DC: dc1)

2016/08/06 12:35:11 [INFO] consul: adding WAN server larry.dc1 (
Addr: 162.243.167.159:8300) (DC: dc1)

2016/08/06 12:35:11 [ERR] agent: failed to sync remote state: No
cluster leader

2016/08/06 12:35:12 [WARN] raft: EnableSingleNode disabled, and
no known peers. Aborting election.

We see that the agent on larry is started but because we don’t have any more
nodes yet no election has taken place. We know this from the only error returned.

Version: v18.09 (6172afc) 285

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.35: Cluster leader error

[ERR] agent: failed to sync remote state: No cluster leader

Starting the remaining nodes
Now we’ve bootstrapped our cluster we can start our remaining nodes on curly
and moe. Let’s start with curly. We use the docker run command to launch our
second agent.

Listing 7.36: Starting the agent on curly

curly$ sudo docker run -d -h $HOSTNAME \
-p 8300:8300 -p 8301:8301 \
-p 8301:8301/udp -p 8302:8302 \
-p 8302:8302/udp -p 8400:8400 \
-p 8500:8500 -p 53:53/udp \
--name curly_agent jamtur01/consul \
-server -advertise $PUBLIC_IP -join $JOIN_IP

We see our command is similar to our bootstrapped node on larry with the ex-
ception of the command we’re passing to the Consul agent.

Listing 7.37: Launching the Consul agent on curly

-server -advertise $PUBLIC_IP -join $JOIN_IP

Again we’ve enabled the Consul agent’s server mode with -server and bound the
agent to the public IP address using the -advertise flag. Finally, we’ve told Con-

Version: v18.09 (6172afc) 286

Chapter 7: Docker Orchestration and Service Discovery

sul to join our Consul cluster by specifying larry’s IP address using the $JOIN_IP
environment variable.
Let’s see what happened when we launched our container.

Version: v18.09 (6172afc) 287

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.38: Looking at the Curly agent logs

curly$ sudo docker logs curly_agent
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Joining cluster...

Join completed. Synced with 1 initial agents
==> Consul agent running!

Node name: 'curly'
Datacenter: 'dc1'

Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, HTTPS: -1, DNS: 53, RPC:

8400)
Cluster Addr: 162.243.170.66 (LAN: 8301, WAN: 8302)

Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false
Atlas: <disabled>

==> Log data will now stream in as it occurs:

. . .

2016/08/06 12:37:17 [INFO] consul: adding LAN server curly (Addr:
162.243.170.66:8300) (DC: dc1)

2016/08/06 12:37:17 [INFO] consul: adding WAN server curly.dc1 (
Addr: 162.243.170.66:8300) (DC: dc1)

2016/08/06 12:37:17 [INFO] agent: (LAN) joining:
[162.243.167.159]

2016/08/06 12:37:17 [INFO] serf: EventMemberJoin: larry
162.243.167.159

2016/08/06 12:37:17 [INFO] agent: (LAN) joined: 1 Err: <nil>
2016/08/06 12:37:17 [ERR] agent: failed to sync remote state: No

cluster leader
2016/08/06 12:37:17 [INFO] consul: adding LAN server larry (Addr:

162.243.167.159:8300) (DC: dc1)
2016/08/06 12:37:18 [WARN] raft: EnableSingleNode disabled, and

no known peers. Aborting election.
Version: v18.09 (6172afc) 288

Chapter 7: Docker Orchestration and Service Discovery

We see curly has joined larry, indeed on larry we should see something like the
following:

Listing 7.39: Curly joining Larry

2016/08/06 12:37:17 [INFO] serf: EventMemberJoin: curly
162.243.170.66

2016/08/06 12:37:17 [INFO] consul: adding LAN server curly (Addr:
162.243.170.66:8300) (DC: dc1)

But we’ve still not got a quorum in our cluster, remember we told -bootstrap-
expect to expect 3 nodes. So let’s start our final agent on moe.

Listing 7.40: Starting the agent on moe

moe$ sudo docker run -d -h $HOSTNAME \
-p 8300:8300 -p 8301:8301 \
-p 8301:8301/udp -p 8302:8302 \
-p 8302:8302/udp -p 8400:8400 \
-p 8500:8500 -p 53:53/udp \
--name moe_agent jamtur01/consul \
-server -advertise $PUBLIC_IP -join $JOIN_IP

Our docker run command is basically the same as what we ran on curly. But this
time we have three agents in our cluster. Now, if we look at the container’s logs,
we will see a full cluster.

Version: v18.09 (6172afc) 289

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.41: Consul logs on moe

moe$ sudo docker logs moe_agent
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Joining cluster...

Join completed. Synced with 1 initial agents
==> Consul agent running!

Node name: 'moe'
Datacenter: 'dc1'

Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, HTTPS: -1, DNS: 53, RPC:

8400)
Cluster Addr: 159.203.191.16 (LAN: 8301, WAN: 8302)

Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false
Atlas: <disabled>

==> Log data will now stream in as it occurs:

. . .

2016/08/06 12:39:14 [ERR] agent: failed to sync remote state: No
cluster leader

2016/08/06 12:39:15 [INFO] consul: New leader elected: larry
2016/08/06 12:39:16 [INFO] agent: Synced service 'consul'

We see from our container’s logs that moe has joined the cluster. This causes Consul
to reach its expected number of cluster members and triggers a leader election. In
this case larry is elected cluster leader.
We see the result of this final agent joining in the Consul logs on larry too.

Version: v18.09 (6172afc) 290

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.42: Consul leader election on larry

2016/08/06 12:39:14 [INFO] consul: Attempting bootstrap with
nodes: [162.243.170.66:8300 159.203.191.16:8300
162.243.167.159:8300]

2016/08/06 12:39:15 [WARN] raft: Heartbeat timeout reached,
starting election

2016/08/06 12:39:15 [INFO] raft: Node at 162.243.170.66:8300 [
Candidate] entering Candidate state

2016/08/06 12:39:15 [WARN] raft: Remote peer 159.203.191.16:8300
does not have local node 162.243.167.159:8300 as a peer

2016/08/06 12:39:15 [INFO] raft: Election won. Tally: 2
2016/08/06 12:39:15 [INFO] raft: Node at 162.243.170.66:8300 [

Leader] entering Leader state
2016/08/06 12:39:15 [INFO] consul: cluster leadership acquired
2016/08/06 12:39:15 [INFO] consul: New leader elected: larry
2016/08/06 12:39:15 [INFO] raft: pipelining replication to peer

159.203.191.16:8300
2016/08/06 12:39:15 [INFO] consul: member 'larry' joined, marking

health alive
2016/08/06 12:39:15 [INFO] consul: member 'curly' joined, marking

health alive
2016/08/06 12:39:15 [INFO] raft: pipelining replication to peer

162.243.170.66:8300
2016/08/06 12:39:15 [INFO] consul: member 'moe' joined, marking

health alive

We can also browse to the Consul web interface on larry on port 8500 and select
the Consul service to see the current state

Version: v18.09 (6172afc) 291

Chapter 7: Docker Orchestration and Service Discovery

Figure 7.3: The Consul service in the web interface.

Finally, we can test the DNS is working using the dig command. We specify our
local Docker bridge IP as the DNS server. That’s the IP address of the Docker
interface: docker0.

Listing 7.43: Getting the docker0 IP address

larry$ ip addr show docker0
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 scope global docker0

valid_lft forever preferred_lft forever
inet6 fe80::5484:7aff:fefe:9799/64 scope link

valid_lft forever preferred_lft forever

We see the interface has an IP of 172.17.0.1. We then use this with the dig
command.

Version: v18.09 (6172afc) 292

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.44: Testing the Consul DNS

larry$ dig @172.17.0.1 consul.service.consul
; <<>> DiG 9.10.3-P4-Ubuntu <<>> @172.17.0.1 consul.service.

consul
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42298
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0,

ADDITIONAL: 0

;; QUESTION SECTION:
;consul.service.consul. IN A

;; ANSWER SECTION:
consul.service.consul. 0 IN A 162.243.170.66
consul.service.consul. 0 IN A 159.203.191.16
consul.service.consul. 0 IN A 162.243.167.159

;; Query time: 1 msec
;; SERVER: 172.17.0.1#53(172.17.0.1)
;; WHEN: Sat Aug 06 12:54:18 UTC 2016
;; MSG SIZE rcvd: 150

Here we’ve queried the IP of the local Docker interface as a DNS server and asked
it to return any information on consul.service.consul. This format is Consul’s
DNS shorthand for services: consul is the host and service.consul is the domain.
Here consul.service.consul represent the DNS entry for the Consul service itself.
For example:

Version: v18.09 (6172afc) 293

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.45: Querying another Consul service via DNS

larry$ dig @172.17.0.1 webservice.service.consul

Would return all DNS A records for the service webservice. We can also query
individual nodes.

Listing 7.46: Querying another Consul service via DNS

larry$ dig @172.17.0.1 curly.node.consul +noall +answer

; <<>> DiG 9.10.3-P4-Ubuntu <<>> @172.17.0.1 curly.node.consul +
noall +answer

; (1 server found)
;; global options: +cmd
curly.node.consul. 0 IN A 162.243.170.66

 TIP You can see more details on Consul’s DNS interface in the Consul docu-
mentation.

We now have a running Consul cluster inside Docker containers running on three
separate hosts. That’s pretty cool but it’s not overly useful. Let’s see how we can
register a service in Consul and then retrieve that data.

Running a distributed service with Consul in Docker
To register our service we’re going to create a phony distributed application writ-
ten in the uWSGI framework. We’re going to build our application in two pieces.

Version: v18.09 (6172afc) 294

http://www.consul.io/docs/agent/dns.html
http://www.consul.io/docs/agent/dns.html
http://uwsgi-docs.readthedocs.org/en/latest/

Chapter 7: Docker Orchestration and Service Discovery

• A web application, distributed_app. It runs web workers and registers
them as services with Consul when it starts.
• A client for our application, distributed_client. The client reads data
about distributed_app from Consul and reports the current application
state and configuration.

We’re going run the distributed_app on two of our Consul nodes: larry and
curly. We’ll run the distributed_client client on the moe node.

Building our distributed application

We’re going to start with creating a Dockerfile to build distributed_app. Let’s
create a directory to hold our image first.

Listing 7.47: Creating a distributed_app Dockerfile directory

$ mkdir distributed_app
$ cd distributed_app
$ touch Dockerfile

Now let’s look at the Dockerfile for our distributed_app application.

Version: v18.09 (6172afc) 295

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.48: The distributed_app Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get -qqy update
RUN apt-get -qqy install ruby-dev git libcurl4-openssl-dev curl

build-essential python
RUN gem install --no-ri --no-rdoc uwsgi sinatra

RUN mkdir -p /opt/distributed_app
WORKDIR /opt/distributed_app

RUN uwsgi --build-plugin https://github.com/unbit/uwsgi-consul

ADD uwsgi-consul.ini /opt/distributed_app/
ADD config.ru /opt/distributed_app/

ENTRYPOINT ["uwsgi", "--ini", "uwsgi-consul.ini", "--ini", "
uwsgi-consul.ini:server1", "--ini", "uwsgi-consul.ini:server2
"]

CMD []

Our Dockerfile installs some required packages including the uWSGI and Sinatra
frameworks as well as a plugin to allow uWSGI to write to Consul. We create a
directory called /opt/distributed_app/ and make it our working directory. We
then add two files, uwsgi-consul.ini and config.ru to that directory.
The uwsgi-consul.ini file configured uWSGI itself. Let’s look at it now.

Version: v18.09 (6172afc) 296

https://github.com/unbit/uwsgi-consul

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.49: The uWSGI configuration

[uwsgi]
plugins = consul
socket = 127.0.0.1:9999
master = true
enable-threads = true

[server1]
consul-register = url=http://%h.node.consul:8500,name=

distributed_app,id=server1,port=2001
mule = config.ru

[server2]
consul-register = url=http://%h.node.consul:8500,name=

distributed_app,id=server2,port=2002
mule = config.ru

The uwsgi-consul.ini file uses uWSGI’s Mule construct to run two identical ap-
plications that do “Hello World” in the Sinatra framework. Let’s look at those in
the config.ru file.

Version: v18.09 (6172afc) 297

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.50: The distributed_app config.ru file

require 'rubygems'
require 'sinatra'

get '/' do
"Hello World!"
end

run Sinatra::Application

Each application is defined in a block, labelled server1 and server2 respectively.
Also inside these blocks is a call to the uWSGI Consul plugin. This call connects
to our Consul instance and registers a service called distributed_app with an ID
of server1 or server2. Each service is assigned a different port, 2001 and 2002
respectively.
When the framework runs this will create our two web application workers and
register a service for each on Consul. The application will use the local Consul
node to create the service with the %h configuration shortcut populating the Consul
URL with the right hostname.

Listing 7.51: The Consul plugin URL

url=http://%h.node.consul:8500...

Lastly, we’ve configured an ENTRYPOINT instruction to automatically run our web
application workers.
Let’s build our image now.

Version: v18.09 (6172afc) 298

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.52: Building our distributed_app image

$ sudo docker build -t="jamtur01/distributed_app" .

 NOTE You can get our distributed_app Dockerfile and configuration
and application files on GitHub.

Building our distributed client

We’re now going to create a Dockerfile to build our distributed_client image.
Let’s create a directory to hold our image first.

Listing 7.53: Creating a distributed_client Dockerfile directory

$ mkdir distributed_client
$ cd distributed_client
$ touch Dockerfile

Now let’s look at the Dockerfile for the distributed_client application.

Version: v18.09 (6172afc) 299

https://github.com/turnbullpress/dockerbook-code/tree/master/code/7/consul/

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.54: The distributed_client Dockerfile

FROM ubuntu:18.04
LABEL maintainer="james@example.com"
ENV REFRESHED_AT 2016-06-01

RUN apt-get -qqy update
RUN apt-get -qqy install ruby ruby-dev build-essential
RUN gem install --no-ri --no-rdoc json

RUN mkdir -p /opt/distributed_client
ADD client.rb /opt/distributed_client/

WORKDIR /opt/distributed_client

ENTRYPOINT ["ruby", "/opt/distributed_client/client.rb"]
CMD []

The Dockerfile installs Ruby and some prerequisite packages and gems. It creates
the /opt/distributed_client directory and makes it the working directory. It
copies our client application code, contained in the client.rb file, into the /opt
/distributed_client directory.
Let’s take a quick look at our application code now.

Version: v18.09 (6172afc) 300

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.55: The distributed_client application

require "rubygems"
require "json"
require "net/http"
require "uri"
require "resolv"

uri = URI.parse("http://consul.service.consul:8500/v1/catalog/
service/distributed_app")

http = Net::HTTP.new(uri.host, uri.port)
request = Net::HTTP::Get.new(uri.request_uri)
response = http.request(request)

while true
if response.body == "{}"
puts "There are no distributed applications registered in
Consul"
sleep(1)

elsif
result = JSON.parse(response.body)
result.each do |service|
puts "Application #{service['ServiceName']} with element #{

service["ServiceID"]} on port #{service["ServicePort"]} found
on node #{service["Node"]} (#{service["Address"]})."
dns = Resolv::DNS.new.getresources("distributed_app.service

.consul", Resolv::DNS::Resource::IN::A)
puts "We can also resolve DNS - #{service['ServiceName']}

resolves to #{dns.collect { |d| d.address }.join(" and ")}."
sleep(1)

end
end

end

Version: v18.09 (6172afc) 301

Chapter 7: Docker Orchestration and Service Discovery

Our client checks the Consul HTTP API and the Consul DNS for the presence of
a service called distributed_app. It queries the host consul.service.consul
which is the DNS CNAME entry we saw earlier that contains all the A records of
our Consul cluster nodes. This provides us with a simple DNS round robin for our
queries.
If no service is present it puts a message to that effect on the console. If it detects
a distributed_app service then it:

• Parses out the JSON output from the API call and returns some useful infor-
mation to the console.
• Performs a DNS lookup for any A records for that service and returns them
to the console.

This will allow us to see the results of launching our distributed_app containers
on our Consul cluster.
Lastly our Dockerfile specifies an ENTRYPOINT instruction that runs the client.rb
application when the container is started.
Let’s build our image now.

Listing 7.56: Building our distributed_client image

$ sudo docker build -t="jamtur01/distributed_client" .

 NOTE You can get our distributed_client Dockerfile and configuration
and application files on GitHub.

Starting our distributed application

Now we’ve built the required images we can launch our distributed_app applica-
tion container on larry and curly. We’ve assumed that you have Consul running

Version: v18.09 (6172afc) 302

https://github.com/turnbullpress/dockerbook-code/tree/master/code/7/consul/

Chapter 7: Docker Orchestration and Service Discovery

as we’ve configured it earlier in the chapter. Let’s start by running one application
instance on larry.

Listing 7.57: Starting distributed_app on larry

larry$ sudo docker run --dns=172.17.0.1 -h $HOSTNAME -d --name
larry_distributed \

jamtur01/distributed_app

Here we’ve launched the jamtur01/distributed_app image and specified the --
dns flag to add a DNS lookup from the Docker server, here represented by the
docker0 interface bridge IP address of 172.17.0.1. As we’ve bound Consul’s DNS
lookup when we ran the Consul server this will allow the application to lookup
nodes and services in Consul. You should replace this with the IP address of your
own docker0 interface.
We’ve also specified -h flag to set the hostname. This is important because we’re
using this hostname to tell uWSGI what Consul node to register the service on.
We’ve called our container larry_distributed and run it daemonized.
If we check the log output from the container we should see uWSGI starting our
web application workers and registering the service on Consul.

Version: v18.09 (6172afc) 303

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.58: The distributed_app log output

larry$ sudo docker logs larry_distributed
*** Starting uWSGI 2.0.13.1 (64bit) on [Sat Aug 6 13:44:26 2016]

compiled with version: 5.4.0 20160609 on 06 August 2016 12:58:54
os: Linux-4.4.0-31-generic #50-Ubuntu SMP Wed Jul 13 00:07:12 UTC

2016

. . .

Sat Aug 6 13:44:26 2016 - [consul] workers ready, let's register
the service to the agent

spawned uWSGI mule 2 (pid: 13)
[consul] service distributed_app registered successfully
Sat Aug 6 13:44:27 2016 - [consul] workers ready, let's register

the service to the agent
[consul] service distributed_app registered successfully

We see a subset of the logs here and that uWSGI has started. The Consul plugin has
constructed a service entry for each distributed_app worker and then registered
them with Consul. If we now look at the Consul web interface we should be able
to see our new services.

Version: v18.09 (6172afc) 304

http://www.consul.io/docs/agent/services.html

Chapter 7: Docker Orchestration and Service Discovery

Figure 7.4: The distributed_app service in the Consul web interface.

Let’s start some more web application workers on curly now.

Listing 7.59: Starting distributed_app on curly

curly$ sudo docker run --dns=172.17.0.1 -h $HOSTNAME -d --name
curly_distributed \

jamtur01/distributed_app

If we check the logs and the Consul web interface we should now see more services
registered.

Version: v18.09 (6172afc) 305

Chapter 7: Docker Orchestration and Service Discovery

Figure 7.5: More distributed_app services in the Consul web interface.

Starting our distributed application client

Now we’ve got web application workers running on larry and curly let’s start
our client on moe and see if we can query data from Consul.

Listing 7.60: Starting distributed_client on moe

moe$ sudo docker run -ti --dns=172.17.0.1 --name
moe_distributed_client jamtur01/distributed_client

This time we’ve run the jamtur01/distributed_client image on moe and created
an interactive container called moe_distributed_client. It should start emitting
log output like so:

Version: v18.09 (6172afc) 306

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.61: The distributed_client logs on moe

Application distributed_app with element server1 on port 2001
found on node curly (162.243.170.66).

We can also resolve DNS - distributed_app resolves to
162.243.167.159 and 162.243.170.66.

Application distributed_app with element server2 on port 2002
found on node curly (162.243.170.66).

We can also resolve DNS - distributed_app resolves to
162.243.167.159 and 162.243.170.66.

Application distributed_app with element server1 on port 2001
found on node larry (162.243.167.159).

We can also resolve DNS - distributed_app resolves to
162.243.170.66 and 162.243.167.159.

Application distributed_app with element server2 on port 2002
found on node larry (162.243.167.159).

We can also resolve DNS - distributed_app resolves to
162.243.167.159 and 162.243.170.66.

We see that our distributed_client application has queried the HTTP API and
found service entries for distributed_app and its server1 and server2 workers
on both larry and curly. It has also done a DNS lookup to discover the IP address
of the nodes running that service, 162.243.167.159 and 162.243.170.66.
If this was a real distributed application our client and our workers could take
advantage of this information to configure, connect, route between elements of
the distributed application. This provides a simple, easy and resilient way to build
distributed applications running inside separate Docker containers and hosts.

Docker Swarm
Docker Swarm is native clustering for Docker. It turns a pool of Docker hosts

Version: v18.09 (6172afc) 307

http://docs.docker.com/swarm/

Chapter 7: Docker Orchestration and Service Discovery

into a single virtual Docker host. Swarm has a simple architecture. It clusters
together multiple Docker hosts and serves the standard Docker API on top of that
cluster. This is incredibly powerful because it moves up the abstraction of Docker
containers to the cluster level without you having to learn a new API. This makes
integration with tools that already support the Docker API easy, including the
standard Docker client. To a Docker client a Swarm cluster is just another Docker
host.
Swarm, like many other Docker tools, follows a design principle of “batteries in-
cluded but removable”. This means it ships with tooling and backend integration
for simple use cases and provides an API for integration with more complex tools
and use cases. Swarm is shipped integrated into Docker since Docker 1.12. Prior
to that it was a standalone application licensed with the Apache 2 license.

Understanding the Swarm
A swarm is a cluster of Docker hosts onto which you can deploy services. Since
Docker 1.12 the Docker command line tool has included a swarm mode. This
allows the docker binary to create and manage swarms as well as run local con-
tainers.
A swarm is made up of manager and worker nodes. Manager do the dispatching
and organizing of work on the swarm. Each unit of work is called a task. Managers
also handle all the cluster management functions that keep the swarm healthy and
active. You can have many manager nodes, if there is more than one then the
manager node will conduct an election for a leader.
Worker nodes run the tasks dispatched from manager nodes. Out of the box, every
node, managers and workers, will run tasks. You can instead configure a swarm
manager node to only perform management activities and not run tasks.
As a task is a pretty atomic unit swarms use a bigger abstraction, called a service
as a building block. Services defined which tasks are executed on your nodes.
Each service consists of a container image and a series of commands to execute
inside one or more containers on the nodes. You can run services in a number of
modes:

Version: v18.09 (6172afc) 308

Chapter 7: Docker Orchestration and Service Discovery

• Replicated services - a swarm manager distributes replica tasks amongst
workers according to a scale you specify.
• Global services - a swarm manager dispatches one task for the service on
every available worker.

The swarm also manages load balancing and DNS much like a local Docker host.
Each swarm can expose ports, much like Docker containers publish ports. Like
container ports, These can be automatically or manually defined. The swarm
handles internal DNS much like a Docker host allowing services and workers to
be discoverable inside the swarm.

Installing Swarm
The easiest way to install Swarm is to use Docker itself. As a result, Swarm doesn’t
have anymore prerequisites than what we saw in Chapter 2. These instructions
assume you’ve installed Docker in accordance with those instructions.

 TIP Prior to Docker 1.12, when Swarm was integrated into Docker, you can
use Swarm via a Docker image provided by the Docker Inc team called swarm.
Instructions for installation and usage are available on the Docker Swarm docu-
mentation site.

We’re going to reuse our larry, curly and moe hosts to demonstrate Swarm.
The latest Docker release is already installed on these hosts and we’re going to
turn them into nodes of a Swarm cluster.

Setting up a Swarm
Now let’s create a Swarm cluster. Each node in our cluster runs a Swarm node
agent. Each agent registers its related Docker daemon with the cluster. Also

Version: v18.09 (6172afc) 309

https://docs.docker.com/swarm/
https://docs.docker.com/swarm/

Chapter 7: Docker Orchestration and Service Discovery

available is the Swarm manager that we’ll use to manage our cluster. We’re going
to create two cluster workers and a manager on our three hosts.

Table 7.3: Swarm addresses and roles

Host IP Address Role
larry 162.243.167.159 Manager
curly 162.243.170.66 Worker
moe 159.203.191.16 Worker

We also need to make sure some ports are open between all our nodes. We need
to consider the following access:

Table 7.4: Docker Swarm default ports.

Port Purpose
2377 Cluster Management
7946 + udp Node communication
4789 + udp Overlay network

We’re going to start with registering a Swarm on our larry node and use this host
as our Swarm manager. We’re again going to need larry’s public IP address. Let’s
make sure it’s still assigned to an environment variable.

Listing 7.62: Getting public IP on larry again

larry$ PUBLIC_IP="$(ifconfig eth0 | awk -F ' *|:' '/inet addr/{
print $4}')"

larry$ echo $PUBLIC_IP
162.243.167.159

Now let’s initialize a swarm on larry using this address.

Version: v18.09 (6172afc) 310

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.63: Initializing a swarm on larry

$ sudo docker swarm init --advertise-addr $PUBLIC_IP
Swarm initialized: current node (bu84wfix0h0x31aut8qlpbi9x) is

now a manager.

To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-2
mk0wnb9m9cdwhheoysr3pt8orxku8c7k3x3kjjsxatc5ua72v-776
lg9r60gigwb32q329m0dli \
162.243.167.159:2377

To add a manager to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-2
mk0wnb9m9cdwhheoysr3pt8orxku8c7k3x3kjjsxatc5ua72v-78
bsc54abf35rhpr3ntbh98t8 \
162.243.167.159:2377

You can see we’ve run a docker command: swarm. We’ve then used the init option
to initialize a swarm and the --advertise-addr flag to specify the management
IP of the new swarm.
We can see the swarm has been started, assigning larry as the swarm manager.
Each swarm has two registration tokens initialized when the swarm begins. One
token for a manager and another for worker nodes. Each type of node can use
this token to join the swarm. We can see one of our tokens:
SWMTKN-1-2mk0wnb9m9cdwhheoysr3pt8orxku8c7k3x3kjjsxatc5ua72v-776
lg9r60gigwb32q329m0dli

You can see that the output from initializing the swarm has also provided sample
commands for adding workers and managers to the new swarm.

Version: v18.09 (6172afc) 311

Chapter 7: Docker Orchestration and Service Discovery

 TIP If you ever need to get this token back again then you can run the docker
swarm join-token worker command on the Swarm manager to retrieve it.

Let’s look at the state of our Swarm by running the docker info command.

Listing 7.64: The Docker

larry$ sudo docker info
. . .
Swarm: active
NodeID: bu84wfix0h0x31aut8qlpbi9x
Is Manager: true
ClusterID: 0qtrjqv37gs3yc5f7ywt8nwfq
Managers: 1
Nodes: 1
Orchestration:
Task History Retention Limit: 5
Raft:
Snapshot interval: 10000
Heartbeat tick: 1
Election tick: 3
Dispatcher:
Heartbeat period: 5 seconds
CA configuration:
Expiry duration: 3 months
Node Address: 162.243.167.159
. . .

By enabling a swarm you’ll see a new section in the docker info output.
We can also view information on the nodes inside the swarm using the docker
node command.

Version: v18.09 (6172afc) 312

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.65: The docker node command

larry$ sudo docker node ls
ID HOSTNAME STATUS AVAILABILITY

MANAGER STATUS
bu84wfix0h0x31aut8qlpbi9x * larry Ready Active

Leader

The docker node command with the ls flag shows the list of nodes in the swarm.
Currently we only have one node larry which is active and shows its role as
Leader of the manager nodes.
Let’s add our curly and moe hosts to the swarm as workers. We can use the
command emitted when we initialized the swarm.

Listing 7.66: Adding worker nodes to the cluster

curly$ sudo docker swarm join \
--token SWMTKN-1-2

mk0wnb9m9cdwhheoysr3pt8orxku8c7k3x3kjjsxatc5ua72v-776
lg9r60gigwb32q329m0dli \

162.243.167.159:2377
This node joined a swarm as a worker.

The docker swarm join command takes a token, in our case the worker token,
and the IP address and port of a Swarm manager node and adds that Docker host
to the swarm.
And then again with the same command on the moe node. Now let’s look at our
node list again on the larry host.

Version: v18.09 (6172afc) 313

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.67: Running the docker node command again

larry$ sudo docker node ls
ID HOSTNAME STATUS AVAILABILITY

MANAGER STATUS
bu84wfix0h0x31aut8qlpbi9x * larry Ready Active

Leader
c6viix7oja1twnyuc8ez7txhd curly Ready Active
dzxrvk6awnegjtj5aixnojetf moe Ready Active

Now we can see two more nodes added to our swarm as workers.

Running a service on your Swarm
With the swarm running, we can now start to run services on it. Remember ser-
vices are a container image and commands that will be executed on our swarm
nodes. Let’s create a simple replica service now. Remember that replica services
run the number of tasks you specify.

Listing 7.68: Creating a swarm service

$ sudo docker service create --replicas 2 --name heyworld ubuntu
/bin/sh -c "while true; do echo hey world; sleep 1; done"

8bl7yw1z3gzir0rmcvnrktqol

 TIP You can find the full list of docker service create flags on the Docker
documentation site.

Version: v18.09 (6172afc) 314

https://docs.docker.com/engine/reference/commandline/service_create/
https://docs.docker.com/engine/reference/commandline/service_create/

Chapter 7: Docker Orchestration and Service Discovery

We’ve used the docker service command with the create keyword. This creates
services on our swarm. We’ve used the --name flag to call the service: heyworld.
The heyworld runs the ubuntu image and a while loop that echoes hey world. The
--replicas flag controls how many tasks are run on the swarm. In this case we’re
running two tasks.
Let’s look at our service using the docker service ls command.

Listing 7.69: Listing the services

$ sudo docker service ls
ID NAME REPLICAS IMAGE COMMAND
8bl7yw1z3gzi heyworld 2/2 ubuntu /bin/sh -c while true;

do echo hey world; sleep 1; done

This command lists all services in the swarm. We can see that our heyworld service
is running on two replicas. We can inspect the service in further detail using the
docker service inspect command. We’ve also passed in the --pretty flag to
return the output in an elegant form.

Version: v18.09 (6172afc) 315

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.70: Inspecting the heyworld service

$ sudo docker service inspect --pretty heyworld
ID: 8bl7yw1z3gzir0rmcvnrktqol
Name: heyworld
Mode: Replicated
Replicas: 2
Placement:
UpdateConfig:
Parallelism: 1
On failure: pause
ContainerSpec:
Image: ubuntu
Args: /bin/sh -c while true; do echo hey world; sleep 1;

done
Resources:

But we still don’t know where the service running. Let’s look at another command:
docker service ps.

Listing 7.71: Checking the heyworld service process

$ sudo docker service ps heyworld
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
103q... heyworld.1 ubuntu larry Running Running about a

minute ago
6ztf... heyworld.2 ubuntu moe Running Running about a

minute ago

We can see each task, suffixed with the task number, and the node it is running
on.

Version: v18.09 (6172afc) 316

Chapter 7: Docker Orchestration and Service Discovery

Now, let’s say we wanted to add another task to the service, scaling it up. To do
this we use the docker service scale command.

Listing 7.72: Scaling the heyworld service

$ sudo docker service scale heyworld=3
heyworld scaled to 3

We specify the service we want to scale and then the new number of tasks we
want run, here 3. The swarm has then let us know it has scaled. Let’s again check
the running processes.

Listing 7.73: Checking the heyworld service process

$ sudo docker service ps heyworld
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
103q... heyworld.1 ubuntu larry Running Running 5 minutes

ago
6ztf... heyworld.2 ubuntu moe Running Running 5 minutes

ago
1gib... heyworld.3 ubuntu curly Running Running about a

minute ago

We can see that our service is now running on a third node.
In addition to running replica services we can also run global services. Rather
than running as many replicas as you specify, global services run on every worker
in the swarm.

Version: v18.09 (6172afc) 317

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.74: Running a global service

$ sudo docker service create --name heyworld_global --mode global
ubuntu /bin/sh -c "while true; do echo hey world; sleep 1;
done"

Here we’ve started a global service called heyworld_global. We’ve specified the
--mode flag with a value of global and run the same ubuntu image and the same
command we ran above.
Let’s see the processes for the heyworld_global service using the docker service
ps command.

Listing 7.75: The heyworld_global process

$ sudo docker service ps heyworld_global
ID NAME IMAGE NODE DESIRED STATE CURRENT

STATE
c8c1... heyworld_global ubuntu moe Running Running 30

seconds ago
48wm... _ heyworld_global ubuntu curly Running Running 30

seconds ago
8b8u... _ heyworld_global ubuntu larry Running Running 29

seconds ago

We can see that the heyworld_global service is running on every one of our nodes.
If we want to stop a service we can run the docker service rm command.

Version: v18.09 (6172afc) 318

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.76: Deleting the heyworld service

$ sudo docker service rm heyworld
heyworld

We can now list the running services.

Listing 7.77: Listing the remaining services

$ sudo docker service ls
ID NAME REPLICAS IMAGE COMMAND
5k3t... heyworld_global global ubuntu /bin/sh -c...

And we can see that only the heyworld_global service remains running.

 TIP Swarm mode also allows for scaling, draining and staged upgrades. You
can find some examples of this in Docker Swarm tutorial.

Orchestration alternatives and components
As we mentioned earlier, Compose and Consul aren’t the only games in town when
it comes to Docker orchestration tools. There’s a fast growing ecosystem of them.
This is a non-comprehensive list of some of the tools available in that ecosystem.
Not all of them have matching functionality and broadly fall into two categories:

• Scheduling and cluster management.
• Service discovery.

Version: v18.09 (6172afc) 319

https://docs.docker.com/engine/swarm/swarm-tutorial/

Chapter 7: Docker Orchestration and Service Discovery

 NOTE All of the tools listed are open source under various licenses.

Fleet and etcd
Fleet and etcd are released by the CoreOS team. Fleet is a cluster management tool
and etcd is highly available key value store for shared configuration and service
discovery. Fleet combines systemd and etcd to provide cluster management and
scheduling for containers. Think of it as an extension of systemd that operates at
the cluster level instead of the machine level.

Kubernetes
Kubernetes is a container cluster management tool open sourced by Google. It
allows you to deploy and scale applications using Docker across multiple hosts.
Kubernetes is primarily targeted at applications comprised of multiple containers,
such as elastic, distributed micro-services.

Apache Mesos
The Apache Mesos project is a highly available cluster management tool. Since
Mesos 0.20.0 it has built-in Docker integration to allow you to use containers with
Mesos. Mesos is popular with a number of startups, notably Twitter and AirBnB.

Helios
The Helios project has been released by the team at Spotify and is a Docker or-
chestration platform for deploying and managing containers across an entire fleet.
It creates a “job” abstraction that you can deploy to one or more Helios hosts
running Docker.

Version: v18.09 (6172afc) 320

https://coreos.com/
https://github.com/coreos/fleet
https://github.com/coreos/etcd
http://kubernetes.io/
http://mesos.apache.org/
http://mesos.apache.org/documentation/latest/docker-containerizer/
https://github.com/spotify/helios

Chapter 7: Docker Orchestration and Service Discovery

Centurion
Centurion is focused on being a Docker-based deployment tool open sourced by
the New Relic team. Centurion takes containers from a Docker registry and runs
them on a fleet of hosts with the correct environment variables, host volume map-
pings, and port mappings. It is designed to help you do continuous deployment
with Docker.

Summary
In this chapter we’ve introduced you to orchestration with Compose. We’ve shown
you how to add a Compose configuration file to create simple application stacks.
We’ve shown you how to run Compose and build those stacks and how to perform
basic management tasks on them.
We’ve also shown you a service discovery tool, Consul. We’ve installed Consul
onto Docker and created a cluster of Consul nodes. We’ve also demonstrated how
a simple distributed application might work on Docker.
We also took a look at Docker Swarm as a Docker clustering and scheduling tool.
We saw how to install Swarm, how to manage it and how to schedule workloads
across it.
Finally, we’ve seen some of the other orchestration tools available to us in the
Docker ecosystem.
In the next chapter we’ll look at the Docker API, how we can use it, and how we
can secure connections to our Docker daemon via TLS.

Version: v18.09 (6172afc) 321

https://github.com/newrelic/centurion

Chapter 8

Using the Docker API

In Chapter 6, we saw some excellent examples of how to run services and build
applications and workflow around Docker. One of those examples, the TProv ap-
plication, focused on using the docker binary on the command line and capturing
the resulting output. This is not an elegant approach to integrating with Docker;
especially when Docker comes with a powerful API you can use to integrate di-
rectly.
In this chapter, we’re going to introduce you to the Docker API and see how to
make use of it. We’re going to take you through binding the Docker daemon on
a network port. We’ll then take you through the API at a high level and hit on
the key aspects of it. We’ll also look at the TProv application we saw in Chapter 6
and rewrite some portions of it to use the API instead of the docker binary. Lastly,
we’ll look at authenticating the API via TLS.

The Docker APIs
There are three specific APIs in the Docker ecosystem.

• The Registry API - provides integration with the Docker registry, which
stores our images.
• The Docker Hub API - provides integration with the Docker Hub.

322

https://docs.docker.com/registry/spec/api/
https://hub.docker.com

Chapter 8: Using the Docker API

• The Docker Engine API - provides integration with the Docker daemon.

All three APIs are broadly RESTful. In this chapter, we’ll focus on the Engine API
because it is key to any programmatic integration and interaction with Docker.

First steps with the Engine API
Let’s explore the Docker Engine API and see its capabilities. Firstly, we need
to remember the Engine API is provided by the Docker daemon. By default, the
Docker daemons binds to a socket, unix:///var/run/docker.sock, on the host on
which it is running. The daemon runs with root privileges so as to have the access
needed to manage the appropriate resources. As we also discovered in Chapter 2,
if a group named docker exists on your system, Docker will apply ownership of
the socket to that group. Hence, any user that belongs to the docker group can
run Docker without needing root privileges.

WARNING Remember that although the docker group makes life easier,
it is still a security exposure. The docker group is root-equivalent and should be
limited to those users and applications that absolutely need it.

This works fine if we’re querying the API from the same host running Docker, but
if we want remote access to the API, we need to bind the Docker daemon to a
network interface. This is done by passing or adjusting the -H flag to the Docker
daemon.
If you want to use the Docker API locally we use the curl command to query it,
like so:

Version: v18.09 (6172afc) 323

https://docs.docker.com/engine/api/
http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 8: Using the Docker API

Listing 8.1: Querying the Docker API locally

$ curl --unix-socket /var/run/docker.sock http:/info
{"ID":"PH4R:BT7H:44F6:GQGP:FS2O:7OZO:HQ2P:NSVF:MK27:NBGZ:N3VP:

K2O5","Containers":3,"ContainersRunning":3,"ContainersPaused"
:0,"ContainersStopped":0,"Images":3,"

. . .
}

On most distributions, we can bind the Docker daemon to a network interface by
editing the daemon’s startup configuration files. For older Ubuntu or Debian re-
leases, this would be the /etc/default/docker file; for those releases with Upstart,
it would be the /etc/init/docker.conf file; for systemd releases it’ll be /lib/
systemd/system/docker.service. For Red Hat, Fedora, and related distributions,
it would be the /etc/sysconfig/docker file; for those releases with Systemd, it is
the /usr/lib/systemd/system/docker.service file.
Let’s bind the Docker daemon to a network interface on a Red Hat derivative
running systemd. We’ll edit the /usr/lib/systemd/system/docker.service file
and change:

Listing 8.2: Default systemd daemon start options

ExecStart=/usr/bin/dockerd --selinux-enabled

To:

Version: v18.09 (6172afc) 324

Chapter 8: Using the Docker API

Listing 8.3: Network binding systemd daemon start options

ExecStart=/usr/bin/dockerd --selinux-enabled -H tcp
://0.0.0.0:2375

This will bind the Docker daemon to all interfaces on the host using port 2375.
We then need to reload and restart the daemon using the systemctl command.

Listing 8.4: Reloading and restarting the Docker daemon

$ sudo systemctl --system daemon-reload

 TIP You’ll also need to ensure that any firewall on the Docker host or between
you and the host allows TCP communication to the IP address on port 2375.

We now test that this is working using the docker client binary, passing the -H flag
to specify our Docker host. Let’s connect to our Docker daemon from a remote
host.

Version: v18.09 (6172afc) 325

Chapter 8: Using the Docker API

Listing 8.5: Connecting to a remote Docker daemon

$ sudo docker -H docker.example.com:2375 info
Containers: 0
Images: 0
Driver: devicemapper
Pool Name: docker-252:0-133394-pool
Data file: /var/lib/docker/devicemapper/devicemapper/data
Metadata file: /var/lib/docker/devicemapper/devicemapper/
metadata

. . .

This assumes the Docker host is called docker.example.com; we’ve used the -H
flag to specify this host. Docker will also honor the DOCKER_HOST environment
variable rather than requiring the continued use of the -H flag.

Listing 8.6: Revisiting the DOCKER_HOST environment variable

$ export DOCKER_HOST="tcp://docker.example.com:2375"

 WARNING Remember this connection is unauthenticated and open to
the world! Later in this chapter, we’ll see how we add authentication to this
connection.

Version: v18.09 (6172afc) 326

Chapter 8: Using the Docker API

Testing the Docker Engine API
Now that we’ve established and confirmed connectivity to the Docker daemon via
the docker binary, let’s try to connect directly to the API. To do so, we’re going to
use the curl command. We’re going to connect to the info API endpoint, which
provides roughly the same information as the docker info command.

Listing 8.7: Using the info API endpoint

$ curl http://docker.example.com:2375/info | python3 -mjson.tool
{

"ID": "PH4R:BT7H:44F6:GQGP:FS2O:7OZO:HQ2P:NSVF:MK27:NBGZ:N3VP
:K2O5",
"Containers": 7,
"ContainersRunning": 1,
"ContainersPaused": 0,
"ContainersStopped": 6,
"Images": 3,
"Driver": "aufs",
"DriverStatus": [

[
. . .

We’ve connected to the Docker API on http://docker.example.com:2375
using the curl command, and we’ve specified the path to the Docker API:
docker.example.com on port 2375 with endpoint info.
We see that the API has returned a JSON hash, of which we’ve included a sample,
containing the system information for the Docker daemon. This demonstrates that
the Docker API is working and we’re getting some data back. We’ve passed the
JSON through python’s JSON tool to prettify it.

Version: v18.09 (6172afc) 327

Chapter 8: Using the Docker API

Managing images with the API
Let’s start with some API basics: working with Docker images. We’re going to
start by getting a list of all the images on our Docker daemon.

Listing 8.8: Getting a list of images via API

$ curl http://docker.example.com:2375/images/json | python3 -
mjson.tool

[
{

"Id": "sha256:
b608dbb10e2564f5bd0eef045bf297e56b1149edc70bece54fef4b217261a473
",

"ParentId": "",
"RepoTags": [

"jamtur01/distributed_app:latest"
],
"RepoDigests": [

"jamtur01/distributed_app@sha256:
ecc6b617e9c776d8bd7ed281a55b02e9214d701cad72b9628f5668edfbb86a26
"

],
"Created": 1470488372,
"Size": 469434429,
"VirtualSize": 469434429,
"Labels": {}

},
. . .
]

We’ve used the /images/json endpoint, which will return a list of all images on
the Docker daemon. It’ll give us much the same information as the docker images

Version: v18.09 (6172afc) 328

Chapter 8: Using the Docker API

command. We can also query specific images via ID, much like docker inspect
on an image ID.

Listing 8.9: Getting a specific image

$ curl http://docker.example.com:2375/images/
b608dbb10e2564f5bd0eef045bf297e56b1149edc70bece54fef4b217261a473
/json | python3 -mjson.tool

{
"Id": "sha256:
b608dbb10e2564f5bd0eef045bf297e56b1149edc70bece54fef4b217261a473
",
"RepoTags": [

"jamtur01/distributed_app:latest"
],
"RepoDigests": [

"jamtur01/distributed_app@sha256:
ecc6b617e9c776d8bd7ed281a55b02e9214d701cad72b9628f5668edfbb86a26
"
],
"Parent": "",
"Comment": "",
"Created": "2016-08-06T12:59:32.957396238Z",

. . .
}

}

Here we see a subset of the output of inspecting our jamtur01/distributed_app
image. And finally, like the command line, we can search for images on the
Docker Hub.

Version: v18.09 (6172afc) 329

Chapter 8: Using the Docker API

Listing 8.10: Searching for images with the API

$ curl "http://docker.example.com:2375/images/search?term=
jamtur01" | python3 -mjson.tool

[
{

"star_count": 0,
"is_official": false,
"name": "jamtur01/docker-jenkins-sample",
"is_automated": true,
"description": ""

},
{

"star_count": 5,
"is_official": false,
"name": "jamtur01/docker-presentation",
"is_automated": true,
"description": ""

},
. . .
]

Here we’ve searched for all images containing the term jamtur01 and displayed a
subset of the output returned. This is just a sampling of the actions we can take
with the Docker API. We can also build, update, and remove images.

Managing containers with the API
The Docker Engine API also exposes all of the container operations available to
us on the command line. We can list running containers using the /containers
endpoint much as we would with the docker ps command.

Version: v18.09 (6172afc) 330

Chapter 8: Using the Docker API

Listing 8.11: Listing running containers

$ curl -s "http://docker.example.com:2375/containers/json" |
python3 -mjson.tool

[
{

"Id": "
d580b605fa1bcd210af0d2fe28e50a018f9ea546b56e8b28806d8dc16596340e
",

"Names": [
"/heyworld_global.0.bbctscdrhkro371mkieb0roid"

],
"Image": "ubuntu:latest",
"ImageID": "sha256:42118

e3df429f09ca581a9deb3df274601930e428e452f7e4e9f1833c56a100a",
"Command": "/bin/sh -c 'while true; do echo hey world;

sleep 1; done'",
"Created": 1470676972,
"Ports": [],
"Labels": {

"com.docker.swarm.node.id": "
c6viix7oja1twnyuc8ez7txhd",

"com.docker.swarm.service.id": "5
k3tw55i050qqh16ob9651pqx",

"com.docker.swarm.service.name": "heyworld_global",
"com.docker.swarm.task": "",
"com.docker.swarm.task.id": "

bbctscdrhkro371mkieb0roid",
"com.docker.swarm.task.name": "heyworld_global.0"

},
"State": "running",
"Status": "Up 11 hours",
"HostConfig": {

"NetworkMode": "default"
},

. . .
}

]

Version: v18.09 (6172afc) 331

Chapter 8: Using the Docker API

Our query will show all running containers on the Docker host, in our case, a
single container. To see running and stopped containers, we can add the all flag
to the endpoint and set it to 1.

Listing 8.12: Listing all containers via the API

http://docker.example.com:2375/containers/json?all=1

We can also use the API to create containers by using a POST request to the /
containers/create endpoint. Here is the simplest possible container creation
API call.

Listing 8.13: Creating a container via the API

$ curl -X POST -H "Content-Type: application/json" \
http://docker.example.com:2375/containers/create \
-d '{

"Image":"jamtur01/jekyll"
}'
{"Id":"591

ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3
","Warnings":null}

We call the /containers/create endpoint and POST a JSON hash containing an
image name to the endpoint. The API returns the ID of the container we’ve just
created and potentially any warnings. This will create a container.
We can further configure our container creation by adding key/value pairs to our
JSON hash.

Version: v18.09 (6172afc) 332

Chapter 8: Using the Docker API

Listing 8.14: Configuring container launch via the API

$ curl -X POST -H "Content-Type: application/json" \
"http://docker.example.com:2375/containers/create?name=jekyll" \
-d '{

"Image":"jamtur01/jekyll",
"Hostname":"jekyll"

}'
{"Id":"591

ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3
","Warnings":null}

Here we’ve specified the Hostname key with a value of jekyll to set the hostname
of the resulting container.
To start the container we use the /containers/start endpoint.

Listing 8.15: Starting a container via the API

$ curl -X POST -H "Content-Type: application/json" \
http://docker.example.com:2375/containers/591

ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3
/start \

-d '{
"PublishAllPorts":true

}'

In combination, this provides the equivalent of running:

Version: v18.09 (6172afc) 333

Chapter 8: Using the Docker API

Listing 8.16: API equivalent for docker run command

$ sudo docker run jamtur01/jekyll

We can also inspect the resulting container via the /containers/ endpoint.

Listing 8.17: Listing all containers via the API

$ curl http://docker.example.com:2375/containers/591
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3
/json | python3 -mjson.tool

{
"Args": [

"build",
"--destination=/var/www/html"

],
. . .

"Hostname": "591ba02d8d14",
"Image": "jamtur01/jekyll",

. . .
"Id": "591
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3
",
"Image": "29
d4355e575cff59d7b7ad837055f231970296846ab58a037dd84be520d1cc31
",

. . .
"Name": "/hopeful_davinci",

. . .
}

Version: v18.09 (6172afc) 334

Chapter 8: Using the Docker API

Here we see we’ve queried our container using the container ID and shown a
sampling of the data available to us.

Improving the TProv application
Now let’s look at one of the methods inside the TProv application that we used
in Chapter 6. We’re going to look specifically at the methods which create and
delete Docker containers.

Listing 8.18: The legacy TProv container launch methods

def create_instance(name)
cid = `docker run -P --volumes-from #{name} -d -t jamtur01/
tomcat8 2>&1`.chop

[\$?.exitstatus == 0, cid]
end

 NOTE You can see the previous TProv code on GitHub.

Pretty crude, eh? We’re directly calling out to the docker binary and capturing its
output. There are lots of reasons that that will be problematic, not least of which
is that you can only run the TProv application somewhere with the Docker client
installed.
We can improve on this interface by using the Docker API via one of its client
libraries, in this case the Ruby Docker-API client library.

 TIP You can find a full list of the available client libraries here. There are
client libraries for Ruby, Python, Node.JS, Go, Erlang, Java, and others.

Version: v18.09 (6172afc) 335

https://github.com/turnbullpress/dockerbook-code/tree/master/code/6/tprov
https://github.com/swipely/docker-api
https://docs.docker.com/engine/api/sdks/

Chapter 8: Using the Docker API

Let’s start by looking at how we establish our connection to the Docker API.

Listing 8.19: The Docker Ruby client

require 'docker'
. . .

module TProvAPI
class Application < Sinatra::Base

. . .

Docker.url = ENV['DOCKER_URL'] || 'http://localhost:2375'
Docker.options = {
:ssl_verify_peer => false

}

We’ve added a require for the docker-api gem. We’d need to install this gem
first to get things to work or add it to the TProv application’s gem specification.
We can then use the Docker.url method to specify the location of the Docker
host we wish to use. In our code, we specify this via an environment variable,
DOCKER_URL, or use a default of http://localhost:2375.
We’ve also used the Docker.options to specify options we want to pass to the
Docker daemon connection.
We can test this idea using the IRB shell locally. Let’s try that now. You’ll need
to have Ruby installed on the host on which you are testing. Let’s assume we’re
using a Fedora host.

Version: v18.09 (6172afc) 336

Chapter 8: Using the Docker API

Listing 8.20: Installing the Docker Ruby client API prerequisites

$ sudo yum -y install ruby ruby-irb
. . .
$ sudo gem install docker-api json
. . .

Now we can use irb to test our Docker API connection.

Version: v18.09 (6172afc) 337

Chapter 8: Using the Docker API

Listing 8.21: Testing our Docker API connection via irb

$ irb
irb(main):001:0> require 'docker'; require 'pp'
=> true
irb(main):002:0> Docker.url = 'http://docker.example.com:2375'
=> "http://docker.example.com:2375"
irb(main):003:0> Docker.options = { :ssl_verify_peer => false }
=> {:ssl_verify_peer=>false}
irb(main):004:0> pp Docker.info
{"Containers"=>9,
"Debug"=>0,
"Driver"=>"aufs",
"DriverStatus"=>[["Root Dir", "/var/lib/docker/aufs"], ["Dirs",

"882"]],
"ExecutionDriver"=>"native-0.2",
. . .
irb(main):005:0> pp Docker.version
{"ApiVersion"=>"1.12",
"Arch"=>"amd64",
"GitCommit"=>"990021a",
"GoVersion"=>"go1.2.1",
"KernelVersion"=>"3.10.0-33-generic",
"Os"=>"linux",
"Version"=>"1.0.1"}
. . .

We’ve launched irb and loaded the docker gem (via a require) and the pp library
to help make our output look nicer. We’ve then specified the Docker.url and
Docker.options methods to set the target Docker host and our required options
(here disabling SSL peer verification to use TLS, but not authenticate the client).

Version: v18.09 (6172afc) 338

Chapter 8: Using the Docker API

We’ve then run two global methods, Docker.info and Docker.version, which
provide the Ruby client API equivalents of the binary commands docker info
and docker version.
We can now update our TProv container management methods to use the API via
the docker-api client library. Let’s look at some code that does this now.

Listing 8.22: Our updated TProv container management methods

def get_war(name, url)
container = Docker::Container.create('Cmd' => url, 'Image' => '
jamtur01/fetcher', 'name' => name)

container.start
container.id

end

def create_instance(name)
container = Docker::Container.create('Image' => 'jamtur01/
tomcat8')

container.start('PublishAllPorts' => true, 'VolumesFrom' =>
name)

container.id
end

def delete_instance(cid)
container = Docker::Container.get(cid)
container.kill

end

You can see we’ve replaced the previous binary shell with a rather cleaner
implementation using the Docker API. Our get_war method creates and starts our
jamtur01/fetcher container using the Docker::Container.create and Docker
::Container.start methods. The create_instance method does the same for
the jamtur01/tomcat8 container. Finally, our delete_instance method has been

Version: v18.09 (6172afc) 339

Chapter 8: Using the Docker API

updated to retrieve a container using the container ID via the Docker::Container
.get method. We then kill the container with the Docker::Container.kill
method.
You can install the API-enabled version of the TProv application via gem to see it
in action.

Listing 8.23: Installing TProvAPI

$ sudo gem install tprov-api

 NOTE You can see the updated TProv code on GitHub.

Authenticating the Docker Engine API
Whilst we’ve shown that we can connect to the Docker Engine API, that means
that anyone else can also connect to the API. That poses a bit of a security issue.
The Engine API has an authentication mechanism that has been available since
the 0.9 release of Docker. The authentication uses TLS/SSL certificates to secure
your connection to the API.

 TIP This authentication applies to more than just the API. By turning this
authentication on, you will also need to configure our Docker client to support
TLS authentication. We’ll see how to do that in this section, too.

There are a couple of ways we could authenticate our connection, including using
a full PKI infrastructure, either creating our own Certificate Authority (CA) or
using an existing CA. We’re going to create our own certificate authority because

Version: v18.09 (6172afc) 340

https://github.com/turnbullpress/dockerbook-code/tree/master/code/8/tprov_api

Chapter 8: Using the Docker API

it is a simple and fast way to get started.

 WARNING This relies on a local CA running on your Docker host. This
is not as secure as using a full-fledged Certificate Authority.

Create a Certificate Authority
We’re going to quickly step through creating the required CA certificate and key,
as it is a pretty standard process on most platforms. It requires the openssl binary
as a prerequisite.

Listing 8.24: Checking for openssl

$ which openssl
/usr/bin/openssl

Let’s create a directory on our Docker host to hold our CA and related materials.

Listing 8.25: Create a CA directory

$ sudo mkdir /etc/docker

Now let’s create our CA.
We first generate a private key.

Version: v18.09 (6172afc) 341

Chapter 8: Using the Docker API

Listing 8.26: Generating a private key

$ cd /etc/docker
$ echo 01 | sudo tee ca.srl
$ sudo openssl genrsa -des3 -out ca-key.pem
Generating RSA private key, 512 bit long modulus
....++++++++++++
.................++++++++++++
e is 65537 (0x10001)
Enter pass phrase for ca-key.pem:
Verifying - Enter pass phrase for ca-key.pem:

We’ll specify a passphrase for the CA key, make note of this phrase, and secure it.
We’ll need it to create and sign certificates with our new CA.
This also creates a new file called ca-key.pem. This is our CA key; we’ll not want
to share it or lose it, as it is integral to the security of our solution.
Now let’s create a CA certificate.

Version: v18.09 (6172afc) 342

Chapter 8: Using the Docker API

Listing 8.27: Creating a CA certificate

$ sudo openssl req -new -x509 -days 365 -key ca-key.pem -out ca.
pem

Enter pass phrase for ca-key.pem:
You are about to be asked to enter information that will be

incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished

Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:docker.example.com
Email Address []:

This will create the ca.pem file that is the certificate for our CA. We’ll need this
later to verify our secure connection.
Now that we have our CA, let’s use it to create a certificate and key for our Docker
server.

Create a server certificate signing request and key
We can use our new CA to sign and validate a certificate signing request or CSR
and key for our Docker server. Let’s start with creating a key for our server.

Version: v18.09 (6172afc) 343

Chapter 8: Using the Docker API

Listing 8.28: Creating a server key

$ sudo openssl genrsa -des3 -out server-key.pem
Generating RSA private key, 512 bit long modulus
...................++++++++++++
...............++++++++++++
e is 65537 (0x10001)
Enter pass phrase for server-key.pem:
Verifying - Enter pass phrase for server-key.pem:

This will create our server key, server-key.pem. As above, we need to keep this
key safe: it is what secures our Docker server.

 NOTE Specify any pass phrase here. We’re going to strip it out before we
use the key. You’ll only need it for the next couple of steps.

Next let’s create our server certificate signing request (CSR).

Version: v18.09 (6172afc) 344

Chapter 8: Using the Docker API

Listing 8.29: Creating our server CSR

$ sudo openssl req -new -key server-key.pem -out server.csr
Enter pass phrase for server-key.pem:
You are about to be asked to enter information that will be

incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished

Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:*
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

This will create a file called server.csr. This is the request that our CA will sign
to create our server certificate. The most important option here is Common Name or
CN. This should either be the FQDN (fully qualified domain name) of the Docker
server (i.e., what is resolved to in DNS; for example, docker.example.com) or *,
which will allow us to use the server certificate on any server.
We also know folks connect to our host via IP address so we need to configure for

Version: v18.09 (6172afc) 345

Chapter 8: Using the Docker API

that too.

Listing 8.30: Connect via IP address

$ echo subjectAltName = IP:x.x.x.x,IP:127.0.0.1 > extfile.cnf

Replacing x.x.x.x with the IP address(es) of your Docker daemon.
Now let’s sign our CSR and generate our server certificate.

Listing 8.31: Signing our CSR

$ sudo openssl x509 -req -days 365 -in server.csr -CA ca.pem \
-CAkey ca-key.pem -out server-cert.pem -extfile extfile.cnf
Signature ok
subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd/CN=*
Getting CA Private Key
Enter pass phrase for ca-key.pem:

We’ll enter the passphrase of the CA’s key file, and a file called server-cert.pem
will be generated. This is our server’s certificate.
Now let’s strip out the passphrase from our server key. We can’t enter one when
the Docker daemon starts, so we need to remove it.

Listing 8.32: Removing the passphrase from the server key

$ sudo openssl rsa -in server-key.pem -out server-key.pem
Enter pass phrase for server-key.pem:
writing RSA key

Now let’s add some tighter permissions to the files to better protect them.

Version: v18.09 (6172afc) 346

Chapter 8: Using the Docker API

Listing 8.33: Securing the key and certificate on the Docker server

$ sudo chmod 0600 /etc/docker/server-key.pem /etc/docker/server-
cert.pem \

/etc/docker/ca-key.pem /etc/docker/ca.pem

Configuring the Docker daemon
Now that we’ve got our certificate and key, let’s configure the Docker daemon to
use them. As we did to expose the Docker daemon to a network socket, we’re
going to edit its startup configuration. As before, for Ubuntu or Debian, we’ll edit
the /etc/default/docker file; for those distributions with Upstart, it’s the /etc/
init/docker.conf file. For Red Hat, Fedora, and related distributions, we’ll edit
the /etc/sysconfig/docker file; for those releases with Systemd, it’s the /usr/
lib/systemd/system/docker.service file.
Let’s again assume a Red Hat derivative running Systemd and edit the /usr/lib/
systemd/system/docker.service file:

Listing 8.34: Enabling Docker TLS on systemd

ExecStart=/usr/bin/docker -d -H tcp://0.0.0.0:2376 --tlsverify --
tlscacert=/etc/docker/ca.pem --tlscert=/etc/docker/server-
cert.pem --tlskey=/etc/docker/server-key.pem

 NOTE You can see that we’ve used port number 2376; this is the default
TLS/SSL port for Docker. You should only use 2375 for unauthenticated connec-
tions.

Version: v18.09 (6172afc) 347

Chapter 8: Using the Docker API

This code will enable TLS using the --tlsverify flag. We’ve also specified the lo-
cation of our CA certificate, certificate, and key using the --tlscacert, --tlscert
and --tlskey flags, respectively. There are a variety of other TLS options that we
could also use.

 TIP You can use the --tls flag to enable TLS, but not client-side authentica-
tion.

We then need to reload and restart the daemon using the systemctl command.

Listing 8.35: Reloading and restarting the Docker daemon

$ sudo systemctl --system daemon-reload

Creating a client certificate and key
Our server is now TLS enabled; next, we need to create and sign a certificate and
key to secure our Docker client. Let’s start with a key for our client.

Listing 8.36: Creating a client key

$ sudo openssl genrsa -des3 -out client-key.pem
Generating RSA private key, 512 bit long modulus
..........++++++++++++
.......................................++++++++++++
e is 65537 (0x10001)
Enter pass phrase for client-key.pem:
Verifying - Enter pass phrase for client-key.pem:

Version: v18.09 (6172afc) 348

http://docs.docker.com/articles/https/
http://docs.docker.com/articles/https/

Chapter 8: Using the Docker API

This will create our key file client-key.pem. Again, we’ll need to specify a tem-
porary passphrase to use during the creation process.
Now let’s create a client CSR.

Listing 8.37: Creating a client CSR

$ sudo openssl req -new -key client-key.pem -out client.csr
Enter pass phrase for client-key.pem:
You are about to be asked to enter information that will be

incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished

Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []: Docker daemon

host FQDN
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Replace the Docker daemon host FQDN with the fully-qualified domain name of
your Docker daemon host.

Version: v18.09 (6172afc) 349

Chapter 8: Using the Docker API

We next need to enable client authentication for our key by adding some extended
SSL attributes.

Listing 8.38: Adding Client Authentication attributes

$ echo extendedKeyUsage = clientAuth > extfile.cnf

Now let’s sign our CSR with our CA.

Listing 8.39: Signing our client CSR

$ sudo openssl x509 -req -days 365 -in client.csr -CA ca.pem \
-CAkey ca-key.pem -out client-cert.pem -extfile extfile.cnf
Signature ok
subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd
Getting CA Private Key
Enter pass phrase for ca-key.pem:

Again, we use the CA key’s passphrase and generate another certificate: client-
cert.pem.
Finally, we strip the passphrase from our client-key.pem file to allow us to use
it with the Docker client.

Listing 8.40: Stripping out the client key pass phrase

$ sudo openssl rsa -in client-key.pem -out client-key.pem
Enter pass phrase for client-key.pem:
writing RSA key

Version: v18.09 (6172afc) 350

Chapter 8: Using the Docker API

Configuring our Docker client for authentication
Next let’s configure our Docker client to use our new TLS configuration. We need
to do this because the Docker daemon now expects authenticated connections for
both the client and the API.
We’ll need to copy our ca.pem, client-cert.pem, and client-key.pem files to the
host on which we’re intending to run the Docker client.

 TIP Remember that these keys provide root-level access to the Docker dae-
mon. You should protect them carefully.

Let’s install them into the .docker directory. This is the default location where
Docker will look for certificates and keys. Docker will specifically look for key.
pem, cert.pem, and our CA certificate: ca.pem.

Listing 8.41: Copying the key and certificate on the Docker client

$ mkdir -p ~/.docker/
$ cp ca.pem ~/.docker/ca.pem
$ cp client-key.pem ~/.docker/key.pem
$ cp client-cert.pem ~/.docker/cert.pem
$ chmod 0600 ~/.docker/key.pem ~/.docker/cert.pem

Now let’s test the connection to the Docker daemon from the client. To do this,
we’re going to use the docker info command.

Version: v18.09 (6172afc) 351

Chapter 8: Using the Docker API

Listing 8.42: Testing our TLS-authenticated connection

$ sudo docker -H=docker.example.com:2376 --tlsverify info
Containers: 33
Images: 104
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Dirs: 170
Execution Driver: native-0.1
Kernel Version: 3.10.0-33-generic
Username: jamtur01
Registry: [https://index.docker.io/v1/]
WARNING: No swap limit support

We see that we’ve specified the -H flag to tell the client to which host it should
connect. We could instead specify the host using the DOCKER_HOST environment
variable if we didn’t want to specify the -H flag each time. We’ve also specified the
--tlsverify flag, which enables our TLS connection to the Docker daemon. We
don’t need to specify any certificate or key files, because Docker has automatically
looked these up in our ~/.docker/ directory. If we did need to specify these files,
we could with the --tlscacert, --tlscert, and --tlskey flags.
So what happens if we don’t specify a TLS connection? Let’s try again nowwithout
the --tlsverify flag.

Listing 8.43: Testing our TLS-authenticated connection

$ sudo docker -H=docker.example.com:2376 info
2014/04/13 17:50:03 malformed HTTP response "\x15\x03\x01\x00\x02

\x02"

Ouch. That’s not good. If you see an error like this, you know you’ve probably not

Version: v18.09 (6172afc) 352

Chapter 8: Using the Docker API

enabled TLS on the connection, you’ve not specified the right TLS configuration,
or you have an incorrect certificate or key.
Assuming you’ve got everything working, you should now have an authenticated
Docker connection!

Summary
In this chapter, we’ve been introduced to the Docker Engine API. We’ve also seen
how to secure the Docker Engine API via SSL/TLS certificates. We’ve explored the
Docker API and how to use it to manage images and containers. We’ve also seen
how to use one of the Docker API client libraries to rewrite our TProv application
to directly use the Docker API.
In the next and last chapter, we’ll look at how you can contribute to Docker.

Version: v18.09 (6172afc) 353

Chapter 9

Getting help and extending Docker

Docker is in its infancy – sometimes things go wrong. This chapter will talk about:

• How and where to get help.
• Contributing fixes and features to Docker.

You’ll find out where to find Docker folks and the best way to ask for help. You’ll
also learn how to engage with Docker’s developer community: there’s a huge
amount of development effort surrounding Docker with hundreds of committers
in the open-source community. If you’re excited by Docker, then it’s easy to make
your own contribution to the project. This chapter will also cover the basics of
contributing to the Docker project, how to build a Docker development environ-
ment, and how to create a good pull request.

 NOTE This chapter assumes some basic familiarity with Git, GitHub, and
Go, but doesn’t assume you’re a fully fledged developer.

354

Chapter 9: Getting help and extending Docker

Getting help
The Docker community is large and friendly. Most Docker folks congregate in
three places:

 NOTE Docker, Inc. also sells enterprise support for Docker. You can find
the information on the Support page.

The Docker forums
There is a Docker forum available.

Docker on IRC
The Docker community also has two strong IRC channels: #docker and #docker-
dev. Both are on the Freenode IRC network
The #docker channel is generally for user help and general Docker issues, whereas
#docker-dev is where contributors to Docker’s source code gather.
You can find logs for #docker at https://botbot.me/freenode/docker/ and for
#docker-dev at https://botbot.me/freenode/docker-dev/.

Docker on GitHub
Docker (and most of its components and ecosystem) is hosted on GitHub. The
principal repository for Docker itself is https://github.com/docker/docker/.
Other repositories of note are:

• distribution - The stand-alone Docker registry and distribution tools.
• runc - The Docker container format and CLI tools.

Version: v18.09 (6172afc) 355

https://www.docker.com/support
https://forums.docker.com/
http://freenode.net/
https://botbot.me/freenode/docker/
https://botbot.me/freenode/docker-dev/
http://www.github.com
https://github.com/docker/docker/
https://github.com/docker/distribution
https://github.com/opencontainers/runc

Chapter 9: Getting help and extending Docker

• Docker Swarm - Docker’s orchestration framework.
• Docker Compose - The Docker Compose tool.

Reporting issues for Docker
Let’s start with the basics around submitting issues and patches and interacting
with the Docker community. When reporting issues with Docker, it’s important to
be an awesome open-source citizen and provide good information that can help
the community resolve your issue. When you log a ticket, please remember to
include the following background information:

• The output of docker info and docker version.
• The output of uname -a.
• Your operating system and version (e.g., Ubuntu 16.04).

Then provide a detailed explanation of your problem and the steps others can take
to reproduce it.
If you’re logging a feature request, carefully explain what you want and how you
propose it might work. Think carefully about generic use cases: is your feature
something that will make life easier for just you or for everyone?
Please take a moment to check that an issue doesn’t already exist documenting
your bug report or feature request. If it does, you can add a quick “+1” or “I have
this problem too”, or if you feel your input expands on the proposed implementa-
tion or bug fix, then add a more substantive update.

Setting up a build environment
To make it easier to contribute to Docker, we’re going to show you how to build
a development environment. The development environment provides all of the
required dependencies and build tooling to work with Docker.

Version: v18.09 (6172afc) 356

https://github.com/docker/swarm
https://github.com/docker/compose
https://github.com/docker/docker/issues

Chapter 9: Getting help and extending Docker

Install Docker
You must first install Docker in order to get a development environment, because
the build environment is a Docker container in its own right. We use Docker to
build and develop Docker. Use the steps from Chapter 2 to install Docker on your
local host. You should install the most recent version of Docker available.

Install source and build tools
Next, you need to install Make and Git so that we can check out the Docker source
code and run the build process. The source code is stored on GitHub, and the build
process is built around a Makefile.
On Ubuntu, we would install the git package.

Listing 9.1: Installing git on Ubuntu

$ sudo apt-get -y install git make

On Red Hat and derivatives we would do the following:

Listing 9.2: Installing git on Red Hat et al

$ sudo yum install git make

Check out the source
Now let’s check out the Docker source code (or, if you’re working on another
component, the relevant source code repository) and change into the resulting
directory. The source code is stored in a repository called Moby, which is the
codename for the broader ecosystem of Docker source code. It’s named this to

Version: v18.09 (6172afc) 357

Chapter 9: Getting help and extending Docker

reflect that components of Docker are used in a variety of different platforms, not
just the Docker Engine.

Listing 9.3: Check out the Docker source code

$ git clone https://github.com/moby/moby
$ cd moby

You can now work on the source code and fix bugs, update documentation, and
write awesome features!

Contributing to the documentation
One of the great ways anyone, even if you’re not a developer or skilled in Go, can
contribute to Docker is to update, enhance, or develop new documentation. The
Docker documentation lives on the Docs website. The source documentation, the
theme, and the tooling that generates this site are stored in the Docker Docs repo
on GitHub.
You can find specific guidelines and a basic style guide for the documentation at:

• https://github.com/docker/docker.github.io/blob/master/README.md.

You can build the documentation locally using Docker itself.
Make any changes you want to the documentation, and then you can stage the
documentation locally to review your changes.

Build the environment
If you want to contribute to Docker Engine, you can now use make and Docker
to build the development environment. The Docker source code ships with a
Dockerfile that we use to install all the build and runtime dependencies necessary
to build and test Docker.

Version: v18.09 (6172afc) 358

http://docs.docker.com
https://github.com/docker/docker.github.io
https://github.com/docker/docker.github.io
https://github.com/docker/docker.github.io/blob/master/README.md
https://github.com/docker/docker.github.io#staging-the-docs
https://github.com/docker/docker.github.io#staging-the-docs

Chapter 9: Getting help and extending Docker

Listing 9.4: Building the Docker environment

$ cd moby
$ sudo make build

 TIP This command will take some time to complete when you first execute
it. It might require a host with at least 2Gb of RAM to also run the development
build.

This command will create a full, running Docker development environment. It
will upload the current source directory as build context for a Docker image, build
the image containing Go and any other required dependencies, and then launch
a container from this image.
Using this development image, we also create a Docker binary to test any fixes or
features. We do this using the make tool again.

Listing 9.5: Building the Docker binary

$ sudo make binary

This command will create a docker and dockerd binary in a volume at ./bundles
/<version>-dev/binary-client/ and ./bundles/<version>-dev/binary-daemon
/ respectively. For example, we would create a client binary and associated check-
sums like so:

Version: v18.09 (6172afc) 359

Chapter 9: Getting help and extending Docker

Listing 9.6: The Docker dev client binary

$ ls -l bundles/1.13.0-dev/binary-client/
total 15344
lrwxrwxrwx 1 root root 17 Aug 9 13:59 docker -> docker-

1.13.0-dev
-rwxr-xr-x 1 root root 15700192 Aug 9 13:59 docker-1.13.0-dev
-rw-r--r-- 1 root root 52 Aug 9 13:59 docker-1.13.0-dev.

md5
-rw-r--r-- 1 root root 84 Aug 9 13:59 docker-1.13.0-dev.

sha256

You can then use this binary for live testing by running it instead of the local
Docker daemon. To do so, we need to stop Docker and run this new binary instead.

Listing 9.7: Using the development daemon

$ sudo service docker stop
$ ~/moby/bundles/1.13.0-dev/binary-daemon/dockerd

This will run the development Docker daemon interactively. You can also back-
ground the daemon if you wish.
We can then test the docker binary by running it against this daemon.

Version: v18.09 (6172afc) 360

Chapter 9: Getting help and extending Docker

Listing 9.8: Using the development binary

$ ~/moby/bundles/1.13.0-dev/binary-client/docker version
Client:
Version: 1.13.0-dev
API version: 1.25
Go version: go1.6.3
Git commit: 04e021d
Built: Tue Aug 9 13:58:52 2016
OS/Arch: linux/amd64

Server:
Version: 1.13.0-dev
API version: 1.25
Go version: go1.6.3
Git commit: 04e021d
Built: Tue Aug 9 13:58:52 2016
OS/Arch: linux/amd64

You can see that we’re running a 1.13.0-dev client, this binary, against the 1.13.0
-dev daemon we just started. You can use this combination to test and ensure any
changes you’ve made to the Docker source are working correctly.

Running the tests
It’s also important to ensure that all of the Docker tests pass before contributing
code back upstream. To execute all the tests, you need to run this command:

Version: v18.09 (6172afc) 361

Chapter 9: Getting help and extending Docker

Listing 9.9: Running the Docker tests

$ sudo make test

This command will again upload the current source as build context to an image
and then create a development image. A container will be launched from this
image, and the test will run inside it. Again, this may take some time for the
initial build.
If the tests are successful, then the end of the output should look something like
this:

Listing 9.10: Docker test output

. . .
[PASSED]: save - save a repo using stdout
[PASSED]: load - load a repo using stdout
[PASSED]: save - save a repo using -o
[PASSED]: load - load a repo using -i
[PASSED]: tag - busybox -> testfoobarbaz
[PASSED]: tag - busybox's image ID -> testfoobarbaz
[PASSED]: tag - busybox fooo/bar
[PASSED]: tag - busybox fooaa/test
[PASSED]: top - sleep process should be listed in non privileged

mode
[PASSED]: top - sleep process should be listed in privileged mode
[PASSED]: version - verify that it works and that the output is

properly formatted
PASS
PASS github.com/docker/docker/integration-cli 178.685s

Version: v18.09 (6172afc) 362

Chapter 9: Getting help and extending Docker

 TIP You can use the $TESTFLAGS environment variable to pass in arguments
to the test run.

Use Docker inside our development environment
You can also launch an interactive session inside the newly built development
container:

Listing 9.11: Launching an interactive session

$ sudo make shell

To exit the container, type exit or Ctrl-D.

Submitting a pull request
If you’re happy with your documentation update, bug fix, or new feature, you
can submit a pull request for it on GitHub. To do so, you should fork the Docker
repository and make changes on your fork in a feature branch:

• If it is a bug fix branch, name it XXXX-something, where XXXX is the number
of the issue.
• If it is a feature branch, create a feature issue to announce your intentions,
and name it XXXX-something, where XXXX is the number of the issue.

You should always submit unit tests for your changes. Take a look at the existing
tests for inspiration. You should also always run the full test suite on your branch
before submitting a pull request.
Any pull request with a feature in it should include updates to the documentation.
You should use the process above to test your documentation changes before you

Version: v18.09 (6172afc) 363

Chapter 9: Getting help and extending Docker

submit your pull request. There are also specific guidelines (as we mentioned
above) for documentation that you should follow.
We have some other simple rules that will help get your pull request reviewed and
merged quickly:

• Always run gofmt -s -w file.go on each changed file before committing
your changes. This produces consistent, clean code.
• Pull requests descriptions should be as clear as possible and include a refer-
ence to all the issues that they address.
• Pull requests must not contain commits from other users or branches.
• Commit messages must start with a capitalized and short summary (50 char-
acters maximum) written in the imperative, followed by an optional, more
detailed explanatory text that is separated from the summary by an empty
line.
• Squash your commits into logical units of work using git rebase -i and
git push -f. Include documentation changes in the same commit so that a
revert would remove all traces of the feature or fix.

Lastly, the Docker project uses a Developer Certificate of Origin to verify that you
wrote any code you submit or otherwise have the right to pass it on as an open-
source patch. You can read about why we do this at http://blog.docker.com/
2014/01/docker-code-contributions-require-developer-certificate-of-origin/.
The certificate is easy to apply. All you need to do is add a line to each Git
commit message.

Listing 9.12: The Docker DCO

Docker-DCO-1.1-Signed-off-by: Joe Smith <joe.smith@email.com> (
github: github_handle)

 NOTE You must use your real name. We do not allow pseudonyms or
anonymous contributions for legal reasons.

Version: v18.09 (6172afc) 364

http://blog.docker.com/2014/01/docker-code-contributions-require-developer-certificate-of-origin/
http://blog.docker.com/2014/01/docker-code-contributions-require-developer-certificate-of-origin/

Chapter 9: Getting help and extending Docker

There are several small exceptions to the signing requirement. Currently these
are:

• Your patch fixes spelling or grammar errors.
• Your patch is a single-line change to documentation contained in the Docu-
mentation repository.
• Your patch fixes Markdown formatting or syntax errors in the documenta-
tion contained in the Documentation repository.

It’s also pretty easy to automate the signing of your Git commits using the git
commit -s command.

 NOTE The signing script expects to find your GitHub user name in git
config --get github.user. You can set this option with the git config --set
github.user username command.

Merge approval and maintainers
Once you’ve submitted your pull request, it will be reviewed, and you will po-
tentially receive feedback. Docker uses a maintainer system much like the Linux
kernel. Each component inside Docker is managed by one or more maintainers
who are responsible for ensuring the quality, stability, and direction of that com-
ponent.
Docker maintainers use the shorthand LGTM (or Looks Good To Me) in comments
on the code review to indicate acceptance of a pull request. A change requires
LGTMs from an absolute majority of the maintainers of each component affected
by the changes (or for documentation - a minimum of two maintainers). If a
change affects Documentation and registry/, then it needs two maintainers of
Documentation and an absolute majority of the maintainers of registry/.

Version: v18.09 (6172afc) 365

Chapter 9: Getting help and extending Docker

 TIP For more details, see the maintainer process documentation.

Summary
In this chapter, we’ve learned about how to get help with Docker and the places
where useful Docker community members and developers hang out. We’ve also
learned about the best way to log an issue with Docker, including the sort of
information you need to provide to get the best response.
We’ve also seen how to set up a development environment to work on the Docker
source or documentation and how to build and test inside this environment to
ensure your fix or feature works. Finally, we’ve learned about how to create a
properly structured and good-quality pull request with your update.

Version: v18.09 (6172afc) 366

https://github.com/docker/docker/blob/master/MAINTAINERS

List of Figures
1.1 Docker architecture . 11
2.1 Installing Docker for Mac on OS X . 33
4.1 The Docker filesystem layers . 73
4.2 Docker Hub . 75
4.3 Creating a Docker Hub account. 83
4.4 Your image on the Docker Hub. 129
4.5 The Add Repository button. 131
4.6 Selecting your repository. 132
4.7 Configuring your Automated Build. 132
4.8 Deleting a repository. 134
5.1 Browsing the Sample website. 150
5.2 Browsing the edited Sample website. 151
5.3 Browsing the Jenkins server. 189
5.4 The Getting Started workflow . 190
5.5 Creating a new Jenkins job. 191
5.6 Jenkins job details part 1. 192
5.7 Jenkins job details part 2. 196
5.8 Running the Jenkins job. 196
5.9 The Jenkins job details. 197
5.10 The Jenkins job console output. 198
5.11 Creating a multi-configuration job. 200
5.12 Configuring a multi-configuration job Part 2. 201
5.13 Our Jenkins multi-configuration job 203
5.14 The centos sub-job. 204
5.15 The centos sub-job details. 205

367

List of Figures

5.16 The centos sub-job console output. 206
6.1 Our Jekyll website. 218
6.2 Our updated Jekyll website. 220
6.3 Our Tomcat sample application. 229
6.4 Our TProv web application. 231
6.5 Downloading a sample application. 232
6.6 Listing the Tomcat instances. 232
6.7 Our Node application. 249
7.1 Sample Compose application. 267
7.2 The Consul web interface. 280
7.3 The Consul service in the web interface. 292
7.4 The distributed_app service in the Consul web interface. 305
7.5 More distributed_app services in the Consul web interface. 306

Version: v18.09 (6172afc) 368

Listings
1 Sample code block . 4
2.1 Checking for the Linux kernel version on Ubuntu 22
2.2 Installing the linux-image-extra package 23
2.3 Installing a 3.10 or later kernel on Ubuntu 23
2.4 Updating the boot loader on Ubuntu Precise 23
2.5 Reboot the Ubuntu host . 24
2.6 Adding prerequisite Ubuntu packages 24
2.7 Adding the Docker GPG key . 24
2.8 Adding the Docker APT repository . 25
2.9 Updating APT sources . 25
2.10 Installing the Docker packages on Ubuntu 25
2.11 Checking Docker is installed on Ubuntu 26
2.12 Old UFW forwarding policy . 26
2.13 New UFW forwarding policy . 27
2.14 Reload the UFW firewall . 27
2.15 Checking the Red Hat or Fedora kernel 28
2.16 Installing EPEL on Red Hat Enterprise Linux 6 and CentOS 6 29
2.17 Installing the Docker package on Red Hat Enterprise Linux 6 and

CentOS 6 . 29
2.18 Installing Docker on RHEL 7 . 29
2.19 Installing the Docker package on Fedora 19 30
2.20 Installing the Docker package on Fedora 20 30
2.21 Installing the Docker package on Fedora 21 30
2.22 Installing the Docker package on Fedora 22 30
2.23 Starting the Docker daemon on Red Hat Enterprise Linux 6 31

369

Listings

2.24 Ensuring the Docker daemon starts at boot on Red Hat Enterprise
Linux 6 . 31

2.25 Starting the Docker daemon on Red Hat Enterprise Linux 7 31
2.26 Ensuring the Docker daemon starts at boot on Red Hat Enterprise

Linux 7 . 32
2.27 Checking Docker is installed on the Red Hat family 32
2.28 Downloading the Docker for Mac DMG file 33
2.29 Testing Docker for Mac on OS X . 34
2.30 Downloading the Docker for Windows .MSI file 35
2.31 Testing Docker for Windows . 36
2.32 Testing for curl . 37
2.33 Installing curl on Ubuntu . 38
2.34 Installing curl on Fedora . 38
2.35 Installing Docker from the installation script 38
2.36 Downloading the Docker binary . 39
2.37 Changing Docker daemon networking 40
2.38 Using the DOCKER_HOST environment variable 40
2.39 Binding the Docker daemon to a different socket 41
2.40 Binding the Docker daemon to multiple places 41
2.41 Turning on Docker daemon debug . 41
2.42 The systemd override file . 42
2.43 Checking the status of the Docker daemon 42
2.44 Starting and stopping Docker with Upstart 43
2.45 Starting and stopping Docker on Red Hat and Fedora 43
2.46 The Docker daemon isn’t running . 43
2.47 Upgrade docker . 44
3.1 Checking that the docker binary works 47
3.2 Running our first container . 49
3.3 The docker run command . 49
3.4 Our first container’s shell . 51
3.5 Checking the container’s hostname . 51
3.6 Checking the container’s /etc/hosts . 51
3.7 Checking the container’s interfaces . 52
3.8 Checking container’s processes . 52
3.9 Installing a package in our first container 52

Version: v18.09 (6172afc) 370

Listings

3.10 Listing Docker containers . 53
3.11 Naming a container . 54
3.12 Starting a stopped container . 55
3.13 Starting a stopped container by ID . 55
3.14 Attaching to a running container . 56
3.15 Attaching to a running container via ID 56
3.16 Inside our re-attached container . 56
3.17 Creating a long running container . 57
3.18 Viewing our running daemon_dave container 57
3.19 Fetching the logs of our daemonized container 58
3.20 Tailing the logs of our daemonized container 59
3.21 Tailing the logs of our daemonized container 60
3.22 Enabling Syslog at the container level 61
3.23 Inspecting the processes of the daemonized container 61
3.24 The docker top output . 62
3.25 The docker stats command . 62
3.26 Running a background task inside a container 63
3.27 Running an interactive command inside a container 64
3.28 Stopping the running Docker container 64
3.29 Stopping the running Docker container by ID 65
3.30 Automatically restarting containers 65
3.31 On-failure restart count . 66
3.32 Inspecting a container . 67
3.33 Selectively inspecting a container . 67
3.34 Inspecting the container’s IP address 68
3.35 Inspecting multiple containers . 68
3.36 Deleting a container . 69
3.37 Deleting all containers . 69
4.1 Revisiting running a basic Docker container 71
4.2 Listing Docker images . 74
4.3 Pulling the Ubuntu 16.04 image . 76
4.4 Listing the ubuntu Docker images . 76
4.5 Running a tagged Docker image . 77
4.6 Docker run and the default latest tag 78
4.7 Pulling the fedora image . 79

Version: v18.09 (6172afc) 371

Listings

4.8 Viewing the fedora image . 79
4.9 Pulling a tagged fedora image . 80
4.10 Searching for images . 80
4.11 Pulling down the jamtur01/puppetmaster image 81
4.12 Creating a Docker container from the puppetmaster image 81
4.13 Logging into the Docker Hub . 83
4.14 Creating a custom container to modify 84
4.15 Adding the Apache package . 84
4.16 Committing the custom container . 85
4.17 Reviewing our new image . 85
4.18 Committing another custom container 86
4.19 Inspecting our committed image . 86
4.20 Running a container from our committed image 87
4.21 Creating a sample repository . 88
4.22 Our first Dockerfile . 88
4.23 A RUN instruction in exec form . 90
4.24 Running the Dockerfile . 92
4.25 Tagging a build . 93
4.26 Building from a Git repository . 93
4.27 Uploading the build context to the daemon 94
4.28 Managing a failed instruction . 95
4.29 Creating a container from the last successful step 96
4.30 Bypassing the Dockerfile build cache 96
4.31 A template Ubuntu Dockerfile . 97
4.32 A template Fedora Dockerfile . 98
4.33 Listing our new Docker image . 98
4.34 Using the docker history command . 99
4.35 Launching a container from our new image 99
4.36 Viewing the Docker port mapping . 100
4.37 The docker port command . 101
4.38 The docker port command with container name 101
4.39 Exposing a specific port with -p . 101
4.40 Binding to a different port . 102
4.41 Binding to a specific interface . 102
4.42 Binding to a random port on a specific interface 102

Version: v18.09 (6172afc) 372

Listings

4.43 Exposing a port with docker run . 103
4.44 Connecting to the container via curl 103
4.45 Specifying a specific command to run 104
4.46 Using the CMD instruction . 104
4.47 Passing parameters to the CMD instruction 105
4.48 Overriding CMD instructions in the Dockerfile 106
4.49 Launching a container with a CMD instruction 106
4.50 Overriding a command locally . 106
4.51 Specifying an ENTRYPOINT . 107
4.52 Specifying an ENTRYPOINT parameter 107
4.53 Rebuilding static_web with a new ENTRYPOINT 108
4.54 Using docker run with ENTRYPOINT 108
4.55 Using ENTRYPOINT and CMD together 109
4.56 Using the WORKDIR instruction . 110
4.57 Overriding the working directory . 110
4.58 Setting an environment variable in Dockerfile 110
4.59 Prefixing a RUN instruction . 111
4.60 Executing with an ENV prefix . 111
4.61 Setting multiple environment variables using ENV 111
4.62 Using an environment variable in other Dockerfile instructions . . 111
4.63 Persistent environment variables in Docker containers 112
4.64 Runtime environment variables . 112
4.65 Using the USER instruction . 113
4.66 Specifying USER and GROUP variants 113
4.67 Using the VOLUME instruction . 114
4.68 Using multiple VOLUME instructions 115
4.69 Using the ADD instruction . 115
4.70 URL as the source of an ADD instruction 116
4.71 Archive as the source of an ADD instruction 116
4.72 Using the COPY instruction . 117
4.73 Adding LABEL instructions . 118
4.74 Using docker inspect to view labels 118
4.75 Adding ARG instructions . 119
4.76 Using an ARG instruction . 120
4.77 The predefined ARG variables . 120

Version: v18.09 (6172afc) 373

Listings

4.78 Specifying a HEALTHCHECK instruction 121
4.79 Docker inspect the health state . 122
4.80 Health log output . 123
4.81 Disabling inherited health checks . 123
4.82 Adding ONBUILD instructions . 124
4.83 Showing ONBUILD instructions with docker inspect 124
4.84 A new ONBUILD image Dockerfile . 125
4.85 Building the apache2 image . 125
4.86 The webapp Dockerfile . 126
4.87 Building our webapp image . 126
4.88 Trying to push a root image . 128
4.89 Pushing a Docker image . 129
4.90 Deleting a Docker image . 133
4.91 Deleting multiple Docker images . 135
4.92 Deleting all images . 135
4.93 Running a container-based registry . 136
4.94 Listing the jamtur01 static_web Docker image 136
4.95 Tagging our image for our new registry 137
4.96 Pushing an image to our new registry 137
4.97 Building a container from our local registry 138
5.1 Creating a directory for our Sample website Dockerfile 141
5.2 Getting our Nginx configuration files 142
5.3 The Dockerfile for the Sample website 142
5.4 The global.conf file . 143
5.5 The nginx.conf configuration file . 144
5.6 Building our new Nginx image . 145
5.7 Showing the history of the Nginx image 146
5.8 Downloading our Sample website . 147
5.9 Running our first Nginx testing container 147
5.10 Controlling the write status of a volume 149
5.11 Viewing the Sample website container 149
5.12 Editing our Sample website . 150
5.13 Old title . 151
5.14 New title . 151
5.15 Create directory for web application testing 152

Version: v18.09 (6172afc) 374

Listings

5.16 Dockerfile for our Sinatra container 153
5.17 Building our new Sinatra image . 153
5.18 Download our Sinatra web application 154
5.19 The Sinatra app.rb source code . 155
5.20 Making the webapp/bin/webapp binary executable 155
5.21 Launching our first Sinatra container 156
5.22 The CMD instruction in our Dockerfile 156
5.23 Checking the logs of our Sinatra container 157
5.24 Tailing the logs of our Sinatra container 157
5.25 Using docker top to list our Sinatra processes 157
5.26 Checking the Sinatra port mapping . 158
5.27 Testing our Sinatra application . 158
5.28 Download our updated Sinatra web application 159
5.29 The webapp_redis app.rb file . 160
5.30 Making the webapp_redis/bin/webapp binary executable 161
5.31 Create directory for Redis container 161
5.32 Dockerfile for Redis image . 162
5.33 Building our Redis image . 162
5.34 Launching a Redis container . 162
5.35 Checking the Redis port . 163
5.36 Installing the redis-tools package on Ubuntu 163
5.37 Installing the redis package on Red Hat et al 163
5.38 Testing our Redis connection . 163
5.39 The docker0 interface . 165
5.40 The veth interfaces . 166
5.41 The eth0 interface in a container . 167
5.42 Tracing a route out of our container 167
5.43 Docker iptables and NAT . 168
5.44 Redis container’s networking configuration 169
5.45 Finding the Redis container’s IP address 170
5.46 Talking directly to the Redis container 170
5.47 Restarting our Redis container . 171
5.48 Finding the restarted Redis container’s IP address 171
5.49 Creating a Docker network . 172
5.50 Inspecting the app network . 173

Version: v18.09 (6172afc) 375

Listings

5.51 The docker network ls command . 174
5.52 Creating a Redis container inside our Docker network 174
5.53 The updated app network . 175
5.54 Linking our Redis container . 176
5.55 Installing nslookup . 176
5.56 DNS resolution in the network_test container 177
5.57 Pinging db.app in the network_test container 177
5.58 The Redis DB hostname in code . 178
5.59 Starting the Redis-enabled Sinatra application 178
5.60 Checking the Sinatra container’s port mapping 179
5.61 Testing our Redis-enabled Sinatra application 179
5.62 Confirming Redis contains data . 180
5.63 Running the db2 container . 180
5.64 Adding a new container to the app network 180
5.65 The app network after adding db2 . 181
5.66 Disconnecting a host from a network 182
5.67 Jenkins and Docker Dockerfile . 184
5.68 Create directory for Jenkins . 185
5.69 Building our Docker-Jenkins image 186
5.70 Running our Docker-Jenkins image 186
5.71 Checking the Docker Jenkins container logs 188
5.72 Checking that is Jenkins up and running 189
5.73 The Docker shell script for Jenkins jobs 193
5.74 The Docker test job Dockerfile . 194
5.75 Jenkins multi-configuration shell step 202
5.76 Our CentOS-based Dockerfile . 203
6.1 Creating our Jekyll Dockerfile . 209
6.2 Jekyll Dockerfile . 210
6.3 Building our Jekyll image . 211
6.4 Viewing our new Jekyll Base image . 211
6.5 Creating our Apache Dockerfile . 212
6.6 Jekyll Apache Dockerfile . 213
6.7 Building our Jekyll Apache image . 214
6.8 Viewing our new Jekyll Apache image 215
6.9 Getting a sample Jekyll blog . 215

Version: v18.09 (6172afc) 376

Listings

6.10 Creating a Jekyll container . 216
6.11 Creating an Apache container . 217
6.12 Resolving the Apache container’s port 218
6.13 Editing our Jekyll blog . 219
6.14 Restarting our james_blog container 219
6.15 Checking the james_blog container logs 219
6.16 Backing up the /var/www/html volume 221
6.17 Backup command . 221
6.18 Creating our fetcher Dockerfile . 223
6.19 Our war file fetcher . 224
6.20 Building our fetcher image . 224
6.21 Fetching a war file . 225
6.22 Inspecting our Sample volume . 226
6.23 Listing the volume directory . 226
6.24 Creating our Tomcat 7 Dockerfile . 227
6.25 Our Tomcat 7 Application server . 227
6.26 Building our Tomcat 7 image . 228
6.27 Creating our first Tomcat instance . 228
6.28 Identifying the Tomcat application port 229
6.29 Installing Ruby . 230
6.30 Installing the TProv application . 230
6.31 Launching the TProv application . 230
6.32 Creating our Node.js Dockerfile . 234
6.33 Our Node.js image . 235
6.34 Our Node.js server.js application . 236
6.35 Building our Node.js image . 237
6.36 Creating our Redis base Dockerfile . 238
6.37 Our Redis base image . 238
6.38 Building our Redis base image . 239
6.39 Creating our Redis primary Dockerfile 239
6.40 Our Redis primary image . 239
6.41 Building our Redis primary image . 240
6.42 Creating our Redis replica Dockerfile 240
6.43 Our Redis replica image . 241
6.44 Building our Redis replica image . 241

Version: v18.09 (6172afc) 377

Listings

6.45 Creating the express network . 242
6.46 Running the Redis primary container 242
6.47 Our Redis primary logs . 242
6.48 Reading our Redis primary logs . 243
6.49 Running our first Redis replica container 244
6.50 Reading our Redis replica logs . 245
6.51 Running our second Redis replica container 246
6.52 Our Redis replica2 logs . 247
6.53 Running our Node.js container . 248
6.54 The nodeapp console log . 248
6.55 Node application output . 249
6.56 Creating our Logstash Dockerfile . 250
6.57 Our Logstash image . 250
6.58 Our Logstash configuration . 251
6.59 Building our Logstash image . 252
6.60 Launching a Logstash container . 252
6.61 A Node event in Logstash . 253
6.62 Using docker kill to send signals . 254
6.63 Running docker exec . 255
7.1 Installing Docker Compose on Linux . 258
7.2 Installing Docker Compose on OS X . 258
7.3 Testing Docker Compose is working . 259
7.4 Creating the composeapp directory . 260
7.5 The app.py file . 260
7.6 The requirements.txt file . 261
7.7 The composeapp Dockerfile . 261
7.8 Building the composeapp application 262
7.9 Creating the docker-compose.yml file 263
7.10 The docker-compose.yml file . 264
7.11 An example of the build instruction 265
7.12 The docker run equivalent command 265
7.13 Running docker-compose up with our sample application 266
7.14 Compose service log output . 267
7.15 Running Compose daemonized . 267
7.16 Restarting Compose as daemonized 268

Version: v18.09 (6172afc) 378

Listings

7.17 Running the docker-compose ps command 269
7.18 Showing a Compose services logs . 270
7.19 Stopping running services . 270
7.20 Verifying our Compose services have been stopped 271
7.21 Removing Compose services . 271
7.22 Showing no Compose services . 272
7.23 Creating a Consul Dockerfile directory 274
7.24 The Consul Dockerfile . 275
7.25 The consul.json configuration file . 276
7.26 Building our Consul image . 278
7.27 Running a local Consul node . 279
7.28 Pulling down the Consul image . 281
7.29 Getting public IP on larry . 281
7.30 Assigning public IP on curly and moe 282
7.31 Adding the cluster IP address . 283
7.32 Start the Consul bootstrap node . 283
7.33 Consul agent command line arguments 284
7.34 Starting bootstrap Consul node . 285
7.35 Cluster leader error . 286
7.36 Starting the agent on curly . 286
7.37 Launching the Consul agent on curly 286
7.38 Looking at the Curly agent logs . 288
7.39 Curly joining Larry . 289
7.40 Starting the agent on moe . 289
7.41 Consul logs on moe . 290
7.42 Consul leader election on larry . 291
7.43 Getting the docker0 IP address . 292
7.44 Testing the Consul DNS . 293
7.45 Querying another Consul service via DNS 294
7.46 Querying another Consul service via DNS 294
7.47 Creating a distributed_app Dockerfile directory 295
7.48 The distributed_app Dockerfile . 296
7.49 The uWSGI configuration . 297
7.50 The distributed_app config.ru file . 298
7.51 The Consul plugin URL . 298

Version: v18.09 (6172afc) 379

Listings

7.52 Building our distributed_app image 299
7.53 Creating a distributed_client Dockerfile directory 299
7.54 The distributed_client Dockerfile . 300
7.55 The distributed_client application . 301
7.56 Building our distributed_client image 302
7.57 Starting distributed_app on larry . 303
7.58 The distributed_app log output . 304
7.59 Starting distributed_app on curly . 305
7.60 Starting distributed_client on moe . 306
7.61 The distributed_client logs on moe . 307
7.62 Getting public IP on larry again . 310
7.63 Initializing a swarm on larry . 311
7.64 The Docker . 312
7.65 The docker node command . 313
7.66 Adding worker nodes to the cluster 313
7.67 Running the docker node command again 314
7.68 Creating a swarm service . 314
7.69 Listing the services . 315
7.70 Inspecting the heyworld service . 316
7.71 Checking the heyworld service process 316
7.72 Scaling the heyworld service . 317
7.73 Checking the heyworld service process 317
7.74 Running a global service . 318
7.75 The heyworld_global process . 318
7.76 Deleting the heyworld service . 319
7.77 Listing the remaining services . 319
8.1 Querying the Docker API locally . 324
8.2 Default systemd daemon start options 324
8.3 Network binding systemd daemon start options 325
8.4 Reloading and restarting the Docker daemon 325
8.5 Connecting to a remote Docker daemon 326
8.6 Revisiting the DOCKER_HOST environment variable 326
8.7 Using the info API endpoint . 327
8.8 Getting a list of images via API . 328
8.9 Getting a specific image . 329

Version: v18.09 (6172afc) 380

Listings

8.10 Searching for images with the API . 330
8.11 Listing running containers . 331
8.12 Listing all containers via the API . 332
8.13 Creating a container via the API . 332
8.14 Configuring container launch via the API 333
8.15 Starting a container via the API . 333
8.16 API equivalent for docker run command 334
8.17 Listing all containers via the API . 334
8.18 The legacy TProv container launch methods 335
8.19 The Docker Ruby client . 336
8.20 Installing the Docker Ruby client API prerequisites 337
8.21 Testing our Docker API connection via irb 338
8.22 Our updated TProv container management methods 339
8.23 Installing TProvAPI . 340
8.24 Checking for openssl . 341
8.25 Create a CA directory . 341
8.26 Generating a private key . 342
8.27 Creating a CA certificate . 343
8.28 Creating a server key . 344
8.29 Creating our server CSR . 345
8.30 Connect via IP address . 346
8.31 Signing our CSR . 346
8.32 Removing the passphrase from the server key 346
8.33 Securing the key and certificate on the Docker server 347
8.34 Enabling Docker TLS on systemd . 347
8.35 Reloading and restarting the Docker daemon 348
8.36 Creating a client key . 348
8.37 Creating a client CSR . 349
8.38 Adding Client Authentication attributes 350
8.39 Signing our client CSR . 350
8.40 Stripping out the client key pass phrase 350
8.41 Copying the key and certificate on the Docker client 351
8.42 Testing our TLS-authenticated connection 352
8.43 Testing our TLS-authenticated connection 352
9.1 Installing git on Ubuntu . 357

Version: v18.09 (6172afc) 381

Listings

9.2 Installing git on Red Hat et al . 357
9.3 Check out the Docker source code . 358
9.4 Building the Docker environment . 359
9.5 Building the Docker binary . 359
9.6 The Docker dev client binary . 360
9.7 Using the development daemon . 360
9.8 Using the development binary . 361
9.9 Running the Docker tests . 362
9.10 Docker test output . 362
9.11 Launching an interactive session . 363
9.12 The Docker DCO . 364

Version: v18.09 (6172afc) 382

Index
.dockerignore, 94
/etc/hosts, 51
/var/lib/docker, 47, 68, 74, 217
Apache, 208, 214
API, 322
/containers, 330
/containers/create, 332
/images/json, 328
/info, 327
Client libraries, 335
containers, 334
info, 327

API documentation, 322
AUFS, 21
Automated Builds, 130
Automatically restarting containers, 65
Back up volumes, 220
Boot2Docker, 19, 32, 34
btrfs, 21
Build content, 117
Build context, 88, 94, 359
.dockerignore, 94

Building images, 87
Bypassing the Dockerfile cache, 96
CentOS, 27

cgroups, 17, 21
Chef, 15, 20
Chocolatey, 35
chroot, 6
CI, 14, 183
Compose, 257
services, 257

Connecting containers, 141
Consul, 273
configuration, 276
DNS, 273, 276, 302
HTTP API, 273, 277, 302
ports, 276
web interface, 277

container
logging, 58
names, 54

Container ID, 53
container ID, 51, 54, 55, 57, 64
containers
introduction, 6

Context, 88
Continuous Integration, 14, 140, 183
Copy-on-write, 17
curl, 158
DCO, 364

383

Index

Debian, 22
Debugging Dockerfiles, 95
default storage driver, 21
Developer Certificate of Origin, see also

DCO
Device Mapper, 21
dind, 230
DNS, 242
Docker
API, 322, 340
Client libraries, 335
List images, 328
APT repository, 25
Authentication, 340
automatic container restart, 65
binary installation, 38
Bind UDP ports, 102
build context, 359
build environment, 356, 358
clustering, 308
Configuration Management, 15
connecting containers, 141, 158
container ID, 51, 53–55, 57, 64
container names, 54
curl installation, 37
daemon, 39
–tls, 348
–tlsverify, 352
-H flag, 40
defaults, 42
DOCKER_HOST, 40, 326, 352
DOCKER_OPTS, 42
network configuration, 40
Unix socket, 41
Upstart, 42

DCO, 364
dind, 230
DNS, 242
docker binary, 39
docker group, 39, 323
Docker Hub, 75
docker0, 165
Dockerfile
ADD, 115
ARG, 119
CMD, 104, 153, 156
COPY, 117
ENTRYPOINT, 107, 162
ENV, 110
EXPOSE, 90, 103
FROM, 89
LABEL, 89, 118
ONBUILD, 123
RUN, 90
STOPSIGNAL, 119
USER, 113
VOLUME, 114
WORKDIR, 109
Documentation, 358
Engine API, 323
Fedora
installation, 29
Forum, 355
Getting help, 355
Hub API, 322
installation, 21, 27
iptables, 167
IPv6, 165
IRC, 355
kernel versions, 21

Version: v18.09 (6172afc) 384

Index

launching containers, 48
license, 7
listing containers, 53
naming containers, 54
NAT, 167
networking, 165
OS X, 19
installation, 32
packages, 24
Red Hat Enterprise Linux
installation, 27
registry, 50
Registry API, 322
Remote API, 323
remote installation script, 37
required kernel version, 22
Running your own registry, 135
Security, 78
set container hostname, 242
setting the working directory, 109
signals, 254
specifying a Docker build source, 93
SSH, 254
tags, 77
testing, 140
TLS, 341
Ubuntu
installation, 21
Ubuntu firewall, 26
ubuntu image, 50
UFW, 26
upgrading, 44
use of sudo, 23
volumes, 148, 216, 217, 220
Windows, 19, 35

installation, 34
docker
–log-driver, 60
attach, 56, 195
build, 87, 91, 92, 119, 145, 153,
185, 198, 210, 214, 262
–no-cache, 96
-f, 93
context, 88
commit, 85
create, 55
daemon, 39
exec, 63, 254
-d, 63
-i, 64
-t, 64
-u, 63
history, 98, 145
images, 74, 79, 98, 136, 211, 214,
328

info, 26, 32, 47, 312, 327, 339
inspect, 66, 86, 102, 118, 124, 169,
329

kill, 69, 171, 254
signals, 254
log driver, 60
login, 83
logout, 83
logs, 58, 156, 242, 248
–tail, 59
-f, 58, 157
-t, 59
network, 164, 172
connect, 180
create, 172

Version: v18.09 (6172afc) 385

Index

disconnect, 182
inspect, 172
ls, 173
rm, 174
node, 312
ls, 313
port, 100, 102, 228
ps, 53, 57, 65, 69, 100, 149, 268,
330
–format, 53
-a, 53, 69
-l, 53
-n, 65
-q, 69
pull, 76, 79, 281
push, 127, 133, 137
restart, 55, 171
rm, 69, 135, 195
-f, 69
rmi, 133, 135
run, 48, 57, 60, 65, 71, 78, 81, 90,
95, 100, 104, 105, 137, 147,
156, 198, 215, 265, 333
–cidfile, 195
–dns, 303
–entrypoint, 109
–expose, 90
–hostname, 242
–name, 54, 228, 244, 248
–net, 174
–restart, 65
–rm, 221, 243, 245
–volumes-from, 217, 228, 243,
245
-P, 103

-d, 57
-e, 112
-h, 242
-u, 113
-v, 216, 221
-w, 110
set environment variables, 112
search, 80
service, 315
create, 315
inspect, 315
ls, 315
ps, 316, 318
rm, 318
scale, 317
start, 55, 219, 271
stats, 62
stop, 64, 69
swarm, 311
init, 311
join, 313
join-token, 312
tag, 136
top, 61, 157
version, 339
wait, 195

Docker API, 10
Docker Compose, 33, 35, 257
–version, 259
Installation, 258
upgrading, 259

Docker Content Trust, 78
Docker Engine, 10
Docker for Mac, 32, 258
Docker for Windows, 34, 258

Version: v18.09 (6172afc) 386

Index

docker group, 39, 323
Docker Hub, 75, 80, 127, 130, 322
Logging in, 83
Private repositories, 127

Docker Hub Enterprise, 75
Docker Inc, 7, 78, 355
Docker Machine, 33, 35
Docker Networking, 164, 171
bridge, 173
documentation, 182
overlay, 173

docker run
-h, 280

Docker Swarm, 257
Docker Trusted Registry, 75
Docker user interfaces
DockerUI, 44
Shipyard, 44

docker-compose
kill, 270
logs, 269
ps, 268
rm, 271
start, 271
stop, 270
up, 266

Docker-in-Docker, 230
docker0, 164, 165, 173
DOCKER_HOST, 40, 326, 352
DOCKER_HOST, 268
dockerd, 39
Dockerfile, 87, 124, 130, 138, 141, 146,

152, 161, 184, 193, 194, 199,
209, 210, 212, 214, 223, 227,
234, 238–240, 250, 358

ADD, 142, 144, 235, 250
CMD, 214, 224
DSL, 87
ENTRYPOINT, 210, 214, 224, 228,
237, 239, 241, 277, 298

ENV, 213
exec format, 90
EXPOSE, 142, 213, 228
RUN, 143
template, 97
VOLUME, 210, 213, 224, 238, 277
WORKDIR, 210, 224, 225

DockerUI, 44
Documentation, 358
dotCloud, 7
Drone, 207
EPEL, 28
exec format, 90
Fedora, 27
Fluentd, 61
Forum, 355
GELF, 61
Getting help, 355
GitHub, 130
gofmt, 364
Golden image, 15
HTTP_PROXY, 41, 135
HTTPS_PROXY, 41, 135
Image management, 15
iptables, 167
IPv6, 165
IRC, 355

Version: v18.09 (6172afc) 387

Index

jail, 6
Jekyll, 208, 211
Jenkins CI, 14, 140, 183
automated builds, 198
parameterized builds, 199
post commit hook, 198

JSON, 158
kernel, 21, 22
Kitematic, 33, 35, 44
Kubernetes, 14, 320
libcontainer, 16
license, 7
logging, 58, 60
timestamps, 59

lxc, 7
Microservices, 9
Moby, 358
names, 54
namespaces, 21
NAT, 167
Nginx, 141
NO_PROXY, 41, 135
nsenter, 64, 254
openssl, 341
OpenVZ, 7
Orchestration, 257
PAAS, 7, 15
Platform-as-a-Service, 15
Port mapping, 90
Portainer, 44
Private repositories, 127

proxy, 41, 135
Puppet, 15, 20
Red Hat Enterprise Linux, 27
Redis, 159, 164
Registry
private, 135

Registry API, 322
Remote API, 323
REST, 323
RFC1918, 166
Service Oriented Architecture, 9
Shipyard, 44
Signals, 254
Sinatra, 158
SOA, 9
Solaris Zones, 7
SSH, 254
SSL, 340
sudo, 23
Supervisor, 107
Swarm, 257, 308
tags, 77
Testing applications, 140
Testing workflow, 140
TLS, 322, 340
Trusted builds, 130
Ubuntu, 21
UI for Docker, 44
Union mount, 72
Upstart, 42
vfs, 21
Volumes, 148, 216, 217

Version: v18.09 (6172afc) 388

Index

backing up, 220, 253
logging, 249

ZFS, 21

Version: v18.09 (6172afc) 389

Thanks! I hope you enjoyed the book.

© Copyright 2015 - James Turnbull <james@lovedthanlost.net>

mailto:james+thedockerbook@lovedthanlost.net

	Foreword
	Who is this book for?
	A note about versions
	Credits and Acknowledgments
	Technical Reviewers
	Scott Collier
	John Ferlito
	Pris Nasrat

	Technical Illustrator
	Proofreader
	Author
	Conventions in the book
	Code and Examples
	Colophon
	Errata
	Version

	Introduction
	Introducing Docker
	An easy and lightweight way to model reality
	A logical segregation of duties
	Fast, efficient development life cycle
	Encourages service oriented architecture

	Docker components
	Docker client and server
	Docker images
	Registries
	Containers
	Compose, Swarm and Kubernetes

	What can you use Docker for?
	Docker with configuration management
	Docker's technical components
	What's in the book?
	Docker resources

	Installing Docker
	Requirements
	Installing on Ubuntu and Debian
	Checking for prerequisites
	Installing Docker
	Docker and UFW

	Installing on Red Hat and family
	Checking for prerequisites
	Installing Docker
	Starting the Docker daemon on the Red Hat family

	Docker for Mac
	Installing Docker for Mac
	Testing Docker for Mac

	Docker for Windows installation
	Installing Docker for Windows
	Testing Docker for Windows

	Using Docker on OSX and Windows with this book
	Docker installation script
	Binary installation
	The Docker daemon
	Configuring the Docker daemon
	Checking that the Docker daemon is running

	Upgrading Docker
	Docker user interfaces
	Summary

	Getting Started with Docker
	Ensuring Docker is ready
	Running our first container
	Working with our first container
	Container naming
	Starting a stopped container
	Attaching to a container
	Creating daemonized containers
	Seeing what's happening inside our container
	Docker log drivers
	Inspecting the container's processes
	Docker statistics
	Running a process inside an already running container
	Stopping a daemonized container
	Automatic container restarts
	Finding out more about our container
	Deleting a container
	Summary

	Working with Docker images and repositories
	What is a Docker image?
	Listing Docker images
	Pulling images
	Searching for images
	Building our own images
	Creating a Docker Hub account
	Using Docker commit to create images
	Building images with a Dockerfile
	Building the image from our Dockerfile
	What happens if an instruction fails?
	Dockerfiles and the build cache
	Using the build cache for templating
	Viewing our new image
	Launching a container from our new image
	Dockerfile instructions

	Pushing images to the Docker Hub
	Automated Builds

	Deleting an image
	Running your own Docker registry
	Running a registry from a container
	Testing the new registry

	Alternative Indexes
	Quay

	Summary

	Testing with Docker
	Using Docker to test a static website
	An initial Dockerfile for the Sample website
	Building our Sample website and Nginx image
	Building containers from our Sample website and Nginx image
	Editing our website

	Using Docker to build and test a web application
	Building our Sinatra application
	Creating our Sinatra container
	Extending our Sinatra application to use Redis
	Connecting our Sinatra application to the Redis container
	Docker internal networking
	Docker networking
	Connecting containers summary

	Using Docker for continuous integration
	Build a Jenkins and Docker server
	Create a new Jenkins job
	Running our Jenkins job
	Next steps with our Jenkins job
	Summary of our Jenkins setup

	Multi-configuration Jenkins
	Create a multi-configuration job
	Testing our multi-configuration job
	Summary of our multi-configuration Jenkins

	Other alternatives
	Drone
	Shippable

	Summary

	Building services with Docker
	Building our first application
	The Jekyll base image
	Building the Jekyll base image
	The Apache image
	Building the Jekyll Apache image
	Launching our Jekyll site
	Updating our Jekyll site
	Backing up our Jekyll volume
	Extending our Jekyll website example

	Building a Java application server with Docker
	A WAR file fetcher
	Fetching a WAR file
	Our Tomcat 7 application server
	Running our WAR file
	Building on top of our Tomcat application server

	A multi-container application stack
	The Node.js image
	The Redis base image
	The Redis primary image
	The Redis replica image
	Creating our Redis back-end cluster
	Creating our Node container
	Capturing our application logs
	Summary of our Node stack

	Managing Docker containers without SSH
	Summary

	Docker Orchestration and Service Discovery
	Docker Compose
	Installing Docker Compose
	Getting our sample application
	The docker-compose.yml file
	Running Compose
	Using Compose
	Compose in summary

	Consul, Service Discovery and Docker
	Building a Consul image
	Testing a Consul container locally
	Running a Consul cluster in Docker
	Starting the Consul bootstrap node
	Starting the remaining nodes
	Running a distributed service with Consul in Docker

	Docker Swarm
	Understanding the Swarm
	Installing Swarm
	Setting up a Swarm
	Running a service on your Swarm

	Orchestration alternatives and components
	Fleet and etcd
	Kubernetes
	Apache Mesos
	Helios
	Centurion

	Summary

	Using the Docker API
	The Docker APIs
	First steps with the Engine API
	Testing the Docker Engine API
	Managing images with the API
	Managing containers with the API

	Improving the TProv application
	Authenticating the Docker Engine API
	Create a Certificate Authority
	Create a server certificate signing request and key
	Configuring the Docker daemon
	Creating a client certificate and key
	Configuring our Docker client for authentication

	Summary

	Getting help and extending Docker
	Getting help
	The Docker forums
	Docker on IRC
	Docker on GitHub

	Reporting issues for Docker
	Setting up a build environment
	Install Docker
	Install source and build tools
	Check out the source
	Contributing to the documentation
	Build the environment
	Running the tests
	Use Docker inside our development environment
	Submitting a pull request
	Merge approval and maintainers

	Summary

	List of Figures
	List of Listings
	Index

